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Abstract: Epicardial adipose tissue (EAT) is located between the visceral pericardium and my-
ocardium, and EAT volume is correlated with cardiovascular risk. Nowadays, many deep learning-
based automated EAT segmentation and quantification methods in the U-net family have been
developed to reduce the workload for radiologists. The automatic assessment of EAT on non-
contrast low-dose CT calcium score images poses a greater challenge compared to the automatic
assessment on coronary CT angiography, which requires a higher radiation dose to capture the
intricate details of the coronary arteries. This study comprehensively examined and evaluated
state-of-the-art segmentation methods while outlining future research directions. Our dataset con-
sisted of 154 non-contrast low-dose CT scans from the ROBINSCA study, with two types of labels:
(a) region inside the pericardium and (b) pixel-wise EAT labels. We selected four advanced methods
from the U-net family: 3D U-net, 3D attention U-net, an extended 3D attention U-net, and U-net++.
For evaluation, we performed both four-fold cross-validation and hold-out tests. Agreement be-
tween the automatic segmentation/quantification and the manual quantification was evaluated
with the Pearson correlation and the Bland–Altman analysis. Generally, the models trained with
label type (a) showed better performance compared to models trained with label type (b). The
U-net++ model trained with label type (a) showed the best performance for segmentation and
quantification. The U-net++ model trained with label type (a) efficiently provided better EAT segmen-
tation results (hold-out test: DCS = 80.18± 0.20%, mIoU = 67.13± 0.39%, sensitivity = 81.47± 0.43%,
specificity = 99.64± 0.00%, Pearson correlation = 0.9405) and EAT volume compared to the other
U-net-based networks and the recent EAT segmentation method. Interestingly, our findings indi-
cate that 3D convolutional neural networks do not consistently outperform 2D networks in EAT
segmentation and quantification. Moreover, utilizing labels representing the region inside the peri-
cardium proved advantageous in training more accurate EAT segmentation models. These insights
highlight the potential of deep learning-based methods for achieving robust EAT segmentation and
quantification outcomes.

Keywords: epicardial adipose tissue; deep neural networks; segmentation; low-dose computed
tomography

1. Introduction

Epicardial adipose tissue (EAT) is located between the pericardium and the myocardium [1].
It has various distributions and is commonly found on the heart surface, in the atrioventricular
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and interventricular grooves, in the right ventricle lateral wall, and near the coronary arteries [2].
In many studies, it has been considered a source of inflammatory mediators and cytokines,
and EAT volume has been associated with coronary artery disease [3]. EAT volume has been
evaluated as an imaging biomarker for the diagnosis of pathological states such as metabolic
syndrome and visceral obesity [4–6].

Manual or semi-automatic measurement of EAT volume by radiologists, while feasible,
proves to be time-consuming and impractical for extensive clinical practice. To address this
limitation, automated EAT volume quantification methods have been proposed, aiming
to provide efficient solutions. Most EAT volume quantification is typically carried out
using cardiac computed tomography (CT) scans. However, in this study, our focus lies
specifically on EAT segmentation and quantification in non-contrast low-dose CT (LDCT)
scans. In particular, EAT exhibits an irregular and noncontinuous shape, accompanied by
a lack of uniformity in spatial distribution. Additionally, the presence of other fat tissues,
such as mediastinal fat, positioned outside the pericardium presents a challenge. In CT
images, these structures can be visually similar to EAT and are located nearby. The thin
layer of the pericardium serves as a crucial reference for distinguishing EAT from these
similar structures. One of the primary motivations for focusing on LDCT is its reduced
contrast on coronary structures and the different thickness compared to standard-dose CT
scans. Consequently, the segmentation and quantification of EAT in LDCT pose greater
challenges. By addressing these complexities and providing a robust and accurate EAT
segmentation methodology for LDCT, we aim to enhance the clinical utility of automated
EAT volume quantification in various medical settings. Such advancements hold the
potential to streamline cardiac assessments and improve patient care, given the widespread
usage of LDCT in clinical practice.

As for automatic EAT segmentation methods, some works [7–11] utilized non-contrast
standard-dose CT or LDCT, while some works [12–15] utilized coronary CT angiography
(CCTA), which requires a higher radiation dose with contrast to ensure adequate image
quality while capturing fine details on the coronary arteries. Recently, there has also been
work utilizing magnetic resonance images (MRI) [16]. However, many works provided in-
sufficient information on the setting of the protocol for EAT label acquisition. Furthermore,
the variation in automated quantification of EAT volume across different CT acquisition
protocols remains an unanswered question. The influence of protocol settings on EAT
segmentation and the resulting volume of EAT remains unclear. Access to implementation
codes or datasets is crucial for the reproducibility and comparison of work with the state-
of-the-art. Due to variations in data set-up among different studies, a strict comparison of
reported accuracy values can be misleading. Therefore, the main objective of our research
is to thoroughly evaluate and compare state-of-the-art segmentation methods using our
extensive dataset comprising 154 low-dose CT scans. To assess the segmentation perfor-
mance, we employ well-established metrics such as the Dice similarity coefficient (DSC),
mean Intersection of Union (mIoU), sensitivity, and specificity. Additionally, considering
the clinical relevance of EAT volume, we utilize Pearson correlation and Bland–Altman
analysis to measure the interscan reproducibility of EAT measurement in low-dose CT
scans [17]. Through this rigorous evaluation, we aim to contribute valuable insights into
the efficacy of existing segmentation techniques and to improve the understanding of the
assessment of EAT in the context of low-dose CT imaging.

1.1. Related Work

The early automatic EAT segmentation methods were based on classic mathematical
models such as intensity-based approaches [18], region growing approaches, active contour
approaches [19], and atlas-based approaches [20,21]. Later, some machine learning-based
methods with handcrafted features [7,8,22–24] or with clustering algorithms [13,25] were
proposed for EAT segmentation. However, some are rarely fully automatic. Most re-
cently, deep learning (DL)-based approaches have shown success in many medical image
segmentation tasks [26].
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The rise of deep learning brings to EAT segmentation methods more automation, as
it can learn intricate features directly from images in an end-to-end manner rather than
designing and selecting features manually. With the available advanced computer hardware
such as graphical processing units (GPUs), the state-of-the-art DL-based segmentation
approaches have outperformed many previous traditional methods. The basis of DL-based
segmentation is the convolutional neural network (CNN). A standard CNN consists of
an input layer, functional hidden layers, and an output layer. Commonly used functional
layers include the 2D or 3D convolutional operations, pooling layers (e.g., max-pooling),
normalization layers (e.g., batch normalization), activation functions (e.g., rectified linear
unit (ReLU)), transposed convolutional operations, and upsampling layers. The input of
the network could be CTs in 2D or 3D format and the corresponding labels. The output
of the network is a matrix where each element could be a probabilistic score or a set of
category indexes. Generally, for medical image segmentation, the U-Net structure [27]
and more advanced 3D U-Net [28], the V-Net [29], the attention U-Net [30] with attention
gates, and U-Net++ [31] with dense connections and deep supervision [32] have together
formed a U-Net family that has gained popularity and success. Many recent works on EAT
segmentation were based on or inspired by the U-Net family.

A fully automated EAT segmentation model proposed by Commandeur et al. [33,34]
utilized a multi-task fully convolutional neural network with a statistical shape model.
Santini et al. [35] applied standard U-Net on EAT segmentation with a dataset of 119
CTs, and Zhang et al. [9] utilized two U-Nets and morphological layers to achieve better
EAT segmentation results. One of the most recent works by He et al. [12] proposed a 3D
U-Net architecture with attention gates (AG) and deep supervision for EAT segmentation.
Attention gates play a crucial role in prioritizing essential regions within an image during
the segmentation process, enhancing the model’s accuracy. The attention mechanism is a
widely utilized approach, especially in tasks such as cardiac image segmentation [36,37].
Many works showed quantitatively promising performance, but some were trained and
evaluated with a very small dataset [7,9] or with private datasets [12,33,34]. The labeling
protocol varies in various works. For labeling, commonly used labels include the region
inside the pericardium, the contour/surface of the pericardium, pixel-wise EAT labels, and
the contour/surface of EAT regions, etc.

1.2. Contributions

In this study, we comprehensively evaluated state-of-the-art segmentation methods
for EAT using 154 non-contrast LDCT scans. The LDCT scans were part of the coronary
artery calcium CT scans from the Risk Or Benefit IN Screening for CArdiovascular diseases
(ROBINSCA) trial [38]. We provided two types of labels for the LDCT scans: (a) region
inside the pericardium and (b) pixel-wise EAT labels. The LDCT scans were ECG-triggered
and generated with low radiation doses, ensuring patient safety. We provide clear and
sufficient information about the data and label acquisition protocol in Section 2.1. To
achieve representativeness and diversity, we selected four methods from the U-Net family
as the EAT segmentation models: 3D U-Net [28], 3D attention U-Net [30], U-Net++ [31],
and the recent deep attention U-Net (DAU-Net) [12]. The model structures, along with the
attention gates and deep supervision modules in these models, are meticulously explained
in Section 2.2. For rigorous evaluation, we utilized four-fold cross-validation and hold-out
tests in Section 3. The segmentation results were analyzed using the Dice similarity coeffi-
cient, the mean intersection of union, sensitivity, specificity, and visualization. Furthermore,
we performed a quantitative analysis of EAT volume using the Pearson correlation and
Bland–Altman analysis in Section 3.3. In Section 4, we delve into crucial aspects, including
label types, domain knowledge, patch size, training time, deep supervision, and evaluation,
to gain deeper insights into EAT segmentation using deep learning. Additionally, we
propose potential future directions in the aspect of domain knowledge, data unification,
benchmarking, and deep learning techniques, aiming to enrich the contributions of this
research. Our comprehensive evaluation and in-depth discussions contribute valuable in-
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sights to the field of EAT segmentation, and we believe this work will significantly advance
the application of deep learning techniques in cardiac image analysis and clinical practice.

2. Data and Methods
2.1. Data Set-Up

For method benchmarking, we randomly selected 160 samples from the Risk Or Benefit
IN Screening for CArdiovascular Diseases (ROBINSCA) dataset [38]. Samples of patients
with hernias were excluded from the study due to the significant alteration in the shape and
location of the organs. Thus, 154 samples were used for the evaluation. The ROBINSCA
trial included subjects from the general population, with men aged between 45 and 74
and women aged between 55 and 74. This is a multi-center dataset with CT screening
performed at the Gelre Hospital (Apeldoorn), the Bronovo Hospital (The Hague), and
the University Medical Center Groningen (Groningen). A second-generation dual-source
computed tomography (DSCT) system (Somatom Flash, Siemens, Erlangen, Germany) was
used in all examinations. The CT acquisition protocol was as follows: (1) pitch: 3.4, (2) tube
voltage: 120 kVp, (3) tube current: 80 mAs, (4) rotation time: 280 ms, (5) collimation:
120 × 0.6 mm, (6) matrix: 512 × 512, (7) ECG triggering: prospective, 60% of the R-R
interval during inspiratory breath-hold, (8) upper limit: below carina, (9) lower limit:
apex/bottom edge heart. The CT reconstruction protocol was (1) slice thickness: 3.0 mm,
(2) slice increment: 1.5 mm, (3) FOV: 250 mm, (4) kernel: b35f (sharp).

EAT is characterized as fatty-like tissue intensity positioned between the myocardium
and the visceral pericardium, with intensity limits ranging from −190 HU to −30 HU [39].
Manual annotation of EAT in CT scans can be accomplished through two primary methods:
(a) annotating the region within the pericardium and then applying HU value thresholding
to extract adipose tissue [11], or (b) directly annotating the region of EAT and utilizing
HU value thresholding to generate final labels [12]. Due to the use of low-dose CT in our
study, the second annotation strategy can be particularly challenging due to the reduced
visibility of fat tissue and increased noise. As such, to ensure feasibility and efficiency,
we chose the first annotation strategy. The labels were annotated by an experienced
radiologist using the open-source medical imaging processing software 3D Slicer 4.10.2
(https://www.slicer.org/) (accessed on 19 February 2019) [40]. Two kinds of label maps
were obtained, as shown in Figure 1: (1) the region inside the pericardium (in the second
column, colored in yellow), and (2) the EAT volumes (in the third column, colored in
yellow). To reduce the workload, all the annotations were made in the axial view semi-
automatically. The radiologist annotated the region inside the pericardium on some 2D
slices, and the annotations in between were generated automatically with the ’fill between
slices’ effect of the 3D Slicer. Finally, the radiologist checked and corrected the generated
annotations. To obtain the EAT, the thresholding of −190 HU to −30 HU was applied, and
then the morphological operations of erosion and dilation were used to reduce the noise.

Figure 1. (a) An example of a CT slice, (b) the binary label of the region inside the pericardium, and
(c) the pixel-wise EAT label.

https://www.slicer.org/
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2.2. Methods Description
2.2.1. The 3D U-Net

The original U-Net, proposed by Ronneberger et al. [27], is a U-shape CNN based on
the fully convolutional network [41] for biomedical image segmentation. It consists of a
downsampling path, an upsampling path, and skip connections in between. The downsam-
pling path is a standard CNN with multiple convolution operations followed by a ReLU
and max pooling, and the upsampling path combines the feature maps from deconvolution
and concatenation. The use of data augmentation and the special architecture lets U-Net
outperform the prior best methods in many medical image segmentation tasks. The 3D
U-Net [28] extended the standard U-Net by using 3D convolution operations rather than
2D convolutions. Figure 2 illustrates the network architecture. In the downsampling path,
each layer consists of two convolutions with a kernel size of 3× 3× 3 and a max-pooling
layer with strides of two. In the upsampling path, each layer consists of an upsampling
layer with a kernel size of 2× 2× 2 by strides of two, and two convolutions which are the
same as the convolutions in the downsampling path. The skip connection concatenates the
feature maps from the downsampling path to the upsampling path. In all layers, the ReLU
and batch normalization (BN) are applied.

Figure 2. The 3D U-Net architecture. Blue boxes are feature maps, while gray boxes are concatenation
maps. Fl denotes the number of feature maps in layer l; H denotes the height; W denotes the width;
D denotes the number of dimensions; Nc denotes the number of classes. “Conv” is an abbreviation
for convolution layer, “ReLU” stands for rectified linear unit, and “BN” is an abbreviation for batch
normalization. The input image is downsampled by a factor of two at each level in the downsampling
path and upsampled by a factor of two in the upsampling path.

2.2.2. The 3D Attention U-Net

The attention U-Net proposed by Oktay et al. [30] extended the 3D U-Net by adding
grid-based attention gates (AGs) in the upsampling path. In the standard CNN architecture,
to capture semantic contextual information, feature maps are progressively downsampled.
In this way, the global features are well maintained, while the local features of small
structures with large shape variations may be neglected. Thus, the AG was proposed to
force the network to focus on local regions. Figure 3 illustrates the 3D attention U-Net
architecture. The distinction between this network and the 3D U-Net in Figure 2 is the
additional AGs in the upsampling path.
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Figure 3. The 3D attention U-Net architecture. Blue and pink boxes are feature maps, while gray
boxes are concatenation maps. Fl denotes the number of feature maps in layer l; H denotes height;
W denotes width; D denotes the number of dimensions; Nc denotes the number of classes. The input
image is downsampled by a factor of two at each level in the downsampling path and upsampled
by a factor of two in the upsampling path. Attention gates scale the concatenated features from the
skip connections with the calculated attention coefficients from both the input features and the gating
signals. The structure of the AG is shown in Figure 4. The deep supervision part is in red.

Figure 4. The structure of the AG. The input features xl are scaled by the computed attention coeffi-
cients α in AG. To compute α, the gating signal g and the input features xl are linearly transformed
by Wg and Wx and summed. By analyzing the sum progressively by the ReLU activation, the linear
transformation ψ, the sigmoid activation, and a grid resampler of trilinear interpolation, the attention
coefficients α are obtained.

Attention gate: The schematic of the AGs is shown in Figure 4. The AGs collect the
input features xl in layer l from the skip connections and the gating signals g from the
upsampling path. The gating signal is a grid signal adapted to spatial information. The
attention coefficients α ∈ [0, 1] are calculated as follows:

αl = σ2(ψ
T(σ1(WT

x xl + WT
g g + bg)) + bψ) (1)

where σ2(x) = 1
1+exp(−x) corresponds to the sigmoid activation function, and σ1(x) = max(0, x)

corresponds to the ReLU activation function. Wx, Wg, and ψ are linear transformations and
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bg, bψ are the corresponding bias terms. The output attention maps are calculated by the
element-wise multiplication of input xl and attention coefficients:

x̂l = xl · αl (2)

Briefly, AGs highlight salient features in the concatenation maps.
Deep supervision: In the attention U-Net [30], the authors used deep supervision [32]

to guarantee that the intermediate feature maps were able to contribute to the final segmen-
tation. As shown in Figure 3, the red parts indicate how to calculate the deep supervision
loss. In the standard U-Net architecture, only the feature map at the final layer is used to
calculate the loss. With deep supervision, the outputs from hidden layers contribute to the
loss too.

2.2.3. DAU-Net

One of the most recent methods, by He et al. [12], applied a network similar to the stan-
dard 3D attention U-Net (in Figure 3) for automatic EAT segmentation and quantification
of EAT volume from CCTA. They replaced the original ReLU activation function after con-
volution, max-pooling, and upsampling with the parametric rectified linear unit (PReLU).

2.2.4. U-Net++

Figure 5 illustrates a U-Net++ architecture with a backbone network of 5 layers.
Compared to standard U-Net (the blue blocks and black connections), U-Net++ [31] is an ar-
chitecture that has additional convolution blocks (the green blocks), dense skip connections
(the green connections), and deep supervision (the red part) [32].

Figure 5. The U-Net++ architecture with a backbone network of 5 layers. Every circle block indicates a
convolution operation with an activation function and BN. The blue blocks and the black connections
indicate the original U-Net architecture. The additional convolution blocks and dense connections
are in green. The red parts indicate deep supervision.

Dense skip connection: The number of additional convolution blocks depends on
the pyramid level. In the standard U-Net, the feature maps from the downsampling path
are concatenated to the feature maps in the upsampling path directly through the skip
connections. Conversely, in the U-Net++ structure, due to the additional convolution
blocks, more feature maps from convolution blocks at the same level are concatenated
to the corresponding upsampling layers. In Figure 5, the feature map produced by the
corresponding convolution block is represented by xi,j, where i indicates the level of the
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block and j indicates the index of the convolution block. The feature maps represented by
xi,j are calculated as follows:

xi,j =

{
C(xi−1,j), j = 0

C([[xi,k]
j−1
k=0, U(xi+1,j−1)]), j > 0

(3)

where C(·) denotes a convolution operation followed by the ReLU function and batch nor-
malization, U(·) denotes the upsampling operation, and [ ] denotes the concatenation oper-
ation. For each block, it fuses all the feature maps from the prior blocks at the same level and
an upsampled feature map from the lower level. For example, x1,2 = C([x1,0, x1,1, U(x2,1)]).
In this U-Net architecture, with a backbone network of 5 layers, the feature maps from
convolution block x0,j, j ∈ 1, 2, 3, 4 are responsible for the deep supervision.

3. Experiments and Results
3.1. Experiment Set-Up

Data: For the experiments, the dataset was divided into five groups of 31, 31, 31,
31, and 30 CT scans. Groups 1-4 were used for the four-fold cross-validation, and the
last group of 30 CTs was reserved for the hold-out evaluation. The initial size in 2D was
512× 512 pixels. Due to hardware memory limitations, all images were downsampled to
256× 256 pixels in the axial view.

Implementation details: To bring our experiments into correspondence with the
original papers, in the experiments with 3D U-Net, 3D attention U-Net, and DAU-Net, the
models were trained using the Dice loss [29]:

LDSC(Y, Ŷ) = 1− 2 · P(Y ⋂
Ŷ)

P(Y) + P(Ŷ)
(4)

where Y denotes the ground truth, Ŷ denotes the predictions, and P(·) denotes the number
of voxels. In the experiments with U-Net++, a combination of the binary cross-entropy and
the Dice loss, which is the same as the loss function in the U-Net++ paper, was used as the
loss function:

L = −(1
2
·∑

i
Yi · logŶi +

2 · P(Y ⋂
Ŷ)

P(Y) + P(Ŷ)
) (5)

where Yi and Ŷi denote the ith pixel of the ground truth or prediction. The backbone
model for the U-Net++ was the VGG16 model with 2D convolutions [42]. The models
of 3D U-Net and 3D attention U-Net were trained with the publicly available PyTorch
implementation in the attention U-Net work https://github.com/ozan-oktay/Attention-
Gated-Networks (accessed on 2 March 2021) [30]. The models of U-Net++ were trained
with the Keras implementation in the original paper https://github.com/MrGiovanni/
UNetPlusPlus/tree/master/keras (accessed on 3 March 2021). As the implementation of
the DAU-Net was not publicly available, we implemented it according to the attention
U-Net implementation [30]. The code for our experiments is shared on Github at https:
//github.com/Nirvanall/U-net_family_EAT_segmentationin_LDCT (accessed on 28 July
2023). For all experiments, we used a patch size of 256 × 256 × 96, except for U-Net++. As
the U-Net++ was implemented with 2D convolution, we used a patch size of 256 × 256 and
a batch size of 64. The initial learning rate was set as 0.0001, and all models were trained
with the data augmentation setting, which was the same as the standard U-Net. More
details can be found in Table 1. All models were trained with a maximum training epoch
number of 500, with early stopping. All experiments were carried out using an NVIDIA
Quadio RTX 6000 with 24 GB of memory.

https://github.com/ozan-oktay/Attention-Gated-Networks
https://github.com/ozan-oktay/Attention-Gated-Networks
https://github.com/MrGiovanni/UNetPlusPlus/tree/master/keras
https://github.com/MrGiovanni/UNetPlusPlus/tree/master/keras
https://github.com/Nirvanall/U-net_family_EAT_segmentationin_LDCT
https://github.com/Nirvanall/U-net_family_EAT_segmentationin_LDCT
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Table 1. Implementation details.

Model 3D U-Net 3D Attention
U-Net DAU-Net U-Net++

convolution
dimension 3 3 3 2

deep
supervision False True True True

decoder block
type Upsample Upsample Upsample Transpose

optimizer SGD SGD SGD Adam

Evaluation metrics: For evaluation, we selected four metrics—the Dice similarity
coefficient (DSC), the mIoU, the sensitivity, and the specificity. DSC computes the overlap
of the region between the ground truth and the predicted segmentation:

DSC =
1
N

2 · P(Y ⋂
Ŷ)

P(Y) + P(Ŷ)

where N indicates the number of CTs, Y denotes the ground truth, Ŷ denotes the predic-
tions, and P(·) denotes the number of pixels or voxels. A higher DSC indicates better
prediction results. mIoU computes the similarity between the predicted segmentation and
the ground truth:

mIoU =
1
N

P(Y
⋂

Ŷ)
P(Y

⋃
Ŷ)

mIoU is a more strict metric compared to DSC, and a higher mIoU generally indicates
better segmentation. Sensitivity measures the rate of corrected predictions divided by the
ground truth of the positive regions:

sensitivity =
1
N

P(Y
⋂

Ŷ)
P(Y)

Higher sensitivity indicates the prediction is better at predicting positive regions,
which are the target regions. Specificity measures the rate of corrected predictions over the
ground truth of the negative regions:

speci f icity =
1
N

P(Ȳ
⋂ ¯̂Y)

P(Ȳ)

where Ȳ and ¯̂Y indicate the ground truth and prediction of the negative regions, which are
the background. Higher specificity indicates a better ability to predict background.

3.2. Results

Herein, we demonstrate both cross-validation and hold-out evaluation for the selected
methods. We trained all four networks using two types of labels separately, which included
the region inside the pericardium (Figure 1b) and EAT labels (Figure 1c). The corresponding
results are summarized in Tables 2 and 3.

3.2.1. Four-Fold Cross-Validation

For cross-validation, all models were trained with 93 CTs. From the cross-validation
results shown in Table 2, the models trained with pericardium masks showed better
performance compared to models trained with EAT labels. The U-Net++ models showed
better results on almost all metrics compared to the 3D models.
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Table 2. Cross-validation results of the selected models. The highest Pearson correlation is marked
in bold.

Model Label Type DSC (%) mIoU (%) Sensitivity (%) Specificity (%) Correlation

3D U-Net Pericardium 74.90± 1.30 60.92± 1.47 77.67± 2.15 99.53± 0.00 0.7588
EAT 59.04± 0.92 42.45± 0.74 70.99± 2.42 98.96± 0.00 0.5648

3D attention U-Net Pericardium 68.52± 6.38 56.62± 5.97 70.50± 10.22 99.69± 0.00 0.2085
EAT 54.94± 6.43 41.56± 4.78 57.34± 9.92 99.47± 0.00 0.3883

DAU-Net Pericardium 80.06± 0.50 67.30± 0.91 91.80± 0.46 99.34± 0.00 0.8448
EAT 71.91± 0.49 56.58± 0.69 83.01± 0.28 99.17± 0.00 0.8596

U-Net++ Pericardium 86.16± 0.23 75.97± 0.51 88.31± 0.55 99.72± 0.00 0.9123
EAT 77.42± 0.71 63.78± 0.90 84.61± 1.61 99.47± 0.00 0.7303

3.2.2. Hold-Out Test

Similarly, for the hold-out test, all models were trained with both types of labels
separately. The hold-out test was performed using 30 reserved test samples, and the models
were trained with 124 samples. The numerical results are shown in Table 3. The results
of the hold-out test show that: (1) most models showed better performance compared to
the cross-validation as the result of more training data, (2) generally, the models trained
with pericardium masks performed better than the corresponding models trained with
EAT labels, and (3) U-Net++ models showed the best performance compared to the other
models, both for hold-out test and cross-validation. We noticed that the performance of
3D attention U-Net was unexpectedly similar to or even lower than the performance of 3D
U-Net. By checking the evaluation results on every test sample, we found that the variance
in 3D attention U-Net segmentation results was much higher. Most of the segmentation
results were better, but some cases had extremely low performance. The employment of
attention mechanisms might account for the observed lower performance and increased
variance. A detailed discussion on this matter is presented in Section 4. Especially for the
attention U-Net model trained with EAT labels, though most of the predictions had a Dice
higher than 65%, 6 out of 30 predicted segmentation results showed very low performance
(some even lower than 1% for DSC).

Table 3. Hold-out test results of the selected models. The highest Pearson correlation is marked
in bold.

Model Label Type DSC (%) mIoU (%) Sensitivity (%) Specificity (%) Correlation

3D U-Net Pericardium 74.42± 1.37 60.37± 1.57 72.95± 2.67 99.64± 0.00 0.6661
EAT 63.94± 1.20 47.84± 1.20 69.83± 2.17 99.22± 0.00 0.6293

3D attention Pericardium 74.99± 4.79 63.48± 4.36 80.29± 7.27 99.57± 0.00 0.5120
U-Net EAT 55.39± 5.26 41.32± 3.96 60.11± 9.39 99.35± 0.00 0.1386

DAU-Net Pericardium 82.33± 0.39 70.43± 0.80 90.11± 0.45 99.49± 0.00 0.8445
EAT 72.13± 0.40 56.78± 0.61 82.69± 0.20 99.21± 0.00 0.8047

U-Net++ Pericardium 87.99± 0.12 78.71± 0.30 91.45± 0.17 99.72± 0.00 0.9606
EAT 80.18± 0.20 67.13± 0.39 81.47± 0.43 99.64± 0.00 0.9405

The comparisons between all models—3D U-Net, 3D attention U-Net, DAU-Net, and
U-Net++—are demonstrated using 2D visualization in axial, coronal, and sagittal views
in Figure 6a (models trained with pericardium masks) and Figure 6b (models trained
with EAT labels). The corresponding errors are green for false positives and blue for false
negatives. From the errors, we see that most of the mistakes were the false positive pixels
(in green). In CT, most of the green pixels were the mediastinal fat located outside of the
pericardium, but were similar to the EAT visually. Compared to the models trained with
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pericardium masks, models trained with EAT had more false negative pixels inside the
pericardium.

(a) Segmentation results trained with pericardium masks.

(b) Segmentation results trained with EAT labels.

Figure 6. Visualization of segmentation results. The first column shows the ground truth, and the
other columns show predictions from 3D U-Net, attention U-Net, DAU-Net, and U-Net++. The first
row shows the segmentation in the axial view, the second row is for the coronal view, and the third
row is for the sagittal view. In the segmentation results, the true positive is highlighted in yellow, the
false positive is highlighted in green, and the false negative is highlighted in blue.

3.3. Quantitative Analysis of EAT Volume

The Pearson correlation coefficients for every model are shown in Tables 2 and 3.
Based on the results of the hold-out test, we show the Bland–Altman plots for all models
trained with 124 samples, in Figure 7 for models trained with pericardium masks and
Figure 8 for models trained with EAT labels. Quantitatively, U-Net++ showed the best
performance in terms of Pearson correlation coefficient (0.9606) and outperformed the other
models in the Bland–Altman analysis. Compared to the correlation coefficient (r = 0.98) of
the EAT volume from two observers reported in [17], all the trained models were below
this value.
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Figure 7. Bland−Altman plots for EAT volume for models trained with the pericardium masks.
Comparison between the predicted pixel number of EAT and the ground truth pixel number.

Figure 8. Bland−Altman plots for EAT volume for models trained with the EAT labels. Comparison
between the predicted pixel number of EAT and the ground truth pixel number.
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4. Discussion

The performance comparison of the state-of-the-art methods for EAT segmentation
showed some interesting information: (1) Generally, the neural networks trained with the
pericardium masks showed better segmentation and quantification results; and (2) U-Net++
trained with the pericardium masks outperformed the other models on segmentation
and quantification. Furthermore, the process, encompassing data collection to evaluation
results, involves numerous intricate details. Here, we discuss some points that we believe
are crucial to EAT segmentation and quantification.

Label types: To the best of our knowledge, there are two types of labels in the works
for EAT segmentation: (1) the pixel-wise or voxel-wise label maps (e.g., in [7,33]), and
(2) the contours or outlines of the EAT (e.g., in [12,20]). There are various ways to obtain
these labels, but, as most works are based on unpublished data, we cannot know the
labeling protocols in detail. Based on our observations of example figures with labels and
our extensive experience in labeling, it is evident that there is no ideal label type for EAT
segmentation. Regarding pixel-wise or voxel-wise label maps, it is important to consider
the physical characteristics of CT scans. Specific noise points can be erroneously classified
as EAT within the pericardium. Though we could remove most of the noise with some
denoising techniques, it is hard to remove all of them. The contours and outlines may better
focus on the region with fat tissue. Because, geometrically, the contours occupy pixels or
voxels, some small regions with very thin layers of fat may be neglected during labeling. In
addition, the delineation of complex structures could be extremely time-consuming in 3D
data such as CTs.

From the evaluation perspective, different label types could lead to different errors. For
pixel-wise and voxel-wise labels, as there is noise, these may lead to more false negatives
in the prediction. For contours and outlines labels, as some fat tissue may be missing, these
may lead to more false positives in the prediction.

Attention mechanism: Compared to the results obtained from other methods, the
performance of 3D attention U-Net demonstrates relatively lower accuracy and exhibits
larger variance. While attention mechanisms can be advantageous in focusing on infor-
mative regions and enhancing performance in certain scenarios, they may also introduce
additional complexity and elevate the risk of overfitting. Moreover, the effectiveness of
attention mechanisms heavily relies on the dataset characteristics and the specific target
structures being segmented. In the case of EAT segmentation in LDCT, where the target
object has low visibility, the attention mechanism may lead to more errors. In Figure 6, it is
evident that most mistakes made by the attention-based model are false positives below
the pericardium, which aligns with the results obtained from the DAU-Net. Hence, the
attention mechanisms might pose challenges in excluding structures below the pericardium
accurately.

Domain knowledge: As the goal of EAT segmentation network is to find the exact
locations of EAT voxel-wisely, ideally, it should mimic the manual segmentation progress
as performed by radiologists. Thus, anatomical knowledge about EAT is a crucial reference
for segmentation. By using the labels of pericardium masks, the network is forced to
learn knowledge about pericardium, which is the foundation to distinguish EAT and
adjacent similar structures such as mediastinal fat. Apart from our dataset, some works on
EAT segmentation used labels that included pericardium knowledge too [7,20]. However,
most works did not incorporate this knowledge deeply in deep neural networks. From a
recent review of anatomy-aided deep learning for medical image segmentation [43], we
noticed that there are many possible ways to incorporate anatomy information into deep
learning. A well-integrated network could take advantage of both anatomy knowledge
and data-driven deep learning methods.

Patch size: For models using 3D convolution operations, the patch size is a key
hyperparameter for training. Due to the large image size of medical images and the
memory limitation of GPUs, usually, it is not feasible to process a 3D image as one input
for the input layer. Thus, the common way to solve this is to set a patch size for the input
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layer. By setting the patch size, the large 3D images are divided into multiple patches and
processed separately for training. As the patch size influences the size of feature maps and
the contextual information in the training process directly, it influences the segmentation
results significantly. From our experiments and related papers, we noticed that, generally, a
larger patch size could lead to better results. However, a larger patch size may lead to a
much higher computational cost. Thus, there is a trade-off to choose the proper patch size
for training performance and efficiency. In this paper, we selected 256× 256× 96, which is
a relatively large patch size.

Training time and inference time: For all experiments, we set the maximum training
epoch number as 500, with early stopping. With the exception of U-Net++, which stopped
earlier, the other models were trained until the 500th epoch. The training time for U-Net++
models (usually stopped at around the 80th epoch) was between 12 and 17 h, while the
training time for 3D U-Net, attention U-Net, and DAU-Net was between 5 and 8 days, due
to the different amounts of training data and different label types. The inference times for
all models ranged from 4.33 s to 6 s per sample and were relatively similar. Thus, to verify
whether training for a longer time would increase the performance, we trained models of
3D U-Net in the hold-out test set-up for 1000 epochs (in Table 4) with both label types. All
models showed improving performance. Particularly, the model trained with EAT showed
obvious improvement. However, the computation cost was very high, as the training
time doubled.

Table 4. Hold-out test results of 3D U-Net at the 1000 th epoch.

Label Type DSC (%) mIoU (%) Sensitivity (%) Specificity (%)

Pericardium 76.04± 2.08
(+1.62)

63.03± 2.27
(+2.66)

73.10± 3.69
(+0.15)

99.74± 0.00
(+0.10)

EAT 70.97± 0.71
(+7.03)

55.58± 0.83
(+7.74)

76.45± 1.53
(+6.62)

99.38± 0.00
(+0.16)

Deep supervision: During experiments, we noticed that deep supervision influenced
the decrease in training loss and models’ performance sharply. To verify the effects of deep
supervision, we trained 3D attention U-Net models with and without deep supervision (in
Table 5).

Table 5. Hold-out test results of 3D attention U-Net without deep supervision.

Label Type DSC (%) mIoU (%) Sensitivity (%) Specificity (%)

Pericardium 65.60± 9.26
(−9.39)

54.90± 7.94
(−8.58)

61.25± 10.75
(−19.04)

99.86± 0.00
(+0.29)

EAT 45.85± 9.89
(−9.54)

34.93± 7.01
(−6.39)

39.26± 9.59
(−20.85)

99.83± 0.00
(+0.48)

To visualize the prediction of 3D attention U-Net, we show the region inside peri-
cardium segmentation results of 3D attention U-Net with and without deep supervision
in Figure 9. Without deep supervision, the segmentation focused too much on the inside
region and misses some pixels around the pericardium. This reduced the performance of
EAT segmentation sharply, as most EAT locates near the pericardium.
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Figure 9. Segmentation results of 3D attention U-Net. (a) ground truth. (b) segmentation results of
3D attention U-Net without deep supervision. (c) segmentation results of 3D attention U-Net with
deep supervision.

Evaluation: As some models are trained with 3D inputs and some are trained with
2D inputs, the evaluation could sometimes be tricky. From the previous works on EAT seg-
mentation, we noticed that most of the early works were based on 2D CT slices [7,13,19–21],
while some recent works were based on 3D CT images [9,12]. At the evaluation stage,
when computing the mean values for evaluation metrics, early works treated one 2D slice
as a sample [7], while some recent works treated a 3D image as a sample [12]. Therefore,
there is a numerical difference due to the different computation settings. We tested both
computation settings of mean values for our trained U-Net++ models. The mean values
computed based on 2D samples were slightly higher than those computed based on 3D
samples. However, considering that one 3D sample is from one patient, all the evaluation
metrics in our paper were calculated based on 3D samples.

Future Work

From the related literature and our experiments, we believe that there is potential for
automatic EAT segmentation. Here, we list some future work directions that we hope could
be helpful for further research.

Domain knowledge: From the previous works, we noticed the lack of domain knowl-
edge in the research into EAT segmentation and quantification. Many models for EAT
segmentation only applied an existing segmentation network to the EAT data directly.
Thus, the domain knowledge from the radiology aspect and the anatomical uniqueness of
EAT is ignored. We believe that there are more possibilities if we could incorporate deep
learning techniques and domain knowledge deeply.

Data unification: Due to the large variety of data acquisition protocols, the comparison
between research papers on this topic is hard. Thus, a unified labeling and data acquisition
protocol could reduce this barrier and increase the reproducibility of future works.

Benchmark: Compared to some popular medical image segmentation tasks such as
brain tumors or lung nodules, there are very limited publicly available data or benchmarks
with EAT labels. Thus, the comparison between methods is hard and the reproducibility is
very low. With a benchmark, this problem could be solved, and the visibility and popularity
of EAT segmentation could be improved.

Deep learning techniques: Recently, the deep learning techniques for segmentation
have improved rapidly. Many techniques such as generative adversarial networks, physics-
informed deep learning, and graph neural networks have shown success in many other
segmentation tasks [44], but have not yet been applied to EAT segmentation.

5. Conclusions

In this work, we compared four state-of-the-art models (3D U-Net, 3D attention U-Net,
DAU-Net, and U-Net++) from the U-Net family with regard to their performance for EAT
segmentation and quantification. All models were evaluated on a dataset of 154 LDCT
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from the ROBINSCA trial with two different types of labels. The U-net++ model trained
with pericardium masks showed better EAT segmentation and quantification results as
well as higher efficiency compared to the other models. Based on the experimental results
and existing literature, we examined crucial aspects of EAT segmentation and identified
potential areas for future research. While state-of-the-art methods from the U-net family
have displayed promising results, they also exhibit certain limitations when it comes
to EAT segmentation and quantification. We are optimistic about the potential of deep
learning techniques in alleviating the workload of radiologists and potentially replacing
labor-intensive manual evaluations. However, there is still a considerable amount of work
ahead of us before achieving the necessary standards for clinical application.
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EAT Epicardial adipose tissue
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ReLU Rectified linear unit
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