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Abstract

A well-known control strategy from the process in-
dustry, model predictive control (MPC), is regarded
as a promising avenue towards achieving smart
operation of building HVAC systems, by enabling
energy flexibility through the thermal mass of the
building. Given sufficient models of the building
envelope and HVAC-system, alongside predictions
of future disturbances, it is possible to optimize
the building control in a receding horizon fashion,
thus achieving near-optimal control. However, a
significant effort is required to deliver sufficient
control models for building MPC. To this end, we
will apply moving horizon estimation (MHE), in
combination with reinforcement learning (RL), to
deliver closed-loop state and parameter estimation,
relaxing the need for exhaustive system identification
(SID) prior to control deployment.

Highlights

• Automated, closed-loop, moving horizon system
identification for building MPC

• MPC as function approximator in reinforcement
learning scheme

• Reinforcement learning of uncertain policy pa-
rameters subject to large uncertainties (e.g.
model parameter adaption inertia, noise covari-
ances)

Introduction

MPC is a well-established control strategy for con-
strained optimization, which enables energy flexibil-
ity by exploiting energy storage capabilities and opti-
mization of renewable on-site generation. In addition,
incorporation of forecast models (i.e., internal gains,
weather), and user inputs (e.g. comfort ranges, elec-
tric vehicle charging needs) allows anticipation of en-
ergy needs that can be optimized for flexible energy
sources (Serale et al. (2018)).
MPC has been successfully demonstrated on build-
ing systems in several previous works (Drgoňa et al.
(2020)). However, control deployment is usually pre-
ceded by a time-consuming SID-phase, which in-

creases the threshold for widespread building MPC
implementation. In Rockett and Hathway (2017), it is
argued that the most important feature of a building
controller model is its ability to predict state trajec-
tories within the control horizon, and that it need not
accurately reflect year-round behavior of the building.
In this context, we introduce MHE, an optimization-
based state estimation strategy, where the current
system state is inferred based on a finite sequence
of past measurements, considered to be the natural
counterpart to MPC (Rawlings et al. (2017)). In ad-
dition, MHE can be extended to deliver parameter
estimates (Kühl et al. (2011)). As MHE increases
the computational burden compared to traditional
eanstimation techniques, it is generally considered to
be more suitable for systems with slower dynamics
and greater computational resources, which fits well
with building systems (Drgoňa et al. (2020)).

Reinforcement learning (RL) is a branch of ma-
chine learning, concerned with how intelligent agents
should take actions in an environment, in order to
maximize the notion of cumulative reward (Sutton
and Barto (2020)). For each state, the optimal ac-
tion is computed either directly as a policy, or indi-
rectly as through value-based methods (Zanon and
Gros (2021)). Recent achievements of RL in gen-
eral include the large language model chatGPT (Ope-
nAI (2023)), as well as achieving superhuman perfor-
mance in games such as Go (Silver et al. (2016)) and
Dota (OpenAI et al. (2019)). In the context of con-
trol, one is often concerned with constraint satisfac-
tion, which RL typically does not guarantee. This
is especially the case when using deep neural net-
works (DNNs) as function approximators, which is
typically the case in state of the art applications
(Zanon and Gros (2021)). In addition, there is the
issue of sampling efficiency: it may take an inordi-
nate amount of interactions with the environment to
arrive at RL policies capable of achievements such
as those mentioned. In the case of buildings, such
pre-training must also take place in simulated envi-
ronments. A fairly recent example from the building
literature, highlighting the issue, is Zhang and Lam
(2018), where an RL-agent is trained for 47.5 years in
simulation in order achieve the tracking performance
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of a P-controller.
The novelty of this work is two-fold: (i) first, it in-
vestigates the potential of automated system identi-
fication through MHE for building control problems
under realistic conditions, i.e. under significant plant-
model mismatch. MHE is investigated in the same
terms for a simple 3R3C controller model-emulator
setup (i.e. no structural model mismatch) in Maree
et al. (2021), where parameters are found to converge
to their true values. In the present work, we instead
emulate the real process with a white-box building
simulation model, while keeping the grey-box con-
troller model structure.
(ii) It introduces the notion of combined RL and MPC
by viewing the MPC optimization problem as a differ-
entiable implicit function in a building context. At-
tempts at combining RL and MPC for building ap-
plications has been made in e.g. Arroyo et al. (2022),
where a value function is pre-trained on a simplified
simulation environment, and the optimal policy is de-
fined as a superposition of the one-step solution to
the MPC problem and the pre-trained value function,
which is adapted on-line during control deployment.
Hence, the MPC and RL policy parameterizations are
kept separate. In Chen et al. (2020), a differentiable
MPC (black-box) policy in combination with imita-
tion, end-to-end learning is used, requiring extensive
pre-training of agents. In this work, on the other
hand, the learning is done in a purely online fashion,
i.e. value function parameter updates are delivered
during control of the building.

Methods

In the following, the methodology is presented. In
essence, the methodology boils down to the formula-
tion of three distinct optimization problems, in ad-
dition to a learning scheme (delivered through RL);
one to be solved once in the ”traditional” MPC ap-
proach (system identification), and two to be solved
along a receding horizon: one looking forward in time
(MPC), and one looking backward in time (MHE). A
brief description of the building emulator will also be
given. The order of presentation is then: (i) building
emulator (ii) system identification problem (iii) model
predictive control formulation (iv) moving horizon es-
timation formulation (v) MHE-MPC as function ap-
proximator in RL (vi) NLP-sensitivities/KKT.

Building emulator

For the purpose of representing the building, i.e. the
map from control action a to the next state s+, we
formally define our control task as a discrete Markov
decision process (MDP) with the state transition dy-
namics:

P[x+|x, u] (1)

where x, u is some state-action pair, and x+ the state
after applying action u (Gros and Zanon, 2020). The
virtual control bench-marking framework BOPTEST

(Blum et al., 2021) is used as a proxy for the real sys-
tem (1). The framework is extended by implementing
a one-zone model of the ZEB Living Lab (Goia et al.,
2015), based on components from the Buildings li-
brary (Wetter et al., 2014). The envelope model is
based on the shoe-box geometry of the building, and
has not yet been validated. The HVAC-system and
control system consists of an on-off controller, modu-
lating an electric heater. The heat flow of the heater
is split into 70 % concective and 30 % radiative heat
gains, as per standard assumptions Strachan et al.
(2016). To ensure that equation 1 holds, ideal con-
trol of the heater is assumed, i.e. the baseline control
can be overwritten by providing the exact heat flow as
desired from the calculation of the MPC block. Thus,
when running the MPC, the on-off controller is by-
passed. Some simplifications have been made to the
emulator model. There is no (i) forecast uncertainty,
and no (ii) ventilation.

System identification problem

In the following, a technique for obtaining a reduced-
order model suitable for controlling the system (1),
represented by the proxy model shown in figure 1.
It is assumed that a suitable model structure, i.e. a
structure that allows for sufficient accuracy without
over-fitting, is at hand. From Yu et al. (2019), one
obtains that a 2R2C model structure is sufficient to
represent one thermal zone of a building envelope.
This is in contrast to the approach in e.g. Bacher and
Madsen (2011), where model structures are iterated
on in increasing order of complexity with a maximum
likelihood based approach, until a p-value larger than
0.05 is reached. A reduced-order system formulation
suitable for system identification is:

xk+1 = f(xk, uk, p) + wk (2a)

yk = h(xk, p) + vk (2b)

with xk ∈ X ⊆ Rnx , uk ∈ U ⊆ Rnu . Furthermore,
Gaussian white-noise is assumed for the additive dis-
turbances wk, vk, i.e. vk ∼ N (0, R), wk ∼ N (0, Q).
The parameter estimation problem to be solved is

Figure 1: Building emulator.
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then:

min
p,v,w

VN (uN ,yN ) (3a)

xk+1 = f(xk, uk, p) + wk, ∀k ∈ I1:N− (3b)

yk = h(xk, p) + vk, ∀k ∈ I1:N (3c)

xk ∈ X, ∀k ∈ I1:N− (3d)

p ∈ P (3e)

where uN = [u1, ..., uN ] defines both controllable in-
puts and disturbances (i.e. heating, solar irradiation,
ambient temperature etc.) and yN = [y1, ..., yN ] is
a sequence of measurements. The parameter estima-
tion value function VN is defined as a sum of stage
costs over the estimation horizon N :

VN (uN ,yN ) :=

N∑
k=1

l(vj , wj) (4)

where the stage cost on each time step is defined as
follows:

l(wj , vj) =

∥vj∥
2
R−1

θ

+ ∥wj∥2Q−1
θ

, ∀j ∈ I0:N−2

∥vj∥2R−1
θ

, j = N − 1

(5)

where covariance matricesQθ, Rθ are considered fixed
and known a priori. The objective then is to minimize
the prediction error over the measurement history,
subject to these covariance matrices.

Model predictive control

We will now describe the model predictive control
strategy, which is used to control the emulator of the
real system (1) in real-time, assuming we have ob-
tained the reduced-order model (2). First, we define
N := k + K − 1, with K the horizon length. Using
the assumption of zero-order hold (Rawlings et al.
(2017)), the MPC problem is to be solved for the
control vector uk:N = [uk, . . . , uN ]. The optimization
problem to be solved over a receding horizon is then:

min
u

VN (dk:N ) (6a)

xj+1 = f(xj , uj , dj), ∀j ∈ Ik:N (6b)

uj ∈ U, ∀j ∈ Ik:N (6c)

xj ∈ X, ∀j ∈ Ik:N (6d)

xk = x̂tk (6e)

with the estimation of the state x̂tk provided by some
state estimation scheme at time t = tk, e.g. a Kalman
filter or a moving horizon estimator. In the work
presented here, a simple minimum energy formulation
will be used. The corresponding value function for
this formulation is:

VN (dk:N ) =

N∑
j=k

l(uj) (7)

with stage cost:

l(uj) = u2
j , ∀j ∈ Ik:N (8)

The implicit MPC control law is defined as taking the
first optimal control move, i.e.:

π(xk) := u∗
k. (9)

Moving horizon estimation

The reduced model (2) cannot completely capture the
dynamics of the real system (1), since the true model
structure is unknown (Hjalmarsson (2009)). A strat-
egy to accommodate this structural uncertainty is to
allow a subset of the parameters p, i.e. p ⊆ P, in
addition to the state trajectory x to be updated as
new data arrives from closed-loop operation. This
is known is dual state-parameter moving horizon es-
timation (MHE) (Kühl et al. (2011)). Analogous to
the MPC case, we define a horizon into the past of M
time steps, and let L := k−M +1. Assuming L > 0,
which implies u∗

L:k = πL:k = [πL, . . . , πk], dL:k, yL:k

available for the estimation problem. We make the
following adaptions to the system (2) (parameter es-
timation DAE):

xj+1 = f(xj , πj , p) + wj , ∀j ∈ IL:k−1 (10a)

yj = h(xj , p) + vj , ∀j ∈ IL:k (10b)

to emphasize the dependence of previous optimal con-
trol actions u∗

L:k = πL:k. The MHE value function is
defined as a least-squares stage cost:

VM (πL:k,yL:k,dL:k) = γM−1VL(x̂L, p̂L)+

k∑
j=L−1

γj l(xj , wj , vj)
(11)

with γ a discount factor ∈ [0, 1) introduced to give
a higher relevance to recent data, and the stage cost
l(wj , vj) given by equation (5). The term VL(x̂L, p̂L)
is known as the arrival cost (Rawlings et al., 2017),
which is needed to avoid rendering the estimation
problem computationally intractable. It can be seen
that it represents an inertia for departing from previ-
ous estimations x̂L, p̂L.
One common choice of parameterization for this term
is a quadratic approximation Kühl et al. (2011), based
on the covariance of parameter and state estimates:

VL(x̂L, p̂L) =
∥∥zL − zL

∥∥
P−1

θ

(12)

with the costate z defined as:

z =

[
pk
xL

]
(13)

and z the a-priori most likely values of z, which we
take to be the result from the estimation at t = tk−1,
i.e.:

zL =

[
pk−1

xL|k−1

]
(14)
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and finally: Pθ a positive semi-definite matrix, whose
inverse represents the confidence associated with our
previous estimate z (that is, both of the parameters
and states). With the value function defined, we de-
scribe the MHE problem of interest as:

min
w,v,p

VM (πL:k,yL:k,dL:k) (15a)

s.t.

eq. (10)

pj ∈ P, ∀j ∈ IL:k−1 (15b)

wj ∈W, ∀j ∈ IL:k−1 (15c)

vj ∈ V, ∀j ∈ IL:k (15d)

with all entities previously defined. MHE defined in
this manner reduces to solving the problem (3) on
a receding horizon, with the observed closed-loop re-
sponse when applying the control law (9).

Controller model structure

For the purpose of solving problems given by eqs. (3),
some a priori defined, grey-box type model structures
need to provided to the parameter estimation algo-
rithms. For the simulation studies in this work, we
provide the model structure given by figure 2.

Ci

Ti

Φh AwΦs

Rie Rea

Ce

Te

−
+ Ta

InteriorHeater Solar Envelope Ambient

Figure 2: RC-network of TiTe.

.

The system of ordinary differential equations (ODE’s)
for this system can be written out by considering the
energy balances of the nodes:

dTi

dt
=

1

RieCi
(Te − Ti) +

Aw

Ci
ϕs +

1

Ci
ϕh (16a)

dTe

dt
=

1

RieCe
(Ti − Te) +

1

RieCe
(Ta − Te) (16b)

with all entities of the model having a natural physical
representation.

Reinforcement learning with MPC/MHE

It is well known that the assumption of normally dis-
tributed noise may not hold in non-ideal cases, where
factors such as model mismatch (parametric) and un-
modelled dynamics (structural) may lead to difficulty
in tuning covariance matrices Rθ, Qθ, which deter-
mine the weighting between model and measurement.
Furthermore, the problem of both parameterization
of the arrival cost in general, and optimally updating
the particular parameterization represented by the

weighting Pθ, remains an open problem in the realm
of cybernetics (Rawlings et al. (2017)). To handle
these uncertain parameters, we turn to recent efforts
made to combine the fields of model predictive con-
trol and reinforcement learning, leveraging strengths
of both fields Gros and Zanon (2020). From classical
reinforcement learning theory, one obtains the Bell-
man equations, Sutton and Barto (2020):

πθ(s) = argmin
a

Qθ(s, a) (17)

Vθ(s) = min
a

Qθ(s, a) (18)

describing respectively the action a to be taken in a
given state s from the minimization of the action-
value function Qθ(s, a), and the value of being in
a given state s through the value function Vθ(s).
Following the theory presented in Gros and Zanon
(2020), we note that an RL policy is implicitly given
by the the solution to the optimization problems de-
scribed by eqs. (6) and (15), i.e.:

Qθ(s, a) =min
u,x

(6a) (19a)

s.t. (6b)− (6e) (19b)

a = uk, s = xk (19c)

with the implicit function given by MHE-MPC
scheme acting as a function approximator, a role tra-
ditionally played by linear functions and neural net-
works in the context of reinforcement learning (Sut-
ton and Barto (2020)). Taking this view, we can
shape the values of the uncertain parameters Qθ,
Rθ, Pθ through interactions with the environmen-
t/building, while maintaining reasonable confidence
in performance of the control policy.
Let us consider a TD(0)-algorithm, SARSA, as a can-
didate to deliver on-line adjustments of uncertain pa-
rameters θ. The SARSA algorithm with the notation
defined here is defined as follows ((Sutton and Barto,
2020)):

θk+1 = θk + αδk∇θQθ(xk, uk) (20)

δk = Rk+1+γQθ(xk+1, uk+1)−Qθ(xk, uk) (21)

with the temporal difference driven by the (1 − ϵ)-
greedy update, instead of the predicted action-value
of the optimal move (on-policy), in contrast to Q-
learning approaches. In our implementation, we let ϵ
decay over time by the update rule:

ϵk+1 = 0.99ϵk (22)

to gradually encourage exploitation in favour of ex-
ploration as more information of environment is built
up. To obtain the gradient ∇θQθ(xk, uk), one needs
to differentiate through the policy Qθ(xk, uk) by use
of the chain rule. Since the MHE scheme indirectly
acts on theQθ through estimation of xk, pk, and those
in turn are functions of θ, i.e.:

(xk, pk) = argmin
xk,pk

VM,k(θ) (23)
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where the subscript k is added to emphasize the so-
lution of the MHE problem in timestep t = tk. the
total derivative of the policy reads as:

dQθ

dθ
=

∂Qθ

∂xk

∂x̂k

∂θ
+

∂Qθ

∂pk

∂p̂k
∂θ

(24)

since we consider a policy parameterization where pa-
rameters θ only appear in the MHE problem.

NLP sensitivities

To obtain the sensitivities above, needed for con-
structing the gradient in the TD(0)-scheme, we first
define a general parametric non-linear program as:

min
w

ϕ(w) (25a)

s.t.

g(w, θ) = 0 (25b)

h(w, θ) ≤ 0 (25c)

where ϕ(·) ∈ R is the objective function, h and g
yield the inequality and equality constraints, respec-
tively, and the set of variables w are labelled the de-
cision variables. Assuming the problems (6) and (15)
have been discretized to yield problems on the form
(25), we can define the Lagrangians of the respective
optimization problems as L and L̂, respectively, as
follows:

L = Φ(w̃) + λ̃T g̃(w̃) + µ̃T
A h̃A(w̃) (26)

L̂ = Φ̂(ŵ) + λ̂T ĝ(ŵ) + µT
A ĥA(ŵ) (27)

where A denotes the active set at any optimal NLP
solution. Let us now define the primal-dual pairs of
solutions to the MPC and MHE problems of interest
be denoted as z̃ = {w̃, λ̃, µ̃} and ẑ = {ŵ, λ̂,µ

′}.
Sensitivities are obtained by:

∂Qθ

∂θ
=

∂L(xk, pk, z̃
∗)

∂θ
(28)

∂Qθ

∂xk
=

∂L(xk, pk, z̃
∗)

∂xk
, (29)

∂Qθ

∂pk
=

∂L(xk, pk, z̃
∗)

∂pk
, (30)

where z̃∗ denotes the optimal solution to problem
(6). To obtain the rest of the terms, we can use
(with linear indepence constraint qualification, LICQ,
and second-order sufficient conditions, SOSC) the im-
plicit function theorem to obtain (Büskens and Mau-
rer (2001)):

∂ẑ∗

∂θ
= −

(
∂R̂

∂ẑ

)−1
∂R̂

∂θ
(31)

where

R̂(ẑ, θ) =

∇ŵL̂(ŵ, θ)
ĝ(ŵ, θ)

ĥA(ŵ, θ)

 (32)

so one ends up needing to obtain the KKT-matrix:

(
∂R̂

∂ẑ

)−1

=

∇ŵ,ŵL̂ ∇ŵĝ ∇ŵĥA
∇ŵĝT 0 0

∇ŵĥT
A 0 0

−1

(33)

which can either be obtained directly from the solver
(at the optimal solution of the NLP in question, in
this case arising from the MHE problem), or calcu-
lated fairly cheaply (compared to NLP-solutions) in
post-processing. Note that one also needs to obtain:

∂R̂(ẑ, θ)

∂θ
=

∇ŵ,θL̂θ

∇θĝ

∇θĥA

 (34)

As xk, pk are both part of ŵ, ∂x̂k

∂θ , ∂p̂k

∂θ can be obtained
from the expression given by equation (31).
Using the computations described above, we can sum-
marize the algorithm with the pseudo-code given by
Algorithm 1. We have assumed that the number of

Algorithm 1 MHE+RL MPC

Require: α, θ0, x0, p0
while True do

pk, xk ← Solve (15) ▷ MHE solve
∂x̂k

∂θ , ∂p̂k

∂θ ← Solve (31) ▷ MHE sensitivity
πθ(xk), Vθ(xk)← Solve (6) ▷ MPC solve
Apply πθ(xk) = u∗

0 to real plant (1)
Measure yk, Rk+1 from real plant (1)
∂Qθ

∂xk
← Solve (29)

∂Qθ

∂pk
← Solve (30)

∂Qθ

∂θ ← Solve (28)
dQθ

dθ ← Assemble from (24) ▷ MPC sensitivities
πθ(xk+1), Vθ(xk+1)← Solve (6) ▷ Resolve

MPC
∆θ ← Solve (21)
θk+1 ← θk +∆θ ▷ RL update
k ← k + 1

end while

time steps have evolved past the MHE horizon length,
i.e. k ≥ M − 1 and k = k +M , such that the mea-
surement window is filled up.

Results and Discussion

To validate the proposed framework, three numeri-
cal experiments have been set up. All three use the
emulator described in the methods section (depicted
in figure 1) as a representation for the real building,
and the controller model structure depicted in fig-
ure 2. All cases also use the same MPC formulation,
given by equations (6)-(9), with a minimum energy
formulation. The difference between the cases lies
in how the parameters of the controller model are
identified. In the baseline case / experiment 1, we
run an SID-phase prior to control deployment, with
a PRBS-signal providing excitation of the building
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Table 1: Experiment description
Name SID Observer RL
Exp. 1 y KF n
Exp. 2 n MHE n
Exp. 3 n MHE y

thermal mass according to the guidelines in Madsen
et al. (2015). The PRBS-signal is run for 6 days. The
observer (state estimator) used in this case is a clas-
sical Kalman filter.
In experiment 2, no SID-phase is run prior to control
deployment, and MHE without arrival cost is used
for receding horizon system identification and state
estimation. In experiment 3, the learning scheme de-
scribed in the last two subsections of the Methods
section is deployed to update uncertain parameters
of the MHE scheme, i.e. the arrival cost and noise
covariances.

Table 2: Parameters found by SID (prior to Exp. 1)
Name Value Unit

Rie 2.00 [ K
kW ]

Rea 12.27 [ K
kW ]

Ci 0.41 [kWh
K ]

Ce 2.05 [kWh
K ]

Ai 4.40 m2

Figure 3 shows the closed-loop result of experiment 1.
Since an identification with a PRBS-signal has been
carried out prior to running the experiment, and it is
known that the building dynamics can be captured by
the reduced-order model structure given in 2, we ex-
pect the result to be satisfactory, with few constraint
violations, and little unnecessary energy use. By vi-
sual inspection of figure 3, we see that this is indeed
the case (calculation of KPI’s based on Blum et al.
(2021) will feature in further work).
Figure 4 shows the result of applying MHE as a means
of obtaining closed-loop, automatic system identifica-
tion. The parameters settle around the values found
in the SID-phase, which are shown in table 2. How-
ever, some parameters, like Ci and Ria exhibit ”ner-
vous” behaviour, jumping up and down within the
bounds set on the parameters by the MHE problem.
This is not desirable, as we do not necessarily want
to abandon the parameter estimates we have built up
over time in favour of more recent data immediately.
Due to space concerns, the closed-loop result of ex-
periment 2 is not shown here.
Figure 6 shows the parameter evolution of experiment
3, which is MPC+MHE+RL. Here, the weighting pa-
rameters, as well as the covariance matrices of the
closed-loop identification problem are found by RL
updates in real-time. We see immediately that the
parameter estimates are more stable, and hence more
in line with the result from experiment 1. As for the
closed-loop result, it can be seen by visual inspec-

tion of figure 5 that towards the end of the week,
the result resembles that of experiment 1, with minor
constraint violations. As the parameters of the phys-
ical model move in the direction of those obtained
by SID prior to experiment 1, the trajectory of the
temperature in experiment 3 will move towards the
trajectory obtained in experiment 1. The constraint
violation from ca. 0700-1000 on the fourth day, which
is the most significant one occurring after the first
three days have passed, is also present in experiment
1. Thus, it is a result of imperfect knowledge of the
disturbances and/or plant-model mismatch, and not
the proposed approach.

Figure 3: Closed-loop control Exp. 1

Figure 4: Parameter updating Exp. 2
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Figure 5: Closed-loop control Exp. 3

Figure 6: Parameter updating Exp. 3

Conclusion

A procedure for automatic, closed-loop system iden-
tification, based on moving horizon estimation, has
been presented. The parameters of the grey-box con-
troller model are shown to move towards the same nu-
merical values as those yielded by a more traditional,
PRBS-based approach, which puts stricter require-
ments on building occupancy during the duration of
the identification experiment. To alleviate issues of
stability in the closed-loop parameter estimates, a re-
inforcement learning scheme has been applied on top
of the MHE-MPC scheme, using the reward provided
by the environment (building) and the sensitivities

at the optimal solutions of the NLPs arising from
transcription of the optimal control problems to up-
date uncertain parameters in real-time. The results
are promising, showing that one obtains equivalent
closed-loop results after approximately three days of
operation. Thus, user discomfort and unnecessary en-
ergy usage to identify the controller model is avoided.

Further work

Further work can take many directions. First of all, a
natural extension of the work presented here is to
investigate the performance of the RL scheme for
longer horizons, to see if the seasonal adaptations
of the grey-box controller model are obtained by the
MHE+RL scheme. This goes hand in hand with in-
vestigating and improving the numerical robustness
of the sensitivity-based RL scheme. Furthermore, it
is of interest to include richer parameterizations (i.e.
extra terms) of the MPC scheme, and investigate the
potential of RL to learn these terms and accommo-
date for more unmodelled dynamics, such as e.g. ven-
tilation. This will necessitate using emulators with
more complex HVAC- and control systems, and also
providing baseline controllers with more detailed rep-
resentation of the HVAC-systems. Another direction
is the application of other RL algorithms, such as
TD(N) and policy gradient approaches. Finally, an
investigation of the approach in multi-zone settings
is also of interest.
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