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Abstract
Humans use both auditory and facial cues to perceive speech, especially when auditory input is degraded, indicating a direct 
association between visual articulatory and acoustic speech information. This study investigates how well an audio signal 
of a word can be synthesized based on visual speech cues. Specifically, we synthesized audio waveforms of the vowels in 
monosyllabic English words from motion trajectories extracted from image sequences in the video recordings of the same 
words. The articulatory movements were recorded in two different speech styles: plain and clear. We designed a deep network 
trained on mouth landmark motion trajectories on a spectrogram and formant-based custom loss for different speech styles 
separately. Human and automatic evaluation show that our framework using visual cues can generate identifiable audio of 
the target vowels from distinct mouth landmark movements. Our results further demonstrate that intelligible audio can be 
synthesized from novel unseen talkers that were independent of the training data.
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1  Introduction

When we engage in face-to-face conversations, facial 
movements and corresponding voice are simultaneously 
used to perceive speech (Jongman et al., 2003; Kawase 
et al., 2015; Munhall et al., 2004).With multimedia (e.g., 
during video conferencing), we rely on visual facial cues 
when the audio is not transmitted well. Moreover, in noisy 
environments (e.g., cafeteria), seeing a talker's facial 
movements can particularly aid speech perception (Bernstein 
et  al., 2004; Sumby & Pollack, 1954). One subsequent 
question is whether a missing or degraded audio signal can 

be recreated based on visual speech information extracted from 
a talker’s face. Also, using visual speech to recreate an audio 
signal, perceptual accuracy and confounds can contribute to 
knowledge about the speech information potentially available 
from a visual signal and how it compares with an audio signal. 
Exploring such cross-modal synthesis of speech will not only 
contribute to our understanding of the interplay between the 
audible and visual components in speech communication 
but may have practical applications for the development 
of multimedia, multi-modal speech synthesis, as well as 
human–computer interface.1

To tackle this question, in the present study we leverage 
audio–video footage of talkers to model the relationships 
between the audio and video using deep learning approaches. 
We aim to develop an automated (video-to-audio) lip-
reading system that can reconstruct the acoustic attributes of 
the talker's voice based on extracted visual speech attributes 
from the talker's facial movements. To this end, we selected 
a set of words containing representative English vowels that 
involve distinct visible facial articulatory movements that 
can be captured by a video camera. We then conduct audio 
synthesis of each vowel based on the corresponding facial 

1  https://​github.​com/​srbhg​arg/​VowSy​nth.​git.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10772-023-10030-3&domain=pdf
https://github.com/srbhgarg/VowSynth.git
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articulatory movements, taking into account variances due 
to speaking style and talker gender, as well as tensity of 
articulatory gestures.

1.1 � Articulatory and acoustic correlates of vowels

Given that acoustic variations in speech are triggered by 
alterations in articulatory configurations, such articula-
tory variations are conceivably measurable and can be per-
ceived to aid intelligibility. Indeed, kinematic measurements 
showed positive correlations among articulation, acoustics, 
and intelligibility measures of speech segments including 
vowels (Gagné et al., 2002; Kim & Davis, 2014; Tasko & 
Greilick, 2010). Specifically, the articulation of different 
vowels is characterized by distinct facial movements, for 
example, horizontal lip spreading for unrounded vowels such 
as /i, ɪ/, jaw lowering for low vowels such as /ɑ, ʌ/, and lip 
rounding for rounded vowels such as /u, ʊ/ (Kim & Davis, 
2014; Tang et al., 2015; Tasko & Greilick, 2010). In addi-
tion, a greater extent of such movements has been observed 
for tense vowels (/i, ɑ, u/) compared to lax vowels (/ɪ, ʌ, ʊ/) 
(Tang et al., 2015), and for vowels spoken in a clear style 
versus plain, conversational speaking style (Kim & Davis, 
2014; Tasko & Greilick, 2010). Further, these articulatory 
movements have been found to be visually salient and have 
been used as helpful sources of linguistic information for 
speech perception (Kim & Davis, 2014; Tasko & Greilick, 
2010; Traunmüller & Öhrström, 2007).

These articulatory motion results are aligned with previ-
ous findings on the acoustic features of vowels. In particular, 
the more expanded acoustic vowel space and more periph-
eral formant frequencies found for clear speech (Bond & 
Moore, 1994; Bradlow et al., 1996; Ferguson & Kewley-
Port, 2002, 2007) have been attributed to more extreme 
articulatory movements, including greater vertical lip move-
ment, jaw lowering, horizontal lip stretching, and lip protru-
sion (Redmon et al., 2020; Tasko & Greilick, 2010). For 
example, acoustic studies show that the second formant of 
the front vowels (/i, ɪ/) generally increases in clear speech 
relative to plain speech (Ferguson & Kewley-Port, 2002; 
Ferguson & Quené, 2014; Lu & Cooke, 2008), which is 
conceivably due, in part, to the shortening of the vocal tract 
resulting from greater lip-spreading in clear speech. Cor-
respondingly, the production of these front vowels involves 
horizontal lip spreading, and articulatory studies show they 
have greater horizontal lip movement (Tang et al., 2015). 
Likewise, the greater degree of lip rounding and lip pro-
trusion for the rounded vowels /u, ʊ/ in clear versus plain 
speech (Tang et al., 2015) results in vocal tract lengthen-
ing which consequently lowers the second formant of these 
rounded vowels in clear speech (Ferguson & Kewley-Port, 
2002). In terms of duration, articulatory studies reveal an 
overall greater and longer articulatory movement for tense 

vowels compared to lax vowels (Tang et al., 2015). Acousti-
cally, tense vowels are typically longer than their lax vowel 
counterparts, presumably resulting from the longer excur-
sions for the articulators to reach the more extreme tense 
vowel target positions (Hillenbrand et al., 1995; Watson & 
Harrington, 1999). Furthermore, previous studies by Tang 
et al. (2015) and Leung et al. (2016) have shown talker gen-
der interaction with vowel tensity and speech style. Tang 
et al. (2015) show that male compared to female talkers have 
larger clear-plain distinctions in visual articulatory move-
ments, whereas Leung et al. (2016) show that the acoustic 
patterns of clear speech modifications do not differ between 
male and female talkers.

These results convincingly indicate a direct relationship 
between visible articulatory movements and acoustic char-
acteristics of vowels across speech styles and vowel tensity, 
which provides the foundation for the current cross-modal 
synthesis study.

1.2 � Automatic video‑to‑audio speech synthesis

While text-to-speech synthesis has matured, cross-modal 
audio synthesis based on articulatory information is still 
developing and faces many challenges.

Research on automatic visual to auditory speech synthe-
sis can be broadly classified into two approaches: the first 
approach, termed “silent speech interfaces” (SSI), relates 
to generating audio from biosignals or ultrasound videos 
of tongue movements (Freitas et al., 2017; Gonzalez-Lopez 
et al., 2020), while the second approach maps facial move-
ments to audio or spectrogram directly (Yehia et al., 1998; 
Akbari et al., 2018; Ephrat & Peleg  2017; Vougioukas et al., 
2019).

Most SSI studies rely on different biosignals to commu-
nicate, such as electrophysiological recordings of neural 
activity (Anumanchipalli et al. 2018; Herff et al., 2015), 
electromyographic (EMG) recordings of vocal tract move-
ments (Schultz & Wand, 2010) or the direct tracking of 
articulator movements using imaging techniques (Hueber 
et al., 2010). These techniques rely on non-acoustic signals 
that are generated during speech production to restore audio. 
Of these, EMG, permanent magnetic articulography and 
electromagnetic articulography are most commonly used 
and involve placing markers/sensors on the body (Schultz 
& Wand, 2010). A mapping function is then learnt using 
machine learning techniques that map the recorded biosignal 
to the audio speech. However, the placement of sensors on 
the mouth and tongue may make the mouth/face movement 
unnatural and sensors are not present in natural speech set-
tings. The present study uses a standard video or articula-
tion approach that does not require sensors and intention-
ally avoids these potential limitations (Tang et al., 2015). 
Secondly, the video-based methods that do exist in SSI use 



461International Journal of Speech Technology (2023) 26:459–474	

1 3

ultrasound images of the tongue along with lip movements 
to synthesize audio (Hueber et al., 2010). In these methods, 
an ultrasound machine is placed under the speaker’s chin and 
the tongue movement is tracked. Machine learning methods 
such as hidden Markov model (HMM) or deep neural net-
works are then trained to learn the mapping from the ultra-
sound signal to the audio (Hueber et al., 2010). Although 
tongue movements are directly related to speech articulation 
and the resultant acoustic signal, extracting visible facial 
articulatory cues is more accurate (Yehia et al., 1998) and 
practical for applications in face-to-face communication, as 
well as video-based communication.

The second type of approach for automatic visual to audi-
tory speech synthesis uses the video of the talker’s face to 
learn the mapping of the movement of the lips and lower face 
to the text or the audio (Assael et al. 2016; Saleem et al., 2022; 
Vougioukas et al., 2019; Wang et al., 2022). With the current 
advances in deep learning, these methods use stacked lay-
ers of neural network to learn the mappings. For example, 
Saleem et al. (2022) proposed a deep convolutional encoder-
decoder framework (E2E-ResNet) that captures face video 
and encodes video frames to a latent space using ResNet and 
then decodes the latent representation into a corresponding 
spectrogram. Wang et al. (2022) proposed deep net based on 
vector quantization with contrastive predictive coding for con-
tent encoder to learn discrete acoustic units and a multi-layer 
Lip-to-index network to learn the mapping of lips to the indi-
ces of the above learned discrete acoustic units, called Voice-
Conversion-Video-to-speech (VCVTS). Assael et al. (2016) 
proposed a deep model that uses spatiotemporal convolutions 

and gated recurrent nets to learn the mapping of video frames 
of the speaker’s mouth to the sentence-level text (LipNet). 
Ephrat and Peleg  (2017) trained a deep network consisting of 
a convolutional neural network (CNN) to learn the mapping 
between video of lips and the linear predictive coding (LPC) 
features of the corresponding audio which are then used to 
reconstruct the audio (Vid2Speech). The method Lip2Aud-
Spec proposed by Akbari et al. (2018) also used two deep 
neural networks: one autoencoder network to encode/decode 
a spectrogram and another 7-layer 3D CNN and long short 
term memory (LSTM) to learn mapping from video to the 
encoded audio spectrogram as learnt by the first autoencoder 
network. Most studies on audio synthesis (e.g. Akbari et al., 
2018; Assael et al., 2016; Le Cornu et al., 2015; Mira et al., 
2022; Saleem et al., 2022; Vougioukas et al., 2019; Wang 
et al., 2022) employed the GRID corpus (Cooke et al., 2006) 
that consists of many hours (approx. 50 min of speech per 
talker) of video clips of 6-word sentences presented in a fixed 
order of [command]-[color]-[preposition]-[letter]-[digit]-
[adverb], where each [position] has 4-word choices except 
that [letter] and [digit] have 25- and 10-word choices, respec-
tively. Although the corpus has a vocabulary of 51 words, the 
words are acoustically very distinct, consisting of different 
vowels and consonants. The performance of these studies was 
evaluated using word error rate (WER) which was generally 
reported to range from 40 to 50%, whereas Mira et al. (2022) 
reported a WER of 23.13%. Their problem formulation using 
sentences benefits from the ability to encode temporal priors, 
which would not be feasible for word-level synthesis. Fur-
ther, as summarized in Table 1, aside from only one method 

Table 1   Comparison of the approach in the current study to other existing research

ConvT1D denotes a network built of 1-dimensional convolutional transpose layers where the number of layers used by each network is shown 
after each hyphen."Unseen talkers?" specifies whether evaluation included novel unseen talkers (“yes”) or the same talkers in both model train-
ing and testing (“no”)

Study Method Output Video encoder Audio encoder Phase 
accounted 
for?

Unseen talkers? Human 
assess-
ment

Wang et al. (2022) VCVTS Mel spectrogram Con-
vT3D + ResNet-18 + tem-
poral CNN-4

VQCPC Yes Yes No

Saleem et al. 
(2022)

E2E-V2SResNet Spectrogram CNN + ResNet-18 ConvT-6 Yes No No

Prajwal et al. 
(2020)

Lip2wav Audio CNN + LSTM Tacotron2 Yes No Yes

Mira et al. (2022) GAN-based Audio ResNet-18 + biGRU​ Conv1D-GAN No Yes No
Akbari et al. (2018) Lip2AudSpec Spectrogram CNN-7 + LSTM Dense-2 Yes No Yes
Ephrat andPeleg  

(2017)
Vid2Speech Audio CNN-5 CNN-5 No No Yes

Le Cornu  and  
Milner (2015)

DNN_UNV Audio Dense-3 STRAIGHT No No Yes

Assael et al. (2016) LipNet Text STCNN3 + BiGRU​ N/A N/A Yes Yes
Current study Mouth2Audio Audio Landmark ConvT1D-5 Yes Yes Yes
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(Akbari et al., 2018), phase information of the synthesized 
audio is ignored in all aforementioned research, thus leading 
to poor realism, as demonstrated, for instance, by the pub-
lished audio clips of Vougioukas et al. (2019). In contrast, we 
made conscious design decisions to address phase information 
as will be elaborated in Sect. 3.3. As seen from Table 1, previ-
ously, only Assael et al. (2016) and Vougioukas et al. (2019) 
have evaluated performance on unseen talkers, where Assael 
et al. (2016) produces text as output instead of audio, and Mira 
et al. (2022) lacks any human assessment.

1.3 � The present study

Different from previous studies (Akbari et al., 2018; Mira 
et  al., 2022; Vougioukas et  al., 2019) where the target 
words differ in both consonants and vowels that typically 
appear in sentential contexts, the current study focused on 
the more challenging case of isolated target words that are 
minimally contrastive. As motivated previously in Tang 
et al., 2015, we selected monosyllabic English words that 
differ only in their vowels: keyed, kid, cod, cud, cooed, 
and could. These six vowels are so chosen because they 
comprehensively span the vowel space (Tang et al., 2015). 
More specifically, the six English vowels in these words, /i, 
ɪ, ɑ, ʌ, u, ʊ/, contain visible articulatory movements of lip 
spreading, jaw lowering, and lip rounding and protrusion 
(Tang et al., 2015). These six vowels also form three tense-
lax vowel pairs, with the tense vowels /i, ɑ, u/ having more 
extreme articulatory movements and longer duration and 
thus higher visual salience than the lax vowels /ɪ, ʌ, ʊ/ (Tang 
et al., 2015). In addition, our dataset contains productions of 
these words in clear as well as plain, conversational speaking 
styles produced by multiple male and female talkers to take 
into account variability in each of the vowel categories. 
Given this span and variability in these vowels, we believe 
that our approach not only will generalize to other vowels, 
but also complement the existing literature that largely does 
not address minimally contrastive words.

Based on the correspondence between visual articulatory 
and acoustic features of these vowels reviewed above, we 
hypothesize that the acoustic consequences of such articula-
tory gestures should be retrievable. This dataset makes our 
study unique compared to aforementioned studies (Akbari 
et al., 2018; Mira et al., 2022; Vougioukas et al., 2019) in 
that (1) focusing on the most salient component in a word, 
i.e., the vowel, enables extraction of the most distinct fea-
tures (i.e., steady-state formant patterns corresponding to 
the vowels) that are not obscured by variances due to coar-
ticulatory effects from different adjacent segments; (2) using 
isolated words rather than sentences allows identification of 
the words without the possibility to rely on contextual cues 
in a sentence and (3) the first two points, along with the 

inclusion of vowel tensity, style and talker variations, make 
our approach highly generalizable.

The problem we take on is especially challenging in four 
ways. Unlike common lip-reading frameworks (e.g., Assael 
et al., 2016) that generate low-dimensional outputs with 
word-classification typically being the desired final output, 
our problem formulation requires our outputs to be high-
dimensional audio waveforms that are intelligible. Second, 
our dataset not only contains word tokens with distinctive 
articulatory features (e.g., /i/ vs /u/), but also those with 
similar articulatory cues differing only in tensity (e.g., /i/ 
vs /ɪ/). Third, the performance of our automated video-to-
audio system is evaluated on unseen talkers that were not 
part of the training set. Also, the evaluation was done not 
only using ASR to allow a broad comparison with previous 
related studies, but also using human perceivers so that the 
use of our automated video-to-audio system can be extended 
to real-life applications. Lastly, the system’s performance 
was evaluated on two different speech styles: plain and clear.

To overcome the aforementioned challenges, we designed a 
network that strictly takes only mouth motion data as input and 
outputs an audio waveform that best corresponds to the motion 
captured by the video data, that is, using direct mapping, as 
opposed to encoding mouth movements in video (Akbari et al., 
2018; Vougioukas et al., 2019). We adopted a deep learning 
approach in which the training objective is to minimize the 
error between the spectrograms of the generated audio wave-
form and those of the actual waveforms. To the best of our 
knowledge, our study is the first to develop a video-to-audio 
framework discriminating between very similar words that 
vary only in their vowel, is robust to different speech styles and 
uses formant-based learning (i.e., training based on formant 
frequencies that characterize individual vowels) for improving 
audio intelligibility, and thus shows that motion trajectories 
can be used to synthesize corresponding audio.

To summarize, our approach integrates computational 
approaches with phonetic insight, which has not been sys-
tematically adopted by either field. Based on knowledge 
of articulatory-acoustic correspondence, we expect that 
machine recognition of a specific set of articulatory attrib-
utes characterizing a certain sound can lead to reconstruction 
of the acoustic information of this sound. Using individual 
attributes as building blocks allows our system to circumvent 
context- and speaker-induced speech variance, thus making 
the output more generalizable.

2 � Materials

Our problem formulation involves the use of a carefully 
curated dataset created in previous work (Tang et al., 2015). 
Specifically, three English vowel pairs, /i-ɪ/, /ɑ-ʌ/, /u-ʊ/ 
differing in articulatory features were the target vowels for 
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examination, with the tense vowels /i, ɑ, u / having more 
extreme articulatory movements than the lax vowels /ɪ, ʌ, 
ʊ/. These English tense and lax vowels were embedded 
in monosyllabic /kVd/ contexts, resulting in six common 
English words: “keyed”, “kid”, “cod”, “cud”, “cooed”, and 
“could”. Unlike previous studies such as those summarized 
in Table 1, where the target words differ in both consonants 
and vowels, we use carefully chosen minimally contrastive 
target words which include the same consonants but dif-
fer only in the vowel. Using minimally contrastive words 
enables extraction of the most distinct features for the /
kVd/ syllable without being obscured by variances due to 
coarticulatory effects in different consonantal contexts. This 
thus allows direct correlation between the articulatory move-
ments and the acoustic cues of particular segments.

As revealed in Tang et al. (2015), the vowels used here 
involve visible and measurable articulatory differences, 
(e.g., greater horizontal lip movements for “keyed, kid”, 
greater vertical lip movements and jaw lowering for “cod, 
cud”, and greater lip rounding for “cooed, could”). The 
selected vowels also differ in tensity, that is, how “extreme” 
articulatory movements may be (tense vowels—more 
extreme, as in “keyed, cod, cooed”, and lax vowels—
less extreme, as in “kid, cud, could”). Furthermore, the 
production of each token was recorded in isolation (as 
opposed to continuous speech) and articulated in two speech 
styles: plain (conversational) and clear (more enunciated). 
The terms “plain (conversational) speech” and “clear (more 
enunciated) speech” are used based on the convention 
used in previous clear-speech studies (e.g., Ferguson & 
Kewley-Port, 2002; Maniwa et  al., 2008) including our 
own (Leung et al., 2016; Redmon et al., 2020; Tang et al., 
2015). These two terms refer to the contrasting speech styles 
resulting from instructions to talkers to speak a word or an 
utterance “naturally” first in the manner used in a plain, 
natural conversation, and then repeat it “clearly” in order to 
improve intelligibility (See the detailed information below 
on the elicitation of plain and clear speech stimuli used in 
this study).

Akbari et  al. (2018) mention that although many 
consonants can be recovered from lip movements, 
reconstructing different vowels accurately is quite difficult. 
Compared to previous work (e.g., Akbari et al., 2018) where 
multiple cues are available to characterize a word (e.g., 
consonants, vowels, semantic and contextual information), 
the words used here present a more challenging test 
which allows application of our approach to challenging 
communication contexts (e.g., noisy environments) where 
similar words are difficult to distinguish.

Audio–video recordings of the target words were obtained 
from eighteen (eight male and ten female) talkers. The talk-
ers (aged 17–30, mean: 22) were recruited from the student 
population at Simon Fraser University (SFU). They reported 

no history of speech or language impairment. Audio–video 
recordings were acquired in a sound-attenuated booth in the 
Language and Brain Lab at SFU. Front-view videos were 
captured with a Canon Vixia HF30 camera at a recording 
rate of 29 frames/second. Audio recordings were acquired 
simultaneously using Sonic Foundry Sound Forge 6.4 at a 
sampling rate of 48 kHz, with a Shure KSM microphone 
placed at a 45-degree angle, 20 cm away from the talker’s 
mouth.

During recording, a talker articulated each of the 6 words 
multiple times in a random order for each of the two speech 
styles. The plain (conversational) and clear (more enunci-
ated) styles were elicited using a simulated interactive com-
puter speech recognition program established previously 
(Maniwa et al., 2009; Redmon et al., 2020). The computer 
instructed the talker to pronounce each token displayed on 
the screen naturally to generate plain-style productions. 
Then, the software would display the program's identifica-
tion of the spoken token, involving erroneous "guesses". If 
a guess was incorrect, the talker would be asked to repeat 
the token more clearly to facilitate the software's ability to 
distinguish the confused token and thus generate a clear-
style production. For correct guesses, no clear production 
was required. Thus, with repetitions, for each word and each 
talker, fifteen plain productions and twelve clear produc-
tions were elicited, resulting in a total of 2916 audio–video 
words [plain (6 words × 18 talkers × 15 repetitions) + clear (6 
words × 18 talkers × 12 repetitions)], all of which had been 
evaluated as correct productions of the target words by two 
native Canadian English speakers.

3 � Video‑to‑audio synthesis

Several intermediate steps are involved in estimating the 
audio from the articulatory movements of the face. In order 
to capture the articulatory movements, the face needs to be 
located in the video and various facial landmark points must 
be identified and tracked over the course of the video. These 
landmark points are then used to train a machine-learning 
model that learns the mapping from the landmark trajectory 
to the audio by minimizing spectrogram-based and formant-
based loss function. More details on the individual steps are 
provided in the following section.

3.1 � Preprocessing of training and test data

3.1.1 � Video Segmentation

All tokens from each talker were recorded in a single 
video file and thus had to be automatically segmented 
using features extracted from audio. Specifically, energy 
was computed from the audio signal and a threshold was 
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empirically estimated to separate the silence and the audio 
signal. The segmented audio signal timings were then 
transferred over to the video signal and segmented into 
separate tokens. More information on this step can be found 
in our previous work (Garg et al., 2019).

3.1.2 � Face detection

In order to extract features from faces in the videos, the 
first step is to detect the location of the face in the image. 
In our experiment setup each video has only one face and 
the face is always facing the camera. To detect the frontal 
face, two different methods were tried: Multi-Task Convo-
lutional Neural Network (MTCNN) (Zhang et al., 2016) and 
dlib python library by (King et al., 2009). The choice of 
MTCNN over alternatives such as dlib was derived from 
preliminary experiments where we observed dlib to be less 
consistent than MTCNN in its location of the face bounding 
box. We employed MTCNN to detect the bounding box of 
the face shown on the first frame of each video token. The 
face was detected in a single frame of the video and the same 
coordinates were used for the rest of the video. Since our 
tokens are no longer than 2 s, we did not observe any large 
head movement during the utterance for the face to move 
out of the reference bounding box. The face detection step 
is important since if the bounding box misses a part of the 
face, the results of the next step are drastically affected. A 
buffer with a fixed height (100 pixels) was also added around 
the detected box.

3.1.3 � Face landmark detection

Face landmark detection was performed on the detected 
face. We used a convolution neural network—conditional 
random field (CNN-CRF) as proposed in Chen et al. (2019) 
for a face landmark detector that is trained to detect 68 facial 
landmarks. The method jointly trains CNN and CRF, where 
CNN is used to detect landmark points and CRF encoded 
the structural relationship between the different landmark 
points. In the current study only landmarks from the lips and 
lower jaw were used to train our network, leading to inputs 
of motion trajectories from k = 29 landmarks.

3.1.4 � Face landmark tracking

The landmark points are detected on each of the f video 
frames (f = 80) separately to obtain the coordinates of 
each landmark point x over time. The choice of 80 frames 
was based on the longest token that we had in our dataset. 
The shorter tokens were padded on either end with empty 
frames to make them 80 frames long. The obtained points 
are smoothed using a Savitzky–Golay filter (Savitzky & 
Golay, 1964) of order 4 to remove any jitter present in the 

data using the Python scipy-signal library (savgol filter). The 
filter replaces each sample by fitting a polynomial on 2n + 1 
neighboring points where n is greater than the order of the 
polynomial. Based on empirical evaluation, we set n = 5.

3.1.5 � Resampling

The number of frames over which each landmark is tracked 
can vary across video tokens, so they are resampled to have 
the same size using cubic interpolation.

The above resampled data is used to train a deep network 
that takes trajectories of detected 29 lip and jaw landmark 
points during the token utterance as input and that outputs 
the corresponding audio waveform. The details of the net-
work are provided in the following section.

3.2 � Formant network

Formant frequencies, particularly the first three formants (F1, 
F2 and F3) have been found to be the main acoustic correlates 
to vowel production and identification (e.g., Hillenbrand et al., 
1995; Peterson & Barney, 1952). In the present study, we focus 
on generating the formant frequencies F1, F2, and F3 for each 
of the vowels, based on acoustic information. To compute the 
formant frequencies, we trained another deep network consist-
ing of fully connected layers. This network was trained on the 
audio extracted from the same dataset as the vowel synthesis 
network. The network takes the spectrogram of the audio as 
input and outputs the first three formant frequencies and their 
corresponding three bandwidths (B1, B2, B3) for each token 
for each talker as shown in Fig. 1. The ground truth formant 
frequencies and their bandwidths were obtained using PRAAT 
toolbox (Boersma, 2001). The network is trained until the dif-
ference between the predicted output (3 formant frequencies and 
bandwidths) and the corresponding ground truth values have 
reached a minimum. This proposed network consists of three 
time-distributed fully connected layers to make predictions for 
every time window of the spectrogram. The first layer contains 
200 nodes followed by 128 and the final layer has six nodes 
for each of the six outputs (three formant frequencies and their 
corresponding bandwidths). The mean absolute error on test 
tokens was 88.94 Hz, 198.54 Hz, 255.49 Hz for F1, F2 and F3, 
respectively, over all token types. Table 2 summarizes the mean 
absolute error on each token separately. Further, the Pearson 
correlation analysis shows that a strong significant correlation 
between the estimated formant frequencies and the ground-
truth frequencies: [F1: r(936) = 0.80); F2: r(936) = 0.84; F3: 
r(936) = 0.64; p-values < 0.0001].These results indicate that the 
network was able to estimate the formant frequencies with rea-
sonable accuracy.

A similar analysis was also performed for bandwidth. The 
mean absolute error on test tokens was 139.05 Hz, 263.71 Hz 
and 346.79 H for B1, B2 and B3, respectively, over all token 
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types. Further, Pearson correlation analysis showed a signifi-
cant correlation between the predicted bandwidths by our 
network and the Praat estimated bandwidths for each of the 
bandwidth measures: [B1: r(936) = 0.50; B2: r(936) = 0.30; 
B3: r(936) = 0.25; p-values < 0.0001]. The lower magnitude 
of correlation coefficients for bandwidths compared to that 

for formant frequencies is presumably due to less accurate 
bandwidth estimates by Praat and other automated acoustic 
analysis systems as reported previously (Burris et al., 2014). 
For this reason, no in-depth analysis was performed.

3.3 � Network loss function

As shown in Fig. 2, our deep network g(x) consists of a dense 
layer and 5 1D transpose convolution (conv1d-transpose) lay-
ers. Each layer is followed by batch normalization and ReLu 
(rectified linear unit) nonlinearity except for the last layer 
which uses tanh nonlinearity. Our network then takes as input 
motion trajectories (x ∈ R2k×f) of k facial landmarks extracted 
from each word token consisting of f video frames and learns 
to output the corresponding audio (ygen) of fixed length. It does 
so by minimizing the following loss function:

where Lspec is the loss term associated with spectrogram and 
Lformant is the loss term associated with the formant frequen-
cies. The larger the disagreement between the generated and 
the ground truth spectrogram, the larger is the loss value. 

Ltotal = wspecLspec + wformantLformant

Fig. 1   Formant estimation 
network. The network takes a 
column of spectrogram as input 
and estimates formant frequen-
cies (F1, F2, F3) and their 
bandwidths (B1, B2, B3) of that 
part of the spectrogram

Table 2   Mean absolute error between the predicted formant frequen-
cies (F1, F2, F3) by the trained formant network of each token from 
the PRAAT generated formant frequencies (ground-truth) of the same 
token

The direction of the difference was also measured separately and 
indicated by ± where “+” indicates the predicted measurement to be 
higher than ground-truth and “−” indicates the measurement to be 
smaller than the ground-truth

Token type F1 (in Hz) F2 (in Hz) F3 (in Hz)

keyed − 60.35 − 262.18 − 253.36
kid + 93.75 − 204.34 − 282.22
cod + 87.68 + 144.05 + 220.46
cud + 86.25 + 161.16 − 237.25
cooed − 88.69 − 228.52 − 316.60
could + 118.83 + 193.42 + 230.25



466	 International Journal of Speech Technology (2023) 26:459–474

1 3

wspec and wformant are the respective scalar weights that con-
trol how much each of the above loss terms contributes to 
the total loss. wspec and wformant were chosen empirically after 
repeated experiments that gave the best performance. In our 
experiments, wspec was set to 1 and wformant was set to 10. 
Lspec is computed using the following equation:

where N is the batch size (set to 32); ygen and ygt are gener-
ated audio and ground truth audio waveforms, respectively; 
F denotes the short-time Fourier transform (STFT) that com-
putes a spectrogram from an audio waveform using hyperpa-
rameters l and s, with l denoting the frame length (l = 128), 
and s denoting the frame step (s = 32 s). The loss term associ-
ated with formants: Lformant is computed as follows:

Lspec =
1

N

N∑

n=1

(
log

(|||F
(
yngen;l, s

)|||
)
− log

(|||F
(
yngt;l, s

)|||
))

2

Lformant =
1

N

T∑

t=1

3∑

i=1

(wi(Fmtigen − Fmtigt))
2

+
1

N

T∑

t=1

3∑

i=1

(wi(Bwigen − Bwigt))
2

where N is the batch size, FmtigenandFmtigt are the i-th gener-
ated and ground truth formant frequencies, and BwigenandBwigt 
are the corresponding i-th generated and ground truth band-
widths, respectively. Since the larger formant frequency val-
ues will have larger deviations, they will end up contributing 
more to the loss function, so the contribution of each formant 
frequency is normalized using fixed weights wi . The weights 
wi were empirically determined and set to 50, 100 and 200 for 
the three formant frequencies, respectively.

Network training is terminated by convergence of the 
loss computed on the validation set. Based on preliminary 
experiments, we decided to train our generator using Adam’s 
optimizer with a learning rate of 0.01 and decay rate of 1e-5. 
Each Conv1d-transpose layer uses a kernel of size 25 and 
a stride of 4 except for the first layer which uses a stride of 
2. In our study, the trained network architecture is the same 
for all the talkers2 but the network was trained separately on 
each gender.

Fig. 2   Input and output (left) to our network (right)

2  To add talker-related information to the output speech, we could 
condition the network by feeding the speaker ID to the model in the 
form of one-hot encoding. At the time of testing, when a particular 
speaker’s voice is to be generated, we could provide the correspond-
ing speaker’s one-hot encoding vector. This will be similar to what is 
already done in WaveNet (Oord et al., 2016).
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3.4 �  Post‑processing to incorporate phase

While the human ear is commonly assumed to be insensi-
tive to audio phase, recent papers (e.g., Laitinen et al., 
2013) suggest otherwise. Inspired by Laitinen et al. (2013), 
we conducted preliminary experiments and observed that 
when phase was reconstructed from spectrograms using 
the Griffin-Lim method (Griffin & Lim, 1984), the audio 
sounded unnatural. Further, we discovered that the per-
ceptual quality of a generated token could be improved 
by using a ‘template’ phase. While experimenting with 
template phase, we realized that even information coming 
from another token from another talker still improves the 
perceptual quality of the audio. Based on these observa-
tions, we created a template phase by extracting the phase 
information from a randomly drawn audio token and used 
this template phase when reconstructing the new audio in 
the final reconstruction step, i.e.:

where y represents the audio in the time-domain; Y repre-
sents the STFT of y; ω denotes the frequency; t denotes time; 
j represents complex number; Y (jω) represents the magni-
tude of the spectrogram of the generated audio; and ∠Ỹ(j�) 
represents the template phase added to the generated audio.

4 � Audio synthesis evaluation

We evaluated our framework along two dimensions: stand-
ard quantitative methods that measure the intelligibility 
and quality of the generated audio data (Experiment 1), 
and human intelligibility testing (Experiment 2).

4.1 � Experiment 1—evaluation by automatic speech 
recognition

4.1.1 � Methods

For the automatic evaluation, the following four metrics 
were employed: the mean mel-cepstral distortion (MCD) 
that measures the distance between two signals in the 
mel-frequency cepstrum, which allows us to assess the 
perceptual difference between the generated audio data 
with respect to the real audio data; Short Term Objec-
tive Intelligibility (STOI) and Perceptual Evaluation of 
Speech Quality (PESQ) metrics to respectively measure 
the intelligibility and quality of the generated audio; and 
lastly, Word Error Rate (WER), which measures the rate at 
which an audio is mislabeled. Smaller values are preferred 

ygen(t) =
1

2� ∫ |Y(j�)|e(j
(
�t+∠Ỹ(j�)

)
)
d�

for MCD and WER whereas larger values are preferred for 
STOI and PESQ.

To measure WER, we used an approach similar to 
(Vougioukas et al., 2019) where an automatic speech rec-
ognition algorithm (ASR) is trained on the ground truth 
audio using a set of nine features. i.e., MFCC coefficients, 
chromogram, coefficients of fitting a 3rd-order polynomial 
on the spectrogram, spectral centroid, bandwidth, roll off, 
zero-crossing rate, tonnetz (Harte et al., 2006) and spec-
tral flatness (Dubnov, 2004). The features were computed 
using a Python library (librosa). We trained seven different 
classifiers for word classification using well known classi-
fiers (such as SVM, random forest) but, due to space limita-
tions, report results only for the top two classifiers (based on 
WER), namely Random Forest and neural network consist-
ing of one layer with 100 hidden sizes, both of which gave 
consistently high performance on the training set.

To be able to measure the performance of the trained 
network on novel unseen talkers, the full set of talkers was 
divided into two groups: training and testing talkers. Four 
talkers (2 female, 2 male) were randomly sampled from the 
whole dataset to be part of the test group. All the tokens 
obtained from these four talkers then formed the test set 
whereas tokens from the remaining 14 talkers formed the 
training set. Since the talkers from the test set are inde-
pendent from the training set, performance of our video-
to-audio synthesis system was evaluated on unseen talkers 
and tokens.

4.1.2 � Results

The ASR’s classification responses were then compared 
with the true labels to facilitate the calculation of WER. 
Using these performance metrics, we next conducted various 
experiments and highlight the key findings below.

4.1.2.1  Phase reconstruction 

Table 3 reports two approaches to handle phase: the Griffin-
Lim algorithm and our proposed phase template method. 
Quantitatively, using Griffin-Lim’s algorithm for phase 
reconstruction yielded slightly higher WER than our pro-
posed approach using the phase template for reconstruction. 
Griffin-Lim also performed slightly worse than our pro-
posed method in terms of increase in distortion (MCD) and 
decreases in evaluated intelligibility (STOI and PESQ). We 
tested our model using two different sampling rates, 16 kHz 
and 8 kHz. This helps to compare our method more fairly 
with different earlier methods that generated audio at differ-
ent sampling rates. In general, generating audio at 16 kHz 
is a more complicated problem as compared to generating 
audio at 8 kHz since using the same input twice as many 
numbers need to be predicted at 16 kHz as compared to 
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8 kHz. The results show that our method achieved better 
MCD (5.03 at 16 kHz vs 6.51 at 8 kHz) at 16 kHz at the cost 
of PESQ (1.37 at 16 kHz vs 1.46 at 8 kHz) when compared 
to the 8 kHz sampling rate.

4.1.2.2  Comparison to the latest method 

Table 3 compares the evaluation results from different stud-
ies. Top performance (lowest WER) was observed in Sal-
eem et al. (2022), although this study reported results on 
data where the talkers were already part of training, ren-
dering the task less challenging. The next best was Mira 
et al. (2022), which was shown to outperform our study 
which in turn outperformed Akbari et al. (2018). It should 

be noted that these WER values may not be directly com-
parable due to use of different dictionaries in these stud-
ies. However, comparisons of the additional quality metrics 
achieved may be informative. For example, comparing our 
method for 16 kHz with Mira et al. (2022) gave similar per-
ceptual quality (PESQ: 1.37 vs. 1.47), higher intelligibil-
ity (STOI: 0.598 vs. 0.523), and lower distortion (MCD: 
6.51–6.78 vs. 37.91).fusions made by our ASR are shown 
in Fig. 3. As seen from the diagonal elements, most tokens 
are identified correctly. Overall, irrespective of the speech 
style, "keyed" is being confused with "kid"; "cod" is being 
confused with "cud". These confusions are expected since 
the vowels ("keyed"–"kid" and "cod"–"cud") form tense-lax 
pairs and have been reported in Tang et al. (2015) to have 

Table 3   Performance evaluation of our method compared to the latest methods

Intelligibility is measured by WER achieved by a trained ASR and human perceiver (WER-h). Additional quality measures include STOI, PESQ 
and MCD. We include results reported in Saleem et al. (2022), Wang et al. (2022), Mira et al. (2022) and Vougioukas et al. (2019) for reference 
only and acknowledge that performance evaluation was derived from a different dictionary (involving more distinctive words as explained in 
Sect. 1). Higher values are preferred for metrics marked with (↑); converse is true for (↓)

Sampling rate of 
generated audio

Saleem et al., (2022) Wang et al. (2022) Mira et al., (2022) Vougioukas 
et al., (2019)

Current method

Fast Griffin-Lim Griffin-Lim Fast Griffin-Lim Griffin-Lim

16 kHz Not reported 16 kHz 8 kHz 16 kHz 8 kHz 16 kHz 8 kHz

PESQ (↑) 2.03 1.417 1.47 1.24 1.34 1.42 1.37 1.46
STOI (↑) 0.627 0.582 0.523 0.445 0.594 0.594 0.598 0.598
MCD (↓) 27.79 8.36 37.91 24.30 5.06 6.78 5.03 6.51
WER (↓) 13.77% Not reported 23.1% 40.5% 35.2% – 34.4% –
WER-h (↓) N/A – 38.1% –

                                     (a) Plain                                                                  (b) Clear

Fig. 3   Confusion matrices of test tokens of a plain when trained on plain lip movements and b clear when trained on clear lip movement speech 
styles based on ASR. The numbers shown are percentage responses
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similar articulatory movements. Tense-lax confusions are 
also more frequent for human perceivers than other vowel 
pairings (Redmon et al., 2020).

When comparing the two confusion matrices, the perfor-
mance of ASR in the clear speech style has better accuracy 
than in the plain speech style. In both speech styles, accuracy 
for the audio synthesis of the three words with the vowels (/i, 
ɑ, u/) ("keyed", "cod", "cooed") was higher than the other 
three words with the vowels (/ɪ, ʌ, ʊ/) ("kid", "cud","could"). 
Interestingly, the former vowels (/i, ɑ, u/) are tense vowels, 
while the latter three (/ɪ, ʌ, ʊ/) are their lax counterparts. 
This indicates that the ASR was able to label words with 
tense vowels with much greater accuracy than those with lax 
vowels, further suggesting that the deep network achieved 
a better model of words with tense vowels than lax vowels. 
Overall, "cooed" and "cod" performed best in both plain 
speech and clear speech. Further, "could" and "cud" were 
confused the most in both plain speech and clear speech.

4.2 � Experiment 2—evaluation by human perceivers

4.2.1 � Methods

Intelligibility of the auto-generated audio from the lip-
movements of the video was evaluated by 50 adult native 
English speakers with self-reported normal hearing and 
vision recruited via Amazon Mechanical Turk. The experi-
ment was conducted online and was created using a custom 
version of jsPsych-6.1.0 and put on the JATOS server. In the 
evaluation, perceivers were asked to listen to and identify 
the generated audio test samples in a 6-alternative forced 
choice identification task (i.e., choose one from the six tar-
get words). Participants also rated their confidence in their 
answer on a scale of 1 (not sure) to 5 (very sure).

A total of 860 different generated tokens were included 
in the experiment. These tokens were divided into 10 sets 
of 86 tokens (6 words × 2 styles × 6 talkers + 14 remaining 

tokens), each containing the six target words by six differ-
ent talkers (3 male, 3 female). Each set was evaluated by 5 
different perceivers, and each perceiver was asked to listen 
to one set. Before the experiment, each perceiver had nine 
practice trials, which were independently generated and dif-
ferent from the test set of 860 tokens.

4.2.2 � Results

The dataset was submitted to sets of generalized linear 
mixed-effects models using the ‘lme4’ package in R. Two 
separate analyses were performed. In the first set of analyses, 
“Word” and “Style” were included as main fixed effects to 
examine the intelligibility of each of the synthesized vowels 
(words) in each speech style. The second set of analyses 
further examined the effects of vowel “Tensity” and talker 
“Gender” along with speech “Style”, based on the previous 
articulatory and acoustic findings that interaction of these 
factors may influence vowel intelligibility (Cutler et al., 2004; 
Ferguson, 2012; Leung et al., 2016; Tang et al., 2015).

4.2.2.1   Word and style 

In the first model, we analyze the overall intelligibility of 
each synthesized word in each style, as well as the inter-
action between speech style and the target words. The 
fixed effects include Word ('keyed', "kid", "cod", "cud", 
"cooed" and "could") and Style (plain, clear). The depend-
ent variable is word identification accuracy (correct, incor-
rect). A random effect was added on the intercept term 
to account for different talkers and perceivers. The linear 
mixed effect model formula is: Word Identification Accu-
racy ~ Word*Style + (1|Talker) + (1|Perceiver). Figure  4 
displays the comparisons of the identification accuracy in 
these conditions.

Overall, the average accuracy across the six words is 
25.9% (SD = 43.8%), with a range from 36.2% (“cod”) to 

Fig. 4   Identification accuracy (%) for each of the six target words separated by style (plain, clear). The dotted line represents the chance level of 
16.7%. The bar whiskers represent SD
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“18.7% (“cooed”), all significantly above the chance level of 
16.7%. The mixed effect analysis shows a significant main 
effect of Word (χ 2(5) = 31.12, p < 0.0001), and a signifi-
cant interaction between Word and Style (χ 2(5) = 30.09, 
p < 0.0001).

Post-hoc pairwise comparisons among the words were 
analyzed using the ‘emmeans’ package in R, with adjusted 
p-values for multiple comparisons (here and in subsequent 
sections). The results show that "cod" was significantly more 
intelligible than the other five words (p < 0.05). Apart from 
"cod", the comparisons reveal significantly greater accu-
racy for “could” than both “cooed” (odds ratio = 0.558, 
p < 0.0001, z = − 4.41, CI (0.38, 0.81)) and “kid” (odds 
ratio = 0.627, p < 0.01, z = − 3.57, CI = (0.43, 0.91)).

Furthermore, post-hoc analyses following the interaction 
of Word and Style show a significant difference between 
plain and clear speech for "cod" (odds ratio = 0.49, p < 0.001, 
z = − 4.73, CI = (0.30, 0.78)), being more intelligible in 
clear (44.7%) than plain (28.7%) speech. Moreover, in 
clear speech, the accuracy for “cod” was significantly 
greater than that for the other five words (p < 0.05). In plain 
speech, “cod” was significantly more accurate than “cooed” 
(odds ratio = 2.01, p = 0.002, z = 3.96, CI = (1.16, 3.47)), 
and “could” was also more accurate than “cooed” (odds 
ratio = 0.41, p < 0.0001, z = -5.00, CI = (0.24, 0.72)).

As shown in the confusion matrix in Fig. 5, in most cases, 
the diagonal elements had the largest value, suggesting each 
of the target words was selected more frequently than the 
other word options. In cases where we do have a larger value 
for an off-diagonal element, that vowel forms a tense-lax pair 

with the intended vowel, such as “keyed/kid”, or “cooed/
could”. Since tense-lax pairs have similar articulatory move-
ments (e.g., horizontal lip stretching for both “keyed” and 
“kid”) differing primarily in length and degree of articula-
tion (Picheny et al., 1986, Tang et al., 2015), they are eas-
ily confusable. These results indicate that the network is 
able to learn from lip movements of the more contrastive 
vowels (e.g., “keyed”, which involves greater horizontal lip 
stretching versus “cod”, which involves greater vertical lip 
movement).

In addition to intelligibility accuracy, analyses were 
also conducted on the confidence rating data, on a scale of 
1 (not sure) to 5 (very sure). The mean confidence rating 

Fig. 5   Confusion matrix of plain and clear target words by human perceivers. The numbers shown are percentage responses. “NR”: no response

Fig. 6   Identification accuracy (%) for the test tokens by human per-
ceivers as a function of vowel tensity (tense, lax), speech style (plain, 
clear), and talker gender (male, female). The horizontal dotted line 
represents chance level
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score for correctly identified words across Word and Style 
was 3.7 (SD = 1.02), which was well above average (3.0). 
Linear mixed effect modeling (Confidence level ~ Word* 
Style + (1|Talker) + (1| Perceiver)) showed no significant 
main effect of Word or Style, nor any interaction between 
the two. These rating results indicate that perceivers were 
uniformly confident in their identification of all the synthe-
sized words in both plain and clear speech.

4.2.2.2  Style, tensity and gender 

Given the observed confusions between tense and lax vow-
els, the second set of analyses examined the effects of vowel 
Tensity (tense, lax) along with speech Style (plain, clear) and 
talker Gender (male, female) on word intelligibility. Linear 
mixed-effect analyses was performed with word identifica-
tion accuracy as the dependent variable. A random effect 
was added on the intercept term to account for different 
words and perceivers. The model formula was: Word Identi-
fication Accuracy ~ Style * Tensity * Gender + (1|Word) + (1| 
Perceiver).

As displayed in Fig. 6, modeling results show signifi-
cant main effects of (1) Style (χ 2(1) = 37.20, p < 0.0001), 
with greater accuracy for clear speech (27.0%, SD = 44.4%) 
than plain speech (24.9%, SD = 43.3%); (2) Tensity (χ 
2(1) = 4.03, p = 0.04), with greater accuracy for tense vowels 
(26.6%, SD = 44.2%) than lax vowels (25.0%, 43.3%); and 
(3) Gender (χ 2(1) = 5.43, p = 0.019), with greater accuracy 
for male talkers (27.2%, SD = 44.5%) than female talkers 
(24.8%, SD = 43.2%). In addition, significant interactions 
between Style and Tensity (χ 2(1) = 31.72, p < 0.0001), Style 
and Gender (χ 2(1) = 18.52, p < 0.0001), and Tensity and 
Gender (χ 2(1) = 7.15, p < 0.01) were observed. Further, a 
significant 3-way interaction was observed between Style, 
Tensity and Gender (χ 2(1) = 10.78, p < 0.01).

Post-hoc pairwise comparisons revealed two sets of 
significant differences. Firstly, tense vowels by male talkers 
show that clear style (37.2%, SD = 48.4%) had significantly 
greater accuracy than the plain style (19.6%, SD = 39.8%) 
[odds ratio = 0.40, p < 0.0001, z = − 6.10, CI = (0.27, 0.61)]. 
Secondly, clear tense vowels produced by male talkers 
(37.2%, SD = 48.4%) were identified with greater accuracy 
than those produced by female talkers (26.2%, SD = 44.0%) 
[odds ratio = 1.69, p = 0.002, z = 3.77, CI = (1.14, 2.49)). 

In summary, the human intelligibility results reveal that 
the accuracy of all the synthesized words was above chance. 
In terms of individual words, “cod” was found to be the 
most intelligible, followed by “could”, whereas “cooed” was 
the least intelligible. Notably, word confusions were largely 
seen between tense and lax vowel pairs. The identification 
accuracy of synthesized words was also found to be affected 
by speech style, talker gender, and vowel tensity, with clear 

speech being more accurately identified than plain speech 
for tense-vowel words by male talkers.

5 � Discussion

5.1 � Video‑to‑audio vowel synthesis 
and intelligibility

The above-chance performance for all the synthesized 
words, indicates that an audio speech signal can be recre-
ated based on articulatory movements extracted from a 
talker’s face. Such cross-modal synthesis demonstrates a 
direct link between visual articulatory and acoustic cues, 
in that facial movements characterizing different vowels 
(e.g., lip spreading, jaw lowering, lip-rounding) (Kim & 
Davis, 2014; Tang et al., 2015; Tasko & Greilick, 2010) 
can be translated into formant patterns to produce intel-
ligible audio speech. This is in line with the previous claim 
of positive correlations among articulation, acoustics, and 
intelligibility measures of speech sounds (Gagné et al., 
2002; Kim & Davis, 2014; Tasko & Greilick, 2010).

Indeed, the current intelligibility results of the video-to-
audio synthetic words are consistent with the patterns from 
the perception of naturally produced audio or visual input, 
including patterns due to the effects of speech style, talker 
gender, as well as tensity of articulatory gestures (Heald & 
Nusbaum, 2014; Kim & Davis, 2014; Redmon et al., 2020; 
Tasko & Greilick, 2010; Traunmüller & Öhrström, 2007).

In particular, the vowel confusion patterns show that 
most of the confusions are between tense and lax vowel 
pairs, presumably due to their articulatory and acoustic 
similarities, as has also been reported in previous stud-
ies in both auditory and visual domains (e.g.,Cutler et al., 
2004; Redmon et al., 2020; Tang et al., 2015). This further 
suggests that the visual features distinguishing tense and 
lax vowels, including extent of the articulation and dura-
tion, may not robustly contribute to distinctive audio cues 
for tense and lax vowels, unless these visual features are 
enhanced in clear speech.

Vowel tensity has been found to interact with clear 
speech characteristics, in that the synthetic tense vowels 
but not lax vowels exhibit a clear speech benefit in intel-
ligibility. In previous work with natural stimuli, visual 
perception of tense vowels exhibits a clear speech advan-
tage while that of lax vowels demonstrates a disadvantage; 
although in auditory perception, such a clear speech ben-
efit is found for both tense and lax vowels (Redmon et al., 
2020). This is presumably because clear speech modifica-
tions, which involve more extreme articulatory gestures, 
are compatible with the inherent features of tense vowels 
and thus benefit intelligibility, but are in conflict with 
lax vowel features and hinder intelligibility (Hillenbrand 
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et al., 1995; Lam et al., 2012; Roesler, 2013; Smiljanic  & 
Bradlow, 2009; Tang et al., 2015). As such, the current 
results demonstrate direct perceptual consequences of 
cross-modal synthesis, in that auditory perceptual pat-
terns reflect how the synthesis network was built. If the 
network were based on acoustic features, then clear speech 
would have been equally beneficial for tense and lax vow-
els. Since the current audio-based perception shows a clear 
speech benefit with synthesized tense vowels only, this 
suggests that the network was able to learn from tense 
vowel articulatory features across styles to produce the 
corresponding audio, but not when clear-speech modifica-
tions confounded visual cues to lax vowels.

Moreover, vowel tensity and speech style also interact 
with talker gender, in that a clear speech advantage was 
only observed for tense vowels produced by male talkers. 
Previous articulatory research on these vowels has shown 
that male compared to female talkers have larger clear-plain 
distinctions in visual articulatory movements (Tang et al., 
2015), whereas male and female talkers do not differ in the 
acoustic patterns of clear speech modifications (Leung et al., 
2016). Thus the current results demonstrate that perception 
of the synthetic vowels reflects how the vowels were syn-
thesized. As male talkers’ clear speech articulation involves 
greater articulatory changes compared to female talkers’, the 
network was able to better extract such visible articulatory 
variations from male than female talkers and associate those 
features with the corresponding audio, leading to greater 
intelligibility.

These results have significant implications for cross-
modal synthesis, in that such synthesis should take into 
account, and take advantage of, specific characteristics in 
different (articulatory and acoustic) domains and across 
talkers, which may consequently maximize intelligibility 
benefits.

5.2 � ASR and human evaluation

ASR systems have been claimed to achieve human-like per-
formance in human speech classification (Xiong et al. 2018) 
and are thus widely used in speech synthesis evaluations 
(Akbari et al., 2018; Mira et al., 2022; Saleem et al., 2022; 
Vougioukas et al., 2019).

The current results of WER analyses show that ASR 
even outperformed human listeners in classifying the tar-
get words. The performance of the ASR system depends 
heavily on the dataset it is trained on. The current audio 
synthesis network and ASR both use formant frequencies 
and frequency-based features in loss function to classify the 
words. Thus, the basis for ASR classification is well mapped 
with the synthesis network. ASR can learn to recognize sub-
tle differences between audio features to classify an audio 

signal in a multi-class classification problem. This may lead 
to improved performance, as revealed by the current ASR 
results, compared to human evaluation.

However, current state-of-the-art ASRs also struggle with 
large variations in speech due to speaker characteristics (e.g., 
gender, accent) and linguistic factors (e.g., speech context, 
word frequency) (Feng et al., 2021). In contrast to ASR, in 
human speech perception and word recognition, perceivers 
not only draw on the input signal but also rely on their prior 
experience which may involve a variety of speech and non-
speech cues. This difference may explain the discrepancies 
in the classification accuracy of individual words between 
the ASR and human results. For example, for ASR, the 
classification of "cooed" was highly accurate while that of 
"could" was poor. In contrast, for human perceivers, "could" 
was among the more intelligible words while "cooed" was 
the least intelligible. This could be because "cooed" is a less 
common word for human perceivers that "could". The confu-
sion patterns further reveal that "cooed" was most frequently 
perceived by human perceivers as "could". On the other hand, 
in our balanced dataset, word frequency did not affect ASR, 
as "could" was most frequently confused with "cod".

Taken together, the present study suggests that ASR, as 
an effective tool for evaluating the performance of the audio 
synthesis network, can be used in preliminary evaluation 
of the network’s performance and hyperparameters tuning. 
However, human evaluation should also be included for 
word classification that takes into account human experien-
tial factors. Thus, the current findings suggest that ASR and 
human intelligibility can work in a complementary manner 
in developing accurate and naturalistic cross-modal speech 
synthesis networks.

6 � Concluding remarks and future directions

This research is the first attempt to conduct cross-modal 
video-to-audio speech synthesis involving words that are 
minimally contrastive in vowels. Our approach is unique 
compared to previous methods in a number of ways. To start, 
previous synthesis work primarily focused on sentence-level 
information (Akbari et al., 2018; Vougioukas et al., 2019), 
thus providing redundant cues for word distinction. The cur-
rent vowel-based synthesis with minimally contrastive words 
makes the lip-reading task exceptionally challenging, since 
word recognition is only based on cues in a single speech seg-
ment: the vowel. Further, this segment-based method allows 
us to extend the previous research by delving further into vari-
ations of speech due to vowel tensity, speech style and talker 
gender differences in lip reading, showing that these factors 
can be incorporated by the network to synthesize audio, which 
were not considered in previous methods. Additionally, using 
standard landmark points instead of directly using a talker’s 
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face (as previously adopted) makes feature extraction (facial) 
texture-independent and speaker-independent. Lastly, the 
network performance was evaluated in a real-life scenario 
where test talkers were not part of the training set, unlike 
previous work (e.g., Akbari et al., 2018). All in all, the factors 
employed by the current approach suggest that our synthesis 
network is highly generalizable across contextual and talker 
variations and in natural communicative settings.

Results from this study point to promising directions for 
future work on cross-modal speech synthesis that integrates 
deep learning and linguistic approaches. First, while the current 
research focused on the trajectories of articulatory movements, 
adding temporal information to the movements in training will 
help improve network performance, as duration typically dif-
fers between tense and lax vowels and between plain and clear 
speech (Leung et al., 2016; Picheny et al., 1986; Smiljanic & 
Bradlow, 2009). Moreover, to improve the word identification 
accuracy, a profile face could be included, as certain articula-
tory features such as lip protrusion are better identified on the 
profile face (Tang et al., 2015). It is conceivable that having 
both frontal and profile face information will improve perfor-
mance. Further, in this study, we chose to start with a set of 
vowels with distinctive visible articulatory movements. Future 
work can extend the current framework to systematically syn-
thesize consonants as well as vowels, with the goal of achieving 
a comprehensive segment-based synthesis network independent 
of speech contexts and styles. Another potential future direction 
for research is to develop and refine protocols for comparing 
different methods using common corpora for testing.
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