
Citation: Jagatheesaperumal, S.K.;

Rajamohan, V.P.; Saudagar, A.K.J.;

AlTameem, A.; Sajjad, M.;

Muhammad, K. MoMo:

Mouse-Based Motion Planning for

Optimized Grasping to Declutter

Objects Using a Mobile Robotic

Manipulator. Mathematics 2023, 11,

4371. https://doi.org/10.3390/

math11204371

Academic Editors: Marko Nagode

and Branislav Panić

Received: 2 September 2023

Revised: 6 October 2023

Accepted: 13 October 2023

Published: 21 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

MoMo: Mouse-Based Motion Planning for Optimized Grasping
to Declutter Objects Using a Mobile Robotic Manipulator
Senthil Kumar Jagatheesaperumal 1 , Varun Prakash Rajamohan 1 , Abdul Khader Jilani Saudagar 2 ,
Abdullah AlTameem 2, Muhammad Sajjad 3 and Khan Muhammad 4,*

1 Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College,
Sivakasi 626005, India; senthilkumarj@mepcoeng.ac.in (S.K.J.); varunprakash.r@mepcoeng.ac.in (V.P.R.)

2 Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn
Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; akasaudagar@imamu.edu.sa (A.K.J.S.);
altameem@imamu.edu.sa (A.A.)

3 Department of Computer Science, Norwegian University of Science and Technology (NTNU),
2815 Gjovik, Norway; muhammad.sajjad@ntnu.no

4 Visual Analytics for Knowledge Laboratory (VIS2KNOW Lab), Department of Applied Artificial Intelligence,
School of Convergence, College of Computing and Informatics, Sungkyunkwan University,
Seoul 03063, Republic of Korea

* Correspondence: khan.muhammad@ieee.org

Abstract: The aim of this study is to develop a cost-effective and efficient mobile robotic manipulator
designed for decluttering objects in both domestic and industrial settings. To accomplish this objective,
we implemented a deep learning approach utilizing YOLO for accurate object detection. In addition,
we incorporated inverse kinematics to facilitate the precise positioning, placing, and movement of
the robotic arms toward the desired object location. To enhance the robot’s navigational capabilities
within the environment, we devised an innovative algorithm named “MoMo”, which effectively
utilizes odometry data. Through careful integration of these algorithms, our goal is to optimize
grasp planning for object decluttering while simultaneously reducing the computational burden and
associated costs of such systems. During the experimentation phase, the developed mobile robotic
manipulator, following the MoMo path planning strategy, exhibited an impressive average path
length coverage of 421.04 cm after completing 10 navigation trials. This performance surpassed
that of other state-of-the-art path planning algorithms in reaching the target. Additionally, the
MoMo strategy demonstrated superior efficiency, achieving an average coverage time of just 16.84 s,
outperforming alternative methods.

Keywords: robot manipulator; AI autonomous robot; YOLO; MoMo; object localization; inverse
kinematics

MSC: 33B10; 51A40; 57N75; 65G30

1. Introduction

In the modern era, service robots heavily rely on their robotic system, robotic arm,
and robotic vision to carry out their operations effectively. Numerous proposals have
emerged for integrating the robotic system with robotic vision, each presenting its own
set of advantages and disadvantages. The primary objective is to employ high-quality
cameras for robotic vision, reliable hardware components, and a robust robotic algorithm
capable of interpreting the data obtained from robotic vision to enable smooth movement
and precise gripper motion [1]. Grasping, a vital and intricate capability of service robots,
demands varied techniques depending on the object’s type and size. Therefore, it becomes
imperative to accurately classify objects to ensure successful and appropriate grasping with
enhanced learning capabilities [2].

Mathematics 2023, 11, 4371. https://doi.org/10.3390/math11204371 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11204371
https://doi.org/10.3390/math11204371
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9516-0327
https://orcid.org/0000-0001-7638-8038
https://orcid.org/0000-0003-4205-3621
https://orcid.org/0000-0002-5302-1150
https://doi.org/10.3390/math11204371
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11204371?type=check_update&version=1


Mathematics 2023, 11, 4371 2 of 25

Predicting the shape, size, and texture of an object in real time poses a considerable
challenge due to its inherent complexity. The precision of such predictions holds paramount
importance, as even the slightest error can result in significant consequences. Hence, the
need arises for an efficient algorithm capable of accurately anticipating an object’s features
across diverse scenarios. Additionally, multi-DoF robotic hand grasping enables the robot
to grasp multiple objects using various hand surface regions, guided by a reachability
map, and validated through successful real-world replication [3]. To facilitate proficient
grasping, prior categorization and weight training of objects become essential. Through
our exploration of various algorithms for object detection, we determined that the you only
look once (YOLO) algorithm delivers remarkably precise outcomes when deployed within
a domestic environment. The study in [4] presents the Fast-YOLO-Rec algorithm, which
enhances real-time vehicle detection by achieving a balance between speed and accuracy
through a novel YOLO-based detection network. Evaluation of a large Highway dataset
demonstrates its superiority over baseline methods in both speed and accuracy.

In an aging society with fewer children, service robots are expected to play an increas-
ingly important role in people’s lives. To realize a future with service robots, a generic
object recognition system is necessary to recognize a wide variety of objects with a high
degree of accuracy [5]. Both RGB and depth images are used in [6] to improve the accuracy
of a generic object recognition system, aiming to integrate it into service robots. Object
recognition and pose estimation from RGB-D images are important tasks for manipulation
robots, which can be learned from examples. However, creating and annotating datasets for
learning is an expensive process [7]. The REBMIX algorithm [8], an improved initialization
method of the Expectation-Maximization algorithm, could be capable of addressing the
challenges of object manipulations, where it demonstrates its effectiveness in terms of
clustering, density estimation, and computational efficiency.

The cognitive and learning capabilities of traditional service robots have been a major
bottleneck, creating a significant disparity between these robots and human intelligence.
Consequently, the widespread application of service robots has been hindered. However,
with the introduction of deep learning theory, there is potential for a significant break-
through in the field of machine learning, thereby enhancing the cognitive algorithms of
traditional robots [9]. The proposed algorithm primarily focuses on integrating various
elements such as obstacle information (position and motion), human states (human posi-
tion, human motion), social interactions (human group, human–object interaction), and
social rules, such as maintaining minimum distances between the robot and regular ob-
stacles, individuals, and human groups. These elements are incorporated into the deep
reinforcement learning model of a mobile robot [10].

As the term ’Pick and Place’ implies, the robotic arm holds a pivotal role in the opera-
tions of a service robot, particularly in the act of picking up and placing objects. The arm is
equipped with a gripper and necessitates precise speed and direction control, along with a
higher degree of freedom. The position of the arm within the environment is determined
using inverse kinematics techniques. Numerous papers have explored the design of robots,
leveraging the advantages of various algorithms and structures developed in previous
works. In this regard, we present a compilation of different algorithms and methods dis-
cussed in these papers. Grasp detection, which requires expert human knowledge, involves
devising an algorithm to identify the grasping pose of objects using a suitable detection
method. One such method utilizes a deep learning algorithm, incorporating an image
dataset for surface decluttering, with additional support from IoT technology, aiming to
enhance the performance of surface decluttering [11]. Another approach involves a grasp-
ing robot that utilizes GANN and is trained using the Dex-Net 4.0 framework. The robot
employs a combination of a single parallel jaw gripper and a suction cup gripper, with
grasp planning based on depth images obtained from an overhead camera. This method
has been applied to the ABB YuMi grasping robot, as previously mentioned [12]. In [13],
the authors introduced a model predictive control (MPC) strategy for a differential-drive
mobile robot by employing input-output linearization on its nonlinear mathematical model.



Mathematics 2023, 11, 4371 3 of 25

The MPC is designed using quadratic criterion minimization and optimized using torque
and settling time graphs, demonstrating its effectiveness through simulation results.

Object detection employs a fully convolutional grasped quality CNN and is tested
on a 4 DOF robot. One promising strategy involves training deep policies using synthetic
datasets of point clouds and grasps, incorporating stochastic noise models for domain
randomization [14]. Another approach utilizes a robot grasp detection system with an
RGB-D Object dataset and a Deep CNN model [15]. Furthermore, a review highlights the
deployment of a robotic grasping function for robotic hardware, leveraging simulated 3D
grasp data [16]. Simulated 3D-based learning proves to be more efficient, enabling robots
to quickly adapt to different environmental systems without the requirement of a physical
environment. An additional approach employs a sliding window for grasp object detection,
utilizing Single Shot Detection based on deep learning techniques [17]. However, it should
be noted that identifying appropriate training data remains a significant challenge.

The need for a large volume of data for training purposes presents a challenge, as
it leads to exponentially increased training time. Such time requirements are impractical
in real-time domestic environments, necessitating the development of algorithms with
reduced time complexity. Grasping unknown objects with a soft hand poses a significant
challenge, as it requires the hand to possess sensing and actuation capabilities. In this
regard, the utilization of 2D and 2.5D image datasets, combined with the application of
3D CNN techniques, enables the grasping of previously unseen objects [12]. Additionally,
computing grasping data using a pneumatic suction gripper is implemented, employing
Dex-Net 3.0 training datasets. The GQ-CNN methodology proves beneficial for grasping,
with the processing task involving the classification of robust suction targets within point
clouds containing a single object.

The incorporation of signaling based on object detection, facilitated by the single
shot detector algorithm, compels robot navigation and provides parameterization at the
conclusion of detection [18]. This concept is vital for enabling robots to navigate intricate
environments in real-world scenarios autonomously. By utilizing a dataset and employing
deep reinforcement learning techniques, such as a deep recurrent neural network, robots
can comprehend and follow human-provided directions, thereby enhancing their ability to
navigate effectively in unfamiliar situations. The approach utilizes an end-to-end neural
architecture, which has proven effective in autonomous robot navigation. Machine learning
and inverse reinforcement learning techniques are implemented in conjunction with motion
data [19]. This approach demonstrates effectiveness in navigating complex and dynamic
environments, leveraging global plan information and sensor data to generate velocity
commands. A key requirement for successful localization, with or without a map, is the
integration of obstacle avoidance strategies.

Researchers in robotics are increasingly interested in employing meta-heuristic al-
gorithms for robot motion planning, due to their simplicity and effectiveness. In the
study [20], various meta-heuristic algorithms are explored in different motion planning
scenarios, comparing their performance with traditional methods in challenging environ-
ments, and considering metrics like travel time, collisions, distances, energy consumption,
and displacement errors. Conclusively, constrained particle swarm optimization emerges as
the top-performing meta-heuristic approach in unknown environments. In a separate con-
text, the beetle antennae olfactory recurrent neural network [21] is introduced for tracking
control of surgical robots, emphasizing compliance with crucial remote center-of-motion
constraints to ensure patient safety. These constraints are integrated with tracking control
using a penalty-term optimization technique. This framework guarantees real-time track-
ing of surgeon commands while upholding compliance standards, supported by theoretical
stability and convergence analysis.

The authors in [22] introduced an enhanced heuristic ant colony optimization (ACO)
algorithm for fast and efficient path planning for mobile robots in complex environments.
It incorporates four strategies, including improved heuristic distance calculation, a novel
pheromone diffusion gradient formula, backtracking, and path merging, leading to superior



Mathematics 2023, 11, 4371 4 of 25

performance in optimality and efficiency, particularly in large and intricate maps compared
to state-of-the-art algorithms. By introducing random ant positions in obstacle-free areas
and integrating A* concepts, the improved ACO in [23] reduces turns and iterations, leading
to faster and more efficient path planning for robots. The study [24] focuses on enhancing
the scalability, flexibility, and performance of mobile robot path planning systems and
introduces the hybrid particle swarm optimization (PSO) algorithm. Compared to other
heuristic algorithms, it exhibits superior performance by reducing the chances of becoming
stuck in local optima, achieving faster convergence, and lower time consumption in path
optimization, with a goal of minimizing the path length and ensuring collision-free, smooth
paths for the robots. A quartic Bezier transition curve with overlapped control points and
an improved PSO algorithm helps to achieve smooth path planning for mobile robots [25].
Here, the problem with criteria like length, smoothness, safety, and robot kinematics were
simulated to demonstrate the effectiveness and superiority of this approach in achieving
high-order smooth paths.

The paper [26] presents a practical implementation of an optimal collision-free path
planning algorithm for mobile robots using an improved Dijkstra algorithm. The approach
models the robot’s environment as a digraph, updates it when obstacles are detected using
an ultrasonic sensor, and demonstrates efficiency through simulations and real-world
implementation on a hand-made mobile robot, highlighting the practicality of the approach.
A hybrid path planning approach for mobile robots in variable workspaces combines offline
global path optimization using the artificial bee colony algorithm with online path planning
using Dijkstra’s algorithm in [27]. The approach efficiently adapts to changing worker
and obstacle positions, providing satisfactory paths with minimal computational effort in
real-time planning.

This paper introduces an innovative algorithm called mouse-based motion planning
(MoMo) and localization. The proposed algorithm addresses trajectory planning and
obstacle avoidance control challenges for a specific class of mobile robot systems. The
primary objective is to design a novel hybrid virtual force controller capable of adjusting
the distance between the mobile robot and obstacles. This is achieved by leveraging the
power of multilayer feedforward neural networks (NNs) and deep learning techniques.
The introduction of the developed multi-layer feed-forward NN deep learning compensator
relaxes the control and design conditions, further enhancing the system’s performance [28].

The remainder of this article is structured as follows: Section 2 frames the layout of
the problem definition for object detection, path planning, and grasping of the objects to
declutter the environment. Section 3 then broadly discusses the methodology meant for
object detection, the kinematics involved in the navigation, the importance of the MoMo
algorithm, and the path planning strategies. Section 4 then explores the mathematical
framework for the proposed MoMo algorithm, which is meant to analyze the sensor data
for the localization of the robot by computing the error model. Section 5 discusses the
implementation phase of the mobile robotic manipulator along with its structural design
and the working principle. Subsequently, Section 6 focuses on the results and observations
made through this study with visual illustrations. Finally, Section 7 concludes this work
with the key findings of this study.

2. Problem Definition

The autonomous robot’s picking and placing process involves three key steps: object
identification and planning, inverse kinematics, and localization and movement. In order to
operate effectively in real-time environments, it is crucial for the object detection algorithm
to be efficient and provide rapid responses to images. Our research has identified YOLO
as the most suitable algorithm for our requirements. This algorithm stands out for its
exceptional feature of faster response times coupled with optimal accuracy. Moving on to
the next step, inverse kinematics comes into play. Once the object is detected, the inverse
kinematic algorithm calculates the appropriate degrees of rotation for each variable point



Mathematics 2023, 11, 4371 5 of 25

of the robotic arm based on factors, such as the object’s nature and location relative to the
robot [29]. This allows for the successful grasping of the object.

The subsequent step encompasses localization and movement, both of which can be
accomplished by a single algorithm called MoMo. In a domestic environment, there exist
both dynamic and static paths. Static paths are permanent routes within an environment
that are unlikely to change over time, while dynamic paths may include temporary or
altered routes due to the presence of obstacles. Identifying static paths is relatively straight-
forward, but detecting dynamic paths presents a more complex challenge. The MoMo
algorithm’s distinctive feature lies in determining the object’s position based on its actual
location within the 2D environment, rather than relying on assumed positions derived
from wheel movements, as observed in SLAM techniques [30]. The ultimate objective is to
efficiently integrate these three algorithms to create an autonomous AI mobile robot that
serves as a human assistant. Additionally, it is crucial for this robot to be user-friendly, with
an intuitive interface, thereby providing significant potential for future advancements. Data
can be stored either locally or in an online cloud, enabling multiple robots to access the same
dataset. Moreover, the robot must be designed to facilitate future enhancements, bug fixes,
and performance optimization. Figure 1 illustrates the sequence of stages involved in the
object decluttering task, providing a comprehensive overview of the working mechanism
of the robot from the user commands to the actuation subsystem.

Figure 1. Overall working mechanism that delineates the step-by-step process of the algorithms,
from the command input by the user to the final output generated by the bot.

3. Methodology

This section explains objection detection with YOLO, followed by necessary details of
the inverse kinematics. At the end of this section, MOMO is discussed.

3.1. Object Detection with YOLO

In order to facilitate navigation, searching, picking, and placing tasks, robots require
detailed information extracted from images. High-definition cameras are employed to



Mathematics 2023, 11, 4371 6 of 25

capture the images, which are subsequently processed using computer vision techniques.
Computer vision plays a crucial role in providing object position and orientation within a
real-world environment. In this context, the CNN algorithm is utilized due to its ability to
handle multiple object classes simultaneously and accurately classify them. CNN stands out
as a highly reliable and efficient method for object detection compared to other approaches.
Various models exist for object detection, with some relying on CNN. For the development
of object detection code, Python is utilized due to its open environment, expressive and
readable syntax, and the availability of sophisticated libraries that facilitate the creation of
utility programs.

YOLO is widely acknowledged for its superior speed compared to other algorithms.
It possesses the ability to detect objects in an image with just a single pass, examining
the image only once through the network [31]. This efficiency enables YOLO to deliver
remarkably accurate results. In contrast, alternative algorithms often require multiple
scans of the image to detect N number of objects [32]. To facilitate the implementation
of YOLO, a framework is essential. Darknet or Darkflow framework can be employed in
conjunction with YOLO, where specifically the Darkflow framework combines TensorFlow
with YOLO [33]. Additionally, the OpenCV framework, known for its compatibility with
YOLO, has gained traction in recent scenarios [34]. In this work, we opt for the OpenCV
framework to conduct our experimentations.

To ensure accurate object detection, we utilize a pre-trained weight file since training a
model with thousands of images is an arduous and time-consuming process. By leveraging
the pre-trained weight file, we expedite the detection process. However, it is also possible to
train YOLO and create a custom weight file (if desired). YOLO demonstrates the capability
to perform both object detection and classification simultaneously. Following input to the
network, bounding box coordinates and class predictions are generated. The input image
is initially divided into SxS grids, with each grid assigned bounding boxes accompanied
by confidence scores. If the pixels within a region exhibit similarity, the region expands,
while dissimilar pixel values prevent region growth. Subsequently, the region is compared
against pre-trained features of known objects, enabling classification and the display of the
corresponding class name on the image [35]. The extracted features from multiple images
are collected and stored in a weight file, while layer information is stored in a configuration
file. The configuration file contains various layers such as convolution, shortcut, YOLO,
and route layers, totaling 107 layers. Additionally, the class names associated with the
detected objects are stored, with YOLO capable of detecting 80 classes of objects [11,36].

3.2. Inverse Kinematics

Inverse kinematics involves the mathematical calculation of variable parameters nec-
essary for moving the robotic arm to a desired position. It requires the use of kinematic
equations to determine the joint parameters. While considerable attention has been given to
object detection and localization algorithms, inverse kinematics has received relatively less
focus [37]. Once the location of an object is identified using image processing techniques,
inverse kinematics is employed to guide the movement of the robotic arm toward the object,
enabling the bot to successfully grasp it. Although we have implemented a simplified
approach of moving the bot vehicle toward the center of the object for picking, further ad-
vancements in inverse kinematics algorithms can be explored in the future [38]. It is worth
noting that our bot’s structural design is designed to accommodate future improvements
and enhancements.

3.3. MoMo

MoMo is an innovative algorithm developed in this work, as described in the subse-
quent section. The algorithm utilizes mouse sensors and ultrasonic sensors to create a map
of the environment, referred to as the raw map. The raw map has dimensions of M× N
mouse pixels, where a mouse pixel represents the minimum measurable distance by the
mouse sensor. However, due to the large size of the raw map file, it becomes challenging



Mathematics 2023, 11, 4371 7 of 25

to process and extract data efficiently. Therefore, a compression and conversion process
is applied to transform the map file into a usable, accessible, and readable format, as
explained below.

Assuming the raw map file is of size M× N, it consists of sequences of 0 s and 1 s,
where 0 denotes areas without obstacles and 1 denotes areas with obstacles. The obstacle-
free areas are divided into squares for improved readability and efficient pathfinding. This
square division is adopted to facilitate easy navigation and expedite the search for the
shortest path. The algorithm for square formation is described below. Starting from the first
pixel, a square-based region-growing technique is employed. If the square formation is not
possible or the size of the square exceeds the maximum limit, the square formation is halted,
and the previous square is marked as a new one, assigned a unique number to represent it.
By recursively following these steps, the entire map is divided into multiple squares.

Each square contains a central point known as the local eccentric point. The subsequent
step involves determining if there are any direct paths between these eccentric points. If
such paths exist, they are added as edges in Dijkstra’s map, resulting in a list of complete
paths. When an object needs to move from one location to another, the corresponding
eccentric point is identified, and the object moves toward it. Dijkstra’s algorithm is then
employed to find the shortest path, and the object follows this path to reach its destination.
If temporary obstacles obstruct the path, they are marked on the map. The object proceeds
to the next eccentric point, determines the path, and continues these steps if any obstacles
are encountered along the way.

However, it is worth noting that larger free space squares correspond to longer dis-
tances that the robot needs to travel to reach its destination. To address this, we designed
the algorithm to be adaptable in all scenarios. We have set a constant minimum time for the
algorithm to find the shortest path. If the actual time required to find the shortest path falls
below this minimum threshold, the maximum size of the free space squares is reduced, and
the map is compressed and parsed again. This approach aims to minimize the distance the
robot needs to travel [39]. As a result, this algorithm, combined with Dijkstra’s algorithm,
offers significant advantages in various domestic environments.

4. MoMo’s Mathematical Modeling

The MoMo algorithm offers unique advantages over other localization methods. It
addresses a drawback found in SLAM approaches by leveraging a distinct approach. Unlike
SLAM, MoMo does not rely on the movement of wheels or other locomotive components
of the robot for localization. Instead, MoMo’s localization is based on the actual movement
of the robot itself. To achieve this, two mouse sensors are fixed under the robot. These
sensors utilize the core image processing strategies to track the mouse’s movement. In
the robot’s motion, there are two types of movement: linear movement and rotational
movement [40]. A single mouse can only predict one of these motions accurately. Hence,
two mice are employed to capture both types of motion, providing a more comprehensive
understanding of the robot’s position. This approach enables MoMo to determine the
real position of the robot with greater accuracy. To ensure the success of any method, a
reliable mathematical model is essential. In the case of MoMo, a dedicated mathematical
model has been developed. This model serves as the foundation for performing localization
using MoMo, allowing precise position estimation solely through the utilization of the
mathematical model [41].

4.1. Sensors for Localization

The localization of the robot relies on the utilization of two optical sensors, as depicted
in Figure 2, where the low-cost optical sensors and image processing, are similar to how
a regular computer mouse functions. In MoMo, we leverage this concept to achieve
localization.



Mathematics 2023, 11, 4371 8 of 25

Figure 2. Position of the optical sensor in the robot (upside down image).

The use of two optical sensors is necessary for a specific reason. Consider the following
example: imagine your mouse is facing north, and you rotate it to the east without moving
the mouse (i.e., keeping it fixed at the center). In this case, the mouse pointer on the
computer screen will not move. However, if you then move the mouse forward, the
mouse pointer will move toward the top of the screen. Meanwhile, the mouse itself is
actually moving to the left. This example demonstrates the limitation of a single optical
sensor, which can only detect linear movement and cannot determine rotational movement.
To address this limitation, MoMo employs two optical sensors to predict both linear
and rotational movement. By utilizing two sensors, MoMo overcomes the challenge of
accurately capturing the robot’s rotation. Additionally, a mathematical model is developed
to support the MoMo algorithm. In the subsequent sections, we will explore and discuss
this mathematical model in detail.

4.2. Mathematical Model to Localize Robot

Figure 3 provides a visual representation of the mouse sensors’ positions and the
center position of the robot. Additionally, Figure 4 illustrates the initial position of the
object. In this context, let xp and yp denote the axes perpendicular and parallel to the
object’s position, respectively. The object’s initial position is denoted as Pp. Specifically,
the object’s position is (0,0) concerning the xp yp axis and (Ppx,Ppy) concerning the xy axis.
Figure 5 visually represents the comparison between the initial and final positions of the
object. To determine the object’s position accurately, we need to find the values of Pn and θn.

To find position Pn, the following parameters are considered to be known: Pp—initial
position, θp—initial angle, Mp1—mouse 1 output, and Mp2—mouse 2 output. Further, to
find the final position, consider: tm is the time interval over which the optical sensor gives
output ts is the time interval over which the optical sensor value is read by MoMo as shown
in Figure 6.

ts

∑
t=0

Mp =
∑ts

t=0 Mp1 + ∑ts
t=0 Mp2

2
(1)

Let us consider

p =
ts

∑
t=0

Mp

Pc represents the change in the object’s position after time ts relative to the xp and yp
axes. To obtain the actual position, we need to convert point Pc to the XY axis as shown in
Figure 7. This conversion involves performing both rotation and translation of points.

For estimation of the rotation of the axis, we have

θ = 360− θp

The position of the object without translation and with only rotation of the axis is
shown in Figure 8. In the configuration space of (xp, yp), let the point p have polar



Mathematics 2023, 11, 4371 9 of 25

coordinates (γ, α). Then, in the configuration space of (x, y), the point p will have polar
coordinates (γ, α− θ). By utilizing trigonometric functions, we can express this as follows:

xp = r cos α (2)

yp = r sin α (3)

By using the standard trigonometric expression for differences, we have

x = r cos α cos θ + r sin α sin θ (4)

y = r sin α cos θ + r cos α sin θ (5)

Figure 3. Description of the robot with optical sensors and its axis.

Figure 4. At any time t, the robot may be at position Pp with angle θp.

Figure 5. Comparison of 2 positions Pn and Pp.



Mathematics 2023, 11, 4371 10 of 25

Figure 6. Axis representation of the object at the initial and final positions.

Figure 7. Relative new position of the object in xp and yp axis.

Figure 8. Position without translation and with only the rotation of the axis.

Substitution Equations (2) and (3) in (4) and (5), we have

x = xp cos θ + yp sin θ (6)

y = −xp sin θ + yp cos θ (7)

Substitution θ = 360− θp Equations (6) and (7) and simplified to provide the exact
position of point p.

x = xp cos θp − yp sin θp (8)

y = xp sin θp + yp cos θp (9)



Mathematics 2023, 11, 4371 11 of 25

From Equations (8) and (9), we can obtain point p = (x, y) in the configuration space
of (x, y), with respect to the space of (xp, yp) expressed as,

p = (xp cos θp − yp sin θp, xp sin θp + yp cos θp) (10)

Equation (10) shows the point p in the (x, y) configuration space with rotation θp and
without linear translation pp. The translation process is represented as:

pn = (pnx, pny)

pnx = x + ppx

pny = y + ppy

The new position of the object pn can be expressed as shown in Equation (11)

pn = (x + ppx, y + ppy) (11)

We estimate the rotation of the object θ, with the known parameters θp—initial angle,
Mp1—mouse 1 output, and Mp2—mouse 2 output, where the combined view of initial and
final positions is shown in Figure 9.

Figure 9. The combined view of initial and final positions with the mouse axis.

θp is the initial angle of the object with respect to the (x, y) configuration, where mp is
the initial axis of the mouse and mr is the final axis of the mouse and m1 and m2 representing
the optical sensors at the new position pn. The expression of mn can be expressed as shown
in Equation (12),

y−m1y

m2y −m1y
=

x−m1y

m2x −m1x
(12)

The slope of the line mn needs to be estimated.

y =
(m2y −m1y)

(m2x −m1x)
x−

m1x(m2y −m1y) + m1y(m2x −m1x)

(m2x −m1x)
(13)

The slope of the line mn is in the form of y = mx + c, then from the Equation (13), the
slope is

slope =
(m2y −m1y)

(m2x −m1x)

The slope can be represented as,

tan θ =
(m2y −m1y)

(m2x −m1x)
(14)



Mathematics 2023, 11, 4371 12 of 25

From Equation (14), the angle θ can be expressed as,

θ = tan−1 (m2y −m1y)

(m2x −m1x)
(15)

The change in angle θc = θ − 90 in the configuration space (xp, yp) can be used to
define the angle of the new position of the object as

θn = θp + θc

θn = θp + θ − 90 (16)

Thus, both the Pn and θn are found (Equations (11) and (16)) and the object can
be localized.

Error Model

Errors can occur in any system, and understanding them is crucial for their reduction.
To achieve error reduction, we describe the errors using a mathematical model. Our study
includes a comprehensive analysis of the errors, supplemented with illustrative examples
at the end for better comprehension.

The error in this system arises from the relative nature of the optical sensor’s output
and the significant difference in time scales, where the delay of the implemented MoMo
program in reading the optical sensor’s output tm � ts. When describing the error, it is
important to consider certain parameters. Let Vmax represent the maximum speed at which
the object is moved between positions, and θmax denote the maximum angle of rotation per
second. It should be noted that an increase in the θmax value results in a higher error in the
object’s position estimation.

The general expression of the error could be represented as,

error =

{
emax; θmax 6= 0 and ts < tm,
0; θmax = 0 or ts = tm

(17)

X(m, n) =
{

emax; θmax 6= 0 and ts < tm
0; θmax = 0 or ts = tm

(18)

In this system, two types of errors exist, namely angular error and linear error. The
angular error refers to the deviation between the actual θn value and the measured θn
value, denoted as ea. The maximum possible angular error is represented by emax, and it is
shown in Figure 10. On the other hand, the linear error pertains to the discrepancy between
the actual Pn value and the measured Pn value. It can also be interpreted as the distance
between the actual and measured positions, denoted as el , and it is shown in Figure 11. The
maximum possible linear error is indicated as emax.

Figure 10. Angular error deviation representation w.r.t. the position.



Mathematics 2023, 11, 4371 13 of 25

Figure 11. Linear error deviation representation w.r.t. the position.

Considering, θ1—measured value, θ2—actual value, and ea—deviated value (or) error,
we have P1—actual position, P2—measured position, and el—deviation, to find eamax

eamax = θmax ×
(

t
tm × ts

)
×
(
tm − ts

)
(19)

From Equation (19), emax = 0 when, θmax = 0 or tm = ts
If the robot is unable to rotate or if tm = ts, the error becomes zero. However, since

θmax 6= 0 for any robot, minimizing the error requires tm to be closer to ts. While reducing ts
is challenging, it can be accomplished through the implementation of an efficient program
with reduced time complexity. Additionally, this section discusses various techniques that
can be employed to achieve this objective.

Based on Figure 12, we can infer that the error increases linearly over time. By
converting the points to polar coordinates, we can easily determine elmax and calculate
its value.

dmax = vmax × time

el is distance between P1 and P2. P1 and P2 are converted to polar coordinates:

P1 = (dmax, 0)

P2 = (dmax,θmax )

P1 and P2 in rectangular coordinate are,

p1 = (dmax, 0)

p2 = (dmax cos(θmax), dmax sin(θmax))

elmax =
√
(dmax cos(θmax)− dmax)2 + (dmaxsin(θmax)− 0)2 (20)

P3 is the measured position and P4 is the actual position. Position P4 can be measured
from P2 as follows.

P2 = (dmax, θmax)

P4 = P2 + (dmax, θmax)

p4 = (dmax cos(θmax), dmax sin(θmax)) + (dmax cos(θmax)

dmax sin(θmax)) (21)

p4 = (2dmax cos(θmax), 2dmax sin(θmax)) (22)



Mathematics 2023, 11, 4371 14 of 25

p3 = (2dmax, 0) (23)

Here, elmax is the distance between P3 and P4. By generalizing these equations for
stage n, we have

elmax = distance between(ndmaxcos(θmax), ndmax

sin(θmax)) and (ndmax, 0) (24)

where n is the stage. Figure 13 represents the linear representation of the error for the choice
of n = 1 and similarly Figure 14 shows the choice of n = 2.

n =
t

tm × ts
(tm − ts) (25)

elmax =
√
(ndmax cos(θmax)− ndmax)2 + (ndmaxsin(θmax))2 (26)

elmax = ndmax

√
2− 2 cos(θmax) (27)

Figure 12. Angular error representation w.r.t. time.

Figure 13. Linear error representation at stage n = 1 w.r.t. time.

Figure 14. Linear error representation at stage n = 2 w.r.t. time.



Mathematics 2023, 11, 4371 15 of 25

Substituting n from Equation (25), we have

elmax =
t

tm × ts
(tm − ts)dmax

√
2− 2 cos(θmax) (28)

From this equation, we infer that the elmax will be zero when

dmax = 0 or θmax = 0 or tm − ts

Among the given conditions, only the third condition is feasible. Moreover, these
errors are cumulative in nature. Both ea and el accumulate over time and can only be
minimized when tm − ts = 0. Here, tm represents the time taken by the implemented
MoMo code to read the optical sensor value again after processing the previous data. To
reduce the error, it is essential to utilize an efficient code with minimal processing time.
Equations (19) and (28) provide further valuable insights. These equations help determine
suitable values for θmax and dmax for a robot, allowing for a significant reduction in error.

From Equation (19) and normalizing the time, here, ts = 1 and tm = tm/ts and t = 1

eamax = θmax ×
(

1
tm

)
(tm − 1) (29)

Consider Eaacc as the maximum acceptable angular error for one second,

Eaacc ≥ θmax

(
1
tm

)
(tm − 1)

θmax ≤
tm × Eaacc

(tm − 1)
(30)

From Equation (28), we have

elmax =
1
tm

(tm − 1)dmax

√
2− 2 cos(θmax) (31)

Consider Elacc as the maximum acceptable linear error for one second,

Elacc ≥ dmax

(
1
tm

)
(tm − 1)

√
2− 2 cos(θmax) (32)

dmax ≤
tm

(tm − 1)
Elacc ×

1√
2− 2 cos(θmax)

(33)

where,

θmax ≤
tm × Eaacc

(tm)− 1
(34)

By utilizing Equations (30) and (33), it is possible to design a system with a maximum
allowable error and subsequently reduce the error. Controlling the linear speed of the robot
allows for error reduction. To illustrate the application of Equations (30) and (33), let us
consider an example. In this scenario, the system has ts = 0.1 ms and tm = 0.15 ms. The
requirement for this system is to achieve Eaacc = 0.1◦ and Elacc = 1 mm.

Question: What are suitable θmax and dmax for the aforementioned system?
Answer:
The normalized representation is

tm =
0.15
0.1

= 1.5



Mathematics 2023, 11, 4371 16 of 25

From (30), we have

θmax ≤
(1.5× 0.1)
(1.5− 1)

θmax ≤ 0.3◦

We choose θ as,
θmax = 0.3◦

From (33), we have

dmax ≤
1.5

(1.5− 1)
× 1√

2− 2 cos(0.3)

dmax ≤ 572 mm

So, this robot can have θmax ≤0.3° and dmax ≤ 572 mm.

4.3. Dijkstra’s Algorithm

In conjunction with MoMo, we utilize Dijkstra’s algorithm to determine the shortest
path between any two points. Starting from the generated raw map file, a parsed map
file is created through the division of the movable path in the environment into multiple
free-space squares [42]. These squares, known as free space squares, serve as the basis
for pathfinding. The center points of these free-space squares are marked, as depicted
in Figure 5. In the figure, the colored squares represent the free space squares, while the
red marks indicate their center points. Dijkstra’s algorithm is then applied to these center
points, enabling the efficient discovery of the shortest path within smaller regions such
as homes [43]. The maximum size of the free space squares can be adjusted, where larger
squares result in quicker path-finding times.

5. Implementation

In this section, we provide detailed implementation insights. We delve into the oper-
ational mechanisms and structural design of the robotic manipulator utilized for accom-
plishing object-decluttering tasks. The implementation phase of the proposed MoMo path
planning, localization, and navigation frameworks was implemented using the MATLAB
R2022b tool in the system with Intel i5 configuration.

5.1. Structural Design

The hardware structure of the bot is designed to be robust, compact, and capable of
carrying heavy objects while withstanding various environmental conditions. The key
component of the bot is the robotic arm, which offers a high degree of freedom. Moreover,
the structure is tailored to meet the specific needs of domestic environments. Taking into
account these requirements, an autonomous robot equipped with a robust robotic arm has
been developed specifically for domestic applications. This design also presents ample
opportunities for expansion and enhancement. The main components include a web camera
for robotic vision, an ultrasonic sensor for obstacle detection and mapping, a robotic arm
for object manipulation, a Raspberry Pi for controlling the bot, and a dedicated node for
image processing. These are the primary featured parts, while additional sub-parts, such as
wheels, batteries, and a metal structure, are also included. The physical hardware design of
the mobile robotic assembly can be found in Figures 15 and 16. The robot’s hardware can be
divided into two parts: the base and the robotic arm. The base, constructed from mild steel,
serves as a four-wheeled vehicle and houses all internal circuits, including the Raspberry
Pi controller, lithium–ion battery, and DC motor driver. This design is cost-efficient, but it
does have the drawback of increased weight. The developed mobile robotic manipulator is
composed of six parts, as shown in Figure 15:

• Base plate to arm connector—bearing bracket: This component serves to connect the
robotic arm structure with the base segment. It ensures that the total weight of the top



Mathematics 2023, 11, 4371 17 of 25

structure, including the object being lifted, is supported by the bearing bracket instead
of the rotary motor. This design allows for the lifting of objects of various weights,
including heavy loads, with less torque.

• Vertical movement gears—pair of right-threaded screw rods: To enable the lifting of
objects, even those with significant weight, we devised a unique structure using a
pair of square-threaded right-threaded screw rods. The square thread design ensures
long-term durability with minimal wear and tear. The vertical movement of the rods
is facilitated by three gears and one motor. With a single motor, the rotation of each
rod is precise, and the speed can be easily controlled. The largest gear at the center has
75 teeth, while the other two gears have 27 teeth, resulting in a rotation of the rod that
is 2.7 times that of the motor. As a result, a lower RPM motor can be used in various
operational conditions. This configuration allows the arm to lift objects to a height of
2 feet.

• Hand holder—pair of movable plates: The hand holder consists of a pair of movable
plates that secure the remaining arm structure and facilitate vertical movement. These
plates play a crucial role in the arm’s functionality.

• Shoulder joint—pan–tilt 2-axis servo motor: This joint, resembling the shoulder joint
of a human arm, utilizes a pan–tilt 2-axis servo motor to provide rotational movement.

• Elbow joint—pan–tilt 2-axis servo motor (tilted perpendicular): The elbow joint, simi-
lar to the human elbow, employs a pan–tilt 2-axis servo motor with a perpendicular
tilt to enable rotational movement.

• Arm: The arm segment of the robotic arm imitates the structure and function of a
human arm, completing the resemblance to our natural limb.

Figure 15. The designed mobile robotic manipulator and its functional components.



Mathematics 2023, 11, 4371 18 of 25

Figure 16. Dimensions of the developed mobile robotic manipulator.

Through the integration of these components, we successfully created a versatile
and efficient robotic arm that closely emulates human-like movements and demonstrates
exceptional capabilities in performing a wide range of tasks. The dimensions of the
developed robotic system are shown in Figure 16.

The inclusion of two pairs of pan–tilt 2-axis servo motors enables a high degree of
freedom for the robotic arm. With a 360-degree azimuth angle and 180-degree elevation
angle, this arm offers exceptional maneuverability. Additionally, the gripper operates based
on the screw principle, allowing precise control over movements with a resolution of up
to 1mm. Each gripper is equipped with a piezo disc sensor, enabling accurate handling of
various objects, including fragile and heavy items, by determining the pressure exerted.
The structure of the arm has been specifically designed to meet our requirements and offers
ease of upgrade, modification, and repair. However, it is important to note that the vehicle’s
weight is relatively heavy, and its usage is limited to smooth surfaces within domestic
environments.

5.2. Working Principle

The initial phase involves generating a map file of the environment where the bot
operates. A timeout is set for this process, ensuring that no movable objects are present
during map generation. The time required to generate the map file for a typical-sized house
can range from 30 min up to the specified timeout period. The map file contains coordinates
representing the free movement path and obstacles, and it can be updated as needed. The
next phase is focused on initializing the positions of the objects. In this stage, the bot
traverses the environment, identifies objects, and stores their information in a database for
future reference. This phase holds significant importance, as users expect fast and accurate
technology for their domestic needs. By knowing the locations of specific objects, the bot
can easily navigate to those locations without having to search the entire environment.
However, it is important to consider the possibility of objects being re-positioned during



Mathematics 2023, 11, 4371 19 of 25

operation. Figure 17 depicts and illustrates the tasks performed by the robot from the
perspective of the user.

Figure 17. Robot’s perspective of project tasks as perceived by the user.

The third phase is dedicated to relocating objects at uniform time intervals, initially
set at 1 hour but adjustable based on the size of the environment. For larger environments,
the time interval should be reduced, and vice versa. During this phase, the new positions
of the objects are updated in the database. These three phases together form step 1, the
“Preparatory Step”. The subsequent step is the “Searching Step”. When the consumer
issues a search command for a specific object, the bot first looks for the object’s location in
the database, a process referred to as “retrieval of data from DB”. Two types of locations
are considered: the expected location and frequent locations. The expected location cor-
responds to the object’s recent known position, typically obtained during the “relocating
objects” phase.

By analyzing the object’s overall movement history, the most frequent position where
the object is often found is calculated. The bot begins by moving to the expected location,
and if the object is detected there, it informs the consumer of its location. However, if the
object is not found in the expected location, the bot proceeds to the most frequent location.
If the object is still not detected, the bot enters the third phase, known as the “complete
search”, where it thoroughly searches the environment for the object. In the “complete
search” phase, the bot thoroughly scans the environment for the object. If the object is
found, it informs the consumer about its location. If the object is not found, the bot informs
the consumer that the required object cannot be located. The same phases and steps are
followed for the “Take” command. In addition to the aforementioned steps, the bot picks
up the object from the identified position and places it near the consumer’s location.

6. Results and Discussion

In this section, we present the obtained results for various algorithms. By examin-
ing the outcomes of the MoMo algorithm, the timing required for path planning in the
environment is observed with the deployment of implemented algorithms in a real-time
environment. The majority of the results align with our expectations and have received pos-
itive responses. However, a few results have provided us with valuable insights beyond our



Mathematics 2023, 11, 4371 20 of 25

initial predictions. To compress the raw map, we employed the square box–square-region
growth algorithm.

In Figure 18, the black boxes represent the obstacles present in the environment. The
colored boxes, numbered accordingly, indicate the free area squares that are generated
through the compression of the raw map. In a typical domestic environment, the average
time required to find the optimal path for a minimum distance is less than 500 milliseconds.

Figure 19 illustrates a plot that demonstrates the exponential increase in time as the
room area expands. As the algorithm is specifically designed for domestic environments,
the average time required will always remain under 500 milliseconds. This graph also
highlights the limitation of using this algorithm for larger environments exceeding the
size of a typical house. The observations confirm the expected outcome with additional
two parameters influencing the time required are the obstacle area and the distribution of
obstacles within the environment, both of which are represented in the graph.

Table 1 evaluates ACO, PSO, Dijkstra, and the proposed MoMo method in various
experiment trials, highlighting the superior performance of our approach over conventional
methods in minimizing the path length. Subsequently, Table 2 highlights the superior
performance of MoMo approach in terms of minimum coverage time.

Table 1. Comparison of path lengths under different trails for the navigation of the mobile robotic
manipulator to declutter objects.

Experiment Trails ACO (cm) PSO (cm) Dijkstra (cm) MoMo (cm)

Trail 1 452.72 485.31 428.23 421.37

Trail 2 453.43 485.85 429.47 420.65

Trail 3 459.57 484.28 428.14 421.85

Trail 4 453.46 485.91 429.36 420.9

Trail 5 451.02 487.83 428.15 420.04

Trail 6 458.48 483.72 429.47 420.78

Trail 7 457.65 486.64 428.68 421.65

Trail 8 456.15 485.23 427.96 421.21

Trail 9 454.86 485.64 427.92 420.97

Trail 10 455.94 483.58 428.27 420.95

Average 455.33 485.40 428.57 421.04

Table 2. Comparison of coverage times under different trails for the navigation of the mobile robotic
manipulator to declutter objects.

Experiment Trails ACO (s) PSO (s) Dijkstra (s) MoMo (s)

Trail 1 22.64 25.54 21.41 16.85

Trail 2 22.67 25.57 21.47 16.83

Trail 3 22.98 25.49 21.41 16.87

Trail 4 22.67 25.57 21.47 16.84

Trail 5 22.55 25.68 21.41 16.80

Trail 6 22.92 25.46 21.47 16.83

Trail 7 22.88 25.61 21.43 16.87

Trail 8 22.81 25.54 21.40 16.85

Trail 9 22.74 25.56 21.40 16.84

Trail 10 22.80 25.45 21.41 16.84

Average 22.77 25.55 21.43 16.84



Mathematics 2023, 11, 4371 21 of 25

Figure 18. The simulated outcome of Map generation and path planning using Dijkstra Algorithm.

Figure 19. Room area vs. average time taken for finding the path with minimum distance. The red
line is the trend line.

Based on the observations from Figures 20 and 21, it is evident that the time taken for
path planning is not consistent or precisely determinable due to the random distribution of
obstacles within an environment. However, an approximation can be made. This finding
also applies to the relationship between bounding box graphs and average time graphs.
Moving on, let us discuss the results pertaining to the object detection algorithms.

Figure 20. Total obstacle area vs. average time taken for finding the path with minimum distance;
the red line is the expected trend line.



Mathematics 2023, 11, 4371 22 of 25

Figure 21. Number of free area squares vs. average time taken for finding the path with minimum
distance. The red line is the expected trend line.

Based on our extensive testing, the YOLO algorithm has demonstrated high efficiency
and accuracy. The outcomes of the detection of various objects from the webcam mounted
on the robotic manipulator using the YOLO object detection algorithm are shown in
Figure 22. In comparison to other algorithms that we experimented with (like faster-CNN),
YOLO has shown significant advantages. As mentioned earlier, the combination of YOLO
and MoMo algorithms makes the robot well-suited for real-time domestic applications.

The plot depicted in Figure 23 illustrates a linear increase in time as the room area
expands. This outcome aligns with our expectations, as it is a common behavior observed
in various algorithms. Hence, the MoMo algorithm has demonstrated its efficiency and
suitability for domestic environments.

Figure 22. Detection of various objects from the webcam using the YOLO object detection algorithm.

Figure 23. Analysis of the MoMo algorithm. Comparison of room area with the time taken to generate
a complete raw map.



Mathematics 2023, 11, 4371 23 of 25

7. Conclusions and Future Directions

A mobile robotic manipulator demonstrates tremendous potential, serving as a versa-
tile and cost-effective home assistant that is capable of decluttering objects in both domestic
and industrial settings. By leveraging deep learning techniques (such as YOLO) for ac-
curate object detection, and incorporating inverse kinematics for precise positioning and
movement of robotic arms, we successfully optimized grasp planning for efficient object
decluttering. Additionally, the integration of our innovative MoMo algorithm, which uti-
lizes odometry data, enhances the robot’s navigational capabilities within the environment.
The MoMo path planning strategy outperformed state-of-the-art algorithms, achieving an
average path length coverage of 421.04 cm in 10 trials and a faster average time of 16.84 s.

This robot’s implications extend beyond its decluttering capabilities. It can effectively
support disabled and elderly individuals, acting as a valuable home assistant. Furthermore,
in light of the coronavirus pandemic and the importance of social distancing, the robot
offers a viable alternative to relying on human workers for domestic tasks. Integration
with popular virtual assistants like Amazon Alexa, Google Home, and others, further
enhances user experience, providing additional assistance and convenience. Affordability
is another key advantage of this robot, as its low-cost nature makes it accessible to a wide
range of individuals. This affordability is even more pronounced when considering the
potential cost reduction achieved through bulk manufacturing. Furthermore, the robot’s
versatility, cost-effectiveness, and ability to address current societal needs position it as
a promising solution with significant prospects for the future. Future research in object
decluttering will be focused on enhancing the adaptability and robustness of standard and
novel meta-heuristic algorithms to address complex and dynamic scenarios in association
with the MoMo approach.

Author Contributions: Conceptualization, S.K.J. and A.K.J.S.; methodology, S.K.J., V.P.R. and A.K.J.S.;
software, V.P.R. and A.A.; validation, S.K.J.; formal analysis, S.K.J., V.P.R. and K.M.; investigation,
S.K.J. and M.S.; writing—original draft, S.K.J., V.P.R. and K.M.; writing—review and editing, S.K.J.,
A.A., A.K.J.S. and K.M.; visualization S.K.J., V.P.R., M.S. and K.M.; Funding acquisition, A.K.J.S. and
K.M. All authors have read and agreed to this version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research & Innovation,
Ministry of Education in Saudi Arabia for funding this research through the project number IFP-
IMSIU-2023027. The authors also appreciate the Deanship of Scientific Research at Imam Mohammad
Ibn Saud Islamic University (IMSIU) for supporting and supervising this project.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Innova-
tion, Ministry of Education in Saudi Arabia for funding this research through the project number
IFP-IMSIU-2023027.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Robinson, N.; Tidd, B.; Campbell, D.; Kulić, D.; Corke, P. Robotic vision for human-robot interaction and collaboration: A survey

and systematic review. ACM Trans. Hum.-Robot. Interact. 2023, 12, 1–66. [CrossRef]
2. Lopez-Caudana, E.; Ramirez-Montoya, M.S.; Martínez-Pérez, S.; Rodríguez-Abitia, G. Using robotics to enhance active learning

in mathematics: A multi-scenario study. Mathematics 2020, 8, 2163. [CrossRef]
3. Yao, K.; Billard, A. Exploiting Kinematic Redundancy for Robotic Grasping of Multiple Objects. IEEE Trans. Robot. 2023, 39,

1982–2002. [CrossRef]
4. Zarei, N.; Moallem, P.; Shams, M. Fast-Yolo-Rec: Incorporating yolo-base detection and recurrent-base prediction networks for

fast vehicle detection in consecutive images. IEEE Access 2022, 10, 120592–120605. [CrossRef]
5. Schwarz, M.; Schulz, H.; Behnke, S. RGB-D object recognition and pose estimation based on pre-trained convolutional neural

network features. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA,
USA, 26–30 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1329–1335.

http://doi.org/10.1145/3570731
http://dx.doi.org/10.3390/math8122163
http://dx.doi.org/10.1109/TRO.2023.3253249
http://dx.doi.org/10.1109/ACCESS.2022.3221942


Mathematics 2023, 11, 4371 24 of 25

6. Yoshimoto, Y.; Tamukoh, H. Object recognition system using deep learning with depth images for service robots. In Proceedings
of the 2018 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Ishigaki Island,
Okinawa, Japan, 27–30 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 436–441.

7. Su, H.; Zhang, Y.; Li, J.; Hu, J. The shopping assistant robot design based on ROS and deep learning. In Proceedings of the 2016
2nd International Conference on Cloud Computing and Internet of Things (CCIOT), Dalian, China, 22–23 October 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 173–176.

8. Panić, B.; Klemenc, J.; Nagode, M. Improved initialization of the EM algorithm for mixture model parameter estimation.
Mathematics 2020, 8, 373. [CrossRef]

9. Tung, T.X.; Ngo, T.D. Socially aware robot navigation using deep reinforcement learning. In Proceedings of the 2018 IEEE
Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec City, QC, Canada, 13–16 May 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 1–5.

10. Xin, J.; Zhao, H.; Liu, D.; Li, M. Application of deep reinforcement learning in mobile robot path planning. In Proceedings of the
2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 7112–7116.

11. Tanwani, A.K.; Mor, N.; Kubiatowicz, J.; Gonzalez, J.E.; Goldberg, K. A fog robotics approach to deep robot learning: Application
to object recognition and grasp planning in surface decluttering. In Proceedings of the 2019 International Conference on Robotics
and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 4559–4566.

12. Mahler, J.; Matl, M.; Liu, X.; Li, A.; Gealy, D.; Goldberg, K. Dex-net 3.0: Computing robust vacuum suction grasp targets in point
clouds using a new analytic model and deep learning. In Proceedings of the 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, Australia, 21–25 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 5620–5627.

13. Bouzoualegh, S.; Guechi, E.H.; Kelaiaia, R. Model predictive control of a differential-drive mobile robot. Acta Univ. Sapientiae
Electr. Mech. Eng. 2018, 10, 20–41. [CrossRef]

14. Satish, V.; Mahler, J.; Goldberg, K. On-policy dataset synthesis for learning robot grasping policies using fully convolutional deep
networks. IEEE Robot. Autom. Lett. 2019, 4, 1357–1364. [CrossRef]

15. Al-Qurashi, Z.; Ziebart, B. Hybrid algorithm for inverse kinematics using deep learning and coordinate transformation. In
Proceedings of the 2019 Third IEEE International Conference on Robotic Computing (IRC), Naples, Italy, 25–27 February 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 377–380.

16. Caldera, S.; Rassau, A.; Chai, D. Review of deep learning methods in robotic grasp detection. Multimodal Technol. Interact. 2018,
2, 57. [CrossRef]

17. Choi, C.; Schwarting, W.; DelPreto, J.; Rus, D. Learning object grasping for soft robot hands. IEEE Robot. Autom. Lett. 2018,
3, 2370–2377. [CrossRef]

18. Gordón, C.; Encalada, P.; Lema, H.; León, D.; Castro, C.; Chicaiza, D. Autonomous robot navigation with signaling based on
objects detection techniques and deep learning networks. In Proceedings of the SAI Intelligent Systems Conference, London, UK,
5–6 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 940–953.

19. Gan, L.; Grizzle, J.W.; Eustice, R.M.; Ghaffari, M. Energy-based legged robots terrain traversability modeling via deep inverse
reinforcement learning. IEEE Robot. Autom. Lett. 2022, 7, 8807–8814. [CrossRef]

20. Ab Wahab, M.N.; Nefti-Meziani, S.; Atyabi, A. A comparative review on mobile robot path planning: Classical or meta-heuristic
methods? Annu. Rev. Control 2020, 50, 233–252. [CrossRef]

21. Khan, A.H.; Li, S.; Cao, X. Tracking control of redundant manipulator under active remote center-of-motion constraints: An
RNN-based metaheuristic approach. Sci. China Inf. Sci. 2021, 64, 1–18. [CrossRef]

22. Gao, W.; Tang, Q.; Ye, B.; Yang, Y.; Yao, J. An enhanced heuristic ant colony optimization for mobile robot path planning. Soft
Comput. 2020, 24, 6139–6150. [CrossRef]

23. Chen, L.; Su, Y.; Zhang, D.; Leng, Z.; Qi, Y.; Jiang, K. Research on path planning for mobile robots based on improved ACO.
In Proceedings of the 2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC), Nanchang,
China, 28–30 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 379–383.

24. Lin, S.; Liu, A.; Wang, J.; Kong, X. An intelligence-based hybrid PSO-SA for mobile robot path planning in warehouse. J. Comput.
Sci. 2023, 67, 101938. [CrossRef]

25. Xu, L.; Cao, M.; Song, B. A new approach to smooth path planning of mobile robot based on quartic Bezier transition curve and
improved PSO algorithm. Neurocomputing 2022, 473, 98–106. [CrossRef]

26. Alshammrei, S.; Boubaker, S.; Kolsi, L. Improved Dijkstra algorithm for mobile robot path planning and obstacle avoidance.
Comput. Mater. Contin 2022, 72, 5939–5954. [CrossRef]

27. Szczepanski, R.; Tarczewski, T. Global path planning for mobile robot based on Artificial Bee Colony and Dijkstra’s algorithms.
In Proceedings of the 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland,
25–29 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 724–730.

28. Sahu, N.; Bhardwaj, R.; Shah, H.; Mukhiya, R.; Sharma, R.; Sinha, S. Towards development of an ISFET-based smart pH sensor:
Enabling machine learning for drift compensation in IoT applications. IEEE Sens. J. 2021, 21, 19013–19024. [CrossRef]

29. Slim, M.; Rokbani, N.; Neji, B.; Terres, M.A.; Beyrouthy, T. Inverse Kinematic Solver Based on Bat Algorithm for Robotic Arm
Path Planning. Robotics 2023, 12, 38. [CrossRef]

30. Macario Barros, A.; Michel, M.; Moline, Y.; Corre, G.; Carrel, F. A comprehensive survey of visual slam algorithms. Robotics 2022,
11, 24. [CrossRef]

http://dx.doi.org/10.3390/math8030373
http://dx.doi.org/10.2478/auseme-2018-0002
http://dx.doi.org/10.1109/LRA.2019.2895878
http://dx.doi.org/10.3390/mti2030057
http://dx.doi.org/10.1109/LRA.2018.2810544
http://dx.doi.org/10.1109/LRA.2022.3188100
http://dx.doi.org/10.1016/j.arcontrol.2020.10.001
http://dx.doi.org/10.1007/s11432-019-2735-6
http://dx.doi.org/10.1007/s00500-020-04749-3
http://dx.doi.org/10.1016/j.jocs.2022.101938
http://dx.doi.org/10.1016/j.neucom.2021.12.016
http://dx.doi.org/10.32604/cmc.2022.028165
http://dx.doi.org/10.1109/JSEN.2021.3087333
http://dx.doi.org/10.3390/robotics12020038
http://dx.doi.org/10.3390/robotics11010024


Mathematics 2023, 11, 4371 25 of 25

31. Adibhatla, V.A.; Chih, H.C.; Hsu, C.C.; Cheng, J.; Abbod, M.F.; Shieh, J.S. Defect detection in printed circuit boards using
you-only-look-once convolutional neural networks. Electronics 2020, 9, 1547. [CrossRef]

32. Devin, C.; Abbeel, P.; Darrell, T.; Levine, S. Deep object-centric representations for generalizable robot learning. In Proceedings
of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 7111–7118.

33. Do, T.T.; Nguyen, A.; Reid, I. Affordancenet: An end-to-end deep learning approach for object affordance detection. In
Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 5882–5889.

34. Wang, Z.; Majewicz Fey, A. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted
surgery. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 1959–1970. [CrossRef]

35. das Mecês, W.O.; da Costa, E.M.; Tavares, J.W.; Diniz, P.P.; Torres, R.H. ROBTK: An intelligent robot to transport objects. In
Proceedings of the Anais do VI Encontro Nacional de Computação dos Institutos Federais, SBC, Manaus, Brasil, 22–23 May 2019.

36. Albani, D.; Youssef, A.; Suriani, V.; Nardi, D.; Bloisi, D.D. A deep learning approach for object recognition with NAO soccer robots.
In Proceedings of the Robot World Cup, Leipzig, Germany, July 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 392–403.

37. Boroushaki, T.; Leng, J.; Clester, I.; Rodriguez, A.; Adib, F. Robotic grasping of fully-occluded objects using rf perception. In
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 923–929.

38. Pan, Z.; Zeng, A.; Li, Y.; Yu, J.; Hauser, K. Algorithms and systems for manipulating multiple objects. IEEE Trans. Robot. 2022, 39,
2–20. [CrossRef]

39. Khalid, S.; Alam, A.; Fayaz, M.; Din, F.; Ullah, S.; Ahmad, S. Investigating the effect of network latency on users’ performance in
Collaborative Virtual Environments using navigation aids. Future Gener. Comput. Syst. 2023, 145, 68–76. [CrossRef]

40. Pan, Y.; Chen, C.; Zhao, Z.; Hu, T.; Zhang, J. Robot teaching system based on hand-robot contact state detection and motion
intention recognition. Robot. Comput.-Integr. Manuf. 2023, 81, 102492. [CrossRef]

41. Wiesmann, L.; Guadagnino, T.; Vizzo, I.; Zimmerman, N.; Pan, Y.; Kuang, H.; Behley, J.; Stachniss, C. LocNDF: Neural Distance
Field Mapping for Robot Localization. IEEE Robot. Autom. Lett. 2023, 8, 4999–5006. [CrossRef]

42. Liu, Z.; Zhang, Y.; Yu, X.; Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annu. Rev. Control
2016, 41, 71–93. [CrossRef]

43. Do, V.T.; Pham, Q.C. Geometry-Aware Coverage Path Planning on Complex 3D Surfaces. arXiv 2023, arXiv:2303.03616.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics9091547
http://dx.doi.org/10.1007/s11548-018-1860-1
http://dx.doi.org/10.1109/TRO.2022.3197013
http://dx.doi.org/10.1016/j.future.2023.02.025
http://dx.doi.org/10.1016/j.rcim.2022.102492
http://dx.doi.org/10.1109/LRA.2023.3291274
http://dx.doi.org/10.1016/j.arcontrol.2016.04.018

	Introduction
	Problem Definition
	Methodology
	Object Detection with YOLO
	Inverse Kinematics
	MoMo

	MoMo's Mathematical Modeling
	Sensors for Localization
	Mathematical Model to Localize Robot
	Dijkstra’s Algorithm

	Implementation
	Structural Design
	Working Principle

	Results and Discussion
	Conclusions and Future Directions
	References

