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Abstract
This thesis applies operational research methods for the investment planning of
energy systems under uncertainty for the energy transition. We develop new models
and solution methods.

On the modelling side, we first focus on modelling hydrogen-based o�shore energy
hubs in an o�shore energy system. A mixed-integer linear program is developed for the
investment planning of o�shore energy systems with o�shore energy hubs. The model
is then extended to (1) planning under uncertainty using a multi-horizon stochastic
programming approach and (2) including the European onshore and o�shore energy
systems. Finally, some major extensions are made to the model, which lead to the
REORIENT model. The REORIENT model is a multi-horizon mixed-integer linear
stochastic programming model for integrated investment, retrofit, and abandonment
planning of energy systems under short-term and long-term uncertainty. This is the
first model that integrates di�erent alternatives and investigates the role of existing
energy infrastructure in the energy transition. The REORIENT model features
the main modelling contributions in this thesis. In addition, we also extend the
modelling of an existing model, EMPIRE, which is a stochastic linear program for
the European power system investment planning, by including the modelling of the
heat and industry sectors with a strong focus on endogenous decisions regarding
decarbonising industry, hydrogen and carbon capture and storage.

Due to the increasing complexity of the models, we contribute to the solution
methods. The main idea is to develop algorithms that exploit the special structure of
multi-horizon stochastic programming. However, the algorithms developed can also
be applied in general multi-stage stochastic programming problems. We develop novel
enhanced Benders decomposition and Lagrangean decomposition algorithms. The
enhanced Benders decomposition utilises adaptive oracles. In addition, we propose to
stabilise the adaptive Benders decomposition with (1) a novel dynamic level method
and (2) a novel centre point strategy. We also propose parallelised Lagrangean
decomposition with primal reduction. The Lagrangean scenario subproblems are
solved in parallel, and the primal problem is reduced based on the special structure of
multi-horizon stochastic programming and solved in parallel. We apply the proposed
algorithms to solve the REORIENT model and its variations and compare them
with standard Benders, unstabilised adaptive Benders, and standard Lagrangean
decomposition.

The proposed models and algorithms contribute to operational research and
provide useful insights for the energy transition.
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Chapter 1

Introduction

Limiting global warming by 1.5 °C above pre-industrial levels is one of the most
important tasks for human beings for the next decades. Decarbonising the energy
systems worldwide is important to meet the climate target. The European Union
(EU) is a pioneer in the energy transition, and the EU has set an ambitious target
to become the first carbon-neutral continent by 2050. Renewable power generation
and clean energy carriers are expected to be the pillars of a decarbonised energy
system. However, fossil-based energy is still important for many years in the energy
transition, especially considering the ever-changing energy reality in Europe. Also,
highly valued existing fossil-based energy infrastructures may play an important role
in the energy transition. Norway, one of the biggest energy exporters in Europe, has
a unique position in the energy transition. On the one hand, it has a mature existing
energy infrastructure that transports energy to European countries. On the other
hand, it has huge potential for large-scale deployment of clean technologies such as
o�shore wind, o�shore energy hubs and carbon capture and storage. Therefore, in
this thesis, we approach the European energy transition problem by first studying the
Norwegian o�shore energy system and expanding the scope to analyse the European
energy system and provide global insights.

The energy transition requires careful planning to be cost e�cient, while
satisfying physical laws and environmental restrictions. Mathematical programming,
a theoretical tool for operational research, minimises or maximises a certain objective
subject to some constraints. It has been widely used for energy system planning
problems. In addition, dealing with uncertainty has become important in modelling
energy system planning problems. For an investment planning problem, long-term
and short-term uncertainty can significantly impact investment decisions. Stochastic
programming, a part of mathematical programming, deals with optimisation under
uncertainty. In this PhD thesis, we apply Multi-Horizon Stochastic Programming
(MHSP) and develop corresponding solution methods for energy system investment
planning problems.

This line of research and applications forms the basis of this PhD thesis, situated
within the broader mission of the LowEmission Research Centre. The centre is
dedicated to developing technologies and knowledge to reduce Norwegian o�shore
emissions, focusing primarily on the emissions from the oil and gas industry. This
thesis is written under the PhD program in the Department of Industrial Economics
and Technology Management at the Norwegian University of Science and Technology.
This PhD project aims to contribute to academic theory and methods and their
applications in industry.

In this PhD project, we (1) develop investment planning models for energy
systems considering O�shore Energy Hubs (OEHs) and analyse the role of OEHs in
the Norwegian o�shore energy system and the European energy system, (2) develop
an integrated investment, retrofit and abandonment planning model to analyse the
role of existing energy infrastructure in the energy transition, (3) include uncertainty
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in both long-term and short-term time horizons in a long-term planning problem, (4)
develop decomposition methods for solving large-scale multi-stage stochastic Linear
Programming (LP) and Mixed-Integer Linear Programming (MILP) problems.

The research work of this thesis has led to six papers. The first paper in this
thesis considers the investment planning of the Norwegian o�shore energy system
with OEHs (Zhang et al., 2022c). The second paper extends the work in the
first paper by including short-term uncertainty and expanding the system to the
European energy system (Zhang et al., 2022b). The problem size increases, and
hence the computational burden, which motivates us to develop e�ective algorithms.
The third paper focuses on developing and applying dynamic stabilised adaptive
Benders decomposition for investment planning problems (Zhang et al., 2022a).
The fourth paper targets a new model REORIENT, and an enhanced Benders
decomposition algorithm to solve the model (Zhang et al., 2023a). The fifth paper
further investigates the special structure of MHSP, formalises the decomposition
algorithms that utilise the structure of MHSP, and develops a parallelised Lagrangean
decomposition algorithm (Zhang et al., 2023b). The sixth paper focuses on modelling
heat and industry sectors in an investment planning model EMPIRE and analysing
the European energy transition without Russian gas (Durakovic et al., 2024).

The structure of this thesis is as follows. Chapter 2 places the papers presented in
this thesis into context. It provides background on energy systems planning and the
methods used in this thesis, including MHSP, Benders decomposition, stabilisation
methods, and Lagrangean decomposition. We provide an overview of relevant
literature, place the conducted research in this scientific landscape and elaborate on
some of the methods. In Chapter 3, we summarise each paper in this thesis. For
each paper, we present the contributions to research and to industry, and specify
the individual contributions of each author. Finally, general conclusions based on
the research are given in Chapter 4, as well as suggested further work. The papers
presenting the actual research are included in the second part of the thesis.
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Chapter 2

Background and literature
This chapter places the content of this thesis into the work in the research field and
explains how this thesis extends the existing literature. Section 2.1 provides general
background and literature on energy system planning. Then additional literature is
provided on energy hubs, hydrogen systems, retrofit and abandonment of existing
energy infrastructure to highlight our contributions. Section 2.4 presents the relevant
research on methodologies, including MHSP, Benders decomposition, stabilisation
methods and Lagrangean decomposition.

2.1 Energy system planning

This section gives an overview of operational research in energy system planning.
The main methodologies in energy system modelling are divided into top-down and
bottom-up categories. Top-down energy models try to depict the economy as a whole
on a national or higher level to answer the aggregated e�ects of energy policies in
monetary units. Bottom-up energy system models represent the partial equilibrium
or optimisation of a part of the energy sector. In this thesis, we have focused on
the bottom-up modelling of energy systems. Typically, energy system planning
problems deal with (1) operational optimisation of existing systems, (2) finding
optimal investment decisions for a new system or expansion of an existing system,
and (3) finding optimal investment decisions and optimal operational decisions
according to the investment decisions. Due to the higher penetration of intermittent
renewable energies in the energy system and uncertain long-term parameters such
as CO2 price, it becomes essential to manage short-term and long-term uncertainty
in energy system planning.

Electric power, natural gas, and thermal systems optimisation have been
extensively studied. Sector coupling and multi-carrier energy system optimisations
are drawing more attention. The concept of energy hubs is emerging to enable
the condition, conversion and storage of multiple energy carriers. In addition to
traditional energy carriers, hydrogen can be a pivotal energy carrier in the future,
and hydrogen system optimisation is a field of increasing interest. The market
assumption of the models for energy system planning is important to understand the
results. In the following, we present a brief literature review on the aforementioned
topics.

2.1.1 Power system

In this section, we provide a literature review of operational research in power system
research. We focus on the literature on capacity expansion, power system scheduling
and the penetration of renewable power in power systems. A comprehensive review
was presented in Gacitua et al. (2018).
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Optimisation models have long been used for power system generation and
transmission investment planning. An enormous amount of models have been
developed in the past decades. Giving a comprehensive literature review is beyond
the scope of the section. However, the models can roughly be categorised based on:
(1) spatial representation, (2) temporal representation, (3) network flow modelling,
(4) operational details of technologies and (5) uncertainty modelling. In the following,
we present some literature on models in these categories and compare the model
developed in this thesis with other models.

The spatial resolution of a power system investment planning model can be high
or low depending on the specific problems. This is mainly due to the tractability of
a model. Skar et al. (2016) studied the European power system capacity expansion
under short-term uncertainty and proposed the EMPIRE model. Each EU country
was represented by a node in the optimisation model, and Norway was represented by
5 nodes. Many other models used similar spatial resolution (Deane et al., 2017). This
may be su�cient for the problem considering such a large-scale system. Antenucci
et al. (2019) firstly used the EMPIRE model to obtain the country level investment
decisions and then disaggregated the capacity within the country electric buses to
provide input to an operational model with higher spatial resolution. Lara et al.
(2018) divided the area of scope into regions that have similar climate and load
profiles. In addition, the generators and storage units with similar characterises were
aggregated in each region. Using this, the Texas region, ERCOT, was represented
by five nodes in an optimisation model. However, the length limit of an electricity
transmission line was not considered in the spatial aggregation. In our paper (Zhang
et al., 2022c), we use a k-means cluster approach that considers the transmission
line limit. It is important because, in each aggregated region, it should be feasible
to transmit electricity. We also adopt the approach in Skar et al. (2016) and Lara
et al. (2018) for regions that require less resolution. In this way, we achieve a better
balance between spatial resolution and computational tractability.

Temporal representation includes the representations of two time horizons: the
investment time horizon and the operational time horizon. In the investment time
horizon, there are one-time investments and multi-period investments. The one-time
investment problem is also referred to as a greenfield problem. For the investment
time horizon with multiple periods, a yearly resolution was used meaning that the
investment decisions are made yearly in a model. Models such as COMPETES
(Ozdemir et al., 2016), DSIM (Strbac et al., 2012) and the model in Li & Grossmann
(2019) have a yearly resolution. However, a lower resolution was used to make the
model tractable (Skar et al., 2016). In this thesis, we use a 5-yearly investment
resolution to reduce the model size.

The temporal representation of the operational time horizon is important because
it can directly a�ect the feasibility of investment decisions. If the operational time
horizon is poorly modelled, the investment decisions from the model can be infeasible
or cannot deliver enough power in the real world. Normally, the operational resolution
for an investment planning model is hourly (Munoz et al., 2014) or even multi-hourly
(Jaehnert et al., 2013) to reduce the problem size. In addition, the model is usually
run on some selected time slices instead of every time period in a whole year such as
in Backe et al. (2022a). This is a compromise to keep the model tractable. However,
there is a risk of missing some operational conditions in some operational periods.
It is very di�cult to include a whole year of system operation and still be able to
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solve the model. To the best of our knowledge, there is no literature on solving a
long-term multi-step power system investment planning problem with an annual
system operation with an hourly operational time resolution. In this thesis, we close
the research gap by developing models with a whole year half-hourly operational
time resolution and proposing novel decomposition algorithms to solve huge-scale
models very e�ciently (Zhang et al., 2022a).

The modelling of electricity networks can be divided into Alternating Current
(AC) power flow, Direct Current (DC) power flow and transport approaches. AC
optimal power flow takes both real and reactive power, and phase angles between
them into consideration. This keeps all the physics but leads to nonlinear optimisation
models. Due to the computational di�culty, much fewer studies have used AC power
flow in investment planning problems than the other two approaches. Krishnan
et al. (2016) formulated an AC power flow capacity expansion model but could
not solve it. Alguacil et al. (2003) proposed a mixed-integer linear formulation to
approximate the original nonlinear nonconvex problem. As can be seen, it is very
challenging to solve an AC power flow model. DC power flow ignores reactive power
and phase angles and focuses on the real power. This simplification can be used at
the expense of approximating the physics of the electricity transmission, but with
the great advantage that it leads to a linear formulation. It has been used in Li
et al. (2022); Chaudry et al. (2008); Zlotnik et al. (2017). The transport model for
electricity network expansion is a more common approach in the literature, including
the EMPIRE model (Backe et al., 2022a), COMPETES (Ozdemir et al., 2016) and
DSIM (Strbac et al., 2012). In this thesis, improving the modelling of the electricity
network is not the focus. Therefore, we adopt the transport modelling approach.

Managing uncertainty in a capacity expansion problem is necessary for modern
power system investment planning. It is because: (1) operational condition is
highly uncertain with the increasing penetration of intermittent renewable power,
and (2) long-term uncertainty such as policy, and power demand have a significant
impact on the investment decisions. Stochastic optimisation models can capture
uncertainty in key parameters that may significantly a�ect investment decisions.
Munoz et al. (2016) modelled a multi-area transmission and generation planning
in an MILP model and extended the model to stochastic programming by using
expected-value constraints to enforce policy objectives. In Singh et al. (2009), a
multi-stage stochastic MILP model was proposed for capacity planning problems, and
a case study was demonstrated for the New Zealand electricity distribution network
expansion under demand uncertainty. MILP has been widely used for investment
planning problems because integer or binary variables are needed to capture the
economic scale. However, one challenge in MILP models is their computational
di�culty, especially when the model is stochastic. Managing uncertainty is relevant
to the power system expansion problem and the capacity expansion problem in
general. Therefore, we will provide a more systematic literature review in Section
2.1.7.

In power system operational optimisation problems, many challenges are similar
to those in investment planning problems. For example, in power system operational
optimisation, the unit commitment problem is fundamental (Anjos & Conejo, 2017).
It is designed to find the cost-optimal scheduling of each generating unit to meet the
electricity demand. Unit commitment has been used for hydro-thermal generation
scheduling since the generators are controllable. Unit commitment has been used
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to model the power system part of several energy system models such as IMAKUS
model (Heilek et al., 2015), Dispa-SET model (Kavvadias et al., 2018), Oemof model
(Hilpert et al., 2018), and the model developed in Li et al. (2008). Unit commitment
problems can be modelled as mixed-integer optimisation problems. However, as
volatile renewables have a higher penetration in the system, stochastic optimisation
models for unit commitment have drawn increased interest. Schulze et al. (2017)
developed a stabilised scenario decomposition algorithm with novel primal and
dual initialisation techniques to solve two-stage and multi-stage unit commitment
models. Hydro-electric unit commitment subject to uncertain demand was studied
in Philpott et al. (2000), and the inflow uncertainty in hydropower unit commitment
was studied in Séguin et al. (2017). Modelling the physics of an electricity network
in an operational problem is more important than that in an investment planning
problem. AC power flow is more commonly used in operational optimisation problems.
However, solving the AC power flow problem is still challenging. Therefore, solution
methods for the AC power flow problem have been an active research area. AC
power flow was used to represent the electricity network, and the equations were
linearised and solved using Newton’s method (Martinez-Mares & Fuerte-Esquivel,
2012). A piecewise linear approximation of AC power flow was developed (Trodden
et al., 2014). Spatial and temporal hierarchical decomposition methods for optimal
power flow problems were developed (Nava, 2022).

2.1.2 Natural gas system

The infrastructure design of natural gas systems is crucial. Two important parts of
developing a natural gas system are the development of fields and the design of the
transmission system.

Norway was the third largest natural gas exporter and has the largest o�shore
pipeline network in the world. This motivated much research in the investment and
operational optimisation of the Norwegian natural gas system. Due to Norway’s
significant role in the natural gas industry, the research has provided global insights.

A deterministic MILP was developed for natural gas infrastructure analysis for
the Norwegian continental shelf (Hellemo et al., 2012). The model handled strategic
decisions including developing new fields, and constructing and redesigning the
infrastructure with operational details such as the relationship between pressure and
flow and gas quality. The model was deterministic but was extended to a multi-stage
stochastic optimisation model, Ramona. The Ramona model has then been used for
the stochastic analysis of the investment planning of the Norwegian continental shelf
(Hellemo et al., 2013). Hellemo et al. (2013) combined short-term and long-term
uncertainty in the case studies, but did not su�ciently address the computational
solution for solving the model. This has remained as a research gap for more than
ten years, and we bridge the gap by proposing novel decomposition algorithms
to solve large-scale investment planning problems with short-term and long-term
uncertainty (Zhang et al., 2022a, 2023a). The Ramona model was then used to
analyse European infrastructure development under demand uncertainty (Fodstad
et al., 2016). However, the uncertain parameters were only revealed at one stage,
making it only a two-stage stochastic program. It is a computational challenge to
solve multi-stage stochastic programming, and two-stage stochastic programming is
a compromise. The algorithms we develop in this thesis overcome the challenge and
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enable more research in infrastructure planning including short-term and long-term
uncertainty.

There are more research gaps in the infrastructure planning of natural gas systems.
For example, the existing literature (Hellemo et al., 2013; Fodstad et al., 2016) did
not consider retrofit and abandonment planning of existing infrastructures in their
models. The potential value of existing oil and gas infrastructures for the energy
transition has been missing in the literature. Therefore, we bridge the gap by
considering retrofit and abandonment planning of existing energy infrastructures in
an investment planning model (Zhang et al., 2023a).

Modelling the planning of oil and gas field infrastructure is a complex task. The
modelling can be simplified such as in Fodstad et al. (2016), but it can also be dealt
with so that more physical laws are respected. Tarhan et al. (2009) proposed a
nonconvex mixed-integer nonlinear programming model to solve an o�shore oil and
gas field infrastructure planning problem under decision-dependent uncertainty. The
modelling of the reservoir led to nonlinearity. Goel & Grossmann (2004) proposed
a multi-stage stochastic MILP for o�shore gas field developments under reserve
uncertainty. Although they considered decision-dependent uncertainty, short-term
uncertainty was not considered. From a methodology perspective, the advanced
models and algorithms developed for oil and gas field infrastructure planning are
valuable, but developing more oil and gas fields may slow down decarbonisation.
Therefore, in this PhD thesis, we do not consider developing new oil and gas fields,
but rather focus on decarbonising existing oil and gas fields (Zhang et al., 2022c)
and retrofitting oil and gas infrastructures for the energy transition (Zhang et al.,
2023a).

One challenge of modelling natural gas systems is modelling the physics of the
gas flow and pressure. It is because of the nonlinear properties in pressure dynamics
in pipelines, compressor e�ciency and gas quality management. Li et al. (2017)
proposed two two-stage stochastic nonconvex mixed-integer nonlinear programming
models for the production network infrastructure development under uncertainty and
proposed nonconvex generalised Benders decomposition to solve the model. Qadrdan
et al. (2014) took the nonlinear characteristics of the gas network into consideration
and proposed solving the problem using successive linear programming. There are
several approximation methods to avoid nonlinearity. Fodstad et al. (2015) used a
linear steady approximation of the pressure dynamics in pipelines, which was claimed
to be a reasonable approximation. In this thesis, we use an energy flow model to
model gas transport considering the large scale of the system (Zhang et al., 2023a).

2.1.3 Thermal system

Thermal system optimisation has not been researched as much as power and natural
gas systems optimisation.

Thermal system has the potential to aid energy system decarbonisation using
demand side management. For example, Egging-Bratseth et al. (2021) developed a
stochastic programming model to minimise the operational cost of a district heating
network with local waste heat utilisation, seasonal storage and uncertain demand.
They investigated demand side management and seasonal storage for improving
operational flexibility. The model did not include many physical details such as
heat mass and temperature change with respect to energy consumption, but the
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simplification was su�cient for a large-scale system. Salerno et al. (2021) investigated
building level energy management. Heat management was a major part of their
model, and due to the relatively small spatial scale, they managed to include more
physical details such as room temperature change energy exchange, leading to a
nonlinear optimisation model.

Existing literature is mainly centred around domestic heating systems. Sta�ell
et al. (2012) provided a comprehensive of domestic heat pumps and pointed out
that heat pump is a promising technology that can radically improve the heating
sector around the world. Backe et al. (2022b) combined two models, EMPIRE and
GUSTO to investigate the impact of energy communities on the European electricity
and heating system. They found that heat pumps may supply 50% of European
heat demand by 2025. Due to the model size, the physics of the heating system
was simplified to a large extent. Felten (2020), on the other hand, managed to
include more detailed modelling of the district heating network in Europe. From the
literature, we can see that o�shore heating system optimisation is missing. Compared
with domestic heating, the o�shore heating system is smaller but also important.
O�shore heating is important for oil and gas production and the living facilities
on the oil and gas platforms. The o�shore heat energy is largely provided by heat
recovery from gas turbines. However, once the gas turbines are replaced by renewable
power generation, the heat supply must also be provided by other means. To fill this
research gap, we propose an MILP model for the o�shore energy system considering
o�shore heating system (Zhang et al., 2022c).

2.1.4 Hydrogen system

Compared with well-studied systems like power and natural gas systems, the hydrogen
system has the potential to be the pillar of the future decarbonised energy system
and is drawing increasing interest in academia and industry. There is a high expected
demand for hydrogen by 2050 in Europe and the UK (van Rossum et al., 2022). Much
literature has appeared on the operational and investment planning optimisation of
hydrogen systems.

Hydrogen infrastructure planning is the main focus of the literature. Bødal
et al. (2020) developed an investment planning model for hydrogen infrastructure
design and found that in Texas by 2050, hydrogen produced from electricity and
natural gas will be cost-e�ective for emissions reduction. The model was a single
step investment model assuming the costs of technologies in 2050. This means the
model cannot provide insights for the hydrogen infrastructure pathway. In this
thesis, we develop a multi-step investment planning model. Reuß et al. (2019) used
a single step investment model to study the hydrogen supply chain with spatial
resolution. Di�erent infrastructure options nationwide in the German energy system
in 2050 were assessed, showing that salt caverns and transmission pipelines are
key components in future infrastructure systems. The limitation of their study is
that the authors only investigated the system under the 2050 assumption, which is
highly uncertain. Managing uncertainty in hydrogen infrastructure planning is very
important because hydrogen demand is significantly more uncertain compared with
traditional energy carriers such as electricity. In this thesis, we conduct hydrogen
infrastructure planning considering operational and investment uncertainty (Zhang
et al., 2023a).
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One common limitation of existing literature regarding hydrogen infrastructure
planning is that hydrogen demand is usually an exogenous parameter. For example,
Durakovic et al. (2023b) investigated the impact of hydrogen investments on power
grid infrastructure and power prices. They considered major o�shore wind projects
in the North Sea and conducted European wide analysis. The hydrogen demand
in the model was given as a parameter. Although the transport of hydrogen was
considered in their model, the analysis of long-term hydrogen pipeline development
was missing. Seo et al. (2020) studied the hydrogen infrastructure for fuel cell electric
vehicles focusing on the storage and transport of hydrogen using di�erent means.
The authors investigated using centralised hydrogen storage to supply hydrogen
at fuel stations. The transition to hydrogen is promising based on van Rossum
et al. (2022) but is less clear due to the ever changing energy reality in Europe.
Therefore, using exogenous hydrogen demand for hydrogen infrastructure design can
be misleading. The ideal way to plan hydrogen infrastructure is to endogenously
model the hydrogen demand (Seck et al., 2022; Pedersen et al., 2022), which has not
been su�ciently studied in the literature. In this thesis, we bridge this gap by (1)
modelling the endogenous hydrogen demand in the o�shore oil and gas industry and
planning the hydrogen production infrastructure on the Norwegian continental shelf
(Zhang et al., 2022c,b), and (2) modelling the transition to hydrogen in the industry,
heat, and transport sectors and analysing European decarbonisation without Russian
gas (Durakovic et al., 2024).

Optimising hydrogen production is another focus in the literature. Hydrogen
can be produced from water electrolysis, steam reforming of natural gas and others.
Based on the production methods and their emissions, hydrogen is often categorised
into di�erent colours. The energy optimisation of hydrogen production from biomass
was studied using an MILP model (Martín & Grossmann, 2011). The authors found
that indirect gasification with steam reforming is the preferred technology providing
higher production yields than natural gas steam reforming. The authors mainly
focused on the hydrogen production method and did not analyse how the proposed
approach can benefit the energy transition. Using an energy hub to produce hydrogen
was investigated in Lüth et al. (2023). The authors investigated the optimal way of
connecting energy hubs with surrounding countries considering cables and pipelines.
They only considered the onshore demand for hydrogen but omitted the potential
hydrogen consumption in the o�shore energy system. This thesis considers both
onshore and o�shore hydrogen demand and production (Zhang et al., 2022c, 2023a).

Carbon capture and storage is an important technology in hydrogen systems due
to the potential importance of blue hydrogen in the future energy system. Cloete
et al. (2022) investigated the potential trade channels for energy exporters in a
low-carbon future using a novel electricity-hydrogen-steel energy system model. The
analysis showed that a robust hydrogen demand would allow Norway to export all
natural gas production as blue hydrogen profitably. Moreno-Benito et al. (2017)
used an extension of the SHIPMod model to optimise the hydrogen supply chain
and carbon capture and storage systems simultaneously. The results showed that
the most cost-e�ective hydrogen production method that maintains low carbon
emissions is natural gas reforming with carbon capture storage (Moreno-Benito et al.,
2017). Their model was a multi-period spatial-explicit model but did not consider
uncertainty. In this thesis, we consider carbon capture and storage system design
alongside hydrogen infrastructure design with endogenous hydrogen demand under
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short-term uncertainty (Durakovic et al., 2024).

2.1.5 Multi-carrier energy system

From Sections 2.1.1-2.1.4, we can see that: (1) power, natural gas and thermal
systems optimisation has been extensively studied in the past decades, and (2)
hydrogen system optimisation is drawing more attention as hydrogen may be a
pivotal energy carrier in the future energy system.

Another important aspect of energy system planning is multi-carrier energy
system planning. It becomes important because managing better the interaction
among power, heat, natural gas and hydrogen systems can potentially lead to a more
reliable, clean, and cost e�ective energy system. In this thesis, we integrate power,
natural gas, heat and hydrogen systems in a single multi-carrier energy system model
(Zhang et al., 2022c, 2023a; Durakovic et al., 2024). The following presents the
literature review on sector coupling. A comprehensive review on the state of the art
of energy system modelling including multi-energy systems was presented in Fodstad
et al. (2022).

Power and gas systems can be coupled by gas-fired power plants. A thorough
survey on the state of the art of the integrated power and natural gas networks
models was conducted in Farrokhifar et al. (2020). The di�culty of power and gas
system coupling is the complexity of both systems. As mentioned in Sections 2.1.1
and 2.1.2, there are complex equations to capture the physics in both systems. Even
solving a problem with one sector is computationally di�cult. Therefore, coupling
the systems in a tractable way and developing solution methods are important.
Qadrdan et al. (2014) integrated GB gas and electricity system by having separated
electricity model and gas model, and using gas load shedding due to the gas demand
for electricity generation as the coupling factor. The strength of this approach
is that more physics can be included in the two separate models. However, the
solution is not global optimal. Unlike Qadrdan et al. (2014), Chaudry et al. (2008)
proposed to solve an integrated gas and electricity network investment planning as a
single nonlinear programming problem, and a DC network was used to represent the
electricity network. To aid the convergence, a feasible starting point was provided,
and the decision variables were scaled. Due to the complexity of the models, they
only considered single step investment planning. Nunes et al. (2018) managed
to include uncertainty in an integrated electricity and gas system and conducted
multi-step investment planning. However, they only considered the uncertainty at
the operational level and made more simplifications on the modelling of the network
to reduce the complexity. From the literature, we can identify that a research gap
is the lack of a combination of high operational modelling detail, high investment
time resolution and managing uncertainty properly. This thesis contributes to this
issue by proposing a tractable multi-carrier energy system model with multi-step
investments and short-term and long-term uncertainty, and the solution method
(Zhang et al., 2023a).

Although directly coupling gas and electricity systems in a model faces
computational di�culty, there may be more issues with this approach in real life. The
gas and electricity systems are operated by di�erent entities, and it is unlikely that
a single operator operates both systems. Therefore, there are also studies to couple
gas and electricity using price signals. For example, Chen et al. (2020) investigated
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the independent, but interrelated day-ahead operation of power and natural gas
systems with information interchange on prices, operational costs and decisions.
Their results showed that the coupling approach introduced overall e�ciency losses
and increased the operational cost of the gas system. We can see that there is still
more work to find an integration mechanism that can be used in real life.

In addition to gas and electricity system coupling, heat and electricity systems are
coupled by combined heat and power generators, electric boilers, and heat storage.
The heat and electricity coupling enables to deliver heat alongside electricity. Felten
(2020) coupled the heat and power sectors using a sequential approach. The heat
demand was firstly modelled at the district heat network level, then the heat supply
was determined, and finally the electricity market was simulated. Although a
European wide heat and electricity system was considered, the system was only
simulated not optimised. Backe et al. (2021) extended an optimisation based model
EMPIRE to include the heat sector in a power system investment planning model.
The authors found that the non-electric heat supply in Norway is attractive for
Europe towards 2060. The German electricity and heat sector coupling was modelled
in Henning & Palzer (2013), and Palzer & Henning (2014) found that it is feasible
for a 100% renewable supply. To the best of our knowledge, the integrated heat
and electricity system for o�shore energy systems is missing in the literature. In
the o�shore energy system, especially the o�shore oil and gas industry, heat and
electricity are important energy carriers for production activities. Decarbonising the
heat and electricity supply for o�shore energy systems is a research gap. In this
thesis, we bridge this gap by proposing a multi-carrier energy model to decarbonise
the o�shore oil and gas sector (Zhang et al., 2022c).

Hydrogen, natural gas and power systems are closely related to each other. Green
hydrogen can be produced from electrolysis using clean electricity such as wind power,
solar power and hydropower. Bødal et al. (2020) developed a coupled hydrogen and
electricity investment planning model to investigate the decarbonisation synergies
from joint planning of electricity and hydrogen production. They modelled the
electricity and hydrogen network using a transport model to reduce the complexity.
The model was a single step investment model. This may be su�cient for analysing
the costs of production but not enough for analysing the role of hydrogen in the
decarbonisation pathway of the energy system. Therefore, in this thesis, we close the
gap by proposing a coupled hydrogen and electricity system multi-step investment
planning model (Zhang et al., 2023a; Durakovic et al., 2024). The value of flexibility of
hydropower for hydrogen production was investigated in an operational optimisation
problem, which allowed the inclusion of more modelling of the technical details
(Bødal & Korpås, 2020). Blue hydrogen can be produced from natural gas with
carbon capture and storage, which motivates the sector coupling of hydrogen and
natural gas systems. Although there is no large-scale hydrogen system in real life,
academic literature has started investigating the co-optimisation of natural gas and
hydrogen systems. For example, Sunny et al. (2020) developed an optimisation model
that determines the optimal hydrogen and CO2 infrastructure for investigating the
decarbonisation of a heat system that connects to an existing natural gas network.
The literature either focused only on either the planning of hydrogen and electricity
systems, or the planning of hydrogen and natural gas systems. Therefore, in this
thesis, we integrate power, natural gas, heat and hydrogen sectors in a single model
to better analyse the interactions. Furthermore, the uncertainty is not managed
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su�ciently in the literature (Fodstad et al., 2022). In this thesis, we extend the
literature by proposing an MHSP model for integrated energy system planning with
short-term and long-term uncertainty.

2.1.6 Market assumptions in energy system infrastructure planning

Understanding the market assumptions of an energy system planning model is
crucial for analysing the results. In this thesis, the models developed take a social
planner standpoint. Most of the energy system infrastructure planning models
took the same assumption. For example, EMPIRE (Backe et al., 2022a) and
PRIMES (E3MLab/ICCS, 2018) models considered long-term European energy
system planning from a social planner perspective. This means that the decisions
made are the most cost e�ective for society but are not necessarily what firms
would actually make in a real market. Although there are studies assuming a
more realistic market, such as Linares et al. (2008) which incorporated oligopoly
in a power generation expansion model, such models are hard to solve due to the
complementarity. In this thesis, we are interested in studying the optimal investment
planning of the large-scale European energy system, a social planner based model
reduces the computational di�culties.

2.1.7 Managing uncertainty in energy system planning

Managing uncertainty is an important task in energy system planning. Yue et al.
(2018) conducted a comprehensive review on managing uncertainty in energy
system optimisation models. The authors pointed out four classes of methods
to address uncertainty, including Monte Carlo analysis, stochastic programming,
robust optimisation and modelling to generate alternatives. Stochastic programming
is the most widely used method to tackle uncertainty in energy system models, which
is also the method used in this thesis. In the following, we present a literature review
on stochastic programming in energy system investment planning.

Long-term energy system investment planning faces uncertainty in operational
time horizon and investment time horizon. Operational uncertainty and investment
uncertainty can have a decisive impact on investment decisions. From a modelling
perspective, including both types of uncertainty simply leads to multi-stage stochastic
programs.

Using traditional multi-stage stochastic programming to manage investment
and operational uncertainty for long-term energy system investment planning
problems is ine�cient. Singh et al. (2009) developed a multi-stage stochastic
programming model for electricity network capacity expansion considering only long-
term uncertainty in future demand growth. Lara et al. (2020) included operational
and investment uncertainty in a long-term power system expansion planning problem.
They considered long-term uncertainty in fuel prices and CO2 tax, and short-term
uncertainty in renewable power production and hourly demand. The problem grew
exponentially because the scenario tree was branched based on both investment and
operational uncertainty. Liu et al. (2017) developed a similar multi-stage stochastic
programming model to capture long-term fuel, and demand growth uncertainty and
renewable availability uncertainty. Although, Lara et al. (2020) and Liu et al. (2017)
are two of the few papers that managed to consider uncertainty from both time
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horizons, their models based on traditional multi-stage stochastic programming have
a limitation which is the explosion in the size of the scenario tree. Their models can
very easily become intractable. The state-of-the-art modelling approach for including
uncertainty in the operational and investment time horizons is MHSP. MHSP has
been widely used in energy system investment planning since it was first proposed in
Kaut et al. (2014). In this thesis, we also use MHSP in the energy system investment
planning model. We provide a systematic review of the methodology of MHSP in
Section 2.4.1.

Although MHSP has been widely used for energy system investment planning
models, there are two limitations in the existing literature: (1) only operational
uncertainty has been considered, and (2) the operational uncertainty is only
represented by a few representative days. Durakovic et al. (2023b) included
operational uncertainty including wind and solar capacity factors, and hydropower
production profile in a multi-step energy investment planning model using the
MHSP approach. Backe et al. (2021) used an MHSP model to investigate the sector
coupling between a central power system and energy communities under short-term
uncertainty. The operational uncertainty was represented by representative time
slices, which led to a two-stage stochastic programming model and was arguably
su�cient for an investment planning problem. However, there is a risk of missing
some critical operational conditions from the rest time periods. In addition, only
considering operational uncertainty loses the value of MHSP which is managing
both operational and investment uncertainty more e�ciently than traditional multi-
stage stochastic programming. To the best of our knowledge, there was no paper
that included operational and investment uncertainty using MHSP for an energy
system planning problem since MHSP was proposed. In this thesis, we close the
research gap by developing the first multi-carrier energy system investment planning
model considering operational and investment uncertainty (Zhang et al., 2022a).
Furthermore, we are able to include an annual operational problem with half-hourly
time periods compared with representative time slices in the existing literature
(Zhang et al., 2022a).

The growing complexity of energy system models motivates the development and
application of decomposition methods. This is especially the case for stochastic energy
system planning problems because stochastic programming models have structures
that can be easily decomposed. For example, nested Benders decomposition with
Lagrangean relaxation (Lara et al., 2018), Benders decomposition with a two-phase
bounding scheme (Munoz et al., 2016), and Dantzig-Wolfe decomposition (Singh
et al., 2009) have been proposed to solve their problems.

In this thesis, we develop enhanced Benders decomposition and parallel
Lagrangean decomposition methods that utilise the special structure of MHSP.
The enhanced Benders decomposition allows us to solve by far the largest problems
instances in energy system planning literature (Zhang et al., 2022a). We provide
a more detailed literature review on Benders decomposition and Lagrangean
decomposition presented in Sections 2.4.2 and 2.4.4.
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2.2 Energy hubs

In this thesis, we propose the concept of OEHs for the energy transition. In the
following, the relevant literature regarding energy hubs is provided.

2.2.1 The energy hub concept

The energy hub concept, originally introduced by Geidl et al. (2007), is described as
a physical junction where various types of energy can be transformed, conditioned,
and stored.

The energy hub concept has drawn much research interest due to its multi-carrier
nature. For example, the concept has been utilised to enhance energy flexibility
in buildings (Ottesen & Tomasgard, 2015) and electricity markets (Ottesen et al.,
2016). Energy hubs provide a promising means for tapping into the advantages of
multi-energy systems, such as interconnected electricity and heating networks (Ayele
et al., 2018), and electricity-thermal-natural gas coupling systems (Wang et al.,
2019). Moreover, the management of energy hubs with intermittent wind power has
been investigated using stochastic programming (Najafi et al., 2016). Employing
energy hubs to tackle the volatility of wind power can reduce operating costs, wind
power reduction, and CO2 emissions (Zare Oskouei et al., 2021). Energy hubs with
power-to-gas and hydrogen storage technologies can curtail emissions and generate
hydrogen for end-use applications (Preston et al., 2020). A comprehensive review on
energy hubs was conducted in Mohammadi et al. (2017).

2.2.2 Offshore energy hubs

Although the energy hub concept was widely studied, OEHs are less researched.
OEHs essentially apply the concept of energy hubs for o�shore energy systems.

In the context of o�shore energy systems, the definition of energy hubs is
generalised. For example, North Sea Wind Power Hub Programme (2020) proposed
a North Sea wind power hub to connect the North Sea countries using OEHs in
a hub and spoke form. Danish Energy Agency (2020) aims to construct the first
energy island in the world. The energy island is essentially a wind power distribution
hub. The conversion and storage functions of the energy hub concept are not strictly
considered in the definition of OEHs. Durakovic et al. (2023a) modelled green
hydrogen production via OEHs to supply the European energy system and they only
considered energy conversion and condition in OEHs. Lüth et al. (2023) compared
connecting the o�shore energy island to the surrounding countries via electricity
cables and hydrogen pipelines. The energy island is an electricity conversion and
transmission hub if it connects with the onshore system via cables. In the literature,
the storage function of OEHs has not been considered. To bridge this gap, we
first propose clean OEHs with storage function and show that hydrogen storage
is important to balance o�shore renewables intermittency for a near zero o�shore
energy system (Zhang et al., 2022c).

The potential value and functionality of OEHs have drawn interest in various
sectors. In the o�shore oil and gas sector, it was discovered that the energy hubs
used to import energy from multiple sources to o�shore oil and gas platforms could
dramatically reduce CO2 emissions in the UK continental shelf (Elgenedy et al.,
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2021). It was highlighted that hydrogen storage is environmentally friendly and
ensures a stable supply for oil and gas operations. An energy-hub-based electricity
system design, with CO2 mitigation taken into consideration for o�shore platforms,
was presented in Zhang et al. (2017). The proposed approach on an existing platform
determined that a CO2 tax could significantly impact emission mitigation for o�shore
platforms. In addition to clean OEHs that harness o�shore wind, an OEH equipped
with large gas turbines was proposed in Flórez-Orrego et al. (2021). Such an OEH is
a centralised power generation system that delivers higher e�ciencies than platform-
located gas turbines (Flórez-Orrego et al., 2021). A limitation of existing literature
is that the impact of OEHs on larger o�shore energy systems decarbonisation is not
properly analysed. To extend the literature, we develop a series of models to analyse
the value of OEHs in the Norwegian o�shore energy system (Zhang et al., 2022c),
and in the European energy system (Zhang et al., 2022c,b).

In addition to system design with OEHs, studies have also been conducted on
the impact of markets and the market design of a system with OEHs. The impact of
the North Sea energy islands on national markets and grids was analysed in Tosatto
et al. (2022) using European electricity market and network models. The authors
found that social welfare increases, but not for all the countries when the North
Sea energy hub is included in the system. Kitzing & Garzón González (2020) found
that a separate o�shore bidding zone may lead to a more e�cient o�shore energy
system with OEHs. As a novel concept, OEHs need to be more researched both in a
new market design and an optimal infrastructure design to better harness o�shore
renewable energies for the overall energy transition. In this thesis, we focus on the
infrastructure design of energy systems with OEHs (Zhang et al., 2022c,b, 2023a).

2.3 Existing energy infrastructure

Existing energy infrastructure can play an important role in the energy transition.
For example, the existing oil and gas production sites can potentially be retrofitted
to produce green hydrogen, and the existing gas pipelines can be potentially used for
hydrogen distribution. Otherwise, existing infrastructure is likely to be abandoned
at a high cost. The economic trade o� between new investment, retrofit and
abandonment should be properly investigated. In the following, we provide a
brief literature review on retrofitting and abandonment planning of existing energy
infrastructure.

2.3.1 Retrofitting existing energy infrastructure

Retrofitting existing energy infrastructure could prove beneficial for the energy
transition. In grassroots design, process decisions are followed by equipment decisions,
but the retrofit design also demands models capable of rating existing equipment for
proper analysis.

A comparison between grassroots and retrofit design has been discussed in
Grossmann et al. (1987). The combinatorial nature of retrofit planning problems
adds to the complexity of these models. The reasons for retrofitting are numerous,
including (1) the processing of a new feedstock, (2) improving economics by using
less energy per unit of production, (3) creating a new product, and (4) increasing the
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conversion of the feedstocks, among many others. This paper considers retrofitting
for the creation of a new product. A strategy for debottlenecking was suggested for
the retrofit problem (Harsh et al., 1989). A systematic procedure for retrofitting heat
exchanger networks was presented in Yee & Grossmann (1991). The retrofitting of
heat exchangers has been extensively studied over the past decades (Pan et al., 2013;
Wang et al., 2012). The retrofit approach was divided into a prescreening stage and
an optimisation stage. The prescreening step determined the economic feasibility of
the retrofit project, and then the best retrofit was determined in the optimisation
stage. A high-level optimisation model for the retrofit planning of process networks
was presented in Jackson & Grossmann (2002), which addressed retrofitting over
several time periods. The proposed strategy included a high-level analysis of the
entire network and a low-level analysis of a specific process flowsheet. The problem
was formulated using a multi-period generalised disjunctive programming model,
which was reformulated as an MILP model via the convex hull formulation.

Given the growing demand for hydrogen, retrofitting existing oil and gas
infrastructure for hydrogen production and transportation is gaining more attention.
Most o�shore pipelines can be utilised for hydrogen transport in Europe (Cauchois
et al., 2021). The European hydrogen infrastructure could evolve into a pan-European
network by 2040, primarily based on repurposed existing natural gas infrastructure
(van Rossum et al., 2022). In contrast, only a minor portion of the onshore pipelines
would be reusable for CO2 transport. Retrofitting the existing o�shore platform for
green hydrogen production is underway (Neptune Energy, 2023).

It is observed that retrofitting might become a key component during the energy
transition. Hence, the traditional capacity expansion model alone might not su�ce
to plan investments at minimum cost. In addition, the existing literature was
mainly from a process design perspective, not an energy system planning perspective.
Therefore, in this PhD thesis, the existing literature has been extended by developing
the concept of retrofitting the existing energy infrastructure for green hydrogen
production and distribution in an energy system planning problem (Zhang et al.,
2023a).

2.3.2 Abandonment of existing energy infrastructure

The evaluation of the worth of the current energy infrastructure, particularly oil and
gas infrastructure, is crucial in addition to planning investments for the power system
and future hydrogen system. The oil and gas industry entails investments and profits
in the billions of dollars. The existing energy infrastructure could greatly aid the
energy transition. Abandoning the existing infrastructure would incur considerable
costs (Bakker et al., 2019). The costs of plugging and abandoning are estimated to
be between £5-15 million per well for the upcoming decade, with thousands of wells
set to be abandoned, particularly in o�shore regions.

Abandonment campaign modelling is complex and models have been developed
only for abandonment planning. Bakker et al. (2019) modelled the plug and
abandonment campaign as an uncapacitated vehicle routing problem with time
windows. The model was an MILP that minimises the cost of plug and abandonment
for a number of subsea wells. The authors focused on the detailed plug and
abandonment for each well. In this thesis, we aggregate the wells in each oil
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and gas field to reduce the size of the problem. It is su�cient for a model that
integrates investment, retrofit and abandonment planning due to its complexity.

Optimisation models for only the plug and abandonment campaign can be hard
to solve. Bakker et al. (2021) developed a real options model for optimising the
development of mature fields, including the options of shut down, and plug and
abandonment. The problem grew large after including uncertainty because it became
a multi-stage stochastic MILP. The authors applied stochastic dual dynamic integer
programming, originally proposed by Zou et al. (2019) to solve this complex real
options model. The author also briefly discussed the di�erence between real options
and stochastic programming. In this thesis, we use stochastic programming to
manage uncertainty.

Abandonment planning is not the main focus of the thesis, and we refer the
readers to Vrålstad et al. (2019) for an overview of plug and abandonment operations.
A common limitation of existing literature is that only abandonment planning
is considered in the models. In this thesis, we integrate investment, retrofit and
abandonment planning to analyse the economic trade o� between abandoning oil and
gas infrastructures and retrofitting them for hydrogen production and distribution
(Zhang et al., 2023a). This has not been su�ciently studied in the existing literature.

2.4 Methodology

This section provides a concise literature review of the methodology relevant to
this thesis, including MHSP, Benders decomposition, stabilisation methods and
Lagrangean decomposition.

2.4.1 MHSP

Managing uncertainty is important in energy system planning. Although determinis-
tic models have been used for energy system planning (Lara et al., 2018), stochastic
programming models may be more useful in the current and future energy systems.
Intermittent renewable energy, such as wind and solar, has higher penetration in the
system. Dealing with uncertainty is important for the security of the supply of the
system. Stochastic programming is one of the most important techniques to model
uncertainty (Birge & Louveaux, 2011). An alternative but a rather conservative
technique to model uncertainty is robust optimisation (Arrigo et al., 2022).

MHSP modelling approach was proposed to e�ciently manage uncertainty in
both short-term and long-term time horizons (Kaut et al., 2014). A similar study
that formalised MHSP was presented in Escudero & Monge (2018). The main idea
of MHSP is to disconnect operational problems between successive strategic nodes
and embed them into their respective strategic nodes. This leads to a much smaller
model than a traditional multi-stage stochastic programming model. For a long-term
energy system planning problem, both short-term and long-term uncertainty can
have a decisive impact on the optimal solutions. Long-term uncertainty includes
CO2 emission budget and energy demand. Short-term uncertainty is mainly time
series parameters, including wind and solar capacity factors, hydropower production
profile, demand profile, and oil and gas production profiles. Including uncertainty
in both time horizons in a traditional multi-stage programming framework can
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lead to an explosion in the size of the scenario tree, and therefore to an intractable
model. MHSP partially decouples the investment and operational nodes, significantly
reducing the model size. It has been widely used for energy system planning problems
(Zhang et al., 2022a; Durakovic et al., 2023b). Also, the bounds of MHSP have been
studied (Maggioni et al., 2020).

Although MHSP was proposed to model investment planning model with
long-term and short-term uncertainty more e�ciently than traditional multi-stage
stochastic programming, few if any application has included uncertainty in two time
horizons. Part of the reason is that although MHSP leads to a smaller model than a
multi-stage stochastic programming model, it is essentially a multi-stage stochastic
program and can be hard to solve. The special structure of MHSP can be exploited
for e�cient decomposition algorithms, but there was no paper on the decomposition
methods. Therefore, in this thesis, we exploit the structure of MHSP and propose
two enhanced Benders decomposition (Zhang et al., 2022a, 2023a) and establish and
propose enhanced Lagrangean decomposition algorithms for MHSP systematically
(Zhang et al., 2023b).

2.4.2 Benders decomposition

Benders decomposition was initially proposed to solve MILP models with complicat-
ing variables (Benders, 1962). Benders decomposition separates the original problem
into a master problem and one or more subproblems. The master problem usually
contains integer decision variables and a subset of constraints, while the subprob-
lems contain the remaining constraints and continuous variables. The algorithm
iteratively solves the master problem and the subproblems, using the solutions of the
subproblems to generate optimality or feasibility cuts that are added to the master
problem. This iteration continues until an optimal solution is found.

Benders decomposition was widely used to solve stochastic programming models
(Mitra et al., 2016). Van Slyke & Wets (1969) first applied Benders decomposition in
the context of stochastic programming and solved two-stage stochastic programming
linear programs with an L-shaped method.

Benders decomposition has been applied in transportation and logistics, energy
and power systems, supply chain management, manufacturing, and facility location
problems. Enhanced Benders decomposition is usually proposed to solve the
underlying problem more e�ciently than standard Benders decomposition. Oliveira
et al. (2014) proposed accelerated Benders stochastic decomposition for optimisation
under uncertainty of a petroleum product supply chain. A novel methodology for
generating dynamically updated near-maximal Benders cuts was proposed for two-
stage stochastic programming and compared with other acceleration techniques. A
multi-cut Benders decomposition has been proposed for solving two-stage stochastic
linear programming problems. The main idea was to add one cut per realisation of
uncertain parameters. The multi-cut version has shown a significant reduction in
computational time compared with standard Benders. A Monte Carlo simulation
based algorithm that integrates a sample average approximation scheme with a
Benders decomposition algorithm was proposed to solve stochastic uncapacitated
hub location problems with stochastic independent transportation costs (Contreras
et al., 2011). In this thesis, we apply enhanced Benders decomposition for solving
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large-scale energy system investment planning problems with short-term and long-
term uncertainty (Zhang et al., 2022a, 2023a).

Since standard Benders decomposition was proposed, enhanced Benders
decomposition algorithms have been proposed in the literature to improve the
computational performance. For example, Mazzi et al. (2021) proposed a Benders
decomposition with adaptive oracles to solve multi-stage stochastic programming
problems, and demonstrated the algorithm on power system investment planning
problems under several long-term uncertainties. Rodríguez et al. (2021) accelerated
Benders decomposition using multiple techniques, including parallelising the
algorithm and applications of special ordered sets, presolve and warm start. The
proposed algorithm was applied to solve the short-term hydropower maintenance
problem formulated as a two-stage stochastic program.

Some enhanced Benders decomposition methods have been proposed based on
inexact information (Mazzi et al., 2021) and stabilisation (Zverovich et al., 2012).
Mazzi et al. (2021) exploited the structure of the subproblem and proposed two
adaptive oracles. The lower bound oracle approximated the objective function value
from below, and the upper bound oracle provided a valid upper bound. The algorithm
was shown to be 31.9 times faster than standard Benders decomposition. Zakeri et al.
(2000) proposed inexact Benders decomposition that solved each subproblem up to a
predefined tolerance, which was then tightened over time to ensure convergence. The
generated cutting planes were all valid and asymptotically exact. In this thesis, we
extend and improve the adaptive Benders decomposition in Mazzi et al. (2021). This
is because MHSP falls into the class of problem that adaptive Benders can e�ciently
solve and adaptive Benders is a good starting point. Also, we notice that adaptive
Benders cannot solve the proposed model e�ciently due to two factors: (1) the
proposed model is a multi-region planning problem and adaptive Benders oscillate
much and find it hard to converge fast, and (2) in the proposed REORIENT model,
there are integer variables in the reduced master problem. Therefore, we propose two
alternative enhanced stabilised adaptive Benders to solve models e�ciently (Zhang
et al., 2022a, 2023a).

In addition to Benders decomposition, nested Benders decomposition has been
proposed to solve multi-stage stochastic programming (Birge, 1985). Generalised
Benders decomposition has also been proposed to solve mixed-integer nonlinear
programming (Geo�rion, 1972).

The intersection of machine learning, artificial intelligence, and Benders
decomposition is drawing research interest. Higle & Sen (1996) demonstrated the
early application of artificial intelligence in the context of decomposition methods.
Hooker (2012) showed how Benders decomposition could be integrated with artificial
intelligence techniques, particularly constraint programming. A machine learning-
enhanced multi-cut Benders decomposition approach was proposed to solve the
transmission expansion planning problem under uncertainty (Borozan et al., 2023).
The authors proposed to identify e�ective and ine�ective cuts via supervised learning
techniques, which reduced the number of cuts added to the reduced master problem.
The reduction in computational time was not orders of magnitude. However, the
potential of such a technique in other enhanced Benders such as the ones proposed
in this thesis (Zhang et al., 2022a, 2023a) is worth investigating. The literature on
Benders decomposition and machine learning is generally scarce but with potential
for future growth.
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2.4.3 Stabilisation methods

Stabilisation techniques are important in accelerating convergence, reducing
oscillations, avoiding cycling and improving the robustness of decomposition
algorithms. Oscillation can be a serious issue for Benders decomposition. The Benders
master problem may become increasingly ill-conditioned after many iterations without
converging. In this thesis, we focus on the trust region method and the level method.
In the following, we present the related literature.

In many optimisation algorithms, like gradient descent, an approximation of the
objective function is developed. Then a step is taken to reduce the value of this
approximation, hoping that it will also reduce the objective function. However, the
approximation may not be accurate over a large region. The further you are from
where the approximation was built, the more likely the approximation is incorrect.
The trust region method addresses this problem by defining a trust region around the
current point, within which the model is trusted to be a reasonable approximation
to the objective function. The algorithm then tries to minimise the model subject to
the constraint that the step does not exit the trust region. If the step results in a
significant decrease in the objective function, the size of the trust region is increased,
while if the step does not lead to a decrease, the trust region is decreased.

The trust region method stabilises Benders decomposition by restricting the
region of the variables to make smaller movements. The method was first developed
in the context of the Levenberg-Marquardt algorithm. Later the trust region method
has been further studied in Nocedal & Wright (2006). The performance of the
trust region method can be highly dependent on their parameters. Gould et al.
(2005) examined the sensitivity of trust region algorithms. A recommended range of
parameter values was provided based on extensive numerical tests. However, the
authors pointed out the range was for a specific type of problems and may not be
suitable for other problems.

The level method stabilisation is the other approach we investigate. It was
proposed in Lemarechal et al. (1995). The main idea of the level method stabilised
Benders is to include an optimisation problem, after solving the reduced master
problem, that minimises the distance moves from a reference point, and is subject to
all the constraints from the reduced master problem and a level set constraint. The
level set target is calculated based on the upper and lower bounds. An extensive
computational benchmark for the methods, including Benders decomposition,
stabilised decomposition, Benders decomposition with level method regularisation,
and trust region stabilisation, has been presented in Zverovich et al. (2012).

In addition to stabilised Benders decomposition, the level method was also used
to stabilise the outer approximation method to solve convex mixed-integer nonlinear
programming problems (Kronqvist et al., 2020). Fabian (2000) and Zverovich et al.
(2012) showed that the computational time was reduced significantly by stabilising
the Benders decomposition with the level method. However, like other level method
literature, the authors used a fixed stabilisation factor. Still, we observe that the
performance of the level method stabilised Benders heavily depends on the choice of
parameters. Therefore, we propose to address this issue and improve the robustness
of the algorithm by including level set management steps which are analogous to
adjusting the trust region in the trust region method (Zhang et al., 2022a, 2023a).

Another potential drawback of the level method algorithm is that if the reduced
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master problem is large, solving the stabilisation problem can take much time and
lose the stabilisation value. In this case, we propose a centre point strategy for faster
stabilisation (Zhang et al., 2023a).

2.4.4 Lagrangean decomposition

Lagrangean decomposition was proposed to solve problems with complicating
constraints (Guignard & Kim, 1987). It is a special case of Lagrangean relaxation
(Guignard, 2003). Lagrangean decomposition is di�erent from Lagrangean relaxation
because every constraint in the original problem appears in one of the subproblems.
The bound predicted by Lagrangean decomposition is at least as tight as the
one provided by Lagrangean relaxation (Guignard & Kim, 1987). In the context
of stochastic programming, if a multi-stage stochastic programming problem is
formulated in a scenario formulation with non-anticipativity constraint, one can
decompose the problem using Lagrangean decomposition.

Scenario formulation leads to a larger monolithic model due to the duplication of
variables from non-anticipativity constraints. Models based on scenario formulation
can be decomposed by Lagrangean decomposition. Node formulation has a smaller
monolithic model and can be decomposed by Benders decomposition. Both Benders
and Lagrangean decomposition can utilise parallel computing. There are two non-
obvious steps in Lagrangean decomposition: (1) constructing a feasible solution from
the solutions obtained from the dual problems, and (2) updating the multipliers.
Constructing feasible solutions is usually problem specific. Better multiplier updating
schemes than the subgradient and cutting plane methods have been extensively
studied (Mouret et al., 2011; Yongheng et al., 2014; Mulvey & RuszczyÒski, 1995).

The literature shows that Lagrangean decomposition has been widely used
for solving stochastic programming problems. The main idea of Lagrangean
decomposition is to decompose the problems into scenario subproblems. Oliveira
et al. (2013) proposed a Lagrangean decomposition approach for supply chain
investment planning under uncertainty with risk considerations. The problem was
formulated as a two-stage stochastic MILP problem. The multiplier updating
procedure was improved based on the combination of cutting planes, subgradient
and trust region strategies. In addition to solving two-stage stochastic programming,
augmented Lagrangean decomposition was proposed for solving multi-stage stochastic
programming (Mulvey & RuszczyÒski, 1995). The main idea is to model the
multi-stage stochastic programming using the scenario formulation and decompose
the problem by scenarios. The advantage of scenario decomposition is that the
subproblems can be solved in parallel.

There are other scenario decomposition algorithms. For example, a progressive
hedging algorithm was proposed for stochastic programming problems with only
continuous variables (Mulvey & Vladimirou, 1991). Although it has been proven
that progressive hedging converges for linear programming, this is not the case
for MILP. However, heuristic methods were proposed to tackle the problem with
integer variables (Løkketangen & Woodru�, 1996), and the non-convergence issue
of the heuristic was investigated in Watson & Woodru� (2011). In addition to the
progressive hedging algorithm, dual decomposition was proposed for stochastic integer
programming which achieved convergence compared with Løkketangen & Woodru�
(1996) where convergence was empirically observed. Lagrangean decomposition is
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generally a more general algorithm compared with progressive hedging. Therefore,
in this thesis, we focus on developing a parallel Lagrangean decomposition algorithm
for MHSP.

The application of Lagrangean decomposition in MHSP has not been reported
in the literature, and there is a special structure of MHSP that can be utilised
to significantly speed up Lagrangean decomposition. In this thesis, we extend the
literature by utilising the scenario formulation of MHSP, and propose paralleled
Lagrangean decomposition with primal reduction to solve MHSP (Zhang et al.,
2023b). The advantage of MHSP is that one only needs to impose non-anticipativity
constraints on the investment decisions. This leads to fewer multipliers to update
and potentially easier construction of a feasible solution. It is the first study to apply
Lagrangean decomposition for MHSP. We also propose primal reduction to reduce
the size of the primal problem after fixing the strategic variables and then solving
the problem in parallel to reduce the computational time.

In addition to solving stochastic programming problems, Lagrangean decomposi-
tion can be applied to solve a large variety of problems. Mouret et al. (2011) proposed
a new Lagrangean decomposition to solve a large-scale mixed-integer nonlinear pro-
gram. A new hybrid dual problem was introduced to update Lagrangean multipliers
that use cutting planes, subgradient and boxstep. A hybrid decomposition that com-
bines bi-level and spatial Lagrangean decomposition methods was proposed to solve
simultaneous scheduling and planning problems in a production-distribution network
of continuous multi-product plants with temporal and spatial scales. Terrazas-
Moreno et al. (2011) found that for multi-site, multi-period, and multi-product
planning problems, temporal Lagrangean decomposition can obtain tighter bounds
than spatial decomposition. Yongheng et al. (2014) proposed to decompose supply
chain problems using Lagrangean decomposition based on warehouses. In this thesis,
we propose Lagrangean-type decomposition to solve a long-term energy system
planning problem with short-term and long-term uncertainty (Zhang et al., 2023b).
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Chapter 3

Contributions
This chapter presents the contributions of the research presented in this thesis. The
thesis consists of six papers that are enclosed in the second part of the thesis. For each
paper, a summary is presented together with an overview of original contributions
to research and their application to industry.

3.1 Papers

Paper I - Modelling and analysis of OEHs

Authors: Hongyu Zhang, Asgeir Tomasgard, Brage Rugstad Knudsen, Harald G.
Svendsen, Ste�en J. Bakker, Ignacio E. Grossmann

Published in Energy, Volume 261, Part A, 125219, 2022.

Clean OEHs may become pivotal for e�cient o�shore wind power generation
and distribution. In addition, OEHs may provide decarbonised energy supply for
maritime transport, oil and gas recovery, and o�shore farming while enabling the
conversion and storage of liquefied decarbonised energy carriers for export. In this
paper, the role of OEHs is investigated in the transition of an o�shore energy system
towards a zero-emission energy supply. An MILP model is developed for investment
planning and operational optimisation to achieve decarbonisation at minimum cost.
We consider o�shore wind, solar, energy hubs and subsea cables. A sensitivity
analysis is conducted on CO2 tax, CO2 budget and power capacity from shore. The
results show that OEHs can help reduce energy losses and costs.

My contributions to this paper include conceptualising the problem, developing
and formulating the model, performing the programming and performing the analyses.
Together with my co-authors, I have analysed and discussed the case study and
results. Finally, I am the main author of the manuscript.

Paper II - OEHs in the decarbonisation of the Norwegian continental
shelf

Authors: Hongyu Zhang, Asgeir Tomasgard, Brage Rugstad Knudsen, Ignacio E.
Grossmann

Published in Proceedings of the ASME 2022 41st International Conference on Ocean,
O�shore and Arctic Engineering, Volume 10: Petroleum Technology, V010T11A044,
2022

This paper studies the investment planning of a decarbonised Norwegian
continental shelf energy system considering the connection and interfaces with
the European energy system. A multi-horizon stochastic MILP model is developed
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for such a problem. We consider short-term uncertainties, including wind and
solar capacity factors, energy load, platform production profiles, and hydropower
production limits. Hydrogen-based energy hubs are considered onshore and o�shore
for potential renewable power generation, distribution and storage. The future
hydrogen market or demand is not included in the model. The results show that
OEHs are essentially wind power generation, conversion and distribution hubs, and
that o�shore grid design is important for decarbonisation by distributing wind power
e�ciently.

The model is extended based on the model developed in Paper I by including
short-term uncertainty using MHSP and extending the model to European energy
system planning. We notice the significant increase in computational time, motivating
us for the solution methods described in Paper III.

My contributions to this paper include conceptualising the problem, developing
and formulating the model, performing the programming and performing the analyses.
I have analysed and discussed the case study and results with my co-authors. Finally,
I am the main author of the manuscript.

Paper III - A stabilised Benders decomposition with adaptive oracles
for large-scale stochastic programming with short-term and long-term
uncertainty

Authors: Hongyu Zhang, Nicolò Mazzi, Ken McKinnon, Rodrigo Garcia Nava, Asgeir
Tomasgard

Submitted to an international, peer-reviewed journal.

Benders decomposition with adaptive oracles was proposed to solve large-scale
optimisation problems with a column-bounded block-diagonal structure, where
subproblems di�er on the right-hand side and cost coe�cients. Adaptive Benders
reduces computational e�ort significantly by iteratively building inexact cutting
planes and valid upper and lower bounds. However, Adaptive Benders and standard
Benders may su�er severe oscillation when solving a multi-region investment planning
problem. Therefore, we propose stabilising Adaptive Benders with the level method
and adaptively selecting the subproblems to solve per iteration for more accurate
information. Furthermore, we propose a dynamic level method to improve the
robustness of stabilised Adaptive Benders by adjusting the level set per iteration.
We compare stabilised Adaptive Benders with the unstabilised versions of Adaptive
Benders with one subproblem solved per iteration, and standard Benders on a
multi-region long-term power system investment planning problem with short-term
and long-term uncertainty.

My contributions to this paper include conceptualising the problem, developing
the model and case studies, programming, formal analysis, and writing the
manuscript. I am the main author of the paper.
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Paper IV - Integrated investment, retrofit and abandonment planning of
energy systems with short-term and long-term uncertainty using
enhanced Benders decomposition

Authors: Hongyu Zhang, Ignacio E. Grossmann, Brage Rugstad Knudsen, Ken
McKinnon, Rodrigo Garcia Nava, Asgeir Tomasgard

Submitted to an international, peer-reviewed journal.

We propose the REORIENT (REnewable resOuRce Investment for the ENergy
Transition) model for energy systems planning with the following novelties: (1)
integrating capacity expansion, retrofit and abandonment planning, and (2) using
multi-horizon stochastic MILP with short-term and long-term uncertainty. We
apply the model to the European energy system considering: (a) investment in new
hydrogen infrastructures, (b) capacity expansion of the European power system,
(c) retrofitting oil and gas infrastructures in the North Sea region for hydrogen
production and distribution, and abandoning existing infrastructures, and (d) long-
term uncertainty in oil and gas prices and short-term uncertainty in time series
parameters. We exploit the special structure of MHSP, and propose an enhanced
Benders decomposition to solve the model e�ciently. We first conduct a sensitivity
analysis on retrofitting costs of oil and gas infrastructures. We then compare the
REORIENT model with a conventional investment planning model regarding costs
and investment decisions. Finally, the computational performance of the algorithm
is presented.

My contributions to this paper include conceptualising the problem, developing
and formulating the model, performing the programming and performing the analyses.
I have analysed and discussed the case study and results with my co-authors. Finally,
I am the main author of the manuscript.

Paper V - Decomposition methods for MHSP

Authors: Hongyu Zhang, Èric Mor Domènech, Ignacio E. Grossmann, Asgeir
Tomasgard

Submitted to an international, peer-reviewed journal.

MHSP is a modelling approach that has not been studied extensively compared
with traditional multi-stage stochastic programming. In this paper, we exploit the
structure of MHSP and show that such models can be decomposed by Benders
decomposition and Lagrangean decomposition.

MHSP includes short-term and long-term uncertainty in investment planning
problems more e�ciently than traditional multi-stage stochastic programming. In
this paper, we exploit the special structure of MHSP and formalise that it can be
decomposed by Benders decomposition and Lagrangean decomposition. In addition,
we propose parallel Lagrangean decomposition with primal reduction that (1) solves
the scenario subproblems in parallel, (2) reduces the primal problem by keeping one
copy for each scenario group at each stage, and (3) solves the reduced primal problem
in parallel. We compare the parallel Lagrangean decomposition with primal reduction
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with the standard Lagrangean decomposition and standard Benders decomposition
on a stochastic energy system investment planning problem. The computational
results show that: (a) the Lagrangean type decomposition has better convergence
at the first iterations compared with the Benders decomposition and (b) parallel
Lagrangean decomposition with primal reduction is up to 9.2 times faster than
standard Benders decomposition for a 1% convergence. Based on the computational
results, the choice of algorithms for MHSP is discussed.

My contributions to this paper include conceptualising the problem, developing
the model and case study, programming and performing the analyses. I am the main
author of the manuscript.

Paper VI - Decarbonising the European energy system in the absence
of Russian gas: Hydrogen uptake and carbon capture developments in
the power, heat and industry sectors

Authors: Goran Durakovic, Hongyu Zhang, Brage Rugstad Knudsen, Asgeir Tomas-
gard, Pedro Crespo del Granado

A slightly revised version of this paper has been published in Journal of Cleaner
Production, Volume 435, 140473, 2024.

This paper investigates the impact of the absence of Russian gas on decarbonising
the European energy system. We focus on analysing the roles of hydrogen and
carbon capture technologies in the European energy system up to 2060. In addition
to the missing natural gas from Russia, we consider other natural gas supply chains,
including liquified natural gas terminals and reserves in the North Sea and Northern
Africa and the associated pipelines.

We extend the EMPIRE model to include su�ciently detailed modelling of heat
and industry sectors to have endogenous hydrogen demand. This is valuable because
the transition to a hydrogen-based system is less clear due to the energy reality
in Europe. The extended model is the first model that includes power, heat and
industry sectors in a single MHSP investment planning problem.

The results showed that the disruption of Russian gas imports has significant
consequences on the decarbonisation pathways for Europe, with local energy sources
and carbon capture and storage becoming even more important.

My contributions to this paper include conceptualising the problem, developing
the model and case study, programming and performing the analyses. I am the
second author of the manuscript.

3.2 Additional Contributions

In addition to publications, I have contributed to the research community by
participating in conferences, including organising sessions and giving talks, teaching
and research mentoring for master students, o�ering peer reviews for journals, and
writing popular scientific articles.
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Concluding remarks and future
research

In this PhD thesis, we have focused on: (1) developing optimisation models for long-
term European energy system planning, and (2) exploring the special structure of
MHSP and proposing e�cient solution algorithms for solving large-scale multi-stage
stochastic LP and MILP models.

In Paper I, we proposed the concept of OEHs for decarbonising the Norwegian
continental shelf. We modelled the problem using MILP and analysed the value of
OEHs in the energy transition. This paper gave a solid modelling foundation for the
following papers. Paper II extended the model by including short-term uncertainty,
and expanding the energy system to the European energy system. This paper further
investigated the value of OEHs in the European energy system decarbonisation. We
noticed computational di�culties in solving the model in Paper II, which motivated
us to develop solution algorithms before extending the energy system model further.
Therefore, in Paper III we proposed a dynamically stabilised adaptive Benders
decomposition for solving large-scale LP and MILP problems with a column-bounded
block diagonal structure. The algorithm was then applied to solve a UK power system
planning problem formulated using MHSP. Also, the algorithm has significantly
reduced computational requirements compared to existing solution methods. Paper
IV contributed to both modelling and algorithm development. We have proposed the
REORIENT model based on the models developed in Papers I, II and III. The novelty
of the REORIENT model is that it integrates investment, retrofit and abandonment
planning in a single optimisation model. Also, the REORIENT model considers
uncertainty in both short-term and long-term time horizons, which the existing
models do not include. In addition, we further developed the algorithm in Paper
III and proposed a centre point stabilisation to reduce the e�ort on stabilising the
adaptive Benders decomposition. Paper V formalised the decomposition methods for
MHSP, and proposed parallelised Lagrangean decomposition with primal reduction.
Paper VI used a di�erent model, EMPIRE, and investigated the role of hydrogen
and carbon capture and storage in power, heat and industry sectors in the context
of decarbonising the European energy system without Russian gas.

The models and energy system case studies in this thesis have provided new
insights for the European energy transition. To this end, a major contribution of
the thesis is the model and methodology of Paper IV. Here, in addition to a generic
model and solution method, new analyses were provided on how the North Sea
may cut its infrastructure emissions while supporting the energy transition of the
European energy system towards full decarbonisation. Also, the solution methods
developed in this thesis have not only extended the existing operational research
literature but also enabled us to solve large-scale energy system models and analyse
the implications of the solutions for the European energy transition.

All the models developed in Papers I-VI can lead to applications. The REORIENT
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model in Paper IV includes all the novelties of the models in Papers I-III. In the
future, the REORIENT model has the potential to provide more useful insights, such
as to investigate the retrofit of existing oil and gas infrastructure for carbon capture
and storage. In addition, future work may consider the European wide natural gas
system in the REORIENT model to analyse the large-scale retrofit of the existing
energy system for hydrogen production and distribution and CO2 transportation
and storage. Furthermore, the geographical resolution of the model can be increased
for a more detailed analysis of the energy transition in a specific country and its
interaction with the rest of the European energy system.

The REORIENT model can also be applied to investigate the decarbonisation of
other regions such as o�shore regions with high emissions including the Gulf of Mexico
and the Brazilian continental shelf and other important onshore regions including
the US, Chinese and African onshore energy systems. The model formulation of
the REORIENT model is general and there are no case-specific constraints. Model
parameters, constraints, and variables can be modified according to the specific
problem of the study.

The REORIENT model can be improved by having more careful scenario-
generation techniques. For example, generating scenarios for correlated long-term
uncertain parameters such as oil and gas prices and hydrogen demand. For short-
term time series uncertain parameters, techniques including machine learning can
be used for the scenario generation to cover better di�erent possible operational
conditions. It is possible to link the REORIENT model with a machine learning
based wind forecast model to better handle wind intermittency. Moreover, it may
be beneficial to link the REORIENT model with other energy system models to
integrate the novelties of di�erent models for rigorous analysis of energy system
decarbonisation.

On the methodology side, the stabilised adaptive Benders decomposition can be
extended and improved in the future. We notice that for a very large problem with
many decision nodes, the reduced master problem and the stabilisation problem may
require prohibitive long solution time. Therefore, in future, techniques including
node aggregation and cut selection may be needed to improve the performance.
In addition, it is potentially beneficial to combine Lagrangean decomposition with
adaptive Benders decomposition to solve huge scale MHSP e�ciently. The adaptive
oracles can also be used potentially in Lagrangean decomposition. Although MHSP
reduces the problem size significantly, the model size may be reduced further by
adjusting the scenario tree, e.g., removing the scenarios that do not make a di�erence,
while solving the problem. In addition, MHSP can be extended to model endogenous
uncertainty.
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Abstract

Clean o�shore energy hubs may become pivotal for e�cient o�shore wind power
generation and distribution. In addition, o�shore energy hubs may provide
decarbonised energy supply for maritime transport, oil and gas recovery,
and o�shore farming, while also enabling conversion and storage of liquefied
decarbonised energy carriers for export. In this paper, the role of o�shore
energy hubs is investigated in the transition of an o�shore energy system
towards a zero-emission energy supply. A mixed-integer linear programming
model is developed for investment planning and operational optimisation to
achieve decarbonisation at minimum cost. We consider o�shore wind, solar,
energy hubs and subsea cables. A sensitivity analysis is conducted on CO2
tax, CO2 budget and the capacity of power from shore. The results show that:
(a) a hard carbon cap is necessary for stimulating a zero-emission o�shore
energy system, (b) o�shore wind integration and power from shore can more
than halve current emissions, but o�shore energy hubs with storage may be
necessary for zero-emission production, and (c) at certain CO2 tax levels, the
system with o�shore energy hubs can potentially reduce CO2 emissions by 49%
and energy losses by 10%, compared to a system with only o�shore renewables,
gas turbines and power from shore.

Keywords: Clean o�shore energy hub, Sensitivity analysis, Deterministic
mixed-integer linear programming model

I.1 Introduction

O�shore wind is an important pillar in the energy transition worldwide (International
Energy Agency, 2020) to meet global and regional climate targets (European
Commission, 2020a). O�shore Energy Hubs (OEHs) and the hub-and-spoke concept,
o�er a transnational and cross-sector solution for better harnessing o�shore wind
and integration with the rest of the energy system (North Sea ind Power Hub
Programme, 2021). An energy hub is a physical energy connection point with energy
storage where multiple energy carriers can be converted and conditioned (Geidl et al.,
2007). This paper presents an optimisation model for the investment and operation
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of OEHs. It includes analyses of the functioning of OEHs in the transition of a
large-scale energy system towards integrating more renewable energy. A case study
is demonstrated in the North Sea as this region has huge potential for large-scale
o�shore wind (European Commission, 2020b) and hydrogen production.

The energy transition is widely studied (Piacentino et al., 2019). It includes
research on the usage of both renewable energy technologies (Østergaard et al., 2021)
and energy-e�cient technologies (VujanoviÊ et al., 2021). Transitioning to renewable
energy, such as, wind, solar, and green hydrogen (Kova� et al., 2021), is a necessity
for the decarbonisation of energy systems (European Commission, 2022). Green
hydrogen produced from wind and solar power may play an essential role in the
transition. O�shore regions with potentially abundant renewable energy sources are
crucial for the global energy transition (Bosch et al., 2018). Therefore, we analyse
the potential value of o�shore renewable technologies for the energy transition of a
regional o�shore energy system and discuss how the study can be applied globally
to contribute to the global energy transition towards zero emission.

The existing literature reviewed below shows that OEHs may be a promising
option for producing green hydrogen o�shore. The e�ciency and cost analysis of
OEHs has shown that an OEH is e�cient and cost-worthy in electro fuel applications
(Thommessen et al., 2021). However, the energy loss of a system with OEHs has not
been considered. In this paper, we aim to analyse the potential value of OEHs in
terms of energy losses. Producing green hydrogen o�shore with OEHs and using the
hub generated electricity to firstly cover the nominal electrolyser capacity may be
cost competitive compared with current costs of grey and blue hydrogen (Singlitico
et al., 2021). The energy storage function of OEHs has not been considered, which
makes their OEH essentially a conversion and distribution hub. O�shore energy
storage can be crucial because of the potential massive capacity (Scafidi et al., 2021).
Therefore, in this paper, we consider OEHs with o�shore hydrogen storage, see
Figure I.1 for an illustration.

In addition to distributing o�shore energy to onshore systems with OEHs, existing
literature also investigates using OEHs for decarbonised energy supply for o�shore
industries (Dincer et al., 2021), including o�shore oil and gas recovery (Zhang
et al., 2017), maritime cargo transport, and o�shore farming (Mikkola et al., 2018).
The environmental value of OEHs has not been analysed in the literature. Cost
estimation of electrifying o�shore fields with OEHs is presented in Elgenedy et al.
(2021). However, the cost data was not used for investment planning to analyse the
trade-o� of technologies. The value of OEHs for o�shore sectors on a large scale is
not su�ciently studied. Although green hydrogen is pointed out as promising storage
that can provide supply security for oil and gas operations, it was not analysed.

To bridge the gaps mentioned above, we develop a multi-carrier Mixed-Integer
Linear Programming (MILP) model for investment planning optimisation of an
o�shore energy system with a high degree of operational details. We model a clean
OEH with hydrogen storage. We only consider producing green hydrogen from
electrolysis. To analyse the economic advantages of OEHs compared with other
technologies, we consider investments in o�shore wind, o�shore solar, OEHs and
Power From Shore (PFS). The investment planning model is applied to an o�shore
energy system with the goal of decarbonising energy generation for o�shore oil and gas
installations in a given region. The oil and gas industry involves multi-billion-dollar
investments and profits (Bret-Rouzaut et al., 2011) whose decarbonisation needs
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Figure I.1: Conceptual illustration of OEHs.

may trigger large-scale investments in OEHs. O�shore oil and gas is an important
o�shore sector in many countries, and the North Sea region has the highest number
of o�shore fields (Fazeres-Ferradosa et al., 2019). Therefore, studying the value of
clean OEHs in the North Sea energy system may provide global insights.

The contributions of the paper are (1) an integrated investment and operational
model with the following features, (a) OEHs are modelled for a large-scale o�shore
energy system, and (b) the hourly device-level energy consumption of platforms is
modelled; (2) the value of OEHs is analysed in the North Sea o�shore energy system
transition towards zero-emission energy supply.

The outline of the paper is as follows: Section I.2 presents a literature review on
energy system planning methods and OEHs and introduces the background regarding
the production and decarbonisation of o�shore oil and gas. Section I.3 gives the
problem description followed by modelling strategies and assumptions. Section I.4
presents the MILP model and the case study. Section I.5 describes the case study
and input data. Section I.6 presents the results and analysis of the case study.
Section I.7 discusses the implications of the results and summaries the limitations of
the research. Section I.8 concludes the paper and suggests further research.

I.2 Literature review

In this section, we review the literature on energy system planning methods and
OEHs and give a background on the production process of o�shore fields and
corresponding decarbonisation issues.

I.2.1 Energy system planning methods

From an energy system planning perspective, the model in this paper is a bottom-up
multi-carrier energy flow model. For an extensive review on this topic, we refer to
Farrokhifar et al. (2020). Bottom-up energy system models represent the equilibrium
of a part of the energy sector (Böhringer & Rutherford, 2008). On the other hand,
top-down energy models try to depict the economy as a whole on a national level to
analyse the aggregated e�ects of energy policies in monetary units. In this paper, we
only use the bottom-up approach without considering the e�ect from a higher level
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using a soft-link or hard-link model because we are interested in the cost-optimal
system design under di�erent policy and technical scenarios rather than analysing
its interaction with the macroeconomy.

For large-scale energy system planning problems, Linear Programming (LP) is
usually used because of its computational tractability and su�ciency in modelling
most investment and operational decisions and constraints. For example, energy
system planning models like EMPIRE (Backe et al., 2022), and GENeSYS-MOD
(Burandt et al., 2018) are LP models. Even though LP may be su�cient when
dealing with very aggregated systems, for problems with lumpy investments (e.g.
OEHs or transmission lines), LP cannot capture the economic scale of the investment
decision, and MILP models are preferred (Lara et al., 2019). Mixed-integer nonlinear
programming is also used in a planning problem to capture the system operations
(Gupta & Grossmann, 2012). However, the computational di�culty may need to
be addressed first to make the problem solvable. Our model uses MILP to provide
more sensible investment decisions and avoid nonlinear constraints by simplifying
the problem to reduce computational costs.

I.2.2 OEHs

The potential value and functioning of OEHs have drawn increased attention in
several sectors. In the o�shore oil and gas sector, it has been found that creating
small energy hubs to import energy from various sources to o�shore oil and gas
platforms can achieve a massive reduction of CO2 emissions in the UK continental
shelf (Elgenedy et al., 2021). They mentioned that hydrogen energy storage is green
and provides supply security for oil and gas operations. Energy-hub-based electricity
system design for an o�shore platform considering CO2 mitigation is presented in
Zhang et al. (2017). By verifying the proposed approach on an existing platform, it
was found that CO2 tax may play a decisive role in emission mitigation of o�shore
platforms. In addition to clean OEHs that utilise o�shore wind, an OEH equipped
with large gas turbines was proposed in Flórez-Orrego et al. (2021). Such an OEH
serves as a centralised power generation system that o�ers higher e�ciencies than
simpler in situ gas turbines (Flórez-Orrego et al., 2021).

OEHs may allow for better harnessing of o�shore wind to supply more stable
energy to o�shore oil and gas platforms in the short run and export clean energy to
the continent in the long run. Connecting o�shore wind in the North Sea via an
artificial island and hub-and-spoke form was shown in Jansen et al. (2022) to be more
economical than a traditional point-to-point connection if 10 GW o�shore wind is
built. Hydrogen-based OEHs also draw attention. An o�shore artificial power-to-gas
island can produce and transport hydrogen through natural gas pipelines (Gondal,
2019). Adding electrolysers to the o�shore hub shows value in mitigating active
power variations and maintaining the voltage of the hub (Marchand et al., 2021).
Producing green hydrogen via OEHs to cover onshore energy demand and using hub
generated electricity first to cover nominal electrolyser capacity may have better
economic performance than producing hydrogen from natural gas (Singlitico et al.,
2021). In addition, techno-economic analysis of o�shore energy islands has shown
that producing hydrogen o�shore may be more beneficial than onshore production
under some conditions. However, the development of o�shore energy islands for
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electrical transmission and hydrogen production is not straightforward (van der Veer
et al., 2019).

Studies have also been conducted on the impact of markets and the design of
markets in a system with OEHs. The impact of the North Sea energy islands on
national markets and grids is analysed in Tosatto et al. (2021) using a European
electricity market model and a European electricity network model, where the
authors found that social welfare increases but not for all the countries when the
North Sea energy hub is included in the system. Moreover, a separate o�shore
bidding zone may lead to a more e�cient o�shore energy system with OEHs (Kitzing
& González, 2020). We consider a smaller system and focus on the optimal capacities
of new devices instead of analysing an extensive grid based on the assumption that
a certain amount of capacity of an OEH will be added. The deployment plan for
future European o�shore grid development with an energy hub is analysed in Armeni
et al. (2021). Unlike the study in this paper, they assume some scenarios of future
deployment of wind turbines and transmission lines and analyse the system operation
under di�erent operational scenarios, including line fault, breaker failure, and bus
bar fault. Compared with our study, they focus more on system operation under
a predefined system configuration. We notice that in the study mentioned above,
where the focus is on national markets, grid, and system failure, the investment
planning and operations of OEHs are simplified. Therefore, we aim to contribute to
more detailed modelling of optimising investment planning and operation of OEHs.

In addition to OEHs, more research has been conducted on the onshore energy
system. The energy hub concept has been also used to increase the energy flexibility
in buildings (Ottesen & Tomasgard, 2015) and electricity markets (Ødegaard Ottesen
et al., 2016). Energy hub is a promising option for exploiting the benefits of multi-
energy systems, such as coupled electricity and heating networks (Ayele et al., 2018),
integrated natural gas and electricity (Jayasuriya et al., 2019) and electricity-thermal-
natural gas coupling system (Wang et al., 2019). In addition, the design (Dolatabadi
et al., 2017) and management (Najafi et al., 2016) of energy hubs with penetration
of intermittent wind power has been studied using stochastic programming. Using
energy hubs for coping with wind power volatility shows value in reducing operating
cost, wind power curtailment and CO2 emissions (Zare Oskouei et al., 2021). Energy
hubs with power-to-gas and hydrogen storage can reduce emissions and produce
hydrogen for end-use applications (Preston et al., 2020). Onshore energy hubs have
much more versatile configurations and functioning compared to OEHs. We refer the
readers to Mohammadi et al. (2018) and Mohammadi et al. (2017) for comprehensive
reviews on the research works on energy hubs.

I.2.3 Offshore oil and gas fields

From the studies on o�shore field production optimisation (Gunnerud et al., 2012)
and o�shore field infrastructure planning (Tarhan et al., 2009), we can see that
platforms and fields vary a lot due to, amongst others, geological characteristics,
reserves, and remaining lifetimes. In the following, we present a typical composition
and production process of NCS platforms.

A North Sea field normally consists of topside structures and subsea production
systems. A topside structure typically consists of a processing plant, a utility
plant, drilling facilities, and a living quarter (Voldsund, 2014), see Figure I.2.
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Figure I.2: Schematic of a topside structure of a typical North Sea oil and gas
platform, adapted from Voldsund (2014).

The production plant receives and processes well streams. A visualisation of the
production process is presented in Figure I.3. Major energy consumption takes place
in production plants. The energy demand of production plants is conventionally
fulfilled by gas turbines located in the utility plant. In 2014, gas turbines with waste
heat recovery units covered approximately 90% of all heat demand for operations on
the NCS (Mazzetti et al., 2014).

I.2.4 Decarbonisation of offshore fields

Norway was the world’s third-largest exporter of natural gas in 2019 (Looney, 2020).
O�shore oil and gas extraction was responsible for 26.6% (13.3 Mt CO2 equivalent)
of the total Norwegian greenhouse gases in 2020 (Statistics Norway, 2020b). Norway
steps up its climate goal to reduce emissions by 50% – 55% by 2030 compared to
1990 levels (Ministry of Climate and Environment, 2020). Using OEHs to e�ectively
exploit o�shore wind power to decarbonise the NCS energy system may contribute
to meeting Norway’s and Europe’s climate targets.

CO2 tax is an important instrument for stimulating o�shore energy system
decarbonisation. In 2022, the tax is about 79 Ä/tonne in Norway (Sean Bray, 2022)
with an ambition to increase it to 200 Ä/tonne by 2030 (Norwegian Petroleum
Directorate, 2020a). In addition, the EU Emissions Trading System is a “cap and
trade” system that also includes the emissions on the NCS (Norwegian Petroleum
Directorate, 2020a). Carbon tax and the emissions trading system make a total
carbon price of approximately 160 Ä/tonne. In this context, oil and gas companies
are undertaking considerable investments in decarbonisation solutions to address
climate goals, such as PFS and o�shore wind. Oil and gas companies on the NCS
have set climate targets. For example, Equinor (Equinor, 2021) and Vår Energy
(Vår-Energi, 2019) aim to reduce greenhouse gas emissions by 40% by 2030, and
near zero emission by 2050.
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Figure I.3: Schematic of a potential decarbonised o�shore field production process. A
three-stage separator train separates well streams into produced water, oil, condensate
and gas. Typically the first stage separator takes out most of the water and gas at
arrival conditions. Fuel gas is taken from the first stage separator. The residual mix
of oil, gas and water is heated before entering the second stage separator. Produced
water is purified and discharged, and in some cases, reinjected into water injection
wells to maintain reservoir pressure. Water lift pumps will lift seawater for reinjection
if needed. Produced oil is pressurised by pumps and exported. Produced gas is used
as fuel gas, compressed and exported, reinjected via dedicated wells for enhanced oil
recovery or injected into the same wells for gas lift.
The grey dotted box includes the potential processes for decarbonisation. See Figure
I.1 for a visualisation of the processes in an OEH.

Technologies for decarbonisation exist, and the question is to find the best
mixture of such technologies at acceptable costs. There are four general approaches
to reducing o�shore CO2 emissions, when maintaining a certain activity level:

(a) Reducing CO2 emissions by improving reservoir drainage and processing
energy e�ciency (Bergmo & Grimstad, 2022). Water injection and gas injection are
common reservoir drainage strategies used on the NCS. Pumping, compression and
separation are major processes for handling produced fluids and gas in a processing
system. Injection and processing account for more than half of the power consumption
at the fields on the NCS.

(b) Increasing the energy e�ciency of gas turbines. Due to the security of supply
requirements, gas turbines usually operate with a margin, which leads to a low
e�ciency of around 33% (Lindegaard et al., 2014). Adding bottoming cycles to the
existing gas turbines can improve their energy e�ciency. However, unlike an onshore
energy system, weight and space limitations of an o�shore installation restrict extra
devices like a bottoming cycle.

(c) Supplying zero emission or low emission energy to o�shore oil and gas
platforms. This includes PFS (Norwegian Petroleum Directorate, 2020b), switching
fuel from natural gas to ammonia or hydrogen, and connecting o�shore wind farms
to platforms.

In the past years, several o�shore fields have received PFS via HVDC/HVAC
cables (Riboldi & Nord, 2017). In Norway, the cost of abating CO2 emissions by
taking PFS can vary from less than 100 to almost 800 Ä/tonne (Norwegian Petroleum
Directorate, 2020c). Many abatement projects bringing PFS, are in their planning
phase highly unprofitable even considering Norway’s plan to increase CO2 tax to
200 Ä/tonne in 2030. Besides, due to the capacity limits of the onshore system, the
available power is limited in some cases.

O�shore wind is another technology to supply clean power to platforms. Equinor’s
Hywind Tampen project aims to be operational by 2022 (Equinor, 2020). The
combination of an o�shore platform with a wind farm represents a potentially
good match for the o�shore petroleum sector’s desire for renewable energy with the
o�shore wind power industry’s desire for an early market (Svendsen et al., 2011). The
stability and control issues for an isolated o�shore energy system consisting of a wind
farm and five platforms were addressed in Svendsen et al. (2011). Integrating large
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wind turbines into a stand-alone platform is theoretically possible, but requires more
operational and economic work to prove its feasibility (He et al., 2010). In Marvik
et al. (2013), authors found that local wind power production for matching the
o�shore power demand improves both voltage- and frequency-stability in an o�shore
system. An MILP model for determining optimal o�shore grid structures for wind
power integration and power exchange named Net-Op was presented in Trötscher
& Korpås (2011). An extension of Net-Op that takes into account investment cost,
variability of wind/demand/power prices, and the benefit of power trade between
countries/price areas is presented in Svendsen (2013).

(d) Deploying carbon capture and storage. Storing CO2 in stable underground
formations, e.g., old and stable oil reservoirs, has a relatively long history. Since
1996, nearly one million tonnes of CO2 per year have been separated during the
natural gas process from the Sleipner Vest field and stored in the Utsira formation
(Norwegian Petroleum Directorate, 2020b).

The first two approaches have a limited impact on emission reduction, whereas the
third and fourth approaches can give up to 100% reduction. We focus on supplying
clean energy to o�shore fields.

I.3 Problem description

First, this section introduces the proposed o�shore energy system planning problem
with OEHs. Then, we present the time and geographical structures with the aim of
reducing computational time of a potentially large problem. Finally, we state the
modelling assumptions.

The problem under consideration aims to make optimal investment and
operational decisions for the NCS energy system with OEHs, based on the energy
demand captured by the operational model. By solving such a problem, we aim
to find out under what conditions OEHs may benefit the system and how OEHs
operate with the rest of the system.

To model hourly energy demand, the following devices are considered: (a)
separators; (b) pumps: water injection pumps, water lift pumps, oil export pumps;
(c) compressors: gas injection compressors and gas export compressors. These devices
have existing capacities, and no investment is made in them. Moreover, we assume
that device e�ciency, flow inlet/outlet pressures and hourly mass flow are given.

For the investments in decarbonisation solutions, we consider: (a) o�shore
renewable energies (o�shore wind and o�shore solar); (b) OEHs (electrolysers,
hydrogen storage facilities and fuel cells); (c) subsea cables (HVAC, HVDC and
o�shore and onshore converter stations); (d) electric boilers; (e) platform located
batteries. The capital expenditures, fixed operational costs are assumed to be known.

The problem is to determine: (a) capacities of decarbonisation technologies,
and (b) operational strategies that include scheduling of generators, storage and
approximate power flow among regions to meet the energy demand with minimum
overall investment, operational and environmental costs.

I.3.1 Modelling strategies and assumptions

A multilevel control hierarchy was defined in Foss et al. (2018), arguing that the
repetitive use of static models can solve many important petroleum production
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Figure I.4: Illustration of combined hierarchies, (adapted from van der Heijde et al.
(2019)).
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Figure I.5: Illustration of the linkage between investment planning and operational
time horizon.

optimisation problems. A multi-period MILP model is developed for an integrated
investment planning and operational problem that combines short-term and long-
term control hierarchies. Aggregation, clustering and time sampling (Backe et al.,
2021) are used to address the multi-time-scale aspects (Kaut et al., 2014) and solve
a large-scale instance.

I.3.1.1 Time structure of the problem

The investment problem is optimised over a long-term horizon, e.g., a few decades.
The operational problem is optimised on an hourly basis based on investment
decisions. To combine these two control hierarchies without increasing much the
computational time, N representative slices are selected, each containing h hours,
and they are scaled up to represent a whole operational year. A visualisation of the
time structure is in Figure I.4.

We use a node formulation to link investment planning with the system operation.
An illustration of a planning problem is presented in Figure I.5. We define a point
in time where investments are made as an investment node i0. We then define the
entire operational problem succeeding an investment node as an operational node
i. Finally, the investment decision made in an investment node is examined by the
operational node succeeding the investment node.

I.3.1.2 Geographical structure of the problem

The problem potentially consists of many regions, and we implement a k-means
cluster method based on the locations of fields to reduce the problem size. There
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are two considerations when deciding the number of clusters. Firstly, we assume
the OEH connects the surrounding fields via HVAC cables; thus, only fields with a
feasible transmission distance (up to 100 km) are considered. Secondly, we assume
that the cluster centres are the locations for OEHs. We prevent clusters with too
few fields. For each cluster, we aggregate the individual fields into one larger field
with a distance to the OEH equal to the average distance of the individual fields,
and connect fields to OEH in hub-and-spoke form. Currently, we do not consider the
interconnection among fields and clusters, resulting in reasonably simple network
topology.

I.3.1.3 Assumptions

Each platform is assumed to be a typical North Sea platform with production
processes as shown in Figure I.3. The energy consumption of pumps, compressors
and separators can be formulated as a function of flow rate, pressure and temperature.
For simplicity, the pressure levels and temperatures are assumed to take values that
are typical on the North Sea, leading to a linear formulation. Kirchho� voltage law
is omitted, and replaced by an energy flow model. We assume no mass loss during
production.

I.4 Mathematical model

This section presents a deterministic MILP formulated for the multi-carrier energy
system investment planning problem with high degree of operational details. The
model includes a long-term investment planning horizon and a short-term operational
horizon. The integrated investment planning and operational model is partially
based upon the linear programming model developed in Mazzi et al. (2021). Integer
variables are used to improve the representation of the fixed capacity independent
investment costs. The complete MILP problem consists of Equations (I.1)-(I.3).

The complete nomenclature of the model can be found in I.A. The supplementary
definitions of some model parameters are presented in I.C. We use the conventions
that calligraphic capitalised Roman letters denote sets, upper case Roman and lower
case Greek letters denote parameters, and lower case Roman letters denote variables.
The indices are subscripts and name extensions are superscripts. The same lead
symbol represent the same type of thing. The names of variables, parameters, sets
and indices are single symbols.

I.4.1 Objective function

min c
INV + Ÿ

ÿ

iœI

c
OP E
i (I.1)

The objective function, Equation (I.1), is to minimise the total investment (cINV )
and operational (Ÿ

q
iœI

c
OP E
i ) costs over the planning horizon.
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I.4.2 Investment planning constraints

The investment planning constraints are given by:

c
INV =

ÿ

iœI0

ÿ

pœP

!
C

InvV
pi x

Inst
pi + C

InvF
pi ypi

"
+ Ÿ

ÿ

iœI

ÿ

pœP

C
F ix
pi x

Acc
pi (I.2a)

x
Acc
pi = X

Hist
p +

ÿ

iœIi

x
Inst
pi , p œ P, i œ I (I.2b)

0 Æ x
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0 Æ x
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ypi œ {0, 1, 2, ..., Ypi}, p œ P, i œ I0 (I.2e)
x

Inst
pi , x

Acc
pi œ R+

0
, (I.2f)

ypi œ Z+

0
. (I.2g)

The total cost for investment planning, Equation (I.2a), consists of actual investment
costs (comprising capacity-dependent and capacity-independent costs), as well as
fixed operating and maintenance costs. Here, Ÿ is a scaling factor that depends on
the time step between two successive investment nodes. Constraint (I.2b) states that
the accumulated capacity of a technology x

Acc
pi in an operational node equals the sum

of the historical capacity X
Hist
p and newly invested capacities x

Inst
pi in its ancestor

investment nodes Ii. The integer variable ypi gives the number of units of technology
p œ P in investment node i œ I0. Parameter Qp represents the maximum capacity of
a technology unit, and parameter X

Max
p denotes the maximum accumulated capacity

of a technology. Parameter Yp gives the maximum number of units that can be
installed for the di�erent technologies.

I.4.3 Operational constraints

We now present the operational constraints in one operational node i. Note that we
omit index i in the operational model for ease of notation. Oil and gas recovery are
modelled as this is the most likely use in the short to medium term. The operational
constraints can be modified for other use, e.g., o�shore fish farming, maritime,
transport, and others.
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The operational cost c
OP E , which is included in the objective function, Equation

(I.1), for each operational node i, is described by Equation (I.3a) that includes
total operating costs of generators C

G
g p

G
gt, energy load shedding costs for heat

C
ShedH

p
ShedH and power C

ShedP
p

ShedP and electricity costs of onshore power
·

EP
zt p

P F S
zt . C

G
g includes the variable operational cost, fuel cost and the CO2 tax

charged on the emissions of generator g. Constraint (I.3b) ensures that the devices
including electric boilers b œ B

E , electrolysers e œ E , and fuel cells f œ F are within
their capacity limits. Constraint (I.3c) dictates that the power generation of a gas
turbine p

G
gt plus the spinning reserve p

ResG
gt must not exceed its capacity p

AccG
g .

Constraint (I.3d) states that the hydrogen storage level v
SHy
st should be less than the

capacity v
AccSHy
s . Constraint (I.3e) dictates that the power charged p

SE+

st should
be within the charging capacity. Constraint (I.3f) specifies that the discharging
power p

SE≠

st plus the power for reserve requirement p
ResSE
st must not exceed the

discharging capacity. Constraint (I.3g) limits the energy storage level q
SE
st to be

within the capacity q
AccSE
s . Constraint (I.3h) shows that the power flow p

L
t is within

the transmission capacity p
AccL
l . Constraints (I.3i) and (I.3j) capture how fast gas

turbines and fuel cells can ramp up or ramp down their power output, respectively.
The parameters –

G
g and –

F
f are the maximum ramp rate of gas turbines and fuel cells,

respectively. The operating reserve requirement, Constraint (I.3k), dictates that the
spinning reserve of gas turbines p

ResG
gt , plus the reserve of the electricity storage

p
ResES
st must exceed the minimum reserve requirement, where ‡

Res is a percentage
of the power load. The power nodal balance, Constraint (I.3l), ensures that, in
one operational period t, the sum of total power generation of turbines p

G
gt, power

discharged from all the electricity storage p
SE≠

st , renewable generation R
R
ztp

AccR
rt , fuel

cell generation p
F
ft, power transmitted to this region, and load shed p

ShedP
zt equals

the sum of power demand P
DP
zt , power consumption of electric boilers p

BE
bt , power

consumption of all electrolysers p
E
et, power transmitted to other regions, and power

generation shed p
GShedP
zt . The parameter R

R
zt is the capacity factor of renewable

unit that is a fraction of the nameplate capacity p
AccR. The subset of a technology

in region z is represented by Rz := {r œ R : r is available in region z}, where R

can be replaced by other sets of technologies. The heat energy balance, Constraint
(I.3m), states that the heat recovery of gas turbines ÷

HrG
g p

G
gt, plus electric boiler heat

generation ÷
BE
b p

BE
bt , plus heat load shed p

ShedH
zt equals the heat demand P

DH
zt plus

the heat generation shed p
GShedH
zt . The hydrogen mass balance, Constraint (I.3n),

states that hydrogen produced by electrolyser equals the hydrogen injected into the
storage v

SHy+, plus the hydrogen directly supplied to fuel cells . Constraint (I.3o)
restricts the discharged energy and the energy for reserve purpose to be less than
the energy storage level q

SE
st . Constraint (I.3p) states that the state of charge q

SE
st in

period t + 1 depends on the previous state of charge q
SE
st , the charged power p

SE+

st

and discharged power p
SE≠

st . The parameter ÷
SE
s represent the charging e�ciency.

The parameter Ht is the length of the period t. The hydrogen storage balance,
Constraint (I.3n), shows that the hydrogen storage level v

SHy
st at period t + 1 equals
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Figure I.6: Illustration of the NCS energy system with energy hubs. L1 – L5 (dotted
lines) are representative HVAC cables, while L6 – L10 (solid lines) are HVDC cables.
Black dots represent energy hubs and the red dots represent the onshore buses they
connect to. Points with di�erent shapes and colours represent NCS oil and gas fields.

to storage level at the previous period, plus the hydrogen injected v
SHy+

st , minus
the hydrogen withdrawn v

SHy≠

st . Constraint (I.3r) restricts the total emission. The
parameter µ

E is the CO2 budget. The symbol E
G
g is the emission factor per unit

of power generated. The parameter Wt is the length of a period after scaling. We
only consider emissions from the generators, but the model can easily be extended
to include other emissions. The complete MILP problem consists of Equations
(I.1)-(I.3).

I.5 Case study

The case study is carried out on the North Sea part of the NCS, considering 66 fields.
The problem consists of 77 regions, divided into 66 fields, 5 OHEs and 5 onshore
buses. By using the clustering approach described in Section I.3.1, the system can
be represented using 5 clusters and henceforth go from 77 regions to 15 regions. The
network topology is exemplified in Figure I.6. The power demand of platforms is
assumed to be initially entirely supplied by gas turbines, as only a limited number
of platforms receives PFS. Four representative months with hourly resolution are
selected and scaled up to represent a whole year. In the case study, parameter Qp

is obtained from references. It is determined based on the nameplate capacity of
devices. The parameter X

Max
p is set to a big number.

The field area geometry data is obtained from Norwegian Petroleum Directorate
(2022). For each field, one coordinate is picked from the multipolygon as its
representative location. The representative location, attributed cluster and the
distance to its cluster centre for each field are summarised in Table I.2.
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Figure I.7: Production profile in the representative months.

One month from each season is selected. The production of fields in each
cluster is aggregated. A visualisation of the production data for each field in the
four representative months is presented in Figure I.7, the data used for plotting is
available at Zhang (2021).

The operational data in the oil and gas industry is sensitive, and usually not
disclosed to the public. Aggregated data such as monthly or yearly production
of petroleum on the NCS can be obtained from Norwegian Petroleum Directorate
(2020b). One can also find monthly production and injection data for each field from
Norwegian Oil and Gas Association (2021) and Norwegian Petroleum Directorate
(2021). Neither of these can be directly used as inputs for this study due to the time
resolution di�erence. Therefore, reasonable data generation is necessary. Raw data
is collected from: (a) Norne (1998 ≠ 2006) and Volve (2008 ≠ 2016) fields with hourly
production and injection data from The LowEmission Research Centre, SINTEF
(2020), and (b) monthly production and injection data of each field from Norwegian
Oil and Gas Association (2021). We develop a data generation method that considers
the lifetimes of o�shore fields (Zhang, 2021).

We define a base case (Base) with o�shore renewables, electric boiler, battery
and PFS as investment options. This case is then used as a benchmark to check
against the case with OEHs. The full model given by Equations (I.1)-(I.3) takes
approximately 2 hours to solve.
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I.6 Results

We demonstrate the results of a static integrated investment planning and operational
problem given by Equations (I.1)-(I.3), for a future point in time. The problem
consists of 461, 208 continuous variables, 100 integer variables and 980, 013 constraints.
The model was implemented in Julia 1.6.1 using JuMP (Dunning et al., 2017) and
solved with Gurobi 9.1.2 (Gurobi Optimization, LLC, 2021). The code was run
on a MacBook Pro with 2.4 GHz 8-core Intel Core i9 processor, with 64 GB of
RAM, running on macOS 11.6 Big Sur. The Julia code and data for the case study
have been made publicly available (Zhang, 2021). The integrated investment and
operational model given by Equations (I.1)-(I.3) is solved to conduct sensitivity
analysis on CO2 tax, CO2 budget and the capacity of PFS. The results show that
a system with OEHs can reduce up to 49% CO2 emissions and 10% energy loss
compared with the one with only o�shore renewables, gas turbines and PFS.

I.6.1 Energy system analysis
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Figure I.8: Power consumption and supply (Only two lines are observable since
power supply and demand match exactly. OCGT power equals power demand at all
times).

In this section, we present results on energy consumption and CO2 emission of the
initial system. By post-processing, we verify the energy consumption of platforms
is of the same order of magnitude as the reported numbers. The resulted CO2
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Figure I.9: Heat consumption and supply.

emission is 5.54 Mt/yr. In comparison, the reported total emission of the relevant
fields was 6.89 Mt in 2019 (Norwegian Petroleum Directorate, 2021). The emissions
from the model are expected to be lower than 6.89 Mt since not all emission sources
are considered. Based on Nguyen et al. (2014), one could assume that the major
processes considered in this study make up about 80% of the total load. Therefore,
5.54 Mt yearly emission is within the correct range, implying that the energy load
modelling is relatively accurate.
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Figure I.10: Power demand in a year.
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cluster1 cluster2 cluster3 cluster4 cluster5
Emission distribution 6.8% 5.5% 44.8% 11.7% 31.2%

Table I.1: Emission distribution by cluster.
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Figure I.11: Emission and cost comparison (CO2 tax sensitivity analysis).

From Figure I.8, we can see that the power output of the Open Cycle Gas Turbine
(OCGT) matches the power demand at every operational period. Heat recovery of
OCGTs is assumed to be the only heat source. Figure I.9 shows that heat recovery of
OCGTs provides more than enough heat due to high electricity generation. We can
also see that energy consumption can vary significantly. A breakdown of electricity
load is shown in Figure I.10, gas export compressors dominate the power consumption
in clusters 3 ≠ 5. Water injection is the largest power consumer in cluster 2 since
there are some mature fields (e.g., Ekofisk) whose reservoir pressures are mainly
maintained by water injection. OCGT is the only energy and emission source in the
initial setup. Therefore, emission breakdown includes the emissions from the total
energy consumption of each region. Cluster 1 has the second smallest share of the
total energy consumption, with a considerable amount of power consumed by gas
injection. The fields in cluster 1, such as Grane, have the third-highest gas injection
level among the 66 fields. From Table I.1, we find that emission mainly comes from
the northern part of the North Sea.

I.6.2 Sensitivity analysis of CO2 tax

This section presents the results of sensitivity analysis of CO2 tax. We introduce
CO2 tax and still keep the carbon budget inactive. We increase the carbon tax from
55 to 500 Ä/tonne with a step size of 5 Ä/tonne. PFS capacity limits are estimated
from Norwegian Petroleum Directorate (2020c) and Statistics Norway (2020a). Note
that the cost of PFS may be underestimated since we only consider the costs of
subsea cables, onshore and o�shore converter stations and electricity bills. In reality,
PFS projects may also involve investment in onshore transmission lines or onshore
power system capacity expansion. We analyse the results from three metrics: cost,
CO2 emission and energy loss. Energy losses are from conversions, transmission,
and generation shed. The calculation is presented in I.B.

From Figure I.11, we can see that CO2 tax as a single instrument may not
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Figure I.12: Energy loss (CO2 tax sensitivity analysis).
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Figure I.14: Emission and cost comparison (CO2 budget sensitivity analysis).

be enough to yield a zero emission system. We also find that near zero emission
can be achieved with a very high CO2 tax. Therefore, a hard carbon cap may be
necessary for stimulating a zero emission system. When CO2 tax is 55 Ä/tonne,
the system reduces about 65% of the emissions compared to the initial 5.54 Mt/yr
emission. Approximately 84% of the emissions can be cut if CO2 tax is increased
to 200 Ä/tonne as planned. As OCGTs are replaced by renewable energy, energy
loss is reduced as well. OEHs can potentially reduce up to around 49% more CO2

emission, and 5% total cost than the case with only o�shore wind and PFS (Base) at
certain CO2 tax levels. From Figure I.12, we find that energy loss during production
accounts for 11% of the energy loss. OCGTs lose 18 GWh of energy during an
operational year. As production from wind turbines replaces gas turbines, energy
loss from OCGT is reduced. However, due to the lack of energy storage, electricity
generation shedding increases because wind power is shed. We find that OEHs can
e�ectively reduce electricity generation shedding, although it loses energy during
conversion. Overall, energy loss is up to 10% lower in the case of OEHs compared
with Base at certain tax levels.

From Figure I.13, we find that di�erent clusters show di�erent levels of sensitivity
to CO2 tax. O�shore wind is the first renewable energy solution that is added to the
system. Electric boilers are needed as o�shore wind replaces gas turbines partially.
OEHs are installed when CO2 tax is above 290 Ä/tonne. O�shore solar is only added
in cluster 5 under very high CO2 tax levels. OCGTs still operate even CO2 tax
increases to 500 Ä/tonne. We can see that in a static planning problem, if CO2 tax is
the only instrument and increases to 200 Ä/tonne as the government’s plan in 2030,
OEHs may not be necessary. However, CO2 tax combined with the EU emissions
trading system may likely increase the total CO2 price to around 250 ≠ 300 Ä/tonne,
which is about the breakeven price of OEHs. In addition, the potential benefits of
the OEHs may realise once they provide services to more sectors, such as exporting
hydrogen for industries or transportation.

I.6.3 Sensitivity analysis of CO2 budget

For the CO2 budget, we use initial emissions as the starting point, and reduce it by
5% until it hits 0. From Figure I.14, we find that the carbon cap is binding most of
the time, and we rarely see that emissions are reduced more than the carbon cap.
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Figure I.15: Energy loss (CO2 budget sensitivity analysis)
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Figure I.16: Capacities of technologies in each cluster (CO2 budget sensitivity
analysis), hydrogen storage is measured in tonne.
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Thus, there is no di�erence in actual emissions in Base and the system with OEHs.
However, the cost is 25% lower in a zero emission system with OEHs compared with
Base.

We find that in a zero emission system without OEHs, energy loss is around
530 TWh due to 90 GW of wind power capacity and 15 GW o�shore solar capacity
without storage. This may not be likely to happen since some forms of storage would
be added to compensate for o�shore wind in reality. From Figure I.15, we can see a
large amount of energy loss when reaching near zero emission system in Base. The
energy loss in Base is 10,749 GWh in a near zero emission system, which is about
twice as high as for the case with OEHs. A large amount of wind power is installed
to meet power demand at any time. Therefore, the same capacity of wind that can
cope with peak demand hours, will also generate surplus power during normal hours.
This leads to increased energy losses as more wind replaces OCGT without proper
energy storage. In the case of OEHs, wind power can be stored when excess power
is generated. It is also worth noticing that in the energy system without an OEH,
energy storage is the battery on the platforms, which can be infeasible due to space
and weight limitations. We observe that investments in batteries are only needed
when approaching zero emission in Base. No battery is needed in a system with
OEHs. In addition, the energy loss of OEHs is 28% of the total loss, and the loss
during production is about 50% of the total.

From Figure I.16, we find that cluster 3 receives PFS after a 5% reduction of the
carbon cap. Cluster 3 has the highest emission level but the shortest distance from
shore. Therefore, taking PFS and partially electrifying the fields in cluster 3, can
help the system reduce 5% of the emissions in a cost e�cient way. The system does
not cut emissions proportionally in each cluster, but cuts emissions from clusters
with the highest emission, such as cluster 3 and cluster 5. Therefore, it may be
necessary to consider the whole NCS when conducting system planning, rather than
consider each cluster separately and reach sub-optimality. Cluster 2 is the most
remote, more than 300 km from shore; PFS is less economical than o�shore wind.
Therefore, o�shore wind is added to cluster 2 when the carbon cap drops to 2.77
Mt/yr. When the CO2 budget reduces to below 0.83 Mt/yr, CO2 emissions are
nearly zero in clusters 1 and 2. However, the carbon cap needs to reduce to zero
to shut down OCGTs completely in all clusters. Nearly 4, 295 tonnes of hydrogen
storage capacity is needed in a zero emission NCS energy system, and nearly half is
installed in cluster 3.

I.6.4 Sensitivity analysis of the capacity of PFS

We now present the results of sensitivity analysis of the capacity of PFS. The capacity
of PFS a�ects the investments in o�shore technologies. An onshore system has a
limited capacity to transmit power o�shore. Although, onshore system expansion
can a�ect this capacity limit, it is not considered directly in this paper. Therefore,
we conduct sensitivity analysis to reveal the relationship between onshore power
system capacity and o�shore decarbonisation technologies.
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Figure I.17: Emission and cost (PFS capacity sensitivity analysis, S1).

I.6.4.1 Scenario 1 (S1)

The first scenario is to fix the CO2 tax to 300 Ä/tonne, and increase the PFS
capacity of each onshore location from 0 MW to 1000 MW with a 10 MW step. The
investment decisions remain the same when the PFS capacity is higher than 710 MW.
Therefore, we only present the results from 0 MW to 710 MW. From Figure I.17,
we can see that by having 710 MW capacity in each onshore location, the system
can achieve 0.01 Mt/yr emission and reduce about 53% of the total cost. However,
increasing the capacity further does not cut emissions or costs further. Figure I.19
shows that energy loss during transmission makes up 16% of the total energy loss as
we increase the onshore capacity. Electricity generation shed decreases as onshore
capacity increases because PFS gradually replaces o�shore wind, and less energy is
lost from wind turbines. From Figure I.18, we find that for onshore locations that
connect to cluster 1 and cluster 2, the needed onshore capacities are about 126 MW
and 108 MW, respectively. There are also upper limits on the installed capacity of
PFS in the other clusters. We also notice that OEHs are still needed in clusters
3 and 5 as we increase the onshore capacity. However, eventually, OEHs are not
needed since PFS can provide more stable power and OEH with storage becomes
less important.

I.6.4.2 Scenario 2 (S2)

In the second scenario, the CO2 tax is fixed to 400 Ä/tonne. We increase the onshore
capacity from 0 MW to 1000 MW, and present the results until 770 MW. From I.20,
we can see that without PFS, the system can achieve 0.63 Mt/yr emissions under S2
condition. Increasing the onshore capacity brings down 57% of the cost and also cut
emission further to near zero. Figure I.22 shows that about 22% of the energy loss
is from OEHs initially. OEHs are not needed when the onshore capacity increases to
around 390 MW for each location. By adding the installed PFS capacity shown in
Figure I.21, we find that a total onshore capacity of 1.74 GW may help the o�shore
energy system achieve near zero emission. We notice that the onshore system needs
to provide an averagely of 1.4 GW. By checking the average power transmission of
PFS, which might not be feasible without onshore system expansion.
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Figure I.18: Capacities of technologies in each cluster (PFS capacity sensitivity
analysis, S1), hydrogen storage is measured in tonne.
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Figure I.19: Energy loss (PFS capacity sensitivity analysis, S1).
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Figure I.20: Emission and cost (PFS capacity sensitivity analysis, S2).

I.7 Discussion

The analysis above shows that OEHs have potential value in emission reduction,
energy losses and costs. The operational part of the model provides energy
consumption of fields that is consistent with the analysis in Nguyen et al. (2014),
and aligned with o�cially reported numbers (Norwegian Petroleum Directorate,
2020b). However, a similar investment planning problem is not found in the literature.
Therefore, the results from the paper may provide a possible benchmark for future
studies.

We demonstrate the case study on the NCS energy system. A unique characteristic
of the NCS is that PFS is nearly emission free because nearly all Norwegian onshore
power production is based on hydro power. However, in many regions, there may be
less intention to use PFS because of the carbon intensity of the onshore power. In
such a case, using PFS to compensate for o�shore wind volatility may be infeasible,
and hydrogen production and storage may become more relevant. This may a�ect
the optimal investment planning of the system.

Based on the optimal solutions under di�erent conditions showed in Figures
I.13,I.16,I.18 and I.21, we notice that o�shore wind is a relatively cost e�cient
technology that can achieve moderate emission targets of platforms. This may
suggest that in countries where PFS is not an option, o�shore wind alone can still
help emission reduction to a large extent.

In addition, the results suggest that producing and storing hydrogen o�shore
in OEHs proves to be economical under a strict carbon budget and a high CO2

tax. One reason is that PFS is considered as an option for decarbonisation, and
building cables is most likely cheaper than building an OEH. However, taking PFS
will increase the pressure on the onshore system, and a�ect the security of supply
of the onshore system and the onshore electricity price. This may cause public
opposition. The potential restriction and limitation of the onshore power system
may motivate o�shore wind. Because OEHs can supply o�shore platforms, a major
function may be to supply and benefit the onshore system. Onshore wind power
development is slow or even opposed in some regions. OEHs may help the onshore
system decarbonisation by distributing o�shore wind power to shore. Another insight
is that a future hydrogen market may be needed in such a model to analyse the
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Figure I.21: Capacities of technologies in each cluster (PFS capacity sensitivity
analysis, S2), hydrogen storage is measured in tonne.
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Figure I.22: Energy loss (PFS capacity sensitivity analysis, S2).
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value of OEHs properly. Because the main function of OEHs is to supply o�shore
fields in the short- to mid-term, and serve for clean energy export in the long term.
Including a hydrogen market can realise the long-term value of OEHs. The model
can then be used for the techno-economical analysis of OEHs in onshore and o�shore
energy systems for countries with di�erent energy policies in terms of o�shore wind,
onshore wind and green hydrogen.

Energy storage becomes very important in a system with higher wind power
penetration. Hydrogen can be a promising option for long-term large-scale clean
energy storage. Some o�shore regions may have massive underground storage
capacity. In such a case, the model can analyse whether OEHs with storage can be
a cost-e�cient solution for large-scale storage to help introduce more wind power in
the system, and then help the energy transition towards zero emission.

O�shore energy system planning is of interest in many regions around the world.
Decarbonising platforms may be a target during the planning in regions like the
Gulf of Mexico and the Brazilian continental shelf. The model can be applied for
the analysis of such locations. The model can also be used to analyse the interaction
of an o�shore energy system and onshore energy system transition. Regardless of
the case study location, investment planning of an energy system typically aims
to find optimal investment decisions that can fulfil the required energy load under
some constraints. The model formulation is general, and there are no case-specific
constraints. All locations and transmission lines are represented by nodes and arcs,
respectively. A di�erent configuration for each location and a cost model for each
branch can be defined based on data. Model parameters, constraints, and variables
can be modified according to the specific problem of the study.

Although the paper gives several insights and implications, the case study has
some limitations: (a) we consider a simple network topology without considering the
interconnections between fields clusters, and the interconnections may help OEHs
distribute power; (b) we do not consider the capacity expansion of the onshore power
system; and (c) we only consider using OEHs to decarbonise o�shore fields, whereas,
in reality, such hubs can provide service to more onshore and o�shore industries,
therefore, analysing OEHs also has relevance to onshore systems.

I.8 Conclusions and future work

This paper presents a multi-carrier o�shore energy system investment planning
optimisation model with a high degree of operational detail to find cost-optimal
solutions for decarbonising NCS energy supply. The major novelties and contributions
are: (1) formulating OEHs in an integrated MILP investment and operational model
for large-scale o�shore energy system planning; (2) modelling the device-level energy
consumption of the o�shore platforms with hourly time resolution on a large scale;
and (3) conducting a large-scale analysis of the value of OEHs in the North Sea
o�shore energy system transition towards decarbonised energy supply. Results from
our case study indicate that: (1) OEHs can reduce up to 10% of the energy loss
and 49% of the emissions with CO2 tax above 290 Ä/tonne; (2) OEHs can reduce
energy loss by 53% in a near zero emission system; (3) a carbon budget may be
necessary to enable a zero emission energy system in addition to CO2 tax; and (4)
the system cuts about 65% of the initial emissions when CO2 tax is 55 Ä/tonne,
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and approximately 84% of the CO2 emissions can be cut if CO2 tax is increased to
Norway’s target of 200 Ä/tonne.

Although the deterministic MILP model in this paper has led to many insights,
there are several possible extensions. A deterministic optimisation model is not
capable of representing load and supply uncertainties. Therefore, we aim to develop
a stochastic optimisation model (Birge & Louveaux, 2011) and incorporate long-term
and short-term uncertainties in future work. In addition, multiple investment stages
are needed to represent the investment planning problem more realistically. Besides,
we only consider using OEHs for fields decarbonisation, which makes OEHs seem
less attractive than other technologies due to their high costs. However, OEHs can
have various advantages such as energy provision to o�shore fish farming, maritime
transport, and using the infrastructure past the lifetime of the oil and gas fields
for purposes such as exporting hydrogen. These may motivate the investments in
OEHs, which we aim to include some of the aspects in future. Finally, more work
can be done on o�shore network topology and the representation of the onshore
power system.
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Appendix I.A Nomenclature

Investment planning related sets

I set of operational nodes
I0 set of investment nodes
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Ii set of investment nodes i (i œ I0) ancestor to operational node i

(i œ I)
P set of technologies

Operation related sets

B
E set of electric boilers

C set of compressors
E set of electrolysers
F set of fuel cells
G set of gas turbines
L set of subsea cables
N set of time slices
P

ú set of all electric boilers, electrolysers and fuel cells (Pú = B
E

fiE fiF)
P

U set of pumps
R set of renewable units (o�shore wind and o�shore solar)
S

E set of electricity storage
S

Hy set of hydrogen storage facilities
T set of hours in all time slices
Tn set of hours in time slice n (n œ N )
Z set of all locations, including platforms Z

P , OEHs Z
H , and onshore

buses Z
O (Z = Z

P
fi Z

H
fi Z

O)

Investment planning related parameters

Ÿ scaling e�ect depending on time step between successive investment
nodes

C
F ix
pi unitary fix operational and maintenance cost of technology p in

operational node i (p œ P, i œ I) [e/MW, e/MWh, e/kg]
C

InvF
pi fixed capacity independent investment cost of technology p in

investment node i (p œ P, i œ I0) [e]
C

InvV
pi unitary investment cost of technology p in investment node i

(p œ P, i œ I0) [e/MW, e/MWh, e/kg]
Qp capacity of a unit of technology p (p œ P) [MW, MWh, kg]
X

Max
p maximum accumulated capacity of technology p (p œ P) [MW, MWh,

kg]
Ypi maximum number of newly invested units of technology p in

investment node i (p œ P, i œ I0)

Operation related parameters

–
G
g /–

F
f maximum ramp rate of gas turbines /fuel cells (g œ G, f œ F)

[MW/MW]
÷

ú e�ciency of compressors, electric boilers, fuel cells, gas turbines,
heat recovery of gas turbines electric storage and transmission lines
ú = {C, BE, F, G, HrG, SE, L} indexed by related sets

÷
EF conversion factor of electrolyser to inject hydrogen directly to fuel

cell [MWh/kg]
÷

ES conversion factor of electrolyser to inject hydrogen to the storage
facility [MWh/kg]

“
SE
s power ratio of electricity store s (s œ S

E) [MW/MWh]
µ

E yearly CO2 emission limit (tonne)

72



Nomenclature

fl
F
f hydrogen consumption factor of fuel cell f (f œ F) [kg/MW]

‡
Res
z spinning reserve factor on platform z (z œ Z

P )
·

EP
zt electricity price in onshore bus z in period t (z œ Z

O
, t œ T ) [e/MW]

C
G
g total operational cost of gas turbine g (g œ G) [e/MW]

C
Shed,l load shed penalty cost of power (l = P ) and heat (l = H) [e/MW]

C
G
g total operational cost of generating 1 MW power from gas turbine g

(g œ G) [e/MW]
E

G
g emission factor of gas turbine g (g œ G) [tonne/MWh]

E
G
g emission of CO2 of gas turbine g burning fuel (g œ G) [t/MWh]

Ht number of hour(s) in one operational period t

P
DP
zt power demand on platform z period t (z œ Z, t œ T ) [MW]

R
R
rt capacity factor of renewable unit r in period t (r œ R, t œ T )

Wt weighted length of one operational period t

Investment planning related variables

c
INV total investment and fixed operating and maintenance costs [e]

c
OP E
i total operational costs in operational node i (i œ I)[e]

x
Acc
pi accumulated capacity of device p in operational node i (p œ P, i œ I)

[MW, MWh, kg]
x

Inst
pi newly invested capacity of device p in investment node i0 (p œ P, i œ

I0) [MW, MWh, kg]
ypi number of units of newly invested technology p in investment node

i0 (p œ P, i œ I0)

Operation related variables

p
E
et power consumption of electrolyser e in period t (e œ E , t œ T ) [MW]

p
F
ft power generation of fuel cell f in period t (f œ F , t œ T ) [MW]

p
BE
bt power consumption of electric boiler b in period t (b œ B

E
, t œ T )

[MW]
p

AccF
f accumulated capacity of fuel cell f (f œ F , t œ T ) [MW]

p
G
gt power generation of gas turbine g in period t (g œ G, t œ T ) [MW]

p
ResG
gt power reserved of gas turbine g for spinning reserve requirement in

period t (g œ G, t œ T ) [MW]
p

AccG
g accumulated capacity of gas turbine g (g œ G) [MW]

p
L
lt power flow in line l in period t (l œ L, t œ T ) [MW]

p
AccL
l accumulated capacity of line l (l œ L) [MW]

p
ResSE
st power reserved in electricity store s for spinning reserve requirement

in period t (s œ S
E

, t œ T ) [MW]
p

SE+

st /p
SE≠

st charge/discharge power of electricity store s in period t (s œ S
E

, t œ

T ) [MW]
p

GShed,l
zt generation shed for power (l = P ) and heat (l = H) at z in period t

(z œ Z, t œ T ) [MW]
p

P F S
zt power supply from onshore bus z in period t (z œ Z

O
, t œ T ) [MW]

p
Shed,l
zt load shed for power (l = P ) and heat (l = H) at z in period t

(z œ Z, t œ T ) [MW]
q

SE
st energy level of electricity store s at the start of period t (s œ S

E
, t œ

T ) [MWh]
q

AccSE
s accumulated storage capacity of electricity store s (s œ S

E) [MWh]
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v
SHy+

st /v
SHy≠

st injection/withdraw of hydrogen to (from) hydrogen storage s in
period t (s œ S

Hy
, t œ T ) [kg]

v
SHy
st storage level of hydrogen storage s in period t (s œ S

Hy
, z œ Z

H
, t œ

T ) [kg]
v

AccSHy
s accumulated storage capacity of hydrogen store s (s œ S

Hy
, t œ T )

[kg]

Appendix I.B Calculation of energy loss

The indices, summation and multiplication of one hour are omitted.

q
Loss =p

GShed + p
GShedH + ( 1

÷G
≠ 1 ≠ ÷

HrG)pG + (1 ≠ ÷
l)pl

+ p
E

≠ ◊
Hy( p

F

÷F ◊Hy
≠ v

SHy≠ + v
SHy+) + ( 1

÷F
≠ 1)pF

,

where (1 ≠ ÷
l)pl calculates the total energy losses of electricity storage, separators,

compressors, pumps, electric boilers and transmission lines. The hydrogen energy
content is denoted by ◊

Hy.

Appendix I.C Definitions of model parameters

The total operational cost of a gas turbine is defined by

C
G
g = C

OP EX
g +

C
F uel
g + C

CO2E
F uel
g

÷G
g

, (I.4)

and the emission factor of gas turbine is defined by

E
G
g =

E
F uel
g

÷G
g

, (I.5)

where C
OP EX
g is the variable operational cost of gas turbines. The E

F uel
g is the fuel

cost of gas turbines burning fuel with energy content 1 MWh. The parameter E
F uel
g

is the emission of CO2 of gas turbines burning fuel with energy content 1 MWh.
The e�ciency of gas turbines is denoted by ÷

G
g .

Power demand of a platform

P
DP
zt =

ÿ

cœCz

V
C

zt ZRT

÷C(– ≠ 1)

1
“

–≠1
–

c ≠ 1
2

+
ÿ

pœPU
z

Ÿ
P u
p V

P u
pt , (I.6)

equals to the power consumption of all compressors and all pumps. The power
consumption of a compressor is given by V C

zt ZRT
÷C(–≠1)

1
“

–≠1
–

c ≠ 1
2

, where V
C

zt is the gas
compressed by a compressor, ÷

C is the isentropic e�ciency of a compressor, – is the
polytropic exponent of a compressor, “c is the compression ratio of a compressor, Z is
compressibility factor, R is the characteristic gas constant and T is the temperature.
The power consumption of a pump is given by Ÿ

P u
p V

P u
pt , where V

P u
pt is the fluid
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pumped by a pump, Ÿ
P u
p is the electricity demand as fraction of amount of fluid

pumped. The detailed derivation of power consumption of compressors and pumps
is presented in Svendsen (2022).

Hydrogen consumption factor of fuel cell is given by

fl
F = 1

÷
F
f ◊Hy

, (I.7)

where ÷
F
f is the e�ciency of fuel cells and ◊

Hy is the energy content of hydrogen.
Weighted length of a operational period is defined by

Wt = W
N
n Ht, n œ N , t œ T

N
, (I.8)

where W
N
n is the weight of each slice n and Ht is the length of operational period t.

Appendix I.D Input data

Table I.2 provides an overview over the locations of the di�erent fields.

Table I.2: Field location data
Field Longtitude Latitude Cluster Distance to center Field Longtitude Latitude Cluster Distance to center
ALVHEIM 1.9395 59.5425 4 21.2816 OSEBERG SØR 2.9407 60.3089 4 56.0941
ATLA 2.5655 59.6521 4 26.7926 REV 1.9239 58.0205 4 55.1011
BØYLA 1.8906 59.2924 4 28.8258 RINGHORNE ØST 2.5101 59.2710 4 24.7070
BALDER 2.4079 59.2685 4 22.4603 SIGYN 2.0162 58.2760 4 27.2786
BLANE 2.4933 56.8442 2 51.1421 SINDRE 2.3471 61.2307 2 8.9022
BRAGE 3.0645 60.4766 1 36.2946 SKIRNE 2.4663 59.5995 1 18.7876
BYRDING 3.5282 61.1336 1 41.1125 SKOGUL 2.2236 59.7787 1 35.6253
EDVARD GRIEG 2.3253 58.8451 3 43.4742 SLEIPNER ØST 1.9808 58.4073 3 12.6067
EKOFISK 3.2310 56.4936 2 10.8211 SLEIPNER VEST 1.6639 58.3896 2 20.4544
ELDFISK 3.3155 56.3772 2 24.6979 SNORRE 2.0600 61.3975 2 17.8092
EMBLA 3.2736 56.2948 2 33.0210 STATFJORD 1.8027 61.1682 2 22.3646
ENOCH 1.5205 58.6309 3 26.4138 STATFJORD ØST 1.9859 61.3059 3 12.3843
FLYNDRE 2.6338 56.5497 2 34.3127 STATFJORD NORD 1.9139 61.4255 2 24.3768
FRAM 3.4836 61.0491 1 31.5435 SVALIN 2.3967 59.1362 1 36.5700
FRAM H-NORD 3.5006 61.1047 1 37.5782 SYGNA 2.0011 61.4647 1 25.9082
GIMLE 2.3458 61.2496 5 8.5919 TAMBAR 3.0129 56.9428 5 40.8781
GINA KROG 1.7013 58.5396 3 12.9160 TOR 3.3023 56.6257 3 8.0665
GJØA 3.9304 61.3045 1 68.1220 TORDIS 2.1141 61.2460 1 3.8127
GRANE 2.4377 59.1118 4 39.7075 TROLL 3.9095 60.5028 4 48.7206
GUDRUN 1.7169 58.8113 3 34.8508 TRYM 4.2407 56.3964 3 67.9529
GULLFAKS 2.1176 61.1918 5 7.3167 TUNE 2.6089 60.4144 5 54.2111
GULLFAKS SØR 2.0278 61.1654 5 12.5494 ULA 2.8675 57.0670 5 56.7312
GUNGNE 1.8885 58.3519 3 18.3356 UTGARD 1.5424 58.3444 3 29.0778
HEIMDAL 2.2214 59.5465 4 10.2065 VALE 2.2936 59.6835 4 24.9101
HOD 3.4304 56.1763 2 48.1342 VALEMON 2.2455 60.9907 2 28.9045
ISLAY 1.9251 60.5433 5 79.7225 VALHALL 3.4306 56.2307 5 42.4198
IVAR AASEN 2.1242 58.9170 3 46.1277 VEGA 3.3593 61.3396 3 61.2607
JOHAN SVERDRUP 2.6266 58.6588 3 43.9624 VESLEFRIKK 2.8778 60.7442 3 20.2442
KNARR 2.7084 61.7845 5 65.6891 VIGDIS 2.1166 61.3390 5 10.6492
KVITEBJØRN 2.4821 61.0431 5 27.8955 VILJE 2.2767 59.6433 5 20.4260
ODA 3.0430 57.0593 2 53.1470 VISUND 2.6177 61.4155 2 29.5835
OSEBERG 2.6905 60.5397 1 40.9210 VISUND SØR 2.3355 61.2720 1 8.4376
OSEBERG ØST 2.9582 60.5835 1 27.7075 VOLUND 2.0031 59.4488 1 15.6642
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II

Abstract

This paper studies the investment planning of a decarbonised Norwegian
continental shelf energy system considering the connection and interfaces with
the European energy system. A multi-horizon stochastic mixed-integer linear
programming model is developed for such a problem. We consider short-term
uncertainties, including wind and solar capacity factors, energy load, platform
production profiles, and hydro power production limits. Hydrogen based energy
hubs are considered both onshore and o�shore for potential renewable power
generation, distribution and storage. Future hydrogen market or demand is
not included in the model. The results of multi-period planning towards 2050
show that: (a) o�shore energy hubs are essentially wind power generation,
conversion and distribution hubs, (b) a combination of o�shore wind and power
from shore may be a cost-e�cient pathway for cutting emissions from the
Norwegian continental shelf, (c) a total of 1.6 GW o�shore wind may be needed
to achieve a near zero emission Norwegian continental shelf energy system,
80% of which may be added in the first investment period and (d) o�shore grid
design is important for decarbonisation by distributing wind power e�ciently;
all five o�shore platform clusters are connected to at least three other clusters
by 2040, and they are fully connected by 2050.

Keywords: Multi-horizon stochastic programming, Mixed-integer linear
programming, O�shore oil and gas decarbonisation, Investment planning under
uncertainty

II.1 Introduction

Norway sets to reduce greenhouse gas emissions by at least 50-55% by 2030 compared
to 1990 levels to contribute to the EU’s climate target, and the Paris Agreement
(Ministry of Climate and Environment, 2021). In 2020, o�shore oil and gas extraction
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in the Norwegian Continental Shelf (NCS) produced 13.2 Mt CO2 equivalent, which
made up 26.8% of the total Norwegian greenhouse gases emissions (Statistics Norway,
2021). The oil and gas industry has the highest emissions than any other industries
in Norway. Therefore, decarbonising o�shore oil and gas production is crucial to
meet Norway’s climate goal.

Energy provision of o�shore platforms was responsible for nearly 85% of the total
emissions in the NCS (The Norwegian Petroleum Directorate, 2021). Nowadays,
platform located gas turbines with low e�ciency provide the most energy. Thus,
replacing gas turbines with zero emission energy generation will cut o�shore emissions.
Power from shore is considered a feasible solution of clean energy provision due to the
near zero emission power generation in the onshore energy system (The Norwegian
Petroleum Directorate, 2020; Nguyen et al., 2016). O�shore wind is an alternative
that draws more attention (Korpås et al., 2012; Svendsen et al., 2011; Equinor,
2021). However, intermittent renewable energies cannot fulfil the security of supply
requirements of the platforms. Energy storage may be needed to fully replace gas
turbines. The space and weight limitations of platforms may make local energy
storage infeasible. An o�shore energy hub was proposed in Zhang et al. (2021) to
support e�cient wind power generation and distribution. In Zhang et al. (2021), a
deterministic Mixed-Integer Linear Programming (MILP) model was developed for
the investment planning towards a zero emission NCS energy system. However, there
are some limitations in the analysis in Zhang et al. (2021): (a) uncertainty is not
considered in the model, (b) the onshore energy system expansion is not considered
but analysed via sensitivity analysis, and (c) platforms are in isolated mode, and no
interconnection among platforms is considered.

In this paper, we extend the deterministic MILP model in Zhang et al. (2021),
including: (a) adding operational uncertainties in wind and solar capacity factors,
energy load, platform production profiles, and hydro power production profile, (b)
considering onshore power system expansion, (c) exploring di�erent network topology,
and (d) making multi-period investment planning towards 2050.

The outline of the paper is as follows: Section II.2 gives the background knowledge
of stochastic programming and energy hub modelling. Section II.3 introduces the
problem and modelling strategies. Section II.4 presents the multi-horizon stochastic
MILP model. Section II.5 presents the preliminary results. Section II.6 concludes
the paper and suggests further research.

II.2 Literature review

This paper uses stochastic programming to solve an investment planning problem for
a decarbonised NCS energy system. O�shore energy hubs is an o�shore investment
option in addition to o�shore wind, o�shore solar, subsea cables, battery and electric
boiler. In the following, we present background knowledge of stochastic programming
and energy hubs modelling.

II.2.1 Stochastic programming

Considering operational uncertainty while conducting long-term investment planning
is important for an energy system with higher penetration of renewable energies.
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Figure II.1: Illustration of scenario trees of multistage stochastic programming and
its multi-horizon counterpart (with operational uncertainty), adapted from Kaut
et al. (2014) and Skar et al. (2016).

The electricity system in regulated markets is the best developed area for the use of
stochastic programming in energy (Wallace & Fleten, 2003). Stochastic programming
is widely used in power system (Backe et al., 2022; Lara et al., 2019; Philpott et al.,
2016; Jin et al., 2011; van der Weijde & Hobbs, 2010), natural gas system (Fodstad
et al., 2016), o�shore oil and gas infrastructure planning (Gupta & Grossmann,
2014), hydrogen network (Galan et al., 2019), among others.

Using traditional stochastic programming in an investment planning problem may
result in a large scenario tree. A multi-horizon formulation was proposed in Kaut et al.
(2014) that reduces the problem sizes drastically. The scenario tree reduces in size by
embedding operational nodes into their respective strategic nodes, see Figure II.1 for
a comparison between traditional multi-stage stochastic programming scenario tree
and multi-horizon programming scenario tree. There are two conditions for applying
multi-horizon stochastic programming, (1) strategic uncertainty is independent of
the operational uncertainty, and (2) the last operational decision in a strategic node
has no impact on the first operational decision in the following strategic node (Kaut
et al., 2014). This approach is widely used in energy system planning, see Wu et al.
(2017); Turgut et al. (2021); Zhang et al. (2021); Backe et al. (2022). This paper uses
the multi-horizon approach to model a multi-period investment planning problem
with short-term uncertainties. We define the entire operational problem succeeding
an investment node as an operational node. There are some scenarios generated from
certain scenario generation routines for each operational node, and each scenario has
some operational periods. We do not consider multi-stage operational trees in the
operational node. Therefore, such a problem is a two-stage stochastic programming.
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Figure II.2: Illustration of an energy hub, adapted from Zhang et al. (2021).

II.2.2 Offshore energy hubs modelling

An energy hub is a physical connection point with energy storage where multiple
energy carriers can be converted, conditioned, and stored (Geidl et al., 2007).
Conversion means converting energy in one form to another, such as converting
electricity to hydrogen. Conditioning means to change the operating parameter of
energy carriers, e.g., change voltage of electricity. The energy can then store in
a storage unit of energy hubs. Energy hubs may have quite di�erent components
depending on their functions. We refer the reader to Mohammadi et al. (2017) for a
comprehensive review of applications and models of energy hubs. The previous work
using the energy hub concept mainly focus on the onshore energy system integration.
More specifically, sector coupling of electricity, natural gas and heat. In real life,
the energy hub concept is broadened, such as Danish Energy Agency (2021) and
North Sea Wind Power Hub Programme (2021) where the hubs can be simply a
wind power generation and distribution hub. The o�shore energy hubs are mainly
planned to use o�shore wind power as energy input and convert and distribute
wind power. However, as more o�shore wind is available (European Commission,
2020), o�shore energy hubs can also convert surplus wind power, for example, to
hydrogen for clean energy export or energy storage. We consider energy hubs both
in onshore and o�shore energy systems. This paper considers energy hubs with
converter, electrolysers, fuel cells, and hydrogen storage facilities. The hubs produce
green hydrogen from surplus wind power and store it. Furthermore, energy hubs can
be deployed both onshore and o�shore. An illustration of the energy hubs considered
in this paper is presented in Figure II.2.

II.3 Problem description and modelling strategies

This section first introduces the proposed NCS energy system planning problem.
Then we present the temporal and spatial representation of such a problem. Finally,
we give the modelling assumptions.

The problem aims to make optimal investment decisions for a set of o�shore and
onshore technologies. Although the focus is on the NCS energy system, including
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onshore system expansion is important. The onshore load still needs to be fulfilled
after part of the generation is distributed o�shore. The o�shore technologies include:
(a) platform located devices (electric boiler, battery), (b) o�shore renewables (o�shore
wind and o�shore solar), (c) o�shore energy hubs (converters, electrolysers, fuel
cells, and hydrogen storage facilities) and subsea cables (HVAC and HVDC). The
onshore technologies include: (a) 22 kinds of generators, (b) onshore energy hubs,
(c) energy storage (hydro pump storage and battery) and (d) overhead HVAC and
HVDC cables. The development of capital expenditures, fixed operational costs are
assumed to be known.

The problem is a cost minimisation problem, including investment and operational
costs aiming to determine: (a) the optimal capacities of technologies and (b) optimal
operational scheduling of generators, storage and approximate power flow among
regions under stochastic operational scenarios.

II.3.1 Temporal representation

The investment planning problem can span over a few decades, whereas the
operational problem is optimised with an hourly time horizon using representative
hours. Combining strategic and operational time horizons in the same model and
including short-term uncertainty can make the problem intractable. Therefore, we
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choose to make investment planning every Ÿ year in the strategic time horizon
instead of yearly.

In the operational time horizon, we choose S representative slices from the sample
space and scale them up to represent a whole operational year. We also assume
the operational status will not change between two successive investment nodes and
scale the expected operational cost up by Ÿ times to represent the total operational
costs of an operational node.

II.3.2 Spatial representation

We include detailed modelling of the NCS and keep a part of the information of the
European onshore system. The European countries are aggregated into representative
nodes and connected by representative transmission lines to keep such a problem
reasonable size. The platforms on the NCS are clustered and aggregated into some
representative platforms (Zhang et al., 2021). The resulted network topology is
presented in Figure II.3.

II.3.3 Modelling assumption

We assume a Ÿ years investment delay meaning that the investment made at one
investment node start a�ecting the system operation from the following investment
nodes onwards. For simplicity, we assume the pressure levels and temperatures to
take typical values on the North Sea, leading to a linear formulation. Kirchho�
voltage law is omitted, and the model is an energy flow model. We assume no
mass loss during production. We assume linear costs models for transnational
transmission lines and onshore technologies due to their large size and aggregated
representation. The linear costs model also applies for o�shore wind and solar
because of the potentially large size and the flexibility of their unit size. However,
step-wise cost models are assumed for o�shore energy hubs and transmission lines in
the NCS.

II.4 Mathematical model

II.4.1 Objective function

min f(x) + Ÿ

ÿ

iœI

”
I
i fiig(xi, ci) (II.1)

The objective function Equation (II.1) is to minimise the total investment (f(x))
and the expected operational (Ÿ

q
iœI

g(xi, ci)) costs over the planning horizon. The
expected operational cost g(xi, ci) is described in Section II.4.3, where xi and ci are
vectors containing capacities and costs information respectively.

II.4.2 Investment planning constraints

Equation (II.2a) calculates the expected total discounted capacity dependent
investment costs, fixed operating and maintenance costs and fixed capacity
independent investment costs. For each investment node, the investment costs
parameters are adjusted if the lifetimes of technologies exceed the remaining
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planning horizon to account for salvage value. We define x to be a vector collecting
available capacities of all technologies (P) and lines (L) for all operational nodes (I).
Constraints (II.2b) and (II.2c) represent that the available capacity of a technology
(xP Acc

pzi ) or a line (xLAcc
li ) at an operational node equals to its historical capacity

(XP Hist
pz or X

LHist
l ) and the sum of newly invested capacities (xP Inst

pzi or x
LInst
li ) in

its ancestor investment nodes (Ii) that are not retired. A binary variable “
P
pzi decides

whether technology p œ P, in location z œ Z is built investment period i œ I0. A
binary variable “

L
li indicates whether line l œ L is built in investment period i œ I0.

Constraint (II.2d) and (II.2e) restrict the maximum capacity that can be invested
in an investment node. Constraint (II.2d) and (II.2e) state the maximum installed
capacity in an operation node.
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II.4.3 Operational constraints

The operational cost function g(x, c), which is included in the objective function
Equation (II.1) for each operational node i, is described by Equation (II.3a) that
includes total operating costs of all devices and energy load shedding costs. Equation
(II.3a) calculates the expected operational costs over scenarios �. All variables
are indexed by operational node i and scenario Ê, and we omit them for ease of
notation. Vectors x and c contain capacities and costs information, respectively.
Constraints (II.3b) and (II.3c) ensure devices (yP

pzt) and transmission lines (yL
lt) are

within their capacities (xP Acc
pz , x

LAcc
l ). Constraint (II.3d) gives the energy balance

at each region, where y
G
gt, y

F
fzt and y

R
rzt are power generation of generators, fuel cells

and renewables respectively. Moreover, we define y
E
ezt to be the power that goes into
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electrolysers and l
S
szt, y

S+

szt and y
S≠

szt represent the storage level, input and output
energy of storage facilities. The energy demand Y

D
zt can be modelled corresponding

to the specific sector, such as o�shore platforms. The modelling of o�shore platforms
is described in details in Zhang et al. (2021). Constraint (II.3e) states the storage
balance of electricity storage facilities. Constraint (II.3g) states the storage balance
of hydrogen storage facilities. Constraint (II.3g) gives the hydrogen nodal balance of
o�shore energy hubs, where v

SHy≠

szt and v
SHy+

szt are the hydrogen output and input
of hydrogen storage facilities. Constraint (II.3h) restricts the total emissions. The
complete stochastic MILP problem consists of Equations (II.1)-(II.3).
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II.5 Results

We demonstrate the results of the multi-period investment planning and operational
problem given by Equations (II.1)-(II.3) towards 2050. The problem consists of
1,072,525 continuous variables, 186 binary variables and 12,843,006 constraints. We
implemented the model in Julia 1.7.1 using JuMP (Dunning et al., 2017) and solved
it with Gurobi 9.5.0 (Gurobi Optimization, LLC, 2021) on a computer cluster with
a 2x 3.6GHz 8 core Intel Xeon Gold 6244 CPU and 384 GB of RAM, running on
CentOS Linux 7.9.2009.
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Figure II.4: Investment of o�shore energy hubs.

Table II.1: Yearly emissions in each o�shore fields cluster (Zhang et al., 2021).

NOO1 NOO2 NOO3 NOO4 NOO5
Emission (Mt) 1.72 2.46 0.40 0.62 0.30

II.5.1 Case study

The case study is carried out on the European energy system with detailed modelling
of the NCS. After applying the aggregation strategy described in Section II.3.2, the
system is represented by 25 regions and 73 candidate transmission lines. In each
operational node, we generate three scenarios. In each scenario, we randomly select
one day with hourly resolution from four seasons and scale them up to represent a
whole operational year. Onshore system data, including costs, historical capacities
of technologies and time-series data, are collected and aggregated from Backe et al.
(2021). The costs and historical capacities of technologies are presented in II.A.
Platform production and hydrogen system data are included in Zhang et al. (2021).
The full model given by Equations (II.1)-(II.3) takes approximately 5.4 hours to
solve.

II.5.1.1 Offshore energy hubs

The invested capacities in o�shore energy hubs are shown in Figure II.4. From Table
II.1, we can see that o�shore regions NOO2 and NOO1 have the highest emissions
among platform clusters on the NCS. We only consider the emissions from the gas
turbines that are used for the energy provision of platforms. The model decides to
invest in approximately 800 MW and 300 MW o�shore wind around NOO2 and
NOO1, respectively. In addition, from Figure II.7, we can see that the investments in
cables connecting these two regions and cables for taking power from onshore node
NO5. Therefore, a combination of o�shore wind and power from shore is needed
for decarbonisation. Moreover, transmission is needed for compensating for the
wind variation in those regions. An extra 100 MW o�shore wind is added to region
NOO2 in 2025. In 2030, nearly no investments are made in the o�shore energy hubs.
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Figure II.5: Invested capacity of platform located technologies. No investment are
made in battery and gas turbine.

However, a cable connecting NO2 and NOO3 is invested in decarbonising NOO3. In
2035, o�shore wind is invested in the rest NCS nodes to cope with the emissions
target in 2040. From 2035 to 2040, we see a significant increase in cables connecting
the Norwegian o�shore regions. Each region are connected with an onshore system
and surrounded by o�shore wind farms in 2040. Because no hydrogen market or
demand is considered in the model, no investments are made in hydrogen-related
technologies. This suggests that a hydrogen system is costly if it is only used as
energy storage. Connecting the regions with cables is a cheaper alternative for
compensating renewable volatility.

II.5.1.2 Platform located technologies

Figure II.5 shows the investments in platform located devices. As gas turbines are
replaced by clean power, heat recovery of gas turbines are not enough to meet the
heat load of the separation process. Therefore, electric boilers are needed. The
major investments in electric boilers take place in 2030 in all NCS regions.

II.5.1.3 Emissions

The relative changes in emissions in the EU and the NCS are presented in Figure
II.6. The reference initial emissions in 2020 are 5.51 Mt/yr (Zhang et al., 2021)
and 1,100 Mt/yr (Skar et al., 2016) for the NCS and the Europe respectively. All
regions are governed by one emission constraint. EU emissions show the European
emissions reduction relative to the initial total European emissions. Furthermore,
NCS emissions show the emissions reduction of the NCS relative to initial NCS
emissions. We can see that the NCS relative emissions decrease faster than Europe
in 2025 and 2030. This result shows that almost half of the NCS emissions can be cut
by 2030, aligning with stated climate goals. However, after 2030 the relative emission
of Europe reduces faster than that of NCS. This may suggest that the first half of
the NCS emission is cheaper to cut than the first half of the EU emissions. However,
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Figure II.6: Emissions of the NCS and the European energy systems.

achieving zero emission in the NCS o�shore energy system is more expensive than
in the European onshore system in terms of costs per CO2 reduced. Because of that,
the model chooses to cut more emissions from the European onshore system to align
with the predefined emission target in the later planning horizon. We also notice
that the emissions target binds nearly all the time, and no extra emissions are cut.

II.5.1.4 NCS offshore grid connection

From Figure II.7, we can see a possible development of an NCS grid towards zero
emission. Until 2035, the o�shore platform clusters mainly operate in isolation except
for one connection between NOO1 and NOO2. However, starting from 2040, each
platform cluster is connected to at least three other clusters. This may suggest that
o�shore grid design is essential for decarbonising the system towards zero emission.
In 2050, the five platform clusters are fully connected. In addition, we notice that
NOO4 and NOO5 are also connected with other o�shore regions such as NEO and
WEO. We do not include analysis of those connections due to the scope of the paper.
Note that hydrogen storage is not seen in this case because no hydrogen load or
hydrogen market is included. The platform clusters may be less connected when
hydrogen storage is locally deployed to balance out the wind variation.

II.6 Summary and future work

This paper has presented a multi-horizon stochastic MILP model for the multi-
period investment planning of a decarbonised NCS energy system. Operational
uncertainties, including wind and solar capacity factors, oil and gas platforms
production, onshore power load and hydro power production limits, were considered.
Future hydrogen market or demand is not considered. We used the multi-horizon
approach to reduce the problem size. The main conclusions are: (a) o�shore energy
hubs are essentially wind power generation, conversion and distribution hubs, (b) a
combination of o�shore wind and power from shore may be a cost e�cient way for
the decarbonisation of the NCS energy system, and a total of 1.6 GW o�shore wind
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Figure II.7: The NCS gird design towards 2050.

may be deployed in the NCS for a near zero emission system, (c) o�shore grid design
is crucial for o�shore decarbonisation by distributing wind power e�ciently; 2040
may be a turning point that large-scale interconnections among platform clusters
become necessary and the platform clusters may be fully connected by 2050, and (d)
the emissions reduce faster in the NCS energy system than in the European power
system in the first planning stages but opposite in the later stages; by 2050, 94% and
97% emissions are cut in the NCS energy system and the European power system
compared with their emissions in 2020.

Although the current model with short-term uncertainty can help make investment
decisions that can better cope with short-term system variation, long-term uncertainty
a�ects investment planning. Therefore, in future studies, we aim to consider long-
term uncertainty such as CO2 tax and CO2 budget. Additionally, we noticed the large
computational burden when solving the planning problem using a commercial solver.
Including long-term uncertainty will make such a problem essentially a multi-stage
stochastic MILP that can be intractable. Therefore, applying decomposition schemes
may be necessary to solve such planning models incorporating both long-term and
short-term uncertainty.
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Historical capacities and costs of technologies

Appendix II.A Historical capacities and costs of technologies

Table II.2: CapEx, VarOM and FixOM of technologies (Backe et al., 2021).

Technology CapEx
(MEUR/GW, MEUR/GW/km for transmission lines)

VarOM
(Ä/MWh)

FixOM
(Ä/MW)

2020 2025 2030 2035 2040 2045
Lignite 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 3.00

5% of CapEx

Lignite CCS adv 2600.00 2600.00 2530.00 2470.00 2400.00 2330.00 3.28
Lignite CCS sup 3799.23 3799.23 3799.23 3799.23 3799.23 3799.23 1.18
Coal 1600.00 1600.00 1600.00 1600.00 1600.00 1600.00 2.40
Coal CCS adv 2500.00 2500.00 2430.00 2370.00 2300.00 2230.00 2.46
Coal CCS 3550.00 3550.00 3350.00 3350.00 3250.00 3250.00 7.30
Gas OCGT 400.00 400.00 400.00 400.00 400.00 400.00 2.31
Gas CCGT 720.00 720.00 690.00 690.00 660.00 660.00 2.31
Gas CCS adv 1350.00 1350.00 1330.00 1310.00 1290.00 1270.00 1.85
Gas CCS 1750.00 1750.00 1625.00 1625.00 1500.00 1500.00 2.90
Oil 320.00 320.00 320.00 320.00 320.00 320.00 2.76
Bio 10 cofiring 1600.00 1600.00 1600.00 1600.00 1600.00 1600.00 0.48
Bio 10 cofiring CCS 2600.00 2600.00 2530.00 2470.00 2400.00 2330.00 3.28
Nuclear 6000.00 6000.00 6000.00 6000.00 6000.00 6000.00 7.50
Wave 6100.00 6100.00 3100.00 3100.00 2025.00 2025.00 0.10
Geo 4970.00 4970.00 4586.00 4586.00 3749.00 3749.00 0.32
Hydro regulated 3000.00 3000.00 3000.00 3000.00 3000.00 3000.00 0.32
Hydro run-of-the-river 2450.00 2450.00 2400.00 2400.00 2350.00 2350.00 0.00
Bio 2000.00 2000.00 1800.00 1800.00 1700.00 1700.00 3.56
Wind onshore 1295.00 1295.00 1161.00 1161.00 1010.00 1010.00 0.18
Solar 710.00 710.00 663.00 663.00 519.00 519.00 0.00
Waste 2030.00 2030.00 2013.00 2013.00 2005.00 2005.00 0.82
HVAC 0.66 0.66 0.60 0.60 0.60 0.60 0.00
HVDC 2.77 2.77 2.16 2.16 1.55 1.55 0.00

Table II.3: Fuel costs of technologies (Backe et al., 2021).

Technology Fuel cost
(Ä/MWh)

2025 2030 2035 2040 2045 2050
Lignite 5.04 5.04 5.40 5.40 5.40 5.40
Lignite CCS adv 5.04 5.04 5.40 5.40 5.40 5.40
Lignite CCS sup 5.04 5.04 5.40 5.40 5.40 5.40
Coal 8.59 10.26 12.31 13.04 13.59 14.08
Coal CCS adv 8.59 10.26 12.31 13.04 13.59 14.08
Coal CCS 8.59 10.26 12.31 13.04 13.59 14.08
Gas OCGT 28.96 31.34 34.08 36.40 37.62 38.39
Gas CCGT 28.96 31.34 34.08 36.40 37.62 38.39
Gas CCS adv 28.96 31.34 34.08 36.40 37.62 38.39
Gas CCS 28.96 31.34 34.08 36.40 37.62 38.39
Oil 45.00 51.12 56.16 58.68 62.28 63.72
Bio 10 cofiring 10.69 12.49 14.67 15.68 16.57 17.44
Bio 10 cofiring CCS 10.69 12.49 14.67 15.68 16.57 17.44
Nuclear 3.75 3.82 3.90 3.97 4.05 4.14
Bio 29.62 32.58 35.84 39.43 43.37 47.70
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Table II.4: Aggregated historical capacities of technologies (Backe et al., 2021).

Technology Historical capacity
(MW)

NO1 NO2 NO3 NO4 NO5 NE EE WE UK
Lignite 0.00 0.00 0.00 0.00 0.00 1229.00 61317.00 1124.00 228.00
Coal 0.00 0.00 0.00 0.00 0.00 7772.00 5554.00 27126.00 11715.00
Gas OCGT 35.23 89.43 4.65 48.78 56.91 3239.50 27383.50 61355.00 17195.50
Gas CCGT 35.23 89.43 4.65 48.78 56.91 3239.50 27383.50 61355.00 17195.50
Oil 0.00 0.00 0.00 0.00 0.00 7298.00 6165.00 15693.00 1798.00
Nuclear 0.00 0.00 0.00 0.00 0.00 11399.00 21341.00 79985.00 916.00
Wave 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.00 0.00
Geo 0.00 0.00 0.00 0.00 0.00 0.00 43.00 962.00 0.00
Hydro regulated 33.50 8377.50 387.75 4569.30 533.85 1663.00 17995.00 2516.00 86.00
Hydro run-of-the-river 754.13 1914.33 87.15 144.18 1218.21 4848.00 1877.00 42898.00 121.00
Bio 7.80 19.80 9.00 1.80 12.60 7531.00 11629.00 8842.00 2524.00
Wind onshore 227.37 577.17 262.35 314.82 367.29 14592.00 67628.00 59983.00 16684.00
Solar 5.85 14.85 6.75 8.10 9.45 1617.00 53534.00 43228.00 13322.00
Waste 0.00 0.00 0.00 0.00 0.00 966.00 1996.00 349.00 85.00

Table II.5: Aggregated historical capacities of transmission lines (Backe et al., 2021).

From To Historical capacity
(MW)

NO2 NE 1640.00
NO2 UK 1400.00
NO2 NO1 2000.00
NO3 NO1 100.00
NO4 NO3 350.00
NO5 NO1 1600.00
NO5 NO2 300.00
NO5 NO3 160.00
NE EE 2450.00
NE NO1 1200.00
NE NO3 650.00
NE NO4 600.00
EE WE 12513.00
WE UK 3000.00
UK NE 1400.00
NEO NE 1120.00
EEO EE 7166.00
WEO1 WE 357.00
WEO2 WE 3739.30
UKO1 UK 1218.00
UKO2 UK 93.20
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Abstract

Hydrogen and carbon capture and storage are pivotal to decarbonise the
European energy system in a broad range of pathway scenarios. Yet, their
timely uptake in di�erent sectors and distribution across countries are a�ected
by supply options of renewable and fossil energy sources. Here, we analyse
the decarbonisation of the European energy system towards 2060, covering
the power, heat, and industry sectors, and the change in use of hydrogen
and carbon capture and storage in these sectors upon Europe’s decoupling
from Russian gas. The results indicate that the use of gas is significantly
reduced in the power sector, instead being replaced by coal with carbon
capture and storage, and with a further expansion of renewable generators.
Coal coupled with carbon capture and storage is also used in the steel sector
as an intermediary step when Russian gas is neglected, before being fully
decarbonised with hydrogen. Hydrogen production mostly relies on natural gas
with carbon capture and storage until natural gas is scarce and costly at which
time green hydrogen production increases sharply. The disruption of Russian
gas imports has significant consequences on the decarbonisation pathways for
Europe, with local energy sources and carbon capture and storage becoming
even more important.

Keywords: Stochastic programming, Energy transition, Carbon capture
and storage, Hydrogen, Energy crisis

VI.1 Introduction

In the wake of the disruption of Russian gas supply to Europe, European Union
(EU) policymakers are reshaping incentives and measures to reduce dependency on
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Russian fossil fuels and maintain the pace of emission reduction and decarbonisation
e�orts (European Commission, 2023b). Sector-specific and cross-sectorial plans are
being rolled out to adapt implementation plans for decarbonisation and electrification,
promote necessary technology developments, and ensure the economic viability of
transition with a sharpened competition for clean energy. Recently, the EU launched
the Net-Zero Industry Act (European Commission, 2023a) as a part of the Green
Deal Industrial Plan, promoting regulatory conditions that facilitate faster scale up
of technologies that are crucial for sectors that must reach net-zero by 2050, such as
wind and solar, renewable hydrogen and CO2 storage.

The disrupted Russian gas supplies and geopolitical instabilities increase energy
scarcity in the European energy market and reinforce the price pressure and volatility
for both fossil and renewable energy. Competition for clean energy increases, while
limitations in the availability of rare and vital metals together with supply constraints
create delays and cost challenges for several large-scale renewable energy projects.
The prevailing energy crisis and rapidly evolving energy landscape in Europe present
ambiguous energy transition trajectories, especially with sustained removal (Pedersen
et al., 2022) of Russian gas supplies. A large share of hydrogen is a recurring
scenario,, e.g., Seck et al. (2022), yet to the best of our knowledge little studied
upon disruption of Russian gas supply. Several European countries have reoriented
to LNG imports, while the ambitions for penetration of hydrogen as a clean fuel
are maintained (European Commission, 2023b). Current estimations for future
hydrogen consumption appear to be at odds with emerging data (van Rossum et al.,
2022). The impact of limited energy supplies on prioritisation of and strategies
for remaining possible decarbonisation options should thus be lifted. Pedersen
et al. (2022) addressed this topic, focusing particularly on cross-sector distribution of
capacities and use of renewable energy across sectors to adhere with the 1.5°C climate
target. They showed that the 1.5°C target can be maintained without Russian gas
supplies, while a 2°C target is greater a�ected. Mannhardt et al. (2023) explored
the e�ects of collective demand reduction across sectors as a response to disrupted
Russian gas supply, with the objective of reducing energy consumption. Klaaßen &
Ste�en (2023) used a meta-analytical approach to explore shifts in needed power
and transport investments to maintain climate targets as a consequence of Russian
gas removal in EU.

This paper broadens the impact analysis of persistent removal of Russian gas
supply, focusing particularly on the uptake hydrogen and Carbon Capture and
Storage (CCS) in the power, heat and industry sectors. To this end, endogenous
hydrogen demand modelling in energy system modes is needed to achieve more
accurate projections. Such an integration has so far been overlooked in the scholarly
discourse. The open-source power-system model EMPIRE model (Backe et al.,
2022) is applied and its scope is extended by enhancing its analytical capability to
scrutinise the role of natural gas and hydrogen in the prospective European energy
infrastructure. Originally designed for long-term European power system expansion
planning, the EMPIRE model has since been augmented to encapsulate CCS (Turgut
et al., 2021), domestic heating systems (Backe et al., 2022) and hydrogen production
(Durakovic et al., 2023b,a). Using EMPIRE, our focus rests on the modelling
of hydrogen production technologies, which include electrolyser and natural gas
reforming processes both with and without CCS, while considering scarcity of both
electricity and natural gas. Furthermore, we evaluate energy consumption and the
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feedstock requirements of major industry sectors, such as cement, steel, ammonia,
and refinery. The modelling approach for the power and heat sectors is informed
by Backe et al. (2022), while the energy consumption figures for the transport
sector are derived from external references. Our methodological approach seeks
to illuminate the fuel and feedstock switch from natural gas to hydrogen within
the future European energy system. To maintain the tractability of the model,
we employ linear programming while retaining existing features of the EMPIRE
model, including the handling of short-term uncertainty and multi-period investment
planning.

The main contributions in this paper include: (1) the incorporation of endogenous
hydrogen demand within a large-scale, long-term energy system investment model,
(2) detailed modelling of the energy consumption and feedstock demand in key
industry sectors, and (3) a comprehensive analysis of the influence of natural gas
price and availability on hydrogen production, and the subsequent decarbonisation
implications for the power, heat, and industry sectors in Europe.

The structure of the paper is as follows: Section VI.2 furnishes background
information concerning the industry sector’s role in energy systems, the prospective
impact of hydrogen, and the use of CCS. Section VI.3 elucidates the adopted method-
ology and data sources. Section VI.4 presents and interprets our computational
results. Finally, Section VI.5 provides concluding thoughts and directions for future
research.

VI.2 Literature review

In the following, we present a brief overview of relevant literature on the energy
consumption and decarbonisation of the industry sectors and its representation in
energy system planning models, demand side flexibility in industry sectors, and the
potential role of CCS and hydrogen in the industry sector.

VI.2.1 The industry sector in the energy system

In 2021, the industry sector accounted for 25.6% of the final energy consumption
in the EU (European Environment Agency, 2023). It was the third largest energy
consumer among all sectors. Also, the industry sector accounted for 22% total
emissions in the EU with 757 million tonnes CO2. Therefore, it is important to
decarbonise this sector. An optimisation model for the simulation and operational
optimisation of the industry sector with a high level of detail was developed (Wiese
& Baldini, 2018). This bottom-up model was demonstrated in the Danish energy
system. The pathway of the energy transition is simulated but not optimised.
Although these models include su�cient operational details, the optimal investment
for the transition in the industry sector was not investigated. In this paper, we
aim to fill this gap by including the investment planning of the industry sector
in a long-term stochastic energy system planning model. We focus on modelling
the energy consumption of the industry sector, including cement, steel, ammonia
and refinery. These are the major energy consumers in the industry sector. In the
following, we present the background knowledge on modelling production processes
in these sectors.
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Cement production usually consists of raw materials handling, pyroprocessing,
milling and bagging (European Environment Agency, 2019). The CO2 emits during
the pyroprocessing phase, where the raw materials mix needs to be heated up to
produce clinker. The detailed cement production processes were provided by Alsop
(2019). Traditionally, the fuel used to generate heat is natural gas. Di�erent CCS
technologies in the cement industry were reviewed (Hills et al., 2016). The use of
hydrogen in cement production is a relatively new area of study and represents
an interesting pathway for decarbonising the cement industry. A techno-economic
assessment of using by-product oxygen from water electrolysis in hydrogen production
for CCS in clinker production demonstrates potential cost advantages and highlights
considerations around supply reliability and transport distance (Nhuchhen et al.,
2022). The papers included detailed cement production processes but were limited
to the cement industry only. In this paper, we consider both hydrogen fuel switch
and CCS, and include the decarbonisation of the cement industry in a large energy
system planning problem.

The steel production process involves the extraction of iron from its ore,
purification, and conversion into steel, typically through the blast furnace-basic
oxygen furnace method or the electric arc furnace method. Steel-making and
continuous casting is usually the bottleneck in iron and steel production. An integer
programming model was developed to optimise this process by Tang et al. (2002).
A techno-economic model was developed for evaluating four alternative primary
steelmaking routes (Fischedick et al., 2014). The authors investigated the economic
and technical viability of innovative primary steel production methods in Germany
until 2100 by comparing three new ore-based steelmaking routes to the traditional
blast furnace method. The study showed that with rising prices for coal and CO2

allowances, blast furnace-based routes might become unprofitable, making hydrogen
direct reduction and iron ore electrolysis economically attractive due to higher
energy and raw material e�ciency together with the potential to meet 80% reduction
targets. However, high investment costs and electricity price dependency could
hinder profitable implementation without further subsidies before 2030–2040.

Traditionally, natural gas is used as a feedstock for ammonia production plants
to produce hydrogen locally via steam reforming and then produce ammonia
from hydrogen (Egenhofer et al., 2014). Optimisation models for the production
optimisation of chemicals can be hard to solve due to the inclusion of complex
constraints. A trust region filter method for the black-box optimisation problem
was proposed and was applied to solve an ammonia synthesis problem (Eason &
Biegler, 2016). Here, due to the problem size and research focus, we simplified the
modelling of ammonia production. In addition, we consider ammonia production
from the purchased hydrogen from a hydrogen system.

Hydrogen is used to reduce the sulfur content of diesel fuel in the refinery industry.
Traditionally, hydrogen is produced on-site with some emissions. A single objective
optimisation model is proposed to maximise hydrogen production in an oil refinery at
steady state condition (Sarkarzadeh et al., 2019). The study showed that the main
advantages of the optimised process were the higher hydrogen production at lower
steam capacity in the plant and higher hydrogen production in reforming and shifting
reactors. A linear programming model was developed to optimise the hydrogen
distribution network for the refinery industry, and an e�cient network design has
been achieved with a 30% reduction in hydrogen utility usage (Fonseca et al., 2008).
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Most of the literature considered the optimisation of hydrogen production on-site,
and the emissions from producing hydrogen were not su�ciently addressed. In
this paper, we combine the refinery sector with other industry sectors and consider
acquiring hydrogen from the system for the refinery processes.

The energy consumption of the industrial sector is a large share of the total
energy consumption. However, in most of the existing energy system investment
planning models, the industry is modelled simplistically. In Backe et al. (2022), the
energy consumption is only modelled exogenously, and the energy transition in such
a sector is not su�ciently modelled. In this paper, we aim to fill this research gap
by including su�ciently detailed operational modelling of the industry sectors in a
long-term energy system planning model and analyse the energy transition in the
industry sector.

Due to the higher penetration of uncontrollable renewable energies, demand-side
management has become an increasingly interesting and important topic. It is
important to harness renewable energies better. There is a potential in the industry
sector to shift their production activities according to energy availability. Zhang &
Grossmann (2016) pointed out that the active management of electricity demand by
power-intensive process industries is an important part of demand side management.
A comprehensive review of the existing works on enterprise-wide optimisation for
industrial demand side management was presented. As a major energy consumer,
demand-side management in steel plants can help stabilise the power grid (Castro
et al., 2020). The authors developed a new mixed integer linear programming model
to optimise electric arc furnace operations in steel plants, showing that despite low
electricity prices, high-power modes are largely avoided due to their less energy-
e�cient nature and higher electrode consumption, emphasising the importance of
electrode replacement in reducing overall costs. In this paper, we include industrial
demand-side flexibility, which can be a significant source of flexibility (Gils, 2014),
by allowing each industry sector to shift their production by some percentage of
their capacities.

VI.2.2 Hydrogen in energy systems

From the literature above, we can see that hydrogen can be used in multiple industry
sectors, and in this paper, we systematically model the potential hydrogen demand
in industry. In addition to providing fuel and feedstock for industrial production
processes, hydrogen as a clean energy carrier can be used in other sectors, such
as power and heat and can be important for the energy transition in general. We
provide some literature on hydrogen in the energy transition in the following.

Cloete et. al (Cloete et al., 2022) investigated the potential trade channels for
energy exporters in a low-carbon future using a new model. They found that natural
gas imports with CO2 capture is the least costly solution. However, exporting
blue hydrogen or steel produced via hydrogen reduces CO2 handling and is a viable
diversification strategy for fossil fuel exporters like Norway, despite moderately higher
costs. Moreno-Benito et al. (2017) extended the SHIPMod optimisation framework
to develop a sustainable hydrogen infrastructure for the UK’s transition towards a
low-carbon transport system. The extended model includes economies of scale, road
and pipeline transportation, and CCS technologies. The authors found that the most
cost-e�ective hydrogen production method that maintains low carbon emissions is
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natural gas reforming with CCS. Bødal et al. (2020) proposed a cost-minimising
model to optimise investments in electricity and hydrogen infrastructure under
various low-carbon scenarios. They found that in Texas, by 2050, hydrogen produced
from both electricity and natural gas is cost-e�ective for emissions reduction, o�ering
system flexibility and enabling high renewable energy shares with less battery
storage. However, the results showed that the shift from electrolysis to steam
methane reforming for hydrogen production depends on carbon pricing and hydrogen
demand. A mixed-integer linear programming model was proposed to use o�shore
energy hubs to produce and store green hydrogen o�shore for the decarbonisation
of the Norwegian continental shelf (Zhang et al., 2022b) and the European energy
system (Zhang et al., 2022a). The REORIENT model was proposed to integrate
investment, retrofit and abandonment planning in a single stochastic mixed-integer
linear programming for the long-term planning of the European energy system (Zhang
et al., 2023). The results showed that the REORIENT model could yield 24% lower
investment cost in the North Sea region than the traditional investment-planning-only
model.

Only a few published studies have explored the integrated natural gas, CCS and
hydrogen value chains in multi energy system models. Sunny et al. (2020) developed a
H2–CCS value-chain modelling framework as a resource task network, incorporating
the specification of exogenous demand that can be satisfied using hydrogen and other
alternatives. Hydrogen and CCS infrastructure was optimised, yet few details on the
demand side, particularly the industry sector, were included, and the power sector
was omitted in the model. Reigstad et al. (2022) analysed future hydrogen demand
and infrastructure for hydrogen production, transport and storage with a specific
focus on Germany, the UK, the Netherlands, Switzerland and Norway. The analysis
also included the use of hydrogen and its combination with CCS for decarbonisation
of both industry and transport, still with exogenous demand. The studies of Pedersen
et al. (2022) and Victoria et al. (2022) applied the PyPSA-Eur-Sec model including
options to invest in hydrogen production using steam methane reforming with
or without CCS and electrolysis. Options for autothermal reforming with CCS,
constituting improved e�ciency and reduced CO2 emissions were not included in the
model. Resorting to a deterministic approach, stochasticity in renewable generation
was omitted in the model and a 3 hour time resolution was used, thereby limiting
the impact of variability in renewable generation in their analysis. Seck et al. (2022)
analysed the potential of low-carbon and renewable hydrogen in decarbonising
the European energy system according to the set EU targets, using a three-level,
deterministic modelling approach with a detailed European TIMES-type model
(MIRET-EU), an aggregated model for the European energy system, and a dedicated
model for assessing hydrogen import options for Europe (HyPE). An emerging
feature of this approach was the ability of endogenous cost reductions based on
technology deployment in the model.

A comparison of this paper with relevant literature is presented in Table VI.1.
In addition, for a more detailed literature review on hydrogen in energy systems, we

1
This column marks the papers that include the development of the CCS transport chain, as

well as the sequestration of CO2.
2
The natural gas column designates those papers that model the natural gas reserves and the

production from these, or import from LNG terminals, along with transport through the natural

gas pipeline network.
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Table VI.1: Comparison of this paper with relevant literature.
Ref. Optimisation Multi-period Stochastic Power Heat Industry Hydrogen CCS1 Natural gas2

Seck et al. (2022) X X X X X X X
Sunny et al. (2020) X X X X X X
Pedersen et al. (2022) X X X X X X X
Backe et al. (2022) X X X X X
Zhang et al. (2022a) X X X X X X
Bødal et al. (2020) X X X
Fischedick et al. (2014) X (only steel) X
Nhuchhen et al. (2022) X (only cement) X
Fonseca et al. (2008) X X (only refinery) X
This paper X X X X X X X X X

refer the readers to Agnolucci & McDowall (2013), who reviewed hydrogen literature
across di�erent spatial scales, and Li et al. (2019), who reviewed optimisation
literature on hydrogen supply chains.

VI.3 Methodology and data

EMPIRE (Skar et al., 2016; Backe et al., 2022) is used in this paper, formulated as a
multi-horizon (Kaut et al., 2014) stochastic (Birge & Louveaux, 2011) mathematical
problem. EMPIRE minimises the investment and operational costs for power
production, transmission, and storage. While EMPIRE was originally a power
sector model, it has since been expanded considerably with an explicit model for
the domestic heating demand (Backe et al., 2023), and also the production of green
(Durakovic et al., 2023b) and blue (Durakovic et al., 2023a) hydrogen to meet an
exogenous demand. In this work, EMPIRE has been expanded to include the option
to develop a CCS chain, and it now includes the industry sector together with the
hydrogen sector. With this change, hydrogen demand is no longer an exogenous
input, as hydrogen is one of several energy carriers and industrial feedstocks that
the model can choose. Also, the availability of natural gas is modelled explicitly
with available resources, LNG terminals, and pipeline capacities. An introduction to
how EMPIRE is generally set up is given in Section VI.B.

The two temporal scales in the multi-horizon framework are the long-term
strategic periods, and the short-term operational hours. The strategic periods are
each five years long, and EMPIRE can invest in new capacity for all assets at the start
of each strategic period. The operational hours are linked to each strategic period,
featuring hourly dispatch of the assets to meet the demand of each commodity,
such as, e.g., power. EMPIRE represents each of the meteorological seasons with
one representative week of hourly operations each, as well as two days of peak
power demand. This temporal resolution is to validate the investments made in
the strategic period, and the operational costs for these representative weeks and
peak days are scaled up to represent the operational cost for one representative year.
EMPIRE features uncertainty in its operations, where each operational scenario
consists of such a representative year. There are three such operational scenarios in
this work, where the uncertain parameters include renewable power generation and
electric power demand.

EMPIRE features 52 nodes to represent the European energy system. 30 nodes
are for countries in Europe, in addition to 5 nodes for the five power price zones in
Norway. There are also 14 o�shore wind farm nodes, and one o�shore energy hub
node as in Durakovic et al. (2023b). The remaining two nodes are the Sleipner and

193



VI. Decarbonising the European energy system in the absence of Russian gas: Hydrogen
uptake and carbon capture developments in the power, heat and industry sectors

Draupner o�shore platforms, which are used to transport natural gas in the North
Sea. The industries included in EMPIRE include the steel, cement, ammonia and
oil refining industries, all of which have the potential for large-scale use of hydrogen
in the future.

EMPIRE features a cap on annual CO2 emissions, in line with the targets set by
the European Commission (2018). Whereas the European Commission separates
the CO2 emissions from the power and industry sectors, in EMPIRE, these separate
caps are added into one shared cap for all sectors, giving the model the freedom to
trade emissions across sectors if necessary.

Previously, natural gas was assumed to be abundant, and following the price as
reported by the European Commission (2016). This has changed in this work in
order to reflect the lack of Russian natural gas in the energy system. Instead, the
production and transmission of natural gas are now modelled explicitly in EMPIRE,
where production can occur in Russia, North Africa or in the North Sea. No new
pipeline capacity or Liquid Natural Gas (LNG) import capacity can be built, where
the existing pipeline capacity is taken from ENTSO-G as implemented by Egging-
Bratseth et al. (2021), and the LNG capacity of each country is as reported by Gas
Infrastructure Europe (2022). All reserves estimates are taken from bp (2021),
except for the Norwegian reserves, which are allocated to the three south-western
price zones based on geographic location as reported by Norwegian Petroleum
(2023). Furthermore, in the cases where Russian gas is included, it is assumed that
there is an unlimited supply from Russia, and the only limiting factor is the pipeline
capacity. Similarly, LNG supply is also assumed to be inexhaustible, and is only
limited by the import capacity. The production capacity of Norway is split into
the three power price zones, where the production capacity of the price zone is the
capacity of Kårstø (Equinor, 2023) in NO2, of Nyhamna (Gassco, 2023) in NO3, and
of Kollsnes (Equinor, 2023) in NO5. The natural gas production capacity of the UK
was taken from the Energy Information Administration (2022). The natural gas
coming from North Africa is assumed to be constrained by the pipeline capacities
into Spain and Italy, and so these are the limits for this source. To represent the
flexibility in the North Sea pipeline network, the two hub platforms Sleipner and
Draupner are also represented, thereby representing the North Sea gas pipeline
network similarly to Kazda et al. (2020). These are initially powered by on-site
gas turbines, and have the option of electrification from mainland Norway. Some
countries also have long-term natural gas storage, with the total capacity for this
taken from the European Commission (2022a).

Cost of producing natural gas is assumed to be the same in the North Sea, Russia
and North Africa, and every country is assumed to pay the same price for LNG.
These prices are uncertain, and so two cases a constructed, where the natural gas is
more costly in one case. In the a�ordable case, natural gas production is assumed
to cost 10 EUR/MWh, and in the costly case, this cost is doubled to 20 EUR/MWh.
The LNG prices are summarised in Table VI.2.

The CCS chain is modelled such that CO2 can be captured from certain power
generators fuelled by coal or natural gas, from hydrogen production with natural
gas reforming and from certain industry plants, when applied in the steel and
cement sectors. CO2 can be transported internationally using pipelines, and can
only be permanently sequestered in the North Sea. Table VI.3 shows which nodes
can sequester CO2 in this work, and the corresponding maximum capacity for
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Year A�ordable LNG Costly LNG
2020 20.86 50.98
2025 22.57 55.15
2030 24.55 59.98
2035 26.22 64.06
2040 27.10 66.22
2045 27.66 67.57
2050 28.08 68.62
2055 28.08 68.62

Table VI.2: Price for LNG in a�ordable and costly case

Node CO2 sequestration Referencecapacity [Gt]
NO2 29.5 Halland et al. (2022)
NO3 30.7 Halland et al. (2022)
NO5 0.2 Halland et al. (2022)
Denmark 0.3 Turgut et al. (2021)
The Netherlands 4.0 Turgut et al. (2021)
Great Britain 78.0 Turgut et al. (2021)

Table VI.3: Maximum capacity for o�shore CO2 sequestration in the North Sea.

sequestration.
The industry is represented by the steel, cement, ammonia and oil refining

industries. The yearly output of steel is taken from the European Parliamentary
Research Service (2021), where the future growth is assumed to follow the growth
trajectory as reported by the International Energy Agency (2020). The initial
capacity of each country is taken from EUROFER (2019). It is assumed that the
total scrap use cannot exceed 45% of the total annual crude steel demand, which is
roughly the average share of electric arc furnace production in Europe from 2012 to
2021 (EUROFER, 2022).

Ammonia demand is taken from Egenhofer et al. (2014). For the initial capacity,
it is assumed that this demand is met as if all of it were produced by ammonia
plants with local Steam Methane Reforming (SMR) without CCS, and that the
capacities of these initial plants are as if they meet the yearly demand by producing
at maximum capacity all year. The alternative way to produce ammonia in this
model is to have an ammonia plant that receives hydrogen from the hydrogen market
rather than producing it locally.

Cement is another sector that can potentially benefit from hydrogen and CCS,
especially the latter as the decomposition of limestone to calcium oxide in clinker
production emits roughly 0.78 tons of CO2 per ton of clinker produced. These
emissions also occur even if the fuel in the kiln is completely emissions free. In
this model, the yearly demand for cement is taken from the US Geological Survey
(2021), where the clinker to cement ratio is assumed to be improved as described
by the International Energy Agency (2018). The present capacity is assumed to
be such that the yearly demand is met by the initial capacity is run at maximum
capacity all year long.
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Refineries consume significant amounts of hydrogen and are included here as an
industrial sector. McKinsey Energy Insights (2022) gives the refinery production
capacities of each European country, which is used to meet the demand for refined
oil. This demand is falling as Europe is decarbonising, and the yearly demand for
refined oil is decreased based on the decrease of refinery runs in as reported by
the International Energy Agency (2021).

The transport sector is modelled in a simplified way such that the annual energy
demand for each energy carrier, as reported by the European Commission (2020),
is met. The transport sector is thus an exogenous demand, and the model makes no
decisions about the technologies that are used.

The full code and all data is available as open access on the public project Github
page (Durakovic, 2023).

VI.4 Results and analysis

This section includes the results and analysis of these. Four cases are considered,
featuring the di�erent permutations of a�ordable and costly natural gas, and with
and without Russian natural gas. Section VI.4.1 focuses on the temporal development
of the power and domestic heat sectors, Section VI.4.2 analyses how the development
of hydrogen production changes between the di�erent cases, Section VI.4.3 shows
the changes in industrial production for the cement and steel industries, and finally,
Section VI.4.4 shows the utilisation of CCS.

VI.4.1 Power & domestic heat sectors

The European power demand is predicted to increase considerably in conjunction
with tightening CO2 emission caps. Figure VI.1 shows the development of the
European power generation capacity, subject to these two developments.

The four cases shown in Figure VI.1 share some similarities. The first is that
there is a large growth in power generation capacity in Europe, by at least 130%
between 2020 and 2050. The second important observation is that this growth is
mainly underpinned by the renewable generators of solar and wind. Furthermore,
both onshore and o�shore wind play large roles in the power system in 2050, where
grounded o�shore wind accounts for most of the o�shore wind capacity, but floating
o�shore wind still has between 24.0 and 49.7 GW of capacity, depending on the
case. Renewable power generators are thus at the core of the European power
sector, with other dispatchable generators supplementing the renewables when there
is insu�cient renewable power generation to meet all demand. All four cases also
feature hydrogen-fuelled power generators, but these only play a minor role, where
the capacities total capacity for hydrogen-fuelled generators in 2050 is between 13.0
and 22.4 GW.

There are also some important di�erences between the cases in Figure VI.1. One
trend that can be observed is how the total power generation capacity grows as
access to natural gas is restricted, either through higher natural gas costs, or by
removing Russian gas. Comparing the most relaxed case in Figure VI.1a with the
most restrictive case in Figure VI.1d, it can be seen that the total power generation
capacity in 2050 grows from 2.4 TW to 2.7 TW, or by about 12.5%. It can also be
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(a) A�ordable, with Russian gas (b) Costly, with Russian gas

(c) A�ordable, without Russian gas (d) Costly, without Russian gas

Figure VI.1: Development of European power sector.

observed how the total installed generation capacities of the renewable generators
grow considerably as access to natural gas is restricted, with onshore solar and wind
having the largest increase.

Another important di�erence between the four cases is the role of natural gas in
the power sector. In Figures VI.1a and VI.1b natural gas power generators, both with
and without CCS, account for a significant share of the power generation capacity,
whereas in Figures VI.1c and VI.1d these capacities are strongly diminished. The
power system requires dispatchable power that gas-powered generators previously
o�ered, and in Figures VI.1c and VI.1d, this role is filled by coal-fired power plants
with CCS. Furthermore, as previously discussed, renewables account for a larger
share of the power generation capacity.

Figure VI.2 shows the development of the European domestic heat sector in the
four cases. Overall, the development is very similar in all cases. It can be observed
how the domestic heat sector tends towards larger centralised Combined Heat and
Power (CHP) and district heat systems. The decentralised gas-based systems are
simultaneously phased out. There is also a pivot towards individual air-source heat
pumps, as opposed to boilers for individual households. Note that the capacity
shown for heat pumps in Figure VI.2 is the electric capacity of the heat pump, as
the coe�cient of performance is stochastic, depending on the outside temperature in
each country. The coe�cients of performance are between 1.83 and 3.33. The heat
output of the heat pump systems is thus higher than suggested by Figure VI.2.

Inspecting the di�erences between the cases, it can be seen how when access
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(a) A�ordable, with Russian gas (b) Costly, with Russian gas

(c) A�ordable, without Russian gas (d) Costly, without Russian gas

Figure VI.2: Development of European domestic heat sector.

to Russian gas is removed, then there is a larger reliance on bioenergy-based CHP
plants, where the capacity in 2050 increases by at least 18% compared to the
respective case with Russian gas. The expanded use of heat pumps is in line with
the results presented by Pedersen et al. (2022), but the use of hydrogen in the
heat sector is not. In their results, hydrogen is not used in the heating sector at all,
while electricity-based heat, from both heat pumps and resistive heating, is used
extensively. One reason for this di�erence may be that their model is deterministic,
thereby potentially overestimating the availability of renewable electricity. Taking
the uncertainty of renewable generation into account has been shown to favour
dispatchable generators (Seljom & Tomasgard, 2015).

In short, Figures VI.1 and VI.2 show how energy production for both power
and heat rely more on energy sources within the EU, in terms of renewable energy
generation, bioenergy, and to some extent, coal. This comes at the expense of gas
use, which was previously in large part sourced from Russia.

VI.4.2 Hydrogen production

Hydrogen is an important energy carrier in a decarbonised energy system, where it
can be used to decarbonise power and heat supply, as well as energy and feedstock
supply in industry. Hydrogen is also used in the exogenous energy demand in
transport, which has to be met in this model. Figure VI.3 shows the development of
hydrogen production, as it is decarbonised along with the rest of the energy system,
including the locally produced hydrogen for ammonia production, which is included
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in the steam methane reforming group.
Figures VI.3a and VI.3b show that when Russian gas is available, the most

cost-e�ective way to produce hydrogen is through natural gas reforming. In the
beginning, this hydrogen production is mainly based on SMR without CCS, much
like hydrogen production today, but this way of producing hydrogen is substituted
by autothermal reforming in the long term, using gas heated reformers for improved
e�ciency and CCS for reduced CO2 emissions.

(a) A�ordable, with Russian gas (b) Costly, with Russian gas

(c) A�ordable, without Russian gas (d) Costly, without Russian gas

Figure VI.3: Development of hydrogen production capacity in Europe.

Interestingly, there is no substantial electrolyser capacity in either the a�ordable
or costly case when Russian gas is available. This is because there is an abundance of
a�ordable pipeline gas, and the included technologies are able to produce hydrogen
with a very high CO2 capture rate, allowing for the production of hydrogen with
very low greenhouse gas emissions. At the same time, it is assumed that the
delivered natural gas is not associated with any methane leak, whereas in reality,
certain countries have considerable methane emissions associated with natural gas
production, including for example Russia and Algeria (International Energy Agency,
2023). Accounting for the greenhouse e�ect from these methane leaks can have a
significant impact on the climate footprint of blue hydrogen (Howarth & Jacobson,
2021), which can significantly influence these results by facilitating an increased
production of green hydrogen. In considering the greenhouse e�ect from methane
leaks, it is important to di�erentiate on where the hydrogen comes from Romano et al.
(2022), advantaging Norwegian blue hydrogen. These results are aligned with the
2022 report by Hydrogen4EU (2022), where upstream methane leak was considered
in the development of a hydrogen supply chain. In this report, the distribution
between blue and green in their Technology Diversification case was similar to what
is seen in Figure VI.3d, emphasising the potential of blue hydrogen production.
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Removing access to Russian gas, as in Figures VI.3c and VI.3d, leads to some
important di�erences. While the development of hydrogen production capacity looks
similar in the short timeframe, it can also be observed how green hydrogen plays a
much more important role in these cases, especially in Figure VI.3d where natural
gas is costly. In these cases, there is substantially less pipeline gas available in the
market, and much of the natural gas demand is met through LNG imports. In the
case shown in Figure VI.3c, the LNG is a�ordable enough that it is economical to
produce blue hydrogen from LNG imports. However, in the costly gas case, this
occurs much more rarely, and pipeline gas is the main source of natural gas for
hydrogen production. Since there is much less pipeline gas available in the case shown
in Figure VI.3d, it becomes much more attractive to produce hydrogen through
electrolysis. By 2050, green hydrogen accounts for almost 60% of the total hydrogen
production capacity in Figure VI.3d, as the green hydrogen production capacity
increases in conjunction with the large increase of renewable power capacity seen
in Figure VI.1d.

In the REPowerEU plan (European Commission, 2022b), the European
Commission set a goal of 20 Mt of annual renewable hydrogen production, with
10 Mt being produced inside the EU, and the remaining 10 Mt being imported from
nearby regions. None of the results shown in Figure VI.3 reach this goal. Instead,
by 2030, all of the hydrogen production capacity is in natural gas reforming, and
with the majority being SMR without CCS. Most of this capacity comes from local
hydrogen production for ammonia. Considering the development of the power sector
as shown in Figure VI.1, it is evident that by 2030 there is not enough renewable
power to support 20 Mt of renewable hydrogen production. In order to achieve these
goals, it is therefore necessary to build up a much larger capacity of renewable power
generation by 2030. At the same time, the results suggest that this may not be
necessary; it is possible to reach the carbon neutrality goals without needing 20 Mt
of renewable hydrogen in 2030, and also without relying on Russian gas.

VI.4.3 Industry

This work includes the steel, cement and ammonia industries in order to cover their
hydrogen demand, and see to what degree they use CCS, when possible.

Figure VI.4 shows the production of European steel, and the share of the total
production that each steel plant accounts for. Common for all four cases is how the
use of scrap is maximised, as this way of producing steel is emissions-free. Figure VI.4
also shows how eventually, regardless of the case, all European steel is made in
Electric Arc Furnace (EAF) plants, that either use scrap or iron reduced using
hydrogen as a feedstock. Biocarbon is also not used in any of the cases, instead
favouring CCS and hydrogen as decarbonisation pathways.

The di�erence in the four cases mainly occurs as Russian gas is removed
in Figures VI.4c and VI.4d. While also in these cases, steel production ultimately
relies completely on hydrogen and scrap, the transition to this final state is di�erent
than the cases seen in Figures VI.4a and VI.4b. Whereas the cases with Russian
gas transition directly from the conventional Blast Furnace, Basic Oxygen Furnace
(BF-BOF) technology to hydrogen direct reduced iron with EAF, the cases without
Russian gas go through an intermediate step with steel plants using the BF-BOF
technology, but with CCS. This comes as a result of there being less a�ordable

200



Results and analysis

(a) A�ordable, with Russian gas (b) Costly, with Russian gas

(c) A�ordable, without Russian gas (d) Costly, without Russian gas

Figure VI.4: Evolution of European steel production.

hydrogen available in the energy system when the Russian gas is removed; it becomes
more e�ective to decarbonise through CCS while the hydrogen market matures, even
though the CO2 capture rate in the steel sector is relatively low at 60%. In this way,
the steel industry avoids having to use relatively scarce natural gas (through the
consumption of blue hydrogen), and can instead continue using the more abundant
coal.

In this work, the cement industry can be decarbonised by building cement plants
where the clinker is produced using gas while capturing the CO2 emissions, or
partially decarbonised by switching the fuel used in clinker production to hydrogen.
Figure VI.5 shows how these three options decarbonise the cement industry.

Comparing the four cases, it can be observed how their developments in the
cement sector appear almost identical. Starting from 2030, the cement sector is
gradually decarbonised by introducing CCS to cement plants, and by 2050, all cement
plants feature CCS in all four cases. This result is in line with what is presented by
the International Energy Agency (2018), where CCS appears as a priority for the
decarbonisation of cement.

In Figure VI.5d, it can also be observed how a small share of clinker production
experiences a fuel switch from natural gas to hydrogen before 2050. This result is
counter-intuitive, as hydrogen production is largely based on natural gas, as seen in
Figure VI.3d, and the production of this hydrogen includes an e�ciency loss, thereby
ostensibly introducing ine�ciencies in the energy system. The reason for this fuel
switch is a modelling anomaly. The hydrogen-based cement plants in the results
are constructed in south-eastern Europe, a region that has previously been supplied
by Russian gas. The availability of this gas is removed in this case. Furthermore,
a modelling assumption is that the model cannot build new natural gas pipelines,
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(a) A�ordable, with Russian gas (b) Costly, with Russian gas

(c) A�ordable, without Russian gas (d) Costly, without Russian gas

Figure VI.5: Evolution of European cement clinker production.

whereas it can build new hydrogen pipelines. As Russian gas is removed and LNG
is (prohibitively) expensive, the existing natural gas pipeline infrastructure is not
su�cient to sustain all the natural gas demand here. The model is thus forced to
build hydrogen pipelines instead in order to meet the demand. This will in reality
likely not develop as shown in Figure VI.5d, as the infrastructure may be operated
in a more e�cient way that is not modelled, or if necessary, the gas infrastructure
may be reinforced to suit the needs of the energy system.

VI.4.4 Sequestration of CO2

The results in this work use CCS on a large scale, and Figure VI.6 shows how
much CO2 is sequestered in the North Sea until 2055. It is evident that regardless
of the case that has been investigated, CO2 sequestration is an e�ective way to
decarbonise the European energy system, and by 2050, at least 10 Gt of CO2 has
been sequestered in the North Sea.

Inspecting where the CO2 is sequestered, it becomes clear that the geographic
location of the sequestering site is important. The first areas to begin sequestering
CO2 are Denmark and the Netherlands, and these are also the only areas to fully
utilise their maximum sequestration capacity. Following these two locations, the rest
of the captured CO2 is mainly stored in South-Western Norway, NO2, and Great
Britain, owing to their proximity to continental Europe.

In the cases without Russian gas, shown in Figures VI.6c and VI.6d, CO2

sequestration is used at a bigger scale than the cases with Russian gas, and at least
20 Gt of CO2 is sequestered in these two cases. In Figure VI.1 it was shown that
without Russian gas, the European energy system would rely more heavily on coal
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(a) A�ordable, with Russian gas (b) Costly, with Russian gas

(c) A�ordable, without Russian gas (d) Costly, without Russian gas

Figure VI.6: Expected cumulative amounts of CO2 sequestered in the North Sea.

power plants with CCS, which capture more CO2 per unit of energy than their
gas-based counterparts. It was also shown in Figure VI.4 how CCS played a large
role in the steel sector once Russian gas is unavailable, and the e�ect of these changes
is that more CO2 has to be sequestered in the North Sea, as shown in Figure VI.6.

Figure VI.7 shows the CO2 pipeline topographies in 2030 and 2050 for the costly
natural gas cases, with and without Russian gas. Broadly speaking, the topographies
in 2050 look very similar for the cases with and without Russian gas, shown in
Figures VI.7b and VI.7d. Here, the European countries are well-connected to each
other, and with end-points in the main sequestration nodes, showing the importance
of CCS in the future.

In 2030, some di�erences arise. Comparing Figures VI.7a and VI.7c, it can be
seen how both cases show the start of the CO2 pipeline networks seen in 2050, but
also how the case without Russian gas, shown in Figure VI.7c, has a much more
developed CO2 pipeline network than the case with Russian gas. In fact, the sum of
CO2 pipeline capacities in 2030 in the case without Russian gas is over 3 times as
large as the case with Russian gas. Furthermore, it is also evident how more countries
have adopted CCS by 2030 in Figure VI.7c, and the topography is consequently
more branched out.

CCS was predicted to be an important technology for the industry and power
sectors (Holz et al., 2021), and it appears that it has become even more important
following the disconnection from Russian gas. This applies both in the short term,
as seen in the 2030 maps in Figure VI.7, but also in the long term, as demonstrated
in Figure VI.6, where the total CO2 sequestered by 2050 when there is no Russian
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(a) 2030, with Russian gas (b) 2050, with Russian gas

(c) 2030, without Russian gas (d) 2050, without Russian gas

Figure VI.7: Development of CO2 pipeline topography. All figures in the costly
natural gas case.

gas significantly exceeds the cases when Russian gas is available.

VI.5 Conclusion

This work has investigated how the European energy system can reach the carbon
neutrality targets by 2050 in the power, domestic low temperature heat, and industry
sectors, while also accounting for the energy demand in the transport sector. The
paper has analysed energy transition pathways without using Russian pipeline gas,
and the results were compared with the case where Russian gas would again be
available. An important contribution of the work is endogenous hydrogen demand
modelling, enabling the model to optimise the deployment of technologies using

204



Conclusion

hydrogen in the power and industry sectors, taking into account the scarcity of
electricity and natural gas, which are required to produce hydrogen.

As a general conclusion from the results, hydrogen is projected a key role in the
industry sectors going forward, and a minor role in the power system. The results
show that hydrogen may also play an important role in the domestic heat sector,
where it is used as a clean fuel for district heat networks.

The results also show a tremendous value of CCS in the decarbonised European
energy system, especially now that Russian pipeline gas is not going to be used.
With less a�ordable natural gas available, the European energy system relies more
heavily on coal than it otherwise would, especially in the power and steel industries.
This coal use is combined with CCS in order to significantly lower the CO2 emissions.

Summarising the findings in key messages, it is found that:

• The removal of Russian natural gas increases the use of coal. It is
found that in the power sector, coal power plants replace the role that gas
otherwise would have as a dispatchable generator. In the steel sector, the use
of iron reduced using hydrogen is also significantly delayed when Russian gas
is unavailable, as the volume of a�ordable hydrogen in the energy system is
insu�cient. Consequently, BF-BOF steel plants fuelled by coal are used for
longer. In both the power and steel sectors, CCS is used in order to decarbonise
coal use.

• The use of gas in the power sector is partially replaced by renewable
power generators. As access to natural gas becomes more restricted, by first
removing access to Russian pipeline gas, and later increasing the price of LNG,
it is shown how the generation capacities for the renewables grow considerably.
In 2050, wind and solar account for most of the power generation capacity in
all cases, but they play a much larger role when LNG is costly and Russian
gas is unavailable.

• Blue hydrogen production is a cost-e�ective way of producing low-
carbon and a�ordable hydrogen. Natural gas reforming, both with
and without CCS, accounts for a large share of hydrogen production in all
investigated cases, and in most cases it is the only source of hydrogen before
2050. Only when Russian gas is unavailable and LNG is very expensive does
green hydrogen account for over half of the production capacity in 2050.

• CCS is important for reaching European decarbonisation goals. In
all the investigated cases in this work, CCS plays a significant role in reducing
European greenhouse gas emissions. This is especially the case in the power,
hydrogen, and cement sectors. By 2050, at least 10 Gt of CO2 is sequestered
in the North Sea in all cases, with Great Britain, the Netherlands and South-
Western Norway sequestering the most, owing to their geographic location and
maximum o�shore sequestration capacity.

• Phasing out Russian pipeline gas increases the importance of CCS.
In the cases where Russian gas is removed, the minimum amount of CO2

sequestered by 2050 increases to 15 Gt. Furthermore, it is shown that the
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European CO2 pipeline transport chain develops faster when Russian gas is
unavailable. This is a result of how CCS is picked up in the steel industry, and
also due to its use with more carbon-intense coal plants in the power sector.

There are several ways in which this work can be expanded and improved upon.
These include:

• Including endogenous handling of the transport sector. This work
has an exogenous transport demand for di�erent energy carriers, including
hydrogen, natural gas and oil. However, in following with the goal of the work
to study the optimal uptake of di�erent low-carbon energy carriers and fuels
under di�erent energy market conditions, it would also be worthwhile to treat
the transport sector similarly to the other included sectors in this work.

• Including additional industrial sectors in the model. This work only
includes four industries in the representation of the industry sector: steel,
cement, ammonia and oil refining. There are other sectors that are also energy-
intensive that are also covered by the ETS,, e.g.,, the aluminium sector. It
would be interesting to also include these sectors in this work, to have a more
complete representation of European industry.

• Including long-term uncertainty. Studying the European energy system
until 2050 includes many uncertainties, especially long-term uncertainties when
it comes to technology development and future policy. These uncertainties are
undoubtedly important to planners today and in the future, and frameworks
that include these uncertainties in their planning will be highly valuable. Future
works should therefore look for ways in which these can be included while
retaining the computational tractability of these problems.

• Conducting a sensitivity on CCS parameters. The results in this paper
rely heavily on CCS, in all of the sectors that include this technology. However,
CCS is not a mature technology yet. It would therefore be valuable to inspect
how resilient this pathway is to alternative technological and economical
developments in the CCS space. Moreover, studying di�erent policies with
regards to CCS acceptance would also be interesting.
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Nomenclature

Abbreviations
CCS carbon capture and storage
EU European Union
BF-BOF basic furnace - blast oxygen furnace
LNG liquid natural gas
SMR steam methane reforming
CHP combined heat and power
EAF electric arc furnace
Indices
n, m node
h operational hour
i, j investment period
Ê operational scenario
s season
a asset
c commodity
p production method
Sets
I investment periods
S seasons
H operational hours
H

F first hour of every season
H

L last hour of every season
H

s hours belonging to season s

� set of scenarios
L

c
n all possible bidirectional arcs to node n for commodity c

A assets
P

c production methods for commodity c

‡
c sinks of commodity c

Parameters
L

period length of investment periods
–s scale factor for season s

A
c
n total capacity for commodity c in node n

D
c
n,h,i,Ê demand for commodity c in hour h in node n in scenario Ê

x̄
a
n,i remaining initial capacity of asset a

i
life
a lifetime of asset a

Variables
x

a
n,j investment into asset a in node n in period i

v
a
n,i available capacity of asset a in node n in period i

v
c,stor
n,i available capacity of storage for commodity c in node n in period i

y
c,source
n,p,h,i,Ê the production of commodity c in node n using production method p

in hour h in period i in scenario Ê

y
c,sink
n,h,i,Ê the use of commodity c in other endogenous processes in node n in

hour h in period i in scenario Ê

y
c,trans
n,m,h,i,Ê transport of commodity c from node n to node m in hour h in period

i in scenario Ê

y
ll
n,h,i,Ê electric demand shed in node n in hour h in period i in scenario Ê

w
c
n,h,i,Ê storage level of commodity c in node n in hour h in period i in scenario

Ê

y
c,chrg
n,h,i,Ê charging of storage for commodity c in node n in hour h in period i

in scenario Ê

y
c,dischrg
n,h,i,Ê discharging of storage for commodity c in node n in hour h in period

i in scenario Ê
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Appendix VI.B Introduction to EMPIRE

This appendix gives an introduction to the structure of EMPIRE, showing the logic
of the constraints in the model. For an overview of symbols used in this appendix
and their meaning, see Section VI.A.

Equation (VI.1) shows the general formulation of the flow balance for a commodity,
c, in EMPIRE. The commodities covered by the flow balance constraints include the
power, hydrogen, natural gas, CCS, transport, steel, ammonia, cement, and refinery
sectors.

The flow balance consists of sources of a commodity, y
c,source
n,p,h,i,Ê, which are the

various way in which the commodity is produced. For the power sector for example,
the sources are the power generators, and for the natural gas sector, the sources
include the various ways of producing or importing natural gas.

The sinks, y
c,sink
n,h,i,Ê, in the flow balance, are the endogenous uses of the commodity,

and this links the di�erent flow balances together. For example, to produce hydrogen
with electrolysers, which is a source in the hydrogen flow balance, it is necessary to
consume power, which is a sink in the power flow balance.

It is also possible to transport some commodities between nodes, which are
covered by the two transport variables for import, y

c,trans
m,n,h,i,Ê, and export, y

c,trans
n,m,h,i,Ê.

Some commodities, such as power, or the cases with inflexible industry, also have
exogenous hourly commodity demands that must be met, represented by D

c
n,h,i,Ê.

Where there is no such hourly demand, D
c
n,h,i,Ê is set to 0. Finally, the power sector

uniquely also has the option to curtail demand, which is covered by the variable
y

ll
n,h,i,Ê.

ÿ

pœPc

y
c,source
n,p,h,i,Ê ≠

ÿ

sinkœ‡c

y
c,sink
n,h,i,Ê ≠

ÿ

mœLc
n

1
y

c,trans
n,m,h,i,Ê ≠ y

c,trans
m,n,h,i,Ê

2
=

D
c
n,h,i,Ê (≠ y

ll
n,h,i,Ê), n œ N , h œ H, i œ I, w œ �. (VI.1)

Equation (VI.2) describes how for an asset a, the individual investments into
capacity for that asset, x

a
n,j and the remaining initial capacity of that asset, x̄

a
n,i,

sum up to the total capacity of that asset, v
a
n,i.

iÿ

j=iÕ

x
a
n,j + x̄

a
n,i = v

a
n,i n œ N , i œ I, i

Õ = max{1, i ≠ i
life
a }, a œ A. (VI.2)

An asset cannot be operated, y
a
n,i,h,Ê, at a higher level than its capacity, v

a
n,i,as

described in Equation (VI.3).

y
a
n,i,h,Ê Æ v

a
n,i, a œ A, n œ N , i œ I, h œ H, Ê œ �. (VI.3)

Equation (VI.4) describes how storage is balanced for the commodities that have
storage. In all hours except the first hour of each season, the storage balance simply
says that the amount stored at the end of the hour, w

c
n,h,i,Ê, is the sum of the

amount stored in the previous hour, w
c
n,h≠1,i,Ê, plus the amount used to charge the

storage in this hour, y
c,chrg
n,h,i,Ê, minus the amount discharged from the storage in this

hour, y
c,dischrg
n,h,i,Ê .
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For those hours that are at the start of a season, a starting amount stored is
assumed. In this work, it is assumed that the storage starts half-full, 0.5 ◊ v

c,stor
n,i .

This is to allow enough flexibility for the model to charge and discharge the storage
as it wishes, even during the start of the season.

w
c
n,h≠1,i,Ê + y

c,chrg
n,h,i,Ê ≠ y

c,dischrg
n,h,i,Ê = w

c
n,h,i,Ê,

n œ N , h œ H \ H
F

, i œ I, Ê œ �, (VI.4a)
0.5 ◊ v

c,stor
n,i + y

c,chrg
n,h,i,Ê ≠ y

c,dischrg
n,h,i,Ê = w

c
n,h,i,Ê,

n œ N , h œ H
F

, i œ I, Ê œ �. (VI.4b)

EMPIRE also features a constraint that ensures that the storage level at the
last hour of the season is the same as in the start, to ensure that the storage does
not lead to a net gain or loss of the commodity in the system. This is shown in
Equation (VI.5).

w
c
n,h,i,Ê = 0.5 ◊ v

c,stor
n,i , n œ N , h œ H

L
, i œ I, Ê œ �. (VI.5)

Some commodities have constraints that apply throughout the entire temporal
horizon. This includes the natural gas reserves, where the sum of all natural gas
production over all periods cannot exceed the local reserves of natural gas. Similarly,
for CCS, it is not possible to sequester more CO2 that the maximum capacity
at that geographic location, A

c
n. This is described in Equation (VI.6), where the

hourly operations are first scaled up to yearly values through the factor –s, and
then to the length of the period through the factor L

period. Note that the factor
(yc,sink

n,h,i,Ê/y
c,source
n,p,h,i,Ê) signifies that either there is a source of the commodity, as with

natural gas, or there is a sink of the commodity, as with CO2 in CCS.

ÿ

iœI

ÿ

sœS

ÿ

hœHs

L
period

◊ –s ◊ (yc,sink
n,h,i,Ê/y

c,source
n,p,h,i,Ê) Æ A

c
n, n œ N , Ê œ �. (VI.6)
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