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Abstract

We consider a nonlinear stochastic partial differential equation (SPDE) that takes the form of the 
Camassa–Holm equation perturbed by a convective, position-dependent, noise term. We establish the first 
global-in-time existence result for dissipative weak martingale solutions to this SPDE, with general finite-
energy initial data. The solution is obtained as the limit of classical solutions to parabolic SPDEs. The proof 
combines model-specific statistical estimates with stochastic propagation of compactness techniques, along 
with the systematic use of tightness and a.s. representations of random variables on specific quasi-Polish 
spaces. The spatial dependence of the noise function makes more difficult the analysis of a priori estimates 
and various renormalisations, giving rise to nonlinear terms induced by the martingale part of the equation 
and the second-order Stratonovich–Itô correction term.
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1. Introduction

1.1. Background and main result

We are interested in global weak solutions of the initial-value problem for the stochastic 
parabolic-elliptic system

0 = du + [u∂xu + ∂xP
]

dt + σ∂xu ◦ dW,

− ∂2
xxP + P = u2 + 1

2
|∂xu|2 , for (t, x) ∈ (0, T ) × S1,

(1.1)

where S1 = R/(2πZ) is the 1D torus (circle), T is a positive final time, σ = σ(x) ∈ W 2,∞(S1)

is a position-dependent noise function, and W is a 1D Wiener process defined on a standard 
filtered probability space S = (

�, F , {Ft }t ∈ [0,T ], P
)
, henceforth called a stochastic basis. For-

mally, by the Itô–Stratonovich conversion formula, the Stratonovich differential σ ∂xu ◦ dW in 
(1.1)—known in the literature as a gradient, transport or convection noise term—can be ex-
2
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panded into the operational form − 1
2σ(x)∂x (σ (x)∂xu) dt + σ(x)∂xu dW . Moreover, the elliptic 

equation for P can be solved to supply

P = P [u] := K ∗
(

u2 + 1

2
|∂xu|2

)
, K(x) = cosh

(
x − 2π int

(
x

2π

)− π
)

2 sinh(π)
, (1.2)

where K is the Green’s function of 1 − ∂2
xx on S1, int(x) is the integer part of x, and ∗ means 

convolution in x. Consequently, (1.5) takes the form of the nonlinear nonlocal SPDE

0 = du + [u∂xu + ∂xP
]

dt − 1

2
σ∂x (σ∂xu) dt + σ∂xudW,

P = K ∗
(

u2 + 1

2
|∂xu|2

)
.

(1.3)

We recover the deterministic Camassa–Holm (CH) equation by setting σ ≡ 0 in (1.3). Since 
its introduction in the early 1980s [14,34], the CH equation has received much attention from 
the mathematical community. The CH equation, a nonlinear dispersive PDE modelling shallow-
water waves, is nonlocal, completely integrable and may be written in (bi-)Hamiltonian form 
in terms of the momentum variable m := (

1 − ∂2
xx

)
u. Much of the excitement of the CH equa-

tion is related to its supercritical nature—coming from the competition between the dispersive 
and nonlinear terms—which leads to the development of singularities in finite time (blow-up via 
wave breaking). The question of global well-posedness of the CH equation, in different classes 
of appropriately defined weak solutions, is widely studied, see for example [8,9,21,41,42,63]
(and the references therein). Indeed, there are two natural classes of H 1 weak solutions, dissi-
pative and conservative, which differ in how they continue the solution past the blow-up time. 
Conservative solutions (see, e.g., [8]) ask that the PDE holds weakly and that the total energy 
is preserved. In contrast, dissipative solutions (see, e.g., [63]) are characterized by a drop in the 
total energy at the time of blow-up. Starting from general finite-energy data u|t =0 = u0 ∈ H 1, 
the CH solution operator formally preserves the H 1 norm, and H 1 regularity is also needed to 
make distributional sense of the equation. The solution space H 1 allows for wave breaking, in 
the sense that the solution u remains bounded while its x-derivative ∂xu becomes (negatively) 
unbounded [14].

Stochastic effects, in terms of transport, forcing, or uncertain system parameters, are vital 
for developing models of many phenomena in fluid dynamics. The work of Holm [43] pro-
poses a general approach to deriving SPDEs for fluid dynamics from geometric mechanics and 
a stochastic variational principle. In particular, he argues that “physically relevant” noise arises 
from a suitable perturbation of the integrated Hamiltonian of the dynamical system. The corre-
sponding stochastic perturbation of the CH equation leads to nonlinear SPDEs like (1.3), see [23]
and [4]. The works [4,23] also investigate blow-up of regular solutions. For the related stochastic 
Hunter–Saxton equation, see [38,39]. We refer to Appendix A for a short formal derivation of 
the stochastic CH equation (1.3).

Let us now turn to the mathematical analysis of the stochastic CH equation (1.3). Currently, 
only a few local well-posedness results are available. Most of them concern the stochastic forcing 
case, which corresponds to (1.1) with the transport noise σ(x)∂xu ◦ dW replaced by a lower 
order Itô term σ(x, u) dW , either in additive (σ(x) dW ) or multiplicative (σ(u) dW ) form, see 
the works [16,17,19,44,50,56,60,61,64,65]. See also [15] for a global existence result if σ ≡ u

and m(0) ≥ 0.
3
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For the CH equation perturbed by transport noise, like the term σ∂xu ◦ dW appearing in (1.3), 
we refer to Albeverio, Brzeźniak, and Daletskii [1] for the first local well-posedness result (up to 
wave-breaking). The idea in [1] is to transform the equation into a PDE with random coefficients 
and apply Kato’s operator theory. The work of Alonso-Orán, Rohde, and Tang [2] extends this 
result to a stochastic two-component CH system with transport noise (for smooth noise functions 
σ ). Let us also draw attention to a recent study [18] that investigates the existence of weak solu-
tions for a two-component CH equation affected by Markus pure-jump noise. A general Marcus 
SDE is structured as follows: du = a ds + b ◦ dW + c[u] � dL, where L represents a pure jump-
Lévy process, and c[u] � dL is interpreted within the Markus framework. The study [18] zeroes 
in on the pure jump component c[u] � dL in this decomposition, particularly when c[u] = ∂xu. 
Aside from the fact that examining this case is more straightforward than dealing with the Wiener 
noise σ(x)∂xu ◦ dW , which is the focus of our paper, the critical difference lies in the solution 
class for analyzing the stochastic (two-component) CH equation. In their work, the authors of 
[18] devise solutions in which ∂xu is a bounded function. However, when this is confined to the 
context of the CH equation, such a solution class becomes overly restrictive, essentially necessi-
tating that the initial data satisfy u0 − ∂2

xxu0 ≥ 0. This limitation omits crucial solutions involving 
peakon-antipeakon interactions, where ∂xu could potentially blow up or become unbounded. In 
contrast, our result is general, applicable to any u0 ∈ H 1 (where ∂xu may not be a bounded func-
tion). Yet, this wide applicability entails a significantly more complex analytical approach, which 
we will elaborate upon later in our discussion.

The global existence of properly defined weak solutions for the stochastic CH equation (1.3)
is an open problem, addressed in this paper for the first time. We develop an existence theory for 
dissipative weak solutions for rather general “non-smooth” noise functions σ ∈ W 2,∞. Our main 
result is the following theorem:

Theorem 1.1 (Existence of dissipative solution). Let σ ∈ W 2,∞(S1), and fix some p0 > 4. For 
any initial probability distribution � supported on H 1(S1), satisfying∫

H 1(S1)

‖v‖p0

H 1(S1)
�(dv) < ∞,

there exists a dissipative weak martingale solution 
(
S̃, ũ, W̃

)
to the stochastic CH equa-

tion (1.3) with random initial data ũ0 distributed according to � (ũ0 ∼ �), where S̃ =(
�̃, F̃ , {F̃t }t ∈ [0,T ], P̃

)
is a stochastic basis. Besides, the following energy inequality holds 

P̃–a.s., for a.e. s ∈ [0, T ) and every t with s < t ≤ T ,∫
S1

ũ2 + |∂xũ|2 dx

∣∣∣∣t
s

≤
t∫

s

∫
S1

1

4
∂2
xxσ

2ũ2 +
(

|∂xσ |2 − 1

4
∂2
xxσ

2
)

|∂xũ|2 dx dt ′

+
t∫ ∫

1

∂xσ
(
ũ2 − |∂xũ|2

)
dx dW̃ .

(1.4)
s S

4
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Specifically, it holds for s = 0 and any t ∈ (0, T ], with 
∫
S1 ũ2 + |∂xũ|2 dx

∣∣
s=0 replaced by ∫

S1 ũ2
0 + |∂xũ0 |2 dx.

Roughly speaking, by a solution to (1.3) we mean a collection 
(
S̃, ũ, W̃ ), where S̃ is a stochas-

tic basis, W̃ is a Wiener process, and (ω, t) → ũ(ω, t, ·) takes values in H 1(S1) and satisfies the 
SPDE (1.3) in the weak sense in x, see Definition 2.4 for details. Note that the solutions con-
structed in Theorem 1.1 are weak in the probabilistic sense, as the stochastic basis S̃ and the 
Wiener process W̃ are parts of the unknown solution. We refer to these solutions as dissipa-
tive weak martingale solutions. The term “weak” in the quantifier “dissipative weak” indicates 
that the solutions are considered weak solutions in the PDE sense. Furthermore, at least in the 
deterministic case (σ = 0), the solutions possess the additional property that the total energy 
decreases over time, specifically at a wave breaking time t0. The term “dissipative” also al-
ludes to the methodology employed to construct these solutions, which is the vanishing viscosity 
method.

A manifestation of the dissipative nature of the solutions is that the total energy inequality 
encodes a fundamental right-continuity property; namely, we will prove that ũ(t) → ũ(t0) in 
H 1(S1), a.s., as t ↓ t0 ∈ [0, T ). In the deterministic setting σ = 0, Theorem 1.1 recovers the 
main result of Xin and Zhang [63].

1.2. Outline of main ideas

Let us end this introduction by briefly expounding the main ideas behind the proof of Theo-
rem 1.1. Although the proof makes use of the vanishing viscosity method and weak convergence 
techniques, there are many substantial differences between the deterministic and stochastic situ-
ations. Adding the viscosity term ε∂2

xxu to (1.3), we first construct a regular solution uε to

0 = duε +
[
uε ∂xuε + ∂xPε − ε∂2

xxuε

]
dt − 1

2
σε∂x (σε∂xuε) dt + σε∂xuε dW,

Pε = P [uε ] := K ∗
(

u2
ε + 1

2
|∂xuε |2

)
.

(1.5)

This is a non-standard (nonlinear and nonlocal) parabolic SPDE. Its global-in-time well-
posedness does not follow from standard parabolic SPDE theory. In [40], we prove the existence 
and uniqueness of pathwise Hm

x solutions for arbitrary m ∈ N (as long as the initial data are 
smooth). Notice that in (1.5) we have replaced σ of (1.1) with σε ∈ C∞(S1), which we require 
to converge to σ in W 2,∞(S1) as ε ↓ 0. This is necessary as the well-posedness of Hm

x solutions 
require coefficients σε ∈ Wm+1,∞(S1) [40, Theorem 1.2].

The relevant results from [40] are collected in Theorem 2.3 below. In particular, only a few 
ε-uniform statistical estimates are available (starting from smooth finite-energy initial data), in-
cluding

E ‖uε ‖r

Cθ
t L2

x
� 1, for some r > 2 and small θ,

‖qε ‖
L2+α

ω,t,x
� 1, for any α ∈ [0,1),

(1.6)

see Sections 2 and 3, where the spatial gradient qε := ∂xuε satisfies the nonlinear, second-order 
transport-type SPDE
5
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0 = dqε +
(

∂x (uε qε) − 1

2
q2
ε + Pε − u2

ε − ε ∂2
xxqε

)
dt

− 1

2
∂x (σε ∂x (σε qε)) dt + ∂x (σε qε) dW.

(1.7)

The starting point for deducing ε-uniform estimates is the SPDE satisfied by the total energy 
1
2

(
u2

ε + q2
ε

)
, which is formally obtained by testing—via the temporal (Itô) and spatial chain rules, 

the SPDE (1.5) with uε and the SPDE (1.7) with qε , and then adding the resulting equations, 
noticing some crucial cancellations involving cubic terms of qε. The end result is

d

(
u2

ε + q2
ε

2

)
+ ∂x

[
uε

u2
ε + q2

ε

2
+ uεPε − u3

ε

2
− 1

4
∂xσ

2
ε

q2
ε − u2

ε

2

]
dt (1.8)

− ∂2
xx

[(
1

2
σ 2

ε + ε

)
u2

ε + q2
ε

2

]
dt +

[
∂x

(
σε

u2
ε + q2

ε

2

)
+ ∂xσε

(
q2
ε − u2

ε

2

)]
dW

= 1

4
∂2
xxσ

2
ε

u2
ε

2
dt +

(
|∂xσε |2 − 1

4
∂2
xxσ

2
ε

)
q2
ε

2
dt − ε

(
|∂xuε |2 + |∂xqε |2

)
dt.

The second estimate in (1.6) implies, passing if necessary to a subsequence,

qε

ε↓0−−⇀ q in L
p
ω,t,x , p ∈ [1,3), q2

ε

ε↓0−−⇀ q2 in L
p
ω,t,x , p ∈ [1,3/2), (1.9)

for some weak limits q, q2. Throughout this paper, we use overbars to denote weak limits, in 
spaces that often must be understood from the context. Only equipped with weak convergence 
of 
{
q2
ε = |∂xuε |2}

ε>0—because of the nonlinearity—it is not possible to pass to the limit ε → 0
in (1.5), (1.7) to obtain a solution of the stochastic CH equation (1.3); strong L2 convergence of 
{qε }ε>0 is called for.

An effective (deterministic) strategy for improving the weak convergence to the required 
strong one is to start from a strongly convergent sequence of initial data and then attempt to 
propagate that strong convergence through time. This “propagation of compactness” argument 
is typically implemented in the context of DiPerna–Lions renormalised solutions [28]; for some 
applications of this strategy, see [31,49] (compressible Navier–Stokes equations) and [22,21,63]
(CH equation).

The tailoring of the propagation of compactness argument to the stochastic CH equation (1.3)
is rather involved. Let us explain some of the reasons for this. First, we need to use the few 
available estimates (1.6) to extract some strong (almost sure) compactness in the probability vari-
able ω. Indeed, a feature of our approach is that most results are derived in a pathwise context, 
meaning that equations and inequalities hold almost surely (not only in the weaker statistical 
mean sense). The natural strategy for achieving a.s. convergence is to invoke some nontriv-
ial results of Skorokhod, linked to the tightness (weak compactness) of probability measures 
and a.s. representations of random variables, see [24, Theorem 2.4] and, e.g., [5,25,32,35,36]
for some applications of this approach to SPDEs. Applying this strategy to the laws L(uε) of 
uε—defined on the Polish space C([0, T ]; L2(S1)) and whose tightness is guaranteed by the 
first estimate in (1.6)—we obtain new random variables ũε—defined on a new probability space 
and with the same laws as the original variables uε—which converge almost surely to some ũ:
6
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ũε
ε↓0−−→ ũ in C([0, T ]; L2(S1)), almost surely. (1.10)

Next, we wish to apply this strategy to improve the (ω, t, x) weak convergence (1.9) to 
a.e. convergence in ω, weak in (t, x). The original Skorokhod construction applies to processes 
taking values in a Polish (complete separable metric) space. In our context the Skorokhod the-
orem is not directly applicable, because we have to work in spaces equipped with the weak 
topology, like Lp

t,x − w, which are not Polish. Therefore we use a recent version of the Sko-
rokhod theorem—due to Jakubowski [46]—that applies to so-called quasi-Polish spaces, where 
quasi-Polish refers to a Hausdorff space that exhibits a continuous injection into a Polish space. 
It turns out that separable Banach spaces equipped with the weak topology as well as dual spaces 
of separable Banach spaces (equipped with the weak-star topology) are quasi-Polish. For rele-
vant background material on quasi-Polish spaces, see Appendix B. We refer to Brzeźniak and 
Ondreját [52,12] and [7,10,11,54,59,62] for some applications of the Skorokhod–Jakubowski 
theorem to different SPDEs (this list is far from complete).

The second estimate in (1.6) implies that the laws L(qε) and L(q2
ε ) are tight as probability 

measures on the quasi-Polish space Lp([0, T ] × S1) − w, respectively for p ∈ [1, 3) (qε) and 
p ∈ [1, 3/2) (q2

ε ). An application of the Skorokhod–Jakubowski theorem supplies new random 
variables q̃ε and q̃2

ε defined on the same probability space as ũε and with the same laws as the 
original variables qε and q2

ε , such that (extracting a subsequence if necessary and for the same 
values of p as before)

q̃ε

ε↓0−−⇀ q̃ in L
p
t,x , a.s., q̃2

ε

ε↓0−−⇀ q̃2 in L
p
t,x , a.s., (1.11)

for some limits q̃ and q̃2, see Section 4.
It is of vital importance to us that products like S′(q̃ε)P̃ε converge weakly, for a suitable 

class of linearly growing nonlinearities S(·), where P̃ε is defined in (1.5). Since S′(q̃ε) converges 
weakly, P̃ε must converge strongly. This strong convergence does not follow from (1.11), as we 
are missing strong temporal compactness for q̃2

ε . In the deterministic theory [63], one establishes 
directly uniform W 1,1

t,x estimates for P̃ε , which implies strong convergence. This strategy does 
not work in the stochastic setting. A natural modification of this strategy, based on the derivation 
of uniform Hölder continuity in t , does not seem to accomplish the task either, even if the spatial 
topology is weak. As a result, we cannot apply the often-used compactness approach based on 
tightness in the (quasi-Polish) space C([0, T ]; Lp(S1) − w), used by many of the references 
above.

These obstructions have motivated us to introduce the locally convex space Lp
(
L

p
w

) =
Lp([0, T ]; Lp(S1) − w

)
, which is quasi-Polish (see Appendix B). The space Lp

(
L

p
w

)
can ac-

count for strong temporal and weak spatial convergence of the energy variable q̃2
εn

. To this end, 
we formulate a new tightness criterion in Lp

(
L

p
w

)
, which we believe is of independent interest: 

the probability laws of a sequence {Qn}n∈N of random variables is tight on Lp
(
L

p
w

)
provided

(i) E ‖Qn‖Lp([0,T ];Lp(S1)) � 1,

(ii) E ‖Qn‖Lp̄([0,T ];L1(S1)) � 1, for some p̄ > p,

and, for all ϕ ∈ C∞(S1) and ϑ > 0,
7
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(iii) E sup
τ ∈(0,ϑ)

T −τ∫
0

∣∣∣∣∣∣∣
∫
S1

ϕ(x)
(
Qn(t + τ, x) − Qn(t, x)

)
dx

∣∣∣∣∣∣∣ dt �ϕ ϑα,

for some α ∈ (0, 1). We verify these conditions for the energy variable q̃2
ε , thereby supplying 

the following critical improvement over (1.11): q̃2
ε → q̃2 in Lp

(
L

p
w

)
a.s.; thus, passing to a 

subsequence, q̃2
ε converges weakly in x and pointwise in (ω̃, t). We refer to Sections 3 and 4 for 

the details.
In Section 5, we prove several results that transfer the available a priori estimates and the 

SPDE (1.5) to the new probability space (for the new variables ũε, q̃ε , W̃ε and their limits). 
Equipped with (1.10) and (1.11), we send ε → 0 in the SPDE (1.5) (on the new probability 
space) to produce a solution ũ of an SPDE that looks like the stochastic CH equation (1.3) but 
with the nonlinearity q̃2 instead of the required one q̃2 = |∂xũ|2, see Section 6.

The final Section 7 is devoted to the proof that q̃2 = q̃2 a.e. in (ω, t, x), and thereby the 
validity of Theorem 1.1. The proof amounts to upgrading the (t, x) weak convergence (1.11) to 
strong convergence via a study of the defect measure

D = D(ω, t, x) = 1

2

(
q̃2 − q̃2

)
≥ 0. (1.12)

The idea is to derive a transport-type SPDE (up to an inequality) for the evolution of D, so that if 
D is time-continuous at t = 0 with D(0) = 0 (assuming strong compactness at t = 0), then D(t)

is zero at all later times t > 0. Roughly speaking, an SPDE (up to an inequality) for 1
2

(
ũ2 + q̃2

)
is obtained using (1.10), (1.11) to pass to the limit in the total energy balance (1.8) (again written 
on the new probability space). On the other hand, by formally repeating the derivation of the 
energy balance (1.8) for the limits ũ, q̃ , relying on the SPDEs obtained by sending ε ↓ 0 in (1.5), 
(1.7), we arrive at an SPDE for 1

2

(
ũ2 + q̃2

)
, and therefore an inequality for the defect measure 

D, which takes the form

∂tD + ∂x

(
ũD − 1

4
∂xσ

2 D

)
− 1

2
∂2
xx

(
σ 2 D

)+ [∂x (σ D) + ∂xσ D
] ˙̃
W

≤
(

|∂xσ |2 − 1

4
∂2
xxσ

2 − ∂xũ

)
D in D′

t,x , almost surely,

(1.13)

where D′
t,x = D′([0, T ) × S1) denotes the space of distributions on [0, T ) × S1.

Unfortunately, the arguments leading up to (1.13) are only formal. Recalling (1.6), we do 
not have enough integrability on q̃, q̃2 to give sense to the terms q̃3 and q̃ q̃2 arising during 
the derivation of (1.13). The way to overcome this difficulty is to work with renormalised for-
mulations of the SPDEs for q̃ε, q̃ based on linearly growing approximations S�(v) of v2 and 
eventually send � → ∞. More precisely, we split v into its positive v+ and negative parts v−
(so that v2 = v2+ + v2−) and then work with the SPDEs satisfied by the nonlinear compositions 
S�

(
(q̃ε)±

)
, S�

(
q̃±
)
. In passing, let us mention that this forces us to accommodate a countable 

product of quasi-Polish spaces, as we need to apply the Skorokhod–Jakubowski procedure to all 
members of the sequence 

{
S�

(
(qε)±

)}
�∈N simultaneously. Countable products of quasi-Polish 

spaces are discussed in Appendix B.
8
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Again drawing an analogy to the deterministic theory [21,22,63], here we run into another 
difficulty linked to the stochastic part of the problem. Namely, the temporal irregularity of the 
noise induces structural changes in the equation that make it impossible to work with the familiar 
W

2,∞
loc (R) approximations S�(v) = v21{ |v|≤�} + � (2 |v| − �)1{ |v|>�} of v → v2. This adds further 

complications to the analysis. See Section 4 for further details.
A further intricacy arising during the derivation of (1.13) is the passage to the limit in stochas-

tic integrals of the form 
∫ t

0

∫
S1 S′(q̃ε)q̃ε dx dW̃ε , for some class of nonlinear functions S(·). Here, 

W̃ε is a sequence of Wiener processes converging uniformly to a limit process W̃ , a.s., while ∫
S1 S′(q̃ε)q̃ε dx converges just weakly in Lp

t , a.s., towards 
∫
S1 S′(q̃)q̃ dx. The absence of strong 

temporal compactness hinders the application of Lemma 2.1 of [25], which is regularly used to 
certify convergence of stochastic integrals. We manage this issue by once more making vital use 
of the quasi-Polish space Lp

(
L

p
w

)
and the tightness criterion provided by the conditions (i), (ii), 

and (iii). The details are worked out in Section 7.
The renormalised SPDEs are derived by regularising non-smooth processes via convolution 

against a spatial mollifier Jδ(x). Sending δ → 0, we handle most of the error terms using standard 
DiPerna–Lions estimates [28], except for some unique terms coming from the interconnection 
between the martingale part of the equations and second-order Stratonovich–Itô correction terms. 
The corresponding commutator estimates—collected in Appendix C—are proved in the paper 
[40] by the last three authors. Similar estimates have been used recently in [54] and [38].

It remains to send � → ∞ to recover a useful version of the SPDE inequality (1.13) for 
the defect measure D. The renormalisations S�(v±) give rise to a number of intricate error 
terms involving the approximation parameter �, several of them linked to the stochastic na-
ture of the problem. For the deterministic CH equation [63], this part of the analysis relies 
crucially on knowing that the viscous solutions qε obey a one-sided gradient bound of the 
Oleinik-type: qε(t) = ∂xuε(t) � 1 + 1

t
(that is independent of ε), a further reflection of the dissi-

pative nature of the solutions. No such bound is currently known for the stochastic CH equation. 
However, let us mention that recently [39] it was discovered that dissipative solutions of the 
related stochastic Hunter–Saxton equation [38] satisfy a one-sided gradient bound of the form 
∂xu(ω, t, x) ≤ K(ω, t), where the process K(ω, t) > 0 exhibits an exponential moment bound in 
the sense that E exp

(
p
∫ T

t
K(s) ds

)
� t −2p for small times t , for some p ≥ 1. We have not been 

able to establish a similar bound for the stochastic CH equation. Here we will instead rely on 
an observation due to the third author and Coclite [22] for the deterministic CH equation, which 
makes it possible to rigorously derive an SPDE inequality for the “positive part” of the defect 
measure, D+ = 1

2

(
q̃2+ − q̃2+

)
, without using an Oleinik bound. The detailed analysis of the defect 

measure is found in Section 7.
The remaining part of the paper is divided into six sections and three appendices, which 

together establishes Theorem 1.1.

2. Preliminaries and solution concepts

We refer to [20, Chapter 1] for notation and background material on stochastic analysis and 
SPDEs, including stochastic integrals, Itô’s chain rule, and martingale inequalities like the one 
of Burkholder–Davis–Gundy (BDG). For a more general context of cylindrical Wiener pro-
cesses, see [24]. For some key concepts linked to probability measures (on topological spaces), 
weak compactness and tightness, see the book [6]. For basic properties of Bochner spaces like 
Lp(�; X) = Lp

(
�, F , P ; X

)
, where X is a Banach space, we refer to [45, Chapters 1 & 2]. On 
9
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several occasions we will use [25, Lemma 2.1] to lay the foundations for the convergence of 
stochastic integrals. The reader can find a primer on quasi-Polish spaces and the Skorokhod–
Jakubowski theorem [46] in Appendix B. Quick background reading can be found in, e.g., 
[12,13,52], some results from which are quoted in the aforementioned appendix. The defini-
tion and properties of the space C

([0, T ]; H 1(S1) − w
)
, which is quasi-Polish and used herein, 

can be found in [12,13,52].
This section presents the solution concept used in Theorem 1.1 and the one used for the 

viscous SPDE (1.5), starting with the notion of a Hm-regular martingale solution of the viscous 
equation. Here ε > 0 is fixed, and therefore we write u instead of uε for the solution of (1.5).

Definition 2.1 (Hm martingale solution of viscous SPDE). Fix any integer m ≥ 1 and some 
p0 > 4. Let � be a probability measure on Hm(S1), satisfying∫

Hm(S1)

‖v‖p0

Hm(S1)
�(dv) < ∞. (2.1)

The triple 
(
S, u, W

)
is a Hm martingale solution of (1.5) with initial law � if the following 

conditions hold:

(a) S = (�, F , {Ft }t ≥0, P
)

is a stochastic basis;
(b) W is a standard Wiener process on S ;
(c) u : � × [0, T ] → H 1(S1) is adapted, with u ∈ Lp0

(
�; C([0, T ]; H 1(S1))

)
. Moreover, u ∈

L2([0, T ]; Hm+1(S1)) ∩ L∞([0, T ]; Hm(S1)) a.s. and

u ∈ L2
(
�; L2([0, T ]; H 2(S1))

)
.

(d) initial data — the law of u0 := u(0) on Hm(S1) is �, i.e., (u(0))∗ P = �;
(e) for all t ∈ [0, T ] and all ϕ ∈ C1(S1), the following equation holds P -almost surely (in the 

sense of Itô):∫
S1

u(t)ϕ dx −
∫
S1

u0ϕ dx

=
t∫

0

∫
S1

−u∂xuϕ + [P − ε∂xu
]
∂xϕ dx ds

− 1

2

t∫
0

∫
S1

σ∂xu∂x (σϕ) dx ds −
t∫

0

∫
S1

σ∂xuϕ dx dW(s),

P = P [u] := K ∗
(

u2 + 1

2
|∂xu|2

)
.

(2.2)

If 
(
S, W

)
is not a part of the unknown solution but fixed in advance, we speak of a prob-

abilistic strong or pathwise solution. According to the famous Yamada–Watanabe principle, a 
10
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martingale solution of an SPDE is probabilistic strong if the SPDE exhibits a pathwise unique-
ness result.

Definition 2.2 (Strong Hm solution of viscous equation). Let u0 ∈ Lp0(�; Hm(S1)) for some 
p0 > 4, and consider a fixed stochastic basis S = (

�, F , {Ft }t ∈ [0,T ], P
)
. We say that u, defined 

on S , is a strong Hm solution to (1.5) with initial data u(0) = u0 if, for a given Wiener process 
W defined on S , the triple 

(
S, u, W

)
constitutes a Hm martingale solution to (1.5) with initial 

distribution � = (u0)∗ P = P ◦ u−1
0 .

The viscous equation (1.5) is strongly well-posed [40]. The following theorem gathers the 
main results from [40].

Theorem 2.3 (Strong well-posedness of viscous SPDE). Fix ε>0. Suppose u0∈Lp0(�; Hm(S1))

for some p0 > 4. There exists a unique strong Hm solution to (1.5) with initial condition u0. 
Denoting this solution by uε, the following properties and ε-uniform bounds hold:

(i) Total energy balance — for any 0 ≤ s ≤ t ≤ T ,

∫
S1

u2
ε + |∂xuε |2 dx

∣∣∣∣t
s

+ 2ε

t∫
s

∫
S1

|∂xuε |2 +
∣∣∣∂2

xxuε

∣∣∣2 dx dt ′

=
t∫

s

∫
S1

1

4
∂2
xxσ

2
ε u2

ε +
(

|∂xσε |2 − 1

4
∂2
xxσ

2
ε

)
|∂xuε |2 dx dt ′

+
t∫

s

∫
S1

∂xσε

(
u2 − |∂xuε |2

)
dx dW, P̃–almost surely.

(2.3)

Furthermore, there exists an ε-independent positive constant

C = C
(
p0, T , ‖σ ‖W 2,∞(S1) , ‖u0 ‖Lp0 (�;H 1(S1))

)
such that

E ‖uε ‖p0
L∞([0,T ];H 1(S1))

≤ C and

E

∣∣∣∣∣∣∣2ε

T∫
0

∫
S1

|∂xuε |2 +
∣∣∣∂2

xxuε

∣∣∣2 dx dt

∣∣∣∣∣∣∣
p0
2

≤ C.

(2.4)

(ii) For any θ ∈ [0, p−2
4p

)
, p ∈ [2, p0 ], there exists an ε-independent constant C = C

(
θ, T ,

‖σ ‖W 2,∞(S1) , ‖u0 ‖L2(�;H 1(S1))

)
> 0 such that

E ‖uε ‖2/(1−4θ)
θ 2 1 ≤ C. (2.5)
C ([0,T ];L (S ))

11
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(iii) The laws of {uε }ε>0 form a (uniformly in ε) tight sequence of probability measures on the 
space C

([0, T ]; H 1(S1) − w
)
.

Finally, we define the solution concept used in Theorem 1.1 for the stochastic CH equation 
(1.3).

Definition 2.4 (Dissipative weak martingale solution). Let � be a probability measure on 
H 1(S1) with finite p0th moment for some p0 > 4, i.e.,

∫
H 1(S1)

‖v‖p0

H 1(S1)
�(dv) < ∞.

The triple 
(
S, u, W

)
is a dissipative weak martingale solution to the stochastic CH equation (1.3)

with initial distribution � if:

(a) S = (�, F , {Ft }t ≥0, P
)

is a stochastic basis;
(b) W is a standard Wiener process on S ;
(c) u : � × [0, T ] → L2(S1) is a progressively measurable stochastic process with paths u(ω) ∈

C([0, T ]; L2(S1)) ∩ C([0, T ]; H 1(S1) − w), for P -a.e. ω ∈ �. Moreover, u belongs to the 
space L2

(
�; L∞([0, T ]; H 1(S1))

)
;

(d) initial data — (u(0))∗ P = �;
(e) the following equation holds in the sense of Itô, P -almost surely, for all t ∈ [0, T ] and for all 

ϕ ∈ C2(S1),

d
∫
S1

uϕ dx =
∫
S1

[
1

2
u2 + P

]
∂xϕ dx dt

+ 1

2

∫
S1

u∂x (∂x (σϕ)σ ) dx dt +
∫
S1

u∂x (σϕ) dx dW,

P = P [u] := K ∗
(

u2 + 1

2
|∂xu|2

)
;

(2.6)

(f) temporal right-continuity in H 1(S1) — for a.e. (ω, t0) ∈ � × [0, T ],

lim
t ↓t0

‖u(t) − u(t0)‖H 1(S1) = 0.

At a time t = t0 of wave breaking, a dissipative solution u is not going to be time-continuous 
in H 1, but merely right-continuous. The right-continuity condition (f) in Definition 2.4 manifests 
the energy inequality (1.4) and the dissipative nature of the considered solution class.

Currently, no pathwise uniqueness result is known for the stochastic CH equation (1.5). As 
a result, we cannot rely on the Yamada–Watanabe principle to upgrade martingale solutions to 
strong solutions.
12
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3. Some a-priori estimates

Recall that uε denotes the Hm regular solution of the viscous SPDE (1.5) with initial data 
u(0) = u0, whose existence, uniqueness and basic properties are given by Theorem 2.3, under 
the assumptions that σ ∈ W 2,∞ and u0 ∈ L

p0
ω Hm

x for some p0 > 4. This section collects some 
straightforward consequences of the ε-uniform bounds listed in Theorem 2.3, which will be used 
in Section 7.

Lemma 3.1 (Basic estimates). Let uε be the Hm regular solution of the viscous SPDE (1.5) with 
initial data u(0) = u0 satisfying (2.1) (for an arbitrary m > 1). There exists a constant

C = C
(
T , ‖σ ‖W 2,∞(S1) , ‖u0 ‖Lp0 (�;H 1(S1))

)
,

independent of ε > 0, such that

E ‖uε ‖p0

L∞([0,T ]×S1)
≤ C, E ‖Pε ‖p

L∞([0,T ]×S1)
≤ C,

for any p ∈ [1, p0/2
]
, where Pε = P [uε ] is defined in (1.5).

Proof. The first part is a direct consequence of the L
p0
ω L∞

t H 1
x bound (2.4) and the one-

dimensional embedding H 1(S1) ↪→ L∞(S1). By the definition of Pε and because |K(x)| � 1
for all x ∈ S1,

|Pε(ω, t, x)|p � ‖uε(ω, t, ·)‖2p

L2(S1)
+ ‖∂xuε(ω, t, ·)‖2p

L2(S1)

� ‖uε(ω, ·, ·)‖2p

L∞([0,T ];H 1(S1))
.

The second estimate now follows by taking the expectation and again using (2.4), recalling the 
assumption p ≤ p0/2. �

Consider any function S ∈ W
2,∞
loc (R) that satisfies

|S(v)| � |v|2 ,
∣∣S′(v)

∣∣� |v| ,
∣∣S′ ′∣∣� 1,

and

∣∣∣∣S(v)v − 1

2
S′(v)v2

∣∣∣∣� |v|2 , ∀v ∈ R.
(3.1)

The goal is to compute the differential dS(qε), recalling that qε = ∂xuε is the spatial gradient of 
uε . This requires us to apply the Itô formula to (1.7). However, qε is known to have continuous 
paths only in the infinite dimensional space L2(S1), and the equation involves terms such as 
q2
ε which brings it outside the scope where standard Hilbert space-valued Itô formulas apply. 

Instead, we convolve (1.5) by taking ϕ in (2.2) to be a spatial Friedrichs mollifier Jδ . This gives 
us the equation for uε,δ = uε ∗ Jδ , with uε,δ continuous in t for each fixed x. Taking a classical 
spatial derivative gives us an equation for qε,δ = qε ∗ Jδ , which is (1.7) mollified against Jδ . 
These equations can be interpreted pointwise in x, and the real-valued Itô formula can be applied 
for each fixed x.
13
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The Itô formula is classically stated for C2 nonlinearities, but it can be extended by approxi-
mation to functions in W 2,∞ [53, Theorem 71] (and, in fact, to even rougher functions in some 
cases, like in the Tanaka formula). Throughout the paper, we will be applying the Itô formula to 
nonlinearities S from the W 2,∞ class satisfying (3.1).

The entire argument, including taking the mollification limit (δ ↓ 0), is executed for a sim-
ilar equation across (7.47) – (7.48) in the forthcoming Lemma 7.10. That argument can be 
applied here to any nonlinear function S satisfying (3.1), recalling that qε is more regular (inte-
grable) than the solution in Lemma 7.10. For a fixed ε > 0, we have qε ∈ L2([0, T ]; Hm−1(S1)), 
a.s., for any finite m. The only terms here not present in Lemma 7.10 are εS′(qε,δ)∂

2
xxqε,δ and 

S′(qε,δ)Pε ∗ Jδ . In view of the regularity of qε , we have S′(qε,δ) → S′(qε), ∂2
xxqε,δ → ∂2

xxqε

a.s. in L2([0, T ] × S1). A similar reasoning applies to the other term: since Pε belongs a.s. to 
L∞([0, T ] × S1), it follows that the convolution Pε ∗ Jε converges to Pε a.s. in L2([0, T ] × S1). 
Apart from these terms, the steps are the same, and we will not repeat them here. Similar argu-
ments are also carried out for d 

(
u2

ε + q2
ε

)
and for the squared-difference of two solutions in [39, 

Theorem 7.6, Lemma 7.7] (see also Lemma D.1).
This argument, which combines mollification with the real-valued Itô formula, leads us to the 

SPDE

0 = dS(qε) +
(

S′(qε)∂x (uε qε) − 1

2
S′(qε)q

2
ε

)
dt + S′(qε)

(
Pε − u2

ε

)
dt

− εS′(qε)∂
2
xxqε dt − 1

2
S′(qε)∂x (σε ∂x (σε qε)) dt

+ S′(qε)∂x (σε qε) dW − 1

2
S′ ′(qε)

∣∣∂x (σε qε)
∣∣2 dt.

(3.2)

In this paper, we make repeated use of the following identities:

S′(qε)∂
2
xxqε = ∂2

xxS(qε) − S′ ′(qε) |∂xqε |2 ,

S′(qε)∂x

(
uεqε

) = ∂x

(
uεS(qε)

)− (S(qε) − S′(qε)qε

)
∂xuε,

S′(qε)∂x

(
σεqε

) = ∂x

(
σεS(qε)

)− (S(qε) − S′(qε)qε

)
∂xσε,

S′(qε)∂x

(
σε∂x(σεqε)

) = ∂2
xx

(
σ 2

ε S(qε)
)− ∂x

(
1

2
∂xσ

2
ε

(
3S(qε) − 2S′(qε)qε

))
+ 1

2
∂2
xxσ

2
ε

(
S(qε) − S′(qε)qε

)
− S′ ′(qε)

(∣∣∂x

(
σε qε

)∣∣2 − |∂xσε qε |2
)

.

(3.3)

Inserting (3.3) into (3.2), we obtain

0 = dS(qε) + ∂x

[
uε S(qε) + 1

4
∂xσ

2
ε

(
3S(qε) − 2S′(qε)qε

)]
dt

−∂2
xx

[(
1
σ 2

ε + ε

)
S(qε)

]
dt + S′ ′(qε) ε |∂xqε |2 dt
2

14
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+
[
S′(qε)

(
Pε − u2

ε

)
−
(

S(qε)qε − 1

2
S′(qε)q

2
ε

)
(3.4)

− 1

4
∂2
xxσ

2
ε

(
S(qε) − S′(qε)qε

)− 1

2
|∂xσε |2 S′ ′(qε) q2

ε

]
dt

+
[
∂x

(
σε S(qε)

)− ∂xσε

(
S(qε) − S′(qε)qε

)]
dW,

noticing the cancellation of the two terms involving 
∣∣∂x (σε qε)

∣∣2.
For use in upcoming sections, let us also state the SPDE satisfied by S(ue):

0 = dS(uε) + ∂x

⎡⎣uε S(uε) + S′(uε)Pε −
uε∫

S(ξ)dξ + 1

4
∂xσ

2
ε S(uε)

⎤⎦ dt

− ∂2
xx

[(
1

2
σ 2

ε + ε

)
S(uε)

]
dt + S′ ′(uε) ε |∂xuε |2 dt

+
[

1

4
∂2
xxσ

2
ε

(
S(uε) − S′(uε)uε

)− S′ ′(uε) qεPε

]
dt

+
[
∂x

(
σεS(uε)

)− ∂xσε S(uε)
]

dW.

(3.5)

This equation can be derived as before, using (3.3) with qε replaced by uε , rewriting the last 
identity (3.3) as

S′(uε)∂x

(
σε ∂x(σε uε)

) = ∂2
xx

(
σ 2

ε S(uε)
)− ∂x

(
1

2
∂xσ

2
ε S(qε)

)
− 1

2
∂2
xxσ

2
ε

(
S(uε) − S′(uε)uε

)− S′ ′(uε) |σε∂xuε |2 .

The SPDE (1.8) for the total energy balance follows from (3.4) and (3.5).
We are now in a position to derive a higher integrability property of qε = ∂xuε . This property 

will ensure that the weak limit q2 in (1.9) does not concentrate into a measure but remains (at 
least) in L1

ω,t,x .

Proposition 3.2 (Higher integrability). Let uε be the Hm regular solution of the viscous SPDE 
(1.5) with initial data u(0) = u0 satisfying (2.1) (for an arbitrary m > 1), and denote by qε =
∂xuε the spatial gradient of uε. For fixed α ∈ (0, 1), there exists a constant

C = C
(
α,T , ‖σ ‖W 2,∞(S1) , ‖u0 ‖Lp0 (�;H 1(S1))

)
,

independent of ε > 0, such that

E ‖qε ‖2+α
2+α 1 ≤ C. (3.6)
L ([0,T ]×S )

15
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Proof. Consider the function S(v) := v (|v| + 1)α , which satisfies

S′(v) = (|v| + 1)α + α |v| (|v| + 1)α−1 ,

and

S′ ′(v) = α sgn(v) (|v| + 1)α−2 (2 + (α + 1) |v|) .

Clearly, 
∣∣S′ ′(v)

∣∣ ≤ C for all v ∈ R.
Integrating the SPDE (3.4) for S(qε) over x ∈ R gives

Ldt = d
∫
S1

S(qε)dx + (I1 + I2) dt + I3 dW, (3.7)

where

L =
∫
S1

(
S(qε)qε − 1

2
S′(qε)q

2
ε

)
dx,

I1 =
∫
S1

S′(qε)
(
Pε − u2

ε

)
+ S′ ′(qε) ε |∂xqε |2 dx,

I2 = −
∫
S1

(
S(qε) − S′(qε)qε

)
∂x

(
σε ∂xσε

)+ 1

2
S′ ′(qε) |∂xσε qε |2 dx,

I3 = −
∫
S1

(
S(qε) − S′(qε)qε

)
∂xσε dx.

One can verify that I3 ∈ L2(� × [0, T ]), so that E 
∫ t

0 I3 dW = 0. Let us argue in some more 
detail for the square-integrability of I3, observing first that∣∣S(v) − S′(v)v

∣∣ =
∣∣∣αv |v| (|v| + 1)α−1

∣∣∣�α 1 + |v|1+α � 1 + |v|2 , (3.8)

so that

E

T∫
0

∣∣∣∣∣∣∣
∫
S1

I3 dx

∣∣∣∣∣∣∣
2

dt �σ,α,T 1 + E ‖qε ‖4
L∞([0,T ];L2(S1))

(2.4)
� 1.

Continuing,

I1 ≤
∫
S1

εS′ ′(qε) |∂xqε |2 dx + 1

2

∫
S1

∣∣S′(qε)
∣∣2 dx + 1

2

∫
S1

(
Pε − u2

ε

)2
dx.
16
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By 
∣∣S′ ′∣∣� 1, (2.4) and Lemma 3.1, we thus arrive at

E

t∫
0

|I1 | ds � 1. (3.9)

Next, by (3.8), 
∣∣S′ ′∣∣� 1 and (2.4), we obtain

E

t∫
0

|I2 | ds �σ,α,T 1 + E

t∫
0

∫
S1

|qε |2 dx ds �σ,α,T 1. (3.10)

Finally, regarding L in (3.7), note that

S(v)v − 1

2
S′(v)v2 = 1

2
v2 (|v| + 1)α − α

2
|v|3 (|v| + 1)α−1 ≥ 1 − α

2
|v|2+α ;

hence

L ≥ 1 − α

2

∫
S1

|qε |2+α dx.

After integrating (3.7) in time, making use of the estimates (3.9), (3.10) and also S(v) �α 1 + |v|2, 
we arrive at

1 − α

2
E

T∫
0

∫
S1

|qε |2+α dx

�σ,α,T 1 + E

∫
S1

|qε(T , x)|2 dx + E

∫
S1

|qε(0, x)|2 dx
(2.4)
� 1.

This concludes the proof. �
The next result has no counterpart in the deterministic theory, see [21,22,63]. It is going to 

play an important role in the upcoming convergence analysis, as it will allow passing to the 
limit in products like qεPε towards qP , where Pε = K ∗ (u2

ε + 1
2 |qε |2) and P = K ∗ (u2

ε +
1
2q2
)
. The deterministic approach of establishing ε-uniform W 1,1

t,x estimates—to enforce strong 
convergence of Pε—does not work in the stochastic setting. Besides, the nonlinear quantity q2

ε

does not exhibit weak temporal Hölder continuity (uniformly in ε), which would be needed for 
a traditional stochastic compactness argument.

Proposition 3.3 (Temporal translation estimate). Let uε be the Hm solution of the viscous SPDE 
(1.5) with initial data u(0) = u0 satisfying (2.1) (m > 1), and set qε = ∂xuε . Fix a nonlinear 
function S ∈ W

2,∞
loc (R) that satisfies (3.1). Set Qε = S(qε). Then, for all ϑ ∈ (0, T ∧ 1) and 

ϕ ∈ C∞(S1),
17
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E sup
τ ∈(0,ϑ)

T −τ∫
0

∣∣∣∣∣∣∣
∫
S1

ϕ(x)
(
Qε(t + τ) − Qε(t)

)
dx

∣∣∣∣∣∣∣ dt � ‖ϕ‖C2(S1) ϑ
1
2 . (3.11)

Remark 3.4. In view of the regularity of Qε (which follows from Lemma D.1), the function 
τ → ∫ T −τ

0

∣∣ ∫
S1 ϕ(x)

(
Qε(t + τ) − Qε(t)

)
dx
∣∣ dt is a.s. continuous. Therefore, it follows that the 

supremum can be equivalently taken over Q ∩ (0, ϑ), so that the resulting object is a random 
variable.

Proof. The nonlinear composition Qε = S(qε) satisfies the SPDE (3.4). For any t ∈ [0, T ] and 
τ > 0 with t + τ ≤ T , we obtain (easily via integration by parts)

∣∣∣∣∣∣∣
∫
S1

ϕ(x)
(
Qε(t + τ) − Qε(t)

)
dx

∣∣∣∣∣∣∣
≤

9∑
i=1

t +τ∫
t

∫
S1

I (i)
ε dx ds +

11∑
i=10

∣∣∣∣∣∣∣
t +τ∫
t

∫
S1

I (i)
ε dx dW

∣∣∣∣∣∣∣ ,
where

I (1)
ε = |uε | |S(qε)| |∂xϕ| , I (2)

ε = 1

4

∣∣∣∂xσ
2
ε

∣∣∣ ∣∣3S(qε) − 2S′(qε)qε

∣∣ |∂xϕ| ,

I (3)
ε =

∣∣∣∣12σ 2
ε + ε

∣∣∣∣ |S(qε)|
∣∣∣∂2

xxϕ

∣∣∣ , I (4)
ε = ∣∣S′ ′(qε)

∣∣ ε |∂xqε |2 |ϕ| ,

I (5)
ε = ∣∣S′(qε)

∣∣ |Pε | |ϕ| , I (6)
ε = ∣∣S′(qε)

∣∣ ∣∣∣u2
ε

∣∣∣ |ϕ| ,

I (7)
ε =

∣∣∣∣S(qε)qε − 1

2
S′(qε)q

2
ε

∣∣∣∣ |ϕ| ,

I (8)
ε = 1

4

∣∣∣∂2
xxσ

2
ε

∣∣∣ ∣∣S(qε) − S′(qε)qε

∣∣ |ϕ| , I (9)
ε = 1

2
|∂xσε |2

∣∣S′ ′(qε)
∣∣ ∣∣∣q2

ε

∣∣∣ |ϕ| ,

I (10)
ε = σε S(qε) ∂xϕ, I (11)

ε = ∂xσε

(
S(qε) − S′(qε)qε

)
ϕ.

This implies that

E sup
τ ∈(0,ϑ)

T −τ∫
0

∣∣∣∣∣∣∣
∫
S1

ϕ(x)
(
Qε(t + τ) − Qε(t)

)
dx

∣∣∣∣∣∣∣ dt (3.12)

� ϑ

9∑
E
∥∥∥I (i)

ε

∥∥∥
L1([0,T ]×S1)
i=1

18
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+
11∑

i=10

T −ϑ∫
0

E sup
τ ∈(0,ϑ)

∣∣∣∣∣∣∣
t +τ∫
t

∫
S1

I (i)
ε dx dW(s)

∣∣∣∣∣∣∣ dt.

In what follows, we use the trivial fact that

‖ϕ‖L∞(S1) , ‖∂xϕ‖L∞(S1) ,

∥∥∥∂2
xxϕ

∥∥∥
L∞(S1)

≤ ‖ϕ‖C2(S1) .

For i ∈ {2, 3, 8, 9}, recalling σ ∈ W 2,∞(S1) and (3.1),

I (i)
ε � |qε |2 ‖ϕ‖C2(S1) ,

and thus, by (2.4) (as L∞
t L2

x ↪→ L2
t,x ),

E
∥∥∥I (i)

ε

∥∥∥
L1([0,T ]×S1)

�E
[

‖qε ‖2
L2([0,T ]×S1)

]
‖ϕ‖C2(S1) � ‖ϕ‖C2(S1) .

Similarly, for i = 7,

E
∥∥∥I (7)

ε

∥∥∥
L1([0,T ]×S1)

�E
[

‖qε ‖2
L2([0,T ]×S1)

]
‖ϕ‖C2(S1) � ‖ϕ‖C2(S1) .

For i = 5, we use (3.1), Lemma 3.1 and (2.4) (as L∞
t L2

x ↪→ L1
t,x ),

E
∥∥∥I (5)

ε

∥∥∥
L1([0,T ]×S1)

�E

⎡⎢⎣ T∫
0

∫
S1

|qε | dx dt ‖Pε ‖L∞([0,T ]×S1)

⎤⎥⎦‖ϕ‖C2(S1)

≤
(
E ‖qε ‖2

L1([0,T ]×S1)

)1/2 (
E ‖Pε ‖2

L∞([0,T ]×S1)

)1/2 ‖ϕ‖C2(S1)

� ‖ϕ‖C2(S1) .

Similarly, for i = 6,

E
∥∥∥I (6)

ε

∥∥∥
L1([0,T ]×S1)

�
(
E ‖qε ‖2

L1([0,T ]×S1)

)1/2 (
E ‖uε ‖4

L∞([0,T ]×S1)

)1/2 ‖ϕ‖C2(S1)

� ‖ϕ‖C2(S1) .

For i = 1, by Lemma 3.1 and (2.4) (as L∞
t L2

x ↪→ L2
t,x ),

E
∥∥∥I (1)

ε

∥∥∥
L1([0,T ]×S1)

�E
[

‖uε ‖L∞([0,T ]×S1) ‖qε ‖2
L2([0,T ]×S1)

]
‖ϕ‖C2(S1)

≤
(
E ‖uε ‖2

L∞([0,T ]×S1)

)1/2 (
E ‖qε ‖4

L2([0,T ]×S1)

)1/2 ‖ϕ‖C2(S1)

� ‖ϕ‖C2(S1) .
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For i = 4, by the second part of (2.4),

E
∥∥∥I (4)

ε

∥∥∥
L1([0,T ]×S1)

�E

T∫
0

∫
S1

ε

∣∣∣∂2
xxuε

∣∣∣2 dx dt ‖ϕ‖C2(S1) � ‖ϕ‖C2(S1) .

Finally, we turn to the stochastic integrals (i = 11, 12). By σ ∈ W 2,∞(S1), (3.1) and the BDG 
inequality,

E sup
τ ∈(0,ϑ)

∣∣∣∣∣∣∣
t +τ∫
t

∫
S1

I (i)
ε dx dW(s)

∣∣∣∣∣∣∣ dt

�E

⎡⎢⎢⎣
⎛⎜⎝ t +ϑ∫

t

⎛⎜⎝∫
S1

q2
ε dx

⎞⎟⎠
2

ds

⎞⎟⎠
1/2⎤⎥⎥⎦‖ϕ‖C2(S1)

≤ ϑ
1
2 E ‖qε ‖2

L∞([0,T ];L2(S1))
‖ϕ‖C2(S1)

(2.4)
� ϑ

1
2 ‖ϕ‖C2(S1) .

Given (3.12), the above estimates yield (3.11). �
4. Tightness and a.s. representations

4.1. Renormalisations

As explained in the introduction, we wish to use the ε-uniform a priori estimates (2.4), (2.5), 
(3.6) to extract a.s. convergence properties of uε and of the spatial gradient qε = ∂xuε , as well as 
of nonlinear quantities like q2

ε . Verifying the tightness of the different probability laws, among 
which the one for q2

ε is the most challenging, we construct Skorokhod a.s. representations of 
uε , whose laws are defined on the Polish space CtL

2
x , and Jakubowski a.s. representations of 

qε and several infinite sequences of nonlinear compositions of qε, whose laws are defined on 
suitable quasi-Polish spaces like Lp

t,x − w. In addition, for the energy variable q2
ε , we construct 

representations in the quasi-Polish spaces Lp
(
L

p
w

)
, for some p, which supplies a crucial strong 

convergence property in t . We refer to Section B for quasi-Polish spaces and their properties.
In what follows, we fix a sequence {εn}∞

n=1 of positive numbers such that εn → 0 as n → ∞. 
Let us introduce the random mappings:

Fq
εn

=
(
qεn,

(
qεn

)
+,
(
qεn

)
−
)

, F q2

εn
=
(
q2
εn

,
(
qεn

)2
+,
(
qεn

)2
−
)

. (4.1)

Here, we denote by f+ and f− the positive and negative parts of a function f , so that f (v) =
f+(v) + f−(v) = max(f (v), 0) + min(f (v), 0). Furthermore, the notation 

(
qεn

)2
± is a concise 

representation of 
(
(qεn)±

)2.
To execute various renormalisation procedures, we shall need to take limits as n → ∞ of 

infinite sequences of nonlinear compositions of qεn , like S�(qεn), where {S�(v)}�∈N is a sequence 
20



L. Galimberti, H. Holden, K.H. Karlsen et al. Journal of Differential Equations 387 (2024) 1–103
that approximates 1
2v2 up to some cut-off |v| ≤ �. The Skorokhod–Jakubowski procedure extracts 

simultaneously the a.s. convergence of all these variables. As a preparation, we introduce several 
sequences of random mappings that are built from the approximation {S�(v)}∞

�=1 of 1
2v2 on R:

S�(v) =

⎧⎪⎪⎨⎪⎪⎩
1
2v2, |v| ≤ �

− 1
6�

|v|3 + v2 − 1
2� |v| + 1

6�2, � < |v| < 2�

3
2� |v| − 7

6�2, |v| ≥ 2�

. (4.2)

Each function S� is convex and satisfies

S′
�(v) =

⎧⎪⎪⎨⎪⎪⎩
v, |v| ≤ �

sgn(v)
(
2 |v| − 1

2�
v2 − 1

2�
)
, � < |v| < 2�

3
2 sgn(v)�, |v| ≥ 2�

(4.3)

and

S′ ′
� (v) =

⎧⎪⎪⎨⎪⎪⎩
1, |v| ≤ �

1
�
(2� − |v|) , � < |v| < 2�

0, |v| ≥ 2�

. (4.4)

The random mappings that we introduce below are motivated by the need to pass to the weak 
limit in various nonlinear compositions of qεn , based on

S�(v±), S�(v±)′, S�(v±)′ ′v2,

S�(v±) − S�(v±)′v, S�(v±)v − 1

2
S�(v±)′v2.

(4.5)

Clearly, (v±)′ = 1{ |v± |>0}, 
(
v2±
)′ = 2v±, 

(
v2±
)′ ′ = 21{ |v± |>0}, and so S(v) = v2± belongs to 

W
2,∞
loc (R) and satisfies (3.1). Using (4.2), (4.3), (4.4) and the chain rule, we can readily compute 

the following nonlinear compositions:

S�(v±)′ = S′
�(v±), S�(v±)′ ′ = S′ ′

� (v±)1{ |v± |>0},

S�(v±) − S�(v±)′v =

⎧⎪⎪⎨⎪⎪⎩
− 1

2v2±, |v± | ≤ �

1
3�

|v± |3 − v± 2 + 1
6�2, � < |v± | < 2�

− 7
6�2, |v± | ≥ 2�

,

3S�(v±) − 2S�(v±)′v

=

⎧⎪⎪⎨⎪⎪⎩
− 1

2v2±, |v± | ≤ �

1
2�

|v± |3 − v± 2 − 1
2 |v± | � + 1

2�2, � < |v± | < 2�

3� |v | − 7�2, |v | ≥ 2�

, (4.6)
2 ± 2 ±

21



L. Galimberti, H. Holden, K.H. Karlsen et al. Journal of Differential Equations 387 (2024) 1–103
S�(v±)v − 1

2
S�(v±)′v2

=

⎧⎪⎪⎨⎪⎪⎩
0, |v± | ≤ �

1
12�

|v± |3 v± − 1
4 |v± | v±� + 1

6v±�2, � < |v± | < 2�

3
4 |v± | v±� − 7

6v±�2, |v± | ≥ 2�

.

In particular, this implies that S� ∈ W
3,∞
loc (R), |S�(v)| �� |v|, ∣∣S′

�(v)
∣∣ �� 1, 

∣∣S′ ′
� (v)

∣∣ � 1{ |v|≤2�}, 
and 

∣∣S�(v)v − 1
2S′

�(v)v2
∣∣�� |v|2, so that (3.1) is satisfied with S = S�. The nonlinear composi-

tions v → S�(v±) belong to W 2,∞
loc (R) and cater to similar bounds, see also Remark 7.11.

Notice that v → S�(v±)′ ′v2 = S′ ′
� (v±)v2 is a continuous function (but S�(v±)′ ′ is not). Later, 

we will also need to know that the function β(v) = S�(v±)′v belongs to W 2,∞
loc (R) (although 

S�(v±)′ does not) and satisfies (3.1) with S = β . Indeed,

β ′(v) = S′ ′
� (v±)1{ |v± |>0}v + S′

�(v±),

β ′ ′(v) = S′ ′ ′
� (v±)1{ |v± |>0}v + 2S′ ′

� (v±)1{ |v± |>0},
(4.7)

so that |β(v)| �� |v|, ∣∣β ′(v)
∣∣�� 1, and 

∣∣β ′ ′(v)
∣∣�� 1.

Remark 4.1. One may wonder about the specific choice (4.2) of renormalisations (entropies), 
which admittedly comes across as complicated. At this point, we run into a new difficulty com-
pared to the deterministic CH equation [63]. The particular form of the noise in the stochastic 
CH equation (1.3) leads to some key structural changes in the equation satisfied by S�(qε), which 
prevents us from using the simple entropies of [63] (linearly growing W 2,∞ approximations of 
v2). The entropies (4.5) are carefully constructed to allow for the control of some delicate error 
terms involving weak limits linked to the defect measure (1.12), see Remark 7.16.

4.2. Random mappings and path spaces

For � ∈ N , we introduce the random mappings

Fξ�,±
εn

= ξ�

∣∣
v=qεn

, ξ� ∈ S±
� , (4.8)

where S±
� denote the collections

S±
� =

{
S�(v±), S′

�(v±)v, S′ ′
� (v±)v2, S�(v±)v, S′

�(v±)v2, S′
�(v±)

}
(4.9)

of nonlinear functions. We also make use of FS
εn

as a notation for the gathering of all these 
�-dependent mappings:

FS
εn

=
{{

Fξ�,+
εn

, ξ� ∈ S+
�

}
�∈N ,

{
Fξ�,−

εn
, ξ� ∈ S−

�

}
�∈N

}
. (4.10)

Finally, we use Xn as a collective symbol for all the random mappings just introduced:

Xn =
(
uεn,F

q
ε ,F q2

ε ,W, zn,F
S
ε

)
, (4.11)
n n n
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where W is the Wiener process appearing in (1.5) and {zn}∞
n=1 is a sequence of C∞ approxima-

tions of the initial data u0, satisfying

zn ∈ Lp0
(
�; C∞(S1)

)
, zn

n↑∞−−−→ u0 in Lp0
(
�; H 1(S1)

)
, (4.12)

recalling the assumption p0 > 4 from Theorem 2.3.
The goal is to establish the tightness of the joint probability laws μn = L(Xn) of the ran-

dom mappings Xn : (�, F , P
) → (

X , BX
)
. To this end, we need to specify X—the path space 

for μn—and the σ -algebra BX . Denote the factors of the infinite vector Xn by X(l)
n and the 

corresponding factor spaces by Xl , l ∈ N . For example, X(1)
n = uεn and X(5)

n = q2
εn

, cf. (4.1). 
Whenever needed, we also use superscript symbols on Xn to identify the corresponding fac-

tor of Xn, for example, Xu
n = X

(1)
n and Xq2

n = X
(5)
n , while XS�(v+)

n would refer to X(7+�)
n with 

X
(7)
n = (

qεn

)2
−, see (4.8) and (4.1). Denote by μ(l) the corresponding marginals of μn, defined 

on 
(
Xl , BXl

)
. Similarly, we will write μu

n instead of μ(1)
n for the marginal linked to X(1)

n = uεn , 
and so forth, and the same for the factor spaces Xl .

Remark 4.2. The notation just introduced may appear overwhelming. Fortunately, most of it will 
be utilised only in this section.

For a fixed number r ∈ [1, 32
)

(close to 3/2), we specify the following spaces for the 
marginals:

Xu = CtL
2
x, XW = Ct , Xu0 = H 1

x ,

Xq = L2r
t,x − w, Xq± = L2r

t,x − w,

Xq2 = Lr
(
Lr

w

)
, Xq2± = Lr

(
Lr

w

)
,

Xξ = L2r (L2r
w ), ξ = S�(v±), S�(v±)′v, � ∈ N,

Xξ = L2r
t,x − w, ξ = S�(v±)′, � ∈ N,

Xξ = Lr
t,x − w, ξ = S�(v±)′ ′v2, S�(v±)v, S�(v±)′v2, � ∈ N.

(4.13)

Here, Ct = C([0, T ]), H 1
x = H 1(S1), and CtL

2
x = C([0, T ]; L2(S1)) are all Polish spaces. 

Furthermore, Lp
t,x − w = Lp([0, T ] × S1) − w, for any p ∈ [1, ∞), denotes the Lp space 

equipped with the weak topology, which is quasi-Polish. For the energy variables q2
εn

and (qεn)
2±, 

we use the space Lr
(
Lr

w

) = Lr
([0, T ]; Lr(S1) − w

)
, which is quasi-Polish as well, see Section B

and (B.1) for details. Notice that the topology of Lr
(
Lr

w

)
is strong in t and weak in x. Similarly, 

we use L2r (L2r
w ) for the variables S�

(
(qεn)±

)
and S′

�

(
(qεn)±

)
qεn (linearly growing approxima-

tions of 1
2 (qεn)

2±).

Remark 4.3. The spaces prescribed in (4.13) reflect some minimum requirements for conver-
gence in Section 7. The significance of the peculiar “strong-weak” spaces Lr

(
Lr

w

)
, L2r

(
L2r

w

)
will become clear during the proofs of Lemmas 7.2, 7.8, and 7.9. Roughly speaking, these spaces 
will allow us to pass to the limit in delicate product terms like S′(q̃εn) P̃εn as well as in various 
stochastic integrals.
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The path space X for the joint laws {μn}n∈N is taken as

X =
∞∏
l=1

Xl , BX = B(X ), (4.14)

which carries the product topology for its infinitely many factors.

Remark 4.4. Each factor space Xl in X is either Polish or quasi-Polish. Polish spaces are 
quasi-Polish and countable products of quasi-Polish spaces are quasi-Polish, see Lemma B.4. 
Generally, for a quasi-Polish space Y there are two natural candidates for the σ -algebra BY , the 
Borel σ -algebra BY = B(Y) or the σ -algebra BY = Bf generated by the separating sequence 
f = {fl }l∈N defining the space, see Definition B.1. In general, Bf ⊂ B(Y), see Lemma B.9. 
However, for each space in (4.13) we use the Borel σ -algebra, as it happens to coincide with 
the one generated by the separating sequence (see Lemma B.2). The space X for the joint laws 
is equipped with the product topology. For a quasi-Polish product space like X , the Borel σ -
algebra B(X ) for the product topology is likely to differ from the product of the individual Borel 
σ -algebras (although they do coincide if X is Polish), see Lemma B.9. However, as is shown 
in [46], this is not a problem as long as we work with random mappings with tight laws. To be 
specific, we take BX = B(X ).

Consider the random map Xn = {
X

(l)
n

}
l∈N : (�, F , P

) → (
X , BX

)
defined by (4.11). By 

Theorem 2.3, one can check that each factor X(l)
n is a random variable (Borel measurable). We 

only prove this for the nonlinear parts of Xn involving qεn (the other parts are simpler). By con-

struction, � 
qεn−→ C([0, T ]; H 1(S1)) is a random variable. Since all of our nonlinear functions 

or entropies (here denoted by the generic placeholder β) are continuous real-valued functions 
and satisfy (at least) the bound |β(v)| � |v|3−1, Nemytskii theory ensures then that these en-
tropies β , when viewed as operators, are bounded and continuous from L3

t,x into L3/2
t,x . Because 

L
3/2
t,x embeds continuously in Lr

t,x − w and CtH
1
x embeds continuously in L3

t,x , the composition 

� 
β(qεn )

−→ Lr
t,x − w is a random variable.

4.3. Compactness and tightness criteria

The goal is to establish the tightness of the joint laws of Xn. The most difficult part is 
to verify the tightness of the laws of the energy variables q2

εn
and (qεn)

2±—and similarly also 
S�

(
(qεn)±

)
, S′

�

(
(qεn)±

)
qεn—which take values in a quasi-Polish space of the form Lp1

(
L

p2
w

)
, for 

some p1, p2 ∈ (1, ∞), see (B.1). This space encodes strong temporal and weak spatial compact-
ness. The strong t-compactness of q2

εn
is essential for our analysis, noting that there is no hope of 

establishing uniform Hölder continuity in t , even if the spatial topology is weak. This excludes 
the traditional compactness approach based on tightness in the space C([0, T ]; Lp(S1) − w), 
used by many of the references listed in Section 1. Indeed, the space Lp1

(
L

p2
w

)
was carefully 

singled out to resolve this particular predicament of the energy variable.
The following result, which is of independent interest, provides general criteria for compact-

ness in Lp1
(
L

p2
w

)
. These criteria will be later used in the analysis of tightness. For the space 

Lp1
(
L

p2
w

)
there exists a sequence of continuous functionals that separate points and generate the 
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Borel σ -algebra. This fact is discussed in Appendix B and can be found in (B.1). Based on this, 
Jakubowski [46, page 169] states that the notions of compactness and sequential compactness 
are equivalent.

The lemma stated below identifies conditions that ensure the relative sequential compactness 
of a subset in Lp1

(
L

p2
w

)
. In Appendix B.3, we show that the notions of relative compactness

and relative sequential compactness are also the same in quasi-Polish spaces like Lp1
(
L

p2
w

)
. 

Whence, the closure K of a relatively sequentially compact set K can be used to verify the 
tightness condition of Jakubowski’s theorem [46] (see Theorem B.12).

Lemma 4.5 (Compactness criterion). Fix some integrability indices p1, p2 ∈ (1, ∞), and con-
sider the space Lp1

(
L

p2
w

) = Lp1
([0, T ]; Lp2(S1) − w

)
, cf. (B.1). Let K be a subset of Lp1

(
L

p2
w

)
for which the following conditions hold uniformly in Q ∈ K:

(i) ‖Q‖Lp1 ([0,T ];Lp2 (S1)) � 1,

(ii) ‖Q‖Lp̄1 ([0,T ];L1(S1)) � 1, for some p̄1 > p1,

(iii)

T −τ∫
0

∣∣∣∣∣∣∣
∫
S1

ϕ(x)
(
Q(t + τ, x) − Q(t, x)

)
dx

∣∣∣∣∣∣∣ dt
τ ↓0−−→ 0, ∀ϕ ∈ C∞(S1).

Then K is relatively sequentially compact in Lp1
(
L

p2
w

)
.

Remark 4.6. Note carefully how, in (ii), some higher temporal integrability is traded for low 
spatial integrability. This flexibility is important for us. However, in other applications, if one is 
happy with the temporal integrability provided by (i), then (ii) can be dropped at the expense of 
getting compactness in Lp

(
L

p2
w

)
, ∀p < p1.

Proof. Consider a subset K ⊂ Lp1
(
L

p2
w

)
for which (i), (ii) and (iii) hold. To establish the lemma, 

we must demonstrate that for any sequence {Qn}n∈N in K, it is possible to find a subsequence 
that converges in Lp1

(
L

p2
w

)
.

By (i), there exists a subsequence 
{
Qnj

}
j ∈N of {Qn}n∈N that converges weakly to some Q

in Lp1([0, T ]; Lp2(S1)):

T∫
0

∫
S1

ψ(t)ϕ(x)Qnj
(t, x)dx dt

j ↑∞−−−→
T∫

0

∫
S1

ψ(t)ϕ(x)Q(t, x)dx dt, (4.15)

for all ψ ∈ Lp′
1([0, T ]) and ϕ ∈ Lp′

2(S1), 1
p1

+ 1
p′

1
= 1

p2
+ 1

p′
2

= 1.

Let Jδ be a standard (Friedrichs) mollifier in x and set

Qnj ,δ = Qnj
∗ Jδ, Qδ = Q ∗ Jδ.

Then
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Qnj ,δ

j ↑∞−−−⇀ Qδ in Lp1([0, T ]; Lp2(S1)), for each fixed δ,

Qδ
δ↓0−−→ Q in Lp1([0, T ]; Lp2(S1)),

(4.16)

where the second convergence comes from basic properties of mollifiers (in x) and, via (i), 
Lebesgue’s dominated convergence theorem in t . The first convergence can be proved using 
a basic property of the convolution product. Indeed, we have∣∣∣∣∣∣∣

T∫
0

∫
S1

ψ(t)ϕ(x)
(
Qδ(t, x) − Qnj ,δ(t, x)

)
dx dt

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
T∫

0

∫
S1

ψ(t)ϕδ(x)
(
Q(t, x) − Qnj

(t, x)
)

dx dt

∣∣∣∣∣∣∣
j ↑∞−−−→ 0,

for each fixed δ > 0, recalling that the algebraic tensor product Lp′
1 ⊗ Lp′

2 is dense in Lp′
1(Lp′

2).
By the translation estimate (iii) with ϕ(x) = Jδ(y − x), for any y ∈ S1,

T −τ∫
0

∣∣Qnj ,δ(t + τ, y) − Qnj ,δ(t, y)
∣∣ dt

τ ↓0−−→ 0,

uniformly in j . Using (i) and Vitali’s convergence theorem (in y),

T −τ∫
0

∫
S1

∣∣Qnj ,δ(t + τ, y) − Qnj ,δ(t, y)
∣∣ dy dt

τ ↓0−−→ 0, (4.17)

uniformly in j .
Next, by (i), we have 

∥∥∂xQnj ,δ

∥∥
Lp1 ([0,T ];L1(S1))

�δ 1 and thus

∥∥Qnj ,δ

∥∥
Lp1 ([0,T ];W 1,1(S1))

�δ 1.

By (ii), we also deduce that∥∥Qnj ,δ

∥∥
Lp̄1 ([0,T ];L1(S1))

� 1, where p̄1 > p1.

Consider the compact embedding

W 1,1(S1)↪−↪→L1(S1),

and now note that 
{
Qnj ,δ

}
j ∈N is bounded in

Lp̄1([0, T ]; L1(S1))
⋂

L1([0, T ]; W 1,1(S1)),
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uniformly in j , for each fixed δ. Besides, from (4.17),

∥∥Qnj ,δ(· + τ, ·) − Qnj ,δ

∥∥
L1([t1,t2 ];L1(S1))

τ ↓0−−→ 0,

for all 0 < t1 < t2 < T , uniformly in j , for each fixed δ. By [58, Theorem 4], we may therefore 
assume that there exists a limit Qδ ∈ Lp1([0, T ]; L1(S1)) such that

Qnj ,δ
j ↑∞−−−→ Qδ in Lp1([0, T ]; L1(S1)), (4.18)

for each fixed δ. However, by the uniqueness of the weak limit in (4.16),

Qδ = Qδ = Q ∗ Jδ.

In fact, all subsequences extracted from 
{
Qnj ,δ

}
j ∈N have further subsequences that converge to 

the same limit Q ∗ Jδ , and therefore the original sequence also converges to that limit.

Let us verify that Qnj

j ↑∞−−−→ Q in Lp1
(
L

p2
w

)
, where Q is defined in (4.15). Fix any ϕ ∈

C∞(S1). We proceed as follows:

Iϕ(j) =
T∫

0

∣∣∣∣∣∣∣
∫
S1

ϕ(x)
(
Q(t, x) − Qnj

(t, x)
)

dx

∣∣∣∣∣∣∣
p1

dt

�
T∫

0

∣∣∣∣∣∣∣
∫
S1

ϕ(x)
(
Qδ(t, x) − Qnj ,δ(t, x)

)
dx

∣∣∣∣∣∣∣
p1

dt

︸ ︷︷ ︸
=:I1(j,δ)

+
T∫

0

∣∣∣∣∣∣∣
∫
S1

ϕ(x)
(
Q(t, x) − Qδ(t, x)

)
dx

∣∣∣∣∣∣∣
p1

dt

︸ ︷︷ ︸
=:I2(δ)

+
T∫

0

∣∣∣∣∣∣∣
∫
S1

ϕ(x)
(
Qnj

(t, x) − Qnj ,δ(t, x)
)

dx

∣∣∣∣∣∣∣
p1

dt

︸ ︷︷ ︸
=:I3(δ,j)

.

By (4.18),

I1(j, δ) ≤ ‖ϕ‖L∞
∥∥Qδ − Qnj ,δ

∥∥p1

Lp1 ([0,T ];L1(S1))

j ↑∞−−−→ 0,

for each fixed δ > 0. Next, we show that I2 and I3 tend to zero as δ → 0, uniformly in j . By 
Hölder’s inequality, (4.16), and C∞(S1) ↪→ Lp′

2(S1)
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I2(δ) ≤ ‖Q − Qδ ‖p1
Lp1 ([0,T ];Lp2 (S1))

‖ϕ‖p1

L
p′

2 (S1)

δ↓0−−→ 0,

uniformly in j . Finally, by (i), a basic property of the convolution product, Hölder’s inequality, 
and C∞(S1) ↪→ Lp′

2(S1), it follows that

I3(j, δ) =
T∫

0

∣∣∣∣∣∣∣
∫
S1

Qnj
(t, x)

(
ϕ(x) − ϕδ(x)

)
dx

∣∣∣∣∣∣∣
p1

dt

≤ ∥∥Qnj

∥∥p1

Lp1 ([0,T ];Lp2 (S1))
‖ϕδ − ϕ‖p1

L
p′

2 (S1)

� ‖ϕδ − ϕ‖p1

L
p′

2 (S1)

δ↓0−−→ 0, uniformly in j .

Summarising, to any given κ > 0, we can choose δ ≤ δ0, for a small enough δ0 = δ0(κ), such 
that I2(δ) + I3(δ, j) ≤ κ/2 for all j , and then choose an integer j0 = j0(δ0) such that j ≥ j0

implies I1(j, δ0) ≤ κ/2, and thus Iϕ(j) ≤ κ for all j ≥ j0. In other words, Iϕ(j) 
j ↑∞−−−→ 0, for any 

ϕ ∈ C∞(S1). By density of C∞(S1) in Lp′
2(S1), this convergence holds for all ϕ ∈ Lp′

2(S1), 
which concludes the proof. �

We use the previous lemma to formulate a tightness criterion in Lp1
(
L

p2
w

)
.

Lemma 4.7 (Tightness criterion). Fix p1, p2 ∈ (1, ∞) and consider the quasi-Polish space 
Lp1
(
L

p2
w

)
, cf. (B.1). Let {Qn}n∈N be a sequence of random variables, defined on a standard 

probability space 
(
�, F , P

)
, that take values in Lp1

(
L

p2
w

)
. Suppose the following conditions 

hold (uniformly in n ∈ N):

(i) E ‖Qn‖Lp1 ([0,T ];Lp2 (S1)) � 1,

(ii) E ‖Qn‖Lp̄1 ([0,T ];L1(S1)) � 1, for some p̄1 > p1,

and, for all ϕ ∈ C∞(S1) and ϑ ∈ (0, T ∧ 1
)
,

(iii) E sup
τ ∈(0,ϑ)

T −τ∫
0

∣∣∣∣∣∣∣
∫
S1

ϕ(x)
(
Qn(t + τ, x) − Qn(t, x)

)
dx

∣∣∣∣∣∣∣ dt ≤ Cϕϑα,

for some α ∈ (0, 1) and a constant Cϕ independent of n. Then the sequence {L(Qn)}n∈N of 
probability laws is tight on Lp1

(
L

p2
w

)
.

Proof. We will verify the tightness of the laws μn = L(Qn) on Lp1
(
L

p2
w

)
by using Lemma 4.5

to produce, for each κ > 0, a compact set Kκ in Lp1
(
L

p2
w

)
such that μn

(
Kc

κ

) = P
(
Xn ∈ Kc

κ

) ≤ κ , 
uniformly in n.

For arbitrary sequences {bk }k∈N , {νl }l∈N , {ϑl }l∈N of positive numbers, with νl, ϑl → 0 as 
l → ∞, and an arbitrary function sequence {ϕk }k∈N that is dense in C∞(S1) (for the uniform 
topology), we introduce the set
28
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Ka =
∞⋂

k=1

{
Q ∈ Lp1

(
Lp2

w

) : ‖Q‖Lp1 ([0,T ];Lp2 (S1)) + ‖Q‖Lp̄1 ([0,T ];L1(S1))

+ sup
l∈N

1

νl

sup
τ ∈(0,ϑl )

T −τ∫
0

∣∣∣∣∣∣∣
∫
S1

ϕk(x)
(
Q(t + τ, x) − Q(t, x)

)
dx

∣∣∣∣∣∣∣ dt ≤ a bk

}
,

for a > 0. By Lemma 4.5, the set Ka is relatively compact in Lp1
(
L

p2
w

)
, for each a > 0. By the 

Chebyshev inequality and the assumptions (i), (ii) and (iii),

P
(
Qn ∈ Kc

a

) ≤
∞∑

k=1

3

a bk

E ‖Qn‖Lp1 ([0,T ];Lp2 (S1)) +
∞∑

k=1

3

a bk

E ‖Qn‖Lp̄1 ([0,T ];L1(S1))

+
∞∑

k,l=1

3

a bk νl

E sup
τ ∈(0,ϑl)

T −τ∫
0

∣∣∣∣∣∣∣
∫
S1

ϕk

(
Qn(t + τ, x) − Qn(t, x)

)
dx

∣∣∣∣∣∣∣ dt

≤ C1

a

∞∑
k=1

1

bk

+ 1

a

( ∞∑
k=1

Cϕk

bk

)( ∞∑
l=1

ϑα
l

νl

)
,

for some n-independent constant C1.
Particularising bk = 2k+1 max

(
C1,Cϕk

)
, and τl, ϑl → 0 with νl = ϑα

l 2l , we obtain P
(
Qn ∈

Kc
a

)
< 1

a
, which can be made ≤ κ by taking a large. As a result, we can specify the required 

compact Kκ as the closure of Ka , for some a = a(κ), such that μn

(
Kc

κ

) ≤ κ . �
4.4. Tightness and a.s. representations

We are now in a position to verify the crucial tightness property of Xn.

Lemma 4.8 (Tightness). Consider the random variables Xn : (�, F , P
) → (

X , BX
)

defined by 
(4.11) and (4.1), (4.8), (4.10), (4.12), (4.13), (4.14). Then the sequence {μn = L(Xn)}n∈N of 
joint laws is tight, as probability measures defined on 

(
X , BX

)
.

Proof. For each κ > 0, we must produce a compact set Kκ ⊂ X such that

μn

(
Kκ

)
> 1 − κ ⇐⇒ μn

(
Kc

κ

) = P
(
Xn ∈ Kc

κ

) ≤ κ, (4.19)

uniformly in n. By Tychonoff’s theorem, the tightness of the joint laws on X follows from 
the tightness of the product measures 

⊗
l∈N μ

(l)
n on X (with the product σ -algebra). In other 

words, to prove (4.19) it is sufficient to find compact sets Kl,κ ⊂ Xl such that μ(l)
n

(
Kc

l,κ

) ≤ κ , for 
arbitrary κ > 0, for each l ∈ N .

As most of the cases can be treated similarly, we will carry out the tightness analysis of μξ
n

only for

ξ = u, q, q2, u0, W, S�(q+), S�(q+)′q, S�(q+)q,
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thereby making up for each path space in (4.13) at least once, see also (4.1), (4.8), (4.10), and 
(4.12).

First, we verify the tightness on Xu = CtL
2
x of the laws μu

n of uεn using the Lp0
ω L∞

t H 1
x bound 

(2.4) and the Hölder continuity estimate (2.5). It is enough to verify tightness via relative com-
pactness. For a > 0, set

K(a) =
{
f ∈ C([0, T ]; L2(S1))

⋂
L∞([0, T ]; H 1(S1)) :

‖f ‖L∞([0,T ];H 1(S1)) + ‖f ‖Cθ ([0,T ];L2(S1)) ≤ a
}
, (4.20)

where θ ∈ (0, 1/4) is fixed (and constrained by (ii) of Theorem 2.3). By the Arzelà–Ascoli 
theorem [58, Lemma 1], K(a) is relatively compact in C([0, T ]; L2(S1)). By the Chebyshev 
inequality,

P
(
uεn ∈ K(a)c

)
<

1

a
E
∥∥uεn

∥∥
L∞([0,T ];H 1(S1))

+ 1

a
E
∥∥uεn

∥∥
Cθ ([0,T ];L2(S1))

(2.4),(2.5)
� 1

a
,

which can be made ≤ κ by taking a large. Hence, we can specify the required compact Ku,κ as 
the closure of K(a), for some a = a(κ), such that μu

n

(
Kc

u,κ

) ≤ κ .

Second, we consider μξ
n, ξ = S�(q+)q , � ∈ N . By (4.2), |S�(v+)v| �� |v|2. In view of Propo-

sition 3.2,

E
∥∥S�

(
(qεn)+

)
qεn

∥∥r

Lr ([0,T ]×S1)
� 1, � ∈ N, (4.21)

where the integrability index r appears in (4.13). Let a be a positive number and consider the set

K(a) =
{
f ∈ Lr([0, T ] × S1) : ‖f ‖r

Lr ([0,T ]×S1))
≤ a
}
.

By the Banach–Alaoglu theorem and reflexivity of Lr
t,x , K(a) is a compact subset of Xξ =

Lr
t,x − w, ξ = S�(q+)q , cf. (4.13). By Chebyshev’s inequality and (4.21),

P
(
S�

(
(qεn)+

)
qεn ∈ K(a)c

)
<

1

a
E
∥∥S�

(
(qεn)+

)
qεn)

∥∥r

Lr ([0,T ]×S1)
� 1

a
,

which can be made ≤ κ for large a. Thus, we pick K(a), for some a = a(κ), as the required 
compact Kξ,κ for which μξ

n

(
Kc

ξ,κ

) ≤ κ , for ξ = S�(q+)q , � ∈ N . Similarly, we can construct a 
compact subset Kq,κ of Xq = L2r

t,x − w such that μq
n

(
Kc

q,κ

) ≤ κ .
Since the law of W is tight as a Radon measure on the (Polish) space C([0, T ]), there is a 

compact subset KW,κ of C([0, T ]) such that μW
n

(
Kc

W,κ

) ≤ κ .

By the hypothesis (4.12), E ‖zn − u0 ‖p0

H 1(S1)

n↑∞−−−→ 0. Therefore, by Chebyshev’s inequality, 
we deduce the tightness of the laws of zn, that is, there exists a compact set Ku0,κ in the space 
H 1(S1) such that μu0

n

(
Kc

,κ

) ≤ κ .
u0
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Next, let us consider the tightness of μq2

n on the “strong in t and weak in x” path space Xq2 =
Lr
(
Lr

w

)
. We will apply Lemma 4.7 to Qn = q2

εn
with p1 = p2 = r , recalling that r < 3/2 is fixed 

in (4.13). Note that the first condition (i) of the lemma is satisfied by the higher integrability 
estimate (3.6). To verify (ii), we use the estimate (2.4) as follows:

(
E ‖Qn‖Lp([0,T ];L1(S1))

)p = E

T∫
0

‖Qn(t)‖p

L1(S1)
dt

= E

T∫
0

∥∥qεn(t)
∥∥2p

L2(S1)
dt �T E

∥∥qεn

∥∥2p

L∞([0,T ];L2(S1))
� 1,

for any p ∈ [1, p0/2
]
, where p0 > 4 is fixed in Theorem 1.1. The final condition (iii) is satisfied 

by Proposition 3.3 with S(v) = v2.
Similarly, applying Lemma 4.7 to Qn = S�

(
(qεn)+

)
with p1 = p2 = 2r , we deduce the 

tightness of μS�(q+)
n on XS�(q+) = L2r

(
L2r

w

)
. The first condition (i) is satisfied by the higher 

integrability estimate (3.6), recalling that 
∣∣S�

(
(qεn)+

)∣∣��

∣∣qεn

∣∣, cf. (4.2). To verify (ii), note that

(
E ‖Qn‖Lp([0,T ];L1(S1))

)p �� E

T∫
0

∥∥qεn(t)
∥∥p

L1(S1)
dt

�T E
∥∥qεn

∥∥p

L∞([0,T ];L2(S1))
� 1,

for any p ∈ [1, p0 ] (keep in mind that p0 > 4 and 2r < 3). The condition (iii) is satisfied by 
Proposition 3.3, which can be applied because v → S�(v+) ∈ W

2,∞
loc (R), see (4.6). Likewise, we 

can apply Lemma 4.7 to Qn = S�

(
(qεn)+

)′
qεn (still with p1 = p2 = 2r), to deduce the tightness 

of μS�(q+)′q
n on XS�(q+)′q = L2r

(
L2r

w

)
. Here, note carefully that Proposition 3.3 applies owing to 

the fact that the map v → S�(v+)′v belongs to W 2,∞
loc (R), see (4.7). �

Given Lemma 4.8 (tightness), the following theorem is an immediate consequence of the main 
result of Jakubowski [46], recalled as Theorem B.12 in the appendix. We refer to [10–12,52] for 
the first applications of the Jakubowski theorem to SPDEs. We rely on the Jakubowski version 
of Skorokhod’s representation theorem because of the non-metrisable weak topologies in (4.14).

Proposition 4.9 (Skorokhod–Jakubowski representations). Fix a sequence {εn} of positive num-
bers with εn → 0 as n → ∞, and consider the corresponding strong Hm solutions uεn of the 
viscous SPDE (1.5) with initial data uεn(0) = zn, cf. (4.12). Denote the spatial gradient by 
qεn = ∂xuεn . Consider the random mappings Xn : (�, F , P

) → (
X , BX

)
defined by (4.11) and 

(4.1), (4.8), (4.10), (4.12), (4.13), (4.14). There exist a new probability space 
(
�̃, F̃, P̃

)
and 

X -valued random variables

X̃n =
(
ũn, F̃

q
n , F̃

q2

n , W̃n, ũ0,n, F̃
S
n

)
, X̃ =

(
ũ, F̃ q , F̃ q2

, W̃ , ũ0, F̃S
)

, (4.22)
31



L. Galimberti, H. Holden, K.H. Karlsen et al. Journal of Differential Equations 387 (2024) 1–103
defined on 
(
�̃, F̃ , P̃

)
, such that along a subsequence (notationally not relabelled) the joint laws 

of Xn and X̃n coincide for all n, and X̃n
n↑∞−−−→ X̃ almost surely, in the product topology on X . In 

the first line of (4.22), we have

F̃ ξ�,±
εn

= ξ�

∣∣
v=q̃εn

, ξ� ∈ S±
� , � ∈ N,

F̃S
εn

=
{{

F̃ ξ�,+
εn

, ξ� ∈ S+
�

}
�∈N ,

{
F̃ ξ�,−

εn
, ξ� ∈ S−

�

}
�∈N

}
,

(4.23)

where S±
� denote the collections of nonlinearities given by (4.9). In the second line of (4.22), the 

“overline” should be understood as sitting over each component of the overlined quantity; for 

example, F̃ q =
(

q̃, q̃+, q̃−
)

and F̃ q2 =
(

q̃2, q̃2+, q̃2−
)

, with q̃ = q̃ . More explicitly, we have the 

following P̃–a.s. convergences:

ũn
n↑∞−−−→ ũ in CtL

2
x, W̃n

n↑∞−−−→ W̃ in Ct , ũ0,n
n↑∞−−−→ ũ0 in H 1

x ,

q̃n

n↑∞−−−⇀ q̃,
(
q̃n

)
±

n↑∞−−−⇀ q̃± in L2r
t,x,

q̃2
n

n↑∞−−−→ q̃2 in Lr
(
Lr

w

)
, (q̃n)

2±
n↑∞−−−⇀ q̃2± in Lr

(
Lr

w

)
,

S�

(
(q̃n)±

) n↑∞−−−→ S�

(
q̃±
)

in L2r (L2r
w ), � ∈ N,

S�

(
(q̃n)±

)′
q̃n

n↑∞−−−→ S�

(
q̃±
)′
q̃ in L2r (L2r

w ), � ∈ N,

S�

(
(q̃n)±

)′ ′
q̃2
n

n↑∞−−−⇀ S�

(
q̃±
)′ ′

q̃2 in Lr
t,x, � ∈ N,

S�

(
(q̃n)±

)
q̃n

n↑∞−−−⇀ S�

(
q̃±
)
q̃ in Lr

t,x, � ∈ N,

S�

(
(q̃n)±

)′
q̃2
n

n↑∞−−−⇀ S�

(
q̃±
)′
q̃2 in Lr

t,x, � ∈ N,

S�

(
(q̃n)±

)′ n↑∞−−−⇀ S�

(
q̃±
)′

in L2r
t,x, � ∈ N.

(4.24)

Proof. An application of Theorem B.12 supplies all the claims of the proposition, except the 
one that the nonlinear composition variables take the explicit form (4.23). However, this follows 
from Lemma B.13. �
Remark 4.10. As we shall henceforth be working in the new probability space, for brevity, we 

drop the tilde under the overline indicating a weak limit. For example, F̃ q = ( q̃, q+, q− ) and 

F̃ q2 =
(

q2, q2+, q2−
)

. Similarly, instead of S�(q̃±), we write S�(q±), and so forth with the other 
nonlinear compositions.

5. Properties of a.s. representations

The strong Hm solution uεn of the SPDE (1.5) possesses several consequential bounds, see 
Theorem 2.3, Lemma 3.1 and Proposition 3.2. In this section, we wish to transfer these bounds 
to ũn (the Skorokhod–Jakubowski representation from Proposition 4.9). At the moment, we do 
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not have the SPDE satisfied by ũn, so we cannot derive them as before. Instead, as is often 
done in the literature, we will appeal to the fact that uεn and ũn share the same probability law 
and invoke the Kuratowski–Lusin–Souslin (KLS) theorem. We refer to [52, Corollary A.2] and 
[12, Proposition C.2] for the quasi-Polish version of this theorem (cf. Lemma B.3). The KLS 
theorem allows one to assert that spaces of higher integrability/regularity are Borel subsets of the 
postulated path spaces (4.13). The law shared by uεn and ũn can then be integrated against over 
these better function spaces to derive bounds for ũn from those of uεn .

Lemma 5.1 (Spatial gradient). Let ũn, q̃n, ũ, q̃ be the Skorokhod–Jakubowski representations 
from Proposition 4.9. There is an event �̃0, with P̃ (�̃0) = 1, such that for any ω̃ ∈ �̃0 there exist 
sets En

(
ω̃
)
, E
(
ω̃
) ⊂ [0, T ] × S1 of full measure on which the weak spatial derivatives of ũn, ũ

are q̃n, q̃ , respectively, i.e., for ω̃ ∈ �̃0,

∂xũn(ω̃, t, x) = q̃n(ω̃, t, x) for a.e. (t, x) ∈ En(ω̃),

∂xũ(ω̃, t, x) = q̃(ω̃, t, x) for a.e. (t, x) ∈ E(ω̃).
(5.1)

Proof. We first show that P̃–a.s., for every ψ ∈ C([0, T ]; C1(S1)),

−
T∫

0

∫
S1

ũn∂xψ dx dt =
T∫

0

∫
S1

q̃nψ dx dt, (5.2)

which implies the first claim in (5.1). Let {ψj }∞
j =1 be a countable dense subset of C([0, T ];

C1(S1)), and consider the continuous mappings

Fj : C([0, T ]; L2(S1)) × (L2r ([0, T ] × S1) − w
) → R,

Fj (u, q) =
T∫

0

∫
S1

u∂xψj dx dt +
T∫

0

∫
S1

q ψj dx dt.

By continuity of Fj , Remark B.11, and the equality of joint laws,

P̃
({

Fj

(
ũn, q̃n

) = 0
}) = P

({
Fj

(
uεn, qεn

) = 0
}) = 1.

Since there are countably many pairs (n, j), there is a set �̃0 of full P̃–measure such that 
Fj

(
ũn(ω̃), q̃n(ω̃)

) = 0 for all (n, j), ω̃ ∈ �̃0. This implies (5.2).

Proposition 4.9 gives the P̃–a.s. convergences ũn
n↑∞−−−→ ũ in C([0, T ]; L2(S1)) and q̃n

n↑∞−−−⇀
q̃ in L2r ([0, T ] × S1) jointly. For a fixed j , we obtain a.s. that 

∫ T

0

∫
S1 q̃nψj dx dt

n↑∞−−−→∫ T

0

∫
S1 q̃ ψj dx dt . Similarly, we have the a.s. convergence 

∫ T

0

∫
S1 ũn∂xψj dx dt

n↑∞−−−→∫ T ∫
1 ũ ∂xψj dx dt . By density, we thus arrive at
0 S
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T∫
0

∫
S1

ψ q̃ dx dt = −
T∫

0

∫
S1

∂xψ ũdx dt, P̃–a.s.,

for any ψ ∈ C([0, T ]; C1(S1)). This establishes the second claim in (5.1). �
Lemma 5.2 (Regularity). Let ũn, q̃n be the Skorokhod–Jakubowski representations from Propo-
sition 4.9. Then ũn ∈ L2([0, T ]; Hm(S1)), P̃–a.s., for any m ≥ 1, and thus q̃n(t, x) = ∂xũn(t, x)

pointwise in (t, x), P̃–a.s.

Proof. Recall that uεn is the strong solution of the viscous SPDE (1.5) with initial data uεn(0) =
zn, cf. (4.12). By Definition 2.1, uεn belongs to L2([0, T ]; Hm(S1)), a.s., for any m. Since the 
intersection L2([0, T ]; Hm(S1)) ∩ C([0, T ]; L2(S1)) injects continuously into the path space 
C([0, T ]; L2(S1)), cf. (4.13), under the identity map, its image under the injection is Borel in 
C([0, T ]; L2(S1)), according to the KLS theorem (cf. Lemma B.3). Therefore, by the equality 
of laws, also the variable ũn belongs to L2([0, T ]; Hm(S1)), a.s., for any m. Since q̃n is the weak 
x-derivative of ũn (cf. Lemma 5.1), and we have the inclusion Hm(S1) ↪→ Cm−1/2(S1), this 
x-derivative is classical. �
Lemma 5.3 (A priori estimates). Let p0 > 4 be as specified in Theorem 2.3 and r ∈ [1, 3/2) as 
fixed in (4.13). Let ũn, q̃n be the Skorokhod–Jakubowski representations from Proposition 4.9. 
There exists a constant C, independent of n, such that

Ẽ ‖ũn‖p0
L∞([0,T ];H 1(S1))

≤ C, Ẽ ‖q̃n‖p0
L∞([0,T ];L2(S1))

≤ C,

and Ẽ ‖q̃n‖2r
L2r ([0,T ]×S1)

≤ C.

Proof. By the continuous injection of the Polish space Y = C([0, T ]; H 1(S1)) into the path 
space X u = C([0, T ]; L2(S1)), the KLS theorem ensures that Y is a Borel subset of X u, and 
thus the equality of laws implies the first estimate:

Ẽ ‖ũn‖p0
L∞([0,T ];H 1(S1))

=
∫
Y

‖v‖p0
L∞([0,T ];H 1(S1))

dμu
n(v)

= E
∥∥uεn

∥∥p0
L∞([0,T ];H 1(S1))

(2.4)
� 1,

recalling that μu
n denotes the law of uεn , cf. Section 4.

The second estimate is a consequence of the first and Lemmas 5.1, 5.2. Since the injec-
tion L2r ([0, T ] × S1) ↪→ L2r ([0, T ] × S1) − w is continuous, we can use the KLS theorem 
on quasi-Polish spaces (Lemma B.3) and the equality of laws to deduce the third estimate: 

Ẽ ‖q̃n‖2r
L2r ([0,T ]×S1)

= E 
∥∥qεn

∥∥2r

L2r ([0,T ]×S1)

(3.6)
� 1. �

By the a.s. convergence (4.24) and a weak compactness argument (in ω, t, x), it follows that 
the limit q̃ = ∂xũ continues to satisfy the third estimate of Lemma 5.3. Because of non-reflexivity, 
the other (L∞) estimates are more delicate. We have the following result:
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Lemma 5.4 (A priori estimates for limits). Let ũ, q̃ be the a.s. limits from Proposition 4.9, p0 > 4
be as specified in Theorem 2.3, and r ∈ [1, 3/2) as fixed in (4.13). There exists a constant C such 
that

Ẽ ‖ũ‖p0
L∞([0,T ];H 1(S1))

≤ C. (5.3)

Besides, ũ ∈ C
([0, T ]; H 1(S1) − w

)
, P̃–almost surely. Finally,

Ẽ ‖q̃‖p0
L∞([0,T ];L2(S1))

≤ C, Ẽ ‖q̃‖2r
L2r ([0,T ]×S1)

≤ C. (5.4)

Proof. The first part of (5.4) comes from (5.3) and Lemma 5.1. The second part is a corollary of 
the corresponding estimate in Lemma 5.3 and the considerations given before Lemma 5.4.

The rest of the proof is devoted to (5.3) and the claim about weak time-continuity. By 
Lemma 5.3, Ẽ ‖ũn‖p0

Lr̄ ([0,T ];H 1(S1))
≤ CT p0/r̄ , for any r̄ ∈ [1, ∞). In other words, {ũn}n∈N ⊂b

Lp0
(
�̃; Lr̄([0, T ]; H 1(S1))

)
for any finite r̄ . By standard duality theory in Lebesgue–Bochner 

spaces (see, e.g., [27, page 98, Theorem 1]),(
Lp0
(
�̃; Lr̄([0, T ]; H 1(S1))

))∗ = Lp′
0
(
�̃; Lr̄ ′

([0, T ]; H −1(S1))
)
,

for any r̄ ∈ (1, ∞), r̄ ′ = r̄
r̄−1 , p′

0 = p0
p0 −1 . The space Lp0

(
�̃; Lr̄([0, T ]; H 1(S1))

)
is reflexive. 

Thus, by Kakutani’s theorem on reflexive spaces, up to subsequences,

ũn

n↑∞−−−⇀ v(r̄) in Lp0
(
�̃; Lr̄([0, T ]; H 1(S1))

)
, (5.5)

for r̄ ∈ (1, ∞), where the limit v(r̄) depends possibly on r̄ . Besides,

Ẽ
∥∥∥v(r̄)

∥∥∥p0

Lr̄ ([0,T ];H 1(S1))
≤ lim inf

n→∞ Ẽ ‖ũn‖p0

Lr̄ ([0,T ];H 1(S1))
≤ CT p0/r̄ .

The continuity of the embedding

Lp0
(
�̃; Lr2([0, T ]; H 1(S1))

)
↪→ Lp0

(
�̃; Lr1([0, T ]; H 1(S1))

)
,

for 1 < r1 < r2 < ∞, implies that v(r̄) does not, in fact, depend on r̄ . Therefore, we will write v
instead of v(r̄) in the following.

By the monotone convergence theorem,

Ẽ lim
r̄→∞ ‖v‖p0

Lr̄ ([0,T ];H 1(S1))
≤ C.

Since the Lr̄
t norm depends continuously on the index r̄ for any measurable function f : [0, T ] →

H 1(S1) for which lim
r̄→∞

(∫ T

0 ‖f (t)‖r̄
H 1(S1)

dt
)1/r̄

< ∞, it follows that

Ẽ ‖v‖p0
∞ 1 1 ≤ C and v ∈ L∞([0, T ]; H 1(S1)), P̃ -a.s. (5.6)
L ([0,T ];H (S ))
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It remains to identify v with the P̃–almost sure Skorokhod–Jakubowski limit ũ in C([0, T ];
L2(S1)), see (4.24). Consider the following test functions:

φ(ω̃, t, x) = ψ(ω̃)ϑ(t, x), ψ ∈ L∞(�̃), ϑ ∈ Lr̄ ′
([0, T ]; L2(S1)). (5.7)

From (5.5),

Ẽ

⎛⎜⎝ψ

T∫
0

∫
S1

ϑ(t, x)
(
ũn(t, x) − v(t, x)

)
dx dt

⎞⎟⎠ n↑∞−−−→ 0.

On the other hand, by (4.24),

ψ

T∫
0

∫
S1

ϑ(t, x)
(
ũn(t, x) − ũ(t, x)

)
dx dt

n↑∞−−−→ 0, P̃–a.s.

By Lemma 5.3, we have the moment bound

Ẽ

∣∣∣∣∣∣∣ψ
T∫

0

∫
S1

ũn(ω̃, t, x)ϑ(t, x)dx dt

∣∣∣∣∣∣∣
p0

≤ ‖ψ ‖p0

L∞(�̃)
‖ϑ ‖p0

L1([0,T ];L2(S1))
Ẽ ‖ũn‖p0

L∞([0,T ];H 1(S1))
≤ C

(
ψ,ϑ

)
,

and so, by Vitali’s convergence theorem,

Ẽ

∣∣∣∣∣∣∣ψ
T∫

0

∫
S1

ϑ(t, x)
(
ũn(t, x) − ũ(t, x)

)
dx dt

∣∣∣∣∣∣∣
p

n↑∞−−−→ 0,

for any 1 ≤ p < p0. Consequently,

Ẽ

⎛⎜⎝ψ

T∫
0

∫
S1

ϑ(t, x)
(
ũ(t, x) − v(t, x)

)
dx dt

⎞⎟⎠ = 0, (5.8)

for ψ , ϑ as in (5.7).
We use Iz(ϑ) as short-hand for 

∫ T

0

∫
S1 ϑ(t, x)z(·, t, x) dx dt , where z = ũ, v. Clearly, by 

(5.6), Iv(ϑ) ∈ Lp(�̃), for any 1 ≤ p < p0 Since (5.8) implies that Iũ(ϑ) = Iv(ϑ), almost 
surely, it follows that also Iũ(ϑ) ∈ Lp(�̃), for each fixed ϑ . We conclude that for any ϑ ∈
Lr̄ ′

([0, T ]; L2(S1)), with 1 < r̄ ′ < ∞, there exists a full P̃–measure set �̃ϑ on which Iũ(ϑ) =
Iv(ϑ). By separability of Lr̄ ′

([0, T ]; L2(S1)), we deduce that for any 1 < r̄ ′ < ∞ there exists a 
full P̃–measure set on which the identity Iũ(ϑ) = Iv(ϑ) holds for all ϑ ∈ Lr̄ ′

([0, T ]; L2(S1)). 
We can take this set to be the countable intersection of �̃ϑ associated with a countable dense 
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subset of ϑ in Lr ′
([0, T ]; L2(S1)). This shows that ũ = v, P̃ ⊗ dt ⊗ dx–almost everywhere. We 

also have (5.6) for ũ = v, thereby concluding the proof of (5.3).
Finally, let us prove the claim that ũ is weakly time-continuous. By Lemma 4.8 (tightness), see 

also (4.20), for any L ∈ N there exists an aL > 0 such that inf
n∈N

P
({

uεn ∈ K(aL)
})

> 1 − 1/L. 

Thus, by the equality of laws,

inf
n∈N

P̃
({ũn ∈ K(aL)})> 1 − 1/L.

Pick an arbitrary subsequence {nj }j ∈N and set Aj,L = {ũnj
∈ K(aL)

}
. Then lim infj P̃

(
Aj,L

)
>

1 − 1/L and so

P̃

(
lim sup

j

Aj,L

)
> 1 − 1/L,

where lim supj Aj,L = ⋂∞
J =1

⋃
j>J Aj,L. Introduce the CtL

2
x convergence set

F =
{
ω̃ ∈ �̃ : ũn(ω̃)

n↑∞−−−→ ũ(ω̃) in CtL
2
x

}
.

By the first part of (4.24), P̃ (F ) = 1. Therefore,

P̃

(
F ∩ lim sup

j

Aj,L

)
> 1 − 1/L.

Select an arbitrary ω̃0 ∈ F ∩ lim supj Aj,L. By construction, there is a subsequence 
{
njk

}
k∈N

(depending on ω̃0) such that ũnjk
(ω̃0) ∈ K(aL) for all k ∈ N . Besides, we have ũnj

(ω̃0) 
j ↑∞−−−→

ũ(ω̃0) in CtL
2
x . This implies that ũnjk

(ω̃0) 
k↑∞−−−→ ũ(ω̃0) in CtL

2
x and whence ũnjk

(ω̃0) 
k↑∞−−−→

ũ(ω̃0) in CtH
1
x − w. Since 

{
nj

}
j ∈N was arbitrary, and K(aL) is metrisable in CtH

1
x − w, this 

leads us to conclude that

ũn(ω̃0)
n↑∞−−−→ ũ(ω̃0) in CtH

1
x − w and ũ(ω̃0) ∈ K(aL).

In other words, the convergence set

ML =
{
ω̃ ∈ �̃ : ũn(ω̃)

n↑∞−−−→ ũ(ω̃) in CtH
1
x − w, ũ(ω̃) ∈ K(aL)

}

satisfies ML ⊇ F ∩ lim supj Aj,L, and so P̃ (ML) > 1 − 1/L, for any L ∈ N . Set

M =
{
ω̃ ∈ �̃ : ũn(ω̃)

n↑∞−−−→ ũ(ω̃) in CtH
1
x − w

}
.
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Then M ⊇ ML ⊇ F ∩ lim supj Aj,L ∈ F̃ , for any L ∈ N , and therefore we obtain M ⊇ ∪ ∞
L=1

(
F ∩

lim supj Aj,L

) ∈ F̃ . This implies that

P̃

(
∪ ∞

L=1

(
F ∩ lim sup

j

Aj,L

)) ≥ P̃

(
F ∩ lim sup

j

Aj,L

)
> 1 − 1/L,

for each L ∈ N , i.e., P̃
(∪ ∞

L=1

(
F ∩ lim supj Aj,L

)) = 1. By the completeness of 
(
�̃, F̃ , P̃

)
, it 

follows that M ∈ F̃ and P̃ (M) = 1; thus the second claim of the lemma follows: ũ ∈ CtH
1
x − w, 

P̃–a.s. �
Remark 5.5. The use of the path space Xu,new = C([0, T ]; H 1(S1) − w) instead of Xu =
C([0, T ]; L2(S1)) could have simplified some of the work in Lemma 5.4 and other places. How-
ever, we would have needed to provide additional steps to establish the tightness on Xu,new. 
It is also possible to operate with two different path spaces for u, each reflecting different 
topologies. However, this approach would necessitate additional steps to ensure that the two 
Skorokhod–Jakubowski representations of un (and their limits) in these path spaces can be prop-
erly identified. While using Xu,new instead of Xu might have simplified certain aspects of the 
analysis, there is a trade-off between simplicity and the added complexity in establishing the 
tightness and identifying the limits in the chosen path spaces. Therefore, we have opted to use 
the space Xu.

The next result is a product of Lemmas 5.3 and 5.4, see also Lemma 3.1.

Lemma 5.6 (Additional a priori estimates). Let ũn, ũ, and q2 be the Skorokhod–Jakubowski 
representations from Proposition 4.9, see also Remark 4.10. There exists a constant C, inde-
pendent of n, such that E ‖ũn‖p0

L∞([0,T ]×S1)
≤ C, where p0 > 4 is fixed in Theorem 2.3, and 

E ‖P [ũn]‖2
L∞([0,T ]×S1)

≤ C, where P [·] is defined in (1.5). In particular, we have

Ẽ
∥∥∥K ∗

(
ũ2

n + 1
2 q̃2

n

)∥∥∥p

L∞([0,T ]×S1)
≤ C, p ∈ [1,p0/2

]
.

The same bounds hold with ũn replaced by its a.s. limit ũ.

The final lemma of this section collects some integrability estimates (in ω̃, t, x) for the 
a.s. weak limit q2. The second estimate will play a role in upcoming discussions about the 
martingale property of a stochastic integral and the weak convergence of some specific prod-
uct terms.

Lemma 5.7 (Additional a priori estimates for limits). Let q2 = q2(ω̃, t, x) be the Skorokhod–
Jakubowski representation from Proposition 4.9. There is a constant C such that

Ẽ

T∫ ∫
1

∣∣∣q2
∣∣∣r dx dt ≤ C, Ẽ

T∫ ∥∥∥q2(t)

∥∥∥p

H −1(S1)
dt ≤ C, (5.9)
0 S 0
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for any p ∈ [1, p0/2
]
, where p0 > 4 and r ∈ [1, 3/2) are specified in Theorem 2.3 and (4.13), 

respectively. Furthermore,

Ẽ

T∫
0

∥∥∥K ∗
(
ũ2 + 1

2q2
)

(t)

∥∥∥p

L∞(S1)
dt ≤ C, p ∈ [1,p0/2

]
. (5.10)

Proof. By Lemma 5.3, 
{
q̃2
n

}
n∈N is uniformly bounded in Lr(�̃ × [0, T ] × S1). Thus, by a weak 

compactness argument and (4.24), we may assume that

q2 ∈ Lr(�̃ × [0, T ] × S1) and q̃2
n

n↑∞−−−⇀ q2 in Lr(�̃ × [0, T ] × S1), (5.11)

which implies that the first part of (5.9) holds.

Next, by (4.24), q̃2
n

n↑∞−−−→ q2 in Lr
(
Lr

w

)
a.s. Since Lr

w(S1) ↪→ H −1(S1), this also implies the 
convergence

q̃2
n

n↑∞−−−→ q2 in Lr
t

(
H −1

x

) = Lr([0, T ]; H −1(S1)), a.s. (5.12)

We can use Lemma 5.3 to deduce the n-uniform bound

∥∥∥q̃2
n

∥∥∥p

Lp(�̃× [0,T ];H −1(S1))
= Ẽ

T∫
0

∥∥∥q̃2
n(t)

∥∥∥p

H −1(S1)
dt (5.13)

= Ẽ

T∫
0

sup
ϕ

∣∣∣∣∣∣∣
∫
S1

q̃2
n ϕ dx

∣∣∣∣∣∣∣
p

dt �T Ẽ ‖q̃n‖2p

L∞([0,T ];L2(S1))
dt � 1,

for any p ∈ [1, p0/2
]
. Here, the supremum runs over all ϕ ∈ H 1(S1) for which ‖ϕ‖H 1(S1) ≤ 1. 

Since H 1(S1) ↪→ L∞(S1), we have used that ‖ϕ‖L∞(S1) � 1 for such functions. In other words, 
the sequence 

{
q̃2
n

}
n∈N is bounded in the reflexive Banach space

L
p

ω̃,t

(
H −1

x

) = Lp
(
�̃ × [0, T ]; H −1(S1)

)
.

Hence, by a weak compactness argument and (4.24), we may assume that

q2 ∈ L
p

ω̃,t

(
H −1

x

)
and q̃2

n

n↑∞−−−⇀ q2 in L
p

ω̃,t

(
H −1

x

)
, p ∈ [1,p0/2

]
. (5.14)

This implies the last part of (5.9).
Finally, we prove (5.10). In view of Lemma 5.6, it is enough to consider the q2 part of (5.10). 

Noting that ∣∣∣K ∗ q2(t, x)

∣∣∣ ≤ ‖K(x − ·)‖H 1(S1)

∥∥∥q2(t)

∥∥∥
H −1(S1)

�
∥∥∥q2(t)

∥∥∥
H −1(S1)

,

we arrive at
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Ẽ

T∫
0

∥∥∥K ∗ q2(t)

∥∥∥p

L∞(S1)
dt � Ẽ

T∫
0

∥∥∥q2(t)

∥∥∥p

H −1(S1)
dt

(5.9)
� 1,

from which we infer that (5.10) holds. �
Remark 5.8. Notice how high integrability in (ω̃, t) is traded for low “integrability” in x in the 
second estimate in (5.9).

6. Existence of martingale solutions

Recall that X̃n and X̃, cf. (4.22), are collective symbols for all the Skorokhod–Jakubowski 
representations, which are built from a sequence 

{
uεn

}
n∈N of strong solutions to the viscous 

SPDE (1.5) with initial data uεn(0) = zn, cf. (4.12), where the viscosity coefficients εn are posi-
tive numbers with εn → 0 as n → ∞.

We need filtrations linked to each X̃n and the a.s. limit X̃. To this end, let us first introduce 
some notations. For t ∈ [0, T ], let f → f |[0,t ] denote the restriction to the interval [0, t ] of a 
function f defined on [0, T ]. Moreover, we denote by �(E) the smallest σ -algebra containing 
a collection E of subsets of �̃. We specify 

{
F̃n

t

}
t ∈ [0,T ] and 

{
F̃t

}
t ∈ [0,T ] to be the P̃–augmented 

canonical filtrations of the processes X̃n and X̃, respectively. More precisely, for X̃ the filtration 
and corresponding stochastic basis are defined as

F̃t = �
(
�
(
X̃|[0,t ]

)⋃{
N ∈ F̃ : P̃ (N) = 0

})
, t ∈ [0, T ], (6.1)

and S̃ = (�̃, F̃,
{
F̃t

}
t ∈ [0,T ], P̃

)
.

For X̃n the filtration F̃n
t and stochastic basis S̃n are defined similarly, with X̃n replacing X̃

and F̃n
t replacing Ft . By construction, the processes X̃n and X̃ are adapted to their canonical 

filtrations.
By the equality of laws and the Lévy martingale characterization of a Wiener process, it is 

clear that W̃n is a Wiener processes with respect to its own canonical filtration. Furthermore, W̃n

is a Wiener process relative to the filtration 
{
F̃n

t

}
defined in (6.1). To prove this, we must verify 

that W̃n(t) is F̃n
t –measurable and W̃n(t) − W̃n(s) is independent of F̃n

s , for all s < t . However, 
these properties hold because W̃n and W share the same law, and W(t) is Ft –measurable and 
W(t) − W(s) is independent of Fs , recalling that the unique Hm solution of the viscous SPDE 
(1.5), by construction, depends measurably on the initial data and the Wiener process [40].

A standard argument reveals that the a.s. limit W̃ of W̃n, see (4.24), is a Wiener process 
relative to 

{
F̃t

}
t ∈ [0,T ] (see, e.g., [26, Lemma 4.8]).

Lemma 6.1 (W̃ is a Wiener process). The a.s. representation W̃ from Proposition 4.9 is a Wiener 
process defined on the stochastic basis S̃, cf. (6.1).

Proof. By the equality of laws and Lévy’s characterisation theorem (see, e.g., [55, Theorem 
IV.3.6]), it remains to prove that W̃ is a F̃t martingale.

Let γ : X |[0,s] → [0, 1] be a continuous function, where X is the (countable product) path 
space defined by (4.13), (4.14) and by X |[0,s] we understand the same space but with [0, T ]
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replaced by [0, s]. Clearly, X |[0,s] is quasi-Polish (with the product topology), and the restric-
tion operator Rs : X → X |[0,s] is continuous (as each single component is trivially continuous). 
Hence, Xn|[0,s] = Rs ◦ Xn is Fs / ⊗l∈N BXl

∣∣[0,s] measurable, where the countable vector Xn is 

defined in (4.11) and BXl

∣∣[0,s] denotes the Borel σ -algebra of the “restricted” space Xl |[0,s] .
Now, by the equality of laws and the {Ft }-martingale property of the original Wiener process 

W , for any 0 ≤ s < t ≤ T and for any n ∈ N ,

Ẽ
[
γ
(
X̃n|[0,s]

)(
W̃n(t) − W̃n(s)

)] = E
[
γ
(
Xn|[0,s]

)(
W(t) − W(s)

)] = 0,

where Xn is defined in (4.11). The lemma follows if we can pass to limit n → ∞ in the 
left-hand side of the above identity. By (4.24), W̃n → W̃ in C([0, T ]), P̃–a.s. Moreover, 

by the equality of laws, Ẽ
∥∥∥W̃n

∥∥∥p

C([0,T ]) = E ‖W ‖p

C([0,T ]) ≤ C(T , p), for any finite p, where 

the last estimate comes from the BDG inequality. Hence, by Vitali’s convergence theorem, 

Ẽ
[
γ
(
X̃|[0,s]

)(
W̃ (t) − W̃ (s)

)] = 0. �
The process uεn satisfies the viscous SPDE (1.5) with initial data uεn(0) = zn, cf. (4.12). The 

next result shows that the Skorokhod–Jakubowski representation ũn satisfies the same SPDE 
on the new probability space. There exist several approaches to proving this, see for example 
[5,11,52]. Here we are going to rely on a simple but general method discovered by Brzeźniak 
and Ondreját [11,52], and then used in several other works analysing different SPDEs, see for 
example [37,26,7]. To describe the idea, consider the following functional, defined for (u, v, z) ∈
Xu × Xq2 × Xu0 , cf. (4.13), and t ∈ [0, T ]:

Mn[u,v, z](t) =
∫
S1

ϕ u(t)dx −
∫
S1

ϕ zdx − εn

t∫
0

∫
S1

∂2
xxϕ udx ds (6.2)

−
t∫

0

∫
S1

∂xϕ

(
1

2
u2 + P [u,v]

)
dx ds − 1

2

t∫
0

∫
S1

∂x

(
∂x

(
σεn ϕ

)
σεn

)
udx ds,

viewing the test function ϕ ∈ C∞(S1) as fixed. Here, we have augmented our usual notation, 
cf. (1.5), to accommodate the weak limit of q̃2

n , by setting P [u, v] = K ∗ (u2 + 1
2v
)
. The x-weak 

formulation of the SPDE for uεn , cf. (2.2), reads

Dn = Mn

[
uεn, q

2
εn

, zn

]
(t) −

t∫
0

∫
S1

∂x

(
ϕσεn

)
uεn dx dW = 0, qεn = ∂xuεn .

Replacing uεn , W by ũn, W̃n, respectively, we denote the corresponding quantity by D̃n. The aim 
is to show that Dn = 0 implies D̃n = 0. By the equality of laws, the real-valued stochastic process 
D̃n is a martingale (starting at 0), and if one establishes that the quadratic variation of D̃n is zero, 
then D̃n is zero. Since D̃n is of the form D̃(1)

n − D̃
(2)
n , this boils down to computing the quadratic 

variation 
〈
D̃n

〉
as 
〈
D̃

(1)
n

〉− 2
〈
D̃

(1)
n , D(2)

n

〉+ 〈D̃(2)
n

〉
, where 

〈
D̃

(2)
n

〉
(t) = ∫ t ∣∣∫

1 ∂x

(
ϕσεn

)
ũn dx

∣∣2 ds, 
0 S
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and the first (quadratic variation) and second (co-variation) terms can be computed via the equal-
ity of laws and properties of the corresponding terms in 

〈
Dn

〉 = 0, see (6.6) below.

Lemma 6.2 (ũn solves SPDE). Let ũn, q̃n, W̃n, ũ0,n be the Skorokhod–Jakubowski representa-
tions from Proposition 4.9. Then, for any ϕ ∈ C∞(S1) and t ∈ [0, T ],

∫
S1

ϕ ũn(t)dx −
∫
S1

ϕ ũ0,n dx

=
t∫

0

∫
S1

∂xϕ

(
1

2
ũ2

n + P̃n

)
dx ds + εn

t∫
0

∫
S1

∂2
xxϕ ũn dx ds (6.3)

+ 1

2

t∫
0

∫
S1

∂x

(
∂x

(
σεn ϕ

)
σεn

)
ũn dx ds +

t∫
0

∫
S1

∂x

(
ϕ σεn

)
ũn dx dW̃n,

P̃–a.s., where P̃n = P [ũn] = K ∗ (ũ2
n + 1

2 q̃2
n

)
.

Proof. We follow, e.g., [7]. For notational brevity, herein we use 〈X〉(t) to denote the quadratic 
variation 〈X, X〉(t) of a process X, whilst retaining 〈X, Y 〉(t) for the co-variation between two 
processes X, Y .

1. Set-up and conclusion.

Given (6.2), let us also introduce the n-independent functionals

R[u](t) =
t∫

0

∣∣∣∣∣∣∣
∫
S1

∂x (ϕσ)udx

∣∣∣∣∣∣∣
2

ds, N [u](t) = −
t∫

0

∫
S1

∂x (ϕσ)udx ds. (6.4)

The proof hinges on showing that M̃n = Mn

[
ũn, q̃2

n, ũ0,n

]
is an 

{
F̃n

t

}
-martingale with 

quadratic variation and covariation (with W̃n) given by

〈
M̃n

〉 =
t∫

0

∣∣∣∣∣∣∣
∫
S1

∂x

(
ϕσεn

)
ũn dx

∣∣∣∣∣∣∣
2

ds = : R̃n,

〈
M̃n, W̃n

〉 = −
t∫

0

∫
S1

∂x

(
ϕσεn

)
ũn dx ds = : Ñn.

(6.5)

These identities imply that D̃n(t) = M̃n(t) − ∫ t

0

∫
S1 ∂x

(
ϕσεn

)
ũn dx dW̃n has vanishing quadratic 

variation:
42



L. Galimberti, H. Holden, K.H. Karlsen et al. Journal of Differential Equations 387 (2024) 1–103
〈
D̃n

〉
(t) =

〈
M̃n

〉
(t) − 2

t∫
0

∫
S1

∂x

(
ϕσεn

)
ũn dx d

〈
M̃n, W̃n

〉

+
〈 ·∫

0

∫
S1

∂x

(
ϕσεn

)
ũn dx dW̃n

〉
(t) = 0, (6.6)

and 
〈
D̃n

〉 = 0 implies D̃n = 0, which is the sought-after equation (6.3).

2. Martingale properties and verification of (6.5).

We establish (6.5) by verifying the martingale property of the three processes M̃n, M̃2
n − R̃n, 

and M̃nW̃n − Ñn. However, first we must check that

Xu × Xq2 × Xu0 � (u, v, z) → Mn[u,v, z](t) ∈ R, t ∈ [0, T ],

is measurable map. We will do this by proving continuity of Mn. Given this continuity of Mn

on a finite sub-collection Xu × Xq2 × Xu0 of the factors of the full Cartesian product space 
X , cf. (4.13) and (4.14), clearly Mn may be seen as a continuous function on the full Cartesian 
product X , and then Remark B.11 supplies the desired measurability. We prove the measurability 
of R and N in the same way.

Continuity will follow from the estimates already established. Fix ui ∈ Xu, vi ∈ Xq2 and 
zi ∈ Xu0 , see (4.13), for i = 1, 2. From (6.2), and by repeated applications of Hölder’s inequality, 
we obtain

|Mn[u1, v1, z1 ] − Mn[u2, v2, z2 ]|
� ‖ϕ‖L2(S1) ‖u1 − u2 ‖C([0,T ];L2(S1)) + ‖ϕ‖L2(S1) ‖z1 − z2 ‖L2(S1)

+ εn

∥∥∥∂2
xxϕ

∥∥∥
L2(S1)

‖u1 − u2 ‖C([0,T ];L2(S1))

+ ‖∂xϕ‖L∞(S1) ‖u1 + u2 ‖L2([0,T ]×S1) ‖u1 − u2 ‖L2([0,T ]×S1)

+ ‖ϕ‖L∞(S1) ‖∂xK‖L1(S1) ‖u1 + u2 ‖L2([0,T ]×S1) ‖u1 − u2 ‖L2([0,T ]×S1)

+

∣∣∣∣∣∣∣
T∫

0

∫
S1

(
(τϕ) ∗ ∂xK

)
(v1 − v2) dx dt

∣∣∣∣∣∣∣
+ ∥∥∂x

(
∂x

(
σεnϕ

)
σεn

)∥∥
L∞(S1)

‖u1 − u2 ‖L1([0,T ]×S1) ,

writing “a2 − b2 = (a + b)(a − b)” twice. Since Xq2 = Lr([0, T ] × S1) − w for some fixed 
1 ≤ r < 3/2, we have used a standard property of convolution to write

∫
1

ϕ ∂xK ∗ (v1 − v2)dx = −
∫

1

(
(τϕ) ∗ ∂xK

)
(v1 − v2)dx,
S S
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noting that (τϕ) ∗ ∂xK ∈ Lr ′
([0, T ] × S1), 1/r + 1/r ′ = 1 (so r ′ > 3). Here the map τ is defined 

by (τϕ)(−x) = ϕ(x). This shows that Mn is continuous on Xu × Xq2 × Xu0 , and thereby mea-
surable (according to Remark B.11). Similar arguments can now be made for N [u] and R[u]. As 
u → N [u] is linear, continuity follows from the bound

|N [u]| ≤ ‖∂x (ϕσ)‖L∞(S1) ‖u‖L1([0,T ]×S1) .

For the continuity of R,

|R[u1 ] − R[u2 ]| ≤
t∫

0

⎛⎜⎝∫
S1

∂x (ϕσ) (u1 − u2) dx

∫
S1

∂x (ϕσ) (u1 + u2) dx

⎞⎟⎠ ds

≤ ‖∂x (ϕσ)‖2
L∞(S1)

‖u1 − u2 ‖L2([0,T ];L1(S1)) ‖u1 + u2 ‖L2([0,T ];L1(S1))

�ϕ,σ,T ‖u1 + u2 ‖L2([0,T ];L1(S1)) ‖u1 − u2 ‖C([0,T ];L2(S1)) .

Finally, we verify the announced martingale properties. For any càdlàg process X on [0, T ]
and s, t ∈ [0, T ] with s < t , denote by �s,tX the difference X(t) − X(s). Let γ : X |[0,s] → [0, 1]
be an arbitrary continuous function, where X is the path space defined by (4.13), (4.14). By 
the equality of laws in Proposition 4.9 and the martingale property of the original processes 
Mn := Mn

[
uεn, q

2
εn

, z0,n

]
, M2

n − R[un], and MnW − N [un], we obtain

Ẽ
[
γ
(
X̃n|[0,s]

)
�s,t M̃n

]
= 0, Ẽ

[
γ
(
X̃n|[0,s]

)(
�s,t M̃

2
n − �s,t R̃n

)]
= 0,

and Ẽ
[
γ
(
X̃n|[0,s]

)(
�s,t

(
M̃nW̃n

)− �s,t Ñn

)]
= 0,

(6.7)

which proves that M̃n, M̃2
n − R̃n, and M̃nW̃n − Ñn are 

{
F̃ n

t

}
–martingales. �

Arguing as above, we prove next that the a.s. limit ũ from Proposition 4.9 satisfies an SPDE 
on the new probability space that resembles the stochastic CH equation (1.3), except that the 
nonlinear term q̃2 is replaced by the weak limit q2. Once we make the identification q2 = q̃2, 
which is equivalent to the strong L2

ω̃,t,x
convergence of q̃n towards q̃ [51, Lemma 3.34], the 

proof of Theorem 1.1 is concluded. But being rather long and technical, the identification step is 
postponed to Section 7, which constitutes a central part of the paper.

Proposition 6.3 (Limit ũ solves SPDE). Suppose the assumptions of Theorem 1.1 hold. Let ũ, 
q̃ , q2, W̃ , ũ0 be the Skorokhod–Jakubowski representations from Proposition 4.9, see also Re-
mark 4.10, and let S̃ be the stochastic basis defined in (6.1). Suppose further that the following 
identification holds:

q2 = q̃2, P̃ ⊗ dt ⊗ dx–a.e. in �̃ × [0, T ] × S1. (6.8)

Then 
(
S̃, ũ, W̃

)
is a weak martingale solution of
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0 = dũ + [ũ ∂xũ + ∂xP̃
]

dt − 1

2
σ∂x (σ∂xũ) dt + σ∂xũdW̃ ,

P̃ = K ∗
(

ũ2 + 1

2
q̃2
)

, ũ(0) = ũ0 ∼ u0,

in the sense that S̃ satisfies (a), W̃ satisfies (b), and ũ satisfies (c), (d) of Definition 2.4. Besides, 
the x-weak form (2.6) holds with u, P replaced by ũ, P̃ .

Proof. We continue to use the functionals Mn, N , and R defined in (6.2) and (6.4). In addition, 
we need the n-independent functional

M[u,v, z](t) = Mn[u,v, z](t) + εn

t∫
0

∫
S1

∂2
xxϕudx ds.

To simplify the notation, set M̃ = M
[
ũ, q̃2, ũ0

]
, R̃ = R[ũ], and Ñ = N [ũ]. Similarly, we con-

tinue to use M̃n = Mn

[
ũn, q̃2

n, ũ0,n

]
, and R̃n, Ñn of (6.5).

1. Set-up and conclusion.

The underlying idea of the proof is the same as before. Here we want to verify that M̃, M̃2 − R̃, 
and M̃W̃ − Ñ are all 

{
F̃t

}
–martingales. The limit statements corresponding to (6.5) take the form〈

M̃
〉 = R̃,

〈
M̃, W̃

〉 = Ñ .

As before (6.6), these identities imply that D̃ = M̃ − ∫ ·
0

∫
S1 ∂x (ϕσ) ũdx dW̃ is a martingale 

(starting at 0) with vanishing quadratic variation, and D̃ = 0 is the desired equation (2.6), replac-
ing u, P by ũ, P̃ . Because of Section 5, the remaining properties of 

(
S̃, ũ, W̃

)
are evident.

The martingale properties follow by sending n → ∞ in (6.7), relying on the a.s. convergences 
(4.24) and the moment estimates in Lemma 5.3. Eventually, we arrive at the required martingale 
equalities

Ẽ
[
γ
(
X̃|[0,s]

)
�s,t M̃

]
= 0, (6.9)

Ẽ
[
γ
(
X̃|[0,s]

)(
�s,t M̃

2 − �s,t R̃
)]

= 0, (6.10)

Ẽ
[
γ
(
X̃|[0,s]

)(
�s,t

(
M̃W̃

)− �s,t Ñ
)]

= 0, (6.11)

where X̃ is defined in (4.22), see also (6.1), and γ : X |[0,s] → [0, 1] is an arbitrary continuous 
function.

2. Passing to the limit in (6.7) to obtain (6.9).

It remains to justify the passage to the limit in each equation of (6.7). Since γ is bounded and 
continuous and X̃n → X̃ a.s. (Proposition 4.9), it follows that

γ
(
X̃n|[0,s]

) n↑∞−−−→ γ
(
X̃|[0,s]

)
in Lp(�̃), for any finite p. (6.12)
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We continue with the claim that, for any t ∈ [0, T ],

M̃n(t)
n↑∞−−−→ M(t), P̃–a.s. (6.13)

We verify (6.13) by proving the term-by-term convergence of M̃n to M̃ . From (4.24), we have 
ũ0,n → ũ0 in H 1(S1) and ũn → ũ in C([0, T ]; L2(S1)), P̃–almost surely. This (and εn → 0) 
implies ∣∣∣∣∣∣∣

∫
S1

ϕ
(
ũ0,n − ũ0

)
dx

∣∣∣∣∣∣∣
n↑∞−−−→ 0, P̃–a.s.,

sup
t ∈ [0,T ]

∣∣∣∣∣∣∣
∫
S1

ϕ (ũn − ũ) (t)dx

∣∣∣∣∣∣∣
n↑∞−−−→ 0, P̃–a.s.,

∣∣∣∣∣∣∣εn

t∫
0

∫
S1

∂2
xxϕ ũn dx ds

∣∣∣∣∣∣∣
n↑∞−−−→ 0, P̃–a.s.

∣∣∣∣∣∣∣
t∫

0

∫
S1

∂xϕ

(
ũ2

n

2
− ũ2

2

)
dx ds

∣∣∣∣∣∣∣
n↑∞−−−→ 0, P̃–a.s.

Using P
[
ũn, q̃2

n

] = K ∗ (ũ2
n + 1

2 q̃2
n

)
, ũ2

n → ũ2 in C([0, T ]; L1(S1)) a.s., q̃2
n ⇀ q2 in 

Lr([0, T ] × S1) a.s., and the weak limit identification (6.8),∣∣∣∣∣∣∣
t∫

0

∫
S1

∂xϕ
(
P
[
ũn, q̃

2
n

]− P
[
ũ, q̃2])dx ds

∣∣∣∣∣∣∣
≤ ‖∂xϕ‖L∞(S1) ‖K‖L1(S1)

∥∥∥ũ2
n − ũ2

∥∥∥
L1([0,T ]×S1)

+

∣∣∣∣∣∣∣
t∫

0

∫
S1

⎛⎜⎝ ∫
S1

∂xϕ(x)K(x − y)dx

⎞⎟⎠ (y)
(
q̃2
n(s, y) − q̃2(s, y)

)
dy ds

∣∣∣∣∣∣∣
n↑∞−−−→ 0,

exploiting (s, y) → ∫
S1 ϕ(x)∂xK(x − y) dx ∈ Lr ′

([0, T ] × S1) (recall r < 3/2 and therefore 
r ′ > 3).

Finally, using again ũn → ũ in C([0, T ]; L2(S1)) a.s., and the a.e. convergence
∂x

(
∂x

(
σεnϕ

)
σεn

) → ∂x (∂x (σϕ)σ ),∣∣∣∣∣∣∣
t∫

0

∫
S1

∂x

(
∂x

(
σεnϕ

)
σεn

)
ũn − ∂x (∂x (σϕ)σ ) ũdx ds

∣∣∣∣∣∣∣
n↑∞−−−→ 0, P̃–a.s.,
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which concludes the proof of (6.13). By Lemma 5.3,

E
∣∣∣M̃n(t)

∣∣∣p0
�ϕ 1 (with p0 > 4). (6.14)

Hence, by Vitali’s convergence theorem,

M̃n(t)
n↑∞−−−→ M̃(t) in Lp(�̃), for any p ∈ [1,p0), t ∈ [0, T ]. (6.15)

In view of (6.7), (6.12), and (6.15), we see that (6.9) holds.

3. Passing to the limit in (6.7) to obtain (6.10).

Recalling (6.7), we consider the convergences of �s,tM̃
2
n and �s,t R̃n separately. Using (6.15)

again (p0 > 4), we have

M̃2
n(t)

n↑∞−−−→ M̃2(t) in Lp(�̃), for any p ∈ [1,p0/2
)
, t ∈ [0, T ]. (6.16)

The convergence

∣∣∣∣∣∣∣
t∫

0

∣∣∣∣∣∣∣
∫
S1

∂x

(
ϕσεn

)
ũn dx

∣∣∣∣∣∣∣
2

−

∣∣∣∣∣∣∣
∫
S1

∂x (ϕσ) ũdx

∣∣∣∣∣∣∣
2

ds

∣∣∣∣∣∣∣
n↑∞−−−→ 0, P̃–a.s., (6.17)

follows by applying the algebraic identity a2 − b2 = (a + b)(a − b), and using the a.s. con-
vergence ũn → ũ in C([0, T ]; L2(S1)) and the a.e. convergence ∂x

(
ϕσεn

) → ∂x (ϕσ). Clearly, 

(6.17) implies the P̃–a.s. convergence R̃n(t) → R̃(t), for t ∈ [0, T ]. By Lemma 5.3, E 
∣∣∣R̃n(t)

∣∣∣p0/2

�ϕ 1, and therefore, by Vitali’s convergence theorem,

R̃n(t)
n↑∞−−−→ R̃(t) in Lp(�̃), for any p ∈ [1,p0/2

)
, t ∈ [0, T ]. (6.18)

Combining (6.7) with (6.12), (6.16), and (6.18), the claim (6.10) follows.

4. Passing to the limit in (6.7) to obtain (6.11).

From the a.s. convergence W̃n → W̃ in C([0, T ]), cf. (4.24), along with (6.13),

M̃n(t) W̃n(t)
n↑∞−−−→ M̃(t) W̃ (t), P̃–a.s., t ∈ [0, T ].

By the Cauchy–Schwarz inequality,

Ẽ
∣∣∣M̃nW̃n

∣∣∣p0/2 ≤
(
Ẽ
∣∣∣M̃n

∣∣∣p0
)1/2 (

Ẽ
∣∣∣W̃n

∣∣∣p0
)1/2

� 1,

where we have used (6.14) and the BDG martingale inequality to bound the p0 moment of W̃n. 
Thus, again by Vitali’s convergence theorem,
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M̃n(t) W̃n(t)
n↑∞−−−→ M̃(t) M̃(t) in Lp(�̃), p ∈ [1,p0/2

)
, t ∈ [0, T ]. (6.19)

The a.s. convergence of Ñn to Ñ , cf. (6.4), follows from ũn → ũ in C([0, T ]; L2(S1)). By 

Lemma 5.3, E 
∣∣∣Ñn(t)

∣∣∣p0
�ϕ 1, and thus Vitali’s convergence theorem yields

Ñn(t)
n↑∞−−−→ Ñ(t) in Lp(�̃), for any p ∈ [1,p0), t ∈ [0, T ].

Combining this, (6.19) and (6.12) with (6.7), the final identity (6.11) emerges. �
7. Identification of a weak limit

In this final section we prove the crucial assumption (6.8) of Proposition 6.3, thereby conclud-
ing the proof of our main result (Theorem 1.1).

Theorem 7.1 (Identification of weak limit). Suppose the assumptions of Theorem 1.1 hold. Let 
q̃ and q2 be the Skorokhod–Jakubowski representations from Proposition 4.9, recalling that no-
tationally we drop the tilde under the overline in q2 (see Remark 4.10). Then the weak limit 
identification (6.8) holds.

For a high-level description of the proof, which is long and technical, we refer to Section 1. 
The proof depends on deriving Itô differential inequalities for the differences q2± − q̃2± ≥ 0 (via 
numerous steps of truncation and regularisation). We record these inequalities over several results 
(see Lemmas 7.9 – 7.13). With regards to the subscripts ± on q±, it is in fact expedient to 
carry out this procedure, as in the deterministic setting [21,22,63], for the positive and negative 
parts separately. It is a characteristic feature of dissipative solutions that q+ does not blow up 
in L∞, but q− does. We refer to Section 1 for a discussion of the many differences between the 
deterministic and stochastic cases.

7.1. Energy inequalities and a right-continuity property

The differential inequalities mentioned above will serve to propagate strong compactness, 
assumed initially at t = 0, via a (yet to be established) strong temporal continuity property at t =
0. The existence of this strong initial trace is the content of Lemma 7.4 below, which encodes the 
dissipative nature of the considered solution class. However, first we need to transfer the energy 
balance (2.3) to the new probability space, expressed in terms of the Skorokhod–Jakubowski 
representations from Proposition 4.9.

Lemma 7.2 (Energy inequality). Let ũn, W̃n, ũ0,n be respectively the Skorokhod–Jakubowski 
representations of uεn , W , zn, where uεn is the strong solution to the viscous SPDE (1.5) with 
noise W and initial data uεn(0) = zn, cf. (4.12). The energy inequality (2.3) holds with uε , W , ε
replaced by ũn, W̃n, εn.

Let ũ, q̃ , q2, W̃ , ũ0 be the a.s. limits from Proposition 4.9, see also Remark 4.10, and let S̃ be 
the stochastic basis defined in (6.1). Then
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d

dt

∫
S1

ũ2 + q2 dx ≤
∫
S1

1

4
∂2
xxσ

2ũ2 +
(

|∂xσ |2 − 1

4
∂2
xxσ

2
)

q2 dx

+
∫
S1

∂xσ
(
ũ2 − q2

)
dx

˙̃
W, in D′([0, T )), P̃–a.s.,

∫
S1

(
ũ2 + q2

)
(0)dx =

∫
S1

ũ2
0 + |∂xũ0 |2 dx.

(7.1)

Remark 7.3. We emphasise that (7.1) holds in the sense of distributions on the half-open interval 
[0, T ), P̃ -a.s., whilst 

∫
S1 ũ2 + q2 dx is understood to take the value 

∫
S1 ũ2

0 + |∂xũ0 |2 dx at t = 0. 
This means that for every non-negative ψ ∈ C∞([0, T )),

−
T∫

0

∂tψ

∫
S1

ũ2 + q2 dx dt − ψ(0)

∫
S1

ũ2
0 + |∂xũ0 |2 dx

≤
T∫

0

ψ

∫
S1

1

4
∂2
xxσ

2ũ2 +
(

|∂xσ |2 − 1

4
∂2
xxσ

2
)

q2 dx dt

+
T∫

0

ψ

∫
S1

∂xσ
(
ũ2 − q2

)
dx dW̃ , P̃–a.s.

Proof. Recall the properties of ũn stated in Lemmas 5.2 and 5.3. In particular, ũn lies in the inter-
section L2([0, T ]; Hm(S1)) ∩ C([0, T ]; H 1(S1)) a.s., for any m ∈ N . According to Lemma 6.3, 
ũn satisfies the SPDE (1.5) with uε , W , ε replaced by ũn, W̃n, εn, respectively. If we differentiate 
this equation with respect to x, cf. Lemma 5.1, then q̃n = ∂xũn satisfies the SPDE (1.7) with qε , 
W , ε replaced by q̃n, W̃n, εn. Consequently, we may apply the corresponding versions of (3.4)
and (3.5) with S(v) = v2/2. Adding the resulting equations yields the total energy equation (1.8)
with uε , W , ε replaced by ũn, W̃n, εn. Integrating this equation in x, dropping the dissipation 
term, and expressing the temporal differential as a time-derivative in D′([0, T )), we arrive at

d

dt

∫
S1

ũ2
n + q̃2

n dx ≤
∫
S1

1

4
∂2
xxσ

2
εn

ũ2
n +

(∣∣∂xσεn

∣∣2 − 1

4
∂2
xxσ

2
εn

)
q̃2
n dx

+
∫
S1

∂xσεn

(
ũ2

n − q̃2
n

)
dx

˙̃
Wn, in D′([0, T )), P̃–a.s.,

(7.2)

where 
∫
S1

(
ũ2

n + |q̃n|2
)

(0) dx = ∫S1 ũ2
n,0 + ∣∣∂xũn,0

∣∣2 dx and ˙̃
Wn = d

dt
W̃n.

Equipped with the a.s. convergences in (4.24), in particular ũn
n↑∞−−−→ ũ in CtL

2
x a.s. and 

q̃2 n↑∞−−−→ q2 in Lr
(
Lr
)

a.s., recalling that we write q2 instead of q̃2, we can send n → ∞ in 
n w
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(7.2) to arrive at (7.1). We refer to Lemma 7.9 for a detailed convergence proof of an inequality 
that is more general than (7.2).

During the derivation of (7.1), one issue was swept under the rug. Indeed, a priori, it is not 
clear that the process M̃(t) = ∫ t

0

∫
S1 ∂xσq2 dx dW̃ is a square-integrable martingale. The matter 

in question is that the limit q2 belongs to Lr
t,x with merely r < 3/2, cf. (4.24); note carefully 

that we do not have this issue with the related process 
∫ t

0

∫
S1 ∂xσ q̃2 dx dW̃ , where q̃ = ∂xũ is the 

a.s. limit of q̃n = ∂xũn, as ũ satisfies (5.3). Fortunately, according to (5.9) of Lemma 5.7, we may 
assume that q2 ∈ L2

ω̃,t

(
H −1

x

)
and whence M̃ be interpreted as a square-integrable martingale, 

recalling that σ ∈ W 2,∞(S1):

Ẽ

T∫
0

∣∣∣∣∣∣∣
∫
S1

∂xσ q2 dx

∣∣∣∣∣∣∣
2

dt ≤ ‖∂xσ ‖2
H 1(S1)

Ẽ

T∫
0

∥∥∥q2(t)

∥∥∥2

H −1(S1)
dt < ∞. � (7.3)

The pathwise inequality (7.1), the convergence ũn → ũ in C
([0, T ]; H 1(S1) − w

)
a.s. (see 

proof of Lemma 5.4), and the strong H 1 convergence of ũ0,n towards ũ0, imply the strong right-
continuity at t = 0 in H 1. We have the following result:

Lemma 7.4 (One-sided temporal continuity at t = 0). Let ũ, q̃ , ũ0, and q2 be the Skorokhod–
Jakubowski representations from Proposition 4.9. Then

lim
t ↓0

‖ũ(t) − ũ0 ‖H 1(S1) = 0, P̃–a.s. (7.4)

Moreover, for the nonlinearities S(v) = S�(v±) defined by (4.2),

lim
t ↓0

∥∥S(q̃(t)
)− S

(
∂xũ0

)∥∥
L1(S1)

= 0, P̃–a.s. (7.5)

Remark 7.5. In view of Lemma 5.4 and Vitali’s convergence theorem, (7.4) and (7.5) imply

lim
t ↓0

Ẽ ‖ũ(t) − ũ0 ‖2
H 1(S1)

= 0, lim
t ↓0

Ẽ
∥∥S(q̃(t)

)− S
(
∂xũ0

)∥∥
L1(S1)

= 0.

Proof. We divide the proof into two steps.

1. One-sided temporal continuity in H 1(S1), (7.4).

In the process of proving Lemma 5.4, we demonstrated that

ũn
n↑∞−−−→ ũ in C

([0, T ]; H 1(S1) − w
)
, a.s.

Accordingly, employing the weak lower semicontinuity of v → ‖v‖2
H 1(S1)

,

‖ũ(t)‖2
H 1(S1)

≤ lim inf
n→∞ ‖ũn(t)‖2

H 1(S1)
≤ lim sup

n→∞
‖ũn(t)‖2

H 1(S1)
, t > 0. (7.6)

Define
50



L. Galimberti, H. Holden, K.H. Karlsen et al. Journal of Differential Equations 387 (2024) 1–103
In(t) =
t∫

0

∫
S1

1

4
∂2
xσ 2ũ2

n +
(

|∂xσ |2 − 1

4
∂2
xσ 2

)
q̃2
n dx ds

+
t∫

0

∫
S1

∂xσ
(
ũ2

n − q̃2
)

dx dW̃n,

I (t) =
t∫

0

∫
S1

1

4
∂2
xσ 2ũ2 +

(
|∂xσ |2 − 1

4
∂2
xσ 2

)
q2 dx ds

+
t∫

0

∫
S1

∂xσ
(
ũ2 − q2

)
dx dW̃ .

Arguing as in the proof of Lemma 7.2, In
n↑∞−−−→ I a.s. (with t > 0 fixed). By a standard de-

terministic argument, see for example [30, page 653], we can turn the (pathwise) distributional 
inequality (7.2) into the pointwise inequality

‖ũn(t)‖2
H 1(S1)

≤ ∥∥ũ0,n

∥∥2
H 1(S1)

+ In(t), t > 0. (7.7)

Importantly, as n → ∞, the right-hand side of (7.7) converges almost surely to ‖ũ0 ‖2
H 1(S1)

+
I (t). In view of (7.6) and (7.7), we conclude that

‖ũ(t)‖2
H 1(S1)

≤ ‖ũ0 ‖2
H 1(S1)

+ I (t), a.s., for all t > 0. (7.8)

Since ũ ∈ C
([0, T ]; H 1(S1) − w

)
a.s., it is evident that

ũ(t) ⇀ ũ0 in H 1(S1) as t ↓ 0. (7.9)

Whence, again by the weak lower semicontinuity of ‖·‖2
H 1(S1)

,

‖ũ0 ‖2
H 1(S1)

≤ lim inf
t ↓0

‖ũ(t)‖2
H 1(S1)

≤ lim sup
t ↓0

‖ũ(t)‖2
H 1(S1)

(7.8)≤ lim sup
t ↓0

(
‖ũ0 ‖2

H 1(S1)
+ I (t)

)
= ‖ũ0 ‖2

H 1(S1)
,

where we have used that I (t) → 0 as t ↓ 0, a.s. Therefore, a.s.,

lim
t ↓0

‖ũ(t)‖2
H 1(S1)

= ‖ũ0 ‖2
H 1(S1)

. (7.10)

Combining (7.9) and (7.10) (“weak convergence plus convergence of norms imply strong 
convergence”), we attain (7.4).

2. One-sided temporal continuity for nonlinearities, (7.5).
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Fix a, b ∈ R with a < b. Assume that b > 0, otherwise there would be nothing to prove. It is 
easy to verify that

|S�(b+) − S�(a+)| =
b∫

a∨0

S′
�(v)dv

(4.3)≤
b∫

a∨0

v dv

≤ b2 − (a ∨ 0)2 ≤ (|b| + |a|) |b − a| .

By symmetry, the inequality holds for b < a, and a similar calculation establishes the inequality 
for S(v−).

Fix any ω̃ ∈ �̃ for which (7.4) holds. For S(v) = S�(v±) defined by (4.2), we then proceed as 
follows: ∥∥S(q̃(t)

)− S
(
∂xũ0

)∥∥
L1(S1)

≤
∫
S1

(|q̃(t, x)| + |∂xũ0(x)|) |q̃(t, x) − ∂xũ0(x)| dx

≤ 2 ‖q̃‖L∞([0,T ];L2(S1)) ‖q̃(t) − ∂xũ0 ‖L2(S1)

(5.3)
�ω̃ ‖q̃(t) − ∂xũ0 ‖L2(S1)

(7.4)−→ 0 as t ↓ 0.

This concludes the proof of (7.5). �
Once we have made the identification (6.8), the inequality (7.1) becomes

d

dt

∫
S1

ũ2 + q̃2 dx ≤
∫
S1

1

4
∂2
xσ 2ũ2 +

(
|∂xσ |2 − 1

4
∂2
xσ 2

)
q̃2 dx

+
∫
S1

∂xσ
(
ũ2 − q̃2

)
dx

˙̃
W, in D′([0, T )), P̃–a.s.,

∫
S1

(
ũ2 + q̃2

)
(0)dx =

∫
S1

ũ2
0 + |∂xũ0 |2 dx,

(7.11)

where q̃ = ∂xũ and so 
∫
S1 ũ2 + q̃2 dx = ‖ũ‖2

H 1(S1)
. By modifying the proof of Lemma 7.4, we 

can use (7.11) to establish the validity of the claim (1.4) in Theorem 1.1, and also that the limit 
ũ satisfies part (f) of Definition 2.4. This is the content of the next lemma.

Lemma 7.6 (Energy inequality and one-sided temporal continuity). Suppose (7.11) holds. Then 
the total energy inequality (1.4) holds a.s., for a.e. s ∈ [0, T ) and every t with s < t ≤ T . Specif-
ically, it holds for s = 0 and any t ∈ (0, T ], with∫

1

(
ũ2 + |∂xũ|2

)
(0)dx =

∫
1

ũ2
0 + |∂xũ0 |2 dx.
S S
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Consequently, a.s., for a.e. t0 ∈ [0, T ),

lim
t ↓t0

‖ũ(t) − ũ(t0)‖H 1(S1) = 0, (7.12)

where the case t0 = 0, for which ũ(0) = ũ0, is covered by Lemma 7.4.

Remark 7.7. When we assert that a property is true “a.s. for a.e. t ∈ [0, T ]”, it means that for 
almost every ω̃ ∈ �̃, under the probability measure P̃ , there exists a Lebesgue negligible subset 
N = N(ω̃) ⊂ [0, T ] such that the stated property holds true for every t ∈ [0, T ] \ N(ω̃). Consider 
the inequality (1.4), which can be abstractly represented as I(ω̃, t) ≤ 0 for some function I on 
�̃ × [0, T ] (with s fixed). For a.e. ω̃, there exists a negligible set N(ω̃) ⊂ [0, T ], such that the 
inequality I(ω̃, t) ≤ 0 remains valid for all t ∈ [0, T ] \ N(ω̃). Now note that our function I is 
integrable on the product space �̃ × [0, T ]. Considering this, we can employ the Tonelli theorem 
to conclude that the inequality I(ω̃, t) ≤ 0 is indeed valid for a.e. (ω̃, t) ∈ �̃ × [0, T ], i.e., I is 
nonpositive on the product space �̃ × [0, T ].

Proof. We employ a standard deterministic argument, see for example [30, page 653]. Consider 
test functions 0 ≤ βδ ∈ W 1,∞([0, T ]) with δ > 0 taking values in a sequence converging to zero. 
For given s and t with 0 ≤ s < t ≤ T , consider δ > 0 such that s + δ < t − δ. For such δ, let βδ be 
the continuous piecewise linear function that equals 1 on [s + δ, t − δ], 0 on [0, s] and [t, T ], and 
is linear on [s, s + δ] and [t − δ, t ]. Then βδ(t

′) → 1[s,t ](t ′) for a.e. t ′ ∈ [0, T ]. For t ′ ∈ [0, T ], 
define

Iδ(t
′) =

∫
S1

(
1

4
∂2
xσ 2ũ2 +

(
|∂xσ |2 − 1

4
∂2
xσ 2

)
q̃2
)

(t ′)βδ(t
′)dx,

�δ(t
′) =

∫
S1

∂xσ
(
ũ2 − q̃2

)
(t ′)βδ(t

′)dx.

By using βδ as the test function in (7.11), we obtain the following result (a.s.):

1

δ

t∫
t −δ

∥∥ũ(t ′)
∥∥2

H 1(S1)
dt ′ − 1

δ

s+δ∫
s

∥∥ũ(t ′)
∥∥2

H 1(S1)
dt ′

≤
T∫

0

Iδ(t
′) dt ′ +

T∫
0

�δ(t
′) dW̃ (t ′).

We apply Lebesgue’s differentiation theorem to send δ to zero. As a result, we obtain the fol-
lowing inequality for all Lebesgue points 0 ≤ s < t ≤ T of the function t ′ → ∥∥ũ(ω̃, t ′)

∥∥2
H 1(S1)

, 
which is integrable on [0, T ] for a.e. ω̃:

‖ũ(ω̃, t)‖2
H 1(S1)

− ‖ũ(ω̃, s)‖2
H 1(S1)

≤
t∫
I (t ′) dt ′ +

t∫
�(t ′) dW̃ (t ′). (7.13)
s s
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Here, I and � are defined in the same manner as Iδ and �δ , respectively, but with the substitution 
of βδ by 1. To be more precise, for each fixed ω̃ from a set F of full P̃–measure, there exists 
a subset N(ω̃) ⊂ [0, T ] of zero Lebesgue measure such that (7.13) holds for every t ∈ [0, T ] \
N(ω̃).

The only distinction from the deterministic argument is the necessity to pass to the (δ →
0) limit in the stochastic integrals 

∫ T

0 �δ dW̃ , where we clearly have 
∣∣�δ − 1[s,t ]�

∣∣ → 0

a.e. in �̃ × [0, T ]. Furthermore, leveraging Lemma 5.4, it follows that 
∣∣�δ − 1[s,t ]�

∣∣2 ≤
4 |�|2 ∈ L1(�̃ × [0, T ]). Thus, by the Lebesgue dominated convergence theorem, �δ → 1[s,t ]�
in L2(�̃ × [0, T ]). Hence, by the BDG inequality, we conclude that 

∫ ·
0 �δ(t

′) dW̃(t ′) →∫ ·
0 1[s,t ](t ′)�(t ′) dW̃(t ′) in L2

(
�̃; C([0, T ])). Passing to a subsequence, this convergence holds 

a.s. in C([0, T ]).
Next, we note that (7.13) is valid for all values of t , not exclusively limited to the Lebesgue 

points. To see this, fix an arbitrary t > s, with s ∈ [0, T ) \ N(ω̃), ω̃ ∈ F (s is a Lebesgue point of 
‖ũ(ω̃, ·)‖2

H 1(S1)
). Let t� > s, t� ∈ [0, T ) \ N(ω̃), be a sequence of (Lebesgue) points converging 

to t as � → ∞. In (7.13) we replace t by t�. Recalling that ũ ∈ C
([0, T ]; H 1(S1) − w

)
a.s., see 

Lemma 5.4, which implies that ũ is a.s. weakly lower semicontinuous in H 1(S1), it then follows 
that

‖ũ(ω̃, t)‖2
H 1(S1)

≤ lim inf
�→∞ ‖ũ(ω̃, t�)‖2

H 1(S1)

(7.13)≤ ‖ũ(ω̃, s)‖2
H 1(S1)

+
t∫

s

I (t ′) dt ′ +
t∫

s

�(t ′) dW̃ (t ′).

Summarising, the inequality (7.13) holds for P̃–a.e. ω̃ (i.e., for any ω̃ ∈ F with P̃ (F ) = 1), for 
any time t ∈ (0, T ] and for any Lebesgue point s with 0 ≤ s < t ≤ T (i.e., s ∈ [0, T ) \ N(ω̃), 
|N(ω̃)| = 0). This proves the first part of the lemma.

The right-continuity of ũ in H 1(S1) at a Lebesgue point s = t0 can be inferred from (7.13). 
More precisely, by the a.s. weak lower semicontinuity of ũ and (7.13),

‖ũ(ω̃, t0)‖2
H 1(S1)

≤ lim inf
t ↓t0

‖ũ(ω̃, t)‖2
H 1(S1)

≤ lim sup
t ↓t0

‖ũ(ω̃, t)‖2
H 1(S1)

≤ ‖ũ(ω̃, t0)‖2
H 1(S1)

,

so that limt ↓t0 ‖ũ(ω̃, t)‖2
H 1(S1)

= ‖ũ(ω̃, t0)‖2
H 1(S1)

, for any ω̃ ∈ F , P̃ (F ) = 1, and t0 ∈ [0, T ) \
N(ω̃), |N(ω̃)| = 0. As a result, we can employ a similar reasoning as in the proof of Lemma 7.4
to conclude that the right-continuity claim (7.12) holds.

Finally, utilizing the strong initial trace result (7.4), we can conclude that s = 0 is a Lebesgue 
point of ‖ũ(·)‖2

H 1(T )
. �

7.2. Equation for the weak limits S(q)

We will need to know that products like S′(q̃n) P̃n converge weakly. Since S′(q̃n) converges 
weakly, it is crucial that P̃n converges strongly to P̃ . To this end, we will make essential use of 
the space Lr

(
Lr
)
. First, by (5.12),
w
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∥∥∥q̃2
n − q2

∥∥∥r

Lr
t (H

−1
x )

=
T∫

0

∥∥∥q̃2
n(t) − q2(t)

∥∥∥r

H −1(S1)
dt

n↑∞−−−→ 0, a.s. (7.14)

By (5.13) and (5.11),

Ẽ

T∫
0

∥∥∥q̃2
n(t) − q2(t)

∥∥∥p

H −1(S1)
dt � 1, p ∈ [1,p0/2

]
. (7.15)

For any p̄ > 1 with rp̄ ∈ [1, p0/2
]

(recall that r < 3/2 and p0 > 4), we use Hölder’s inequality 

and (7.15) to deduce that Ẽ
∥∥∥q̃2

n − q2
∥∥∥rp̄

Lr
t (H

−1
x )

�T 1. Therefore, by (7.14) and Vitali’s conver-

gence theorem,

q̃2
n

n↑∞−−−→ q2 in Lr
ω̃,t

(
H −1

x

)
. (7.16)

Given (7.16), passing to a subsequence if necessary, we may assume that

q̃2
n(ω̃, t)

n↑∞−−−→ q2(ω̃, t) in H −1(S1), for a.e. (ω̃, t) ∈ �̃ × [0, T ]. (7.17)

By Lebesgue interpolation between the convergence in Lr
ω̃,t

, see (7.16), and the uniform 

boundedness in Lp0/2
ω̃,t

, see (7.15), we can improve (7.16) to

q̃2
n

n↑∞−−−→ q2 in L
p

ω̃,t

(
H −1

x

)
, p ∈ [1,p0/2

)
. (7.18)

We can now prove the following result:

Lemma 7.8 (Strong convergence of P̃n). Let ũn, ũ, q̃n, q2 be the Skorokhod–Jakubowski repre-
sentations from Proposition 4.9. Setting

P̃n = K ∗
(

ũ2
n + 1

2
q̃2
n

)
, n ∈ N,

P̃ = K ∗
(

ũ2 + 1

2
q2

)
,

(7.19)

the following strong convergence holds:

P̃n
n↑∞−−−→ P̃ in Lr([0, T ] × S1), P̃–a.s., (7.20)

where r ∈ [1, 3/2) is fixed in (4.13). In addition, for any p ∈ [1, p0/2
)
,

P̃n
n↑∞−−−→ P̃ in Lp(�̃ × [0, T ] × S1), (7.21)

where p0 > 4 is specified in Theorem 2.3.
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Proof. For any (t, x),

∣∣∣K ∗ q̃2
n − K ∗ q2

∣∣∣ (t, x) =

∣∣∣∣∣∣∣
∫
S1

K(x − y)
(
q̃2
n(t, y) − q2(t, y)

)
dy

∣∣∣∣∣∣∣
≤ ‖K(x − ·)‖H 1(S1)

∥∥∥q̃2
n(t) − q2(t)

∥∥∥
H −1(S1)

,

where ‖K(x − ·)‖H 1(S1) � 1 for all x. Raising this to the r th power and then integrating in t and 
x, we arrive at

T∫
0

∫
S1

∣∣∣∣∣∣∣
∫
S1

K(x − y)
(
q̃2
n(t, y) − q2(t, y)

)
dy

∣∣∣∣∣∣∣
r

dx dt

�
∥∥∥q̃2

n − q2
∥∥∥r

Lr ([0,T ];H −1(S1))

n↑∞−−−→ 0, P̃–a.s.,

using (7.14). By (4.24), ũ2
n

n↑∞−−−→ ũ2 in CtL
1
x a.s. and so

T∫
0

∫
S1

∣∣∣∣∣∣∣
∫
S1

K(x − y)
(
ũ2

n(t, y) − ũ2(t, y)
)

dy

∣∣∣∣∣∣∣
r

dx dt

�
∥∥∥ũ2

n − ũ2
∥∥∥r

L∞([0,T ];L1(S1))

n↑∞−−−→ 0, P̃–a.s.

Hence, (7.20) follows.
Let us now turn to the proof of (7.21). From the previous calculations,∣∣∣P̃n(ω̃, t, x) − P̃ (ω̃, t, x)

∣∣∣� ∥∥∥ũ2
n(ω̃, t) − ũ2(ω̃, t)

∥∥∥
L1(S1)

+
∥∥∥q̃2

n(ω̃, t) − q2(ω̃, t)

∥∥∥
H −1(S1)

n↑∞−−−→ 0, (7.22)

for a.e. (ω̃, t, x), using (7.17) and also that ũ2
n(ω̃, t) 

n↑∞−−−→ ũ2(ω̃, t) in L1
x , uniformly in t ∈ [0, T ], 

P̃–a.e. in ω̃, cf. (4.24). By Lemma 5.6 and (5.10),

Ẽ

T∫
0

∫
S1

∣∣∣P̃n − P̃

∣∣∣p0/2
dx dt � 1.

Combining the a.e. convergence (7.22) with this n-uniform bound in Lp0/2
ω̃,t,x

, the Vitali conver-
gence theorem gives (7.21). �
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The remaining part of this section is devoted to the study of the defect measure D defined in 
(1.12), which will be done by analysing the related defects S(q) − S(q̃), for an appropriate class 
of nonlinearities S (for reasons outlined in Section 1). We compute S(q) and S(q̃) in this section 
and Section 7.3, before we put the results together in Section 7.4 to conclude that D = 0.

Lemma 7.9 below shows that the a.s. weak limit S(q) of S(q̃n), see (4.24) and (3.4), satisfies 
the following pathwise inequality in D′([0, T ) × S1):

∂tS(q) + ∂x

[
ũ S(q) + 1

4
∂xσ

2
(

3S(q) − 2S′(q)q
)]

− ∂2
xx

[
1

2
σ 2 S(q)

]
+
[
S′(q)

(
P
[
ũ, q2

]− ũ2
)

−
(

S(q)q − 1

2
S′(q)q2

)

− 1

4
∂2
xxσ

2
(
S(q) − S′(q)q

)
− 1

2
|∂xσ |2 S′ ′(q) q2

]

+
[
∂x

(
σ S(q)

)
− ∂xσ

(
S(q) − S′(q)q

)] ˙̃
W ≤ 0, (7.23)

along with the initial data S(q)(0) = S(∂xũ0). Regrettably, we cannot establish (7.23) along the 
lines of Proposition 6.3. The obstacle is that passing to the limit in some terms is hampered by 
the lack of strong temporal compactness. Instead we will furnish a “direct” weak convergence 
proof, relying on [25, Lemma 2.1] to establish the convergence of stochastic integrals of pro-
cesses like 

∫
S1 S′(q̃n)q̃n dx. A priori, these processes only converge weakly in L2r

t . However, we 
have devoted much effort to showing that, e.g., S′(q̃n)q̃n converges a.s. in the strong-weak space 
L2r
(
L2r

w

)
, cf. (4.24). This implies that 

∫
S1 S′(q̃n)q̃n dx converges strongly in L2

t , which in turn 
allows for the application of [25, Lemma 2.1].

Lemma 7.9 (Characterisation of weak limit). Denote by S = S(v) any of the functions S�(v±), 
defined by (4.2), or 1

2v2, 12v2±. Let S(q), S′(q), S(q)q , S′(q)q , S′(q)q2 and S′ ′(q)q2 be the 
Skorokhod–Jakubowski representations from Proposition 4.9, see also Remark 4.10, and let P̃
be defined by (7.19). Then the inequality (7.23) holds weakly in (t, x), almost surely, that is, for 
any 0 ≤ ϕ ∈ C∞

c ([0, T ) × S1),

T∫
0

∫
S1

S(q) ∂tϕ dx dt +
∫
S1

S(∂xũ0)ϕ(0, x)dx

+
T∫

0

∫
S1

[
ũ S(q) + 1

4
∂xσ

2 H(1)(q)

]
∂xϕ dx dt

+
T∫ ∫

1

1

2
σ 2 S(q) ∂2

xxϕ dx dt
0 S
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−
T∫

0

∫
S1

[
S′(q)

(
P̃ − ũ2

)
− H(2)(q) (7.24)

− 1

4
∂2
xxσ

2 H(3)(q) − 1

2
|∂xσ |2 S′ ′(q) q2

]
ϕ dx dt

+
T∫

0

∫
S1

σ S(q) ∂xϕ + ∂xσ H(3)(q)ϕ dx dW̃ ≥ 0, P̃–a.s.,

where we have introduced the functions

H(1)(v) = 3S(v) − 2S′(v)v, H (2)(v) = S(v)v − 1
2S′(v)v2,

H (3)(v) = S(v) − S′(v)v.
(7.25)

By the linearity of weak limits, we have H(1)(q) = 3S(q) − 2S′(q)q , H(2)(q) = S(q)q −
1
2S′(q)q2, and H(3)(q) = S(q) − S′(q)q .

Proof. Referring to Proposition 4.9, 
(
ũn, q̃n = ∂xũn, W̃n, ũ0,n

)
are the Skorokhod–Jakubowski 

representations of 
(
uεn, qεn = ∂xuεn, W, zn

)
, respectively, where uεn is the strong solution to the 

viscous SPDE (1.5) with noise W and initial function uεn(0) = zn, cf. (4.12). As in the proof 
of Lemma 7.2, S(q̃n) satisfies (3.4) with uε , qε , W , ε replaced by ũn, q̃n, W̃n, εn, respectively, 
where εn → 0 as n → ∞.

Fix a non-negative test function ϕ ∈ C∞
c ([0, T ) × S1). Multiply (3.4) by ϕ, integrate over 

(t, x), and then do integration-by-parts in time, keeping in mind that S(q̃n(0)) = S(∂xũ0,n). 
Dropping the dissipation term and employing the notation (7.25), the end result is

Ĩn(ω̃) + M̃n(ω̃) ≥ 0, for P̃–a.e. ω̃ ∈ �̃, (7.26)

where M̃n(ω̃) = M̃n(ω̃, T ) with

M̃n(t) =
t∫

0

∫
S1

σεn S(q̃n) ∂xϕ + ∂xσεn H (3)(q̃n)ϕ dx dW̃n, t ∈ [0, T ], (7.27)

and Ĩn = ∑10
i=1 Ĩ

(i)
n with

Ĩ (1)
n =

T∫
0

∫
S1

S(q̃n) ∂tϕ dx dt, Ĩ (2)
n =

∫
S1

S(∂xũ0,n) ϕ(0, x)dx,

Ĩ (3)
n =

T∫ ∫
1

ũn S(q̃n) ∂xϕ dx dt,
0 S
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Ĩ (4)
n = 1

4

T∫
0

∫
S1

∂xσ
2
εn

H (1)(q̃n) ∂xϕ dx dt,

Ĩ (5)
n =

T∫
0

∫
S1

(
1

2
σ 2

εn
+ εn

)
S(q̃n) ∂2

xx ϕ dx dt, (7.28)

Ĩ (6)
n = −

T∫
0

∫
S1

S′(q̃n) P̃n ϕ dx dt, Ĩ (7)
n =

T∫
0

∫
S1

S′(q̃n) ũ2
n ϕ dx dt,

Ĩ (8)
n =

T∫
0

∫
S1

H(2)(q̃n)ϕ dx dt, Ĩ (9)
n = 1

4

T∫
0

∫
S1

∂2
xxσ

2
εn

H (3)(q̃n)ϕ dx dt,

Ĩ (10)
n = 1

2

T∫
0

∫
S1

∣∣∂xσεn

∣∣2 S′ ′(q̃n) q̃2
n ϕ dx dt.

We can also write the claim (7.24) of the lemma in the form

Ĩ (ω̃) + M̃(ω̃) ≥ 0, for P̃–a.e. ω̃ ∈ �, (7.29)

where M̃(ω̃) = M̃(T ) and Ĩ = ∑10
i=1 Ĩ (i) are defined as in (7.27) and (7.28) via the correspond-

ing limit terms identified in (7.24). Below we will prove that

Ĩ (i)
n

n↑∞−−−→ I (i) P̃–a.s. and strongly in L2(�̃), ∀i /∈ {3,6,7},

Ĩ (i)
n

n↑∞−−−⇀ I(i) in L1(�̃), i ∈ {3,6,7}.
(7.30)

Moreover, we will prove that the stochastic integral term converges strongly in the sense that (for 
a non-relabelled subsequence)

M̃n
n↑∞−−−→ M̃ in L2(�̃). (7.31)

Given (7.26), the convergences (7.30) and (7.31) imply that∫
�̃

1A(ω̃)
(
I (ω̃) + M(ω̃)

)
dP̃ (ω̃) ≥ 0,

for any measurable set A ∈ F̃ , which is enough to conclude that (7.29) holds.
It remains to verify (7.30) and (7.31). Let us start with (7.30). We do this only for the most 

challenging choices of S, namely S(v) = 1
2v2, 12v2±. The argument is the same for S = S� (in 

fact, it is simpler because S�(v) �� |v|).
Regarding the convergences of I (i)

n for i  = {3, 6, 7}, cf. (7.30), they are all direct consequences 
of the a.s. convergences in (4.24). We detail only the case i = 1. By (4.24) and S(v) = 1v2, 1v2 , 
2 2 ±
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we have, in particular, that S(q̃n) 
n↑∞−−−⇀ S(q) in Lr([0, T ] × S1) a.s. and so Ĩ (1)

n
n↑∞−−−→ Ĩ (1) a.s. 

By Lemma 5.3, we also have the n-independent bound

Ẽ
∥∥∥Ĩ (1)

n

∥∥∥p

Lp(�̃)
�ϕ Ẽ

⎛⎜⎝ T∫
0

∫
S1

|q̃n|2 dx dt

⎞⎟⎠
p

�T Ẽ ‖q̃n‖2p

L∞([0,T ];L2(S1))
� 1,

for p ∈ [1, p0/2
)
. Thus, by Vitali’s convergence theorem, Ĩ (1)

n
n↑∞−−−→ Ĩ (1) in L2(�̃).

Let us consider the exceptional term I
(3)
n . In view of (4.24), S(q̃n) 

n↑∞−−−⇀ S(q) in Lr
t,x

a.s., where r ∈ [1, 3/2) (and so r ′ = r
r−1 > 3). Given Lemma 5.3, we also have the bound 

Ẽ ‖S(q̃n)‖r
Lr

t,x
� 1. Hence, by a weak compactness argument, we may assume that S(q) ∈

Lr(�̃ × [0, T ] × S1) and

S(q̃n)
n↑∞−−−⇀ S(q) in Lr(�̃ × [0, T ] × S1). (7.32)

By (4.24), ũn
n↑∞−−−→ ũ in CtL

2
x a.s. In view of Lemma 5.6 and Vitali’s convergence theorem, we 

thus obtain ũn
n↑∞−−−→ ũ in L2(�̃ × [0, T ] × S1). Apart from that, Lemma 5.6 delivers the bounds 

Ẽ
∥∥(ũn, ũ

)∥∥p0

L
p0
t,x

� 1, where p0 > 4 and we may assume 3 < r ′ < p0. Accordingly, we gather that

ũn
n↑∞−−−→ ũ in Lr ′

(�̃ × [0, T ] × S1). (7.33)

Given (7.32) and (7.33), by the weak convergence of products of strongly and weakly converging 
sequences,

ũn S(q̃n)
n↑∞−−−⇀ ũS(q) in L1(�̃ × [0, T ] × S1),

which proves (7.30) for i = 3. Next, consider the term I (7)
n . We need to verify the weak L1

ω̃,t,x

convergence of the product S′(q̃n)ũ
2
n. From (4.24), S′(q̃n) 

n↑∞−−−⇀ S′(q) in L2r
t,x a.s., but Lemma 5.3

also supplies the bound Ẽ
∥∥S′(q̃n)

∥∥2r

L2r
t,x

� 1. Thus, by a weak compactness argument, we may 

assume S′(q) ∈ L2r (�̃ × [0, T ] × S1) and

S′(q̃n)
n↑∞−−−⇀ S′(q) in L2r (�̃ × [0, T ] × S1). (7.34)

As 2 < 2r < 3 (with 2r close to 3) and so 3/2 < (2r)′ < 2, arguing as for (7.33), we may assume 

that ũn
n↑∞−−−→ ũ in L2(2r)′

(�̃ × [0, T ] × S1). As a result, writing ũ2
n − ũ2 = (ũn − ũ) (ũn + ũ) and 

using the Cauchy–Schwarz inequality,

ũ2
n

n↑∞−−−→ ũ2 in L(2r)′
(�̃ × [0, T ] × S1).
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Combining this with (7.34), we obtain S′(q̃n) ũ2
n

n↑∞−−−⇀ S′(q) ũ2 in L1
ω̃,t,x

, thereby establishing 
(7.30) for i = 7.

Next, we turn to the weak L1
ω̃,t,x

convergence of the delicate product term S′(q̃n) P̃n. Fortu-

nately, most of the “heavy lifting” has already been done, since (7.21) implies that P̃n
n↑∞−−−→ P̃ in 

L2(�̃ × [0, T ] ×S1). On the other hand, given (7.34), S′(q̃n) 
n↑∞−−−⇀ S′(q) in L2(�̃ × [0, T ] ×S1), 

and thus S′(q̃n) P̃n

n↑∞−−−⇀ S′(q) P̃ in L1(�̃ × [0, T ] × S1). This proves (7.30) for i = 6.
Finally, we consider the stochastic integral term (7.27), which we write as

M̃n(t) =
t∫

0

J̃n(s)dW̃n, J̃n =
∫
S1

σεn S(q̃n) ∂xϕ + ∂xσεn H (3)(q̃n)ϕ dx.

We divide the argument into two cases, depending on the choice of S, namely S�(v±), cf. (4.2), 
or 1

2v2, 12v2±.

Let us begin with the case S(v)=S�(v±). By (4.24), S(q̃n) 
n↑∞−−−→ S(q), S′(q̃n)q̃n

n↑∞−−−→ S′(q)q , 

and thus H(3)(q̃n) 
n↑∞−−−→ H(3)(q) in the strong-weak space L2r

(
L2r

w

)
a.s. (with 2r > 2). Because 

of this and σ∂xϕ, ∂xσϕ ∈ L∞
t,x ,

J̃n
n↑∞−−−→

∫
S1

σ S(q) ∂xϕ + ∂xσ H(3)(q)ϕ dx = : J̃ in L2r ([0, T ]), a.s.

This implies that J̃n → J̃ in L2([0, T ]), in probability. By (4.24), W̃n → W̃ in C([0, T ]) a.s., 
and thus in probability. The assumptions of [25, Lemma 2.1] are therefore fulfilled, with the 
result that

M̃n
n↑∞−−−→ M̃ in L2([0, T ]), in probability, (7.35)

where M̃(t) = ∫ t

0 J̃ (s) dW̃ . By passing to a subsequence if necessary, we may assume that this 
convergence holds P̃–almost surely. Note also that the exceptional set does not depend on the 
particular test function ϕ ∈ C∞

c ([0, T ) × S1) (by the separability of C∞
c ).

Next, suppose S(v) = 1
2v2, noting that H(3)(v) = S(v) − S(v)′v in this case becomes − 1

2v2

and so

M̃n(t) =
t∫

0

J̃n(s)dW̃n, J̃n =
∫
S1

1

2

(
σεn ∂xϕ − ∂xσεn ϕ

)
q̃2
n dx,

M̃(t) =
t∫

0

J̃ (s)dW̃ , J̃ =
∫
S1

1

2

(
σ ∂xϕ − ∂xσ ϕ

)
q2 dx.

According to our previous considerations—leading up to (7.18)—we have the crucial conver-

gence q̃2 n↑∞−−−→ q2 in L2
(
H −1

)
, which amounts to strong L2 convergence in ω̃, t , see also the 
n ω̃,t x
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proof of Lemma 7.2. This implies that J̃n → J̃ in L2([0, T ]), in probability. As before, W̃n → W̃

in C([0, T ]) a.s., and thus in probability. As a result, Lemma 2.1 of [25] supplies (7.35). By pass-
ing to a subsequence, we may assume that this convergence holds P̃–almost surely.

The cases S(v) = 1
2v2± can be viewed in the same way, noting that H(3)(v) = S(v±) −

S(v±)′q = − 1
2v2± and that the pivotal convergence (7.18) still holds for (q̃n)

2±. Indeed, with 

the same proof, (q̃n)
2±

n↑∞−−−→ q2± in L2
ω̃,t

(
H −1

x

)
.

Finally, let us establish the sought-after convergence claim (7.31). Indeed, by the previous 
findings,

∥∥∥M̃n − M̃
∥∥∥2

L2([0,T ])
n↑∞−−−→ 0 a.s., (7.36)

and, for any p ∈ [2, p0/2
]

(recall p0 > 4),

Ẽ
∥∥∥M̃n − M̃

∥∥∥p

L2([0,T ]) �T Ẽ sup
t ∈ [0,T ]

∣∣∣M̃n(t)

∣∣∣p + Ẽ sup
t ∈ [0,T ]

∣∣∣M̃(t)

∣∣∣p �T 1. (7.37)

The last bound follows from the following calculations:

Ẽ sup
t ∈ [0,T ]

∣∣∣M̃n(t)

∣∣∣p � Ẽ

⎡⎢⎣
⎛⎝ T∫

0

∣∣∣J̃n(t)

∣∣∣2 dt

⎞⎠p/2⎤⎥⎦

�T Ẽ

T∫
0

∣∣∣∣∣∣∣
∫
S1

q̃2
n(t)dx

∣∣∣∣∣∣∣
p

dt �T Ẽ ‖q̃n‖2p

L∞([0,T ];L2(S1))

Lemma 5.3
� 1,

(7.38)

where we have used the BDG and Hölder inequalities, and similarly

Ẽ sup
t ∈ [0,T ]

∣∣∣M̃(t)

∣∣∣p � Ẽ

⎡⎢⎣
⎛⎝ T∫

0

∣∣∣J̃ (t)

∣∣∣2 dt

⎞⎠p/2⎤⎥⎦

�T Ẽ

T∫
0

∣∣∣∣∣∣∣
∫
S1

q2(t)dx

∣∣∣∣∣∣∣
p

dt ≤ Ẽ

T∫
0

∥∥∥q2(t)

∥∥∥p

H −1(S1)
dt

(5.9)
� 1.

(7.39)

Given (7.36) and (7.37), Vitali’s convergence theorem returns

Ẽ

T∫
0

∣∣∣M̃n(t) − M̃(t)

∣∣∣2 dt
n↑∞−−−→ 0.

Passing to a subsequence, we conclude that
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Dn(t) = Ẽ
∣∣∣M̃n(t) − M̃(t)

∣∣∣2 n↑∞−−−→ 0, for a.e. in t ∈ [0, T ]. (7.40)

We may assume that Dn(t) → 0 for all t ∈ [0, T ], as the function Dn(t) depends continuously 
on t ∈ [0, T ], uniformly in n. Let us explain why. Through some straightforward manipulations 
and by utilising (7.38) and (7.39),

|Dn(t2) − Dn(t1)|2 � Ẽ
∣∣∣M̃n(t2) − M̃n(t1)

∣∣∣2 + Ẽ
∣∣∣M̃(t2) − M̃(t1)

∣∣∣2 .

We will estimate the terms on the right separately. Suppose S(v) = 1
2v2. The other cases S(v) =

S�(v), 12v2± can be treated similarly. For 0 ≤ t1 < t2 ≤ T , the Itô isometry implies

Ẽ
∣∣∣M̃n(t2) − M̃n(t1)

∣∣∣2 = Ẽ

t2∫
t1

∣∣∣J̃n(t)

∣∣∣2 dt �σ,ϕ Ẽ

t2∫
t1

∣∣∣∣∣∣∣
∫
S1

q̃2
n(t)dx

∣∣∣∣∣∣∣
2

dt

≤ |t2 − t1 | Ẽ ‖q̃n‖4
L∞([0,T ];L2(S1))

Lemma 5.3
� |t2 − t1 | .

Similarly, for any p such that 2p ∈ (1, p0/2
]

(p0 > 4) and 1/p + 1/p′ = 1,

Ẽ
∣∣∣M̃(t2) − M̃(t1)

∣∣∣2 �σ,ϕ Ẽ

t2∫
t1

∥∥∥q2(t)

∥∥∥2

H −1(S1)
dt

≤ |t2 − t1 | 1
p′

⎛⎝Ẽ T∫
0

∥∥∥q2(t)

∥∥∥2p

H −1(S1)
dt

⎞⎠1/p

(5.9)
� |t2 − t1 | 1

p′ .

From the above estimations, we can infer that |Dn(t)| � 1 uniformly across n ∈ N and t ∈ [0, T ]. 
Using the Arzelà–Ascoli theorem, we deduce that Dn(t) → D(t) uniformly for t ∈ [0, T ] along 
a subsequence, where D ∈ C([0, T ]). According to (7.40), the entire sequence must converge to 
D ≡ 0. This implies that the random variable M̃n = M̃n(T ) satisfies (7.31). �

Lemma 7.9 applies to the linearly growing approximations S = S�(v±) of 1
2v2± as well as 

S = 1
2v2± (and S = 1

2v2). As explained in the introduction, for the deterministic CH equation [63], 
the analysis relies on the use of S�(v+) and a one-sided gradient bound (Oleinik-type estimate) to 
control the error that arises when replacing v2+ by S�(v+). As one-sided gradient bounds are not 
available to us, we will insist on applying Lemma 7.9 with S = 1

2v2+ and then use some different 
ideas to control the defect measure. Exploiting the identities

S(v) = 1

2
v2+, S′(v) = v+, S′ ′(v) = 1{v>0}, H (1)(v) = − 1

2
v2+,

H (2)(v) = 0, H (3)(v) = − 1

2
v2+, S′ ′(v) v2 = v2+,
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and the linearity of the weak limit (i.e., a + b = a + b), the inequality (7.24) with S(v) = 1
2v2+

simplifies into

T∫
0

∫
S1

1

2
q2+ ∂tϕ dx dt +

∫
S1

1

2
(∂xũ0)

2+ ϕ(0, x)dx

+
T∫

0

∫
S1

(
ũ − 1

4
∂xσ

2
)

1

2
q2+ ∂xϕ dx dt +

T∫
0

∫
S1

1

4
σ 2 q2+ ∂2

xxϕ dx dt

−
T∫

0

∫
S1

[
q+
(
P̃ − ũ2

)
+
(

1

4
∂2
xxσ

2 − |∂xσ |2
)

1

2
q2+

]
ϕ dx dt

+
T∫

0

∫
S1

(
σ ∂xϕ − ∂xσ ϕ

)1

2
q2+ dx dW̃ ≥ 0, P̃–a.s.,

(7.41)

for all non-negative ϕ ∈ C∞
c ([0, T ) × S1).

7.3. Renormalised equation for the weak limit q̃

According to Proposition 6.3, the a.s. limit ũ from Proposition 4.9 satisfies

0 = dũ + [ũ ∂xũ + ∂xP̃
]

dt − 1

2
σ∂x (σ∂xũ) dt + σ∂xũdW̃ , (7.42)

weakly in x, almost surely, where −∂2
xxP̃ + P̃ = ũ2 + 1

2q2. By Lemma 5.1, the a.s. limit q̃ of 
Proposition 4.9 satisfies q̃ = ∂xũ weakly. Differentiating (7.42) with respect to x, we thus obtain 
the SPDE

0 = dq̃ +
(

∂x (ũq̃) − 1

2
q2 + P̃ − ũ2

)
dt

− 1

2
∂x (σ∂x (σ q̃)) dt + ∂x (σ q̃) dW̃ .

(7.43)

Consider a linearly growing S ∈ W
2,∞
loc (R) (of the type considered before). Note that, thanks 

to (3.3),

S′(q̃)

(
∂x (ũq̃) − 1

2
q2

)
= ∂x (ũS(q̃)) − H(2)(q̃) − 1

2
S′(q̃)

(
q2 − q̃2

)
,

where H(2) is defined in (7.25). Formally applying Itô’s formula to (7.43) as in (3.4), expressing 
the temporal differential as a time-derivative in D′([0, T )), we obtain
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0 = ∂tS(q̃) + ∂x

[
ũ S(q̃) + 1

4
∂xσ

2 H(1)(q̃)

]
− ∂2

xx

[
1

2
σ 2S(q̃)

]

+
[
S′(q̃)

(
P̃ − ũ2

)
− H(2)(q̃) − 1

2
S′(q̃)

(
q2 − q̃2

)

− 1

4
∂2
xxσ

2 H(3)(q̃) − 1

2
|∂xσ |2 S′ ′(q̃) q̃2

]

+
[
∂x

(
σ S(q̃)

)− ∂xσ H(3)(q̃)
] ˙̃
W, in D′([0, T ) × S1), a.s.,

(7.44)

with initial data S(q̃)(0) = S(∂xũ0), here relying crucially on Lemma 7.4 (strong right-continuity 
at t = 0). Note carefully that S is assumed linearly growing in order to make sense to the 
product S′(q̃)

(
q2 − q̃2

)
, given the meagre integrability (4.24). This excludes the functions 

S(v) = 1
2v2, 12v2± allowed by Lemma 7.9.

The processes ũ and q̃ appearing in (7.44) exhibit limited regularity. Specifically, q̃ does 
not belong to any spatial Sobolev space, as the second-order part of the SPDE (7.43) does not 
manifest “parabolic regularity”. The rigorous derivation of (7.44) is therefore quite involved: it 
relies on the regularisation (by convolution) method and the real-valued Itô formula, along with 
non-standard DiPerna–Lions estimates to control the regularisation error linked to the second 
order operator and the martingale part of the equation (7.43), see Appendix C for details and 
Section 1 for some relevant references.

Lemma 7.10 (Renormalisation of limit SPDE). Denote by S(v) any one of the functions S�(v±)

defined by (4.2). Let ũ, q̃ = ∂xũ, cf. Lemma 5.1, and q2 be the Skorokhod–Jakubowski repre-
sentations from Proposition 4.9, see also Remark 4.10, and H(1), H(2), H(3) be the functions 
defined in (7.25) with S(v) = S�(v±). The SPDE (7.44) holds weakly in (t, x), almost surely, that 
is, P̃–a.s.,

T∫
0

∫
S1

S(q̃) ∂tϕ dx dt +
∫
S1

S(∂xũ0)ϕ(0, x)dx

+
T∫

0

∫
S1

[
ũ S(q̃) + 1

4
∂xσ

2 H(1)(q̃)

]
∂xϕ dx dt

+
T∫

0

∫
S1

1

2
σ 2 S(q̃) ∂2

xxϕ dx dt (7.45)

−
T∫

0

∫
S1

[
S′(q̃)

(
P̃ − ũ2

)
− H(2)(q̃) − 1

2
S′(q̃)

(
q2 − q̃2

)

− 1

4
∂2
xxσ

2 H(3)(q̃) − 1

2
|∂xσ |2 S′ ′(q̃) q̃2

]
ϕ dx dt
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+
T∫

0

∫
S1

σ S(q̃) ∂xϕ + ∂xσ H(3)(q̃) ϕ dx dW̃ = 0,

for all ϕ ∈ C∞
c ([0, T ) × S1), where P̃ is defined in (7.19).

Proof. Let Jδ be a standard Friedrichs mollifier on S1. For f ∈ Lp(S1), write fδ = Jδ ∗ f . 
Mollifying the limit SPDE (7.42) against Jδ , we obtain

0 = dũδ + ũδq̃δ dt + E
(1)
δ dt + ∂xK ∗

(
ũ2 + 1

2
q2

)
∗ Jδ dt

− 1

2
σ∂x (σ q̃δ) dt + E

(3)
δ dt +

[
σ q̃δ + E

(2)
δ

]
dW̃ ,

(7.46)

where E(1)
δ , E(2)

δ , E(3)
δ denote the following convolution error terms:

E
(1)
δ = (ũq̃) ∗ Jδ − ũδq̃δ, E

(2)
δ = (σ q̃

) ∗ Jδ − σ q̃δ,

E
(3)
δ = − 1

2

(
σ∂x (σ q̃)

) ∗ Jδ + 1

2
σ ∂x (σ q̃δ) .

Next, differentiating (7.46) with respect to x, we arrive at

0 = dq̃δ +
[
∂x (ũδq̃δ) + K ∗

(
ũ2 + 1

2
q2

)
∗ Jδ −

(
ũ2 + 1

2
q2

)
∗ Jδ

]
dt

− 1

2
∂x

(
σ∂x (σ q̃δ)

)
dt + ∂x (σ q̃δ) dW̃

+ ∂xE
(1)
δ dt + ∂xE

(2)
δ dW̃ + ∂xE

(3)
δ dt.

(7.47)

Consider S(v) = S�(v±) as in the lemma. Given (7.47), applying the standard Itô formula to 
S(q̃δ), as in (7.44) (cf. also (3.3) and (3.4)), we obtain

0 =
T∫

0

∫
S1

S(q̃δ)∂tϕ dx dt +
∫
S1

S(q̃δ(0))ϕ(0, x)dx +
6∑

i=1

I
(i)
δ , (7.48)

where

I
(1)
δ =

T∫
0

∫
S1

(
H(2)(q̃δ) + 1

4
∂2
xxσ

2H(3)(q̃δ)

)
ϕ dx dt

+
T∫ ∫

1

(
ũδS(q̃δ) + 1

4
∂xσ

2H(1)(q̃δ)

)
∂xϕ dx dt
0 S
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− 1

2

T∫
0

∫
S1

σ 2 S(q̃δ)∂
2
xxϕ dx dt,

I
(2)
δ = −

T∫
0

∫
S1

S′(q̃δ)I
(2)

δ ϕ dx dt,

I
(3)
δ = 1

2

T∫
0

∫
S1

|∂xσ |2 S′ ′(q̃δ)q̃
2
δ ϕ dx dt,

I
(4)
δ =

T∫
0

∫
S1

σS(q̃δ)∂xϕ + ∂xσH(3)(q̃δ)ϕ dx dW̃ ,

I
(5)
δ =

T∫
0

∫
S1

−ϕS′(q̃δ)∂xE
(3)
δ + ϕS′ ′(q̃δ)I

(5)

δ dx dt

−
T∫

0

∫
S1

ϕS′(q̃δ)∂xE
(1)
δ dx dt,

I
(6)
δ = −

T∫
0

∫
S1

ϕS′(q̃δ)∂xE
(2)
δ dx dW̃ ,

and

I
(2)

δ = K ∗
(

ũ2 + 1

2
q2

)
∗ Jδ −

(
ũ2 + 1

2
q2

)
∗ Jδ + 1

2
q̃2
δ ,

I
(5)

δ =
(

∂xE
(2)
δ ∂x (σ q̃δ) + 1

2

∣∣∣∂xE
(2)
δ

∣∣∣2) .

In deriving I
(2)

δ , we used the fact that K is the Green’s function of 1 − ∂2
xx on S1.

Denote by I (i) the expression corresponding to formally taking δ to zero in I (i)
δ , i = 1, . . . , 6, 

and the same for I
(2)

, I
(5)

.
Recall that

q̃ ∈ L
p0
ω̃

L∞
t L2

x ∩ L2r
ω̃,t,x , q2 ∈ Lr

ω̃,t,x , ũ ∈ L
p0
ω̃

L∞
t,x ,

where r ∈ [1, 3/2) and p0 > 4, see Lemmas 5.4, 5.6, and 5.7. By a standard property of mollifiers, 

q̃δ
δ↓0−−→ q̃ a.e. in �̃ × [0, T ] × S1. Denote by f (v) any one of the nonlinear functions S(v), 

S′(v), S′ ′(v)v2, H(1)(v), H(2)(v), H(3)(v), where we recall that S(v) = S�(v±), cf. (4.2), and 
H(1), H(2), H(3) are defined in (7.25) with S(v) = S�(v±). By the continuity of f (v),
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f (q̃δ)
δ↓0−−→ f (q̃) a.e. in �̃ × [0, T ] × S1. (7.49)

We have the bound

‖f (q̃δ)‖L∞
t,x

�� 1, f (v) = S′(v), S′ ′(v)v2,

and thus, by (7.49) and Vitali’s convergence theorem,

f (q̃δ)
δ↓0−−→ f (q̃) in L

p
t,x , a.s., (7.50)

for any 1 ≤ p < ∞.
Similarly, by the bounds

‖f (q̃δ)‖L∞
t L2

x
, ‖f (q̃δ)‖L2r

t,x
��,ω̃ 1, f (v) = S(v), H (1)(v), H (3)(v),

we have the a.s. convergences

f (q̃δ)
δ↓0−−→ f (q̃) in L

p1
t L

p2
x and in L

p
t,x , (7.51)

for any 1 ≤ p1 < ∞, 1 ≤ p2 < 2, and 1 ≤ p < 2r . In addition, since f (q̃δ) is bounded in L2r
ω̃,t,x

(and 2r > 2),

f (q̃δ)
δ↓0−−→ f (q̃) in L2

ω̃,t,x . (7.52)

Next, from the bound

‖f (q̃δ)‖Lr
t,x

��,ω̃ 1, f (v) = v2, H (2)(v),

we obtain the convergence

f (q̃δ)
δ↓0−−→ f (q̃) in L

p
t,x , a.s., (7.53)

for any 1 ≤ p < r .
Since q2 ∈ Lr

t,x a.s., we have the convergence

q2 ∗ Jδ
δ↓0−−→ q2 in L

p
t,x , a.s. (7.54)

Finally, since ũ ∈ L∞
t,x , a.s.,

ũδ
δ↓0−−→ ũ, ũ2 ∗ Jδ

δ↓0−−→ ũ2 in L
p
t,x , a.s., for any p ∈ [1, ∞). (7.55)

1. The first two terms in (7.48).
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By (7.51) and ∂tϕ ∈ L∞
t,x ,

T∫
0

∫
S1

S(q̃δ)∂tϕ dx dt
δ↓0−−→

T∫
0

∫
S1

S(q̃)∂tϕ dx dt, a.s.

Regarding the initial term,∫
S1

S(q̃δ(0))ϕ(0, x)dx =
∫
S1

S(∂xũ0)ϕ(0, x)dx + A + Bδ,

where

A =
∫
S1

(
S(q̃(0)) − S(∂xũ0)ϕ(0, x)dx,

Bδ =
∫
S1

(
S(q̃δ(0)) − S(q̃(0))

)
ϕ(0, x)dx.

By Lemma 7.4 (strong initial trace of q̃ = ∂xũ in L2), we have that A = 0. As in (7.51), 

S(q̃δ(0)) 
δ↓0−−→ S(q̃(0)) in L1

x a.s., and hence we easily deduce that Bδ
δ↓0−−→ 0; accordingly,∫

S1

S(q̃δ(0))ϕ(0, x)dx
δ↓0−−→

∫
S1

S(∂xũ0)ϕ(0, x)dx, a.s.

2. The term I (1)
δ .

Since ϕ, ∂xϕ, ∂2
xxϕ, σ 2, ∂xσ

2, ∂2
xxσ

2 ∈ L∞
t,x , the convergences (7.51) and (7.53) ensure that 

I
(1)
δ

δ↓0−−→ I (1) a.s.

3. The term I (2)
δ .

In view of Young’s convolution inequality and the convergences (7.53), (7.54), and (7.55), we 

obtain I
(2)

δ

δ↓0−−→ I
(2)

in Lp
t,x , a.s., for any p ∈ [1, r), where

I
(2) = K ∗

(
ũ2 + 1

2
q2

)
− ũ2 − 1

2

(
q2 − q̃2

)
.

Moreover, by (7.50), S′(q̃δ) 
δ↓0−−→ S′(q̃) in Lp′

t,x , a.s., where 1
p

+ 1
p′ = 1. Consequently, as ϕ ∈ L∞

t,x , 

it follows that I (2)
δ

δ↓0−−→ I (2), a.s.

4. The term I (3).
δ
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Using (7.50), recalling that 1
2 |∂xσ |2 ϕ ∈ L∞

t,x ,

I
(3)
δ

δ↓0−−→ 1

2

T∫
0

∫
S1

|∂xσ |2 S′ ′(q̃)q̃2ϕ dx ds.

5. The term I (4)
δ .

By the Itô isometry and the Cauchy–Schwarz inequality,

Ẽ
∣∣∣I (4)

δ − I (4)
∣∣∣2 ≤ Ẽ

T∫
0

∫
S1

|σ∂xϕ|2 |S(q̃δ) − S(q̃)|2 dx dt

+ Ẽ

T∫
0

∫
S1

|ϕ∂xσ |2
∣∣∣H(3)(q̃δ) − H(3)(q̃)

∣∣∣2 dx dt.

Both these integrals tend to nought by (7.52). Therefore, along a subsequence δ = δj ↓ 0 as 

j → ∞, I (4)
δ

j ↑∞−−−→ I (4), a.s.

6. The terms I (5)
δ and I (6)

δ .

Since ϕ ∈ L∞
t,x , 

∣∣S′(·)∣∣ �� 1, and 
∣∣S′ ′(·)∣∣ ≤ 1, Lemma C.1 and Proposition C.2 allow us to 

directly conclude that I (5)
δ

δ↓0−−→ I (5), a.s., along a subsequence δ = δj ↓ 0 as j → ∞. Similarly, 
again invoking the Itô isometry and the Cauchy–Schwarz inequality,

Ẽ
∣∣∣I (6)

δ

∣∣∣2 ≤ Ẽ

T∫
0

∫
S1

∣∣ϕS′(q̃δ)
∣∣2 ∣∣∣∂xE

(2)
δ

∣∣∣2 dx dt
δ↓0−−→ 0,

by Lemma C.1. So along a subsequence δ = δj ↓ 0 as j → ∞, I (6)
δ → 0, a.s.

This concludes the proof of the lemma. �
In the remaining part of this section, we will make hefty use of the formulas gathered in the 

next remark.

Remark 7.11. Recall the formulas (4.2)–(4.6) involving S�(v) and S�(v±). The following iden-
tities are straightforward to verify:

S�(v+) = 1

2
v2+ − 1

6�
(v − �)3 1{�<v<2�} − 1

6

(
3v2 − 9�v + 7�2

)
1{v≥2�},

S�(v+)′ = v+ − 1

2�
(v − �)2 1{�<v<2�} + 1

2
(3� − 2v)1{v≥2�},

S�(v+)′ ′ = 1{0<v<2�} − 1
(v − �)1{�<v<2�},
�
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S�(v+) − S�(v+)′v = − 1

2
v2+ + 1

6�

(
2v3 − 3�v2 + �3

)
1{�<v<2�}

+ 1

6

(
3v2 − 7�2

)
1{v≥2�},

3S�(v+) − 2S�(v+)′v = − 1

2
v2+ + 1

2�

(
v3 − �v2 − �2v + �3

)
1{�<v<2�}

+ 1

2

(
v2 + 3�v − 7�2

)
1{v≥2�},

S�(v+)v − 1

2
S�(v+)′v2 = 1

12�

(
v4 − 3�2v2 + 2�3v

)
1{�<v<2�}

+ 1

12

(
9�v2 − 14�2v

)
1{v≥2�},

1

2
S�(v+)′ ′v2 = 1

2
v2+ − 1

2�
v2 (v − �)1{�<v<2�} − 1

2
v21{v≥2�},

and

S�(v−) = 1

2
v2− + 1

6�
(v + �)3 1{ −2�<v<−�} − 1

6

(
3v2 + 9�v + 7�2

)
1{v≤−2�},

S�(v−)′ = v− + 1

2�
(v + �)2 1{ −2�<v<−�} − 1

2
(3� + 2v)1{v≤−2�},

S�(v−)′ ′ = 1{ −2�<v<0} + 1

�
(v + �)1{ −2�<v<−�},

S�(v−) − S�(v−)′v = − 1

2
v2− + 1

6�

(
−2v3 − 3�v2 + �3

)
1{ −2�<v<−�}

+ 1

6

(
3v2 − 7�2

)
1{v≤−2�},

3S�(v−) − 2S�(v−)′v = − 1

2
v2− + 1

2�

(
−v3 − �v2 + �2v + �3

)
1{ −2�<v<−�}

+ 1

2

(
v2 − 3�v − 7�2

)
1{v≤−2�},

S�(v−)v − 1

2
S�(v−)′v2 = − 1

12�

(
v4 − 3�2v2 − 2�3v

)
1{ −2�<v<−�}

− 1

12

(
9�v2 + 14�2v

)
1{v≤−2�},

1

2
S�(v−)′ ′v2 = 1

2
v2− + 1

2�
v2 (v + �)1{ −2�<v<−�} − 1

2
v21{v≤−2�}.

Lemma 7.10 applies to the linearly growing approximations S�(v±) of v2±, but not the func-
tions v2± themselves. However, by exploiting some structural property of the SPDE (7.44), we 
will be able to write an SPDE—up to an inequality—for the positive part q̃2+. Together with 

(7.41), this observation makes it possible to control the positive part 1
2

(
q2+ − q̃2+

)
of the defect 

measure (1.12), without counting on a one-sided gradient estimate (available in the deterministic 
case [63] but not here).
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Lemma 7.12 (Characterisation of q̃2+). Let ũ, q̃ = ∂xũ, cf. Lemma 5.1, and q2 be the Skorokhod–
Jakubowski representations from Proposition 4.9, see also Remark 4.10. Then, for any nonnega-
tive ϕ ∈ C∞

c ([0, T ) × S1),

T∫
0

∫
S1

1

2
q̃2+ ∂tϕ dx dt +

∫
S1

1

2
(∂xũ0)

2+ ϕ(0, x)dx

+
T∫

0

∫
S1

(
ũ − 1

4
∂xσ

2
)

1

2
q̃2+ ∂xϕ dx dt −

T∫
0

∫
S1

1

2
σ 2 1

2
q̃2+ ∂2

xxϕ dx dt

−
T∫

0

∫
S1

[
q̃+
(
P̃ − ũ2

)
+
(

1

4
∂2
xxσ

2 − |∂xσ |2
)

1

2
q̃2+

]
ϕ dx dt

+
T∫

0

∫
S1

(
σ ∂xϕ − ∂xσ ϕ

)1

2
q̃2+ dx dW̃ ≤ 0, P̃–a.s.,

(7.56)

where P̃ is defined in (7.19).

Proof. Denote the left-hand side of (7.56) by I + M , where M is the stochastic integral term. 
We will demonstrate that ∫

�̃

1A(ω̃)
(
I (ω̃) + M(ω̃)

)
dP̃ (ω̃) ≤ 0, (7.57)

for any measurable set A ∈ F̃ .
Given (7.45) with S(v) = S�(v+), observe that

H(2)(q̃) = S(q̃)q̃ − 1

2
S′(q̃)q̃2 ≥ 0, S′(q̃)

(
q2 − q̃2

)
≥ 0, (7.58)

using (7.25), Remark 7.11 and the weak convergence q̃2
n

n↑∞−−−⇀ q2 in Lr
t,x a.s., cf. (4.24) (the 

weak convergence implies that q̃2 ≤ q2). In addition,

S(q̃) = 1

2
q̃2+ + e

(1)
� (t, x),

H (1)(q̃) = 3S(q̃) − 2S′(q̃)q̃ = − 1

2
q̃2+ + e

(2)
� (t, x),

S′(q̃) = q̃+ + e
(3)
� (t, x),

H (3)(q̃) = S(q̃) − S′(q̃)q̃ = − 1

2
q̃2+ + e

(4)
� (t, x),

1
S′ ′(q̃)q̃2 = 1

q̃2+ + e
(5)
� (t, x),

(7.59)
2 2
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where

e
(1)
� = − 1

6�
(q̃ − �)3 1{�<q̃<2�} − 1

6

(
3q̃2 − 9�q̃ + 7�2

)
1{q̃≥2�},

e
(2)
� = 1

2�

(
q̃3 − �q̃2 − �2q̃ + �3

)
1{�<q̃<2�} + 1

2

(
q̃2 + 3�q̃ − 7�2

)
1{q̃≥2�},

e
(3)
� = − 1

2�
(q̃ − �)2 1{�<q̃<2�} + 1

2
(3� − 2q̃)1{q̃≥2�},

e
(4)
� = 1

6�

(
2q̃3 − 3�q̃2 + �3

)
1{�<q̃<2�} + 1

6

(
3q̃2 − 7�2

)
1{�≥2�},

e
(5)
� = − 1

2�
q̃2 (q̃ − �)1{�<q̃<2�} − 1

2
q̃21{q̃≥2�}.

By (5.3), q̃ ∈ Lp0
(
�̃; L∞([0, T ]; L2(S1))

)
, where p0 > 4 is fixed in Theorem 1.1. As a result, 

the error terms converge to zero in the sense that

∣∣∣e(i)
�

∣∣∣� 1{q̃>�}q̃2 �↑∞−−→ 0 a.e. in (ω̃, t, x), i = 1,2,4,5,∣∣∣e(3)
�

∣∣∣� 1{q̃>�}q̃
�↑∞−−→ 0 a.e. in (ω̃, t, x).

(7.60)

Inserting the inequalities (7.58) and the identities (7.59) into (7.45), with S(v) = S�(v+), we 
arrive at ∫

�̃

1A(ω̃)
(
I (ω̃) + M(ω̃)

)
dP̃ (ω̃)

≤ C1 Ẽ

T∫
0

∫
S1

∣∣∣e(1)
�

∣∣∣+
∣∣∣e(1)

� (0)

∣∣∣+
∣∣∣e(2)

�

∣∣∣+
∣∣∣e(4)

�

∣∣∣+
∣∣∣e(5)

�

∣∣∣ dx dt

+ C2 Ẽ

T∫
0

∫
S1

|ũ|
∣∣∣e(1)

�

∣∣∣ dx dt + C3 Ẽ

T∫
0

∫
S1

∣∣∣P̃ − ũ2
∣∣∣ ∣∣∣e(3)

�

∣∣∣ dx dt

+ Ẽ

∣∣∣∣∣∣∣
T∫

0

∫
S1

σ e
(1)
� ∂xϕ + ∂xσ e

(4)
� ϕ dx dW̃

∣∣∣∣∣∣∣ = :
4∑

i=1

Ri,�,

for some �-independent constants C1 = C1(σ, ϕ, ∂xϕ, ∂2
xxϕ), C2 = C2(∂xϕ), and C3 = C2(ϕ). 

Here, e(1)
� (0) refers to

− 1
(∂xũ0 − �)3 1{�<∂xũ0<2�} − 1 (

3 (∂xũ0)
2 − 9�∂xũ0 + 7�2

)
1{∂x ũ0 ≥2�}.
6� 6
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Notice that 
∣∣∣e(i)

�

∣∣∣ � q̃2 ∈ L1
ω̃,t,x

, i = 1, 2, 4, 5, and 
∣∣∣e(1)

� (0)

∣∣∣ � (∂xũ0)
2 ∈ L1

ω̃,t,x
, cf. (4.24). 

Therefore, by (7.60), and the Lebesgue dominated convergence theorem, R1,�
�↑∞−−→ 0. The same 

argument applies to R2,�, R3,�, as

|ũ|
∣∣∣e(1)

�

∣∣∣� |ũ| q̃2,

∣∣∣P̃ − ũ2
∣∣∣ ∣∣∣e(3)

�

∣∣∣� ∣∣∣P̃ ∣∣∣ q̃2 + |ũ|2 q̃2,

and, by Lemma 5.6 and (5.3),

Ẽ

T∫
0

∫
S1

|ũ|p q̃2 dx dt �T

(
Ẽ ‖ũ‖2p

L∞
t,x

) 1
2
(
Ẽ ‖q̃‖4

L∞
t L2

x

) 1
2 � 1, p ∈ [1,p0/2

]
,

Ẽ

T∫
0

∫
S1

∣∣∣P̃ ∣∣∣ q̃2 dx dt �
(
Ẽ
∥∥∥P̃∥∥∥2

L∞
t,x

) 1
2 (

Ẽ ‖q̃‖4
L∞

t L2
x

) 1
2 � 1.

Finally, let us consider the stochastic integral term. By the Cauchy–Schwarz inequality and 
the Itô isometry,

∣∣R4,�

∣∣2 ≤ Ẽ

T∫
0

∣∣∣∣∣∣∣
∫
S1

σ e
(1)
� ∂xϕ + ∂xσ e

(4)
� ϕ dx

∣∣∣∣∣∣∣
2

dt

�σ,ϕ Ẽ

T∫
0

∣∣∣∣∣∣∣
∫
S1

1{q̃+>�}q̃2+ dx

∣∣∣∣∣∣∣
2

dt.

By (5.3), Ẽ
∫ T

0

∫
S1 q̃2 dx dt < ∞ and so q̃ ∈ L2(S1) for a.e. (ω̃, t). Thus

∣∣∣∣∣∣∣
∫
S1

1{q̃+>�}q̃2+ dx

∣∣∣∣∣∣∣
2

�↑∞−−→ 0, for a.e. (ω̃, t).

Besides, 
∣∣∫
S1 1{q̃+>�}q̃2+ dx

∣∣2 ≤ ∣∣∫S1 q̃2+ dx
∣∣2 and

Ẽ

T∫
0

∣∣∣∣∣∣∣
∫
S1

q̃2+ dx

∣∣∣∣∣∣∣
2

dt �T Ẽ ‖q̃‖4
L∞([0,T ];L2(S1))

(5.3)
� 1. (7.61)

Therefore, by Lebesgue’s dominated convergence theorem, 
∣∣R4,�

∣∣2 �↑∞−−→ 0. This concludes the 
proof of (7.57). �
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7.4. Controlling the defect measure

We define the positive part of the defect measure (1.12) by

D+ = 1

2

(
q2+ − q̃2+

)
≥ 0. (7.62)

One can construe D+ = D+(ω̃, t, x) (and similar objects introduced later on) as a random vari-
able that assumes values in a path space of functions depending on t ∈ [0, T ] and x ∈ S1. 
Alternatively, D+ can be conceived of as a stochastic process (ω̃, t) → D+(ω̃, t, ·) that takes 
values in some functional space (over x). If D+ is conceptualised as a random variable in the 
Lebesgue space Lr([0, T ] × S1) (recall that 1 ≤ r < 3/2), then the pointwise value D+(t) is only 
determinable modulo a set of times with zero measure in [0, T ]. Consequently, discerning D+ as 
a traditional stochastic process proves to be a complex endeavour. Therefore, in the forthcoming 
discussion, we consider D+ (and other similar objects) as a random variable within the space 
Lr([0, T ] × S1). In view of our previous results, D+ obeys an SPDE inequality. This inequal-
ity is interpreted almost surely in the distributional sense on the domain [0, T ) × S1, with the 
inclusion of the zero function as initial data in the distributional formulation.

To provide more clarity, by directly subtracting (7.41) and (7.56),

∂tD
+ + ∂x

[(
ũ − 1

4
∂xσ

2
)
D+
]

− ∂2
xx

[
1

2
σ 2D+

]
+ (q+ − q̃+)

(
P̃ − ũ2

)
+
(

1

4
∂xxσ

2 − |∂xσ |2
)
D+

+ [∂x

(
σ D+)+ ∂xσ D+] ˙̃

W ≤ 0 in D′([0, T ) × S1), P̃–a.s.,

(7.63)

with zero initial data (in the sense of distributions). This formulation is weak in (t, x). Employing 
a reasoning approach akin to the one used in the proof of Lemma 7.6, we can transform this into 
a formulation that is pointwise (a.e.) in (ω̃, t) and integrated in x.

Lemma 7.13 (Positive part of defect measure). Let D+ be defined by (7.62) and P̃ by (7.19). 
Then, for a.e. (ω̃, t) ∈ �̃ × [0, T ],

∫
S1

D+(t)dx +
t∫

0

∫
S1

(q+ − q̃+)
(
P̃ − ũ2

)
dx ds

+
t∫

0

∫
S1

(
1

4
∂xxσ

2 − |∂xσ |2
)
D+ dx ds +

t∫
0

∫
S1

∂xσ D+ dx dW̃ ≤ 0.

(7.64)

The stochastic integral is a square-integrable martingale.

Proof. Using the test function ϕ(t, x) = ψ(t)φ(x) in (7.63), with 0 ≤ ψ ∈ C∞
c ([0, T )) arbitrary 

and φ ≡ 1, we obtain
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d

dt

∫
S1

D+ dx +
∫
S1

(q+ − q̃+)
(
P̃ − ũ2

)
dx

+
∫
S1

(
1

4
∂xxσ

2 − |∂xσ |2
)
D+ dx +

∫
S1

∂xσ D+ dx
˙̃

W ≤ 0,

(7.65)

which holds in D′([0, T )), a.s., with zero initial data (in the sense of distributions).
Following the proof of Lemma 7.6, for a given Lebesgue point t of the integrable function s →∫

S1 D+(s) dx (with ω̃ fixed from a set F of full P̃–measure), consider δ such that 0 < t − δ < T . 
For such δ, let βδ be the continuous piecewise linear function that equals 1 on [0, t − δ], 0 on 
[t, T ], and is linear on [t − δ, t ]. Then βδ(s) → 1[0,t ](s) for a.e. s ∈ [0, T ]. Using βδ as test 
function in (7.65) gives

1

δ

t∫
t −δ

⎛⎜⎝ ∫
S1

D+(s)dx

⎞⎟⎠ ds +
T∫

0

∫
S1

(q+ − q̃+)
(
P̃ − ũ2

)
(s)βδ(s)dx ds

+
T∫

0

∫
S1

(
1

4
∂xxσ

2 − |∂xσ |2
)
D+(s)βδ(s)dx ds

+
T∫

0

∫
S1

∂xσ D+(s)βδ(s)dx dW̃ (s) ≤ 0.

The stochastic integral is a square-integrable martingale on [0, T ], which follows from calcula-
tions like (7.3), (7.39), and (7.61).

By adhering to the proof of Lemma 7.6 and considering Remark 7.7, we can take the limit as 
δ → 0 in this inequality, leading us to (7.64). �

Define

D−
� = S�(q−) − S�(q̃−) ≥ 0, � ∈ N, (7.66)

so that D−
� approximates the negative part D− = 1

2

(
q2− − q̃2−

)
of the defect measure (1.12). We 

first make explicit the approximation error by the following result:

Lemma 7.14. Let r ′ = r/(r − 1) be the Hölder conjugate of r , recalling that r < 3/2. Then∣∣∣∣∣∣∣Ẽ
T∫

0

∫
S1

D−
� − D− dx dt

∣∣∣∣∣∣∣� �−2(r−1).

Proof. Using the weak convergences (5.11) and (7.32) of q̃2
n ⇀ q2 in Lr

ω̃,t,x
and S�(q̃n) ⇀ S�(q)

in L2r ,

ω̃,t,x
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Ẽ

T∫
0

∫
S1

D−
� − D− dx dt

= lim
n→∞ Ẽ

t∫
0

∫
S1

S�

(
(q̃n)−

)− (q̃n)
2− + S�(q̃−) − q̃2− dx dt.

Remark 7.11 implies that∣∣∣S�

(
v−
)− v2−

∣∣∣� 1

�
|v + �|3 1{ −2�≤v≤−�}

+ v21{v≤−2�} � v21{ |v|≥�} ≤ �−2(r−1)v2r1{ |v|≥�}.

Therefore, by Lemma 5.3,∣∣∣∣∣∣∣Ẽ
T∫

0

∫
S1

S�

(
(q̃n)−

)− (q̃n)
2− dx dt

∣∣∣∣∣∣∣
≤ �−2(r−1)Ẽ

T∫
0

∫
S1

|q̃n|2r 1{ |q̃n |≥�} dx dt � �−2(r−1).

A similar bound for q̃ in place of q̃n can be derived by invoking Lemma 5.4. �
Now, we introduce the functions

H
(1)
�,−(v) = 3S�(v−) − 2S�(v−)′v, H

(2)
�,−(v) = S�(v−)v − 1

2S�(v−)′v2,

H
(3)
�,−(v) = S�(v−) − S�(v−)′v.

(7.67)

Subtracting (7.45) from (7.24) yields

∂tD
−
� + ∂x

[
ũD−

� + 1

4
∂xσ

2
(

H
(1)
�,−(q) − H

(1)
�,−(q̃)

)]
− ∂2

xx

[
1

2
σ 2 D−

�

]
+
(

S�(q−)′ − S�(q̃−)′)(P̃ − ũ2
)

−
(

H
(2)
�,−(q) − H

(2)
�,−(q̃)

)
+ 1

2
S�(q̃−)′ (q2 − q̃2

)
− 1

4
∂2
xxσ

2
(

H
(3)
�,−(q) − H

(3)
�,−(q̃)

)
− 1

2
|∂xσ |2

(
S�(q−)′ ′ q2 − S�(q̃−)′ ′q̃2

)
+
[
∂x

(
σ D−

�

)− ∂xσ

(
H

(3)
�,−(q) − H

(3)
�,−(q̃)

)]
˙̃

W

≤ 0 in D′([0, T ) × S1), P̃–a.s.,

(7.68)
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with zero initial data: D−
� (0) = 0.

Combining (7.68) with the formulas in Remark 7.11, we obtain the following bound for the 
negative part D−

� of the defect measure:

Lemma 7.15 (Negative part of defect measure). Let D−
� be defined by (7.66) and D+ by (7.62). 

Let 
{
ũn

}
n≥1, 

{
P̃n

}
n≥1, and P̃ be as in Proposition 7.8. For any n0 ∈ N and L > 0, define the 

measurable set

A
n0
L =

{
ω̃ ∈ �̃ :

∥∥∥P̃n0 − ũ2
n0

∥∥∥
L∞([0,T ]×S1)

≤ L

}
, (7.69)

which satisfies P̃
(
A

n0
L

) → 1 as L → ∞, uniformly in n0.
For a.e. t ∈ [0, T ] and sufficiently large � (depending on L),

∫
S1

D−
� (t)dx +

t∫
0

∫
S1

( q− − q̃−)
(
P̃ − ũ2

)
dx ds

+
t∫

0

∫
S1

(
1

4
∂2
xxσ − |∂xσ |2

)
D−

� − 3�

2

(
D−

� + D+)dx ds

+
t∫

0

∫
S1

(
S�(q−)′ − q− − (S�(q̃−)′ − q̃−

))(
P̃ − ũ2 − P̃n0 + ũ2

n0

)
dx ds

+ M−
� (t) ≤ 0, a.s. on A

n0
L ,

(7.70)

where M−
� (t) is a square-integrable martingale, with Ẽ

∣∣M−
� (T )

∣∣2 �� 1.

Proof. Using the test function ϕ(t, x) = ψ(t)φ(x) with 0 ≤ ψ ∈ C∞
c ([0, T )) and φ ≡ 1 in 

(7.68), we obtain

d

dt

∫
S1

D−
� dx +

4∑
i=1

∫
S1

I
(i)
� dx +

∫
S1

I
(5)
� dx

˙̃
W ≤ 0, (7.71)

which holds in D′([0, T )), P̃–a.s., with zero initial data, where

I
(1)
� =

(
S�(q−)′ − S�(q̃−)′)(P̃ − ũ2

)
,

I
(2)
� = 1

2
S�(q̃−)′ (q2 − q̃2

)
−
(

H
(2)
�,−(q) − H

(2)
�,−(q̃)

)
,

I
(3)
� = − 1

4
∂2
xxσ

2
(

H
(3)
�,−(q) − H

(3)
�,−(q̃)

)
,

I
(4)
� = − 1 |∂xσ |2

(
S�(q−)′ ′ q2 − S′ ′(q̃)q̃2

)
,

2
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I
(5)
� = −∂xσ

(
H

(3)
�,−(q) − H

(3)
�,−(q̃)

)
,

and H(1)
�,−, H(2)

�,−, H(3)
�,− are defined in (7.67).

1. The term I (1)
� .

In view of Remark 7.11,

I
(1)
� = ( q− − q̃−)

(
P̃ − ũ2

)
+ e

(1)
�

(
P̃ − ũ2

)
= ( q− − q̃−)

(
P̃ − ũ2

)
+ e

(1)
�

(
P̃n0 − ũ2

n0

)
+ e

(1)
�

(
P̃ − ũ2 − P̃n0 + ũ2

n0

)
,

where

e
(1)
� = S�(q−)′ − q− − (S�(q̃−)′ − q̃−

)
(7.72)

= f1(q)1{ −2�<q<−�} + g1(q)1{q≤−2�}
− (f1(q̃)1{ −2�<q̃<−�} + g1(q̃)1{q̃≤−2�}

)
,

f1(v) = 1

2�
(v + �)2 , g1(v) = − 1

2
(3� + 2v) ,

Note the real-valued mapping r1(v) = f1(v)1{ −2�<v<−�} + g1(v)1{v≤−2�} is convex:

r ′
1(v) = 1

4�
(v + �)1{ −2�<v<−�} − 1{v≤−2�}, r ′ ′

1 (v) = 1

4�
1{ −2�<v<−�} ≥ 0.

Because of the convexity, it follows that e(1)
� ≥ 0 [51, Corollary 3.33] and thus

I
(1)
� ≥ (q− − q̃−)

(
P̃ − ũ2

)
− e

(1)
�

∥∥∥P̃n0 − ũ2
n0

∥∥∥
L∞([0,T ]×S1)

+ e
(1)
�

(
P̃ − ũ2 − P̃n0 + ũ2

n0

)
.

2. The term I (2)
� .

Recalling the definition (7.62) of D+, we next manipulate I (2)
� into the form “C�

(
D+ +D−

�

)+
error”. From Remark 7.11,

1

2

(
q2− − q̃2−

)
= S�(q−) − S�(q̃−) + e

(2,1)
� , (7.73)

where
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e
(2,1)
� = f2,1(q)1{ −2�<q<−�} + g2,1(q)1{q≤−2�}

− (f2,1(q)1{ −2�<q<−�} + g2,1(q)1{q≤−2�}
)
,

and

f2,1(v) = − 1

6�
(v + �)3 , g2,1(v) = 1

6

(
3v2 + 9�v + 7�2

)
,

recalling that we drop the tilde atop a variable sitting under an overline (see Remark 4.10). Given 
the identity (7.73), writing

q2 − q̃2 = q2− − q̃2− + q2+ − q̃2+,

it follows that

1

2
S�(q̃−)′ (q2 − q̃2

)
= 1

2
S�(q̃−)′ (q2+ − q̃2+

)
+ S�(q̃−)′ (S�(q−) − S�(q̃−)

)
+ S�(q̃−)′e(2,1)

� .

Regarding e
(2,1)
� , observe that r2,1(v) = f2,1(v)1{ −2�<v<−�} + g2,1(v)1{v≤−2�} is non-

negative and convex. Indeed, by construction, r(v) and r ′(v) are continuous functions, recalling 
that S�(v±) ∈ W 3,∞(R), and so

r ′
2,1(v) = − 1

2�
(v + �)2 1{ −2�<v<−�} + 1

2
(2v + 3�)1{v≤−2�},

r ′ ′
2,1(v) = − 1

�
(v + �)1{ −2�<v<−�} + 1{v≤−2�} ≥ 0.

Making use of S�(q̃−)′ ≥ −3�/2 and the positivity (negativity) of f (q) − f (q̃) for any convex 
(concave) f [51, Corollary 3.33]

I
(2)
� ≥ − 3�

4

(
q2+ − q̃2+

)
− 3�

2

(
S�(q−) − S�(q̃−)

)
− 3�

2
e
(2,1)
� −

(
H

(2)
�,−(q) − H

(2)
�,−(q̃)

)
= − 3�

2

(
D+ + D−

�

)+ e
(2)
� ,

where, recalling that the expression H(2)
�,−(v) = S�(v−)v − 1

2S�(v−)′v2, see (7.67), takes the ex-
plicit form calculated in Remark 7.11,

e
(2)
� = f2(q)1{ −2�<q<−�} + g2(q)1{q≤−2�}

− (f2(q̃)1{ −2�<q̃<−�} − g2(q̃)1{q̃≤−2�}
)
,

f2(v) = 1

12�

(
v4 + 3�v3 + 6�2v2 + 7�3v + 3�4

)
, g2(v) = − 1

12

(
13�2v + 21�3

)
.
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3. The terms I (3)
� and I (4)

� .

Similarly, using (7.67) and Remark 7.11, we obtain

H
(3)

− (v) =
(
H

(3)
− (v) + S�(v−)

)
− S�(v−)

= −S�(v−) + f3(v)1{ −2�<v<−�} + g3(v)1{v≤−2�},

where

f3(v) = − 1

6�
v3 + 1

2
�v + 1

3
�2, g3(v) = − 3

2
�v − 7

3
�2.

Furthermore,

1

2
S�(v−)′ ′v2− =

(
1

2
S�(v−)′ ′v2− − S�(v−)

)
+ S�(v−)

= S�(v−) + f4(v)1{ −2�<v<−�} + g4(v)1{v≤−2�},

where

f4(v) = 1

3�
v3 − 1

2
�v − 1

6
�2, g4(v) = 3

2
�v + 7

6
�2.

Therefore, if we set

e
(3)
� = f3(q)1{ −2�<q<−�} + g3(q)1{q≤−2�}

− f3(q̃)1{ −2�<q̃<−�} + g3(q̃)1{q̃≤−2�},

e
(4)
� = f4(q)1{ −2�<q<−�} + g4(q)1{q≤−2�}

− f4(q̃)1{ −2�<q̃<−�} + g4(q̃)1{q̃≤−2�},

we get

I
(3)
� = 1

4
∂2
xxσ

2D−
� − 1

4
∂2
xxσ

2e
(3)
� ,

I
(4)
� = − |∂xσ |2 D−

� − |∂xσ |2 e
(4)
� .

4. The term I (5)
� .

By Lemmas 5.3 and 5.4, recalling that 
∣∣S�(v−) − S�(v−)′v

∣∣�� |v|, cf. (4.6), we may assume 

that H(3)
�,−(q), H(3)

�,−(q̃), cf. (7.67), and thus I (5)
� belong to L2r

ω̃,t,x
(with 2r > 2), for each fixed �. 

In particular, this implies that
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M−
� (t) =

t∫
0

∫
S1

I
(5)
� dx dW̃

is a square-integrable martingale on [0, T ].

5. The inequality (7.70).

Introduce the “total error” function

h�(v) =
(

−f1(v)

∥∥∥P̃n0 − ũ2
n0

∥∥∥
L∞([0,T ]×S1)

+ f2(v) − 1

4
∂2
xxσ

2f3(v) − |∂xσ |2 f4(v)

)
1{ −2�<v<−�}

+
(

−g1(v)

∥∥∥P̃n0 − ũ2
n0

∥∥∥
L∞([0,T ]×S1)

+ g2(v) − 1

4
∂2
xxσ

2g3(v) − |∂xσ |2 g4(v)

)
1{v≤−2�}.

Gathering the findings of the first three steps, we deduce that

I
(1)
� + I

(2)
� + I

(3)
� + I

(4)
�

≥ (q− − q̃−)
(
P̃ − ũ2

)
− 3�

2

(
D+ + D−

�

)+
(

1

4
∂2
xxσ

2 − |∂xσ |2
)
D−

�

+ h�(q) − h�(q̃) + e
(1)
�

(
P̃ − ũ2 − P̃n0 + ũ2

n0

)
,

(7.74)

where the overlines denote the weak limits in n only (n0 is kept fixed).
Recall the definition of An0

L in (7.69). We claim that h�(v) is convex on An0
L , at least for a 

sufficiently large � = �(L). To see this, we can compute the second derivative of h� directly on 
each of the two subsets {−2� < v < −�} and {v ≤ −2�}, thanks to the continuity of h� and h′

�

that follows from the continuity of fi , f ′
i , gi , g′

i (i = 1, . . .4), and then add the results. Indeed,

f ′ ′
1 (v) = 1

�
, f ′ ′

2 (v) = 1

�
v2 + 3

2
v + �, f ′ ′

3 (v) = − 1

�
v,

f ′ ′
4 (v) = 2

�
v, g′ ′

1 (v), g′ ′
2 (v), g′ ′

3 (v), g′ ′
4 (v) ≡ 0,

and so on An0
L , for any v ∈ R and a.e. x ∈ S1,

h′ ′
�(v) ≥

(
1

�
v2 + 3

2
v + � − 1

�

{
L − 1

4
∂2
xxσ

2v + 2 |∂xσ |2 v

})
1{ −2�<v<−�},

which is non-negative for sufficiently large � because the term in braces can be made small 
relative to the terms outside the braces.
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The convexity of h�(v) implies that on An0
L ,

h�(q) − h�(q̃) ≥ 0 a.e. in [0, T ] × S1. (7.75)

Using (7.75), which holds for a sufficiently large � = �(L), (7.74) becomes

I
(1)
� + I

(2)
� + I

(3)
� + I

(4)
�

≥ (q− − q̃−)
(
P̃ − ũ2

)
− 3�

2

(
D+ + D−

�

)
+
(

1

4
∂2
xxσ

2 − |∂xσ |2
)
D−

� + e
(1)
�

(
P̃ − ũ2 − P̃n0 + ũ2

n0

)
.

(7.76)

Now we multiply (7.71) by 1
A

n0
L

and insert (7.76), arriving at

d

dt

∫
S1

D−
� dx +

∫
S1

( q− − q̃−)
(
P̃ − ũ2

)
dx

+
∫
S1

(
1

4
∂2
xxσ − |∂xσ |2

)
D−

� − 3�

2

(
D+ + D−

�

)
dx

+
∫
S1

e
(1)
�

(
P̃ − ũ2 − P̃n0 + ũ2

n0

)
dx

+
∫
S1

I
(5)
� dx

˙̃
W ≤ 0, in D′([0, T )), a.s. on A

n0
L ,

(7.77)

with zero initial data (in the distributional sense). Arguing as in the proofs of Lemmas 7.4, 7.11
and 7.13, we can turn (7.77) into the inequality (7.70) that holds a.e. in An0

L × [0, T ].

Remark 7.16. Note carefully that the fifth step is rather delicate, relying on having precise con-
trol of the error terms leading up to the convexity of the total error function h�(v), and thus 
(7.75). Along the way, we exploit some crucial “coercivity” induced by the specific error term 

e
(2)
� linked to the difference H(2)

�,−(q) − H
(2)
�,−(q̃), recalling that H(2)

�,−(v) = S�(v−)v − 1
2S�(v−)′v2. 

It may be instructive to keep in mind that S(v)v − 1
2S′(v)v2 ≡ 0 if S(v) = 1

2v2± or v2.

6. Properties of the set An0
L .

The set A
n0
L ⊂ �̃ is measurable as 

∥∥P̃n0 − ũ2
n0

∥∥
L∞([0,T ]×S1)

is a random variable (see 

Lemma 5.6). Denote by 
(
A

n0
L

)c the complement �̃\A
n0
L . It further follows from Markov’s in-

equality applied to the bound of Lemma 5.6 that

P̃
((

A
n0
L

)c) ≤ 1
Ẽ
∥∥∥P̃n0 − ũ2

n0

∥∥∥ ∞ 1
� 1

. � (7.78)

L L ([0,T ]×S ) L
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We can now identify the weak limit q2 with q̃2, thereby concluding the proof of Theorem 7.1.

Proof of Theorem 7.1. We shall be adding (7.64) and (7.70). The purpose of doing so is that 
using

q+ + q− = q̃ = q̃+ + q̃− =⇒ q+ − q̃+ + q− − q̃− = 0,

the term involving 
(
P̃ − ũ2

)
disappears, allowing us to conclude via taking an expectation and 

applying Gronwall’s inequality, as we will demonstrate next.
We observe first that the inequality (7.64) holds a.s. on An0

L , where An0
L is defined in (7.69). 

We now multiply each of (7.64) and (7.70) by 1
A

n0
L

, add these two equations together and then 
take an expectation to obtain, for all sufficiently large � (with L, n0 fixed) and a.e. t ∈ [0, T ],

Ẽ

∫
S1

1
A

n0
L

(
D+ + D−

�

)
(t)dx

+ Ẽ

t∫
0

∫
S1

f�(x)1
A

n0
L

(
D+ + D−

�

)
(s)dx ds

≤ −E

t∫
0

∫
S1

1
A

n0
L

e
(1)
�

(
P̃ − ũ2 − P̃n0 + ũ2

n0

)
dx ds,

(7.79)

where

f�(x) = 1

4
∂2
xxσ

2 − |∂xσ |2 − 3�

2
, ‖f�‖L∞(S1) ≤ C�,

and, for brevity, we have retained the notation (7.72) for e(1)
� .

Applying Gronwall’s inequality to (7.79), we get for a.e. t ∈ [0, T ] that

Ẽ
(
1

A
n0
L

∥∥D+(t) + D−
� (t)

∥∥
L1(S1)

)
≤ eCt� Ẽ

t∫
0

∫
S1

1
A

n0
L

e
(1)
�

(
P̃ − ũ2 − P̃n0 + ũ2

n0

)
dx ds.

Integrating the above over [0, T ],

T∫
0

Ẽ
(
1

A
n0
L

∥∥D+ + D−
�

∥∥
L1(S1)

)
dt

≤ T eCT � Ẽ

T∫
0

∫
S1

∣∣∣e(1)
�

∣∣∣ ∣∣∣P̃ − ũ2 − P̃n0 + ũ2
n0

∣∣∣ dx dt = : T eCT �Jn0 .
84



L. Galimberti, H. Holden, K.H. Karlsen et al. Journal of Differential Equations 387 (2024) 1–103
Adding E 
∫ T

0 1(
A

n0
L

)c

∥∥D+ + D−
�

∥∥
L1(S1)

dt to both sides,

Ẽ

T∫
0

∥∥D+ + D−
�

∥∥
L1(S1)

dt

≤ E

T∫
0

1(
A

n0
L

)c

∥∥D+ + D−
�

∥∥
L1(S1)

dt + T eCT �Jn0

�T

⎛⎝Ẽ T∫
0

∥∥D+ + D−
�

∥∥r

L1(S1)
dt

⎞⎠1/r (
P̃
( (

A
n0
L

)c ))1/r ′
+ eCT �Jn0

�T

∥∥D+ + D−
�

∥∥
Lr

ω̃,t,x

(
1

L

)1/r ′

+ eCT �Jn0 ,

(7.80)

where the final inequality follows from (7.78). The implicit constant in the final � is independent 
of L and n0. Also note that 

∥∥D+ + D−
�

∥∥
Lr

ω̃,t,x

� 1, uniformly in � by Lemma 5.4 and the first 

inequality of (5.9). On the other hand, as we shall presently argue, Jn0 → 0 as n0 ↑ ∞, uniformly 
in �. The convergence of Jn0 is a consequence of two facts. First, by the second bound of (5.4)
and (7.34), we have∥∥∥e(1)

�

∥∥∥
L2r

ω̃,t,x

=
∥∥∥S′

�(q−) − q− − (S′
�(q̃) − q̃−

)∥∥∥
L2r

ω̃,t,x

� 1.

Second, as n0 ↑ ∞, we have the strong convergences (7.21) of P̃n0 → P̃ in Lp

ω̃,t,x
and (7.33) of 

ũ2
n0

→ ũ2 in Lp

ω̃,t,x
, for any p < p0/2. Since p0 > 4, and p := 2r/(2r − 1) < 2 for r close to 

3/2, this implies that

Jn0 = Ẽ

T∫
0

∫
S1

∣∣∣e(1)
�

∣∣∣ ∣∣∣P̃ − ũ2 − P̃n0 + ũ2
n0

∣∣∣ dx dt

≤
∥∥∥e(1)

�

∥∥∥
L2r

ω̃,t,x

∥∥∥P̃ − ũ2 − P̃n0 + ũ2
n0

∥∥∥
L

p

ω̃,t,x

n0 ↑∞−−−→ 0,

nullifying the harmful exponential factor in (7.80), and yielding

Ẽ

T∫
0

∫
S1

D+ + D−
� dx dt � L−1/r ′

, (7.81)

for any sufficiently large � (with L fixed).
Finally, upon taking the limits � → ∞ first—making use of Lemma 7.14—and L → ∞ sec-

ond in (7.81), we work out that
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q2+ = q̃2+, q2− = q̃2− a.e. in �̃ × [0, T
]× S1,

which concludes the proof of Theorem 7.1. �
Remark 7.17. Let us refine Remark 7.16 further by exploring the treatment of the residual “bad” 
error term eCT �Jn0 in (7.80). This specific term does not lend itself to a resolution through the 
delicate balance of convexity and coercivity discussed in Remark 7.16. Rather, its successful 
management primarily depends on the strong convergence (7.21). This strong convergence, in 
turn, stems from the employment of the quasi-Polish strong-weak space Lr

(
Lr

w

)
featured among 

the path spaces (4.13).
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Appendix A. Formal derivation of stochastic CH equation

Let us outline a formal derivation of the stochastic CH equation (1.3). Denote by Mm be the 
multiplication operator Mmf = mf , and by D the spatial derivative operator. As is well-known, 
the deterministic CH equation (for the momentum variable m) takes the form

0 = ∂tm + MmD
δh̃[m]
δm

+ DMm

δh̃[m]
δm

, (A.1)

where h̃[m] = ∫
S1

1
2m(t, x) (K ∗ m)(t, x) dx is a nonlocal Hamiltonian based on the kernel K

defined in (1.2). Setting u := K ∗ m, one can formally convert the bi-Hamiltonian equation (A.1)
into the deterministic CH equation (for u), i.e., (1.1) with σ ≡ 0. The stochastic CH equation is 
obtained by considering a stochastic perturbation of the temporally-integrated Hamiltonian:

H [m] :=
∫
S1

⎛⎝ t∫
0

1

2
m(s, x)(K ∗ m)(t, x)ds +

t∫
0

(
m(s, x)σ (x)

) ◦ dW(s)

⎞⎠ dx.

We recover the deterministic Hamiltonian h̃ by taking σ ≡ 0 and computing dH/dt . The first 
variation of H [m] is δH [m] = u + σ(x) Ẇ . Note that this expression is highly irregular in time 
δm
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t (of class C−1/2−0), but at the formal level, compared with (A.1), the analogous stochastic CH 
equation becomes

0 = dm + MmD
(
udt + σ(x)dW

)+ DMm

(
udt + σ(x)dW

)
,

where the multiplication operator M here uses the Stratonovich product ◦; written out more 
explicitly, we obtain

0 = dm + (m∂xu + ∂x(mu)
)

dt + m∂xσ(x) ◦ dW + ∂x

(
mσ(x)

) ◦ dW. (A.2)

Recalling that u = K ∗ m, i.e., m = (1 − ∂2
xx)u, we can formally expand (A.2) into (1.1), or (1.3)

thanks to the Stratonovich–Itô conversion formula. In this paper we use (1.3) as the operational 
form of the stochastic CH equation.

Appendix B. Primer on quasi-Polish spaces

We detail here some definitions and results that have been applied repeatedly in our proofs. 
Ready references for some—but not all—of the material collected here are [46] and [12,13,52].

B.1. Examples of quasi-Polish spaces

In this subsection we give the definition and some examples of quasi-Polish spaces.
First, given two measurable spaces (Xi , Mi ), i = 1, 2, by the statement “A is M1/M2”, 

we mean that A : (X1, M1) → (X2, M2) is measurable. Let A be a collection of subsets, or a 
collection of maps. On a few occasions, see for example (6.1), by �(A) we mean the σ -algebra 
generated by A.

Definition B.1 (Quasi-Polish space). A topological space (Z, τ) is quasi-Polish if there is a 
sequence {fn}n∈N of continuous functions fn : Z → [−1, 1] separating points of Z.

Quasi-Polish spaces are Hausdorff. Below we exhibit some examples of commonly encoun-
tered quasi-Polish spaces, remarking specifically on the existence of a sequence of continuous 
functions to [−1, 1] that separates points. By considering the continuous injection (f1, f2, . . .) :
Z ↪→ [−1, 1]N of Z into the Polish space [−1, 1]N , one can recover many of the properties 
of Polish spaces for compact subsets of a quasi-Polish space Z, see [46, Section 2]. The topol-
ogy induced by {fn}n∈N , sometimes referred to as τf , coincides with the topology of Z on 
τ -compact subsets. This is the cardinal property that allows theorems on Polish spaces (such as 
the Skorokhod representation theorem) to carry over to quasi-Polish spaces.

Examples.

(1) If (Z, ‖ ·‖) is a separable normed space (with dual Z′), then it is quasi-Polish. Indeed, let 
{φn}n∈N ⊂ Z′ be such that

‖z‖ = sup 〈φn, z〉, z ∈ Z.

n
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Define fn(z) = 2
π

arctan
(〈φn, z〉), n ∈ N . Given z1  = z2, choose an integer m such that 

〈φm, z1 − z2 〉 > 1
2 ‖z1 − z2 ‖ > 0. Whereupon 〈φm, z1 〉 > 〈φm, z2 〉 and hence fm(z1) >

fm(z2). This also shows that Z − w (Z endowed with the weak topology τw) is quasi-Polish. 
Therefore, the spaces Lp([0, T ] × S1) − w, 1 ≤ p < ∞, are quasi-Polish; they are used in 
(4.13) with p = r and p = 2r , r ∈ [1, 3/2).

(2) Let (Z, 〈·, ·〉) be a separable Hilbert space. Equipping C([0, T ]; Z − w) with the lo-
cally convex topology generated by the seminorms ‖h‖φ := sup0≤t ≤T |〈h(t),φ〉| for φ ∈
Z, the space C([0, T ]; Z − w) becomes quasi-Polish [13, Remark 4.1]. An example is 
C([0, T ]; H 1(S1) − w), which is used on a few occasions.

(3) If (Z, ‖ ·‖) is a separable Banach space, then its dual Z′ endowed with the weak-star topol-
ogy τ� is quasi-Polish. To see this, take an arbitrary countable dense subset D ⊂ Z, D =
{d1, d2, . . . }. Given φ1, φ2 ∈ Z′, φ1  = φ2, there must exist dn ∈ D such that φ1(dn)  = φ2(dn), 
because, if this were not the case, then φ1(d) = φ2(d), d ∈ D, and thus φ1 ≡ φ2. Define 
fn : Z′ → R, φ → φ(dn), n ∈ N . Then fn is τ�-continuous, and we conclude that (Z′, τ�) is 
quasi-Polish, with a separating sequence provided by {fn}n∈N . An example is the space of 
Radon measure (with a separable pre-dual), equipped with the weak-star topology.

For a quasi-Polish space (Z, τ), the point-separating sequence does not always characterise 
the topology τ , because if Z has the topology τf induced by functions {fn} that separate points, 
then changing the topology of Z to the discrete topology, Z remains quasi-Polish under the maps 
{fn}. In general, we have τf ⊂ τ . However, for the quasi-Polish spaces used in this paper, we 
will always know that τf = τ .

We recall the following result [45, Proposition 1.1.1], also known as “the linear characterisa-
tion of the Borel σ -algebra”, which we will need below.

Lemma B.2. Let (Z, ‖·‖) be a separable normed space. Let {φn}n∈N ⊂ Z′ be a norming se-
quence in the sense that

‖z‖ = sup
n∈N

〈
φn, z

〉
, z ∈ Z.

Denote by B(Z) the Borel σ -algebra on Z. Then B(Z) = �
(
φn, n ∈ N

)
.

In Section 4, we made essential use of the (topological) space

Lp1
(
Lp2

w

) = Lp1
([0, T ]; Lp2(S1) − w

)
, p1,p2 ∈ (1, ∞). (B.1)

To define Lp1
(
L

p2
w

)
, consider the classical Bochner space of equivalence classes of measurable 

functions z : [0, T ] → Lp2(S1) for which ‖z(·)‖Lp2 (S1) ∈ Lp1([0, T ]), denoted by Lp1(Lp2) =
Lp1([0, T ]; Lp2(S1)). Equipping this space with the locally convex topology generated by the 
seminorms

Lp1(Lp2) � z →
⎛⎜⎝ T∫ ∣∣∣∣∣∣∣

∫
1

φ(x)z(t, x)dx

∣∣∣∣∣∣∣
p1

dt

⎞⎟⎠
1

p1

, φ ∈ Lp′
2(S1), (B.2)
0 S
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where 1
p2

+ 1
p′

2
= 1, we denote the resulting topological space by Lp1

(
L

p2
w

)
, see (B.1).

For notational simplicity in what follows, set Z = Lp1(Lp2) and denote by τN the new topol-
ogy (B.2). We will then write Lp1

(
L

p2
w

) = (Z, τN). We claim that (Z, τN) is a quasi-Polish space. 
Indeed, we first notice that, given an arbitrary net {zα }α ⊂ (Z, τN) converging to z ∈ (Z, τN), 
then zα → z with respect to the standard weak topology τw of Z. In other words, (Z, τN) em-
beds continuously into (Z, τw). Trivially, τN is weaker than the norm topology of Z, called τs . 
Consequently, we have τw ⊂ τN ⊂ τs . By the separability of Z (endowed with τs ) and the previ-
ous discussion of this appendix, we know that (Z, τw) is quasi-Polish. As a result, any separating 
sequence of continuous functions for this space will also be a separating sequence for (Z, τN), 
thereby turning it into a quasi-Polish space. Finally, from the inclusions τw ⊂ τN ⊂ τs , we also 
obtain that BτN

= Bτs , because in a separable Banach space the Borel σ -algebra Bτw generated 
by the weak topology coincides with the strong Borel σ -algebra Bτs , cf. Lemma B.2, and since 
τN is an intermediate topology, this must hold for τN as well.

In Section 5, we used a quasi-Polish analogue of the Kuratowski–Lusin–Souslin (KLS) theo-
rem, taken from [52, Corollary A.2] and [12, Proposition C.2]. This result is used repeatedly in 
Section 5.

Lemma B.3. Let Z be a quasi-Polish space and let Y be a Polish space for which exists a con-
tinuous injection b : Y → Z. For any Borel set B ⊂ Y , the set b[B] is Borel in Z.

The proof is a direct application of the KLS theorem after the injection Z ↪→ [−1, 1]N , which 
puts us in the Polish space setting.

New quasi-Polish spaces can be constructed by forming Cartesian products of countable col-
lections of them (see, e.g., [11] and next subsection). This fact is heavily used in Section 4. In this 
paper, we avoided using intersections of quasi-Polish spaces in our application of the Skorokhod–
Jakubowski theorem [46] (see Theorem B.12). Let us consider a Skorokhod–Jakubowski repre-
sentation {ũn} of a sequence {un}, and suppose we need to know the a.s. convergence of {ũn} in 
two different spaces Z1 and Z2. It is then natural to use a space Z for which

(i) Z is quasi-Polish,
(ii) compact subsets of Z can be identified, in order to verify tightness of the laws of {ũn},

(iii) Z respects the topologies of Z1 and Z2, in the sense that a.s. convergence in Z implies 
a.s. convergence in Z1 and Z2 separately.

These three requirements are in tension. As the topology chosen with which to equip Z is 
strengthened, (iii) is more easily satisfied, whereas (i) and (ii) are less easily so. For the intersec-
tion Z = Z1 ∩ Z2, endowed with the upper bound topology, (i) and (ii) are fulfilled as soon as Z1

and Z2 are quasi-Polish, since Z embeds continuously in Z1 and Z2 by construction. However, 
additional arguments are required to find compact subsets of Z to satisfy (ii) (see, e.g., [10]); the 
reason is that there is no general way to construct compact subsets of Z using compact subsets 
of Z1 and Z2. On the other hand, if one considers the Cartesian product with the product topol-
ogy, the three requirements above are automatically satisfied. In particular, Tychonoff’s theorem 
allows us to readily construct compact subsets of Z.
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B.2. Products of quasi-Polish spaces

In Section 4, we worked systematically with random variables defined on countable products 
of quasi-Polish spaces.

Lemma B.4. Let {Zi }i∈N be a countable collection of quasi-Polish spaces. Then X =∏i∈N Zi , 
endowed with the product topology, is a quasi-Polish space.

Proof. This is immediate on invoking the definition of a quasi-Polish—that there is a countable, 
point-separating collection of maps gn : X → [−1, 1]. Let πi : X → Zi be the ith canonical 
projection. Since there is a collection fi,n : Zi → [−1, 1] for the ith factor space in X, the maps 
{fi,n ◦ πi }(i,n)∈N2 can be reordered to give {gn}n∈N on the product space X.1 �

In what follows, we will continue to focus on products of quasi-Polish spaces and the mea-
sures that can be defined on them, starting with some subtle issues arising from the general 
non-coincidence of the Borel σ -algebra B

(∏
i Zi

)
and the product Borel σ -algebra 

⊗
i B(Zi). 

To take an example, in Section 5, we implicitly identified ũ0 ∈ H 1(S1) with ũ(0) ∈ L2(S1). By 
the equality of laws, the probability law of ũ(0) is supported on Z = H 1(S1). In order to iden-
tify ũ0 ∈ Z with ũ(0) ∈ Z, we need to ensure that the joint law of 

(
ũ0, ũ(0)

)
is supported on 

the diagonal �Z×Z = {(z, z) ∈ Z × Z : z ∈ Z}. For arbitrary topological spaces Z, this is not 
always possible, for the surprising reason that the diagonal �Z×Z , whilst certainly in the Borel 
σ -algebra B(Z × Z), is not necessarily in the product Borel σ -algebra B(Z) ⊗ B(Z), for large 
enough topologies on Z (known as Nedoma’s pathology [57, Chapter 15.9]). However, this is no 
impediment in quasi-Polish spaces.

Lemma B.5. Let Z be a quasi-Polish space. Then the diagonal �Z×Z belongs to B(Z) × B(Z), 
i.e., the diagonal is measurable.

Proof. Let {fn}n∈N be the point-separating sequence of continuous maps, fn : Z → [−1, 1]. 
Define the following class of subsets of Z:

C =
{
f −1

n ([q, r]) : q, r ∈ Q, 0 ≤ q < r ≤ 1, n ∈ N
}

.

The collection C is countable and in B(Z), because f −1
n ([q, r]) is closed. Let x, y ∈ Z, x  =

y. Choose m ∈ N such that fm(y) < fm(x), and two rational numbers 0 < q < r ≤ 1 such 
that fm(x) ∈ [q, r] and fm(y) < q , i.e., x ∈ f −1

m ([q, r]) and y /∈ f −1
m ([q, r]). As a result, C

separates point of Z and, by a theorem of Dravecký [29, Theorem 1], the diagonal �Z×Z is 
measurable. �
Lemma B.6. Consider a quasi-Polish space Z with a point-separating sequence of continuous 
maps {fn : Z → [−1, 1]}n∈N , and denote by Bf the σ -algebra generated by {fn}n∈N . Let μ :
Bf → [0, 1] be a tight probability measure. Define the σ -algebra

1 Banakh, Bogachev, and Kolesnikov [3] derives the stronger conclusion of the weak Skorokhod property instead of 
the weak sequential Skorokhod property derived here, under the stronger assumption of the existence of a fundamental 
sequence of compact sets. We do not require this assumption, and our result applies to arbitrary countable collections of 
quasi-Polish spaces.
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B∗(Z) := {V ⊂ Z : V ∩ K ∈ B(Z), ∀K ⊂ Z compact} ,

where B(Z) is the Borel σ -algebra of Z. Then there exists a unique Radon extension λ : B∗(Z) →
[0, 1] of μ.

Proof. Recall that the σ -algebra generated by the compact sets of Z belongs to Bf [46]. Then, 
for any n ∈ N , there exists a compact Kn ∈ Bf such that μ(Kc

n) < n−1. Setting K = ∪nKn ∈ Bf , 
it follows that

μ(Kc) = μ
(∩nK

c
n

) ≤ μ
(
Kc

n

)
< n−1,

i.e., μ(Kc) = 0. Thus, the support of μ belongs to K . By [13, Section 3], there exists a unique 
Radon extension λ : B∗(Z) → [0, 1] of μ. �
Remark B.7. Since for each V ∈ B(Z) and compact K ⊂ Z, V ∩ K ∈ B(Z), it follows from the 
definition of B∗(Z) that B(Z) ⊂ B∗(Z).

Suppose Ai , i ∈ N , lives on a quasi-Polish space and is measurable. The next lemma shows 
that A = {Ai }i∈N is measurable with respect to the product of the individual Borel σ -algebras.

Lemma B.8. Let {Zi }i∈N be a countable collection of quasi-Polish spaces, and denote by Bi =
B(Zi) the Borel σ -algebra on Zi . Define X = ∏i∈N Zi , endowed with the product topology. Let 
πi : X → Zi be the ith canonical projection. Consider a probability space (�, F , P ) and random 
variables Ai : (�, F) → (Zi, Bi ), i.e., for each i, Ai is F/Bi -measurable. Finally, consider the 
unique map A : � → X characterised by πi(A(ω)) = Ai(ω) ∀ i and ω. Then A is F/ 

⊗
i∈N Bi -

measurable.

Proof. By countability, 
⊗

i∈N Bi is generated by the family 
{∏

i∈N Ei : Ei ∈ Bi

}
. It is therefore 

enough to check measurability for these sets only. Measurability here is evident, because{
A ∈

∏
i∈N

Ei

}
=
⋂
i∈N

{Ai ∈ Ei } ∈ F . �

By the previous lemma, A is generally only F/ 
⊗

i∈N Bi -measurable, and is hence precluded 
from being a random variable with respect to the natural σ -algebra on X, namely the Borel 
σ -algebra B(X) (in which case the term “random mapping” is used), because generally for quasi-
Polish spaces we only have 

⊗
i∈N Bi ⊂ B(X), where B(X) is the Borel σ -algebra on X with the 

product topology. Fortunately, in applications with random mappings whose laws are tight, this 
is not a major problem, for the reason conferred about in Remark B.11 below.

We conclude this section by clarifying the relationship between the measures defined via 
restrictions and extensions on the hierarchy of σ -algebras introduced so far. Given a random 
variable A on (�, P ), let us denote by PA its law P ◦ A−1.

Lemma B.9. Let {Zi }i∈N , X, Bi , B(X), πi be defined as in Lemma B.8. For each i ∈ N , let {
fi,n : Zi → [−1,1]} be the point-separating sequence of continuous maps linked to Zi . For 
n∈N
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i, n ∈ N , define hi,n = fi,n ◦ πi and denote by Bf the σ -algebra generated by 
{
hi,n

}
(i,n)∈N2 . 

Finally, set

B∗(X) = {V ⊂ X : V ∩ K ∈ B(X), ∀K ⊂ X compact
}
.

For each i ∈ N , let Ai,ν : (�, F , P
) → (Zi, Bi ) be a family of random variables, indexed over 

ν ∈ (0, 1), with a corresponding tight family of laws 
{
μi,ν

}
0<ν<1. Let Aν : � → X be uniquely 

characterised by πi(Aν(ω)) = Ai,ν(ω) for all i and ω, and denote by ην the law of Aν restricted 
to Bf . Finally, denote by K the family of compact subsets of X.

(i) We have the inclusions

�(K) ⊂ Bf ⊂
⊗
i∈N

Bi ⊂ B(X) ⊂ B∗(X).

(ii) For each ν, the law ην of Aν can be uniquely extended to B∗(X) as a Radon probability 
measure λν . The family {λν }0<ν<1 is tight.

(iii) The restriction of λν to 
⊗

i∈N Bi is PAν .

Remark B.10. Part (iii) of Lemma B.9 can be summed up in the assertion that the diagram below 
commutes:

PAν λν

∣∣∣⊗
i Bi

ην λν

id

|Bf

ext

|⊗
i Bi

Here, ext denotes the extension to B∗(X).

Proof. We divide the proof into three natural steps.

Claim (i). Given any Borel set B ⊂ [−1, 1],

h−1
i,n (B) = {hi,n ∈ B

} =
{
πi ∈ f −1

i,n (B)
}

= Z1 × · · · × Zi−1 × f −1
i,n (B) × Zi+1 × · · · ∈

⊗
i∈N

Bi .

By construction, we infer Bf ⊂ ⊗
i∈N Bi ⊂ B(X). The inclusion B(X) ⊂ B∗(X) is justified 

in the proof of Lemma B.6. The final inclusion �(K) ⊂ Bf is recorded in [13, Section 3]; it 
follows from the fact that the topology of Z and the topology induced by the separating sequence {
hi,n

}
(i,n)∈N2 coincide on compact subsets.

Claim (ii). For each fixed i, by tightness of the laws 
{
μi,ν

}
ν

of 
{
Ai,ν

}
ν
, for each ε > 0, there 

exists a compact set Zi,ε ⊂ Zi such that

supPAi,ν

(
Zc

i,ε

)
< 2−iε.
ν

92



L. Galimberti, H. Holden, K.H. Karlsen et al. Journal of Differential Equations 387 (2024) 1–103
Set Zε = ∏
i∈N Zi,ε , which is a compact subset of X by the Tychonoff theorem. Moreover, Zε

belongs to Bf . By the inclusion(∏
i∈N

Zi,ε

)c

⊂
⋃
i

X1 × · · · × Xi−1 × Zc
i,ε × Xi+1 × · · ·

and the sub-additivity of measures, we deduce that, uniformly in ν,

PAν

(
Zc

ε

) ≤
∞∑
i=1

PAν

(
X1 × · · · × Xi−1 × Zc

i,ε × Xi+1 × · · · )
=

∞∑
i=1

PAi,ν

(
Zc

i,ε

)
< ε,

where PAν is the law of Aν on 
⊗

i∈N Bi . It follows that 
{
PAν

}
0<ν<1 is tight on 

⊗
i∈N Bi and, a 

fortiori, 
{
PAν

∣∣
Bf

}
0<ν<1

is tight on Bf .

Claim (iii). Set λ̄ν = λν

∣∣⊗
i∈N Bi

and let F ∈ ⊗i∈N Bi be arbitrary. By definition, for any com-

pact K ∈ K,

λ̄ν(K) = λν(K) = ην(K) = PAν (K).

In particular, if K ⊂ F , then PAν (F ) ≥ PAν (K) and PAν (F ) ≥ λ̄ν(K) = λν(K). Therefore,

PAν (F ) ≥ sup
K∈K,K⊂F

λ̄ν(K) = sup
K∈K,K⊂F

λν(K).

Since λν is Radon on B∗(X),

PAν (F ) ≥ λν(F ) = λ̄ν(F ), F ∈
⊗
i∈N

Bi .

Using the arbitrariness of F by considering X\F in place of F , this majorisation implies 
PAν = λ̄ν = λν

∣∣⊗
i∈N Bi

. Nevertheless, observe that this does not imply that Aν becomes either 
F/B∗(X) measurable or F/B(X) measurable. �

The next remark is important and used extensively throughout the paper.

Remark B.11. Even though Aν is not F/B(X) measurable in general, we still have the following 
crucial fact: because 

{
PAν

}
0<ν<1 is tight, as soon as we assume that the original probability space (

�, F , P
)

is complete, it follows that

f ◦ Aν is F/B(Rk) measurable,

for any continuous function f from X to Rk , see [46, page 170] for further details.
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B.3. The Skorokhod–Jakubowski theorem

We recall the following result due to Jakubowski [46, Theorem 2].

Theorem B.12 (Jakubowski). Let Z be a quasi-Polish space. Consider a sequence Yj :(
�, F , P

) → (
Z, BZ

)
of random mappings with a tight sequence of laws μj , j ∈ N . Then 

there exist a subsequence 
{
Yjk

}
k∈N and Z-valued random variables V0, V1, V2, . . . , defined on ([0, 1], B([0, 1]), Leb

)
, where Leb is the Lebesgue measure, such that

Yjk
∼ Vk, k ∈ N, Vk(ξ)

k↑∞−−−→ V0(ξ) for a.e. ξ ∈ [0,1].

Recently, the Jakubowski theorem was used by many authors to prove existence of solutions 
to various classes of SPDEs, see Section 1 for a few references. Here we only recall the first 
works [52,12].

The following simple but useful lemma is deployed in the proof of Theorem 4.9.

Lemma B.13 (A.s. representations of nonlinear compositions). Let Z, W be quasi-Polish spaces, 
and suppose F : Z → W is a Borel function. Consider a sequence 

{
Yj

}∞
j =1 of Z-valued random 

variables on 
(
�, F , P

)
. Denote by 

(
Vk, F̃k

)
the a.s. representations of 

(
Yj , F(Yj )

)
, see Theo-

rem B.12. Then

F̃k = F(Vnk
), a.s., k ∈ N.

Proof. We divide the proof into two steps.

Step 1. Let (Z, BZ) and (W, BW) be quasi-Polish spaces with σ -algebras BZ and BW . Consider 
a mapping F : Z → W that is BZ/BW measurable. Define the mapping H : Z × W → W × W

by

(z,w) → H(z,w) = (H1(z,w),H2(z,w)
) = (F (z),w).

Then H is BZ ⊗ BW/BW ⊗ BW measurable. The validity of this claim comes from the BZ ⊗
BW/BW measurability of the coordinate mappings (z, w) 

H1→ F(z) and (z, w) 
H2→ w, see, e.g., 

[47, Lemma 1.9].

Step 2. Consider three random mappings U : (�, F , P
) → (Z, BZ), U ′ : (�′, F ′, P ′) →

(Z, BZ), and V : (�′, F ′, P ′) → (W, BW). Suppose F : Z → W is a (deterministic) mapping 
that is BZ/BW measurable. If 

(
U, F(U)

) ∼ (U ′, V ), then V = F(U ′), a.s. It remains to prove 
this assertion, which implies the claim of the lemma.

By Step 1 and the measurability of compositions of measurable mappings, we conclude that 
H(U, F(U)) is F/BW ⊗BW and H(U ′, V ) is F ′/BW ⊗BW . Moreover, we have H(U, F(U)) ∼
H(U ′, V ). Since the diagonal �W ×W belongs to BW ⊗ BW , cf. Lemma B.5, we obtain

P
({ω : H(U,F(U)) ∈ �W ×W }) = P ′({ω′ : H(U ′,V ) ∈ �W ×W

})
.

Trivially, H(U, F(U)) ≡ (F(U), F(U)
) ∈ �W ×W , and whence
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1 = P ′({ω′ : H(U ′,V ) ∈ �W ×W

}) = P ′({ω′ : (F(U ′),V
) ∈ �W ×W

})
.

This shows that V = F(U ′), thereby ending the proof of the lemma. �
Remark B.14. Theorem B.12 applies to tight sequences of probability measures, where tightness 
implies that the global behaviour of the measures “concentrates” on a compact set. Since we are 
not generally working in a metric space setting, to prove that a subset K is compact, one would 
a priori be required to use nets rather than sequences. However, an essential property of quasi-
Polish spaces is that one can restrict considerations to sequences; as a matter of fact, a subset K
of a quasi-Polish space is compact if and only if it is sequentially compact [46].

The coincidence of compactness and sequential compactness is not necessarily inherited by 
the relativised notions of relative compactness and relative sequential compactness. Using se-
quences is advantageous when assessing the precompactness of subsets, as per the application 
of the Skorokhod–Jakubowski theorem. In these situations, we want to know that the closure of 
relatively sequentially compact subsets is at least sequentially compact. Let us delve into supple-
mentary structures that quasi-Polish spaces must possess, in order to ensure the coincidence of 
relative compactness and relative sequential compactness.

We recall first that a subset A of a Hausdorff space (X, τ) is

a. relatively compact if the closure of A is compact in X;
b. relatively countably compact if each sequence in A has a cluster point in X;
c. relatively sequentially compact if each sequence in A has a convergent sub-sequence with 

limit in X.

The requisite additional structure is the following:

Definition B.15 ([33, page 30]). A topological Hausdorff space (X, τ) is angelic if for every 
relatively countably compact set A ⊂ X the following holds:

(i) A is relatively compact;
(ii) For each x ∈ A there is a sequence in A which converges to x.

Angelic spaces have several remarkable properties:

Lemma B.16 ([33, Lemma 3.1, Theorem 3.3]). In any angelic space,

(i) compact, countably compact and sequentially compact subsets coincide;
(ii) relatively compact, relatively countably compact and relatively sequentially compact subsets 

coincide.

Which spaces are angelic? A theorem of Eberlein and Šmulian provides us with necessary 
conditions:

Lemma B.17 ([33, Theorem 3.10]). Let (X, τ) be a locally convex metrizable space. Let τw

denote its weak topology. Then (X, τw) is angelic. Moreover, if τr is a regular topology finer than 
τw , then (X, τr) is angelic.
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The regularity of a topology plays a pivotal role in affirming the angelic nature of a space. For 
relatively sequentially compact subsets A of regular spaces, the closure A maintains sequential 
compactness.

As we conclude this section, we will give three pertinent examples.

• If X is a normed space, then (X, τw) is angelic.
• X = Lp1

([0, T ]; Lp2(S1) − w
)
, with 1 < p1, p2 < ∞: Recall the topologies τs and (B.2), 

denoted by τN , on the Bochner space Z = Lp1([0, T ]; Lp2(S1)). Clearly, (Z, τs) is normed; 
therefore, when endowed with τw, it is angelic. Moreover, τN is (completely) regular, be-
cause it originates from a family of semi-norms, i.e., it is locally convex. Since τw ⊂ τN , 
(Z, τN) is angelic.

• X = C([0, T ]; Z − w) for a separable Hilbert space Z, see Example (2) of Section B.1: Let 
(ϕn)n ⊂ Z be such that ‖h‖Z = supn |〈ϕn,h〉Z | for all h ∈ Z. Define the following semi-
norms on C([0, T ]; Z − w):

‖f ‖ϕn
:= sup

0≤t ≤T

∣∣〈ϕn,f (t)〉Z

∣∣ , f ∈ C([0, T ]; Z − w), n ∈ N.

The locally convex topology τ0 generated by the seminorms ‖·‖ϕn
, n ∈ N , is (completely) 

regular. The topology τ0 is metrizable [13, Remark 4.2], and thus 
(
C([0, T ]; Z − w), τ0

)
is 

a locally convex metrizable space. Denote by τw its weak topology. Then 
(
C([0, T ]; Z −

w, τw

)
and 

(
C([0, T ]; Z − w), τ0

)
are angelic, because trivially τ0 ⊃ τw . Furthermore, de-

note by τ the regular locally convex topology generated by the semi-norms ‖·‖φ in Example
(2). Since τ ⊃ τ0, the quasi-Polish space 

(
C([0, T ]; Z − w), τ

)
is angelic.

Appendix C. Regularisation errors

In Section 7, we derived the SPDE satisfied by S(q̃), where q̃ solves the second-order 
transport-type SPDE (7.43) and S : R → R is a nonlinear function. This renormalisation step 
involved regularising the process q̃ by a spatial mollifier Jδ , which generates several error terms. 
Below we reproduce some convergence results—but not their proofs—for controlling these error 
terms. Analysing one of the (noise-related) terms requires a non-standard commutator estimate 
that goes beyond the DiPerna–Lions folklore lemma (see Proposition C.2 below). Similar esti-
mates have been used recently in [54] and [38].

Lemma C.1 (First order commutator errors). Consider

w ∈ L4(�; L∞([0, T ]; H 1(S1))
)
,

and suppose σ ∈ W 1,∞(S1). Let Jδ be a standard Friedrichs mollifier in x, and set wδ = w ∗ Jδ . 
Define the error processes

E
(1)
δ = E

(1)
δ (w, v) = (w ∂xw

) ∗ Jδ − wδ ∂xwδ,

E
(2)
δ = E

(2)
δ (w) = (σ ∂xw

) ∗ Jδ − σ ∂xwδ,

E
(3)
δ = E

(3)
δ (w) = − 1(

σ ∂x (σ ∂xw)
) ∗ Jδ + 1

σ ∂x (σ ∂xwδ) .

2 2
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The following convergences hold:

E
∥∥∥∂xE

(1)
δ

∥∥∥
L1([0,T ]×S1)

δ↓0−−→ 0, E
∥∥∥E(2)

δ

∥∥∥2

L2([0,T ];H 1(S1))

δ↓0−−→ 0,

E
∥∥∥E(3)

δ

∥∥∥2

L2([0,T ]×S1)

δ↓0−−→ 0.

(C.1)

The first and second parts of (C.1) come from [48, Lemma 2.3] and [28, Lemma II.1], respec-
tively. For the final part, see [40, Lemma 7.1].

To handle a regularisation error linked to the stochastic part of (7.43), we need the following 
proposition, which is a consequence of a second order commutator estimate found in [40, Lemma 
7.3]:

Proposition C.2 (Itô–Stratonovich related error term [40, Proposition 7.4]). Let S ∈ Ẇ 2,∞(R)

be such that S′(r) = O(r) and supr∈R
∣∣S′ ′(r)

∣∣< ∞. Let w, wδ , E(2)
δ , and E(3)

δ be defined as in 
Lemma C.1. For each ϕ ∈ C∞([0, T ] × S1), the following convergence holds:

E

T∫
0

∣∣∣∣ ∫
S1

− ϕS′(∂xwδ)∂xE
(3)
δ

+ ϕS′ ′(∂xwδ)

(
1

2

∣∣∣∂xE
(2)
δ

∣∣∣2 + ∂x (σ ∂xwδ) ∂xE
(2)
δ

)
dx

∣∣∣∣dt
δ↓0−−→ 0.

Appendix D. Temporal continuity in H 1 for viscous equation

We consider the viscous equation (1.5). Since ε > 0 is fixed in this section, we suppress the 
ε-subscript. In [40, Proposition 7.8], the authors demonstrated that

lim
t →t0

E ‖u(t) − u(t0)‖2
H 1(S1)

= 0,

for every t0. Furthermore, they posited that u belongs to the space Lp0
ω CtH

1
x , with p0 > 4 defined 

in (2.1), implying that u is almost surely continuous on the interval [0, T ] with values in H 1(S1). 
However, they did not provide a comprehensive proof to support this latter assertion. The aim of 
this appendix is to establish this temporal continuity assertion, which is utilised in this paper.

Lemma D.1 (Temporal continuity in H 1 for viscous equation). Consider a solution u to 
(1.5) with initial condition u0, as guaranteed by Theorem 2.3. Specifically, u satisfies u ∈
Lp0
(
�; L∞([0, T ]; H 1(S1))

)∩ L2
(
�; L2([0, T ]; H 2(S1))

)
and, P -a.s., u ∈ C([0, T ]; H 1(S1) −

w). Then we have the inclusion u ∈ Lp̄
(
�; C([0, T ]; H 1(S1))

)
, for any p̄ < p0.

Proof. Let {Jδ }δ>0 be a spatial Friedrichs mollifier. We continue to employ the notation fδ =
f ∗ Jδ . Using the a.s. inclusion u ∈ Ct(H

1
x − w), we find that the quantities uδ and qδ = ∂xuδ

exhibit time-continuity, pointwise in x. It then follows quite straightforwardly that uδ belongs to 
the space CtH

1 a.s., for each fixed δ > 0.
x
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For given δ, η > 0, applying Itô’s formula to the mollified version of the SPDE (1.5) and its 
x-derivative, we obtain

1

2

∥∥uδ − uη

∥∥2
H 1

x
(t) = 1

2

∥∥u0,δ − u0,η

∥∥2
H 1

x

+
t∫

0

8∑
i=1

Ii ds +
t∫

0

(M1 + M2) dW,

(D.1)

where

I1 = ε

∫
S1

(
uδ − uη

)
∂2
xx

(
uδ − uη

)
dx,

I2 = −
∫
S1

(
uδ − uη

) (
(u ∂xu + ∂xP )δ − (u ∂xu + ∂xP )η

)
dx,

I3 = 1

2

∫
S1

(
uδ − uη

) (
(σ ∂x (σ ∂xu))δ − (σ ∂x (σ ∂xu))η

)
dx,

I4 = 1

2

∫
S1

∣∣(σ∂xu)δ − (σ∂xu)η
∣∣2 dx,

I5 = ε

∫
S1

∂x

(
uδ − uη

)
∂3
xxx

(
uδ − uη

)
dx,

I6 = −
∫
S1

∂x

(
uδ − uη

)
∂x

(
(u ∂xu + ∂xP )δ − (u ∂xu + ∂xP )η

)
dx,

I7 = 1

2

∫
S1

∂x

(
uδ − uη

)
∂x

(
(σ ∂x (σ ∂xu))δ − (σ ∂x (σ ∂xu))η

)
dx,

I8 = 1

2

∫
S1

∣∣∂x (σ∂xu)δ − ∂x (σ∂xu)η
∣∣2 dx,

M1 =
∫
S1

(
uδ − uη

) (
(σ ∂xu)δ − (σ ∂xu)η

)
dx,

M2 =
∫
S1

∂x

(
uδ − uη

)
∂x

(
(σ ∂xu)δ − (σ ∂xu)η

)
dx.

Applying integration-by-parts, we can ascertain that I1, I5 ≤ 0, a.s.
We shall use repeatedly the fact that u ∈ L2

ω,tH
2
x , and thus, as δ → 0, 

(
uδ, ∂xuδ, ∂2

xxuδ

) →(
u, ∂xu, ∂2 u

)
in L2 . In addition, using that σ ∈ W 2,∞, 

(
uδ, (σ ∂xu)δ , ∂x (σ ∂xu)δ

) →
xx ω,t,x
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(
u, σ ∂xu, ∂x (σ ∂xu)

)
in L2

ω,t,x . The convergences just mentioned immediately imply that 

E 
∫ T

0 I4 + I8 dt
δ,η↓0−−−→ 0.

For I3, we use the Cauchy–Schwarz inequality to get

T∫
0

|I3 | dt �σ

∥∥uδ − uη

∥∥
L2

t,x

∥∥fδ − fη

∥∥
L2

t,x
, (D.2)

where f = σ ∂x (σ ∂xu) ∈ L2
ω,t,x . On the right-hand side, we take an expectation. Subsequently, 

we utilize the Cauchy–Schwarz inequality. Each of the factors of the term on the right-hand 
side tend to 0 in L2(�) as δ, η ↓ 0. After an integration by parts, the integral 

∫ T

0 |I7 | dt can be 
bounded in a similar manner as stated in (D.2), but with the first factor on the right-hand side 
replaced by 

∥∥uδ − uη

∥∥
L2

t H
2
x

. Consequently, the integral can be treated using the same approach.
For the integrals I2 and I6, we again apply the Cauchy–Schwarz inequality and use the fact 

that u ∈ L2
ωL2

t H
2
x ∩ L2

ωL∞
t H 1

x . To be more precise, adding I2 and I6, and using the property that 
K ∗ f = f − ∂2

xxK ∗ f , we find

|I2 + I6 | =
∣∣∣∣ ∫
S1

(
uδ − uη

) (
(u ∂xu)δ − (u ∂xu)η

)
dx

+
∫
S1

∂x

(
uδ − uη

)
∂x

(
(u ∂xu)δ − (u ∂xu)η

)
dx

+
∫
S1

∂x

(
uδ − uη

)((
u2
)

δ
−
(
u2
)

η
+ 1

2

(
q2
)

δ
− 1

2

(
q2
)

η

)
dx

∣∣∣∣
≤ ∥∥uδ − uη

∥∥
H 2

x

∥∥(u ∂xu)δ − (u ∂xu)η
∥∥

L2
x

+ ∥∥∂x

(
uδ − uη

)∥∥
L∞

x

∥∥∥∥(u2
)

δ
−
(
u2
)

η
+ 1

2

(
q2
)

δ
− 1

2

(
q2
)

η

∥∥∥∥
L1

x

,

and therefore

E

T∫
0

|I2 + I6 | dt

≤ E
(∥∥uδ − uη

∥∥
L2

t H
2
x

∥∥(u ∂xu)δ − (u ∂xu)η
∥∥

L∞
t L2

x

)
+ E

(∥∥∂x

(
uδ − uη

)∥∥
L2

t L
∞
x

×
∥∥∥∥(u2

)
δ

−
(
u2
)

η
+ 1

2

(
q2
)

δ
− 1

2

(
q2
)

η

∥∥∥∥
L2

t L
1
x

)

≤
(
E
∥∥uδ − uη

∥∥2
2 2

)1/2 (
E
∥∥(u ∂xu)δ − (u ∂xu)η

∥∥2
∞ 2

)1/2
Lt Hx Lt Lx
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+
(
E
∥∥∂x

(
uδ − uη

)∥∥2
L2

t L
∞
x

)1/2

×
(
E

∥∥∥∥(u2
)

δ
−
(
u2
)

η
+ 1

2

(
q2
)

δ
− 1

2

(
q2
)

η

∥∥∥∥2

L2
t L

1
x

)1/2

.

By the Lebesgue dominated convergence theorem, the inclusions u ∈ L2
ω,tH

2
x and u2, q2 ∈

L2
ωL∞

t L1
x ⊂ L2

ω,tL
1
x imply that one factor in each summand above tends to zero as η, δ ↓ 0. 

At the same time, the remaining factor in each summand is bounded because of the inclusions 
u ∈ L

p0
ω L∞

t,x (with p0 > 4), ∂xu ∈ L
p0
ω L∞

t L2
x (so that u ∂xu ∈ L2

ωL∞
t L2

x ), and u ∈ L2
ω,tH

2
x ⊂

L2
ω,tW

1,∞
x .

Next, by the BDG inequality,

E sup
t ∈ [0,T ]

∣∣∣∣∣∣
t∫

0

M1 dW

∣∣∣∣∣∣ ≤ E

⎛⎝ T∫
0

|M1 |2 ds

⎞⎠1/2

�σ E
(∥∥uδ − uη

∥∥
L∞

t L2
x

∥∥fδ − fη

∥∥
L2

t H
1
x )

)
≤
(
E
∥∥uδ − uη

∥∥2
L∞

t L2
x

)1/2 (
E
∥∥fδ − fη

∥∥2
L2

t L
2
x

)1/2
,

where f = σ ∂xu ∈ L2
ω,tH

1
x . Similarly, with g = ∂x (σ ∂xu) ∈ L2

ω,tL
2
x ,

E sup
t ∈ [0,T ]

∣∣∣∣∣∣
t∫

0

M2 dW

∣∣∣∣∣∣�σ

(
E
∥∥uδ − uη

∥∥2
L∞

t H 1
x

)1/2 (
E
∥∥gδ − gη

∥∥2
L2

t L
2
x

)1/2
.

One factor of each term on the right in the two inequalities above tend to nought whilst the other 
remains bounded.

Consolidating our findings, we execute an integration of (D.1) over the interval s ∈ [0, t ]. This 
is succeeded by taking the supremum over t ∈ [0, T ] and subsequently computing the expecta-
tion. With these steps, we arrive at

E
∥∥uδ − uη

∥∥2
CtH 1

x
≤ E

∥∥u0,δ − u0,δ

∥∥2
H 1

x
+ E

T∫
0

∣∣∣∣∣∣
∑

i /∈ {1,5}
Ii

∣∣∣∣∣∣ dt

+ E sup
t ∈ [0,T ]

∣∣∣∣∣∣
t∫

0

(M1 + M2) dW

∣∣∣∣∣∣ δ,η↓0−−−→ 0.

This implies that {uδ } is a Cauchy sequence in L2
ωCtH

1
x . The limit U of {uδ } in L2

ωCtH
1
x and u

must coincide (ω, t, x)-a.e. Indeed, since U ∈ L2
ωCtH

1
x , it is evident that U ∈ L2

ωL2
t H

1
x . Further-

more, due to the fact that p0 > 2, we can conclude that u also belongs to L2
ωL2

t H
1
x . Therefore, 

we can establish that u = U for a.e. (ω, t, x), indicating that they belong to the same equivalence 
class. �
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