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Hybrid systems of superconductors and magnets display several intriguing properties, both from a fundamen-
tal physics point of view and with practical applications. Promising applications in superconducting spintronics
motivate a search for systems where superconductivity can survive larger in-plane critical magnetic fields than the
conventional limit. The Chandrasekhar-Clogston (CC) limit applies to thin-film conventional superconductors
with in-plane magnetic fields such that orbital effects may be ignored. For a magnetic field strength comparable
to the superconducting gap at zero temperature and zero field, a spin-split normal state attains lower free
energy than the superconducting state. A multiband superconductor with a flat band placed just below the Fermi
surface has been shown to surpass the CC limit using weak-coupling theory. Since the dimensionless coupling
determining the critical temperature scales with the density of states, it is natural to anticipate corrections from
strong-coupling theory in flat-band systems, owing to the large density of states of the flat bands. We derive
Eliashberg equations and the free energy for a multiband superconductor in a magnetic field. First, we show that
the CC limit can be exceeded by a small amount in one-band strong-coupling superconductors due to self-energy
renormalization of the magnetic field. Next, we consider a two-band system with one flat band and find that the
CC limit can be exceeded by a large amount also in strong-coupling theory, even when including hybridization
between bands that intersect.
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I. INTRODUCTION

The field of superconducting spintronics [1–3] aims to
use proximity effects between magnets and superconduc-
tors (SCs) to realize dissipationless transport of information.
Spin-split SCs are also of interest for the generation of
spin-polarized supercurrents and the appearance of large
thermoelectric effects, which convert excess heat into ap-
plicable energy [4–6]. Coexistence of superconductivity and
magnetism is, however, a challenging prospect. Orbital ef-
fects [4,7–9] are suppressed in the case of in-plane magnetic
fields in thin-film, effectively two-dimensional (2D), SCs.
Nonetheless, at high enough magnetic field, a spin-split nor-
mal state has a lower free energy than the superconducting
state, destabilizing the SC [10–13]. This is referred to as
the Chandrasekhar-Clogston (CC) limit [10,11] or the Pauli
limit [14,15]. The critical magnetic field at zero temperature
is hc = �0/

√
2 ≈ 0.7�0, where �0 is the zero-temperature

gap amplitude.
When applying a magnetic field, the normal state gains

energy by spin-polarizing the bands around the Fermi sur-
face (FS). The superconducting state, with a gap around
the FS, cannot gain energy in the same way. The CC limit
applies to conventional one-band SCs with Cooper pairs com-
posed of opposite-spin electrons [13]. The original papers
by Chandrasekhar [10] and Clogston [11] considered spin-
singlet superconductivity, while Ref. [13] extends the CC limit
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to spin-triplet superconductivity with zero-net-spin Cooper
pairs. On the other hand, spin-polarized spin-triplet SCs are
not affected by the Pauli pair breaking responsible for the CC
limit [13].

Finite-momentum Cooper pairing in Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) states can surpass the CC limit [13,16–
18]. Additionally, multiband SCs with reentrant superconduc-
tivity [14,15] and SCs driven out of equilibrium [19,20] can
exceed the CC limit. Of particular interest in this paper, flat-
band SCs also provide a way to exceed the CC limit for s-wave
zero net spin pairing [21]. Reference [21] shows, using weak-
coupling Bardeen-Cooper-Schrieffer (BCS) theory [22], that
a flat band below the FS can boost the superconductivity in a
dispersive band. This delays the transition to the normal state
until the magnetic field strength corresponds to several times
the zero-temperature gap. The flat band provides a larger con-
densation energy, while not contributing to any energy gain
in the spin-split normal state until the magnetic field is large
enough to move the flat band for one spin component above
the FS [21]. It is worth noting that while the coupling between
the two crossing bands was considered, this analysis omit-
ted the effects of band hybridization. In this paper, we in-
corporate band hybridization arising from self-energy effects,
albeit in a simplified manner.

Flat bands can appear in partial line graphs [23],
e.g., realized in octagraphene [24–27], in twisted bilayers
such as twisted-bilayer graphene [28–33], in rhombohedral
graphite [34–36], in Lieb lattices [37–40], and in diatomic
kagome lattices [41,42]. Often, the flat bands result from the
interplay between several different hopping amplitudes in the
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nontrivial lattice structures. The electronic model we consider,
with hybridization between a dispersive band and a flat band,
bears similarities with the Anderson lattice model for Kondo
insulators, only that we consider a doped version with the FS
in the conduction band above the flat band [43,44]. In that
sense, it is more similar to simple models for heavy-fermion
SCs, though we consider phonon-driven superconductivity,
while spin fluctuations are expected to dominate the super-
conducting pairing in heavy-fermion SCs [45]. A similar
electronic model may also be realized in twisted-bilayer
graphene [18].

In the single-band case, the superfluid weight is pro-
portional to the group velocity of the band [46]. Hence a
single, completely flat band has zero superfluid weight. Since
nonzero superfluid weight is essential for the Meissner ef-
fect and dissipationless flow, it represents a major caveat
for flat-band SCs. However, in multiband systems, the su-
perfluid weight has extra contributions related to quantum
geometry, yielding a nonzero superfluid weight also for flat
bands [46,47].

The BCS prediction for the critical temperature is Tc ∝
exp(−1/λ), with dimensionless coupling λ = V NF , where V
is the coupling constant and NF is the density of states (DOS)
per spin on the FS. Weak-coupling theory applied to flat bands
suggests that Tc ∝ λ, eliminating the exponential suppression
of Tc in dispersive bands [46,48,49]. Nearly (completely) flat
electronic bands give a very large (diverging) DOS. Naively,
this should mean stronger coupling, and hence flat-band SCs
offer a fruitful path toward high-Tc superconductivity [50].
Machine learning techniques applied to the search for can-
didate materials for high-Tc superconductivity have yielded
several materials with nearly flat bands just below the FS, even
when the DOS was not an input [51].

An increased coupling strength due to a large DOS also
means that strong-coupling effects likely provide signifi-
cant corrections to weak-coupling predictions in flat-band
SCs [34]. Eliashberg [52] introduced a strong-coupling the-
ory of superconductivity, where electron self-energy effects
and superconducting pairing are treated on the same foot-
ing [53]. In that way, renormalizations of the electron bands
caused by the same interaction which drives the supercon-
ducting pairing are included in the theoretical model. Often,
Eliashberg theory is simplified by performing FS averages
and neglecting vertex corrections [53]. Both of these approx-
imations rely on Migdal’s theorem [54,55], namely that the
electron bandwidth is much larger than the characteristic en-
ergy of the boson mediating the effective electron-electron
interaction. Such a Migdal-Eliashberg theory is not appli-
cable to flat bands, where the electron bandwidth is zero.
References [28,29,34,35] apply Eliashberg theory to systems
with nearly flat bands by avoiding FS averages and instead
considering simpler forms of the interaction.

The free energy of a normal metallic state, given infor-
mation about its self-energy, was derived in Ref. [56] using
a variational approach. This was subsequently generalized
to the superconducting state in Eliashberg theory [9,57–61].
More recently, Ref. [62] presented a way to derive the Eliash-
berg equations via functional integral methods. The derivation
provides an expression for the free energy given in terms
of solutions to the Eliashberg equations [63,64]. The latter

approach is more easily generalizable to the case of multiple
bands and the presence of a magnetic field and is therefore em-
ployed in this paper. Considerations of the free energy within
Eliashberg theory are numerous [9,57–70], but to the best of
our knowledge no study of the CC limit within Eliashberg
theory has been performed. One of the main results of this
paper is an expression giving the free energy for a multiband
system in a magnetic field in the spirit of Ref. [62].

References [71–73] study SCs in a magnetic field using
Eliashberg theory but do not discuss the free energy based
on solutions to the Eliashberg equations. Therefore, after de-
riving the Eliashberg equations in Sec. II and presenting the
free energy in Sec. III, we first consider a strong-coupling
system with one dispersive band in Sec. IV. We find that it is
possible to exceed the CC limit slightly in a strong-coupling
SC since self-energy effects effectively reduce the strength of
the magnetic field. Section V moves on to a two-band system
as in Ref. [21] and finds that the prediction of vastly exceeding
the CC limit in flat-band SCs survives in strong-coupling
Eliashberg theory. Section VI shows that this applies also
when including hybridization. We conclude in Sec. VII, while
the Appendixes offer additional details and the derivation of
the free energy.

II. GREEN’S FUNCTION DERIVATION
OF ELIASHBERG EQUATIONS

We are interested in the phase transition from a supercon-
ducting state to a normal state, driven by the Zeeman coupling
to the electrons in an external magnetic field, in situations
where orbital effects are suppressed. Typically, this is the
case in thin-film superconductors with an in-plane magnetic
field. Therefore equilibrium considerations are sufficient, and
the Matsubara formalism is a suitable choice in which to
perform the many-body perturbation theory [34,35,53,74–78].
It is, however, applied to nonzero temperature, while the
CC limit applies to zero temperature. Solving the Eliash-
berg equations at zero temperature is possible [52,59,79–
81] but is considered more complicated than solving the
nonzero-temperature Eliashberg equations. The complications
arise from the appearance of singularities on the contin-
uous real frequency axis which are challenging to handle
correctly, while these are avoided on the discrete imaginary
frequency axis [82]. We therefore choose to approach the
zero-temperature limit using the Matsubara formalism in this
paper.

We consider the Hamiltonian

H =
∑
klσ

εklσ c†
klσ cklσ +

∑
q

ωqa†
qaq

+
∑

kqσ ll ′
gqc†

k+q,l ′,σ cklσ (aq + a†
−q), (1)

describing a multiband electron system with a single phonon
mode and band-independent electron-phonon coupling (EPC).
We consider a 2D square lattice with N lattice sites and
periodic boundary conditions so that the (quasi)momentum
k is restricted to a square first Brillouin zone (1BZ). With
increasing N , this becomes a good model for the bulk. εklσ =
εkl − σh are the electron bands, h is the external, in-plane
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magnetic field, and c†
klσ creates an electron in band l with

momentum k and spin σ . The spins of the electrons are
quantized along the external magnetic field, such that spin up
points along the magnetic field. ωq is the phonon dispersion
relation, while a†

q creates a phonon with momentum q. gq is
the band-independent EPC strength, which is further assumed
to only depend on the momentum transfer in the EPC. We
employ units where h̄ = kB = 1 and the lattice constant a = 1.

In the Matsubara formalism, the Green’s function for
electrons is Gl (k, τ ) = −〈Tτψkl (τ )ψ†

kl (0)〉, where Tτ is the
time-ordering operator and ψ

†
kl = (c†

kl↑, c†
kl↓, c−kl↑, c−kl↓) is

the Nambu spinor. Here, −〈Tτψkl (τ )ψ†
kl (0)〉 is a shorthand for

−〈Tτψkl (τ )ψ†
kl (0)S(β, 0)〉conn, where

S(τ, 0) =
∞∑

n=0

(−1)n

n!

∫ τ

0
dτ1 · · · dτnTτ [Hint(τ1) · · · Hint(τn)]

(2)
is the S matrix and subscript “conn” means that only
connected diagrams are counted [77,78,80]. Hint(τ ) is the
interaction Hamiltonian. In the latter definition of the Green’s
function, expectation values are calculated in the interaction
picture [77].

We set all expectation values involving operators from sep-
arate bands to zero. This is not strictly speaking true with the
assumed form of EPC, and neglects band hybridization arising
from, e.g., −〈Tτ ckl↑(τ )c†

kl ′↑(0)〉 with l �= l ′. If the bands εklσ

are isolated, the effects of hybridization terms are negligible.
If two or more bands cross, neglecting hybridization could
lead to erroneous predictions.

It is in principle possible to derive Eliashberg equations in-
cluding hybridization effects from the self-energy, but the
derivation would involve analytically inverting dense 2n × 2n
matrices with n being the number of bands. Already for two
bands this gives very involved analytic expressions. Addi-
tionally, (4n)2/2 Eliashberg functions must be introduced to
capture all effects, meaning that it will be very challenging to
interpret the results. As a work-around, we instead consider
prehybridized bare bands with simple assumptions on the
hybridization in Sec. VI. In that case, hybridization effects can
be ignored in the Eliashberg equations, since including them
would lead to overcounting.

By setting interband expectation values to zero, we also
ignore interband Cooper pairs, which are captured by, e.g.,
−〈Tτ c†

−k,l,↑(τ )c†
kl ′↓(0)〉 with l �= l ′. An interband Cooper pair

is formed of two electrons from separate bands. Interband
Cooper pairs are usually ignored on the grounds that one
cannot make zero-momentum interband Cooper pairs in the
case of disjoint FSs. Flat bands close to the FS offer states at
all k, so it is possible to construct zero-momentum interband
Cooper pairs in our case. However, if there is hybridization
between the dispersive band and the flat band, the part of
the flat band that offers electrons with opposite momentum
to those on the FS of the dispersive band moves further
away from the FS. Hence the pairing of interband Cooper
pairs becomes much weaker than intraband Cooper pairs. We
therefore ignore interband Cooper pairs in this paper. Refer-
ence [14] considers a case where the formation of interband
Cooper pairs leads to reentrant superconductivity above the
CC limit in a two-band system, a situation that could also

FIG. 1. (a) Feynman diagrams illustrate the renormalized
Green’s function G = G0 + G0
G, defined self-consistently in
terms of the bare electron Green’s function G0 and the phonon-
driven electron self-energy 
. Band indices are suppressed, while
k = k, iωn. Solid lines are electron Green’s functions, and dashed
lines are phonon propagators D. A vertex correction � is included in
(a). In (b), we show the lowest-order vertex correction. The external
legs are not a part of � but are included for clarity.

be relevant in our system. In this paper, we do not focus
on reentrant superconductivity due to interband Cooper pairs.
Rather, we study how large the magnetic field needs to be to
break intraband Cooper pairs.

The Fourier transform (FT) from imaginary time to imagi-
nary frequency is

G(k, iωn) =
∫ β

0
dτeiωnτ G(k, τ ), (3)

with inverse temperature β = 1/T and Matsubara frequen-
cies iωn = i(2n + 1)πT for fermions and iων = i2νπT for
bosons. Ignoring interactions yields the bare electron Green’s
function,

G0l (k) = (iωnτ0σ0 − εklτ3σ0 + hτ3σ3)−1, (4)

where k = (k, iωn), τ0 and σ0 are unit matrices, and τi and σi

for i = {1, 2, 3} are Pauli matrices. τi applies to the particle-
hole degree of freedom, while σi covers the spin degree of
freedom. τiσ j is a shorthand for the outer product τi ⊗ σ j ,
meaning that they are 4 × 4 matrices.

EPC affects the electron Green’s function Gl (k) through
the self-energy 
(k). Generally, the self-energy depends on
the band index of the external bands. However, under the
assumption that EPC is band independent, the self-energy
is independent of the external band indices. The Dyson
equation gives G−1

l (k) = G−1
0l (k) − 
(k). From an S-matrix

expansion [75,77,83], the self-energy is


(k) = −
∑
k′l

|gk−k′ |2D(k − k′)τ3σ0Gl (k
′)τ3σ0, (5)

where
∑

k = T
∑

k,iωn
. Figure 1(a) illustrates the Dyson equa-

tion on the form G = G0 + G0
G. Note that Eq. (5) is a
self-consistent definition of the self-energy, where D(q) =
D(q, iων ) and Gl (k) are themselves renormalized Green’s
functions for the phonon and electron, respectively. Nev-
ertheless, certain vertex corrections have been ignored, as
illustrated in Fig. 1(b). Reference [29] shows that the vertex
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correction in Fig. 1(b) is negligible in flat-band systems, given
that the flat band is much closer to the FS than the character-
istic phonon energy.

In this paper, we use a simplified version of the renor-
malized phonon Green’s function, namely the bare Green’s
function for Einstein phonons ωq = ωE ,

D(q) = D(iων ) = −2ωE

ω2
ν + ω2

E

. (6)

We expect that our results become more accurate the closer
the actual D(q) is to this approximation. Appealing to uni-
versality, the results should give qualitative predictions for
all EPC-driven SCs as the main point is that there exists
a phonon-mediated attractive interaction between electrons.
Furthermore, we are ignoring the phonon self-energy be-
cause in a real system, the renormalized phonon spectrum
can be measured by spectroscopic methods and used as an
input in theoretical calculations. Including phonon self-energy
effects would then amount to overcounting [34]. Viewing
the phonons as already renormalized also means that the

dimensionless coupling strength λ is renormalized. The renor-
malized λ has a higher upper limit, where Eliashberg theory
is expected to break down, than the bare λ0 [61,66,69].

We consider EPC-driven superconductivity and do not
explicitly include Coulomb repulsion. When included in
Eliashberg theory, the effect of the Coulomb interac-
tion is essentially just to reduce the interaction strength
slightly [53,80]. The calculations in Ref. [84] show that
the Coulomb repulsion can be treated as a small pseu-
dopotential [53]. This is due to the retarded nature of
the EPC compared with the direct nature of the Coulomb
repulsion [53].

Since EPC conserves spin, we assume that only the spin-
conserving expectation values are nonzero in Gl (k, τ ) =
−〈Tτψkl (τ )ψ†

kl (0)〉, such that only half the matrix elements
are nonzero. This ignores equal-spin Cooper pairs, which are
not expected to appear in EPC-driven SCs. From the Dyson
equation G−1

l (k) = G−1
0l (k) − 
(k), 
(k) must take the same

form as Gl (k). This limits the description to eight outer
products τiσ j . We write


 = (1 − Z )iωnτ0σ0 + ητ0σ3 + χτ3σ0 − 
hτ3σ3 + φR
e τ2σ2 + φI

eτ1σ2 + φR
o τ1σ1 + φI

oτ2σ1. (7)

Here, the k dependence of the Eliashberg functions, Z = Z (k), etc., is suppressed in the notation. This parametrization yields

G−1
l = G−1

0l − 
 = iωnZτ0σ0 − (εkl + χ )τ3σ0 − ητ0σ3 + (h + 
h)τ3σ3 − φR
e τ2σ2 − φI

eτ1σ2 − φR
o τ1σ1 − φI

oτ2σ1. (8)

To invert G−1
l (k), we identify two 2 × 2 blocks, with determinants

�1l (k) = [iωnZ (k) + h + 
h(k)]2 − [εkl + χ (k) + η(k)]2 − [
φR

e (k) − φR
o (k)

]2 − [
φI

e (k) + φI
o(k)

]2
, (9)

�2l (k) = [iωnZ (k) − h − 
h(k)]2 − [εkl + χ (k) − η(k)]2 − [
φR

e (k) + φR
o (k)

]2 − [
φI

e (k) − φI
o(k)

]2
(10)

for the outer block and the inner block, respectively. The Green’s function is then

Gl =

⎛
⎜⎜⎜⎜⎜⎝

iωnZ+εkl +χ+η+h+
h

�1l
0 0 −φR

e −iφI
e+φR

o −iφI
o

�1l

0 iωnZ+εkl +χ−η−h−
h

�2l

φR
e +iφI

e+φR
o −iφI

o
�2l

0

0 φR
e −iφI

e+φR
o +iφI

o
�2l

iωnZ−εkl −χ+η−h−
h

�2l
0

−φR
e +iφI

e+φR
o +iφI

o
�1l

0 0 iωnZ−εkl −χ−η+h+
h

�1l

⎞
⎟⎟⎟⎟⎟⎠. (11)

The poles in the Green’s function, �il (k) = 0, give information about renormalized bands. The poles are

iωn = −h − 
h(k)

Z (k)
±

[(
εkl + χ (k) + η(k)

Z (k)

)2

+
(

φR
e (k) − φR

o (k)

Z (k)

)2

+
(

φI
e (k) + φI

o(k)

Z (k)

)2
]1/2

, (12)

iωn = h + 
h(k)

Z (k)
±

[(
εkl + χ (k) − η(k)

Z (k)

)2

+
(

φR
e (k) + φR

o (k)

Z (k)

)2

+
(

φI
e (k) − φI

o(k)

Z (k)

)2
]1/2

. (13)

Comparing with the BCS spectrum Eklσ = −σh ±
√

ε2
kl + �2 [21], we can define the superconducting gaps as the first complex

roots of

[�1(k)]2 =
(

φR
e (k) − φR

o (k)

Z (k)

)2

+
(

φI
e (k) + φI

o(k)

Z (k)

)2

, [�2(k)]2 =
(

φR
e (k) + φR

o (k)

Z (k)

)2

+
(

φI
e (k) − φI

o(k)

Z (k)

)2

. (14)

However, self-energies given on the imaginary frequency
axis are not as easy to interpret or connect with experi-
ments. The quasiparticle energy is defined in terms of the

real-axis frequency results [82]. Technically, these equa-
tions should be analytically continued [28,29,82] to real
frequencies, after which renormalized bands can be found by
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solving the equations self-consistently. We leave the renor-
malized bands at this approximate level and mostly consider
the zero-imaginary-frequency limit of these functions when
discussing renormalization effects. By the zero-imaginary-
frequency limit, we mean the average value of these functions
at iωn=−1 = −iπT and iωn=0 = iπT , which, when T → 0,
should approach the zero-real-frequency limit. Continuing the
comparison with the BCS spectrum,

heff(k) = h + 
h(k)

Z (k)
(15)

represents a renormalized magnetic field due to self-energy
effects, while Z (k) is a mass renormalization. χ (k) and η(k)
renormalize the electron bands, where η(k) represents the
spin-dependent part.

Inserting the Green’s function in Eq. (11) into the EPC
self-energy in Eq. (5) and comparing with the parametrization
of the self-energy in Eq. (7) yields the Eliashberg equa-
tions given in Appendix A. By considering symmetries in the
expectation values involved in Gl (k, τ ) = −〈Tτψkl (τ )ψ†

kl (0)〉
a set of symmetries are found for the matrix elements.
Translated to the Eliashberg functions, these are f (k, iωn) =
f (k,−iωn)∗ for all the Eliashberg functions under inver-
sion of frequency. When inverting both momentum and
frequency, Z (k) = Z (−k), χ (k) = χ (−k), 
h(k) = 
h(−k),
φR

e (k) = φR
e (−k), φI

e (k) = φI
e (−k), η(k) = −η(−k), φR

o (k) =
−φR

o (−k), and φI
o(k) = −φI

o(−k).
For the special cases in which the Eliashberg functions are

even in momentum, or momentum independent, the combi-
nation of the above symmetries leads to Z, χ,
h, φ

R/I
e ∈ R,

while η, φR/I
o are purely imaginary. As a result, φR

e + iφI
e

is a complex, even-momentum, spin-singlet, even-frequency
superconducting gap. Meanwhile, φR

o + iφI
o is a complex,

even-momentum, spin-triplet, odd-frequency superconduct-
ing gap [85]. The spin symmetry of the gaps is gleaned from
the elements of the Green’s function matrix in Eq. (11) and
its definition Gl (k, τ ) = −〈Tτψkl (τ )ψ†

kl (0)〉. The Eliashberg
equations for φI

e and φI
o are the same as those for φR

e and
φR

o . This is because both the even- and odd-frequency super-
conducting gaps can be multiplied by the same global phase
factor eiθ . We choose the phase such that φI

e = φI
o = 0 and

rename φR
e = φe and φR

o = φo. Then, �2 = �∗
1; so for sim-

plicity we discuss �(iωn) ≡ �1(iωn) for the remainder of the
paper.

Eliashberg equations are typically simplified using FS av-
erages to integrate out the momentum degree of freedom
leaving a factor of the DOS on the FS. Since we intend to
consider flat-band systems, this is not expected to give good
approximations. Flat bands give large peaks in the DOS, so
that the DOS on the FS is not representative. Therefore we
take an alternative route to simplify the Eliashberg equa-
tions. We assume that the phonons are dispersionless Einstein
phonons ωq = ωE and that the coupling gq is isotropic, gq =
g/

√
N . The same model was used for flat-band systems in

Refs. [28,29], and similar models have been applied in nu-
merous systems [34,35,61,67,70,86]. Simplifying to Einstein
phonons with isotropic coupling removes the k dependence on
the right-hand side of the Eliashberg equations in Appendix A,
and then the Eliashberg functions depend only on frequency.

This gives the Eliashberg equations

Z (iωn) = 1 + g2

2Niωn

∑
k′l

Dnn′

×
[

iωn′Z (iωn′ )

�+
l (k′)

+ h + 
h(iωn′ )

�−
l (k′)

]
, (16)


h(iωn) = g2

2N

∑
k′l

Dnn′

[
iωn′Z (iωn′ )

�−
l (k′)

+ h + 
h(iωn′ )

�+
l (k′)

]
,

(17)

χ (iωn) = −g2

2N

∑
k′l

Dnn′

[
εk′l + χ (iωn′ )

�+
l (k′)

+ η(iωn′ )

�−
l (k′)

]
, (18)

η(iωn) = −g2

2N

∑
k′l

Dnn′

[
εk′l + χ (iωn′ )

�−
l (k′)

+ η(iωn′ )

�+
l (k′)

]
, (19)

φe(iωn) = g2

2N

∑
k′l

Dnn′

[
φe(iωn′ )

�+
l (k′)

− φo(iωn′ )

�−
l (k′)

]
, (20)

φo(iωn) = g2

2N

∑
k′l

Dnn′

[
−φe(iωn′ )

�−
l (k′)

+ φo(iωn′ )

�+
l (k′)

]
, (21)

with Dnn′ = D(iωn − iωn′ ) and 1/�±
l (k) = 1/�1l (k) ±

1/�2l (k).
Momentum-independent Eliashberg functions present a

significant simplification. Still, the k′ sum on the right-hand
side cannot be integrated out for flat-band systems. Instead,
we compute the sum directly, capturing the full electron
bandwidth. Hence this goes beyond the standard Migdal-
Eliashberg theory [28,29,53]. We increase N , the number of
evenly spaced k values in the 1BZ, until results become es-
sentially independent of N , limiting finite-size effects. As a
result, solving the above equations is more computationally
demanding than solving the standard Migdal-Eliashberg equa-
tions. We compute the frequency sum on the right-hand side as
a convolution using the fast Fourier transformation. The sum
has an infinite number of terms, but contributions from large
|ωn′ | should be small. We introduce a cutoff |ωn| < M and
check that M is large enough so that the results do not depend
on M. The self-consistent Eliashberg equations are solved
by fixed-point iteration. We place a tolerance on the relative
difference between successive iterations to judge when the
result converges.

III. FREE ENERGY

Appendix B derives the free energy using functional inte-
gral methods. The expression for the free energy is

F = −
∑

kl

ln[β2�1l (k)] +
∑
kk′ll ′

λ(iωn − iωn′ )

×
[

φ̄(iωn)φ(iωn′ )

�1l (k)�1l ′ (k′)
− 1

2

G−1
l↓ (−k)G−1

l ′↓ (−k′)

�1l (k)�1l ′ (k′)

− 1

2

G−1
l↑ (−k)G−1

l ′↑ (−k′)

�2l (k)�2l ′ (k′)

]
. (22)
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Here, λ(iων )= −g2D(iων )/N , G−1
lσ (k)= G−1

0lσ (k)− i
σ (iωn),
G−1

0lσ (k) = iωn − εkl + σh,

i
↑(iωn) = [1 − Z (iωn)]iωn + χ (iωn) + η(iωn) − 
h(iωn),

i
↓(iωn) = [1 − Z (iωn)]iωn + χ (iωn) − η(iωn) + 
h(iωn),

φ(iωn) = φ̄(iωn) = φe(iωn) − φo(iωn).

The symmetries of the Eliashberg functions under inversion
of iωn ensure that the free energy is a real quantity. As ex-
plained in Appendix B, the expression for the free energy
has an arbitrary zero point, so that only free energy differ-
ences are meaningful. We define �F = Fs − Fn as the free
energy difference between the superconducting state and the
normal state. �F < 0 indicates that the superconducting state
is energetically preferred, while the normal state is preferred
if �F > 0. The normal state is a solution of the Eliashberg
equations where φe = φo = 0, and the superconducting state
has either φe or φo nonzero or both nonzero.

Ideally, we should show that the superconducting state is
the global minimum of the free energy. However, using the
functional integral formalism, the free energy is derived from
a complex action, where the concept of a global minimum
has no meaning. Reference [70] suggests searching for saddle
points in the complex action instead of a global minimum
of the free energy. Meanwhile, Ref. [61] suggests imposing
symmetries on the Eliashberg functions also away from sta-
tionary points, such that the action remains real and can be
viewed as a free energy. We consider FSs with no nesting
vectors so that spin-density wave correlations will not be a
competing order [75,87]. We therefore assume that the normal
and superconducting states are the only possible states, in
which case the sign of �F determines the global minimum
of the free energy.

IV. ONE DISPERSIVE BAND

Since the CC limit to our knowledge has not been inves-
tigated using Eliashberg theory before, we first consider one
dispersive band. We take the tight-binding dispersion on the
square lattice, εk = −μ − 2t (cos kx + cos ky) with μ being
the chemical potential and t being the hopping parameter [75].
Electrons have spin; so what we refer to as one band is actually
two spin-degenerate bands in zero magnetic field. In a nonzero
magnetic field, we get two spin-split bands εkσ = εk − σh.
Figure 2(a) shows the dispersive band and the DOS D(ε) =∑

kσ δ(ε − εkσ ) at zero magnetic field.
Since the weak-coupling limit of Eliashberg theory repro-

duces BCS predictions [34,66], we suspect the same holds
for the CC limit. Therefore we consider a strong EPC to
see if the effects of renormalization change the CC limit for
strong-coupling SCs. Figure 2 shows the superconducting gap
and the free energy difference as a function of temperature
and magnetic field. We find Tc/t ≈ 0.015, �0/t ≈ 0.030, and
hc/t ≈ 0.027 for both T/Tc ≈ 1/5 and T/Tc ≈ 1/15. This
yields hc/�0 ≈ 0.9, which is larger than the CC limit. With
the choice of parameters in Fig. 2, we are in a range where
vertex corrections, such as the one in Fig. 1(b), are negligi-
ble, since ωE � 8t [54,55]. The results in Fig. 2 show that
the temperature dependence of both the gap amplitude �0

FIG. 2. (a) The electron dispersion for a tight-binding model on
the square lattice along the path sketched in the inset for h = 0. The
right panel shows the density of states. (b) The superconducting gap
�0 = Re�(iωn=0) (solid blue curve) as a function of temperature
at h = 0, giving Tc/t ≈ 0.015 and �0/t ≈ 0.030. The free energy
difference between the superconducting and normal state �F is
shown as a dashed orange curve. Solid circles indicate the calculated
points. (c) �0 as a function of magnetic field (solid blue curve), and
�F (dashed orange curve) for T/t = 0.001. A nonzero gap is shown
as long as a nonzero solution is found to the Eliashberg equations.
The sign of �F determines which state is preferred. (d) Same as
(c), but for T/t = 0.003. In both cases, �F becomes positive for
hc/t ≈ 0.027 giving hc/�0 ≈ 0.9. When �0 drops to zero as a func-
tion of temperature or magnetic field, the superconducting state is the
same as the normal state, and so �F = 0. Parameters are μ = −t ,
g/t = 0.7, ωE/t = 0.2, M = 20ωE , N = 2002, and tolerance for con-
vergence 10−5.

and the critical magnetic field hc converges for T < Tc/5.
This indicates that taking the low-temperature limit within
the Matsubara formalism gives good approximations to the
zero-temperature case.

Note that hc is where �F changes sign, not where nonzero
solutions of the gap cease to exist. At low temperatures, the
phase transition from the superconducting state to the normal
state is first order since �F changes sign while �0(h) is
nonzero. Hence the gap drops discontinuously to zero at hc. At
higher temperatures, we find that nonzero solutions to the gap
cease to exist when �F is still negative indicating a second-
order, continuous phase transition. The same result was found
in Ref. [73] without considering the free energy. Hence our
results offer an alternative perspective on the low-temperature
first-order phase transition. It is caused by a sign change in
the free energy difference, not a sudden stop in obtainable
solutions of the Eliashberg equations with a nonzero gap. This
is the same situation found using BCS theory [21].

Figure 3 shows solutions to the Eliashberg equations. We
note strong renormalization effects in the strong-coupling
case, as expected. The magnetic field renormalization 
h,
the spin-dependent renormalization η, and the odd-frequency
part of the gap φo are only nonzero in the presence of a
magnetic field. Like Ref. [73], we find magnetic-field-induced
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FIG. 3. Solutions to the Eliashberg equations for the supercon-
ducting state (s; solid blue curves) and normal state (n; dashed orange
curves) with one dispersive band. The superconducting gap �(iωn)
is shown with the real part represented by a solid green curve and
the imaginary part represented by a dotted red curve. The gap is
zero in the normal state. We also show the effective magnetic field
heff(iωn) = [h + 
h(iωn)]/[Z (iωn)] in the superconducting and nor-
mal states. Parameters are h/t = 0.025, T/t = 0.001, and otherwise
the same as in Fig. 2.

odd-frequency superconductivity that coexists with a domi-
nating even-frequency correlation. Since the even-frequency
gap is dominating, we expect that the odd-frequency gap has
small effects on the critical magnetic field.

As shown in Fig. 3, heff(iωn) < h, i.e., renormalizations
reduce the effective magnetic field in the SC, yielding a lower
band splitting than the external magnetic field would yield
in BCS theory. This permits hc/�0 > 0.7 in strong-coupling
SCs. However, the CC limit is not exceeded by a large amount.
Note that the effective magnetic field is in general different
in the normal state and the superconducting state. It is nat-
ural to assume that the actual band splitting in the SC still
follows the CC limit, but the external magnetic field is the
relevant parameter that is tuned in an experiment. The band
splitting, though measurable in angle-resolved photoemission
spectroscopy (ARPES) [83], is less tunable. Since heff(iωn)
depends on the parameters in the system, the CC limit for
strong-coupling SCs becomes material dependent, as opposed
to the general CC limit for weak-coupling SCs. It is worth
noting that in certain applications, such as thermoelectric
effects [4–6], a large band splitting in an SC is the desired
situation, not necessarily a larger magnetic field. In all the
systems we considered, heff(iωn) < h, but it seems in principle
possible that heff(iωn) > h due to self-energy effects given that

h is positive and large enough.

We have defined �0 ≈ Re�(iωn=0 = iπT ), where �0 is
the zero-temperature gap amplitude. As mentioned, the results
should technically be analytically continued to the real axis
to compare with experiments. We therefore discuss whether
�0 ≈ Re�(iωn=0) is a reasonable approximation. As T → 0,
iωn=0 → 0, and so �(iωn=0) → �(0). We find that Re�(iωn)
is relatively smooth around zero frequency with a negative

second derivative. Also, its zero-imaginary-frequency limit
converges when decreasing T . Meanwhile, Im�(iωn) is odd,
so that its zero-frequency limit is zero. Therefore Re�(iωn=0)
at a low temperature should be a good approximation of
�(ω = 0) at zero temperature. In simpler systems with no
magnetic field and where χ is ignored, one defines �0 =
�(ω = �0), the value of the gap on the gap edge [80,88]. A
similar, yet more complicated self-consistent definition could
be used in our case. References [28,73,89] indicate that �(ω)
varies slowly in a region around ω = 0 larger than the gap
size. Hence �0 ≈ �(ω = 0) ≈ Re�(iωn=0) should be a good
approximation. We also use �0 = Re�(iωn=0) when plotting
results as a function of temperature or magnetic field. How-
ever, when discussing the ratio hc/�0 and the CC limit in this
and the following two sections, �0 refers to our estimate of
the zero-temperature limit at zero magnetic field.

In BCS theory, the dimensionless coupling λ = V NF .
Here, we let NV = −g2D(iων = 0) = 2g2/ωE to get an es-
timate of λ in the strong-coupling case. Also, it is known
that Z (iωn=0) ≈ 1 + λ [34], given that FS averages provide
reasonable approximations. In the case of one electron band,
the two estimates agree very well, both giving λ ≈ 0.69,
with tNF /N ≈ 0.14 at μ = −t and Z (iωn=0) shown in Fig. 3.
Additionally, 2�0/Tc ≈ 4.0 is greater than the BCS prediction
2�0/Tc ≈ 3.5, placing us in the strong-coupling limit [7].

V. TWO BANDS THAT CROSS

In order to compare our results with those of Ref. [21],
we take the same bands: one dispersive, εk,1 = εk,d = −μ −
2t (cos kx + cos ky), and one completely flat, εk,2 = ε f =
−μ0. For the sake of generality, we do not specify the un-
derlying microscopic model giving rise to the flat band. As
noted previously, the form of EPC means that there will be
hybridization between the bands. Here, we assume that hy-
bridization effects are negligible. For multiband models, the
DOS is D(ε) = ∑

klσ δ(ε − εklσ ). With the second band being
flat, this gives a delta function contribution to the DOS at
the position of the flat band. Compared with Fig. 2(a) for the
one-band case, there is now a flat band just below the FS, with
an accompanying spike in the DOS.

Reference [90] considers the free energy of multiband
superconductors using BCS theory and finds that in certain
situations constraints must be placed on the gaps to ensure a
free energy that is bounded from below. This analysis relies on
the inverse of the matrix describing the intra- and interband
couplings. The case we consider with all couplings equal,
Vi j = V , where i, j are band indices, is a special case where
the Vi j matrix is not invertible. However, with all couplings
equal, �i = � for all band indices i [21]. In light of Ref. [90],
we view this as a constraint on the gaps. Then, the free energy
becomes very similar to the one-band case, containing a term
N�2/V , and is obviously bounded from below [21,90]. The
authors of Ref. [21] considered both Vi j = V and situations
where the couplings had different strengths for different band
indices. They found that the key to exceeding the CC limit
was the intraband coupling in the flat band V22 and that there
was a not-too-small interband coupling V12 = V21. For com-
putational convenience, we stick to Vi j = V in this paper.
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FIG. 4. Results for a two-band system with one dispersive band
and one flat band that cross. (a) The superconducting gap �0 (solid
blue curve) as a function of temperature at h = 0, giving Tc/t ≈
1.6 × 10−3 and �0/t ≈ 1.2 × 10−3. The free energy difference be-
tween the superconducting and normal states �F is shown as a
dashed orange curve. (b) �0 as a function of magnetic field (solid
blue curve), and �F (dashed orange curve) for T/t = 2 × 10−4.
�F stays negative as long as nonzero-gap solutions are found, giv-
ing hc/t ≈ 7.9 × 10−3 and hc/�0 ≈ 6.6. Parameters are μ = −t ,
μ0/t = 0.02, g/t = 0.034 85, ωE/t = 0.1, M = 20ωE , N = 2002,
and tolerance for convergence 10−5.

Results for the case of a flat band placed just below the FS
are shown in Fig. 4. We find Tc/t ≈ 1.6 × 10−3 and �0/t ≈
1.2 × 10−3 giving 2�0/Tc ≈ 1.5. A low value for 2�0/Tc was
also found for the same system in Ref. [21] using a weak-
coupling approach; so it appears that the flat band boosts Tc

more than it boosts the gap amplitude. Furthermore, we ob-
tain hc/t ≈ 7.9 × 10−3 giving hc/�0 ≈ 6.6, almost ten times
greater than the CC limit.

Figure 5 shows solutions to the Eliashberg equations with
the same parameters as in Fig. 4. Since we now consider a
smaller gap, the solutions for the normal state and supercon-

FIG. 5. Solutions to the Eliashberg equations for the supercon-
ducting state (solid blue curves) and normal state (dashed orange
curves) with two bands that intersect. The superconducting gap
�(iωn) is shown with the real part represented by a solid green curve
and the imaginary part represented by a dotted red curve. We also
show the effective magnetic field heff(iωn) = [h + 
h(iωn)]/[Z (iωn)]
in the superconducting and normal states. Parameters are h/t =
0.007, T/t = 2 × 10−4, and otherwise the same as in Fig. 4.

ducting state are more similar than in Fig. 3. Compared with
the one-band case in Fig. 3, η and χ have changed sign. We
interpret this as a result of the fact that now, most of the states
lie below the FS, while in Fig. 3 a majority of the states lie
above the FS. Also note that heff is much closer to h now.
Hence, exceeding the CC limit is definitely due to the flat
band, not the renormalization of the magnetic field.

Some fine-tuning of parameters was involved in obtain-
ing Fig. 4. Naturally, to get high hc/�0, a low �0 helps.
We tuned g in order to get �0/t ∼ 0.001. Renormalizations
move the flat band closer to the FS, so the bare flat band
is placed further down from the FS than in Ref. [21]. With
max χ (iωn)/t ≈ 0.01 and μ0/t = 0.02 we would naively ex-
pect hc/t ≈ 0.01. The slightly lower result, hc/t ≈ 0.008, is
caused by the model being more complicated than the simple
picture that the normal state becomes energetically preferred
once the flat band corresponding to spin down crosses the
FS. Even in the BCS case, the situation is more complicated
than that [21]. Here, in the strong-coupling approach, renor-
malizations in both the normal state and the superconducting
state change as a function of the magnetic field, and the free
energy is much more intricately linked with the magnetic field
strength.

In the system we consider, �0 should be smaller than μ0 in
order to get a large hc/�0. Simultaneously, μ0 should be much
smaller than ωE to ensure small vertex corrections [29]. This
places restrictions on parameter choices where the system we
study here can exceed the CC limit by a large amount. One
could imagine relaxing the restriction μ0 � ωE by explicitly
calculating and including vertex corrections. If the vertex cor-
rections do not give dramatic changes to the results, one could
then imagine increasing the EPC strength g, and so �0, and
still achieving a large hc/�0 by increasing μ0. An alternate
view is that when �0 becomes very large, hc ≈ �0 is a very
large magnetic field, so that surpassing the CC limit becomes
less important in applications. We leave for future studies the
case of larger �0 and considerations of vertex corrections,
which are beyond the scope of this paper.

VI. TWO HYBRIDIZED BANDS

We now include hybridization between the two bands in
the previous section. This originates with self-energy effects
due to Feynman diagrams with different band indices in the
external legs. We refer to these effects with a single frequency-
dependent function 
12(iωn). Since the EPC is chosen to
be band independent, we expect that the functional form
of 
12(iωn) is closely related to the intraband self-energies
χ (iωn), η(iωn), and 
h(iωn). The effect of the hybridization
is strongest on the bands close to where they cross, which
happens at a specific quasiparticle energy, so that only a small
real-frequency region of 
12(ω) matters. We simplify, and
take the hybridization parameter 
12 to be a real constant
representing the average value in the most relevant region of
frequencies. Furthermore, we ignore any spin-dependent part
of 
12. From the Dyson equation, the renormalized bands due
to 
12 are the eigenvalues of(

εk,d 
12


12 ε f

)
. (23)
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FIG. 6. (a) The electron dispersion in Eq. (24) for h = 0. (b) A
closer view of the hybridization along with dotted black lines show-
ing the original flat and dispersive bands. (c) The superconducting
gap �0 (solid blue curve) as a function of temperature at h = 0,
giving Tc/t ≈ 1.5 × 10−3 and �0/t ≈ 1.1 × 10−3. The free energy
difference between the superconducting and normal states �F is
shown as a dashed orange curve. (d) �0 as a function of magnetic
field (solid blue curve), and �F (dashed orange curve) for T/t =
2 × 10−4. �F stays negative as long as nonzero-gap solutions are
found, giving hc/t ≈ 5.8 × 10−3 and hc/�0 ≈ 5.3. Parameters are
μ = −t , μ0/t = 0.02, 
12/t = 0.01, g/t = 0.034 85, ωE/t = 0.1,
M = 20ωE , N = 2202, and tolerance for convergence 10−5.

Hence the hybridized bands are

εkl = 1
2

(
εk,d + ε f + nl

√
(εk,d − ε f )2 + 4
2

12

)
, (24)

with n1 = 1, n2 = −1. Figure 6(a) shows this dispersion,
while Fig. 6(b) highlights the hybridization. Now, the delta
function peak in the DOS at −μ0 is replaced by zero DOS
at −μ0 and a very large, finite DOS in small regions above
and below −μ0. As previously noted, this band structure
resembles that of the Anderson lattice model of Kondo insula-
tors [43,44], models of heavy-fermion superconductors [45],
and models for twisted-bilayer graphene [18].

Figure 6 shows the temperature and magnetic field evolu-
tion of �0 and �F when including hybridization. We set 
12

approximately equal to the zero-imaginary-frequency limit
of χ (iωn). Then, we find Tc/t ≈ 1.5 × 10−3, �0/t ≈ 1.1 ×
10−3, and hc/t ≈ 5.8 × 10−3. This yields hc/�0 ≈ 5.3, lower
than when ignoring hybridization, but still far exceeding the
CC limit. While hybridization reduces the effectiveness of the
flat band, the large nearly flat regions still provide essentially
the same effect as studied in Ref. [21]. The solutions to the
Eliashberg equations are very similar to the case of zero hy-
bridization in Fig. 5, except that the gap amplitude decreases
more rapidly with magnetic field. We checked whether this
was an effect of being at an effectively higher temperature
since Tc is slightly smaller. Solutions at T/t = 10−4, half
the value used in Fig. 6(d), give essentially the same result
for the magnetic field strengths we checked. At h/t = 5 ×
10−3, �0/t ≈ 0.45 × 10−3 for both temperatures. The faster

decrease of �0(h) is therefore interpreted as being a result
of the hybridization moving parts of the flat-band region fur-
ther from the FS. Also, at T/t = 10−4, we found that �F
changes sign before nonzero-gap solutions disappear from the
Eliashberg equations, confirming the low-temperature first-
order phase transition. This slightly reduces the estimate of the
critical magnetic field to hc/t = 5.7 × 10−3, giving hc/�0 ≈
5.2, more than seven times the CC limit. While hybridization
reduces hc/�0, we expect that the system will continue to
exceed the CC limit by a large amount if the strength of the
hybridization is increased.

Our strong-coupling consideration essentially shows that
the results derived using BCS theory in Ref. [21] are valid
if the bands used there are viewed as already renormalized.
Aside from hybridization, renormalization effects do not add
dispersion to the flat band; so the underlying mechanism
discussed in Ref. [21] also applies at strong coupling. Renor-
malizations do shift the position of the flat band though,
which is a crucial parameter when it comes to exceeding
the CC limit. It is also predicted that renormalization effects
in flat-band systems give rise to replica bands appearing at
integer multiples of the Einstein frequency in the spectral
function [29]. Since this is far from the FS with the parameters
in Figs. 4 and 6, we do not expect that they play a significant
role in our system. Future studies could apply our setup to a
specific material with a microscopic model in mind. In that
case, a detailed study of the quantum geometry is possible,
to ensure a nonzero superfluid weight. It is likely that the flat
band should not be a trivial insulating band originating with
electrons that are localized at separate lattice sites. Rather, a
nontrivial flat band should be pursued [46,47]. However, the
hybridization with a dispersive band may still give a nonzero
superfluid weight of the two-band system even with a trivial
flat band.

VII. CONCLUSION

We have studied the phase transition from a supercon-
ducting state to a normal state caused by the application
of an in-plane magnetic field in a 2D superconductor.
The Chandrasekhar-Clogston limit puts an upper limit on
the magnetic field at hc/�0 ≈ 0.7 for conventional weak-
coupling superconductors. Using strong-coupling theory, we
have derived Eliashberg equations for a multiband system
in a magnetic field. Following a Green’s function approach,
superconductivity and self-energy effects are treated in a self-
consistent manner. We have derived the free energy using
functional integral methods and expressed it in terms of so-
lutions to the Eliashberg equations.

Applied to a one-band strong-coupling system, we found
that renormalization of the magnetic field caused by self-
energy effects can lead to a slightly larger critical field than
the CC limit. We have also studied a two-band system with
a flat band placed just below the Fermi level of a dispersive
band. Weak-coupling calculations show that such a system
can exceed the CC limit. The large density of states for the flat
band suggests the presence of strong coupling, so that strong-
coupling calculations may offer corrections to weak-coupling
predictions. Nevertheless, we have found that such a system
can surpass the CC limit by a factor of almost 10, also when

214511-9



KRISTIAN MÆLAND AND ASLE SUDBØ PHYSICAL REVIEW B 108, 214511 (2023)

using strong-coupling theory. Finally, we have considered
the presence of self-energy-driven hybridization between the
bands. While the critical magnetic field decreases, the system
still exceeds the CC limit by a factor of 7.
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APPENDIX A: FULL ELIASHBERG EQUATIONS

For completeness, we state the full Eliashberg equa-
tions for a multiband system in a magnetic field with
band-independent EPC. They are given by

Z (k) = 1 − 1

2iωn

∑
k′l

λkk′

[
iωn′Z (k′)
�+

l (k′)
+ h + 
h(k′)

�−
l (k′)

]
, (A1)


h(k) = −1

2

∑
k′l

λkk′

[
iωn′Z (k′)
�−

l (k′)
+ h + 
h(k′)

�+
l (k′)

]
, (A2)

χ (k) = 1

2

∑
k′l

λkk′

[
εk′l + χ (k′)

�+
l (k′)

+ η(k′)
�−

l (k′)

]
, (A3)

η(k) = 1

2

∑
k′l

λkk′

[
εk′l + χ (k′)

�−
l (k′)

+ η(k′)
�+

l (k′)

]
, (A4)

φR
e (k) = −1

2

∑
k′l

λkk′

[
φR

e (k′)
�+

l (k′)
− φR

o (k′)
�−

l (k′)

]
, (A5)

φI
e (k) = −1

2

∑
k′l

λkk′

[
φI

e (k′)
�+

l (k′)
− φI

o(k′)
�−

l (k′)

]
, (A6)

φR
o (k) = −1

2

∑
k′l

λkk′

[
− φR

e (k′)
�−

l (k′)
+ φR

o (k′)
�+

l (k′)

]
, (A7)

φI
o(k) = −1

2

∑
k′l

λkk′

[
− φI

e (k′)
�−

l (k′)
+ φI

o(k′)
�+

l (k′)

]
, (A8)

where λkk′ = −|gk−k′ |2D(k − k′).

APPENDIX B: FUNCTIONAL INTEGRAL APPROACH
AND FREE ENERGY

Reference [62] introduces a way to derive the Eliashberg
equations using functional integral methods [91]. This paves
the way for studying fluctuations around the superconducting
state in a strong-coupling approach. In the present setting,
however, its main interest is that it provides a way to derive a
generalizable expression for the free energy, given solutions to
the Eliashberg equations. We follow the derivation of Ref. [62]
but generalize to multiband systems in the presence of a mag-
netic field.

The starting point is to write the Hamiltonian in Eq. (1) as
an action,

S[c̄, c, ā, a] =
∫ β

0
dτ

[ ∑
klσ

c̄klσ (∂τ + εkl − σh)cklσ

+
∑

q

āq(∂τ + ωq)aq

+
∑

kqσ ll ′
gqc̄k+q,l ′,σ cklσ (aq + ā−q)

]
, (B1)

where fermion operators are replaced by Grassmann fields and
boson operators are replaced by complex fields. The fields
depend on imaginary time; so cklσ = cklσ (τ ), aq = aq(τ ), and
so on. Inserting the FTs

cklσ (τ ) = 1

β

∑
ωn

cklσ e−iωnτ , aq(τ ) = 1

β

∑
ων

aqe−iωντ (B2)

gives

S[c̄, c, ā, a] = −
∑
klσ

c̄klσ G−1
0lσ (k)cklσ −

∑
q

āqD̃−1
0 (q)aq

+
∑

kqσ ll ′
gqc̄k+q,l ′,σ ck,l,σ (aq + ā−q ), (B3)

with G−1
0lσ (k) = iωn − εkl + σh and D̃−1

0 (q) = iων − ωq.
These are bare Green’s functions for cklσ and aq, res-
pectively [77,83]. The grand canonical partition function is

Zg =
∫

D[c̄, c, ā, a]e−S[c̄,c,ā,a], (B4)

where D[c̄, c, ā, a] is the path integral measure [62,91].

1. Integrate out phonons

The fermionic density is defined as ρq =∑
kσ ll ′ c̄k+q,l ′,σ cklσ , with the property ρq = ρ̄−q. Factoring out

the phonon part of Zg yields

Zph[c̄, c]

=
∫

D[ā, a] exp

[ ∑
q

(
āqD̃−1

0 aq − gq(aq + ā−q)ρq
)]

.

(B5)

The Gaussian integral can be computed by complet-
ing squares. Let āq → āq + gqD̃0(q)ρ̄−q and aq → aq +
g−qD̃0(q)ρ−q. Using that ρq and ρ̄q commute since the
Grassmann variables anticommute, and that g−q = g∗

q from
Hermiticity, we get

Zph[c̄, c] = N exp

(
−

∑
q

|gq|2D̃0(q)ρqρ̄q

)
. (B6)

N = exp [ − β
∑

q tr ln βD̃−1
0 (q)] represents a phonon-

dependent contribution to the free energy. We ignore any
feedback effects on the phonons and assume that their
contribution is the same in the normal and superconducting
states. Hence N is an unimportant constant shifting the free
energy. Note that D̃0(q) is coupled to terms that are even in q.
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As a result, only the part that is even in q contributes. This is the propagator D0(q) ≡ D̃0(q) + D̃0(−q) of aq + ā−q. So, we write

Zph[c̄, c] = exp

⎛
⎝−1

2

∑
q

|gq|2D0(q)ρqρ̄q

⎞
⎠. (B7)

The full partition function is now

Zg =
∫

D[c̄, c] exp

[ ∑
klσ

c̄klσ G−1
0lσ (k)cklσ + 1

2

∑
q

λ(q)ρqρ̄q

]
, (B8)

where λ(q) = −|gq|2D0(q). At this point, Ref. [62] proceeds to FT to real space, perform a Hubbard-Stratonovich (HS)
decoupling, and then FT back to momentum space. In the following, we perform the HS decoupling in momentum space,
obtaining a generalization of the same end result.

2. HS decoupling

The full interaction term is

1

2

∑
q

λ(q)ρqρ̄q = 1

2

∑
kk′qσσ ′

∑
ll ′l ′′l ′′′

λ(q)c̄k+q,l ′,σ cklσ c̄k′l ′′′σ ′ck′+q,l ′′,σ ′ , (B9)

which is too complicated to perform an HS decoupling, as there can only be two independent momentum sums. We also
make certain assumptions on spin and band combinations that are typical for density-density-type terms and BCS-type terms in
multiband SCs. Consider the following parts of the interaction:

1

2

∑
kk′qσ ll ′

λ(q)(c̄k+q,l ′,σ cklσ c̄k′lσ ck′+q,l ′,σ + c̄k+q,l ′,σ cklσ c̄k′,l ′,−σ ck′+q,l,−σ ). (B10)

The first term is decoupled in the density-density channel, and the second is decoupled in the Cooper channel. We restrict
ourselves to two momentum indices, guided by the physics we want to describe. In the first term, we choose k′ = k and then
redefine k + q = k′, such that q = k′ − k. That way, we get a quite generic density-density interaction in momentum space. In
the second term, we assume opposite momentum pairing, first setting q = −k′ − k and then letting k′ → −k′. We get

1

β

∑
kk′ll ′

λ(k − k′)

(
−1

2

∑
σ

c̄klσ cklσ c̄k′l ′σ ck′l ′σ + c̄k′l ′↑c̄−k′,l ′,↓c−k,l,↓ckl↑

)
. (B11)

Here, 1/β comes from removing one sum over momentum, where we have now picked out only one term. An argument for the
above restriction on q in the Cooper channel is that we are considering only EPC here. In reality, there would be a Coulomb
interaction, which the EPC is only able to overcome for a few special choices of spin and momentum indices.

To perform the HS decoupling, we introduce auxiliary bosonic fields φ̄, φ,
 and a measure D[φ̄, φ,
] chosen such that

1 =
∫

D[φ̄, φ,
] exp

(
− β

N

∑
kk′

λ−1(k − k′)

[
φ̄(k)φ(k′) + 1

2

∑
σ


σ (k)
σ (k′)

])
. (B12)

Here, λ−1(q) is the FT of 1/λ(ri, τ ). The FT back to real space and imaginary time is defined as

λ(ri, τ ) = 1√
N

∑
q

1

β

∑
iων

λ(q, iων )ei(q·ri−ωντ ). (B13)

Meanwhile, λ−1(q) is defined as

λ−1(q, iων ) = 1√
N

∑
ri

∫ β

0
dτ

1

λ(ri, τ )
e−i(q·ri−ωντ ). (B14)

λ−1(q) defined as the FT of 1/λ(ri, τ ) satisfies∑
k′′

λ(k − k′′)λ−1(k′′ − k′) = Nβδkk′δiωn,iωn′ = Nβδk,k′ . (B15)
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Now,

Zg =
∫

D[c̄, c, φ̄, φ,
] exp

(
−SF [c̄, c] − β

N

∑
kk′

λ−1(k − k′)

[
φ̄(k)φ(k′) + 1

2

∑
σ


σ (k)
σ (k′)

])
, (B16)

SF [c̄, c] = −
∑
klσ

c̄klσ G−1
0lσ (k)cklσ − 1

β

∑
kk′ll ′

λ(k − k′)

(
−1

2

∑
σ

c̄klσ cklσ c̄k′l ′σ ck′l ′σ + c̄k′l ′↑c̄−k′,l ′,↓c−k,l,↓ckl↑

)
. (B17)

We treat 
σ as density fluctuations and φ as fermion pairing. To eliminate the four-fermion terms, we introduce the shifts

φ̄(k) → φ̄(k) − 1

β

∑
k′′l

λ(k − k′′)c̄k′′l↑c̄−k′′,l,↓, (B18)

φ(k′) → φ(k′) − 1

β

∑
k′′l

λ(k′ − k′′)c−k′′,l,↓ck′′l↑, (B19)


σ (k) → 
σ (k) + i

β

∑
k′′l

λ(k − k′′)c̄k′′lσ ck′′lσ . (B20)

Using Eq. (B15), we get

S[c̄, c, φ̄, φ,
] = β

N

∑
kk′

λ−1(k − k′)
[
φ̄(k)φ(k′) + 1

2

σ (k)
σ (k′)

]

−
∑

kl

(
c̄klσ

[
G−1

0lσ (k) − i
σ (k)
]
cklσ + φ(k)c̄kl↑c̄−k,l,↓ + φ̄(k)c−k,l,↓ckl↑

)
. (B21)

Sums over repeated σ indices are left implicit.

3. Integrate out electrons

With Nambu spinor �̄kl = (c̄kl↑, c−k,l,↓),

S[c̄, c, φ̄, φ,
] = β

N

∑
kk′

λ−1(k − k′)
[
φ̄(k)φ(k′) + 1

2

σ (k)
σ (k′)

]
−

∑
kl

�̄kl G̃
−1
l (k)�kl , (B22)

where

G̃−1
l (k) =

(
G−1

0l↑(k) − i
↑(k) φ(k)
φ̄(k) −G−1

0l↓(−k) + i
↓(−k)

)
. (B23)

Integrating out the electrons then gives the action

SHS[φ̄, φ,
] = −β
∑

kl

tr ln ( − βG̃−1
l (k)) + β

N

∑
kk′

λ−1(k − k′)
[
φ̄(k)φ(k′) + 1

2

σ (k)
σ (k′)

]
. (B24)

4. Eliashberg equations and free energy

The grand canonical partition function Zg = ∫
D[φ̄, φ,
] exp(−SHS[φ̄, φ,
]) = e−β�, where � = F − μN is the grand

potential and F is the free energy. The main contribution to Zg is expected to come from regions close to the stationary points of
the action SHS [62], where it is slowly varying. Following the same route as Ref. [62], the stationary point conditions are

i
σ (k) = δσ↑
∑
k′l

λ(k − k′)
−G−1

0l↓(−k′) + i
↓(−k′)

�1l (k′)
+ δσ↓

∑
k′l

λ(k − k′)
−G−1

0l↑(−k′) + i
↑(−k′)

�2l (k′)
, (B25)

φ(k) = −
∑
k′l

λ(k − k′)
φ(k′)

�1l (k′)
, φ̄(k) = −

∑
k′l

λ(k − k′)
φ̄(k′)

�1l (k′)
, (B26)
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where �1l (k) = det G̃−1
l (k) = [G−1

0l↑(k) − i
↑(iωn)][−G−1
0l↓(−k) + i
↓(−iωn)] − φ(iωn)φ̄(iωn) and �2l (k) = �1l (−k). Upon

comparing the G−1 matrices in the Green’s function approach and the functional integral approach, we identify

i
↑(k) = iωn − Z (k)iωn + χ (k) + η(k) − 
h(k), (B27)

i
↓(k) = iωn − Z (k)iωn + χ (k) − η(k) + 
h(k), (B28)

φ(k) = φ̄(k) = φe(k) − φo(k). (B29)

Then, �1l = �1l , �2l = �2l . Using symmetries, the stationary point conditions can be rewritten as the Eliashberg equa-
tions given in Appendix A.

λ−1(q) is an oscillating function of frequency [64]. When T � ωE , its magnitude becomes very large, meaning that any
calculation involving λ−1(q) and a sum over frequencies becomes a numerical sign problem. It is convenient to insert the
stationary point conditions in the action to eliminate λ−1(q). Inserting Eqs. (B25) and (B26) in SHS gives the variational action

Svar[φ̄, φ,
] = −β
∑

kl

tr ln ( − βG̃−1
l (k)) + β

∑
kk′ll ′

λ(k − k′)

×
[

φ̄(k)φ(k′)
�1l (k)�1l ′ (k′)

− 1

2

[G−1
0l↓(−k) − i
↓(−k)][G−1

0l ′↓(−k′) − i
↓(−k′)]

�1l (k)�1l ′ (k′)

− 1

2

[G−1
0l↑(−k) − i
↑(−k)][G−1

0l ′↑(−k′) − i
↑(−k′)]

�2l (k)�2l ′ (k′)

]
. (B30)

The name “variational action” comes from the fact that inserting the stationary point conditions in the action yields an expression
similar to the free energy derived in a variational approach [61]. From Zg = e−β� = ∫

D[φ̄, φ,
] exp(−SHS[φ̄, φ,
]) ≈
e−Svar[φ̄,φ,
] under the assumption that the main contribution comes from the stationary point [62], the grand potential is
� ≈ Svar[φ̄, φ,
]/β [63,64,92]. We assume that the chemical potential is unchanged between the normal and superconducting
states, as discussed in Refs. [9,58], so that �F = �� = Fs − Fn provides an expression for the free energy difference between
the superconducting and normal states. Specializing to Einstein phonons with isotropic EPC and using tr ln A = ln det A yields
the free energy in Eq. (22). Note that the definition of the momentum-independent λ−1(iων ) is changed to

1

β

∑
iωn′′

λ(iωn − iωn′′ )λ−1(iωn′′ − iωn′ ) = βδiωn,iωn′ , (B31)

compared with Eq. (B15). λ−1(iων ) = ∫ β

0 dτeiωντ /λ(τ ) satisfies this. All results in this general Appendix carry over to the
specific case of momentum-independent λ(iων ) quite straightforwardly. With the aid of Ref. [64], generalizing the calculations
in this Appendix to the case of band-dependent interactions and, consequently, band-dependent Eliashberg functions is straight-
forward.

[1] J. Linder and J. W. A. Robinson, Superconducting spintronics,
Nat. Phys. 11, 307 (2015).

[2] M. Eschrig, Spin-polarized supercurrents for spintronics, Phys.
Today 64(1), 43 (2011).

[3] M. Eschrig, Spin-polarized supercurrents for spintronics: a
review of current progress, Rep. Prog. Phys. 78, 104501
(2015).

[4] F. S. Bergeret, M. Silaev, P. Virtanen, and T. T. Heikkilä,
Colloquium: Nonequilibrium effects in superconductors with a
spin-splitting field, Rev. Mod. Phys. 90, 041001 (2018).

[5] J. A. Ouassou, C. González-Ruano, D. Caso, F. G. Aliev, and
J. Linder, Complete magnetic control over the superconducting
thermoelectric effect, Phys. Rev. B 106, 094514 (2022).

[6] César González-Ruano, D. Caso, J. A. Ouassou, C. Tiusan, Y.
Lu, J. Linder, and F. G. Aliev, Observation of magnetic state de-
pendent thermoelectricity in superconducting spin valves, Phys.
Rev. Lett. 130, 237001 (2023).

[7] K. Fossheim and A. Sudbø, Superconductivity: Physics and
Applications (Wiley, Chichester, UK, 2004).

[8] Y. Yerin, S.-L. Drechsler, and G. Fuchs, Ginzburg-Landau
analysis of the critical temperature and the upper critical field
for three-band superconductors, J. Low Temp. Phys. 173, 247
(2013).

[9] Y. Wada, Critical field and specific heat of strong coupling
superconductors, Phys. Rev. 135, A1481 (1964).

[10] B. S. Chandrasekhar, A note on the maximum critical field of
high-field superconductors, Appl. Phys. Lett. 1, 7 (1962).

[11] A. M. Clogston, Upper limit for the critical field in hard super-
conductors, Phys. Rev. Lett. 9, 266 (1962).

[12] G. Sarma, On the influence of a uniform exchange field acting
on the spins of the conduction electrons in a superconductor,
J. Phys. Chem. Solids 24, 1029 (1963).

[13] B. J. Powell, J. F. Annett, and B. L. Györffy, The gap equa-
tions for spin singlet and triplet ferromagnetic superconductors,
J. Phys. A: Math. Gen. 36, 9289 (2003).

[14] T. Salamone, H. G. Hugdal, S. H. Jacobsen, and M. Amundsen,
High magnetic field superconductivity in a two-band supercon-
ductor, Phys. Rev. B 107, 174516 (2023).

214511-13

https://doi.org/10.1038/nphys3242
https://doi.org/10.1063/1.3541944
https://doi.org/10.1088/0034-4885/78/10/104501
https://doi.org/10.1103/RevModPhys.90.041001
https://doi.org/10.1103/PhysRevB.106.094514
https://doi.org/10.1103/PhysRevLett.130.237001
https://doi.org/10.1007/s10909-013-0903-9
https://doi.org/10.1103/PhysRev.135.A1481
https://doi.org/10.1063/1.1777362
https://doi.org/10.1103/PhysRevLett.9.266
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1088/0305-4470/36/35/314
https://doi.org/10.1103/PhysRevB.107.174516


KRISTIAN MÆLAND AND ASLE SUDBØ PHYSICAL REVIEW B 108, 214511 (2023)

[15] Y. Cao, J. M. Park, K. Watanabe, T. Taniguchi, and P.
Jarillo-Herrero, Pauli-limit violation and re-entrant super-
conductivity in moiré graphene, Nature (London) 595, 526
(2021).

[16] P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-
exchange field, Phys. Rev. 135, A550 (1964).

[17] A. I. Larkin and Y. N. Ovchinnikov, Nonuniform state of su-
perconductors, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys.
JETP 20, 762 (1965)].

[18] S. K. F. Islam, A. Yu. Zyuzin, and A. A. Zyuzin, Unconven-
tional superconductivity with preformed pairs in twisted bilayer
graphene, Phys. Rev. B 107, L060503 (2023).

[19] J. A. Ouassou, T. D. Vethaak, and J. Linder, Voltage-induced
thin-film superconductivity in high magnetic fields, Phys. Rev.
B 98, 144509 (2018).

[20] J. B. Tjernshaugen, M. Amundsen, and J. Linder, Super-
conducting phase diagram and spin diode effect via spin
accumulation, arXiv:2311.01502.

[21] A. Ghanbari, E. Erlandsen, A. Sudbø, and J. Linder, Going
beyond the Chandrasekhar-Clogston limit in a flatband super-
conductor, Phys. Rev. B 105, L060501 (2022).

[22] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of super-
conductivity, Phys. Rev. 108, 1175 (1957).

[23] S. Miyahara, K. Kubo, H. Ono, Y. Shimomura, and N.
Furukawa, Flat-bands on partial line graphs–systematic method
for generating flat-band lattice structures–, J. Phys. Soc. Jpn. 74,
1918 (2005).

[24] J. Li and D.-X. Yao, Superconductivity in octagraphene, Chin.
Phys. B 31, 017403 (2022).

[25] X.-L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.-R. Zheng, and G.
Su, Octagraphene as a versatile carbon atomic sheet for novel
nanotubes, unconventional fullerenes, and hydrogen storage, J.
Appl. Phys. 112, 074315 (2012).

[26] A. Bao, H.-S. Tao, H.-D. Liu, X. Zhang, and W.-M. Liu, Quan-
tum magnetic phase transition in square-octagon lattice, Sci.
Rep. 4, 6918 (2014).

[27] L. H. C. M. Nunes and C. M. Smith, Flat-band superconductiv-
ity for tight-binding electrons on a square-octagon lattice, Phys.
Rev. B 101, 224514 (2020).

[28] F. Schrodi, A. Aperis, and P. M. Oppeneer, Prominent Cooper
pairing away from the Fermi level and its spectroscopic signa-
ture in twisted bilayer graphene, Phys. Rev. Res. 2, 012066(R)
(2020).

[29] F. Schrodi, A. Aperis, and P. M. Oppeneer, Cascade of replica
bands in flat-band systems: Predictions for twisted bilayer
graphene, Phys. Rev. B 103, 144505 (2021).

[30] B. Brekke, A. Sudbø, and A. Brataas, Interfacial magnon-
mediated superconductivity in twisted bilayer graphene,
arXiv:2301.07909.

[31] E. Y. Andrei and A. H. MacDonald, Graphene bilayers with a
twist, Nat. Mater. 19, 1265 (2020).

[32] D. Marchenko, D. V. Evtushinsky, E. Golias, A. Varykhalov,
Th. Seyller, and O. Rader, Extremely flat band in bilayer
graphene, Sci. Adv. 4, eaau0059 (2018).

[33] Y. W. Choi and H. J. Choi, Dichotomy of electron-phonon
coupling in graphene moiré flat bands, Phys. Rev. Lett. 127,
167001 (2021).

[34] R. Ojajärvi, Electron-phonon interaction in flat-band supercon-
ductivity, Master’s thesis, University of Jyväskylä, 2017, https:
//jyx.jyu.fi/handle/123456789/54058.

[35] R. Ojajärvi, T. Hyart, M. A. Silaev, and T. T. Heikkilä, Competi-
tion of electron-phonon mediated superconductivity and Stoner
magnetism on a flat band, Phys. Rev. B 98, 054515 (2018).

[36] D. Pierucci, H. Sediri, M. Hajlaoui, J.-C. Girard, T. Brumme,
M. Calandra, E. Velez-Fort, G. Patriarche, M. G. Silly, G.
Ferro, V. Soulière, M. Marangolo, F. Sirotti, F. Mauri, and
A. Ouerghi, Evidence for flat bands near the Fermi level in
epitaxial rhombohedral multilayer graphene, ACS Nano 9, 5432
(2015).

[37] E. H. Lieb, Two theorems on the Hubbard model, Phys. Rev.
Lett. 62, 1201 (1989).

[38] B. Brekke, A. Brataas, and A. Sudbø, Two-dimensional alter-
magnets: A minimal microscopic model, arXiv:2308.08606.

[39] S. Okamoto and D. Xiao, Transition-metal oxide (111) bilayers,
J. Phys. Soc. Jpn. 87, 041006 (2018).

[40] M. R. Slot, T. S. Gardenier, P. H. Jacobse, G. C. P. van
Miert, S. N. Kempkes, S. J. M. Zevenhuizen, C. M. Smith,
D. Vanmaekelbergh, and I. Swart, Experimental realization and
characterization of an electronic Lieb lattice, Nat. Phys. 13, 672
(2017).

[41] G. Sethi, Y. Zhou, L. Zhu, L. Yang, and F. Liu, Flat-band-
enabled triplet excitonic insulator in a diatomic kagome lattice,
Phys. Rev. Lett. 126, 196403 (2021).

[42] G. Sethi, M. Cuma, and F. Liu, Excitonic condensate in flat
valence and conduction bands of opposite chirality, Phys. Rev.
Lett. 130, 186401 (2023).

[43] M. Dzero, J. Xia, V. Galitski, and P. Coleman, Topological
Kondo insulators, Annu. Rev. Condens. Matter Phys. 7, 249
(2016).

[44] H.-H. Lai, S. E. Grefe, S. Paschen, and Q. Si, Weyl–Kondo
semimetal in heavy-fermion systems, Proc. Natl. Acad. Sci.
USA 115, 93 (2018).

[45] F. Steglich and S. Wirth, Foundations of heavy-fermion super-
conductivity: lattice Kondo effect and Mott physics, Rep. Prog.
Phys. 79, 084502 (2016).

[46] S. Peotta and P. Törmä, Superfluidity in topologically nontrivial
flat bands, Nat. Commun. 6, 8944 (2015).

[47] P. Törmä, S. Peotta, and B. A. Bernevig, Superconductivity,
superfluidity and quantum geometry in twisted multilayer sys-
tems, Nat. Rev. Phys. 4, 528 (2022).

[48] S. Miyahara, S. Kusuta, and N. Furukawa, BCS theory on
a flat band lattice, Phys. C (Amsterdam) 460-462, 1145
(2007).

[49] N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, High-
temperature surface superconductivity in topological flat-band
systems, Phys. Rev. B 83, 220503 (2011).

[50] H. Aoki, Theoretical possibilities for flat band superconductiv-
ity, J. Supercond. Novel Magn. 33, 2341 (2020).

[51] V. Stanev, C. Oses, A. G. Kusne, E. Rodriguez, J. Paglione,
S. Curtarolo, and I. Takeuchi, Machine learning modeling of
superconducting critical temperature, npj Comput. Mater. 4, 29
(2018).

[52] G. M. Eliashberg, Interactions between electrons and lattice
vibrations in a superconductor, Zh. Eksp. Teor. Fiz. 38, 966
(1960) [Sov. Phys. JETP 11, 696 (1960)].

[53] F. Marsiglio, Eliashberg theory: A short review, Ann. Phys.
(Amsterdam) 417, 168102 (2020).

[54] A. B. Migdal, Interaction between electrons and lattice vibra-
tions in a normal metal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958)
[Sov. Phys. JETP 34, 996 (1958)].

214511-14

https://doi.org/10.1038/s41586-021-03685-y
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRevB.107.L060503
https://doi.org/10.1103/PhysRevB.98.144509
http://arxiv.org/abs/arXiv:2311.01502
https://doi.org/10.1103/PhysRevB.105.L060501
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1143/JPSJ.74.1918
https://doi.org/10.1088/1674-1056/ac40fa
https://doi.org/10.1063/1.4757410
https://doi.org/10.1038/srep06918
https://doi.org/10.1103/PhysRevB.101.224514
https://doi.org/10.1103/PhysRevResearch.2.012066
https://doi.org/10.1103/PhysRevB.103.144505
http://arxiv.org/abs/arXiv:2301.07909
https://doi.org/10.1038/s41563-020-00840-0
https://doi.org/10.1126/sciadv.aau0059
https://doi.org/10.1103/PhysRevLett.127.167001
https://jyx.jyu.fi/handle/123456789/54058
https://doi.org/10.1103/PhysRevB.98.054515
https://doi.org/10.1021/acsnano.5b01239
https://doi.org/10.1103/PhysRevLett.62.1201
http://arxiv.org/abs/arXiv:2308.08606
https://doi.org/10.7566/JPSJ.87.041006
https://doi.org/10.1038/nphys4105
https://doi.org/10.1103/PhysRevLett.126.196403
https://doi.org/10.1103/PhysRevLett.130.186401
https://doi.org/10.1146/annurev-conmatphys-031214-014749
https://doi.org/10.1073/pnas.1715851115
https://doi.org/10.1088/0034-4885/79/8/084502
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1038/s42254-022-00466-y
https://doi.org/10.1016/j.physc.2007.03.393
https://doi.org/10.1103/PhysRevB.83.220503
https://doi.org/10.1007/s10948-020-05474-6
https://doi.org/10.1038/s41524-018-0085-8
https://doi.org/10.1016/j.aop.2020.168102


EXCEEDING THE CHANDRASEKHAR-CLOGSTON LIMIT IN … PHYSICAL REVIEW B 108, 214511 (2023)

[55] B. Roy, J. D. Sau, and S. Das Sarma, Migdal’s theorem and
electron-phonon vertex corrections in Dirac materials, Phys.
Rev. B 89, 165119 (2014).

[56] J. M. Luttinger and J. C. Ward, Ground-state energy of a many-
fermion system. II, Phys. Rev. 118, 1417 (1960).

[57] G. M. Eliashberg, The low temperature specific heat of metals,
Zh. Eksp. Teor. Fiz. 43, 1005 (1962) [Sov. Phys. JETP 16, 780
(1963)].

[58] J. Bardeen and M. Stephen, Free-energy difference between
normal and superconducting states, Phys. Rev. 136, A1485
(1964).

[59] J. P. Carbotte, Properties of boson-exchange superconductors,
Rev. Mod. Phys. 62, 1027 (1990).

[60] R. Haslinger and A. V. Chubukov, Condensation energy in
strongly coupled superconductors, Phys. Rev. B 68, 214508
(2003).

[61] S.-S. Zhang, Y.-M. Wu, A. Abanov, and A. V. Chubukov, Su-
perconductivity out of a non-Fermi liquid: Free energy analysis,
Phys. Rev. B 106, 144513 (2022).

[62] M. Protter, R. Boyack, and F. Marsiglio, Functional-integral
approach to Gaussian fluctuations in Eliashberg theory, Phys.
Rev. B 104, 014513 (2021).

[63] S. D. Lundemo, The effective U(1) × O(3) theory of supercon-
ductivity and antiferromagnetism, Master’s thesis, Norwegian
University of Science and Technology, 2023.

[64] N. H. Aase, K. Mæland, and A. Sudbø, Multiband strong-
coupling superconductors with spontaneously broken time-
reversal symmetry, Phys. Rev. B 108, 214508 (2023).

[65] S.-S. Zhang, E. Berg, and A. V. Chubukov, Free energy and
specific heat near a quantum critical point of a metal, Phys. Rev.
B 107, 144507 (2023).

[66] A. V. Chubukov, A. Abanov, I. Esterlis, and S. A. Kivelson,
Eliashberg theory of phonon-mediated superconductivity—
When it is valid and how it breaks down, Ann. Phys.
(Amsterdam) 417, 168190 (2020).

[67] E. A. Yuzbashyan and B. L. Altshuler, Migdal-Eliashberg the-
ory as a classical spin chain, Phys. Rev. B 106, 014512 (2022).

[68] E. A. Yuzbashyan, Michael K.-H. Kiessling, and B. L.
Altshuler, Superconductivity near a quantum critical point in
the extreme retardation regime, Phys. Rev. B 106, 064502
(2022).

[69] E. A. Yuzbashyan and B. L. Altshuler, Breakdown of the
Migdal-Eliashberg theory and a theory of lattice-fermionic su-
perfluidity, Phys. Rev. B 106, 054518 (2022).

[70] A. Dalal, J. Ruhman, and V. Kozii, The field theory of a super-
conductor with repulsion, arXiv:2308.05150.

[71] A. Linscheid, A. Sanna, F. Essenberger, and E. K. U. Gross, Ab
initio theory of superconductivity in a magnetic field. I. Spin
density functional theory for superconductors and Eliashberg
equations, Phys. Rev. B 92, 024505 (2015).

[72] A. Linscheid, A. Sanna, and E. K. U. Gross, Ab initio theory
of superconductivity in a magnetic field. II. Numerical solution,
Phys. Rev. B 92, 024506 (2015).

[73] A. Aperis, P. Maldonado, and P. M. Oppeneer, Ab
initio theory of magnetic-field-induced odd-frequency

two-band superconductivity in MgB2, Phys. Rev. B 92, 054516
(2015).

[74] G. M. Eliashberg, Temperature Green’s function for electrons
in a superconductor, Zh. Eksp. Teor. Fiz. 39, 1437 (1960) [Sov.
Phys. JETP 12, 1000 (1961)].

[75] E. Thingstad, E. Erlandsen, and A. Sudbø, Eliashberg study of
superconductivity induced by interfacial coupling to antiferro-
magnets, Phys. Rev. B 104, 014508 (2021).

[76] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (Dover, New York, 2003).

[77] H. Bruus and K. Flensberg, Many-Body Quantum Theory in
Condensed Matter Physics: An Introduction (Oxford University
Press, Oxford, 2004).

[78] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Meth-
ods of Quantum Field Theory in Statistical Physics (Dover, New
York, 1963).

[79] J. R. Schrieffer, D. J. Scalapino, and J. W. Wilkins, Effective
tunneling density of states in superconductors, Phys. Rev. Lett.
10, 336 (1963).

[80] J. R. Schrieffer, Theory of Superconductivity (Benjamin, Read-
ing, MA, 1964).

[81] D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, Strong-
coupling superconductivity. I, Phys. Rev. 148, 263 (1966).

[82] F. Marsiglio, M. Schossmann, and J. P. Carbotte, Iterative an-
alytic continuation of the electron self-energy to the real axis,
Phys. Rev. B 37, 4965 (1988).

[83] K. Mæland, H. I. Røst, J. W. Wells, and A. Sudbø, Electron-
magnon coupling and quasiparticle lifetimes on the surface of a
topological insulator, Phys. Rev. B 104, 125125 (2021).

[84] P. Morel and P. W. Anderson, Calculation of the superconduct-
ing state parameters with retarded electron-phonon interaction,
Phys. Rev. 125, 1263 (1962).

[85] J. Linder and A. V. Balatsky, Odd-frequency superconductivity,
Rev. Mod. Phys. 91, 045005 (2019).

[86] F. Schrodi, P. M. Oppeneer, and A. Aperis, Unconventional
superconductivity mediated solely by isotropic electron-phonon
interaction, Phys. Rev. B 104, L140506 (2021).

[87] E. L. Fjærbu, N. Rohling, and A. Brataas, Superconductivity at
metal-antiferromagnetic insulator interfaces, Phys. Rev. B 100,
125432 (2019).

[88] H. J. Vidberg and J. W. Serene, Solving the Eliashberg equa-
tions by means of N-point Padé approximants, J. Low Temp.
Phys. 29, 179 (1977).

[89] A. Aperis and P. M. Oppeneer, Multiband full-bandwidth
anisotropic Eliashberg theory of interfacial electron-phonon
coupling and high-Tc superconductivity in FeSe/SrTiO3, Phys.
Rev. B 97, 060501(R) (2018).

[90] N. H. Aase, C. S. Johnsen, and A. Sudbø, Constrained
weak-coupling superconductivity in multiband superconduc-
tors, Phys. Rev. B 108, 024509 (2023).

[91] A. Altland and B. Simons, Condensed Matter Field Theory
(Cambridge University Press, Cambridge, 2010).

[92] C. Glittum and O. F. Syljuåsen, Arc-shaped structure factor in
the J1-J2-J3 classical Heisenberg model on the triangular lattice,
Phys. Rev. B 104, 184427 (2021).

214511-15

https://doi.org/10.1103/PhysRevB.89.165119
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRev.136.A1485
https://doi.org/10.1103/RevModPhys.62.1027
https://doi.org/10.1103/PhysRevB.68.214508
https://doi.org/10.1103/PhysRevB.106.144513
https://doi.org/10.1103/PhysRevB.104.014513
https://doi.org/10.1103/PhysRevB.108.214508
https://doi.org/10.1103/PhysRevB.107.144507
https://doi.org/10.1016/j.aop.2020.168190
https://doi.org/10.1103/PhysRevB.106.014512
https://doi.org/10.1103/PhysRevB.106.064502
https://doi.org/10.1103/PhysRevB.106.054518
http://arxiv.org/abs/arXiv:2308.05150
https://doi.org/10.1103/PhysRevB.92.024505
https://doi.org/10.1103/PhysRevB.92.024506
https://doi.org/10.1103/PhysRevB.92.054516
https://doi.org/10.1103/PhysRevB.104.014508
https://doi.org/10.1103/PhysRevLett.10.336
https://doi.org/10.1103/PhysRev.148.263
https://doi.org/10.1103/PhysRevB.37.4965
https://doi.org/10.1103/PhysRevB.104.125125
https://doi.org/10.1103/PhysRev.125.1263
https://doi.org/10.1103/RevModPhys.91.045005
https://doi.org/10.1103/PhysRevB.104.L140506
https://doi.org/10.1103/PhysRevB.100.125432
https://doi.org/10.1007/BF00655090
https://doi.org/10.1103/PhysRevB.97.060501
https://doi.org/10.1103/PhysRevB.108.024509
https://doi.org/10.1103/PhysRevB.104.184427

