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ABSTRACT

We have identified the phenomenon of Neural Collapse in intermediate layers
across various DNN architectures, including MLPs, Convnets, and Resnets, for
the datasets MNIST, FashionMNIST, SVHN, and CIFAR10. This discovery, pre-
viously published in [1] (Rangamani & Lindegaard et. al., ICML 2023), offers
insights into DNN behavior and performance. While the layer of collapse some-
what correlates with DNN generalization, it’s not straightforward, suggesting an
optimal middle-point for generalization. This phenomenon also influences the
circuits that can form in networks, with shallower collapse layers necessitating
shallower circuits.

Our analysis in revealed distinct activation patterns post-collapse. These pat-
terns in deeper layers show sparsity and alignment with neuron-axes. However,
features in pre-collapse layers cover the space without clear separations, exhibit-
ing near symmetry in every principal direction. Despite apparent visual structure
emerging through layers when using UMAP for dimensionality reduction, our clus-
tering attempts yielded only partially accurate results, indicating that discernible
patterns in pre-collapse layers remain elusive with our current methods.

Lastly, the patterns in intermediate layers could be at odds with prevalent
DNN theories. Notably, networks exhibiting intermediate Neural Collapse might
not align with the pruned networks of the Lottery Ticket Hypothesis, suggesting
a divergence from pure SGD optimization and LTH theory. While our findings
align with the superposition and circuits theory, the network with intermediate
NC provides a more intricate example than previously analyzed networks in this
domain, but significantly simpler than full networks for similar classification tasks.
Analyzing these networks present an exciting avenue for future research, poten-
tially allowing for new insights into the optimization and inference in deep neural
networks.
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SAMMENDRAG

Vi har identifisert Neural Collapse i de indre, skjulte lagene i flere typer dype
nevralnett. Vi har vist at fenomenet oppstår i både fullstendig koblede nevralnett,
konvolusjonsnett og residual-nett for flere datasett, spesifikt MNIST, FashionM-
NIST, SVHN, og CIFAR10. Denne oppdagelsen, tidligere publisert i [1] (Ranga-
mani & Lindegaard et. al. 2023), gir innsikt i hvordan dype nevralnett funda-
mentalt fungerer. I denne oppgaven finner vi at hvor dypt kollapsen først opptrer
har betydning for nevralnettets evne til å generalisere. Det er tydelig at det ikke
er en klar monoton relasjon mellom de to, og at optimumet opptrer et sted mel-
lom ekstremene. Dette har også implicasjoner for hvilke kretser som kan oppstå i
nettverket, der grunnere kollaps krever grunnere kretser.

Vår analyse avdekker distinkte mønstre i aktiveringene post-kollaps (dypere)
i netverket. Disse mønstrene er glisne og viser innretting mot nevron-aksene. På
den andre siden finner vi at aktiveringene pre-kollaps (grunnere) i netverket er
symmetriske og dekker hele rommet uten en tydelig separasjon eller innretting
mot nevron-aksene. Vi finner kvalitativ visuall struktur som oppstår gjennom
nettverket etter ikke-lineær projeksjon med UMAP. Til tross for dette kan vi kun
delvis forklare aktiveringene med klyngeanalyse, og grundigere analyse kreves for
å forklare mønstrene som oppstår pre-kollaps.

Til slutt diskuteres at mønstrene i de indre sjulte lagene kan stå som en mot-
setning til enkelte teorier for funksjonene til dype nevralnett. Vi bemerker særlig
at nevrale nett som har indre nevral-kollaps kan fungere som moteksempler til
loddhypotesen ("Lottery Ticket Hypotesis") for optimeringsprosedyren til nevrale
nett. Resultatene stemmer bedre overens med superposisjon- og krets-hypotesene
for nevrale nett. Våre nettverk er et mer komplekst eksempel enn netverk som
tidligere er analysert, men er betydlig enklere å analysere med disse metodene
enn tilsvarende nettverk. Dette er grunnet den forenklede strukturen som opp-
står under indre nevral-kollaps. Observasjonene åpner for fremtidige analyser som
kan drive feltet framover, og ved å analysere disse netverkene kan man få dypere
innsikt i optimeringen og beregningene som foregår i dype nevralnett generelt.

ii
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CHAPTER

ONE

INTRODUCTION

Modern statistics and Machine Learning (ML) methods are the driving forces of
the recent advancements in Artificial Intelligence (AI). Recently, we have seen ever
more advanced methods, an expanding use of ML-based tools, and widespread use
of text-based AI systems. In short, intelligent systems are being used and devel-
oped on a scale never seen before. [2] While these models are constructed with
precise mathematical formulations, the reasons for emergence of the intelligent
behaviour remains a mystery:

We fundamentally do not understand how deep learning works.[3][4]

This thesis is an investigation into interesting phenomena emerging in Deep
Neural Networks (DNNs) during training, contributing to our understanding of
the underlying workhorse of AI developments.

In this chapter, I first present motivation for this line of work by connecting
it to past methods and theories, recent developments, and future requirements of
these systems. Secondly, a description of the project itself is presented, linking
it to previous work. Finally, I give a brief overview of the novel contributions
presented in this thesis.

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

This section presents the background and core motivation for the work done in
this thesis. Parts of this section, specifically 1.1.1 and 1.1.2, have been based on
[5].

1.1.1 A Paradigm shift

A well established challenge in classical statistical learning theory is the bias-
variance tradeoff [6]. In this regime, any learning algorithm that regression or
classification on data has to strike a balance between the expressivity and the
inherit priors of the algorithm in order to perform well. For the final learnt algo-
rithm to perform well, you need to trade off variance for bias to achieve the goals
specific to your problem. In most statistical learning courses, this perspective is
still a foundational, often repeated, and largely correct picture.

In short, the learning algorithm must be expressive enough that it captures the
relevant patterns in the data, while filtering out the irrelevant noise by inducing
the right priors and biases. This can often require intimate knowledge of the data
domain and of the different algorithms’ signal processing behaviour in regards
to the data features. If the model has a strong bias towards certain types of
features, either by being unable to express others or incorporating priors over the
parameter space, they might miss important relevant patterns in the dataset. If,
on the other hand, the model is too expressive (high variance), it might pick up
random fluctuations in the data and place importance on structures irrelevant to
the underlying problem. This will lead the model to generalize less well, and to
"false positives" when interpreting the significance of data characteristics.

With this in mind it is clear that it is imperative to choose the right models
and priors to filter the noise while keeping the signal. Finding the balance that
will allow you to ignore most non-generalizing patterns while keeping the true
underlying structure of the data is crucial. It is crucial in designing your model
to reflect the structure of the data and perform well on unseen samples.

Or so the classical story goes.

Modern developments in ML and statistical learning have been characterized
by increasingly larger models [7]. Despite growing to parameter numbers orders of
magnitude higher than the number of datapoints and features per datapoint, they
have shown a remarkable capacity for generalization. Following classical theory,
the extreme overparametrization and expressivity should make the models overfit
the data, capturing all the noise, and thus give horrible generalization. Indeed,
we can often see interpolation of the data, but the models generalize to new data
despite having classically "overfit" the training data [8]. The contradiction of the
empirical findings and the established theory prompts the development of new
theory, theory that is applicable to this new paradigm of learning systems.
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1.1.2 The Motivation for new Theory

Motivated by the recent developments and incredible achievements of modern
ML, we are looking to understand the mechanisms underlying this success. In
developing a theory of deep learning one would hope to contribute to both the
engineering and science of intelligence.

In the the engineering of intelligence it is paramount to have an understand-
ing of the learning methods in order to improve them. Thus far, a lot of the
progress has been driven by an intuitive understanding and application of the in-
ner workings of the algorithms used in ML. This has so far proven instrumental
and successful in model scaling [9, 10], understanding and constructing failure
modes of the models [11], introducing the relevant biases when needed [12], in-
creasing expressivity in data-rich domains when biases are less relevant [13], and
explaining model behavior [14].

Concerning the science of intelligence, the development of relevant understand-
ing is a goal in and of itself. Fully explaining the inner workings of the top per-
forming learning algorithms, be it biological or artificial, would be a major step
forwards in this field. Until recently, most artificially constructed learning al-
gorithms were unable to perform on the level of humans in nearly all domains.
These algorithms now perform and outperform humans across several modes and
metrics in an ever increasing range of problems that were once considered "deeply
human" [15] Looking at these artificially constructed learning algorithms, we have
an unprecedented opportunity to investigate the specific mechanics of a high-
performing "intelligent" system. Furthermore, we may investigate the mechanics
of the learning algorithm both during learning and inference down to the smallest
deterministic parameter update. Comparing this to the biological systems, we
currently have only some grasp on how a brain works on a neuronal level. In fact,
we have way to measure or infer the activity of even a piece of a human brain
down to the neuronal level. In artificial DNNs, however, we have complete control
and measurability of the fundamental dynamics of the learning algorithm. The
algorithms are constructed by humans, every state is stored in computer memory,
and all data is stored and interacted with deterministically. This unprecedented
access to the learning system presents a unique opportunity to make sense of the
fundamentals of learning and information processing itself.

Despite this opportunity, no comprihensive theory exists on artificial DNNs.
There is no holistic theory for even the simplest nonlinear DNNs, Multi-Layer Per-
ceptrions (MLPs), on the simplest problems such as regression or classification.[3]
This is, however, not for lack of effort [16, 17]. There is still a considerable gap
between the state of the engineering performance and the science of DNNs.

The contrast becomes even more stark when comparing with the theory for
kernel methods. While kernel machines historically were state-of-the-art (SOTA)
in many complex problem domains, their development was accompanied by a
thorough and deep understanding of their behavior on several layers of abstraction,
theory and emergent behavior [18].

In order to develop a similarly strong theory of DNN dynamics, with countless
layers of emergent complexity, it is crucial to understand the ability of the models
to generalize. As a new paradigm of learning algorithms emerge and the old theory
fails to explain the generalizing ability and dynamics of overparametrized models,
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a new theory of learning is needed. This thesis aims to push the boundaries of
our understanding of DNN dynamics from a bottom-up perspective. We believe
significant insights can be gathered by observing the activations, weights, gradi-
ents, and learning updates of the DNNs. By building theory from the fundamental
inner workings of the network, we wish to establish an interpretable, mechanistic
picture of the model behavior.

1.1.3 Mechanistic Interpretability

In the burgeoning field of Mechanistic Interpretability, researchers are working
to understand the fundamental inner workings of DNNs from a bottom-up per-
spective. The young subfield aims to fully characterise the models behavior by
observing the model’s activations, weights, and gradients.[4]

Fundamentally, mechanistic interpretability rests on the idea that there are
legible, interpretable structures in DNNs that can be reverse-engineered. [19] The
subfield differentiates itself from other interpretability research along several axes:

Internal Model Understanding is fundamental in the approach. Where
other interpretability research focuses on high-level behavior and often treats the
model as a black box, mechanistic interpretability revolves around individual ac-
tivation patterns and how they interact to form a bottom-up theory. [19]

Specific, actionable insights that allow for detailed model interpretation
and modification are a core part of the insights usually generated by this re-
search.[4] As a consequence of the focus on quantitative insights this leads to
a higher requirement for specificity and usually present interesting opportunities
high-level ideas and modifications. While this kind of concrete, actionable theories
also appear in conventional interpretability research (e.g. [11] and [20]), much re-
search into interpretability has not been concerned with the underlying mechanics
or presented such opportunities.

A central thesis of much work in this subfield is the concept of circuts intro-
duced in [19] and further developed in [21] [22]. Briefly, the theory of circuts
stipulate that one can subdivide the DNN into several abstract computational
subgraphs [19]. These subgraphs encode interpretable features and often reflect
properties of the underlying dataset. Some more detail is given in section 1.3.2.

This thesis will draw on the same motivation as much other mechanistic in-
terpretability work. Still, the direction presented here is different than much of
the work in this subfield of interpretability, and hopes to serve as another path to
gaining a fundamental understanding of neural networks.

1.1.4 Interpretability and The Big Picture of Modern ML

The science of interpretability research in ML is in itself inherently interesting,
but it can also be instrumental for aspects of modern ML and AI. Specifically, for
AI safety, interpretability might play a crucial role in keeping AI systems aligned
and robust.

Recently the ever increasing capabilities of machine learning models have trans-
lated into an explosion in use cases. Many such systems have become easily
available to the masses, such as DALL-E, MidJourney, and recently chat-based
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interfaces 1. While not in the scope of this thesis, the possible economic impact
of these systems cannot be understated[23]. This has demonstrated and made
poignant the need to be able to steer these systems to behave in a safe manner.
Several research labs are spending a lot of resources on safety and steering their
systems towards safe behavior, and the topic of AI safety has been on the fore-
front of much public discourse [24] In fact, one of the major ways to improve the
safety and alignment of the chat-based systems, reinforcement learning from hu-
man feedback, was crucial to the usability of these systems[25]. In line with this,
developing new techniques for aligning these systems to our needs can have an
outsized impact on both the system performance and usability.

It is clear from experience in other applied scientific disciplines that under-
standing the mechanics underlying systems can lead to both new insights, im-
proved capabilities, and more reliable systems. Work in adversarial attacks and
examples [11] has already demonstrated failure modes and given improved the
training procedure in certain cases. Similarly, new paths contributing to the un-
derstanding and alignment of these systems can have a huge impact by providing
improved performance, usability, alignment, and safety. Earlier work has explored
the possible pathways through which interpretability research can have an impact
on improving ML systems. Specifically, reasearch in mechanistic interpretabil-
ity can help us significantly speed up alignment research [26], train systems to
robustly behave well [27], audit and verify systems [26], drive capabilities [28],
predict future system capabilities based on e.g. scaling laws and help avoid de-
ceptive systems [26], among other things [29]. 2

It should come as no surprise that gaining an understanding of how the under-
lying mechanics work could provide an outsized impact on nearly every aspect of
these systems. Opening up new areas of research in this subfield and developing
the already established theories could lead to significant developments in both the
subfield and in ML as a whole.

1.2 Related work

This section contains the background for the scope of the project, as well as some
related directions that do not directly feed into the approach taken in this thesis.
Since much background for modern ML has been given in section 1.1, this section
will keep the foundational ML references brief. Notably, this thesis builds on
previous work conducted by the author while at the Center for Brains, Minds and
Machines - Massachusetts Institute of Technology published at the International
Conference of Machine Learning 2023 [1], in conjunction with Akshay Rangamani,
Tomer Galanti and Tomaso Poggio.

1https://openai.com/dall-e-2, https://www.midjourney.com, and https://chat.
openai.com/, respectively.

2
Interestingly, much of the field is driven forwards by university unaffiliated researchers or

smaller independent and recently started research labs. The attentive reader might notice that

some of the sources given for the future of alignment research, and particularly mechanistic

interpretability, are from unconventional organizations of researchers. These ideas have only

recently been given more attention, with the popularity among the wider public and genuine

worry about the capabilities of the systems.

https://openai.com/dall-e-2
https://www.midjourney.com
https://chat.openai.com/
https://chat.openai.com/
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1.2.1 Background

Major advances in ML, and in particular deep learning, have quickly outpaced
what was possible with other learning methods. Initial breakthroughs in com-
puter vision [9, 7, 10] with deep learning has led to an explosion in capabilities
in many areas such as natural language processing [30, 25], image generation and
multimodality [31], and decision making in diverse environments [32, 33].

With increasing capabilities, the problem of understanding how these networks
operate becomes increasingly important (see sec. 1.1). As such, there are several
lines of work attempting to understand these systems on a theoretical level. One
such example is the neural tangent kernel that aims to explain DNN behavior
with tools from kernel methods under the assumption of infinite width of the
network, introduced in [34]. Another such line of work aims to explain shallower
networks [35]. One key missing component of these approaches is their inability
to appropriately model the multiple-level feature learning that is a central part of
the learning algorithms of DNNs[36], and what makes them truly "deep".

With the lack of holistic theoretical frameworks for DNNs, much investigation
has been done on the dynamics of the models themselves. Some major angles
of theoretical research include the information bottleneck method [37], the lottery
ticket hypothesis [20], and analysis of the loss landscape in terms of the parameters
[38, 39]. Other approaches are more empirical, where conclusions are drawn from
the observed patterns and structures in the systems, such as circuts [19, 40],
double descent [8, 41], grokking [42], phase changes [43, 44], and particularly
neural collapse [45].

1.2.2 Neural Collapse Background

The recent discovery of the phenomenon of Neural Collapse (NC) in [45] is an
empirical observation of strong simplifying structures emerging in the final hidden
layer of DNN classifiers. In short, the feature of every datapoint of the same class
are mapped to the same point representation in this layer, and these points form
a strict, maximally separated geometry that is also reflected in the weights (see
sec. 2.3).

Several follow-up works have investigated the theoretical basis and implica-
tions of this phenomenon, while other works have demonstrated the prevalence of
NC in different settings. Of particular interest for this thesis, [46] and [1] have
demonstrated that NC extends from the last hidden layer and backwards into to
the intermediate layers of some DNNs that exhibit NC. This phenomenon has
been coined Intermediate Neural Collapse.

1.3 Core ideas in the field

Some core ideas in the interpretability of DNNs are given in order to give some
color to the current state of the field. These ideas are developing, and not neces-
sarily precisely defined. In fact, some of their strength might come from having
moldable definitions that develop along with the theory.
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1.3.1 Lottery Ticket Hypethesis

The Lottery Ticket Hypothesis first introduced in [20] briefly states that

A randomly-initialized, dense neural network contains a subnetwork
that is initialized such that—when trained in isolation—it can match
the test accuracy of the original network after training for at most the
same number of iterations.

Intuitively, it states that the first order effect of a DNN is that each ran-
domly initialized network contains a "subnetwork" that already is a somewhat
good classifier, and all other subnetworks are optimized away. The training of
this subnetwork is a second order effect that, while important, is not the ultimate
reason for the incredible performance of DNNs. This hypothesis has shown merit
in several experiments and attracted substantial attention [47]. It is clear that in
the space of mechanistic interpretability, this idea is idea is one of the key ways
to approach explaining the internal mechanisms of DNNs.

1.3.2 Circuts, Features and Superposition

As mentioned, the work pioneered by Chris Olah now at Anthropic seeks to explain
the inner workings of DNNs with a somewhat different approach.

The work revolves around three central speculative claims about DNNs (quote
from [19]):
Claim 1: Features

Features are the fundamental unit of neural networks. They corre-
spond to directions.3 These features can be rigorously studied and
understood.

Claim 2: Circuits

Features are connected by weights, forming circuits. 4 These circuits
can also be rigorously studied and understood.

Claim 3: Universality

Analogous features and circuits form across models and tasks.

At its core, it is an attempt to construct the fundamental building blocks to which
one can reduce the behavior of DNNs.

In a similar vein of characterizing circuts, a hypothesis for how DNNs represent
features is in "superposition". Introduced in [48], the core of neural networks
representing data in superposition is based on assumptions that (a) features are

3
By “direction” we mean a linear combination of neurons in a layer. You can think of this as

a direction vector in the vector space of activations of neurons in a given layer. Often, we find

it most helpful to talk about individual neurons, but we’ll see that there are some cases where

other combinations are a more useful way to analyze networks - especially when neurons are

“polysemantic.”
4
A “circuit” is a computational subgraph of a neural network. It consists of a set of features,

and the weighted edges that go between them in the original network. Often, we study quite

small circuits - say with less than a dozen features but they can also be much larger.
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the building blocks of DNNs, (b) a feature is represented by a "direction" in the
neuron space and (c) features are sparse. In that case, a DNN can represent more
features than there are dimensions in the space, without expecting significant
interaction between features.

Of relevance for this thesis is assumption "b", and that the DNN will be ex-
pected to utilize the full space to represent as many features as possible. Interested
readers are advised to read [48].

1.3.3 The state of interpretability research

Finally, a note on the state of the field of "Mechanistic Interpretability" in its
current form: It is not clear what the fundamental properties of "good science"
in this field looks like, it is not clear what the fundamental definitions (e.g. of a
"feature") are or should be in order to accurately capture the interesting effects of
the system, and it is not clear what ideas and paradigms will eventually give rise
to productive empirical and quantiatative modes of explaining the phenomena of
DNNs we wish to explain [4][19].

This subfield is in its very early stages, and faces challenges that any burgeoning
field faces. One can compare the qualitative work in [49] and [48] to the now
established benchmarks of capabilities research for DNNs, and observe the lack of
objective measures not only of performance but of valid reasoning.

Some have likened this early stage of an obviously complex and so far qualita-
tive field to the first time humans reached for the microscope and discovered the
rich world of cell biology[19]: Our best theories of the world cannot describe the
complexity without serious effort and hours spent piecing together an ever fuller
picture. Most of our high-level ideas will be wrong, but through empirical evalua-
tion and analysis we will slowly be able to figure out both the low-level mechanisms
and the high-level motifs that will allow us to explain what we observe.

The dream is to one day find the DNA and proteins of deep neural networks,
allowing for explainability, increased capability and safety of these models.

1.4 Scope and Approach

This thesis bases its work on the results established in [1] and [5], previous work by
the main author and collaborators. The work that resulted in [1] was supported
by the Poggio lab - McGovern Institute at MIT through the summer and fall of
2022.

The thesis seeks to extend the analysis of neural collapse (see the following
chapter for terms and explanations) to the intermediate layers, as published in [1],
and then further to investigate whether the layer of intermediate collapse is related
to the generalization of the network. Further, it investigates the characteristics
of the data transformations before the intermediate neural collapse. The ultimate
goal is to characterize the mechanisms by which a single DNN performs classifi-
cation. This thesis restricts itself to DNNs that has demonstrated intermediate
neural collapse, and performs an exploratory analysis focused on the first order
characteristics of the data in relation to the network.
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1.5 Contributions
The work presented in this thesis is a continuation of results from the summer and
fall of 2022 at the Center for Brains, Minds and Machines at McGovern Institute -
MIT with Akshay Rangamani, Tomer Galanti and Tomaso Poggio later published
in [1]. The results from this paper is included in section 4.1.

In addition to this, we investigate the correlation between the layer of inter-
mediate collapse and generalization. Further, we investigate the activations in
the pre- and post-collapse layers. We find that there is significant qualitative and
quantitative patters both before and after the collapse. In particular, we investi-
gate nonlinear projections through UMAP, results of clustering the data, as well
as PCA and the sparsity of the neurons. We also relate this to relevant theories
of DNNs internal functions.

The contributions in this thesis revolve around using these methods to analyze
a new domain of neural networks, particularly DNNs with the simplifying structure
producing Intermediate Neural Collapse.
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2.1 Notation and Problem Specification
This section first outlines the problem specification, inference- and learning method
before giving some relevant background on Deep Neural Networks. Note that this
section is an adaptation of the background given in [5] by the same author.

2.1.1 Multi-class classification problem

We consider the problem of multi-class classification. Intuitively, the problem
consists of mapping an unseen datapoint x from a probability distribution to its
correct class c based on other examples of (x, c) pairs from the same distribution.

Mathematically, we define an input data space X ✓ Rd and an output class
space C = {1, 2, ..., C},1 with each index representing a different class of the in
total C classes. Each datapoint z = (x, y) consists of features x 2 X and a
corresponding label y 2 C. These datapoints z are drawn from a probability
distribution Z = (X⇥Y ) 2 X⇥C, noting that X and Y commonly are dependent.
For sake of notation, the feature vectors (e.g. x) are assumed to be column vectors.
We assume the classes are balanced, so Prz=(x,y)⇠Z [y = c] = 1

C for all c 2 C.
The goal in the problem setup is to minimize the true risk by finding a hypoth-

esis function h 2 H ⇢ (X ! C) from a chosen, sufficiently expressive, hypothesis
space (i.e. function class) H such that the true risk is minimized, that is we want
to find h

⇤ such that
h
⇤ = argmin

h2H
Pr

z=(x,y)⇠Z
[h(x) 6= y]. (2.1)

Since we usually do not have access to the true distribution Z but instead a set
of samples {(xi, yi)}Mi=1. We use the common technique of assuming the samples
are sampled independently from the underlying distribution Z and partition the
data into two (differently sized) splits, the training split and the testing split of
the data. We then use only the training data to find and estimate of h⇤ and using
the testing data to give an estimate of the true risk. 2

Mathematically, we denote the training set

S = {(xi,c, c)}
N,C
i=1,c=1 (2.2)

ensuring that S is a balanced training set of N samples of each class c 2 C.

2.1.2 Empirical risk minimization and regularization

First, in order to ease optimization and to give the hypothesis functions the ability
to express a level of "uncertainty" in their result, we make our output space one-
hot encoded. This is done by redefining the output class space from C = {1, . . . , C}

to Y = RC . In this space, a sample (x,y) 2 (X ,Y) belongs to class c iff y = ec,
1
Note the change of notation C ! Y in sec. 2.1.2 for later sections.

2
As will be clear later in the text, we will additionally tune our hyperparameters in model

selection on this true risk estimate, which gives an inflated estimate of the accuracy of our final

chosen h. While this is highly relevant for accurately describing the true performance of the

model, our analysis evaluates the mechanics of the function and only place importance on the

performance in relation to the internal mechanics. For this reason, the use of the test-dataset is

mainly for choosing models based on hyperparameters, and not to report an unbiased empirical

risk estimate.
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the unit vector along dimension c in RC . Note then than the hypothesis space
H ⇢ (X ! Y) = (Rd

! RC). A common way to specify the estimated class from
the now vector-valuated h(x) = y is to use c = argmaxc02Chec0 , h(x)i, simply the
highest valuated class entry of the output vector.

Assuming a choice of an appropriate hypothesis space H, how does one choose
an appropriate metric for evaluating estimates h̃ of the optimal h⇤? A common
way is to employ Empirical Risk Minimization (ERM), minimizing the risk over
the training set S, by letting

h̃ = argmin
h2H

1

NC

X

(x,y)2S

`(h(x), y). (2.3)

where ` is some convex loss function giving a notion of how "wrong" an output is.
Common choices of ` in the multi-classification problem include the cross-

entropy loss [6] and the square loss [50]. In this project we mainly use the square
loss as this interfaces nicely with theory on the subject. In RC , the square loss is
defined as

`(ỹ,y) =
1

2
kỹ � yk22. (2.4)

In addition to finding the ERM model, it is common to have some prior distribution
over H which biases the choice of h̃ towards simpler functions.[6] For example, in
linear regression it is common to employ a prior that is a symmetric multivariate
normal distribution around the origin on all the parameters of the model.[51]
This intuitively amounts to biasing towards simpler functions, and mathematically
amouts to adding a penalizing regularization term R(h✓) =

1
2�k✓k

2
2 to the ERM

minimizer when finding h̃. Here, � is a parameter defining the variance of the
symmetric multivariate normal distribution, and ✓ are the parameters of h.

With the regularizer and loss function, we arrive at the common optimization
goal of minimizing the regularized empirical risk:

h̃ = argmin
h2H

1

NC

X

(x,y)2S

`(h(x), y) +R(h)

= argmin
h2H

(J(h;S) +R(h)) (2.5)

= argmin
h2H

J̃(h;S)

naming J̃ the total loss.

2.1.3 Deep Neural Networks

In this project, we use various versions of DNNs as our hypothesis space H. This
function class consists of multiple compositions of parametrized linear transfor-
mations with nonlinear transformations in between. This generally gives rise to a
very rich hypothesis space, depending on the specific composed transformations,
typically called the arcitechture.

In its simpest form, a deep neural network is a composition of linear transfor-
mations W = W

0
, . . . ,W

L with some nonlinear function � between them:

h(x) = W
L
�( . . . �(W 1

�(W 0x)) . . . ) (2.6)
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Note that the nonlinearity is necessary to ensure that the function h is not
linear in its entirety.

In our experiments, the following specifications of the DNN is used:
Bias term: A bias term is sometimes added to the linear transformations W l

so that W
lxl

! W
lxl + bl.

ReLU Activation: The nonlinearity � is an element-wise Rectified Linear
Unit (ReLU)[52], so �(x)i = max{0, xi}. Using this simple piecewise linear acti-
vation permits theoretical analysis such as [53] and [54].

Convolutional layer: Several of the architechtures employ convolutional lay-
ers, Convolutional Neural Networks (CNNs). These layers are a subset of of the
"fully connected" linear layers, with most elements in the matrix set to 0. In-
tuitively, this layer convolves the Cin-channel H ⇥ W -size image with a smaller
filter matrix of size (Cout, Cin, k, k) where k << H,W . This gives rise to local
interactions in "image space". Restricting models to these local interactions is a
way of implementing the intuitive bias that pixel values in an image relative to its
neighbors is more important than relative to all other pixels in the image.[55] 3

MaxPool: Some convolutional networks also employ max pooling. This layer
is simalar to the convulutional layer but is nonlinear in nature, has no trainable
parameters, and is used for downsampling the image. In essence, a max pooling
layer takes as input an image, looks at non-overlapping subregions of it, and ouputs
the maximum value of each subregion. In our implementations, these subregions
are 2⇥2 pixels, and the MaxPool mapping is thus (Cin, H,W ) ! (Cin, H/2,W/2).
4

Batch Normalization: In some cases, a Batch Normalization (BN) layer [56]
might be appended to the linear transformation, W lxl

! BN(W lxl). This is done
to reduce the internal covariate shift significantly speeding up and easing model
optimization [56]. This layer acts to return the distribution of activations to a
�-mean, �-covariance distribution in expectation over the dataset where � and �

are trainable parameters. The transformation can be written

BN(x) =
x� E [x]

p
Var[x] + ✏

⇤ � + � (2.7)

noting that all operations are element-wise (expectation, variance and multiplica-
tion included). 5 The small ✏ = 10�5 is added for stability.

Residual connections: In some architechture classes (see sec. 3), there are
residual connections or skip connections. In short, this residual connection adds
the values of the nodes in a previous layer to the current layer in the DNN function
composition. Mathematically, adding a skip connection from layer l to layer l+ 2

3
See https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html and code implemen-

tation for further details.
4
See https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html and code imple-

mentation for further details.
5
See https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html and code im-

plementation for further details.

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html
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transforms

xl+2 = �(W l+1xl+1) = �(W l+1
�(W lxl))

# (2.8)
xl+2 = xl + �(W l+1

�(W lxl))

where x
l is the activation values in layer l. The use of residual connections have

been shown to ease optimization, especially in very deep DNNs.[10]
Using these layers to construct different function spaces H in which to optimize

(regularized) ERM. While convolutional layers and max pooling layers are used
to imprint an explicit bias towards pixel-wise local interactions in image space,
the other amendments are used to ease optimization. The focus on successful
optimization is necessary because, as detailed in 2.2 and 3.2, these models can
become very large and contain many orders of magnitude more parameters than
to classical approaches.

In total, these DNNs will implement a function parametrized by the set of
variables ✓, h✓ 2 H, as detailed in the previous section. The selection of the
architecture determines the possible function space H, but ✓ has to be optimized.
In general, using sufficiently large models, the function space H is very rich and
can fit nearly any function to arbitrary precision [35].

2.1.4 Model training and evaluation

Due to the extremely complex function space H reperesentable by DNNs and the
highly nonlinear behavior of the function h✓ with respect to its parameters ✓, it
is in general not possible to find an explicit formula for a global optimum for any
interesting loss function. [6]

In order to minimize the regularized ERM (eq. 2.5), we employ variations
of Gradient Descent in the parameter space ✓, training the model with gradual
parameter updates.

As detailed in sec. 2.1.2 and eq. 2.4 we use an MSE loss function `. Note
results showing that the choice of MSE loss over cross-entropy loss empirically
does not significantly impact the emergence of neural collapse[57], but lends itself
easier to theoretical investigations.[50] We also use a symmetric multivariate nor-
mal distribution around the origin as a prior on all of the parameters ✓, giving
the regularization term R(h✓) = 1

2�k✓k
2
2 for some hyperparameter scalar � > 0

inversely proportional to the multivariate normal prior.
We use a time-descrete optimization procedure for the regularized ERM mini-

mization, as opposed to attempting continuous time GD. For each step this gives
an update rule [6]

✓
(t+1) = ✓

(t) + �r✓J̃(h✓(t) ;S) (2.9)

= (1� ��)✓(t) + �r✓J(h
(t)
✓ ;S) (2.10)

where J̃(h, S) = J(h, S) + R(h) as detailed in sec. 2.1.2. In this form it is visible
how � works to "decay" the weights in each step, giving it the colloquial name
weight decay.

For our experiments we use Stochastic Gradient Descent (SGD), using only a
batch of the data S at any given time to perform the optimization. In addition to
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making the optimization procedure tractable on modern hardware, this introduces
noise to the optimization procedure helping avoid local minima.[58] Further details
are given in sec. 3.3.

2.1.4.1 Model Evaluation

While we are optimizing the regularized ERM (eq. 2.5), the goal of the optimiza-
tion is to minimize the true risk (eq. 2.1). As an estimate of the true risk, we use
the classification accuracy on the held-out part of the sampled data, the test data,
and evaluate the model using this accuracy.

2.2 The Two Regimes

2.2.1 The classical regime and bias/variance tradeoff

Classical theory of statistical learning dictates that there is a tradeoff between
model expressivity and generalization. [6]

Model bias are assumptions in the learning algorithm, e.g. a restricted function
class H (linear models, feature selection, convolutional DNNs) or a regularizer
explicit (see sec. 2.1.2 and 2.1.4) or implicit ([53] [46]) in the optimizer. This gives
worse performance on the ERM, but is an important way to ensure generalization
by hopefully picking up the true signal in the data while regularizing away the
noise. With higher model complexity comes higher sensitivity to small fluctuations
in the training set, resulting in the model fitting random noise in the dataset
(overfitting). This, in theory, leads to worse generalization since the noise does
not generalize. Figure 2.2.1 illustrates the tradeoff and contribution to error in
this classical domain.

Model Complexity
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Figure 2.2.1: Classical picture of testing error due to bias and variance as a
function of model expressivity. Note the optimal model complexity point where
the balance between model expressivity (variance) and generalization (bias, model
priors) produces the lowest generalization error.

The underlying idea is that we want to fit the signal in the data and not the
noise. Restricting model complexity (low variance) and penalizing fitting what
is suspected to be "noise" (through regularizers/explicit bias) - while allowing



CHAPTER 2. THEORY 17

sufficient expressivity to fit the major patterns - has been the traditional way to
extract the signal in the data.

In the past years, with the advent of models with parameter numbers nearing
the trillions [25], is has become clear that this idea is insufficient in explaining the
performance of modern techniques.

2.2.2 The modern regime and overparametrization

2.2.2.1 Overparametrization of DNNs

Recent work in the closely related field of Machine Learning (ML), with a stronger
focus on prediction accuracy than mathematical explainability, have demonstrated
that the over-parametrized and highly expressive DNNs (when compared to the
data and traditional methods) are able to generalize well. [7] Investigation into
this phenomenon has been done in data-centric [59], optimization focused [16]
[60] [61], and simplified [62] [17] settings. Despite this theoretical focus on the
phenomenon, no cohesive theory exists for the empirical phenomenon.

Demonstrating the degree of their overparametrization, these models giving
state-of-the-art prediction accuracy can also fit the data with 100% label noise.[63]

Further developments in Vision Transformers (ViTs) [13] shows an interesting
similar trend. In short, the ViT shapes input format of the visual data allowing
usage of the attention mechanism intruduced in [30] for language models. The ViT
architecture disposes of the strong CNN bias towards local pixel-wise interactions
by allowing arbitrary, learnt, interactions between different parts of the image.
This property makes these models even more expressive than CNNs, and have
demonstrated higher accuracy than CNNs [64] when enough data is available to
learn these interactions [65].

2.2.2.2 Double descent and the terminal phase of training

Recent findings of the double descent in DNNs rigurously establish the break with
the classical regime.[8] In essence, there are two regimes of test error behavior as a
function of model complexity. In the previously described classical regime, there
is a bias-cariance tradeoff, but if model complexity (i.e. variance) is increased
further we eventually enter the modern regime. In the modern regime, bigger
is better. Higher model complexity will result in better generalization and test
accuracy. (See figure 2.2.2)
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Figure 2.2.2: Qualitative description of the break with the classical regime for
overparametrized function classes H as shown in [41]. The misclassification risk
attains a minimum in the classical regime, corresponding to figure 2.2.1, but then
decreases with increasing function class capacity in the modern regime after in-
terpolation. DNNs of modern scale typically occupy the modern regime in their
capacity.

The phenomenon is prevalent in both classical techniques (e.g. decision trees)
and DNNs [41] and was observed already in [66] and [67]. Despite this, double
descent is still not well understood in DNNs.

The double descent phenomenon appears not only in the expressiveness of
the function space H, but also for other regularization techniques such as explicit
regularizers and early stopping. [8] With this in mind, [45] coins the terminal phase
of training (TPT) as the training steps past the (badly generalizing) interpolation
threshold.

Describing the properties emergent during the double descent in DNNs (in the
TPT or outside) could prove greatly beneficial to our understanding of modern
machine learning, and the scaling of future machine learning models.

2.3 Neural Collapse
As a step in understanding the overparametrized regime, investigations have been
made into the emergent structures in models during the TPT.

The phenomenon of Neural Collapse (NC) originally described in [45] is an em-
pirical observation of the activations and weight matrix in the final fully connected
hidden layer of DNN classifiers. The NC structure arises when the model inter-
polates the data in the TPT continuing training with weight regularization. We
give the four core definitions of NC, provide some intuition for the phenomenon,
and describe some of the preliminairy theoretical explanation of the phenomenon.

2.3.1 Intuition of Neural Collapse

In order to provide intuition for the NC phenomenon, we first define the Simplex
ETF with notation as in [45], following the definitions from [68]:

Definition 1 Simplex ETF
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A simplex Equiangular Tight Frame (ETF) is a set of C vectors forming the
vertices of a C � 1 dimensional simplex around the origin. Interpreted at the
columns of a matrix M

⇤
2 RC⇥C, we have a standard simplex ETF

M
⇤ =

r
C

C � 1

✓
IC �

1

C
1C1C

>

◆
(2.11)

where IC is the C-dimensional identity matrix and 1C the C-element one-vector.
For our purposes we assume a general simplex ETF

M = ↵UM
⇤
2 Rd⇥C

, C  d 2 N (2.12)

where ↵ 2 R+ is a scaling factor and U 2 Rd⇥C is a partial orthogonal matrix
such that U>

U = IC.

Assuming the general simplex ETF allows for arbitrary scalings and rotations of
the simplex.

We now consider the properties of NC in the final hidden layer in order:
NC1 (Variability Collapse) states that the variance in the activations in

the final hidden layer go to zero for all datapoints in the same class. Essentially,
the activations become entirely determined by the class to which the datapoint
belong to, converging to the means of each class.

NC2 (Convergence to Simplex ETF) states that the class means (to which
the datapoints converge) for a particular structure, a (general) simplex ETF, when
centering by the global mean. Intuitively, the C global-mean centered class means
converge to form a structure with maximal angular separation and equal vector
magnitude. The points with maximal pairwise angular separation is the vertices
of the simplex, a generalization of the tetrahedron for higher dimensions. [68]

NC3 (Convergence to self-duality) states that the linear classifiers com-
prising the rows of the weight matrix converge to the class means, up to rescaling.
This also ensures the weights form a simplex ETF, with each classifying row vec-
tor corresponding to the relevant class mean, and symmetry between each of the
other class means for a single class mean.

NC4 (Simplification to NCC classifier) states that the classification rule
of the network corresponds perfectly to choosing the closest class mean in the last
hidden layer, simplifying classification.

The convergence to these NC1-4 properties imply a simple structure in the
final hidden layer activations. Through rigorous mathematical definitions we can
observe the convergence to these properties occur in experiments.

2.3.2 Definitions of Neural Collapse

Formally, we define the four NC conditions as follows:
Closely following the definitions in [45], for sample i of class c we define the

activations in the last hidden layer as hi,c 2 RP after the activation. The linear
classifier from the last hidden layer to the output layer consists of vectors wc0 2 RP

for each class c0 2 1, ..., C so the output activation for class c0 for sample i of class
c is hhi,c, wc0i. Then, using the global mean µG = 1

NC

P
i,c hi,c, we have relative

feature class-means µc = µ
0

c � µG = 1
N

P
i hi,c � µG.
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(a) Early epochs (b) Middle epochs (c) Late epochs

Figure 2.3.1: Progression of embedded representations showing NC in last hid-
den layer through training (right to left), adapted from [45]. The plot shows a
projection into 2D of the representations in the last hidden layer of a VGG13 [7] on
CIFAR10. The blue balls are sample representations, with class mean represented
by the ball-on-stick. The red ball-on-sticks are linear classifier vectors (normal-
ized). Different classes are represented with different color shadings. Green balls
represent the Simplex ETF structure, see eq. 1. Note the noisy representations
in early epochs, linear separability in middle epochs, and the convergence towards
NC in later epochs. Detailed description is omitted as this plot serves to form
intuition for the phenomenon, and is not part of the core results. Full animation
can be found at https://purl.stanford.edu/br193mh4244.

Neural collapse is then characterized by the following properties of convergence
over increasing number of training epochs. We have
(NC1) Within-class variabillity collapse:

⌃W =
1

NC

X

i,c

(hi,c � µc)(hi,c � µc)
T
! 0 (2.13)

(NC2) Convergence to simplex ETF:

hµc, µc0i

kµck2kµc0k2
!

⇢
1 c = c

0

�
1

C�1 c 6= c
0 , (2.14)

and
kµck2 � kµc0k2 ! 0 (2.15)

(NC3) Convergence to self-duality:
wc

kwck2
�

µc

kµck2
! 0 (2.16)

(NC4) Simplification to nearest class center classification:

argmax
c

hwc, hi ! argmin
c

kh� µck2 (2.17)

These four properties characterize the phenonenon of NC in the last hidden
layer before a linear classification layer. As most neural networks contain some
stochasticity in both initialization and training, the properties described are limits
towards which the measures of NC converge.

https://purl.stanford.edu/br193mh4244
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2.3.3 Metrics of Neural Collapse

In order to measure the convergence to the afformentioned NC1-4 properties, it is
often easier to look at related measures that better fit the dynamics of the system.
For example, it is easier to evaluate a single scalar aggregate than visualizing a
whole vector or matrix converging to 0.

The following measures are used in practice to identify NC:

NC1 is measured with
Tr[⌃†

B⌃W ]/C ! 0 (2.18)

where ⌃†

B is the Moore-Penrose inverse of the between-class-means covariance
matrix defined as

⌃B =
1

C

X

c

µcµ
T
c .

noting that µc = µ
0

c � µG is the globally centered class mean for class c. This
measure ensures normalization of the within-class covariance by the between-
class covariance, essentially scaling the original NC1-definition to the correct
scale of the total data variance. Using the trace of the resulting matrix also
ensures a scalar value, and the positive semi-definite nature of ⌃†

B⌃W ensures that
⌃†

B⌃W ! 0 , Tr[⌃†

B⌃W ]/C ! 0.

NC2 is measured with three measures for the simplex ETF property. Let
cosµ(c, c0) = hµc, µc0i/(kµck2kµc0k2) be the cosine angle between two (globally cen-
tered) class means. We then measure the average cosine angle between the different
relative class means, as well as the standard deviation:

Avg
c,c0 6=c

cosµ(c, c
0) +

1

C � 1
! 0 (2.19)

Std
c,c0 6=c

cosµ(c, c
0) ! 0. (2.20)

To determine equal length of the relative class means we measure

Stdc kµck

Avgc kµck
! 0. (2.21)

Together these conditions form necessary and sufficient conditions for convergence
of the class means to a simplex ETF. Note that equivalent measures could be used
for the rows for the weights as well, but are for brevity left out since NC3 ensures
equivalence between the two.

NC3 is measured by the convergence of the convergence of the weight matrix
to the dual of the class means, up to rescaling. As presented in [45], a way to
measure this is by observing the Frobenius norm of the normalized difference of
the matrices,

kfW>
� fMkF ! 0 (2.22)

where fW = W/kWkF and fM = M/kMkF letting M = [µ1 µ2 ... µC ] 2 R
d⇥C be

the matrix of centered class means in its columns.
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NC4 is the condition that the classifying rule goes to nearest-class-center clas-
sification, which can be observed by checking the mismatch between the NCC
classification and the network classification. We essentially observe the rate of
disagreement between the networks output argmaxchwc, hi and the NCC classifi-
cation argminc kh� µck for a given activation h in the last hidden layer.

By observing these measurements for the properties NC1-4, we can ascertain
the NC phenomenon in the last hidden layer.

2.3.4 Intermediate Layer Collapse

Establishing NC in the final hidden layer naturally leads to the question of whether
this phenomenon exists in other parts of the network as well. In recent work, [46]
describes NC4 and a version of NC1 in intermediate layers of simpler CNNs. In
addition to establishing the existence of NC1 and NC4 structures in intermediate
layers in the networks, it establishes a connection between the depth at which
the collapse happens and the difficulty of the dataset. In short, for more diffi-
cult datasets the collapse happens later in the network, corresponding to a more
complex function being implemented. Additionally, there is very little correlation
between the number of layers in the DNN and when the collapse happens. The
collapse is dataset-dependent, but network depth-independent. This phenomenon
is coined depth-regularization.

2.3.4.1 Extending measures to intermediate layers

Since NC2 and NC4 is defined exclusively in the activation space and easily com-
putable, these can be measured in the intermediate layers without significant mod-
ifications to the measurements.

NC3, which relates the activations to the weights, has to be modified to ac-
commodate the weights’ no longer being a rank-C matrix, but of rank possibly as
high as the output channels.

In order to conserve the intuition of NC3 in intermediate layers, we want to
establish the "convergence of the weight matrix to the dual of the class means".
Since the classification weights had an exact correspondence to each class, mapping
them to their respective outputs, this is simple in the final hidden layer. For
intermediate layers, however, we can establish this connection by:

1. The weight matrix is of rank C.

2. The C most significant (input) singular vectors of the weight matrix occupy
the same subspace as that spanned by the class means.

3. The to C singular vectors are balanced between the class means.

In order to measure this phenomenon we should observe that

1. The first C singular values are significantly separated from the rest.

2. The Principal Angle Between Subspaces (PABS) [69] between (a) the space
spanned by top C input singular vectors of the weight matrix and (b) the
class means is small.
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3. The first C singular vectors have approximately the same associated singular
value.

This definition generalizes the definition of NC3 in the final hidden layer to inter-
mediate layers.

Mathematically, for a fully connected linear layer multiplication W
lxl we com-

pute the SVD W
l = U⌃V T where ⌃ = diag[�1, �2, ..., ] is a diagonal matrix of all

the singular values of W l. We then calculate the relative singular values

�̃i =
�iP
i �i

(2.23)

and should observe that
�̃i =

⇢
1
C for i  C

0 for C < i
(2.24)

to uphold property 1 and 3.
For property 2, measuring the PABS, we use the first C rows of V T , V T

C , and
wish to find the overlap of span{VC} and span{M} where M = [µ1 µ2 ... µC ] 2
R

d⇥C again is the matrix of class mean column vectors stacked column-wise. The
cosine angle between these subspaces is given by the singular values of V T

C VM =
U

0⌃0
V

0T , ⌃0 = diag[�0

0, . . . , �
0

C ], so

AvCosPABS(VC ,M) =
1

C

CX

i=1

cos(✓i) (2.25)

=
1

C

CX

i=1

�
0

i. (2.26)

and for NC3 to hold we expect AvCosPABS(VC ,M) ! 1.
For the convolutional layers we treat each channel as an individual feature,

similar to a single neuron in the fully connected network. With this interpretation
we first flatten the features and filter weights along the dimensions which are not
the input channels, and then perform the same procedure on the resulting weight
and feature matrices.

With these tools in hand we may evaluate the NC conditions throughout the
layers of different DNNs.
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3.1 Datasets

We use several commonly used image classification datasets, all with 10 classes
each:

• MNIST [70]

• FashionMNIST [71]

• SVHN [72]

• CIFAR10 [73]

See Appendix A.2 for further details.

3.2 Neural Netork Models

The following DNN architechtures are used1:

MLP-L: A Multi-Layer Perceptrion (MLP) with L fully connected 1024-width
layers with Batch-Normalization and a ReLU activation function. See figure 3.2.1a

ConvNet-L: A convolutional network of L layers of 128 channels each and a
final fully connected layer for classification. The first two convolutions use a (2⇥2)
kernel and stepsize 2 to downsample the image. All convolutional layers use Batch
Normalization, and all but the first downsampling use a ReLU activation function.
See figure 3.2.1b and footnote 3 in sec. 2.1.3 for further details.

ResNetL: A L-layer ResNet [10] architecture employing convolutional layers,
residual connections, Max-Pool layers and Batch Normalization. Also contains a
final fully connected layer for classification.

1
Note that while these types of architechtures are commonly used, only ResNet-L is standard

notation for the corresponding network. MLP-L and ConvNet-L is adapted from [46].
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Input

FC (Out)

Width:
(32 x 32 x Ch)

Width: 1024

Input

FC + BN + ReLU

Fully Connected

10 x FC

Width: C

(a) MLP-10 arcitechture with a (32⇥32⇥
Ch) input as a class C classifier. Each ver-
tical bar represents a layer. The bottom
right labels describe the contents of each
layer. the majority of the network consists
of fully connected (FC) layers with Batch
Normalization and ReLU activation.

Input

Conv

FC (Out)

32 x 32 x Ch

16 x 16 x 128

8 x 8 x 128

1 x 1 x C

Input

Conv + BN

Conv + BN + ReLU

Fully Connected

19 x Conv

2

2

2

2

3

3

(b) ConvNet-20 arcitechture with a (32⇥
32⇥Ch) input as a class C classifier. Each
vertical bar represents a layer. The bottom
right labels describe the contents of each
layer, and the height, width and channel
depth is displayed below each layer. The
majority of the network consists of con-
volutional layers layers with Batch Nor-
malization and ReLU activation. Note the
small darker prisms within the larger lay-
ers signifying the kernel size of the follow-
ing layer.

Figure 3.2.1: Custom DNN Architectures

3.3 Training procedure

The models are trained following standard practice with Stochastic Gradient De-
scent (SGD), mini-batching, learning rate decay and weight decay.

The training is performed by running through the whole training dataset in
one epoch by splitting it into random mini-batches shuffled randomly for each
epoch, performing SGD. We use mini-batches of 128 at each optimization step.
Each experiment runs for 350 epochs, doing learning rate decay by a factor 0.1 at
epoch 100 and 200. We use a weight decay parameter � = 5 ·10�5 for the ResNets
and � = 2 · 10�3 for the MLPs and ConvNets.

As choosing the correct learning rate is crucial to achieving good performance,
we perform a hyperparameter search over the learning rate for each of the models
and datasets. We run training with 11 learning rates from 0.0001 to 0.2 (inclusive)
with approximately logarithmic spacing. We then choose the model with the best
accuracy on the test dataset, evaluating the model as specified in sec. 2.1.4.1, and
perform our analysis on that model.
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3.4 Clustering and dimensionality reduction meth-
ods

To visualize and cluster the datapoints we respectively utilize UMAP and, af-
ter experimenting with several methods2, agglomerative clustering with complete
linkage.

This section will not give a complete treatment of the two methods, but rather
give the core ideas of the methods that is relevant for this thesis. For a more
complete treatment, see the publications referenced in the two sections.

We additionally note that the cosine distance is given as

cosine-distance(u, v) = 1� SC(u, v) = 1�
u · v

kuk2kvk2
= 1� cos(✓) 2 [0, 2] (3.1)

where u and v are two vectors and ✓ is the angle between them.

3.4.1 Uniform Manifold Approximation and Projection -

UMAP

UMAP is a dimensionality reduction algorithm first introduced in [74], where it
demonstrated it’s effectiveness in visualizing high-dimensional datasets.

At its core, UMAP operates based preserving local neighbors. Specifically, it
constructs a high-dimensional graph representation of the data and then optimizes
a low-dimensional counterpart to be as structurally similar as possible. This is
achieved by building a "fuzzy simplicial complex", a weighted graph where edge
weights signify the probability that two points are connected. The connection
is determined by extending a radius from each data point and connecting points
when these radii overlap. The choice of this radius is determined locally based
on the distance to each point’s n’th nearest neighbor. The choice of how many
neighbors, n, to consider is a hyperparameter that when increased increases the
global accuracy of the transform, at the cost of higher runtime.

UMAP shares similarities with t-SNE, but is preferred in this thesis due to
the size of the datasets used. UMAP scales significantly better with the number
of datapoints used, and has arguably qualitatively better preserving projections
than t-SNE [74].

Readers are encouraged to explore the original publication [74] or interac-
tive library of visualizations and comparisons at https://pair-code.github.

io/understanding-umap/. The library for running UMAP has documentation
available at https://umap-learn.readthedocs.io/en/latest/.

In this thesis, all UMAP-clusterings are using the cosine-similarity metric.

2
Other attempted clustering methods include: K-means, affinity propagation, birch-

clustering, DBSCAN, OPTICS, spectral clustering, mean-shift clustering and gaussian mixture

models. A limited hyperparameter search was conducted, with a mixture of data-augmentations

such as using cosine similarity/euclidean distance metric, mean-centering (where applicable),

normalization to the 1-sphere and dimensionality reduction by PCA. Agglomerative clustering

was chosen based on ability to cluster the data in clusters of appropriate sizes, stability over

sets of hyperparameters, runtime, and most importantly the "accuracy" (based on class labels)

of the clusters.

https://pair-code.github.io/understanding-umap/
https://pair-code.github.io/understanding-umap/
https://umap-learn.readthedocs.io/en/latest/
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3.4.2 Agglomerative clustering

Agglomerative clustering is a bottom-up hierarchical clustering method. Through
experimentation, it was found that the "complete" linkage method gave the qual-
itatively best results, but the specific choice of agglomerative clustering method
gave only minor variations.

Intuitively, the method builds a tree-structure (a dendrogram) from the bottom-
up. It first considers all points as it’s own cluster. Then, at each step, the algo-
rithm combines the two clusters such that the distance between the two datapoints
furthest from each other in the two clusters is minimized (thus "complete" link-
age). This process repeats until either a set number of clusters is reached, or a
distance threshold is reached.

The specific algorithm used is the scikit-learn implementaion
sklearn.cluster.AgglomerativeClustering, described at https://scikit-learn.
org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.

html.
Move lots of stuff from 4.X here!!!

3.5 PCA and Sparsity Methods

3.5.1 PCA

In order to evaluate the principal components of the activations in each layer of
the network, we utilize the covariance matrix of the data in each layer l: ⌃l. This
1024⇥ 1024 matrix (for the MLP-10 we are analysing), now has singular values
squared of the singular values of the data. Dropping the l superscirpt for brevity,
we perform singular value decomposition on ⌃l and find

⌃ = V ⌃0
V

T (3.2)

where V is orthonormal containing the eigenvectors of ⌃ in its columns, and
⌃0 = diag[�2

0, �
2
1, . . . , �

2
1023] contains the singular values of ⌃ ordered such that

�
2
i � �

2
i+1. Since the columns of V are the ordered eigenvectors of ⌃, they are

the principal components of the data and �i their corresponding covariances along
that axis3 [75].

3.5.2 Sparsity by `1 norm

In order to evaluate the sparsity of a normed vector in a high-dimensional space,
we do not count the number of zero-entries in the vector but rather the alignment
with the natural basis formed by the neurons.

Observe that if an `2 normed vector x is perfectly aligned with the neuron-
basis, e.g. the first neuron so x = [1, 0, 0, . . . , 0], then it’s `1 norm is kxk1 = 1. If,
on the other hand, x is perfectly misaligned with the axes, so x = 1

p

d
[1, 1, . . . , 1],

we find that the `1 norm is
p
d where d is the dimensionality of the space. With

this intuition, it is natural to see how the `1 norm can be used as a measure for
(lack of) sparsity.

3
We actually only need to take the SVD of the data itself, since the right singular vectors

will correspond to the eigenvectors of ⌃ [75].

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
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Further analysis shows that in fact in high dimensions d we find that the
expected `1 norm of a vector x sampled from a uniform distribution on the `2 ball
is p

2d/⇡ with standard deviation
p

1� 3/⇡ [76]. (3.3)

With this we can evaluate the "corresponding dimensionality" of a vector by
assuming it was sampled randomly from the unit `2 sphere and taking the inverse
of eq 3.3. This tells us, for a large enough sample, what dimensionality of a space
aligned with the standard basis the vectors are sampled from.

In the relevant plots (figure 4.4.3) we also give the `1 norm of a random or-
thonormal matrix for comparison with the analytical calculation, and see that it
empirically holds true.
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(a) NC1 from [45] given in eq. 2.13 (b) NC1 - Trace measure following eq. 2.18

Figure 4.1.1: NC1 on MLP-10 trained with CIFAR10. Green line defines when
the NC1-condition is met (to a sufficient degree). Layer 0 corresponds to the input
data.

4.1 Intermediate Neural Collapse

We first demonstrate the existence of all four properties of NC in an MLP-10
trained on CIFAR10. We then extend our comparison to MNIST to compare with
the simpler dataset, before referencing our CIFAR10-results on a ConvNet-20 and
Resnet50. Additional results for all arcitechtures (MLP-10, Convnet-20, ResNets)
and datasets (MNIST, FashionMNIST, SVHN, CIFAR10) are shown in appendix
B.

All code is available at the link given in appendix A.1. The hyperparameters
resulting from the hyperparameter search are included. Accuracies of all reported
results are given graphically in B.

4.1.1 NC1-4 on MLP-10

Trained with CIFAR10 we find that the MLP-10 achieves the NC1-condition of
neural collapse around layer 5. This is shown in figure 4.1.1, and defined as
the earliest layer when the relative within-class trace (detailed in eq. 2.18) is
below a threshold, Tr[⌃B/⌃T ] < 0.2. Note that while the total trace varies in a
parabolic-like curve, the representations steadily have an increasing proportion of
between-class variance compared to within class variance.

The second condition, NC2, is also met. As seen in figure 4.1.2, the mean and
standard deviation measured by eqs. 2.19, 2.20, and 2.21 converges to a lower
value through training and becomes more pronounced particularly through the
deeper layers after the point of collapse at layer 5.
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(a) AvCosPABS defined by eq. 2.25 (b) Weight singular-values, as in eq. 2.23

Figure 4.1.3: NC3 on MLP-10 trained with CIFAR10. Green line defines when
the NC1-condition is met (to a sufficient degree). Layer 0 corresponds to the weight
matrix acting on the input data. Convergence to 1 in AcCosPABS combined with
convergence to 1

C = 1
10 for the first 10 singular values establish convergence to

self-duality, by eqs. 2.25 and 2.24.

Figure 4.1.2: NC2 on MLP-10 trained with CIFAR10. Green line defines when
the NC1-condition is met (to a sufficient degree). Layer 0 corresponds to the
input data. Convergence to 0 of all these measures demonstrates convergence to
a Simplex ETF 1 by eqs. 2.19, 2.20, and 2.21.

Further, we also find NC3, the convergence to self-duality in the weights. As
outlined in sec. 2.3.4, the convergence to overlapping subspaces of weights and
class means combined with a rank C weight matrix is sufficient and necessary to
establish NC3.

Lastly we also find that the NCC classifier achieves perfect accuracy on the
train-set and performance on the test comparable to the full network at layer 5.
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By figure 4.1.4, it is clear that after training the network the classification rule
simplifies significantly. This is in correspondence with similar results shown in
[46]. Note also that the comparatively poor performance on the test-set is due to
the poor performance of MLPs on CIFAR10, and the test-accuracy of the NCC
classifier is the same as the test-accuracy of the full network.

Figure 4.1.4: NC4 on MLP-10 trained with CIFAR10. Green line defines when
the NC1-condition is met (to a sufficient degree). Layer 0 corresponds to the
input data. Convergence to a train-accuracy of 1 demonstrates NC4, that the
classification rule is equivalent to the NCC classifier as per eq. 2.17.

With this we have established the convergence towards and occurence of NC1-4
in the intermediate layers of MLP-10 trained on CIFAR10. See the appendix (sec.
B) for results on other datasets.

4.1.2 Comparison across datasets and minimal depth

As established in [46], there is a bias towards minimal depth in DNNs and simpler
training-data give rise to an earlier collapse in NC1 and NC4. We are now able to
demonstrate that this effect also occurs in NC3, but apparently less perfectly in
NC2.

Comparing the collapse and convergence as defined by the NC1-metric, we
observe the collapse from around layer 3 when an MLP-10 is trained on MNIST
(a considerably simpler dataset than CIFAR10 [71]). The depth regularization is
seen when comparing figure 4.1.5 and 4.1.1, with collapse at layer 5 in MLP-10 on
CIFAR10. This is as observed and predicted by [46].

In figure 4.1.6, measuring NC2, we do not immediately observe a convergence
towards the Simplex ETF. Looking at the magnitude of the axes, however, one
can observe that the magnitudes of the measures are as small as in figure 4.1.2
for CIFAR10. The convergence is not stronger than in CIFAR10, but happens
strongly in later layers (layer 8).
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(a) NC1 from [45] given in eq. 2.13 (b) NC1 - Trace measure following eq. 2.18

Figure 4.1.5: NC1 on MLP-10 trained with MNIST. Green line defines when the
NC1-condition is met (to a sufficient degree). Layer 0 corresponds to the input
data.

Figure 4.1.6: NC2 on MLP-10 trained with MNIST. Green line defines when
the NC1-condition is met (to a sufficient degree). Layer 0 corresponds to the
input data. Convergence to 0 of all these measures demonstrates convergence to
a Simplex ETF 1 by eqs. 2.19, 2.20, and 2.21.

NC3, on the other hand, happens both earlier (around layer 2) and stronger,
demonstrated by the extremely low relative singular values in layers 4-8 after the
first 10 singular values. This is shown in figure 4.1.7. Note also the convergence
to a rank 9 = C � 1 matrix, instead of a rank C matrix.

NC4 is left out for brevity, and shown in appendix B.
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(a) AvCosPABS defined by eq. 2.25 (b) Weight singular-values, as in eq. 2.23

Figure 4.1.7: NC3 on MLP-10 trained with MNIST. Green line defines when the
NC1-condition is met (to a sufficient degree). Layer 0 corresponds to the weight
matrix acting on the input data. Convergence to 1 in AcCosPABS combined with
convergence to 1

C = 1
10 for the first 10 singular values establish convergence to

self-duality, by eqs. 2.25 and 2.24.

4.1.3 Extension to ConvNet and Resnet

We further demonstrate the extension of these properties to ConvNet-20 and
Resnet50 with the CIFAR10 dataset.

For this we reference the plots given in the appendix, section B, specifically
figure B.0.1 and B.0.2.1

These demonstrate the NC1-4 phenomenon, albeit not as perfectly as in the
case for MLP-10. Note particularly the somewhat weaker NC3-condition. The
observed "zig-zag" in the Resnet50 measurements is due to the block-wise nature
of the Resnet architecture [10], and should not be considered an artifact of the
NC convergence.

4.2 Intermediate collapse and generalization
By observing the correspondence between the layer of collapse and the generaliza-
tion of the trained network we aim to determine whether INC is correlated with
the DNNs generalizing ability.

To do this we train MLP-10, ConvNet-20 and ResNet50 on CIFAR10
using the same weight-decay and batch-size as previously. We vary the other
hyperparameters, specifically the learning-rate and weight-decay, and observe the
correspondence between the generalization (test-accuracy) and the layer of collapse
of the networks.

The resulting layers of collapse and test-errors are presented in figure 4.2.1
1
We do this as to easily provide a way of comparison between the models, and for brevity in

the main text.
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(with larger versions in appendix C.1). These plots demonstrate patterns between
the layer of collapse and the generalization-ability of the network.

Firstly, all the networks with the hyperparameters optimized for generalization
show a similar layer of collapse, which is somewhere in the middle of the network.

Secondly, for several runs with the same hyperparameters there is a general
trend to end up with not just the same generalization-ability (similar along the y-
axis), but also a similar layer of collapse (similar along the x-axis). This hints at the
networks converging to the same set of optima, under some set of transformations,
that have a common layer of collapse.

Thirdly, there are networks with similar but slightly worse generalization per-
formance that collapse both at a deeper and a shallower layer than the optimum.

Finally, there are several networks that show collapse at a single layer, but
they can have highly varying abilities to generalize.

Note that all of these points are especially clear on the relatively simpler MLP,
and somewhat more noisy on the ConvNet.

4.3 Clustering of activations in intermediate layers
For this section the analysis is performed on a single network that has converged
to Intermediate Neural Collapse. The DNN is a MLP-10 (see fig. 3.2.1a) trained
on the CIFAR10 dataset [73]. With learning rate 0.025, lr-decay factor of 0.2 four
times in the total 500 epochs it was trained. The batch size used is 128, weight-
decay is 0.002 and no warmup period is used. This is the same learning-rate and
lr-decay as the top best performing network of the MLP-10s, but with 200 epochs
of additional training with a further decayed learning rate in order to reduce noise.

The network shows collapse in layer 4, and has a training-accuracy of 99.82%
and a test-accuracy of 59.7%. This is in line with the top performing networks in
the previous analysis.

4.3.1 UMAP for 2D-visualization of neighborhoods

As described in section 3.4.1, we perform a UMAP clustering on the activations
both in the input and on the hidden layers of the DNN. The clustering is performed
with a cosine-distance metric, considering 20 neighbors. The following figure 4.3.1
is a sample of the results from this clustering, with each of the datapoints colored
according to their true class.

From the figure we observe that (a) visually the classes separate more strongly
from each layer to the next, and (b) in the clustering before layer 4 (figure 4.3.1e)
the classes are fully separated.

Larger figures are given in appendix C.2.1 for easier visual inspection.

4.3.2 Agglomerative clustering in cosine-space

Clustering the datapoints was done with agglomerative clustering using the cosine-
angle between points as distace metric. 2

2
The hyperparameters of agglomerative clustering were found with qualitative empirical anal-

ysis, but was stable in terms of the number of clusters for a range of hyperparameters.
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(a) Intermediate NC for MLP on CIFAR10
as a function of learning rate and weight
decay.

(b) Intermediate NC for Convnet on CI-
FAR10 as a function of learning rate and
weight decay.

Figure 4.2.1: Layer of Intermediate Neural Collapse on CIFAR10 in two net-
works. This demonstrates the qualitatively different behaviors of the networks
based on the layer of collapse for different hyperparameters. We ran 3 or 6 sam-
ples for each set of hyperparameters. Note that this has been cropped to exclude
certain networks that all failed to converge to interpolating the dataset. For scaled
up versons of these plots and further data on Resnet50, see C.1.
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(a) UMAP clustering before layer 0 (b) UMAP clustering before layer 1

(c) UMAP clustering before layer 2 (d) UMAP clustering before layer 3

(e) UMAP clustering before layer 4 (f) UMAP clustering before layer 5

Figure 4.3.1: Plots of actications after nonlinear projection with UMAP
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Layer Avg. #datapoints per cluster Total Accuracy Excluded datapoints
0 11 45% 1997
1 4.4 69% 12791
2 4.2 77% 14861
3 5.0 88% 8062
4 18 99.2% 130
5 543 99.9% 6

Table 4.3.1: Statistics on the clusterings before each layer. The total number of
datapoints is 50,000.

The figures in this section are based on a clustering of the datapoints in
activation-space with agglomerative clustering. The distance-metric used is the
cosine-similarity, requiring complete linkage and a cosine angle threshold of 0.7.
After this clustering, each cluster of 3 or more datapoints is given a label equal
to the most prevalent class in that cluster. The clusters are then arranged based
on their given label, and sorted within each label such that the cluster with the
highest number of datapoints is listed first. The resulting confusion matrix from
clusters to the element’s true labels is plotted. See figure 4.3.2.

In interpreting this figure, it is useful to imagine how an "ideal" clustering
would look: If all clusters perfectly only contain a slingle class, one would expect
a perfectly diagonal set of dark areas, as each row (cluster) would contain only 0s
in each other column (class) than the majority class.

Notably, a perfectly random distribution of the data would still show some
diagonal structure as the clusters are sorted after the most prevalent class in that
cluster.

It is clear from the figure that there is some diagonal structure beyond the
purely random, and that using the same hyperparameters gives a stronger class-
based clustering for each applied layer in the network, that is: The accuracy
increases with the depth of the network. Still, even before the collapse right
before layer 4 (figure 4.3.2e), there is significant noise in the clusters.

In order to determine how well the data is clustered, we report the average
number of datapoints per cluster and the accuracy of the clustering given labelling
as specified. This can be read in table 4.3.1. We observe that deeper in the
network, even before the collapse, there is a clear increase in the accuracy of the
clusterings. Notably, we do not observe significant growth in average cluster-size,
but (at least from layer 2 to 3) see a significant drop in "degenerate clusters" with
only 1 or 2 datapoints in them: A drop from 14861 datapoints (29.7%) to 8062
datapoints (16.1%).

Appendix C.2 includes plots of the induced cluster labels on the UMAP clus-
tering, as well as plots highlighting the disagreement between the induced labels
and the true labels.

We also include the same plots using an euclidean distance metric in appendix
C.2.2.
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(a) Layer 0 (b) Layer 1

(c) Layer 2 (d) Layer 3

(e) Layer 4 (f) Layer 5

Figure 4.3.2: Plots of clusters from agglomerative clustering. Each row rep-
resents a cluster, and each column the class of the datapoints contained in that
cluster. Each cluster (row) is normalized so it sums to 1, and as such the darker
fields are the most prevalent in that cluster (row).
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4.3.3 Lack of Hierarchichal Clustering

In order to evaluate whether the network performs hierarchical clustering, we can
check whether the clusters in a shallow layer "stay together". That is, to what
degree is a cluster in layer i a perfect subset of a cluster in layer i+ 1?

Before running the analysis, it is worth noting that we from table 4.3.1 see that
the number of clusters from layer 1 to 2 is non-decreasing, but the classification-
accuracy is slightly increasing. This gives us a strong prior that the clustering
should not be hierarchical.

We report the % of datapoints in cluster a in layer l that is contained in the
cluster in layer l+1 with the most datapoints from cluster a, and take the weighted
average by number of datapoints in each cluster in layer l. That is, for each layer
l we report

1

NC

X

a2Al

max
a02Al+1

|a \ a
0
| (4.1)

where A
l is the set of clusters in layer l, NC is the total number of datapoints.

The results are given in table 4.3.2.
We find that the rate at which a cluster stays connected from one layer is

significanty lower than 100%.

Layer Hierarchical accuracy
0! 1 19%
1! 2 48%
2! 3 50%
3! 4 81%
4! 5 99.8%

Table 4.3.2: Accuracy of assuming hierarchical clusterings through each layer.

4.4 PCA and sparsity measurements
In order to evaluate the sparsity of the activations, we evaluate (a) whether the
main principal components of the data span the full space (b) whether there are
significantly sparse neurons, (c) whether the main singular vectors are aligned with
the neuron-axes, and as such give a set of "most important neurons".

We evaluate this as described in section 3.5

4.4.1 PCA of activations

We plot the principal components of the activations in each layer in figure 4.4.1.
From this figure, it is clear that pre-collapse, layer 1-3, there are no significantly
different regimes. Specifically, the ordered singular values are largely continuous
within each layer, and they are qualitatively similar between the layers. We do,
however, observe a clear shift in layer 4 and deeper in the network. It is clear
that after the collapse, the data occupies a significantly smaller space than the
full 1024-dimensional space. This fits well with the observed neural collapse from
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layer 4 and deeper, with the already described ever decreasing significance within-
class variance (the tail of the singular values) compared to the major componens
of between-class-mean-variance. (See section 4.1.)

4.4.2 Singular Vector Sparsity

Previous work [77] has shown that the singular vectors of the data contains im-
portant information on the characteristics of the network. In the theory on su-
perposition [48] this is also highlighted that in DNNs that utilize neuron-wise
operations have a bias towards aligning features along the principal axes of the
activation space. Specifically for our networks, we could expect certain features of
the activations to align with the neurons due to the neuron-wise ReLU activation
function.

To this end, we evaluate the sparsity of the principal components of the data.
We do this as described in section 3.5.2. We find the `1 norm of the singular
vectors and compare to the expected norm for a random orthonormal matrix
and the theoretical value of a random vector, and give the `1 norm of the vector
in addition to the expected dimensionality that the vector is sampled from as
described in section 3.5.2.

From figure 4.4.2 it is clear that pre-collapse the principal components of the
data do not align to the neuron-basis. We make a few other observations as well.
From the plots in the first three layers, the most significant principal component
has a higher `1 norm than what is expected from a random 1024-dimensional
vector. This corresponds to the global mean of the data being biased away from
the neuron-axes and towards 1

p
1024

[1, . . . , 1].
Secondly, the the principal components except the (last and least significant

ones) all have a corresponding dimensionality ⇠ 1024, showing that there is no
bias to align the most significant directions with the neuron-basis.

Thirdly, as a contrast to this, we see from figure 4.4.2d, 4.4.2e and 4.4.2f that
there are several subspaces that are preferred by different magnitudes of singular
vectors. As an example, observe that in layer 6 (figure 4.4.2e) there is a plateau
from principal component 150 to 850. This plateau contains singular vectors with
`1 norms that correspond to a randomly picked vector in a up to 700-dimensional
space (read from the right y-axis). In the same plot, the region from 850 to 1000
contains vectors with norms picked from a up to 120-dimensional space. This
shows that in the post-collapse regime, there is some bias towards aligning with
the neuron-axes.

Plots for all layers and aligned with plots of the magnitudes of the principal
components are given in appendix C.2 figure C.2.7 and C.2.7.

4.4.3 Sparsity of neuron activations

We also find the sparsity of each of the neurons. That is, how often does the
neuron have a 0-activation, having been clamped to 0 by the preceding ReLU (see
sec. 2.1.3)? To this end, we feed that data through the network, and for each
neuron j in layer l observe the sparsity ratio s

l
i

s
l
j =

1

NC

X

i,c

[[(hl
i,c)j == 0]] (4.2)
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(a) Singular values of covariance matrix.

(b) 1 - (Cumulative sum of singular values), labelling the neuron at which it passes
0.01.

Figure 4.4.1: Plots of ordered singular values of the covariance matrix of the
data at different layers.
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(a) Layer 1 (b) Layer 2 (c) Layer 3

(d) Layer 4 (e) Layer 6 (f) Layer 10

Figure 4.4.2: `1 norm of ordered singular vectors of the

where C, N , c, i as before are the number of classes, the number of datapoints per
class, class index, datapoint index, and (hl

i,c)j is the j-th element of the activation-
vector of datapoint i from class c in layer l. We order the neurons by sparsity.

From figure 4.4.3 we observe that pre-collapse there is a simple structure in the
sparsity of the neurons: They are all distributed continuously and tightly around
approximately 0.6 with no neurons either extremely sparse or without sparsity.

For comparison, the sparsity of select later layers is also provided, demonstrat-
ing that in the collapsed region of the DNN we find patters of extreme sparsity
and extreme non-sparsity.

We also investigate the mean and standard deviation of all the non-zero acti-
vations of each neuron, to determine their importance.

From figure 4.4.4 we observe that the layers pre-collapse once again have a
approximately continuous distribution. There is no clear structure of qualitatively
different regimes, but interestingly it seems that the activations shift downwards
by about half an order of magnitude per layer.

In this figure there is again a clear contrast between the pre-collapse layers
and the post-collapse layers, where the post-collapse layers show clear regions of
high-activations when sorted by sparsity. The regions of different regimes in the
mean and std correspond to the regimes in the sparsity of the neurons (figure
4.4.3). Further study of these post-collapse phenomenons is left as future work.

Further plots for all layers are provided in the appendix in figures C.2.9 and
C.2.10.



46 CHAPTER 4. RESULTS

(a) Sparsity in layer 1 (b) Sparsity in layer 2 (c) Sparsity in layer 3

(d) Sparsity in layer 4 (e) Sparsity in layer 6 (f) Sparsity in layer 10

Figure 4.4.3: Sparsity of Principal Components of the data, measured by the `1

norm of the vectors and their corresponding dimensionality.
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(a) Layer 1 (b) Layer 2 (c) Layer 3

(d) Layer 4 (e) Layer 6 (f) Layer 10

Figure 4.4.4: Means of all non-zero activations in select layers. Blue dots rep-
resent the mean, and the green bars for each dot represents a two-sided standard
deviation of the non-zero activation distribution for that neuron. Note that the
green line crossing the y-axis does not imply that there are negative datapoints,
but rather that the value of the standard deviation is larger than the mean. This
implies a heavy (positive) tail distribution.
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5.1 Implications of Intermediate Neural Collapse
We have demonstrated the convergence to NC1-4 through MLPs, Resnets and
Convnets. Still, the convergence is not perfect and deserves additional analysis.

5.1.1 Imperfect convergence

Firstly, as observed in figure 4.1.7, the convergence towards the rank C matrix is
not perfect in the simplest example on the simplest model. In fact, it seems like
the convergence is happening towards a rank C � 1 = 9 matrix, especially in the
intermediate layers.

Additionally, this is correlated with an imperfect convergence towards NC2, as
described in section 4.1.2 and shown in figure 4.1.7.

A similar phenomenon might be present in the ConvNet on MNIST from figure
B.0.3 and B.0.4, with higher NC2 discrepancies a matrix rank even lower than
C � 1.

This raises several questions: Is a rank-C subspace the correct subspace for
NC3? Does the intermediate representations in fact converge towards a Simplex
ETF for the deepest networks on the easiest datasets, or just something quite
similar? Do the effects of regularization in intermediate layers and the final layer
result in different emergent structures?

We investigate the last question in the following sections, but leave the rest as
future work.

5.1.2 Correlations of NC with generalization abilities

There seems to be a correlation between generalization abilities (as measured by
test-accuracy) and NC properties. This is based on qualitative observations during
hyperparameter-tuning. Specifically, it was observed, that there was a correlation
between the final fractions of a percentage point of test-accuracy and the strength
of the intermediate layer neural collapse. Intermediate layer NC seemed to occur
by far the strongest in the most generalizing final models.

This observation motivates the work in section 5.2.

5.1.3 Extensions to more complex models

As demonstrated in appendix B, the convergence often stronger in the simpler
models such as the MLP compared with the ConvNet and especially the Resnet.
Still, the phenomenon exists.

For larger architectures with qualitatively different methods, e.g. the Trans-
former [30], this structure might be even less apparent or even not emerge at
all.

The regime of state-of-the-art text analyzing models [78] might be qualitatively
different from the regime of our experiments. Given the immense size of the
training data of these models, it is not expected for them to be able to interpolate
the training data. As our models interpolate the data with relative ease, the
fundamental regime might be different from the largest, most useful, models in
use today. It might still be the case that similar structures emerge in a somewhat
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more limited form, and that the lens of NC analysis could give a way to analyze
these models’ behavior.

5.2 Intermediate Neural Collapse and Test Accu-
racy

From section 4.2 we observed that there is a correspondence between the layer
of collapse and the test-accuracy of the DNNs. For clarity and simplicity, this
analysis will focus on the results from the MLP-10. It is noted that the results
seem to qualitatively extend to the ConvNet-20 and ResNet50, though with
increasingly noisy results.

From the four observations listed in the results, there are interesting conclu-
sions to be drawn.

5.2.1 Layer of collapse and generalization

Previous work has established generalization bounds from the activations and layer
of collapse to the generalizing abilities of the network.[46]

The results presented in this thesis show that collapsing at an earlier layer than
the final layer is a clear indicator of improved perfomance, but there comes a satu-
ration point after which earlier collapse is correlated with worsening generalization
performance of the classifier.

This demonstrates, as the author notes in [46], that the bound is not tight.
It also demonstrated that there is "no free lunch" in intermediate layer collapse;
enforcing collapse at a shallow point in the network will correlate with improved
performance up to a point, after which performance reaches an optimum and will
worsen if shallow collapse enforced further.

5.2.2 Implications for circuts

The pattern observed in figure 4.2.1 displays quantitative qualities of optimiz-
ing with different hyperparameters and the different generalizing abilities of the
resulting networks.

It is clear that with different hyperparameters the DNNs converge to different
qualitative funciton implementations. Specifically, the process by which the DNN
performs classification employs a different amount of functional pre-collapse layers
for different hyperparameters. Consequently, this requires there to be a different
set of circuts [19] implemented that performs the classification.

With this view, these similar networks with slight differences might provide
a baseline for understanding how weight-decay influences the formation and op-
timization of circuts. For example, what is the ultimate difference between the
circuts of (a) the networks with lr= 0.05, wd= 0.0005 that collapse in layer 6, and
(b) the networks with lr= 0.02, wd= 0.002 that collapse in layer 5? Why does the
latter generalize slightly better? Are there circuts in the former that are better
pruned in the latter, and why specifically should they not be pruned further as
demonstrated by the even worse generalization of (c) the networks with lr= 0.005,
wd= 0.01 that collapse in layer 6?
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Further attention is given to the circuts-analysis in section 1.3.2. We also
explore another approach to how neural networks approach C-class clustering in
the next section.

5.3 Hierarchical clusterings in DNNs showing in-
termediate NC

As an analouge to the C-class clustering in intermediate NC, one hypothesis for
how neural networks perform classification is by iterative clustering. The main
message of the following section that this is empirically not how a specific sample
of a network showing intermediate NC implements the final C-class clustering.

We consider the network described in section 4.3, a single MLP-10 showing
neural collapse in the activations before layer 4. From the UMAP-plots (figure
4.3.1) it is visually clear that the classes become increasingly separated as they
pass through the layers, even before the collapse in figure 4.3.1e. Still, as shown in
section 4.3.2 (with additional treatment in appendix C.2), traditional clustering
does not capture the structure that the DNN is performing computations on.
Furthermore, as described in table 4.3.2 the clusters are clearly non-hierarchical
which further suggest that the analyzed MLP does indeed not work in clusterings.

5.4 PCA and Sparsity analysis
In addition to the traditional method of PCA, sparsity has been a recurring and
important topic in the analysis of DNNs (see e.g. [79] and [80]). We have first
analyzed the space of the activations by their magnitude and direction of the
principal components. Note that the activations before layer 0 is excluded in
this analysis, as it is the raw input-data itself and does not accurately reflect the
behavior of the DNN since it has not yet been transformed by any of the DNN
layers.

Pre-collapse in activations before layers 1-3, as described in 4.4.1, we observe
that the principal components of the space are continuous and without different
regimes. In short, there is no preferred subspace and (approximately) the full 1024-
dimensional space is utilized symmetrically. This is further established in section
4.4. It is clear from the sparsity of the singular vectors that they are generally not
aligned with the neuron-basis but rather span most of the 1024-dimensional space
with no preferred direction.

Post-collapse, however, we do observe interesting patterns in these metrics.
As described in section 4.4.3, the post-collapse layers exhibit subsets of the prin-
cipal components of the data with similar magnitude that spans a subspace of
the 1024-dimensions. These subspaces do generally line up with the neuron-axes.
This demonstrates, as alluded to in [48], that networks with a privileged basis can
show a bias towards subspaces aligned with this basis. In our case, the privileged
basis is established by the nonlinearity, the neuron-wise ReLU, and as such the
subspaces align with this basis.

We also investigate the sparsity of the neurons themselves, and find the same
pattern as in the PCA of the activations:
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Pre-collapse, there is a continuum of sparsity in each neuron. From figure
4.4.3 and 4.4.4 there is no clear pattern established when ordering the neurons by
sparsity in the pre-collapse layers. The sparsity of the neurons form a continuous
distribution with no neurons on the extremes (figure 4.4.3a-c), and there is no
apparent pattern in the mean or standard deviation of the activations (figure
4.4.4).

Post-collapse is again a contrast to these observations, where there are very
clear regimes in the sparsity and mean activation of the neurons. We find that
certain neurons are completely "regularized away" and exhibit 100% sparsity, for
example the last few hundred neurons in layer 4 and 6 in figure 4.4.3. Additionally,
the activations of the neurons with 0% sparsity (the first few hundred in layer
4 and 6) generally have a much lower activation than the sparse neurons, as
shown in figure 4.4.4. We already know from section 5.1 that the layers after the
intermediate layer collapse essentially do not perform any additional computation.
As such, the observations in the post-collapse layers are clearly an artifact of the
optimization procedure rather than being determined by the classification task
and dataset. This naturally leads to the idea of pruning the full network down
to something that does not utilize the final layers, or at leas only utilized the
effective identity transformations that are needed to feed through the layers before
classification.

5.5 Pruning and relation to the Lottery Ticket Hy-
pothesis

5.5.1 Layer-wise Pruning

A common technique to decrease the resources needed to evaluate DNNs at in-
ference time is pruning. [80] The pruning technique commonly includes setting
weights to 0 and sometimes (as a consequence or explicitly) dropping out entire
neurons. It is less common do drop entire layers of computation, effectively re-
ducing the depth of the network. Our analysis, as can also be concluded from
the published paper [1], suggests that pruning by dropping entire layers can be an
efficient way of optimizing DNNs for resource use at inference time.

It is important to note that with the intruduction of residual (skip-) connections
[10], pruning a network could theoretically lead to entire layers being pruned out.
The residual connection provides an identity transformation as a backbone for the
whole network, and by setting all weights or neurons to 0 in a block you effectively
get an identity transform from one block to the next.

Still, while the history of DNN pruning is long and extensive, the approach of
pruning entire layers seems to have attracted only a minority of the attention of
other methods [81] [82]. Generally, "layer-collapse" (pruning away all neurons in
a layer) has been a pitfall of many methods pruning too aggressively. One rea-
son for layer-collapse generally not being preferred can be that the layer-pruning
phenomenon is specific to networks that have been trained to Intermediate Neu-
ral Collapse, however previous work has observed that pruning usually is more
aggressive in the later layers of the network [83]. This suggests that already for
networks that are not trained entirely to INC, it is possible to discard large parts



54 CHAPTER 5. DISCUSSION

and possibly all of later layers.

5.5.2 Hints against The Lottery Ticket Hypothesis

The Lottery Ticket Hypothesis as posed by [20] and described in 1.3.1 is essentially
a statement about how an untrained network can be pruned to its winning "lottery
ticket" already before training. Pruning procedures might be more aggressive in
the later layers, but generally do not include pruning away entire layers to avoid
"layer-collapse". As such, the observations in sections 5.3 and 5.4 where it is clear
the network utilizes the full width and expressivity of the network, might possibly
not be well described by the pruned "lottery ticket network". Using a full-depth
neuron-subset of the network, as is the result in most pruning-algorithms, might
not be compatible with full utilization of the first e.g. 3 layers of the network
before complete Neural Collapse in e.g. layer 4 onwards.

Further study is required to determine whether the pruned version of the net-
work analyzed in section 4.3 is similar to other pruned networks. Recent work
has suggested that most if not all networks trained on CIFAR-10 converge to the
same global basin and can be brought in alignment with a reference model through
permutations [84]. In our case, it is not obvious whether this alignment can be
achieved due to the qualitative layer-wise properties of the INC-network.

Specifically, relating to the LTH-pruned network, is the network produced by
evaluating the LTH on the pre-trained MLP equivalent to the pruned network after
training to INC? The author weakly conjectures that these might be different due
to the likely benefit of utilizing the full depth of the network when finding the
optimal "lottery-ticket". It is well known that several computational aspects of
DNNs increase exponentially with depth but not with width [85]. Consequently,
there is likely a similar relationship from the depth to the different "lottery-tickets"
implemented by a network, and as such the method presented in LTH would likely
find one of the tickets spanning the full network depth.

In the case where these pruned networks have a different architecture, it is
reasonable to ask whether the implemented function is qualitatively as well as
functionally different. If they are different, this would suggest that either (a) the
DNN found by optimizing until INC, as in this thesis, does not correspond to the
networks typically implemented by more standard training procedures, or (b) the
network implemented by pruning according to LTH does not correspond to the
DNNs trained by standard procedures. Still, these are empirical questions and left
as future work.

5.6 Implications for Superposition and Represen-
tation Learning

Finally, considering only the pre-collapse layers, an interesting observation dis-
cussed in section 5.4 is that there is an apparent symmetry in the linear space of
observations. There is no preferred directions, neither visible by PCA, the sparsity
of the principal components, nor the activations or sparsity of the neurons. Except
for the first singular vector acting as a bias, the network is seemingly fully utilized
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in implementing the desired function. The sparsity of the neurons individually is
around 60%, with a continuous and thight specter around the mean.

Intuitively, this matches well with the theory of superposition briefly men-
tioned in section 1.3.2, which assumes the full width of the network is utilized to
represent as many sparse features as possible. If superpositions can be established
in this regime, this will be a major step forwards towards decoding the qualita-
tive implementation of the classifier in terms of features. We note that the ETF
appearing post-collapse is equivalent to representing 10 features in 9 dimensions,
exactly the type of superpositions covered in [48]. Why should we not see similar
patterns before the collapse? Further investigations into the representations in
these intermediate layers through the lens of superpositions of features is left as
future work.

This analysed network also puts a very strict limit on the circuts the DNN can
implement by virtue of its shallow nature. Since the network has been optimized
in the overparametrized regime, having access to the full network, we can assume
that while these circuts are relatively small, they share characteristics with the
circuts in larger networks. In fact, as they are a consequence of optimizing to
extremely small step-sizes and losses, we can expect these circuts to be more
"pure" than circuts in other networks. Again, investigating these circuts is left as
future work.
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6.1 Establishing Intermediate Neural Collapse

We have demonstrated the phenomenon of Neural Collapse in intermediate layers
of a variety of DNN arcitechtures and for several datasets, namely the MLPs,
Convnets and Resnets architechtures and MNIST, FashionMNIST, SVHN and
CIFAR10 datasets. This was also included in [5] and parts in [1]. This is a step on
the path towards understanding the behavior, performance and learning of DNNs,
showing promising results for future analysis.

In particular, this line of research could provide a way to understand the full
compositional function implemented by deep neural networks by extending anal-
ysis of the phenomenon to the pre-collapse layers in the network.

We have also established that while the layer of collapse is in some regard
correlated with the generalizing abilities of the DNN, it is not a clear cut rela-
tion and some middle-point of optimal collapse for generalization seems to be the
norm. This also impacts which circuts can apprear in the networks, as networks
with shallower layers of collapse naturally will require that the circuts formed are
shallower.

6.2 Feature analysis

It is also clear that we in sections 5.3 and 5.4 have described clear distinct pat-
terns in the structure of the activations post-collapse (in the deeper layers). We
have found sparsity, regimes of different principal component magnitudes, and
that subspaces spanned by principal components with the same magnitude align
themselves with the neuron-axes.

The feature patterns that we have have uncovered in the pre-collapse layers,
however, are ones of fully covering the space with no clear separation between
different parts of the features. We have seen that the features are near symmet-
ric in every principal direction and magnitude, near symmetric in sparsity and
magnitude in the neurons.

Investigating clustering algorithms in the pre-collapse layers have shown, vi-
sually with UMAP, that there is increasing structure as the data is transformed
through the layers. We found, however, that attempts at clustering the datapoints
gave only partially accurate results. We did not find any hierarchical set of clus-
ters through the layers, nor were we able to cluster the datapoints solely based on
their activations and find that the classes neatly correspond. This is importantly
not at odds with theories of feature representations as concentrated along direc-
tions (such as in [49], [48] and [1]). It can very well be the case that interpretable
features are aligned with linear directions in the space, even if the classes are not
directly clusterable by these linear features.

In all, it is clear that there are patterns emerging in both pre- and post-collapse,
but the interesting patters in pre-collapse have not lended themselves to separate
into smaller more interpretetable chuncks with the methods we have investigated
in this thesis.
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6.3 Connections and future work
The patterns emerging in the intermediate layers relate to and can importantly
be at odds with important theories of the inner workings of DNNs. Specifically
we found that it is possible that the patterns exhibited by DNNs that show inter-
mediate NC will not be equivalent to the pruned networks of the Lottery Ticket
Hypothesis. This warrants future investigation, and could lead to insights into
how optimization by pure SGD differs from the theory of the LTH.

For the theory of superposition and circuts we find that the network analyzed
does not seem to be at odds with the theory, but could serve as a relatively
simple example of how the circuts and superpositions are functioning. The network
showing intermediate NC is a more complex example than most previous networks
analyzed in this fashion, but likely a far simpler example than other networks due
to its limited depth and optimization to convergence.

Other interesting phenomena that could be connected to the theory of inter-
mediate neural collapse is DNN "grokking" [42]. As the grokking phenomenon
occurs in networks trained to interpolation and the further with weight decay, we
should expect them to exhibit some form of representation learning similar to NC.
In fact, analysing the low-dimensional representations found in NC could be key
to understanding the grokking phenomenon.

Additionally, the discovery and analysis of simplified topologies in a certain
regime of DNNs could also be deeply related to emergent topologies in biological
neural networks such as [86]. This offers the opportunity to use the statistical
tools of neuroscience in DNNs, and is a promising direction of future research.
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APPENDIX

A

CODEBASE AND DATASETS

A.1 Github Repository
The code for running the experiments and generating the figures in this document
is given at

• https://github.com/mariuslindegaard/DNN_Analysis/tree/dev/thesis

A.2 Dataset specifications
Dataset #Train #Test Input dim. Classes

MNIST [70] 60k 10k (1⇥ 28⇥ 28) 10
FashionMNIST [71] 60k 10k (1⇥ 28⇥ 28) 10

SVHN [72] ⇠73k ⇠26k (3⇥ 32⇥ 32) 10
CIFAR10 [73] 50k 10k (3⇥ 32⇥ 32) 10

70
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APPENDIX

B

INTERMEDIATE NEURAL COLLAPSE:
EXPERIMENTAL RESULTS

We show the results from doing the analysis of intermediate NC in the full set of
models and datasets. These results are also presented in [1].

71



Measures on CIFAR10 (Accuracy and NC1-2)

Accuracy per epochs

Traces (NC1, see eq. 2.18)

CDNV (NC1, see [87] sec. 3)

Activation ETF (NC2, see eq. 2.19, 2.20 and 2.21)

Figure B.0.1: Accuracy and NC1-2 on MLP-10, ConvNet-20 and Resnet50
trained with CIFAR10.

72



Measures on CIFAR10 (NC3-4)

Weight singular values (NC3, see eq. 2.22)

Angle between subspaces (NC3, see eq. 2.25

NCC accuracy (NC4, see eq. 2.17)

Figure B.0.2: NC3-4 on MLP-10, ConvNet-20 and Resnet50 trained with CI-
FAR10.
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Measures on MNIST (Accuracy and NC1-2)

Accuracy per epochs

Traces (NC1, see eq. 2.18)

CDNV (NC1, see [87] sec. 3)

Activation ETF (NC2, see eq. 2.19, 2.20 and 2.21)

Figure B.0.3: Accuracy and NC1-2 on MLP-10, ConvNet-20 and Resnet50
trained with MNIST.
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Measures on MNIST (NC3-4)

Weight singular values (NC3, see eq. 2.22)

Angle between subspaces (NC3, see eq. 2.25

NCC accuracy (NC4, see eq. 2.17)

Figure B.0.4: NC3-4 on MLP-10, ConvNet-20 and Resnet50 trained with
MNIST.
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Measures on FashionMNIST (Accuracy and NC1-2)

Accuracy per epochs

Traces (NC1, see eq. 2.18)

CDNV (NC1, see [87] sec. 3)

Activation ETF (NC2, see eq. 2.19, 2.20 and 2.21)

Figure B.0.5: Accuracy and NC1-2 on MLP-10, ConvNet-20 and Resnet50
trained with FashionMNIST.
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Measures on FashionMNIST (NC3-4)

Weight singular values (NC3, see eq. 2.22)

Angle between subspaces (NC3, see eq. 2.25

NCC accuracy (NC4, see eq. 2.17)

Figure B.0.6: NC3-4 on MLP-10, ConvNet-20 and Resnet50 trained with Fash-
ionMNIST.

77



Measures on SVHN (Accuracy and NC1-2)

Accuracy per epochs

Traces (NC1, see eq. 2.18)

CDNV (NC1, see [87] sec. 3)

Activation ETF (NC2, see eq. 2.19, 2.20 and 2.21)

Figure B.0.7: Accuracy and NC1-2 on MLP-10, ConvNet-20 and Resnet50
trained with SVHN.
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Measures on SVHN (NC3-4)

Weight singular values (NC3, see eq. 2.22)

Angle between subspaces (NC3, see eq. 2.25

NCC accuracy (NC4, see eq. 2.17)

Figure B.0.8: NC3-4 on MLP-10, ConvNet-20 and Resnet50 trained with SVHN.
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APPENDIX

C

FEATURE ANALYSIS

C.1 Further data on layer of Intermediate Neural
Collapse from hyperparameters

These larger figures are larger and more readable versions of the ones presented
in section 4.2, and additional data for Resnet50 models.

Note that models with lower than 0.35% accuracy are still not presented in the
final results. The full data is available as part of the code given in section A.1.

Figure C.1.1: INC for Resnet50 on CIFAR10 depending on hyperparameters.
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Figure C.1.2: INC for MLP on CIFAR10 depending on learning rate and weight
decay.
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Figure C.1.3: INC for Convnet on CIFAR10 depending on learning rate and
weight decay.
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C.2 Plots of clusterings

C.2.1 UMAP for true labels, enlarged figures

The following figure C.2.3 is the same figures as 4.3.1, but enlarged for readability.
We also include figures where the coloring of the datapoints is based on the

induced labels by the clustering algorithm as described in section 4.3. A second
plot highlights the errors in classification. These two plots are shown stacked in
figure C.2.4.
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(a) UMAP clustering before layer 0

(b) UMAP clustering before layer 1
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(a) UMAP clustering before layer 2

(b) UMAP clustering before layer 3
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(a) UMAP clustering before layer 4

(b) UMAP clustering before layer 5

Figure C.2.3: UMAP clusterings of activations before the respective layers. See
figure 4.3.1 for futher details.
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(a) Layer 0 (b) Layer 1 (c) Layer 2

(d) Layer 3 (e) Layer 4 (f) Layer 5

Figure C.2.4: UMAP transformation with (upper) point-labelling by classifi-
cation by clustering algorithm described in section 4.3, and (lower) erroneous
classifications in purple, correct in blue. See also figure 4.3.1 for futher details.
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Layer Avg. #datapoints per cluster Total Accuracy Excluded datapoints
0 - - 50,000
1 4.4 63% 13548
2 121 48% 0
3 1667 56% 0
4 3846 97.3% 0
5 5000 99.7% 6

Table C.2.1: Statistics on the clusterings before each layer using the euclidean
distance metric.

C.2.2 Clusterings for euclidean metrics

This section contains all the same plots as displayed for the cosine-metric in the
main section of the document. This is included for completeness, and to demon-
strate that a change of metric is not hugely impactful and does in fact not give
rise to any significant change in the results.

C.2.2.1 Euclidean metric clustering

The figures in this section are based on a clustering of the datapoints in activation-
space with agglomerative clustering. The distance-metric used is the euclidean
distance, ward linkage-method, and a distance threshold of 0.5. After this clus-
tering, each cluster of 3 or more datapoints is given a label equal to the most
prevalent class in that cluster. The clusters are then arranged based on their
given label, and sorted within each label such that the cluster with the highest
number of datapoints is listed first. The resulting confusion matrix from clusters
to the element’s true labels is plotted. See figure C.2.5.

Similarly defined as table 4.3.1, we have an accuracy for the euclidean metric
clusters in C.2.1.

C.2.2.2 Euclidean metric errors in UMAP

We perform the same procedure as previously described in section 4.3 to obtain
induced data-labels with the euclidean clustering.

C.2.2.3 Lack of hierarchical clustering

As in 4.3, we also report the extent to which the clusterings form hierarchical
structures. The following table (C.2.2) reports the same numbers as table 4.3.2,
but for the euclidean metric clustering.

Again we observe that there is little only very little hierarchical structure in
the clustering of the data.
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(a) Layer 0 (b) Layer 1

(c) Layer 2 (d) Layer 3

(e) Layer 4 (f) Layer 5

Figure C.2.5: Plots of clusters from agglomerative clustering with euclidean
distance metric. Each row represents a cluster, and each column the class of the
datapoints contained in that cluster. Each cluster (row) is normalized so it sums
to 1, and as such the darker fields are the most prevalent in that cluster (row).
See also figure 4.3.2.
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(a) Layer 0 (b) Layer 1 (c) Layer 2

(d) Layer 3 (e) Layer 4 (f) Layer 5

Figure C.2.6: UMAP transformation with (upper) point-labelling by classifica-
tion by clustering algorithm described in section 4.3 with euclidean distance as
described in C.2.2, and (lower) erroneous classifications in purple, correct in blue.
Similar to figure C.2.4.
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Layers Hierarchical accuracy
0! 1 -%
1! 2 62%
2! 3 42%
3! 4 54%
4! 5 97%

Table C.2.2: Accuracy of assuming hierarchical clusterings through each layer
for euclidean metric.
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(a) Layer 1 (b) Layer 2 (c) Layer 3

(d) Layer 4 (e) Layer 5 (f) Layer 6

Figure C.2.7: Singular values of activations and sparsity of corresponding sin-
gular vectors for layer 1-6. An extension of figure 4.4.1 and 4.4.2.

C.2.3 Singular vectors and `1 sparsity

The full plots of the singular values of the covariance matrix of the data (top) as
well as the sparsity of the corresponding singular vectors (bottome) are given in
figures C.2.7 and C.2.8.

C.2.4 Sparsity and Means of Neurons

In this section we give all plots from all relevant layers 1-10 corresponding to
figures 4.4.3 and 4.4.4. In this section, they are are arranged to highlight the
correspondence between different paradigms of sparsity and different paradigms
of mean-activations.

We also note a few observations from these plots not mentioned in the main
text for brevity:

• In the post-collapse layers (4-10), there seems to be a clear pattern where
the neurons exhibiting sparsity have orders of magnitude larger activations
than the neurons not exhibiting sparsity.
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(a) Layer 7 (b) Layer 8 (c) Layer 9

(d) Layer 10

Figure C.2.8: Singular values of activations and sparsity of corresponding sin-
gular vectors for layer 7-10. An extension of figure 4.4.1 and 4.4.2.
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• While layer 4 exhibits patters similar to the later layers, it seems that the
first layer post-collapse is not as perfectly collapsed as the deeper layers. This
fits with previous observations, showing how the collapse becomes stronger
deeper in the network.

• In layer 10 (C.2.10d), and to some degree in layer 6-9, there is clear step-
wise sparsity with steps at the 1

10 -marks. This likely corresponds to the only
sparsity arising from the 10 class means forming essentially only 10 sets of
internally equivalent datapoints.

• Seeing as this step-wise nature of the datapoints has long plateus (see e.g.
neuron 200-750 in fig C.2.10d), it is clear that the class-mean vectors are not
alligned with the neuron-axes but rather span some other 10-dimensional
space with little preference for the canonical axes.

We also note, as mentioned in the main text, the stark contrast between pre-
and post-collapse layers, and how the pre-collapse layers clearly occupy the full
space.
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(a) Layer 1 (b) Layer 2 (c) Layer 3

(d) Layer 4 (e) Layer 5 (f) Layer 6

Figure C.2.9: Sparsity of neurons and means of all non-zero activations in hidden
layers 1-6. An extension of figure 4.4.3 and 4.4.4.
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(a) Layer 7 (b) Layer 8 (c) Layer 9

(d) Layer 10

Figure C.2.10: Sparsity of neurons and means of all non-zero activations in
hidden layers 7-10. An extension of figure 4.4.3 and 4.4.4.
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