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ABSTRACT Spatiotemporal data visualization is of paramount importance in several applications,
especially for analyzing urban mobility data encoded on topologies. This paper introduces a novel solution,
called Temporal Topology Density Map (TTDM), to represent 2D discrete spatial data with temporal
variations into a 2D continuous spatial space constrained by a topology. The proposed approach combines
topological density maps with Change Frequency Heatmap (CFH) to convey visual information regarding
temporal changes, leading to a new visualization method. Two case studies related to the analysis of response
time associated with emergency services and walkability changes over time in specific areas of interest
demonstrated the effectiveness of TTDM in challenging scenarios. The proposed solution provides an
intuitive visualization for supporting the accurate analysis of spatiotemporal data changes over time using
topology density maps.

INDEX TERMS Spatiotemporal data visualization, density mapping, change frequency heatmap, network
topology.

I. INTRODUCTION
Advances in terms of processing power and storage capacity
of devices have led to the creation of large data collections
in various domains. In particular, a significant amount
of spatiotemporal data is being generated and consumed,
primarily because of the wide use of sensing technologies
or the application of algorithms (data-driven or simulation-
based). The proper analysis of these data, associated with
identifying and understanding their relevance based on
trends and patterns, is crucial for facilitating informed
decision-making. In particular, it is essential to analyze
and comprehend changes related to multiple variables
(e.g., attributes) over space and time.

In the context of spatial data analysis, density maps are
commonly employed to visually explore areas surrounding
groups of points of interest [1]. Such maps encode the
continuous distribution of scalar fields in a 2D space.
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These approaches have been employed to visualize the
projected spatial patterns associated with various data types.
By dividing the data space into an arbitrary number of
density fields and then visualizing them, distinct patterns
can be discerned within specific datasets [2], [3]. Density
map visualizations have been successfully explored in several
applications, particularly in the context of reasoning based
on urban data. These approaches include support analyses
related to traffic conditions [4], [5], pollution distribution [6],
[7], and demographic evolution [8], [9].

Despite the success of existing methods in encoding spatial
distributions (e.g., kernel-based methods [3], [10]), few
initiatives have been dedicated to presenting density maps
that incorporate topological information found in networks
(e.g., road networks [11]). Recently, Feng et al. [11] intro-
duced a promising approach for computing Topology Density
Map (TDM). Their method extends the density estimation
process from a 1D network to a 2D space, resulting in correct
and intuitive visualizations. The correct visualization means
an accurate reflection of the directional and topological
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FIGURE 1. Examples of density maps. The left figure is a density map,
while the right one is a Topology Density Map (TDM).

road network, as well as the dynamic path costs directly
linked to traffic conditions. The intuitive aspect refers to
providing density fields in 2D planar fields in a clear and
comprehensible manner. Figure 1, created using one digital
twin tool [12], illustrates a density map (left) and a Topology
Density Map (TDM) (right) associated with the analysis of
spatial data. The color intensity in the figures is proportional
to the density at each position. The TDM result on the right
side of the figure depicts the 1D road network with colored
tapered lines, which greatly assists users in visualizing
density variations along with road segments. Representing
the density intensity changes solely through density map
calculation (left) can be challenging.

The algorithm proposed by Feng et al. [11] shows great
promise and has been validated in the context of compelling
applications related to urban mobility analysis. However,
their solution did not account for changes in the topology
density maps over time. In fact, the proper analysis of
urban data requires not only an understanding of the
spatial distribution of scalar fields, but also their temporal
variation. In several applications, comprehending the trends
and patterns of spatial data over time is a key element in
supporting better-informed decision-making. To the best of
our knowledge, the visual encoding of temporal changes
associated with topology density maps remains a problem
overlooked in the literature.

Several approaches have been proposed in the literature
to represent and characterize change patterns [13], [14],
[15], [16]. Notably, Change Frequency Heatmap (CFH) [17]
has been established as a promising method for encoding
temporal changes using customized metrics and behavior
patterns specific to an application. It has been successfully
employed in the analysis of multivariate temporal data
associated with plant phenology [17], [18], including data
obtained from direct observation of individuals [17] over time
and variations defined by sequences of images [18].
This paper introduces a novel visualization scheme for

encoding temporal changes observed in topology density
maps. Our solution relies on the computation of Change

Frequency Heatmap [17] and its proper integration with
topological information.

The main contributions of this paper are summarized as
follows:

1) we address the problem of encoding temporal changes
of topology density maps by introducing TTDM (its
components and algorithms).

2) we introduce a new approach based on the Change
Frequency Heatmap for encoding changes in topology
density maps.

3) we propose a novel method for visualizing temporal
changes associated with topology density maps.

4) we investigate the use of CFH in the context of urban
data analysis.

5) we demonstrate the feasibility and usability of the
proposed approach in the context of the analysis of
real spatiotemporal urban (network) data based on the
visualization of changes over time.

The remainder of this paper is organized as follows:
Section II briefly presents relevant background concepts
related to our proposal. Section III provides an overview
of the related work. Section IV introduces our method, that
is, the Temporal Topology Density Map TTDM. Section V
evaluates the proposed algorithm through quantitative and
qualitative assessments. Section VI describes and discusses
two use cases related to analyzing traffic conditions andwalk-
ability indicators over time using the TTDMs. Section VII
concludes the paper and highlights the directions for future
research.

II. BACKGROUND CONCEPTS
This section presents background concepts used in the
proposed formulation for computing temporal topology
density map (Section IV). First, a recently proposed method
for computing topology density map [11] is introduced
in Section II-A. Next, Section II-B presents the Change
Frequency Heatmap and how this representation encodes
temporal changes.

A. TOPOLOGY DENSITY MAP
A density map is an effective visualization method, that can
present a continuous distribution of scalar fields in a 2D pla-
nar space by assigning a specific color to each scalar vertex.

Recently, Feng et al. [11] introduced a new method for
computing density maps called Topology Density Map
(TDM). The objective was to createmore correct and intuitive
densitymaps in the context of urban data visualizations. Their
approach involved utilizing a directed acyclic graph (DAG)
to propagate nonlinear scalar fields along 1D road networks.
Next, the formulation extends the density calculation from the
scalar fields to a 2D planar surface by identifying points-of-
interest (POI) nodes and computing density scalar fields for
all points in this 2D space.

Figure 2 illustrates their pipeline, which comprises three
modules: encode network data, compute accessibility data,
and surface mapping. The first module encodes the network
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FIGURE 2. Topology density map algorithm pipeline.

data, represented by a graphG = (V ,E), whereV denotes the
node set and E denotes the set of directional edges. The node
set V = {v1, v2, . . . , vi, . . . , vnodeNum}, where vi is a vertex
and nodeNum is the number of nodes in V . To each node, it is
assigned attributes, such as name, location, and whether it is a
POI. The edge set E = {e1, e2, . . . , ei, . . . , eedgeNum}, where
ej = (vx , vy) is an ordered pair of vertices ((vx , vy) ∈ V 2, and
vx ̸= vy) and edgeNum is the number of edges in E . A weight
may be associated with the edge (vx , vy), representing the cost
from vx to vy, such as time, distance, or other customized
scalars. In this research, the cost is typically the access time
rather than the physical distance (e.g., Euclidean distance).1

The output of the first module is a wrapped structured
DAGs data (GDAG), computed from different POIs. Using
the Dijkstra shortest path algorithm, the second module
calculates a set of shortest path costs between each non-
POI node and POI nodes based on GDAG. Then, it constructs
the accessibility data Gcost , which contains all the relevant
information regarding accessibility for each non-POI node,
including the shortest path cost from the nearest POI and the
corresponding POI name. The accessibility data Gcost serves
as the input of the last module, surface mapping. This module
is responsible for computing (GTDM ), which represents the
estimated density field values for a 2D planar surface.

B. CHANGE FREQUENCY HEATMAP
Mariano et al. [17] presented a novel image-based repre-
sentation, named Change Frequency Heatmap (CFH), which
encodes the frequency of occurrence of temporal patterns
associated with multivariate numerical data.

The CFH computation algorithm comprises three steps
as illustrated in Figure 3: encode temporal data, compute
temporal binary pattern, and compute histogram. In the first
step, the temporal multivariate data S = {X1,X2, . . . ,Xn},
a set with n elements Xi =< xi,1,xi,2, . . . , xi,m > with
m dimensions, is encoded. This step produces a stack of
matricesM, whereM =< M1,M2, . . . ,MT >, andMt is an
n × m numerical matrix at timestamp t ∈ [1,T ] composed
of n lines and m columns. Each element mt of the matrix
Mt represents the pattern information at the corresponding
position in the space S(n,m) and at timestamp t . The
space S(n,m) = <(1, 1), (1, 2), . . . , (1,m), . . . , (n, 1),
(n, 2), . . . , (n,m)> denotes the discretization grid of a
continuous 2D space. The second module computes temporal
binary patterns by applying customized functions that encode
the temporal change profiles associated with different matrix
cells. This step results in a new stack of matrices D, where
D =< D1,D2, . . . ,DT−1 > and Dt is an n × m numerical

1The terms network, graph, and topology were used interchangeably in
this paper.

FIGURE 3. Change Frequency Heatmap algorithm pipeline with a running
example. The temporal data S includes a 4 × 4 discretization grid for one
limited 2D space. The metric function calculates the changing pattern as
Equation 1 for neighbor matrices Ms and outputs into a new stack of
matrices D. For example, D1 is computed on M1 and M2. The pixel value
of the final result matrix DCFH encodes how many times a pattern of
interest occurs. For instance, DCFH (0) has the number of ‘0’ for each pixel
and DCFH (010) counts the pattern change ‘010.’ The figure is adapted
from [18].

matrix at timestamp t ∈[1,T-1] composed of n lines and
m columns. Therefore, any cell dt in Dt is at the same
position as mt in Mt . Equation 1 defines one example of an
encoding function, where number 1 indicates a change across
consecutive neighboring timestamps, while number 0 means
the absence of temporal changes.

dt =

{
1, mt ̸= mt+1
0, otherwise

(1)

In the final step, the algorithm utilizes patterns of interest
p within the sequences of numbers ‘0’s or ‘1’s (e.g., p0 =
0, p1 = 010, p2 = 0110, and p3 = 01110). The change
binary representation d = d1d2d3 . . . dt . . . dT−1 is formed,
where ωx,y is a sub-part of d , x and y are the indexes of the
starting and ending timestamps. For instance, ω2,4 = d2d3d4.
If l = length(p), y = l − 1+ x.
CFHh can be viewed as a matrix calculation algorithm

that encodes the pixel change pattern of a stack of matrices
and generates a binary motion histogram matrix DCFH .
The operation CFHh counts the number of occurrences of the
pattern of interest (binary pattern) in any element h of the
matrix DCFH , defined as follows:

CFHh =
T−l∑
x=1

1{ωx,y = p | ωx,y ∈ �{d}}, (2)

where 1 ≤ x < y ≤ T − 1, y = l − 1+ x, and �{d} is the set
of all sub-parts of d .

III. RELATED WORK
This section provides an overview of the work related to
our study. It includes density-map-based visualization and
temporal change visualization methods.

A. VISUALIZATION BASED ON DENSITY MAPS
Hogräfer et al. [1] provided an overview of map-based
visualization approaches. According to them, density-based
field schematization is an effective technique for aggregating
representatives for local regions and displaying continuous
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scalar field data in one 2D space with map rendering. Density
map visualization is one promising approach to density-based
field schematization to construct the visual coding of field
data by density value, emphasizing geographic accuracy over
visualization.

Due to their effectiveness in supporting space-oriented
assessments, density maps have been successfully applied to
urban analysis, especially concerning services for transport-
ing people and goods. Danese et al. [19] explored the appli-
cation of density maps for seismic risk analysis to improve
civil protection planning. Xie andYan [20] presented a new
density estimation method for traffic accidents and validated
the visual effects with real datasets. Scheepens et al. [2],
[3] proposed a novel framework for using density maps
to visualize multiple attributes by multivariate trajectories
and validated it in vessel traffic conditions analyses. More
recently, Delso et al. [21] evaluated the density map applica-
tion for the impact of the obstacles on pedestrian walkability
assessment. Ren et al. [22], in turn, designed an interactive
visual analytic system on the density map technique to
demonstrate the effectiveness of an air pollution distribution
assessment.

An effective density map computation method reflects the
attribute value distribution by the density intensity. Because
the data observation is limited to the nodes and edges of
the topological network, the computation of density values
for each position in a 2D space is the most critical process
of density map visualization. This process is called density
estimation. Various methods for density estimation have
been proposed. For example, Borruso [23] validated the
Quatic Kernel Density Estimation method in the urban immi-
grant population from the spatial distribution and tendency
aspect. Krisp et al. [24] presented an adaptive directed Kernel
Density Estimation (AD-KDE) to recognize the underlying
dynamics of the vehicles for traffic condition analysis.
Nie et al. [25] designed a kernel density method called
NKDE-GLINCS, which integrates Network-constrainedKer-
nel Density Estimation and Network-constrained Getis-Ord
Gi* (GLINCS), to detect the abnormal status of road
segments. Yuan et al. [26] proposed a new Quad-tree-based
Fast and Adaptive Kernel Density Estimation (QFA-KDE)
algorithm to compute the aggregation patterns more effi-
ciently.

In the context of urban analysis, these density estimation
methods can be distinguished into two categories. One
category, known as planar KDE refers to the estimation
of the density value based on the Euclidean distance
between positions without any constrained network. The
typical applications include the trail analysis of vessels [2],
[3], trains [27], and flights [28]. The other category,
named NKDE, emphasizes the density estimation along a
constrained network. It is widely adapted for the analysis of
road-constrained events like traffic conditions, etc.

Topology Density Map (TDM) [11] (described in
Section II-A) proposed by Feng et al., is a novel method

integrating the advantages of planar KDE and NKDE. Their
formulation utilized real traffic datasets and road networks to
validate the effectiveness of the method in terms of density
estimation in 2D space and a network. Compared with other
research and existing methods [29], [30], [31] regarding
spatiotemporal data analysis, TDM provides an intuitive
visualization for supporting decision-making.

In our research, a new visualization method was explored
for encoding and visualizing temporal changes in TDMs.
This algorithm was validated in the context of mobility
applications. Both formulations aim to leverage the added
value of using density maps by decision-makers when
exploring spatiotemporal datasets. Based on the available
information, this study represents the first dedicated effort
to encode the temporal changes associated with topology
density maps.

B. TEMPORAL CHANGE VISUALIZATION
In the spatiotemporal context, temporal changes represent
attribute value changes over time, while spatial changes
are related to variations observed in distinct locations [32].
Recently, Fang et al. [33] presented a comprehensive survey
of the methods for time series data visualization. Their work
divided most of the temporal change visualization methods
into two categories. One is the visualization of time attributes,
such as Spiral diagram, Calendar view, ThemeRiver view, and
Dynamic visualization. The other is the visualization of high-
dimensional time series data, for instance, Parallel coordinate
methods. However, all of them focus on the visualization
of the changes in attributes over time, not on detecting the
change patterns for multiple attributes simultaneously.

With the increasing collection of urban context data,
it is challenging to analyze the temporal aspects associated
with spatial data. One promising direction is to analyze
and visualize the temporal changes in an explicit way.
Krukowicz et al. [34] provided a comprehensive analysis of
animal-vehicle road crashes by the temporal analysis with
Calendar view and KDE of the number of the accidents.
Liang et al. [35], in turn, explored temporal changes in
population in a geographical area using an eigendecom-
position method. Ziwen et al. [36] focused their work on
the analysis of the spatial and temporal patterns for the
tourist source market using the travel demand index pattern
evolution method. Many other methods have been proposed
to represent temporal changes in the literature [13], [14], [15],
[16], but their applications are limited to specific scenarios or
applications, i.e., they are not generic enough to be tailored
to other applications.

In the context of urban data, Zheng et al. [37] summarized
the existing visualization techniques from temporal, spatial,
and other aspects. One of their focuses was on data explo-
ration and pattern interpretation, which are highly relevant for
decision-making. According to them, for multiple attribute
visualization, pixel-based techniques interpreted by a matrix
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FIGURE 4. Temporal topology density map algorithm pipeline in concept.

form are popular techniques. However, these techniques pose
challenges when their use requires filtering some patterns of
interest explicitly for all pixels simultaneously.

On the other hand, popular density estimation methods,
such as KDE, have been extended to handle the temporal
dimension. The spatiotemporal kernel density estimation
(STKDE) method is an example [38]. A predictive hotspot
mapping to represent the risk factor by considering the
temporal dimension is a sample application of this type of
density estimations [39]. Based on our current knowledge,
none of them are suitable to visualize the temporal changes
for TDMs.

To encode the temporal changes of multivariate attributes,
Mariano et al. [17] proposed the Change Frequency Heatmap
method (CFH) – see Section II-B. It may utilize ST datasets
as a stack of matrices to produce a matrix recording
the occurrences of the interested change patterns for each
position and has been validated in plant phenology analysis.
Their method has not been utilized for the visualization of
time-related urban data.

In this work, the combination of CFH with topology
density maps was explored and investigated. The main
motivation relies on the fact that the computation of CFH is
essentially amatrix-based operation. The temporal changes in
the results of TDM are encoded using CFH with application-
oriented customized metrics and behavior patterns. While
the traditional visualization of CFH is typically presented as
a heatmap, this paper explores an alternative approach by
encoding the CFH results into a 3D map view combined with
density maps.

IV. TEMPORAL TOPOLOGY DENSITY MAP
This section describes the steps for the computation of the
Temporal Topology Density Map (TTDM).

A. OVERVIEW
Figure 4 illustrates the pipeline for the TTDM computation.
The input data consist of a stack of graphs, each associated
with a different timestamp. Two main branches use this stack
of graphs as input. The first one goes through the Compute
Representative TDM component and produces two outputs:
the network accessibility data related to the 1D network and
the density, label, and cost maps associated with the 2D space.
Section IV-B describes how this step works. The other branch
goes through the component Encode Temporal Changes
and creates a change frequency map (matrix). Section IV-C
provides the details of this component. The three outputs of

these branches are utilized to construct the final 3D visual
effects by the module Compute the Visual Representation,
which is presented in Section IV-D.
The input data of TTDM is a set of graphs G =

{G1,G2, . . . ,GT } for timestamps 1, 2, . . . ,T . G encodes
temporal changes in terms of edge costs. The network data
Gi(V ,E) ∈ G is the same as explained in Section II-A.
A cost is associated with each edge, representing the dynamic
temporal weight value. To incorporate temporal aspects in the
current method, which is the main goal of this research work,
we define the possibility of variations among the edge values.
This means that the cost between two nodes can dynamically
change with time, and consequently, the nearest POI for each
node may also change. Adjacency matrices can be used to
represent the edge costs of all graphs Gi ∈ G. LetM be a set
of matrices such that M =< M1,M2, . . . ,Mt , . . . ,MT >,
whereMt is an s×smatrix at timestamp t ∈ [1,T ] composed
of s lines and s columns. s is the number of nodes.

B. COMPUTE REPRESENTATIVE TOPOLOGY DENSITY MAP
This step aims to compute a graph to serve as a representative
of the whole set G. This representative graph (Grd ) will be
used as input to the TDM algorithm. The goal is to produce
maps to be used for the visualization of the 1D network and
the 2D space. Given the inputM, this module processes all
graphs in G based on a predefined function, effectively acting
as a filter. The default function is a weighted computation
based on edge values defined as Mrd =(1/T )

∑t=T
t=1wtMt ,

where Mrd is a matrix that encodes the representative graph
Grd , wt are weights and (1/T )

∑t=T
t=1wt = 1. The default

weighting scheme implemented assigns the same weight
value for all matrices, i.e., w1 = w2 = w3 = w4 = 1.
The other module (Compute TDM), introduced in

Section II-A, computes the shortest path cost and the source
POI label for each node. The cost and label information can
then be used to determine the accessibility of nodes (the first
output). Also, thismodule outputs the cost and labelmaps that
will be used later to produce the final visual representation
related to TTDM.

C. ENCODE TEMPORAL CHANGES
To encode temporal changes, TDMs for each timestamp
matrix in M need to be computed. This step produces
sequences of label, cost, and density maps. The module
Compute CFH utilizes any of these three maps as input.
It then uses a metric fm and behavior pattern Sbp to create a
change frequencymap, which reflects the number of times the
behavior pattern occurs for each position of the map. In the
following, these two steps are detailed.

1) COMPUTE TOPOLOGY DENSITY MAP (TDM)
This step concerns the computation of the TDM for each
timestamp t , i.e., it computes TDM for each given input graph
defined in terms of its edge cost matrix Mt (t ∈ [1,T ]). The
Compute Accessibility Data module in the TDM algorithm
(Section II-A) generates the shortest path cost (Costnr ) and
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FIGURE 5. An example of computing TDM. It reflects the temporal
changes of the sample graph data when T = 4.

corresponding POI name (Labelnr ) for each non-POI node.
For the POI nodes, Costnr is zero, and Labelnr is its own
node label. These procedures create a set of labels and a
set of costs for all nodes, forming the accessibility data set
< Gcost >. Computation extends from nodes to any point,
facilitated by label maps < L > and cost maps < C >. After
density field estimation (Section II-A), density maps < 3 >

reflect the estimated density field values at any position of the
topology.

Figure 5 illustrates the computation of multiple TDMs.
The upper half part of shows the temporal variation in the
matricesM =< M1,M2,M3,M4 > as the input. The rest of
Figure 5 provides the computation result for the sample graph
data. The cells highlighted in green refer to those changed
between two consecutive timestamps. The path costs from
POI nodes (H1,H2) are calculated by the Dijkstra algorithm
for directional graphs. After the calculation of the path costs
from each POI for each node, Labelnr and Costnr are created,
which encode the shortest path costs information (Gcost ). For
t = 1, the shortest path for the non-POI node B from the
POI node H1 is (H1 → A → B) with a cost value of 14
(6 + 8). With the increase of e3(A,B) cost and decrease of
e7(C,B) at t = 2, the shortest path for non-POI node B shifts
to (H2→ C → B) with a cost value of 21 (11 + 10 ) from
the POI node H2, which has lower cost than the other path
(H1 → A → B) from POI node H1 with cost value 36
(6+ 30 ). Such temporal variations influence the accessibility
associated with different regions. The output is a set of Gcost
for different timestamps. This set includes the accessibility
data for the nodes of the graph. The label maps < L >, cost
maps < C >, and density maps < 3 > are also illustrated
in the

Algorithm 1 Encode Temporal Changes

1 Auxiliary Data functions: fisChanged is a function to
return whether the two input elements are changed or
not within the difference by the threshold value T , the
function findex gets the element index for the map.
Data: Temporal change map setMc, the number of

timestamps T , the binary pattern string Sbp, the
metric function fm is fisChanged

Result: Change Frequency Map CHM f
2 foreach element m in Mc1 do
3 foreach timestamp t in (1,T-1) do
4 mt ← Mct (findex(m))
5 mt+1← Mct+1 (findex(m))
6 if fisChanged (mt ,mt+1, T ) then
7 dt ← 1
8 else
9 dt ← 0

10 end
11 end
12 d ← d1d2d3 . . . dt . . . dT−1
13 CHM f (findex(m))←

∑x=T−l
x=1 1{ωx,y =

Sbp | ωx,y ∈ �{d}}(Eq. 2)
14 end

2) COMPUTE CHANGE FREQUENCY HEATMAP
This step concerns the computation of the Change Frequency
Heatmap, as described in Section II-B. This component
receives a metric function that defines the changing pattern
of interest as a parameter. Another parameter is the change
binary pattern. The input of this module is a set of
temporal maps (e.g., label, cost, or density maps), marked as
Mc = <Mc1 ,Mc2 , . . . ,Mct , . . . ,McT >, where Mct is a
matrix at timestamp t ∈ [1,T ]. After computing the temporal
binary pattern with the metric function fm, the algorithm
creates a group of change binary maps. Finally, it outputs
one change frequency map CHM f with the number of
occurrences of the given behavior pattern.

Algorithm 1 outlines the steps of temporal change
encoding. It begins by calculating binary change elements
dt for each location in one map, for example, Mc1
(Lines 3-11). The algorithm then constructs a binary change
string d and computes the corresponding element value
in the change frequency map CFHf (Lines 12-13). These
calculations can be performed independently for all locations
to obtain the output change frequency map CFHf , used for
the visual representation.

Figure 6 shows a more detailed example of the temporal
changes with label maps and colored nodes. In the example,
the center region of the label maps is highlighted. The
corresponding graph is presented in the middle of the figure
for different timestamps. It is assumed that the color of H1 is
blue and the color of H2 is red. At timestamp 1, the point
of interest H2 is the closest to node C , and H1 is the closest
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FIGURE 6. An example of temporal variation mapping.

FIGURE 7. Compute the visual representation pipeline.

to other nodes. At timestamp 2, the nearest point of interest
for node B changes from H1 to H2. At timestamp 3, node B
is more accessible from H1 again, while node D falls into
the influence area of H2. Finally, at timestamp 4, there are
no changes in the nearest point of interest among the nodes.
Counting these changes reveals two status changes for node B
and one for node D. Therefore, the temporal variation value
for node B is two, and for node D is one.

D. COMPUTE THE VISUAL REPRESENTATION
The module Compute the Visual Representation provides
the resulting visualization related to the execution of the
TTDM algorithm. As Figure 7 shows, it computes a 1D
network with the module (Network Color Mapping) and
2D space with the module (Density Field Color Mapping).
Both of them rely on the outputs produced by the module
Compute Representative TDM (Section IV-B). Moreover,
it utilizes the output of the module Encode Temporal Changes
(Section IV-C) to calculate a height map in the moduleHeight
Mapping. The last module, Visual Integrator, interpolates

Algorithm 2 Network Color Mapping

1 Auxiliary Data functions: fnorm is a function that
returns the linear normalization result of a given node
path cost value in the cost set of Gcost . The functions
fdrawNode and fdrawEdge are used to draw nodes and
edges with the given parameters on the Network Map
Gc. The variables svx and svy are the edge widths at vx
and vy. ce is the color of the edge. The edge width
scaling factor is Kw (default to 1), which controls the
size of the edge width. It determines the extent to
which the edge width is scaled.
Data: Accessibility data Gcost
Result: Network Map Gc includes colored 1D road

network
2 foreach vertex v in V do
3 cv← the color of node v by Gcost
4 fdrawNode(v, cv)
5 end
6 foreach edge e = (vx , vy) in E do
7 Fc(POInr , vx)← the path cost of node vx from

belonging POI node by Gcost
8 svx ← 1− fnorm(Fc(POInr , vx))
9 ce← the color of node vx by Gcost

10 Fc(POInr , vy)← the path cost of node vy from
belonging POI node by Gcost

11 svy ← 1− fnorm(Fc(POInr , vy))
12 fdrawEdge(e, svx , svy , ce,Kw)
13 end

the heights for the vertices in the 3D mesh with the given
interpolation scale m and integrates all visual layers into a
3D representation. The final visualization combines the maps
related to temporal changes and the representative density
field map simultaneously. The following sections describe
these modules.

1) NETWORK COLOR MAPPING
The network color mapping aims to create a visual repre-
sentation of the 1D road network with colored nodes and
tapered edges. Algorithm 2 outlines the key steps for network
color mapping. The first step is to draw all the nodes with the
associated POI color (Lines 2-5). The other step is to draw all
edges (Lines 6-13) by computing the normalized cost values
along the edges (function fnorm in the algorithm) of the path
cost separately for the start and end nodes first (Lines 6-11).
After that, it draws the edge, considering the different width
values along the edge (Line 12). The color of the edge is the
same as that of the start node (Line 9).

2) DENSITY FIELD COLOR MAPPING
Density field color mapping utilizes the density map 3 and
the label map L to create the output color map Lc. Algorithm 3
outlines the key steps for the density field color mapping
calculation. For each pixel in the color map Lc (Lines 2-6), the
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Algorithm 3 Density Field Color Mapping

1 Auxiliary Data functions: fnorm is a function that
returns the linear normalization result of a given
density field value in the whole values set of Density
Map 3.
Data: Density Map 3, Label Map L
Result: Color Map Lc

2 foreach pixel p in Lc do
3 cPOI ← the color of POI node L(p);
4 cα ← 1− fnorm(3(p));
5 Lc(p)← (cPOI , cα);
6 end

FIGURE 8. An example of density field color mapping. The density field
color mapping result (left) and the integrated result with the network
color mapping (right).

FIGURE 9. The height mapping result (left) and the integrated result with
the network color mapping (right).

final color value (Line 5) with transparency value cα (Line 4)
is calculated by the density estimated value λ [11] and the
closest POI node color cPOI (Line 3).

Figure 8 illustrates the results of the density field color
mapping and its integration with the network color mapping.
It is calculated based on the average cost result of the
timestamps. Therefore, we can find the color consistency of
1D network (network color mapping) and 2D space (density
field color mapping). The region defined by ABCD (with
light blue and red colors) is easily accessible through H1 and
H2 while the region (H1A, only blue color) is only accessible
by H1.

3) HEIGHT MAPPING
The TTDM algorithm encodes temporal variations related to
the costs between the nodes or the accessibility of nodes to the
POIs. As discussed in Section IV-C, those temporal variations
are encoded in a change frequency map. If we choose the
label maps as the input for encoding the temporal changes, the

FIGURE 10. The visual integrator example with the multiple layers.

change frequency map reflects the source POI label changes
for each pixel. The height mapping module aims to compute
a height value for each pixel p. This height value of the pixel
p is calculated based on its Euclidean distance to the nearest
non-POI node using Equation 3.

H (p) = K ×
CHMf (p)

1+ d(Nnr , p)
(3)

where p is a pixel in the height map, K is the scaling factor,
CHMf (p) is the change frequencymap value in the same pixel
position p, and d(Nnr , p) is the distance between p and the
nearest non-POI node Nnr .
Figure 9 is the height mapping result for the sample

graph used, with H1 and H2 representing the POI nodes.
The black marked circles represent the nodes with more
frequent temporal changes. The pixels close to the nodes B
(CHMf (B) = 2) and C (CHMf (C) = 1) have higher
change frequency map values, which are proportional to the
elevations there. It also provides the visual effects integrated
with 1D network (network mapping) and 3D mesh (height
mapping).

4) VISUAL INTEGRATOR
This module integrates the visualization by taking into
account an ‘‘interpolation scale,’’ referred to as m. The
number of vertices in the 3Dmesh determines the complexity
of the calculation, which defines the number of details
encoded in the visualization. For the existing 3D mesh, let
Vorig be a set of mesh vertices composed of sv rows and sv
columns, and sv be the number of mesh vertices. The result of
mesh interpolation is a new set of mesh verticesW composed
of sw rows and sw columns mesh vertices. The required 3D
mesh may be created by the W directly. The relationship
between sw and sv is defined as sw = sv+ (m− 1)× (sv− 1),

Figure 10 presents the typical visual results of the
module visual integrator for the sample topology example.
It combines multiple 3D element layers in one 3D space.
For instance, the 1D network layer, 2D space layer, and 3D
mesh layer represent the visual effects of the network color
mapping, density field color mapping, and height mapping
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TABLE 1. The road networks considered in the evaluation and case
studies. Coordinates are encoded in degrees.

modules, respectively. For a 2D visualization of the TTDM,
the 3D mesh layer was not used.

V. EVALUATION
This section addresses the quantitative and qualitative
assessment of the proposed visual structure and associated
algorithms. The overall running time of the visual structure
computation is compared according to three aspects: number
of POIs, resolution, and number of timestamps. We also
assess the scalability of the proposed method by considering
four topologies with different numbers of nodes and edges.
Furthermore, the qualitative assessment of the produced
label maps, cost maps, and density maps with various
resolution scales indicates the appropriate choice of the scale
parameter m.

A. EVALUATION PROTOCOLS
Four topologies (road network) are utilized in the performed
assessments. Table 1 presents their main properties. Topology
1 is the simplest one and contains 6 nodes and 11 edges.
This topology is also the primary running example discussed
in the previous sections. Therefore, it has no corresponding
actual network type and geographic region coordinates. The
other two topologies are real networks, downloaded from
OpenStreetMap.2 Topologies 2 and 3 refer to geographic
regions associated with a walkable road in the Ålesund
(Norway) center. Topology 4, in turn, is composed of themain
drive roads and intersections in Ålesund municipality.

With regard to the efficiency assessment, we compare
the computational time under different conditions, such as
resolution scales, different network sizes, and the number
of POI nodes. The qualitative assessment relies on the
comparison of cost, label, and density maps with various
resolutions.

2https://www.openstreetmap.org/ (As of May 2023).

FIGURE 11. TTDM computation time results. Figure (a) is the result with
m = 4 and the number of POIs = 2. Figure (b) reflects the computation
time for various numbers of POIs in the same resolution scale m = 4 and
the number of timestamps = 100.

We also assess the fidelity of density maps, i.e., to what
extent a particular density map differs from a reference.
The indicator (Percentage difference) %D is used to compare
the current density map 3 with the reference result, which
is the density map 3ref when the highest resolution scale
(m = 10) is used. The percentage difference %D for any
pixel p in the map is the absolute value of the difference
divided by the original value multiplied by 100 as shown
in Equation 4.

%D(p) =

∣∣∣∣3(p)−3ref (p)
3ref (p)

∣∣∣∣× 100 (4)

The visual effects are encoded into a PGM P5 image.3

It displays the grayscale colors with the maximum value
(white color) and the minimum one (black color) for each
pixel. The same format and method are also suitable for the
label and cost maps.

There are no predefined POI nodes in the performance
assessment. The experiments were carried out on a Lenovo
Xiaoxin Air 14 (2021) 2.4GHz i5-1135G7 with one Nvidia
GeForce MX450 graphs card and 16GB RAM memory.

3http://netpbm.sourceforge.net/doc/pgm.html (As of May 2023).
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TABLE 2. The running time (in seconds) comparison for TTDM by different number of POIs, image size resolution, and topology complexity.

FIGURE 12. The qualitative assessment by percentage difference for
Topologies 1 and 2 when scale value m ∈ {1, 4, 10}.

B. RESULTS
Table 2 presents a detailed comparison of the running
times for our proposed method based on several parameters,
including the number of timestamps, points of interest (POIs),
image resolution, and topology complexity. The running time
is about 30 minutes (1956.2s) for Topology 4 when we set
100 timestamps as well as the resolution of 360 × 270.
To emphasize the effects of the first two aspects, we present
two figures. Figure 11a shows that the computation time
increases almost linearly with the number of timestamps,
indicating that the calculation of the TDM for different
timestamps consumes most of the time, rather than the CFH
algorithm. Furthermore, the computation time is significantly
influenced by the network complexity and the number of
POI nodes, as Figure 11b shows. Those results suggest that

the running time is less costly when the number of POIs
increases in some cases. For instance, when we randomly
select 50 and 100 POIs for Topology 3 (see light green bars),
the corresponding number of non-POI nodes is 70 (130-50)
and 30 (130-100). The experiment using Topology 2 (light
blue bars) presents a decrease in the running time when the
number of POIs increases from 2 to 20.

Given the running time, the scale value m = 10 is
considered as the reference resolution for all these four
topologies. Taking density maps of Topologies 1 and 2 as
examples, Figure 12 utilizes a gray-level image to present the
TTDM calculation result when m = 1, 4, 10 (highlighted in
red, blue, and black borders). The larger figures (highlighted
in pink and cray) present different percentages for m = 1,
4 compared with the reference resolution. Topology 1 has
a higher difference around the POI nodes. For the real road
network, under the various resolutions, a great difference is
found in the boundary regions with a larger gradient value.
Furthermore, m = 4 can greatly diminish the percentage
difference for the borders compared to the image computed
with m = 1. Similar results were observed for other
topologies, and for label and cost maps. Therefore, we set
m = 4 for the case study as it provides a good trade-off
between the running time and qualitative assessment.

VI. CASE STUDIES AND DISCUSSION
This section presents compelling case studies concerning the
use of TTDM in two different mobility-based applications.
Section VI-A introduces the datasets used. Section VI-B
describes the first application, which refers to improving
the walkability of the relevant regions in Ålesund, Norway.
Next, Section VI-C describes the second case study that
concerns the speedup of the response time associated with
emergency services also in Ålesund. Finally, Section VI-D
discusses alternative designs and limitations of the proposed
approaches.

A. DATASETS
This section presents the datasets used in the case studies.
It refers to the real and simulated data.
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TABLE 3. Parameters for simulated temporal changes by snow depth.

1) REAL DATASETS
Topology 3, introduced in Table 1, is selected as the road
network for Case Study 1. We retrieve four public service
places as the POI nodes: H1, H2, H3, and H4. For Case
Study 2, we choose Topology 4 as the road network and
three locations (H101, H102, and H103), associated with
emergency services facilities in Ålesund, Norway, as POI
nodes.

For both cases, we used the snow depth historical data
at the weather stations located at Ørskog (SN60800), Eide
På Nordmøre (SN62900), and Refvik (SN59250) from the
Norwegian Climate Service Center.4 It covers the time
period from 01.01.2021 to 31.03.2023 and is separated
into nine quarters (2021Q1-2023Q1). Any quarterly dataset
can be filtered according to weekdays (Monday, Tuesday,
Wednesday, and Thursday), weekends (Friday, Saturday, and
Sunday), or all days (Monday - Sunday). By default, the
data related to all days in 2021Q1 works as our primary data
source.

2) SIMULATED DATA
Our research assumes that the average moving speeds of the
people and vehicles vary linearly with the snow depth on
the road, following the assumption by Wang and Liu [40].
Therefore, when the snow depth is greater, the edge cost
(time) for each edge increases at a slower average speed.

The snow data collected from the three weather stations
were converted to raster data with spatial interpolation.
Inverse distance weighting (IDW) [41] is a common method
used for this and we utilized the implementation available
in QGIS.5 It has been widely used in spatial interpolation
of weather and air quality data [42], [43]. The output
raster image resolution is 80 × 21 using pixel sizes of
0.0036768475◦ and 0.003505219◦ for longitude and latitude,
respectively. We assumed the snow depth Dsnow on this road
would be computed using the average value of all pixels
passed by, as defined in Equation 5:

Dsnow =
1
n

n∑
i=1

pi =
1
n

(p1 + · · · + pn) (5)

where pi is the snow depth on the target road in any pixel
interpolated using the IDW method.

The average moving speed on this road Savg is calculated
by Equation 6, where Sref is the reference speed, kr is the
assumed rate of speed decrease, and Smin is the slowest speed.

4https://seklima.met.no/ (As of May 2023).
5https://qgis.org/en/site/ (As of May 2023).

FIGURE 13. The regions of interest considered in Case Study 1. There are
three small regions ( 1⃝ - 3⃝) considered in the analyses.

Smax_road is the maximum vehicle speed allowed on each
road. Table 3 summarizes the parameter settings for different
case studies.

Savg = max (Sref − krDsnow, Smin) (6)

The cost of a road was computed as the distance divided by
the average moving speed Savg. This variation of these cost
values based on the snow data will determine the temporal
changes that will be encoded by TTDM.

B. CASE STUDY 1: WALKABAILITY ANALYSIS
This case refers to mobility analyses towards improving the
walkability of relevant regions of a city. Specifically, in this
case, we assess how weather conditions affect the walk-
ability in different areas in Ålesund, Norway. Walkability
is a representation of how easy it is to move in a path
[44], [45]; thus we assume that the most walkable road/region
is the one with the lowest access time, i.e., the path with the
largest values in a density map. It is accepted that people will
choose shorter paths, which may be especially important for
those with reduced mobility, such as the elderly or mobility-
impaired persons.

In the considered scenario, high temporal changing scores
associated with a particular location, which can be encoded
in a change frequency map (Algorithm 1), indicate that the
walkability of that region changes very frequently. In this
situation, people may decide to change their destination more
often or may hesitate to walk through that region.

Suppose that urban planners need to make a decision
concerning the definition of the location of a new public
service center in the region (it can be seen as a new POI).
In this scenario, urban planners would prefer to ensure
that smaller values of the Change Frequency Map (fewer
temporal changes) are associated with target regions after the
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FIGURE 14. Overall visual effects for the two solutions.

construction of the new facility. This is the kind of analysis
for which the use of the TTDM is demonstrated in this
section.

Figure 13 details the target area considered in the
case. There are two existing indoor public service places
considered POI nodes:H1 (highlighted in blue) andH2 (red).
Planners may decide to retrofit some malls to build a new
public service center and try to select a suitable location
from two options. In the figure, they refer to H3 (green)
and H4 (purple) as POI nodes. Therefore, they will choose
between Solution 1 (H1, H2, H3) and Solution 2 (H1,
H2, H4). Furthermore, they are more concerned with the
impact in the sample area (highlighted with a blue dotted line
border in the top-left corner). Three small core regions in this
area will be explored in the analyses: Region 1⃝ (N2, N3,
N4, N5, N1), Region 2⃝(N2, N6, N7, N3), and
Region 3⃝(N2, N8, N9, N6). Regions 1⃝ and 2⃝ are close to
H1 and H3.
The rest of this section is organized as follows. The overall

visual effects will be presented with all POIs (H1, H2, H3,
H4) at first. After that, we discuss the results of TTDM
after computing the representative TDM (Section IV-B),
which reflects the average walkability affected by weather
conditions in Quarter 1, 2021. Next, TTDM (Section IV-C)
results with different binary pattern strings are discussed.
Finally, we discuss results related to the use of TTDM in the
encoding of changes in label maps defined in terms of filtered
data by date.

1) OVERALL VISUAL EFFECTS
Figure 14 presents the overall visual effects for the two
solutions when using the density map for color mapping,
and cost maps for temporal changes with the binary pattern
string ‘‘01’’ and threshold of 60s. This analysis refers to the
occurrence of walkability changes in a one-minute window.
As we can observe, the differences in height are concentrated
in the regions far from the POI nodes H3 (green) and H4
(pink). This means these regions have a higher frequency of
cost changes. The variation in color reflects accessibility. The
colors of pixels close to white indicates greater time costs
for access. For example, the density values in Regions 1⃝, 2⃝,
and 3⃝ in Solution 1 (Figure 14a) are significant larger than
that in Solution 2 (Figure 14b). That means the population in
these regions could have a shorter access time when the new
public service center is built on H3 instead of H4. Therefore,
Solution 1 is more suitable in general.

FIGURE 15. The results of the sample regions after computing the
representative TDM for the two solutions.

FIGURE 16. The TTDM results related to the encoding of temporal changes
for two solutions considering binary pattern strings ‘‘010’’ and ‘‘0110’’.

2) COMPUTING A REPRESENTATIVE TDM
Figure 15 shows the results of computing representative
TDM for the defined sample regions. Region 3⃝, which has
the most pixels highlighted in green, is affected only by
H3. This means the people in Region 3⃝ have the highest
walkability to the new public service center in location H3.
Furthermore, the pixels and edges close to node N2 are green
in Solution 1, which means that people will probably choose
to walk to H3. These visual layouts further support the claim
that Solution 1⃝ is more suitable.

3) ENCODING OF TEMPORAL CHANGES
The cost maps serve as the initial data for encoding temporal
changes, specifically representing the variation in access
time over a period. In this context, a value of ‘‘1’’ in the
binary pattern string indicates that the consecutive day has
experienced an increase beyond the defined threshold value
of 60 seconds. Conversely, a value of ‘‘0’’ represents the
opposite scenario, indicating a lack of significant increase.
Figure 16 presents the TTDM layouts for two binary string

VOLUME 11, 2023 110607



Z. Hu et al.: Temporal Topology Density Map

FIGURE 17. The comparison of TTDM results for specific types of days
considering two solutions.

FIGURE 18. The TTDM results of the sample regions using label maps as
input for the two solutions. Solution 2 leads to significantly higher bars
on road N4-N3-N7.

patterns (‘‘010’’ and ‘‘0110’’). Figures 16a (Solution 1)
and 16b (Solution 2) show more frequent temporal changes
of pattern ‘‘010’’ compared to Figures 16c (Solution 1)
and 16d (Solution 2). A comparison of the walkability
over a single day versus two consecutive days indicates a
higher frequency of changes in the former scenario, possibly
attributed to weather fluctuations. The visual layout suggests
that Solution 1 has a more stable walkability profile in
the region of interest, characterized by little elevations as
opposed to Solution 2, except in the vicinity of N3. With
the exception of certain locations (N3, N8), both solutions
showed a similar temporal changes distribution of the pattern
‘‘0110’’, i.e., their maps have similar elevations.

4) SUPPORT TO COMPLEX DECISION-MAKING
With the proper choice of dates (using filtering options),
TTDM can also support decisions regarding the time period
to operate the new public service center. For the weekdays
and weekends illustrated in Figure 17, Solution 1 led to a
more uniform distribution of changes across the different
regions compared to Solution 2, for which we can observe

less temporal change frequencies, i.e., the maps have bars
with lower average heights. The differences in terms of high
are more evident for intersection N8 in these two solutions.

Temporal evolution regarding POI labels relates to how
frequently the closest POI node changes. In this case,
it encodes to what extent people located in these areas would
change their preferred public service center. The computation
of temporal changes regarding the density maps now takes
label maps as inputs instead of cost maps. Figure 18 shows
that road N4-N3-N7 with a higher height. Actually, changes
happen 8 times for the pattern ‘‘01’’ in Quarter 1, 2021
(total 90 days). Solution 2 performs worse in these regions
with higher change frequency values compared to Solution 1.
That means that there are substantial temporal variations in
walkability.

C. CASE STUDY 2: EMERGENCY SERVICES
In this case, the objective is to speed up the response times
associated with emergencies in Ålesund, Norway. Ålesund,
one of the most beautiful cities in Norway, is often selected as
a destination for cruise ships. A large number of visitors may
increase the demand for emergency services like ambulances,
fire departments, or police. Since Ålesund is a small city, the
emergency services are limited; thus, there is a risk that these
services will collapse. Therefore, planning tools to arrange
the existing resources of emergency services are critical for
securing their response time.

An examination of the ambulance services provided in the
Sentrum area of Ålesund is considered as a scenario for the
use of TTDM. Figure 19 shows the three health services that
provide ambulances. These are H101 (highlighted in blue),
H102 (red), and H103 (green). H101 and H102 are close to
the downtown area of interest(latitude from 62.4691749◦ to
62.4729876◦ and longitude from 6.1496012◦ to 6.1605936◦).
From a planning perspective, city planners and emergency
coordinators would like to analyze whether they should
provide more resources at the time when one or more
cruise ships arrive in Ålesund. In this case, the chosen
areas of interest include Region 4⃝ (N101, N102, N103)
and Region 5⃝ (N102, N104, N105). Region 4⃝ is the port
position for cruise ships and Region 5⃝ is a bus terminal
nearby. The change in weather conditions like daily snow
depths (Section VI-A) affects the access time of the service
by vehicles (Section VI-A2). Similar reasoning may be used
to model the presence of tourists over summer conditioned by
other weather conditions (e.g., temperature). The decreasing
pattern of density value directly reflects increasing access
time.

Initially, the computed overall visual effects will be
illustrated, especially considering the area of interest. Sub-
sequently, the representative TDM and the encoded temporal
changes will be presented and discussed. At last, an analysis
comparing the results related to different time periods and
using label maps for temporal changes is presented.
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FIGURE 19. Regions of interest in Case Study 2. There are two small
regions ( 4⃝, 5⃝) which are connected by node N102.

FIGURE 20. Overall visual effects for Case Study 2.

1) OVERALL VISUAL EFFECTS
Based on the snow depth data in Quarter 1, 2022, Figure 20
presents the overall visual effects for the whole road network
and the area of interest. In this case, we consider the

FIGURE 21. The results of computing a representative TDM (a) for the
average of density maps and the TDM result for interested
timestamps (b)-(f).

downtown area (zoom in), when using density maps for
temporal changes with the binary pattern string ‘‘01.’’
Recall that, even though the whole road network is large
(Figure 20a), we could select any small geographic area like
downtown to compute the TTDM. This downtown area is
used to present the results related to this case.

Figure 20b shows that both Region 4⃝ and Region 5⃝ have
similar pretty light red colors, close to white. This means
that using only the TDM algorithm is not enough to support
the analysis of the scenario considered in this case. Anyway,
we can observe that the average elevations in Region 5⃝ are
significantly higher than the ones in Region 4⃝.

2) COMPUTING A REPRESENTATIVE TDM
Figure 21 presents the representative TDM (Figure 21a) as
well as the TDM result for the last five days in the period
of analysis considered (Figures 21b– 21f). In this figure, txx
represents the xx-th day. No significant differences over time
were observed in Regions 4⃝ and 5⃝ for all cases. As we can
observe, the representative map differs a lot from the ones
related to the investigated dates. That suggests that change
pattern analysis is relevant for a better comprehension of the
impact of possible solutions.

When comparing the t86-t90’s results, the density values
for Regions 4⃝ remain unchanged between t86 and t87.
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FIGURE 22. The results of encoding temporal changes with different
binary pattern strings ‘‘010’, ‘‘0110’’,. . . ,‘‘01111110’’.

Subsequently, the values decrease at t87, increase at t89, and
reach at the minimum value at t90. Notably, the average
value (refer to the figure) is similar to the t87 outcome;
however, it can not reflect the temporal changes of density
values. This sequence of images illustrates a case in which
the assessment of changes over time might be challenging to
be done visually as multiple maps would need to be compared
simultaneously. Adopting the approach proposed in this paper
to encode temporal changes makes it easier to analyze such
variations and then make appropriate decisions accordingly,
as illustrated next.

3) ENCODING OF TEMPORAL CHANGES
Figure 22 shows the TTDM results for various binary patterns
ranging from ‘‘010’’ to ‘‘01111110’’, where the number
of ‘‘1’’s represents the consecutive days with increasing
access time. Figures 22a and 22b, illustrating short-term
temporal changes, exhibit higher elevations in the targeted
regions. This suggests that weather conditions lead to more
frequent increasing access time for one or two consecutive
days when compared to the frequencies observed for the
other patterns. As a result, planners may consider allocating
additional ambulance resources to speed up response times
during 2022Q1 if cruise ships stay for one or two days.
On the other hand, Figures 22c, 22d, and 22e depict similar
height distributions, indicating fewer temporal changes over
time. Notably, Figure 22f shows no elevation, indicating
minimal long-term temporal changes. Overall, Region 5⃝ is
associated with more frequent temporal changes in access

time, suggesting a greater need for rapid emergency services
in that area.

4) SUPPORT TO COMPLEX DECISION-MAKING
Here, we investigate the potential of using the TTDM in a
complex decision-making scenario, involving the analysis of
changes over quarters (season-based analysis). The season-
based analysis is motivated by the fact that snow depth
changes considerably across seasons. We focus on changes in
quarters 1 (Q1) and 2 (Q2) as are the ones when snow occurs
more frequently. We also investigate the impact of selecting
different threshold values (60s as the low threshold and 300s
the high threshold) for determining if a change occurred. The
analysis is based on label maps, i.e., it takes into account how
the influence areas of POIs change

Figure 23 shows the TTDM results for Regions 4⃝ and
5⃝, over 2021-2023 period. We can observe that both regions
have similar elevation distributions in those quarters over the
years. Notably, Figures 23a (2021Q1, T =60s), 23e (2022Q1,
T =60s), and 23i (2023Q1, T =60s) reveal more noticeable
temporal changes in the first quarter than Figures 23c
(2021Q2, T =60s) and 23g (2022Q2, T =60s) for T = 60s
using the data of the second quarter. However, for T = 300s,
the results are similar to those shown in Figures 23j (2021Q2,
T =300s) and 23d (2023Q1, T =300s). These outcomes
demonstrate that weather conditions exert a more significant
impact on the results than the regions’ topology, while the
threshold plays a critical role in the visual outputs. In short,
the choice of the best solution depends on the threshold values
and the specific time periods considered in the analysis.

Using label maps as the input for the TTDM facilitates
the identification of regions with more changes of the closest
emergency service point. Figure 24 presents the outcome,
which indicates no changes for all quarters. However, the
region marked with a dotted line exhibits some temporal
changes, particularly in 2023Q1 (as Figure 24e). Given that
no significant differences were observed for the two regions
concerning these aspects, decision-makers could extend the
region of interest to investigate the occurrence of changes in
the adjacent areas.

D. DISCUSSION
1) ALTERNATIVE DESIGNS
TTDM incorporates elevation as the visualized dimension,
enabling the simultaneous presentation of temporal changes
along with the density field and topology. Alternatively, users
have the option to compute color mapping based on the
density field or the temporal changes, similar to a heatmap.
This solution can be seen as a ‘‘trivial’’ integration of TDM
and CFH. Figure 25 compares this heatmap approach with
the TTDM solutions using data related to Case Study 1.
The objective is to identify two positions with high-density
values (highlighted with orange and light blue circles) that
also exhibit significant temporal changes. The red and blue
colors with alpha values represent the transition of temporal
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FIGURE 23. The comparison of various quarterly time periods with
threshold T = 60s and 300s.

changes from high to low. With the heatmap solution, users
need to switch between the density field data (Figure 25a)
and the heatmap representation (Figure 25b) to locate
positions with high-density values and observe temporal
changes. In contrast, the TTDM approaches (Figures 25c
and 25d) streamline this process through the visual integrator
(Section IV-D4), utilizing elevation as a distinct visual aspect.
For our case studies, the 3D bar visualization (Figure 25d)
is selected as the preferred design due to its enhanced

FIGURE 24. The comparison of various quarterly time periods using label
maps for TTDM CFH computation.

FIGURE 25. The comparison of alternative designs: simple CFH-TDM
integration (a) + (b), TTDM original design (c) and TTDM optimized
design (d).

effectiveness in recognition compared to the original 3Dmesh
design (Figure 25c).

The TTDM also relies on TDM and CFH. In our method,
however, their integration is not trivial. For example, in this
paper, we elaborate on different aspects related to the kinds
of change (label and cost maps) that are expected to be
encoded. Also, we discuss strategies for the computation
of the representative TDM. Furthermore, the paper includes
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a comprehensive description of the procedures to generate
the final visual representation, including algorithms and
running examples. Finally, the proposed method is validated
by employing the assessment of the impact of different
parameter settings and compelling usage scenarios involving
decision-making based on real urban data.

2) LIMITATIONS
Through the evaluation of efficiency and insights from two
case studies, the potential of TTDM to provide insights into
temporal changes associated with density maps becomes
evident. Nevertheless, the TTDM computation seems to
be expensive, especially for large topologies. We claim,
however, that the computation time is acceptable for real-
world usage scenarios as those involving real topologies as
the ones considered in the two case studies. Anyway, further
research is needed to explore methods for improving the
overall performance of the algorithms.

The practical use of the visualization method demands the
proper definition of configuration parameters (e.g., threshold
value – T , binary pattern – Sbp, interpolation scale – m, and
scaling factor – K ), given the requirements defined in terms
of the kind of analysis that will be performed and properties
of the target dataset. The proper definition of such parameters
might be a time-consuming and laborious task, especially for
novice users.

To address this challenge, the utilization of digital
twins [12] designed for TTDM may be used to support the
analysis of different TTDM parameters’ values with regard
to the overall quality of the generated maps as well as the
efficiency of the algorithms. These capabilities may lead to
enhanced efficiency analysis, faster definition of parameter
values, and potentially more insightful visualizations, ulti-
mately supporting better-informed decision-making tailored
to new datasets and topologies.

VII. CONCLUSION
This paper introduced a new method, Temporal Topology
Density Map (TTDM), to intuitively encode and represent
temporal variations associated with the topology density
map. The proposed solution explores the Change Frequency
Heatmap (CFH) that registers the occurrence frequency of
change patterns of interest. TTDM provides the possibility
for analysing temporal changes associated with density maps
along the network, a problem overlooked in the literature.
The method starts with a stack of graphs, with each graph
representing a network with dynamic edge costs. After
computing the representative TDM, the method encodes
temporal variations represented in a 3D space. The efficiency
of the method was evaluated based on different parameter
values and topologies with different sizes. The proposed
method was also validated in two compelling case studies
related to urban planning activities for assessing walkability
and emergency services analysis based on real road networks.

This conducted research opens opportunities for future
work in several directions. First, we can explore TTDM

in other applications for analysis scenarios involving spa-
tiotemporal data associated with topologies. One promising
application is to construct sensor monitoring systems whose
spatial distribution relies on a wired or wireless communi-
cation network. In this system, the network includes data
collection points, such as sensors, which are connected to
data centers. The sensors represent non-POI nodes, whereas
the data centers serve as POIs. Edge cost is the commu-
nication delay. Examples of time-delay-sensitive scenarios
include applications involving underwater acoustic sensor
networks [46], smart grid-connected power systems [47],
nonlinear time delay systems [48]. Another research direction
involves the investigation of suitable domain-specific CFH
configurations. Because the configuration of CFH, including
the definition of the metric function and binary patterns of
interest, is application-dependent, it would be worthwhile to
use packaging them as libraries for future re-use. For instance,
the configuration used in the two case studies provided in this
research could serve as the first two templates for mobility
applications. Users can benefit from them in the assessment
of different metric functions and change patterns.
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