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Abstract

With the power to perform more complex tasks than humans, artificial neural
networks (ANNs) have been applied to execute tasks in safety-critical systems
(SCSs), such as object detection, image recognition, and navigation. An ANN
should provide consistent performance when input deviates from the training data.
This corresponds to the attribute of robustness in the ANN.

The obstacles to developing robust ANN-based safety-critical systems (ANN-SCSs)
encompass four interrelated aspects: 1) the inherent complexity and nonlinearity
of ANNs that call for innovative testing and verification (T&V) techniques; 2)
the need to establish a well-defined connection between robustness and safety by
considering various factors; 3) the vital nature of addressing the immaturity of
robustness evaluation and measurement to ensure the seamless integration of ANNs
in safety-critical applications in operation; and 4) the development of precise and
practical robustness measurement in operation without labeled data. It is vital to
have methods to accommodate the ever-changing nature of real-world data and the
diversity of ANN architectures and use cases. Consequently, addressing these four
challenges holistically is essential to facilitate a safe and reliable transition toward
incorporating ANNs in SCSs.

This thesis provides knowledge on ANN robustness evaluation in the context of
SCSs. It develops new knowledge, methods, and guidance, combining traditional risk
analysis concepts with convolutional neural network theory and robustness studies.
Four main research papers have been published and submitted as a result of the
work in this thesis. These papers together provide scientific contributions to 1) the
systematization of knowledge and understanding for T&V of ANN-SCSs; 2) a new
method for analyzing the influence of ANN robustness on the safety of autonomous
vehicles; 3) a systematic summary of methods and metrics to measure ANN-SCS
robustness in operation; and 4) empirical results that demonstrate the applicability
of distance metrics in selecting more robust ANN models from several alternatives
using unlabeled data in operation. The systematization of knowledge, the method
to evaluate ANN robustness, and insights on the advantages and disadvantages
of the corresponding metrics pave the way for a future where the robustness and
safety of ANN-SCSs can be quantified and enhanced, ensuring improved operational
safety and effectiveness in real-world scenarios.
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Preface

This doctoral thesis, a result of a joint research project financed by the Norwegian
University of Science and Technology (NTNU) and the Technical University of
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Overview





1 INTRODUCTION

This chapter introduces the thesis subject area and problem statement and describes
the research motivation, research questions, main contributions, and thesis outline.
It provides an overview of the challenges in testing and verifying ANN-SCSs, the
need to establish a connection between robustness and safety, and the gaps in
current research.

1.1 Problem Statement

Safety-critical systems (SCSs) must be robust against failures that cause harm to
people and lead to further economic loss and environmental and/or reputational
damages [1]. With the power to perform more complex tasks than humans, artificial
neural networks (ANNs) have been successfully adopted in several SCSs, such
as autonomous vehicles (AVs), drones, and health care devices [2]. Within these
applications, ANNs have shown remarkable performance in object detection, image
recognition, navigation, control, etc. However, an SCS that uses an ANN may
perform poorly or catastrophically misbehave due to incorrectly comprehending
the sensor input variations or under diverse environmental conditions. For instance,
the self-driving Uber that killed a pedestrian did not realize she was a human [3].
In addition, Tesla’s Autopilot lane-keeping assist system failed to recognize a crash
attenuator [4] and a stationary obstacle hidden by the leading car [5]. Assuring the
prediction accuracy of the ANN classifier in a tolerable range with atypical data is
a crucial need in SCSs [6].

Robustness, i.e., the ability to maintain performance in the face of perturbations
and uncertainty, is a long-recognized key property of SCSs, according to relevant
safety standards, such as IEC 615081 and ISO 26262.2 Testing and verification
(T&V) of ANNs for SCSs can help form the foundation to trust the decisions
made by ANN algorithms at both the design and the operational stages. The
existing studies to assure the robustness of ANNs fall into two main categories: 1)
robustness measurement and 2) robustness enhancement. In a traditional safety
analysis, robustness is calculated by obtaining components’ failure probabilities

1IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related
systems

2ISO 26262: Road vehicles—Functional safety
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1. INTRODUCTION

(generally by observing the components over a long period or looking them up
in failure rate databases collected from observation [7, 8]). In this thesis, we
treat ANN as a component in an SCS. An ANN’s robustness is defined as its
ability to maintain a similar prediction accuracy under different conditions [9]. The
robustness of ANN-classifier-based safety-critical systems (ANN-SCSs) can be put
at risk due to adversarial attacks, natural perturbations, and random failures [10,
11]. Some studies have tried to understand the characteristics and impacts of
adversarial inputs [12, 13], identify the intrinsic features of robust classifiers [14,
15, 16, 17], and develop methods to detect and mitigate the effects of adversarial
examples [18, 19, 20, 21, 22]. To improve the robustness of ANNs, researchers
commonly employ data augmentation techniques [23] and increase the complexity
of the models [24]. For example, Zheng et al. [25] and Shaham et al. [26] proposed
methods that leverage adversarial training to enhance the robustness of ANNs.
Adversarial training involves generating a large number of adversarial examples
and training the ANN to be resilient against these examples. Another approach
called AugMix [27] randomly selects different augmentations, applies them to a
training image, and then combines the augmented image with the original to improve
robustness against natural perturbations. Ensemble learning techniques, which
involve training multiple models and combining their outputs, show promise in
achieving robustness in natural perturbation scenarios [28, 29, 30]. To overcome
ANN hardware failure, a typical approach is to use redundancy, i.e., using two or
more devices to achieve the same safety function [31].

Although academic and industrial efforts to address T&V of ANN-SCSs are in-
creasing, there remains a gap between industry needs and state-of-the-art T&V
methods. Research institutions and industry T&V practitioners are working on
different aspects of this problem. Nevertheless, to the best of our knowledge, at
the early stage of this Ph.D. study, there was limited research available explicitly
focusing on the risk analysis of ANNs. Additionally, it appeared that existing safety
standards did not explicitly address the unique challenges associated with testing
and verifying ANN-SCSs. Recently, three relevant standards focused on testing
AI-based systems,3 assessing the trustworthiness of AI systems,4 and assuring the
robustness of ANNs5 were (partially) released. However, there is currently a weak
connection between potentially useful methods for robustness evaluations of ANNs
and relevant safety standards. This weak connection reflects a lack of comprehensive
understanding regarding the underlying mechanisms and influencing factors of ANN
robustness. Consequently, the field of robustness evaluation and measurement re-
mains immature, which poses a significant challenge in seamlessly integrating ANNs
into safety-critical applications. Operationalizing ANN systems in harsh operational
environments, including industrial settings, presents unique robustness challenges
that require specific solutions [32]. To illustrate the importance of robustness, let us
consider the incident involving a Tesla Model S P85 car crashing into a stationary
fire truck in 2018 [33]. This collision occurred while the car was in Autopilot mode

3ISO/IEC TR 29119-11: Guidelines on the testing of AI-based systems
4ISO24028: Overview of trustworthiness in artificial intelligence
5ISO/IEC TR 24029-1: Assessment of the robustness of neural networks
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1.2. Research Motivation

with traffic-aware cruise control, and it resulted from the system’s inability to detect
a stationary obstacle hidden by a preceding vehicle. This incident serves as a clear
reminder of the urgent need to improve the robustness of ANN-based advanced
driver assistance systems to effectively handle complex real-world scenarios and
minimize reliance on inattentive drivers.

1.2 Research Motivation

There is a recognized and well-documented interest in the T&V of ANN-SCSs across
the fields of machine learning (ML), software engineering, and safety communities [34,
35, 36]. This is demonstrated by the growing demand for research guidance in
testing and verifying ANN-SCSs. Notably, 11 automotive industry leaders have
established a framework for developing, testing, verifying, and validating the safety
of automated passenger vehicles (SaFAD) [37] aimed at creating standards for
automated driving. Moreover, Waymo, a leader in AV technology, releases an
annual analysis of events from AV operation on public roads [38], highlighting the
importance of T&V.

However, there is a lack of comprehensive research investigating the influence of
ANN robustness on system safety. This highlights an essential problem: without
effective measurement of the robustness of ANN-SCSs, there is no structured path to
improving robustness, as the gap between desired and realized performance remains
unknown. Existing metrics, evaluation methods, and robustness challenges of ANN
models have been discussed in several surveys [39, 40, 41, 42]. However, these surveys
cover a wide range of focus areas, from adversarial robustness [40, 41] and corruption
robustness [43] to distributional robustness [10]. The diversity complicates the
creation of a unifying taxonomy, evaluation metrics, measurement techniques,
and evaluation framework applicable in real-world scenarios. Furthermore, most
evaluation metrics and methods are designed for the model development stage [44,
42, 43, 45], making them unsuitable for ANN-SCSs in operation. While many
studies on T&V approaches for ANN-SCSs focus on algorithm verification, ensuring
that the algorithms are correctly programmed [46, 47, 48], they often do not align
with a more holistic view of the safety of the whole SCSs.

Moreover, ANN models deployed in operation are susceptible to input data changes
from the training data [49], known as out-of-distribution (OOD) shifts. One possible
solution to this challenge is to use a multi-model decision-making approach [50].
This approach involves using different models to perform the same task, leveraging
the diversity of models to provide robust and reliable predictions in dynamic and
changing conditions [30]. As the recent literature emphasizes [50, 51], a crucial
research direction for effective AI risk management is continuous monitoring and
validation of AI systems. This implies that practitioners need to evaluate and
choose optimal models under shifting conditions dynamically, which highlights the
critical need to develop effective methodologies to address these challenges.

This thesis, therefore, aspires to bridge a notable gap in contemporary research by
intertwining elements of SCS and ML. It places special emphasis on understanding

3



1. INTRODUCTION

how ANN impacts the performance of SCSs, addressing ANN robustness in real-
world operational environments, and effectively managing AI risks in dynamic
scenarios. ANNs encompass a broad category of deep learning algorithms that
utilize deep neural networks (DNNs) with multiple layers of nonlinear processing
units for feature extraction and transformation [52]. This study specifically examines
SCSs that employ ANNs for classification tasks, allowing us to address a wide range
of real-world use cases and provide valuable insights to a broad audience.

1.3 Research Questions

This thesis addresses the research motivations by answering the research questions
step by step. The research questions (RQs) investigated by this thesis are:

RQ1: What are the challenges associated with testing and verifying
the robustness of ANN classifiers for SCSs?

RQ2: How can we analyze the influence of the ANN classifier’s robust-
ness on SCSs’ safety?

RQ3: What are the perceptions and practices of robustness evaluation
in ANN-SCSs in operation?

RQ4: How can we compare and rank the robustness of multiple ANN
classifiers using unlabeled input during operation, supposing OOD shifts
may happen at any time during operation?

Figure 1.1 shows the mapping of the RQs with the interactions of the main research
areas. The above RQs follow a sequential order in which the study of the latter
relies upon the results of the former. First, RQ1 aims to ground the research by
systematically reviewing the state of the art of T&V approaches for ANN-SCSs
to understand the challenges in assuring the robustness of ANNs. RQ2 aims to
propose a new methodology to address one of the challenges identified from RQ1,
i.e., analyzing the influence of ANN robustness on system safety. Lastly, RQ3 and
RQ4 narrow the scope by focusing on the robustness evaluation of ANN classifier
in operation. RQ3 aims to systematize the knowledge of operational robustness
evaluation (challenges and solutions) and propose a framework for the robustness
evaluation of ANN-SCSs. Building directly on the foundation laid by RQ3, RQ4
takes a step further, targeting the empirical assessment of metrics that can be used
to dynamically rank the robustness of multiple ANN classification models under
OOD shifts utilizing unlabeled data.
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Figure 1.1: Coherence between our research questions.

1.4 Research Outcomes

This thesis builds upon studies across ML and safety analysis with inspiration
from design science and safety engineering in a holistic view. The RQs are ad-
dressed in four published/submitted papers in peer-reviewed journals and conference
proceedings.

1.4.1 Research Papers
The research papers that address the RQs are listed below. The connections between
the research papers and the RQs are illustrated in Table 1.1.

P1 J. Zhang and J. Li, ‘Testing and verification of neural network-based
safety-critical control software: A systematic literature review,’
Journal of Information and Software Technology, vol. 123, 2020, Art. no.
106296.
My contribution: I was the leading author and developed the research
design. Li supervised this process through regular consensus meetings with
me. I performed the keyword search process and selected papers based on the
inclusion and exclusion criteria. I extracted the data, thematically categorized
the findings, and prepared the research results. Li contributed to this process.
Li and I discussed the results. I wrote the paper, and Li commented on the
paper.
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Table 1.1: Mapping of main research papers and research questions.

P1 P2 P3 P4

RQ 1 •

RQ 2 •

RQ 3 •

RQ 4 •

Relevance to the thesis: This paper systematically reviews the recent
literature on T&V methods for ANN-SCSs. The paper contributes to
addressing RQ1. Our findings in this paper helped formulate RQ2–RQ4 and
conduct P2–P4. The paper has two main contributions: 1) classification of
T&V approaches in academia and industry for ANN-SCSs and 2) identification
of challenges for advancing state-of-the-art T&V for ANN-SCSs. To conclude,
the T&V approaches were categorized into five higher-order themes: assuring
the robustness of ANNs, improving the failure resilience of ANNs, measuring
and ensuring test completeness, assuring the safety properties of ANN-SCSs,
and improving the interpretability of ANNs. From the industry perspective,
assuring the robustness of ANNs is a crucial need in safety-critical applications.

P2 J. Zhang, J. R. Taylor, I. Kozin, and J. Li, ‘Analyzing influence of robust-
ness of neural networks on the safety of autonomous vehicles,’ in
31st European Safety and Reliability Conference, 2021, pp. 2276–2283.
My contribution: I was the leading author and developed the research design
and conceptualization. Kozin and Li supervised this process through regular
meetings with me. I proposed a novel methodology, and Taylor contributed
to this process. I developed the algorithms, designed and performed the
experiments, and analyzed the findings. All authors discussed the results, and
I wrote the paper based on the findings. Kozin, Taylor, and Li commented on
the paper. Finally, I presented the paper at the online conference.
Relevance to the thesis: This paper presents an extended fault tree analysis
(FTA) to represent combinations of failure causes in multidimensional space,
i.e., two variables influencing whether an image is classified correctly. First,
the paper shows that ANNs and vision algorithms can be included in overall
risk analysis as a fault tree (FT) by using the concept of exceeding the
robustness of ANNs as FT events alongside the traditional component failure
probabilities. Following this, the extended FTA is demonstrated in the traffic
sign recognition module of AVs theoretically and in practice. It demonstrates
how an FT can include failure events from multiple small parameter deviations
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influencing image recognition, resulting in unsafe performance. The paper
contributes to RQ2 by providing a method to analyze the influence of the
ANN classifier’s robustness on the safety of AVs.

P3 J. Zhang, J. Li, and J. Oehmen, ‘Robustness evaluation for safety-critical
systems utilising artificial neural network classifiers in operation:
A survey,’ In review, Manuscript submitted to the International Journal of
Engineering Application of Artificial Intelligence, 2023.
My contribution: I was the leading author and developed the research design
and conceptualization, data collection and analysis, and research findings. Li
and Oehmen exchanged ideas and commented on the draft.
Relevance to the thesis: This paper summarizes the definitions of ANN-
SCS robustness in the system-, ANN models-, and input- levels, respectively,
and presents the classification of approaches and remaining challenges for
evaluating ANN-SCS robustness in operation. First, the paper synthesizes
the findings from literature and standards of ML robustness to develop the
ANN-SCSs robustness evaluation framework. Following this, the robustness
assessment framework was used to map the remaining challenges at each level.
The paper contributes to RQ3 by systematizing the robustness evaluation
process of ANN-CSs in operation from a holistic perspective and pointing out
the challenges to measuring the robustness of ANN-CSs in operation.

P4 J. Zhang, J. Li, and Z. Yang, ‘Dynamic robustness evaluation for auto-
mated model selection in operation,’ In review, Manuscript submitted to
the International Journal of Information and Software Technology, 2023.
My contribution: I was the leading author and developed the research
design, data collection, experiments implementation, result analysis, and
research findings. Li supervised this process through regular meetings. All
authors discussed the results, and I wrote the paper based on the findings. Li
and Yang commented on the paper.
Relevance to the thesis: This paper proposes using distance metrics to
measure the robustness of multiple pretrained models on unlabeled inputs
in operation to help ANN classifier end users choose a more robust model
dynamically. The study compares and analyzes five candidate distance metrics
applicable for ranking robustness. The results show that the Wasserstein
distance (WD) [53] outperforms others when ranking multiple ANN models
for CIFAR10-based models, while the Kullback-Leibler (KL) Divergence [54]
demonstrates superior performance for ImageNet-based models. Maximum
mean discrepancy (MMD) [55] can be used as the second option for both
datasets. We have also found that the metrics assumptions and characteristics
of the data to classify shall be considered when selecting the most appropriate
metric. The paper contributes to RQ4 by going in-depth into one robustness
evaluation scenario, i.e., addressing the challenge of ranking multiple ANN
models’ robustness in operation, identified in RQ3.
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Furthermore, five secondary papers/technical reports were produced:

SP1 J. Li, J. Zhang, and N. Kaloudi, ‘Could we issue driving licenses to
autonomous vehicles?’ in International Conference on Computer Safety,
Reliability, and Security, Sep. 2018, pp. 473–480.

SP2 N. H. C. Guzman, J. Zhang, J. Xie, and J. A. Glomsrud, ‘A comparative
study of STPA-extension and the UFoI-E method for safety and
security co-analysis,’ Reliability Engineering and System Safety, vol. 211,
2021, Art. no. 107633.

SP3 J. R. Taylor, J. Zhang, I. Kozin, and J. Li, ‘Safety and security analysis
for autonomous vehicles,’ DTU Orbit, Lyngby, Denmark, 2021. [Online].
Available: https://orbit.dtu.dk/en/publications/safety-and-security-analysis-
for-autonomous-vehicles

SP4 A. M. Staff, J. Zhang, J. Li, J. Xie, E. A. Traiger, J. A. Glomsrud, and
K. B. Karolius. ‘An empirical study on cross-data transferability of
adversarial attacks on object detectors,’ in 41st Annual International
Conference of the British Computer Society’s Specialist Group on Artificial
Intelligence (SGAI 2021), AI-CyberSec 2021 Workshop.

SP5 J. Zhang, J. Oehmen, and I. Kozin, ‘Monitoring the robustness of safety
critical artificial neural networks,’ European Safety and Reliability Asso-
ciation Newsletter, vol. 3, 2022, 4–5.

All the secondary papers provided complementary perspectives to this thesis. Sec-
ondary Paper SP1 explores the field of safety assurance for deep-learning-powered
AVs by reviewing corresponding literature and industry standards. SP1 contributes
to RQ1 by rooting the thesis in testing and verifying ANN-SCSs. SP2 compre-
hensively compares safety and security analysis methods for cyber-physical systems
(CPSs). Two independent teams conducted the study to compare two different
analysis methods. SP2’s scope is complementary to the topic of this thesis due
to the close relationship between the safety and robustness of CPSs. SP3 is the
background report that extends the findings in main paper P2 by providing a frame-
work for theoretical developments, actual risk analyses, hazard analysis methods’
effectiveness, and quality studies of the safety of AVs. SP4 provides an example
of devising transferable attacks on object detectors, addressing the challenge of
assuring the robustness of a state-of-the-art object detector in practice. SP5 is a
newsletter to summarize my thesis and communicate it to a broader European safety
and reliability community audience. The newsletter also addresses the challenges
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and potential solutions in monitoring the robustness of an ANN classifier during
system operations.

For SP1, I contributed to the literature review and paper writing by providing
a background analysis on how to implement AV perception using deep learning
methods and investigating approaches to verify the safety of AVs. For SP2, I
contributed by co-conducting the analysis using the uncontrolled flows of information
and energy (UFoI-E) method in the case study, co-evaluating the comparison of
results, and writing a review of comparative studies of safety and security co-
analysis methods. SP3 is a technical report on safety and security analysis for AVs;
I contributed to the paper writing by providing a background analysis of ANN in
the design of AVs and exploring how to perform risk analysis for ANNs. I also
contributed to SP4 in the paper writing and revision. Regarding SP5, I was the
lead author and developed the research design and conceptualization, proposed
potential solutions to existing research gaps, and wrote the paper. However, as
these papers only contribute indirectly to the research questions, they are left out of
the main narrative of this thesis. See Table 1.2 for their connection to the research
questions.

Table 1.2: Mapping of secondary papers/technical reports and research questions.

SP1 SP2 SP3 SP4 SP5

RQ1 •

RQ2 • •

RQ3 •

RQ4 •

1.4.2 Research Contributions

This highly interdisciplinary thesis establishes a link between ML, safety, and system
engineering. More specifically, the contributions of this thesis affect two research
disciplines, i.e., Risk management and T&V of SCSs. The connections between the
research questions, research papers, contributions, and the domain are illustrated
in Figure 1.2. This thesis has four major contributions:

C1: The systematization of knowledge and understanding for T&V of
ANN-SCSs. This categorizes the state-of-the-art T&V methods for ANN-
SCSs and identifies the challenges for advancing the state-of-the-art in
T&V for ANN-SCSs.
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1. INTRODUCTION

C2: A new method for analyzing the influence of ANN robustness on
the safety of AVs. This integrates ANN robustness analysis into an
overall safety and security analysis of SCSs.

C3: A systematization of knowledge and a framework for assessing ANN-
SCSs’ robustness in operation. This includes a structured approach to
summarize the concepts and methods of the robustness evaluation of
ANN-SCSs in operation. From the state-of-the-art knowledge, we derive
a framework that can be used to facilitate the systematic evaluation
process by structuring the collection, integration, validation, and analysis
of relevant data, including operational data, performance metrics, and
environmental factors.

C4: New knowledge and understanding of how the robustness of mul-
tiple ANN models can be ranked using unlabeled data. This empirically
validates metrics that can effectively compare the robustness of ANN
classification models in operation. Specifically, it highlights the effective-
ness of distance-based metrics in ranking ANN classifier robustness for
automated model selection. The findings shed light on the significance of
advancing research in the area of dynamic robustness evaluation, which
has been relatively overlooked but holds great importance in ensuring
the robustness and performance of ANN-SCSs.

1.5 Structure of the Thesis

The thesis is composed of two parts. Part I (Overview) presents an introduction
to the research work and provides an overview of the background, related work,
research methods used, results achieved, and contributions made by the thesis.
Part II (Research Papers) contains the four main research papers in full length
and the abstracts of the secondary papers.

The rest of Part I is organized as follows:

• Chapter 2 gives the theoretical background and context of this thesis.
It provides an overview of SCS, risk management in ANN-SCS, and the
relationship between ANN robustness and SCS risks. It establishes the
foundation for understanding the challenges and research questions addressed
in the thesis.

• Chapter 3 reviews the existing literature and research efforts related to T&V
of ANN-SCSs. It identifies the gaps and limitations in current approaches.

• Chapter 4 depicts the research methodology and the approaches followed
to address the research questions, including the systematic literature review
process, the descriptive study, and case studies.
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1.5. Structure of the Thesis

Figure 1.2: A schema of the research papers, contributions, and the domain.

• Chapter 5 presents the findings and results of the research questions. It
discusses the contributions made by each research paper and their relevance
to the overall research objectives.

• Chapter 6 discusses the implications of the research findings for academia
and industry, explores the limitations of the research, and provides insights
into future research directions in the field of ANN-SCSs.

• Chapter 7 concludes the thesis by summarizing the main contributions,
highlighting the key findings, and outlining potential avenues for future
research in the area of ANN-SCSs.

Part II contains the main research papers in full length, along with the abstracts
of the secondary papers, which provide complementary perspectives to the research.
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2 Background and Context

This chapter introduces key concepts central to this thesis. We first introduce the
concept of SCS, which relates to many ANN application domains investigated by
this thesis, to provide context for the focus of this thesis. We then address the
importance of risk management in ANN-SCSs, followed by an overview of testing,
evaluation, verification, and validation (TEVV) procedures. Lastly, we highlight
the relationship between ANN robustness and SCS risks, which shows that the
ANN’s robustness significantly contributes to the trustworthiness of ANN-SCSs.

2.1 Safety-Critical Systems (SCSs) and Safety Standards

SCSs are those for which failure may harm people, lead to economic loss, and/or
cause environmental damages [1]. SCSs are used in many application areas, such as
the automotive, process, and nuclear power industries and medical devices. Many
SCSs are based on electrical, electronic, or programmable electronic (E/E/PE)
technology. The essential system safety standard IEC61508 [56] provides a basis
for the specification, design, testing, and operation of SCSs. The main goal of
IEC61508 is to reduce the risk of failure to a tolerable level. It designates a safety
integrity level (SIL) to determine the performance required to maintain and achieve
safety. SIL ratings correlate to the frequency and severity of hazards. There are
four SILs, i.e., SIL 1, SIL 2, SIL 3, and SIL 4. Each SIL represents an order of
magnitude of risk reduction required, in which SIL 4 is the most demanding.
In the context of SCSs, safety-related functions can operate in two different modes:
demanded mode and continuous mode. In demanded mode, a safety-related function
is invoked only when a problem arises or is about to occur, such as the deployment
of an airbag. On the other hand, in continuous mode, a safety-related function plays
an active role, and a hazardous event may occur almost immediately if a dangerous
failure of the function happens, as in the case of braking systems. Demanded mode
can be further classified into two sub-modes: low-demand mode and high-demand
mode, each of which corresponds to different operating conditions or usage scenarios
that influence the required SIL.
Low-demand mode refers to situations where the system operates under normal
conditions most of the time and only occasionally needs to respond to critical events
or demands. Examples of low-demand mode applications include backup systems
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Table 2.1: SIL target for low-demand SCSs [1].

Safety integrity level Average probability of failure on demand
(PFDavg)

SIL 4 ≥ 10−5 to < 10−4

SIL 3 ≥ 10−4 to < 10−3

SIL 2 ≥ 10−3 to < 10−2

SIL 1 ≥ 10−2 to < 10−1

Table 2.2: SIL for high-demand and continuous mode SCSs [1].

Safety integrity level Average frequency of dangerous failures per
hour (PFH)

SIL 4 ≥ 10−9 to < 10−8

SIL 3 ≥ 10−8 to < 10−7

SIL 2 ≥ 10−7 to < 10−6

SIL 1 ≥ 10−6 to < 10−5

that are rarely activated or emergency systems that are infrequently triggered.
Conversely, high-demand mode denotes scenarios where the system is frequently
exposed to safety-critical situations or demands. In high-demand mode, the system
must continuously monitor, respond, and perform safety-critical functions to ensure
the desired level of safety. Active safety systems in AVs or aircraft control systems
are typical examples of high-demand mode applications.

The SIL targets for low-demand mode and high-demand mode define the specific
SILs that must be achieved in each respective mode. These targets establish the
required reliability and performance levels of the SCS to ensure its proper functioning
and mitigate risks under different operating conditions. Table 2.1 presents the
SIL targets for low-demand mode. For instance, achieving SIL 3 indicates a risk
reduction factor of 1000 or more. For instance, achieving SIL 3 indicates that the
SCS has been designed to significantly reduce the probability of hazardous events by
a factor of 1000 or more compared to the baseline level of risk. Table 2.2 illustrates
the SIL requirements and the associated range of average frequency of dangerous
failures per hour (PFH) for high-demand and continuous mode SCSs.

2.2 Risk Management for ANN-Classifier-Based Safety
Critical Systems (ANN-SCSs)

Risk Management for Traditional SCSs. The risk management process for
traditional SCSs is illustrated in Figure 2.1, which outlines the steps of communica-
tion, consultation, establishing context, assessing, treating, monitoring, reviewing,

14



2.2. Risk Management for ANN-Classifier-Based Safety Critical Systems
(ANN-SCSs)

recording, and reporting risk [57]. Risk management for ANN-SCSs represents an
advancement over traditional SCSs. In this thesis, we focus on the first two steps
of the procedure, namely establishing the context and assessing the risk.

Figure 2.1: The risk management process from ISO 31000:2018 [57].

To establish the context, it is necessary to define the scope and purpose of the risk
management process. For example, in the case of an autonomous car, the scope
could be limited to normal driving or expanded to include emergency response and
driver behavior in problematic situations. The scope determines the appropriate
hazard identification methods and the frequency or probability of hazardous events.
The hazard identification stage involves identifying events that could lead to an
accident or system failure using various methods.

The risk assessment stage includes risk identification, analysis, and evaluation [11].
Risk analysis involves a detailed consideration of uncertainty, risk sources, con-
sequences, likelihood, events, scenarios, controls, and their effectiveness. Analysis
techniques may be qualitative, quantitative, or a combination, depending on the
context and intended use. Finally, risk evaluation compares the risk analysis results
with established risk criteria.

One commonly used method is failure mode and effects analysis (FMEA) [58].
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FMEA involves identifying failure modes for each system component, determining
their potential causes and effects on the overall system, and developing safety
measures for each identified failure mode. This method helps in systematically
analyzing and mitigating potential risks.

For more complex systems, various methods like fault tree analysis (FTA) [59],
cause consequence analysis [60], hazard and operability analysis [61], and systems-
theoretic process analysis (STPA) [62] are used. FTA uses event and logic symbols
to construct a logic diagram that represents the failure logic of a system, facilitating
communication with managers, designers, and operators. By incorporating failure
rates and relevant data, FTA can estimate the frequency of occurrence of undesired
events. FTA is a deductive approach that can trace system failures back to one or
more failures at lower levels. For example, Gupta et al. [63] utilized FTA to identify
combinations of component failures and human errors that could result in specific
undesired events at the system level. STPA considers the system as a hierarchy
of control loops and takes into account unsafe interactions between components.
It provides a broader perspective by including “emergent” failure types associated
with control loops as a whole, rather than focusing solely on individual components
[64]. This extension of STPA enhances the understanding of potential failures and
their implications for system safety.

It is important to note that no single method can identify all hazards in a wholly
engineered SCS. For example, Taylor et al. [11] used a range of ways to analyze the
safety and security of AVs, concluding that brainstorming was effective in identifying
different accident types, and FTA was effective in identifying accident causes.

Difference between ANN-SCS Risks and Conventional Software Risks.
According to Leveson’s work on software safety analysis [65], software can be
analyzed from a safety perspective like physical components. Software FTA [66,
67] is a structured approach for identifying and analyzing potential faults in SCSs.
However, traditional software safety analysis requires a detailed design representation
and a list of hazards or safety risks to be analyzed. Accidents in SCSs can result
from software errors that occur when incorrect assumptions are made regarding
the correctness and completeness of the software specification. These assumptions
are meant to define the expected behavior of the software under all possible
scenarios [68].

ANN algorithms offer substantial benefits in addressing complex design issues for
SCSs, yet, like conventional software, ANN-SCSs have their specific risks. ANN-
SCSs’ unique challenges require an expansion of traditional risk frameworks and
methodologies. Two key challenges are noteworthy. Firstly, ANN-based systems
fundamentally rely on data. Hence, if the collected data to train the model
fail to represent real-world scenarios accurately, ANN algorithms could perform
unpredictably. Secondly, the inherent nondeterministic and non-robust nature of
ANNs can complicate the creation of reproducible tests. Given these challenges,
the focus of risk assessment for ANN-SCS has expanded beyond just the algorithm
itself to encompass broader aspects of the process, specifically data management [69,
70] and ANN model design and verification [71, 72].
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Table 2.3: Examples of real-world incidents caused by lacking robustness in opera-
tion.

Case Incident Description Cause Affected
Attribute

1 IBM Watson for Oncology fre-
quently gave unsafe and erro-
neous cancer treatment advice
to patients[78].

Lacking distributional robust-
ness: a few synthetic cancer pa-
tient data were used for train-
ing instead of real patient data.

Safety

2 Apple’s facial recognition ID
system was fooled by 3D-
printed masks [76].

Lacking adversarial robustness:
the anti-spoofing neural net-
work only considers cosmetic
changes, wearing a scarf, or the
presence of glasses on the face.

Security

3 Tesla autopilot failed to recog-
nize a white truck against a
bright sky [75].

Lacking corruption robustness:
Image contrast

Safety

4 Amazon’s facial recognition
software mistakenly identified
members of the U.S. congress
[77].

Lacking distributional robust-
ness: the facial identification
system demonstrated better
performance for lighter-skinned
faces but encountered diffi-
culties in recognizing darker-
skinned faces.

Reliability

Traditional safety assurance for SCSs is facilitated by well-established industry
standards, prescriptive development processes, and verification techniques/tools that
provide engineers with evidence to demonstrate adequate system safety. However,
the incorporation of ANN algorithms in SCSs complicates the process of estimating
the probability of failures or accidents. Consequently, there is an inevitable shift
towards greater dependence on empirical demonstrations of safety through both
simulated and operational testing [73, 38].

Relations between ANN Robustness and SCS Risks As stated in the
international standard on trustworthiness in AI [74], an AI system’s ability can be
assessed using several attributes, including reliability, resilience, and robustness.
Robustness is defined as a system’s ultimate ability to maintain its performance level
under any circumstances, including external interference or harsh environmental
conditions [74]. Robustness is a crucial property that poses new challenges in the
context of ANN classifier-based systems. The robustness of an ANN-SCS can
affect other adjacent system attributes, as ANN robustness is necessary to maintain
properties such as safety (e.g., for AVs) [75], security (e.g., access control) [76],
and reliability (e.g., commercial facial recognition software) [77]. In Table 2.3, we
present examples of real-world incidents due to the lack of robustness in ANN
models.
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2.3 Machine Learning (ML) Lifecycle and Test, Evaluation,
Verification, and Validation (TEVV) Tasks

ML is a subfield of AI that aims to mimic how humans learn using data and statistical
modeling techniques [79]. Amershi et al. [80] proposed a nine-stage workflow for ML,
which starts with defining model requirements and then progresses through data
collection, data cleaning, data labeling, feature engineering, model training, model
evaluation, model deployment, and model monitoring. This workflow involves
feedback loops where different stages may be revisited, such as model training
returning to feature engineering and model evaluation or monitoring looping back
to previous stages.

Given the growing interest in AI technology for SCSs, risk management for AI
systems (e.g., ANN-SCSs) should be continuous, timely, and performed throughout
the entire system lifecycle. National Institute of Standards and Technology (NIST)
1 published an AI risk management framework (Figure 2.2) that highlighted the
importance of test, evaluation, verification, and validation (TEVV) processes for
AI-based system design, development, deployment, and operation (e.g., ongoing
monitoring) [51].

1https://www.nist.gov/
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2. Background and Context

This framework underscores the necessity of robustness evaluation in both the
developmental and operational stages, enhancing our understanding of ANN-SCSs’
inherent robustness. In the NIST AI Risk Management Framework, a key insight
brought to light is the discrepancy between risk assessments conducted in controlled
environments and those in real-world operational settings. While laboratory meas-
urements can offer valuable insights prior to deployment, they may fail to represent
the risks involved in real-world applications accurately.

During the pre-deployment phase, data scientists engage in rigorous model design,
development, and evaluation. The typical approach is to perform offline evaluations,
testing a model’s performance based on metrics such as accuracy, precision, recall,
etc., against a test set that mirrors the training data. However, this test set might not
capture all possible scenarios the model might encounter in real-world settings. For
instance, road conditions in a snowy environment or scenarios involving malicious
perturbations might be underrepresented in the test set, leading to potential
performance gaps and vulnerabilities in the model’s robustness.

Given the inherently unpredictable and varying nature of real-world data, ensuring
that ML models are trained on comprehensive and relevant data that can generalize
their predictions to rare and potentially catastrophic scenarios is challenging. The
divergence between training data and real-world data is recognized under various
terms in academic literature, including distribution shift [81], nonstationarity [82], or
training-serving skew [83]. These issues highlight the need for robustness evaluations
that extend beyond laboratory settings and into the operational phase.

2.4 Existing Guidelines, Standards, and Regulations, and
Their Applicability to Evaluating ANN-SCSs

This section provides an overview of the various existing guidelines, standards, and
regulations that govern the evaluation of ANN-SCSs. These standards serve to
manage the risks associated with deploying ANNs, covering aspects like autonomous
driving, adaptive systems, healthcare, and data safety.

ISO/PAS21448: Road Vehicles—Safety of the Intended Functionality
(SOTIF) [84]. SOTIF is designed to complement ISO 26262. SOTIF offers
guidance on identifying hazardous situations that may arise from the limitations
of autonomous driving systems (ADSs). It also provides recommendations for
verification and validation activities, such as analyzing triggering events, accounting
for sensors’ limitations, analyzing environmental conditions and operational use
cases, analyzing boundary values, and examining algorithms and their decision
paths.

“Safety First for Automated Driving” White Paper [37]. In June 2019, a
group of 11 prominent automotive and automated driving stakeholders, including
Audi, Baidu, BMW, Intel, Daimler, and VW, published a white paper titled
“Safety First for Automated Driving.” The report emphasizes the importance of
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safety in the design, verification, and validation of ADSs, particularly at SAE2

levels 3–4 (conditional/high automation), and the need for continuous performance
monitoring. Additionally, the report explores the use of DNNs in safety-critical
scenarios, focusing on 3D object detection as a prominent example. It provides a
valuable resource for understanding safety considerations in automated driving.

UL4600: Standard for Safety for the Evaluation of Autonomous Products [86].
UL4600 is a safety standard that outlines the safety case framework for AVs. The
safety case [87] is a structured argument, supported by evidence, that demonstrates
that a system is acceptably safe for its intended use in its intended operational
environment. UL4600 is dedicated to ML to provide an understanding of the risks
of modern ML methods and ways to mitigate them in the following topics (quoted
from [88]):

• Definition of operational design domain (e.g., weather, scenarios)

• Machine learning faults (e.g., training data gaps, brittleness)

• External operational faults (e.g., other vehicles violating traffic rules)

• Faulty behavior by non-driver humans (e.g., pedestrians, lifecycle participants)

• Nondeterministic, variable system behavior (e.g., test planning, acceptance
criteria)

• High residual unknowns (e.g., requirements gaps and post-deployment sur-
prises)

• Lack of human oversight (e.g., operational fault handling, passenger handling)

• System-level safety metrics (e.g., use of leading and lagging metrics)

• Transitioning the system to degraded modes and minimum risk conditions

FAA TC-16/4 Verification of Adaptive Systems [89]. The U.S. Federal Avi-
ation Administration (FAA) report aims to analyze adaptive systems’ certifiability.
In this report, adaptive systems are defined as “software having the ability to change
behavior at runtime in response to changes in the operational environment, system
configuration, resource availability, or other factors.” FAA TC-16/4 highlights the
challenges of verifying and assuring the safety of using ANNs in aircraft products
such as air traffic control systems. However, it does not provide explicit verification
guidelines for developing and using ANNs.

FDA April 2019 Report [90]. The U.S. Food and Drug Administration’s (FDA’s)
Proposed Regulatory Framework for Modifications to AI/ML-based Software as a
Medical Device (SaMD) focuses on risks associated with software modifications in

2The Society of Automotive Engineers (SAE) proposed six levels of autonomous driving [85].
A level 0 vehicle has no autonomous capabilities, and the human driver is responsible for all
aspects of the driving task. For level 5 vehicles, only the ADS manages the driving tasks.
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ML-based systems. It offers general information on the regulation and certification
of AI software. The International Medical Device Regulators Forum (IMDRF)
defines SaMD as software that serves a medical purpose and is not part of a
hardware medical device, such as diagnostic software for identifying tumors or
biometric signal processing software. The proposed framework suggests a total
product lifecycle (TPLC) regulatory approach to evaluate and monitor SaMD from
premarket development to post-market performance.

Data Safety Guidance [91]. The Data Safety Initiative Working Group of the
SCSs Club has created the Data Safety Guidance to offer recommendations for using
data in SCSs. The guide includes definitions, principles, processes, objectives, and
advice, and it summarizes the challenges related to applying data safety techniques
in ML/AI SCSs. These challenges include poor representation of rare cases in test
data, degradation of sensor data, and composite data generated from merging lidar,
radar, and camera.
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3 Related Work

This chapter presents a concise overview of the relevant research conducted in
the field, aligning with the research questions addressed in this thesis. It offers a
comprehensive review of the existing literature and research efforts related to the
T&V of ANN-SCSs, emphasizing the gaps and limitations in addressing the distinct
challenges posed by ANN-SCSs.

3.1 Testing and Verification of ANN Classifiers in
SCSs - RQ1

Despite extensive research on the testing and verification (T&V) of ANNs in the
past decade, there have been relatively few review articles published on this topic
[34, 35, 92, 93, 94, 95]. Many of these studies, including Taylor et al. [34], have
concentrated on specific domains such as flight control systems or analyzed existing
standards in a specific industry, such as the automotive industry [35, 92]. Taylor
et al. [34] categorized verification and validation (V&V) methods before 2003 into
five groups: automated testing and testing data generation methods, run-time
monitoring, formal methods, cross-validation, and visualization. However, their
review did not cover new T&V methods for modern neural networks developed post-
2011. Moreover, many of these traditional V&V techniques have proven inadequate
for verifying modern ANNs in several instances.
Regarding the literature review methodologies, several studies, including [34, 35,
92, 93], utilized ad hoc literature review (ALR) approaches, while [94] and [95]
opted for the systematic literature review (SLR) approach. Nonetheless, these
SLR-focused works concentrated more on interpreting AI rather than specifically
examining T&V techniques for ANNs.
To the best of our knowledge, when we worked on RQ1, no SLR was available to
provide a comprehensive and structured review of our defined study context (i.e.,
testing and verifying ANN-SCSs). A more comprehensive SLR covering the key
aspects of T&V activities for ANN-SCSs can help researchers identify the research
gaps in this area and help industrial practitioners choose proper verification and
certification methods for safety purposes. In Section 5.1 of the thesis, we address
this challenge by providing a systematic summary of knowledge and understanding
related to the challenges in testing and verifying ANN for SCSs.
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3.2 Risk Analysis of ANN-SCSs - RQ2

A comprehensive understanding of risk factors, both qualitatively and quantitatively,
is crucial for constructing a robust risk model. This understanding necessitates
identifying potential hazards and outlining the accident scenarios that may stem
from them. It also involves gaining an in-depth knowledge of all factors influencing
these scenario outcomes. However, it’s often impractical to incorporate every system
detail and scenario into the risk model due to the excessive time and resources
required. The challenge is exacerbated when applying ANN in SCSs, as these
systems can make it more difficult to estimate failure or accident probabilities [96,
97].

Formal techniques are being developed to represent and reason about systems that
include learning-based algorithms [98, 21, 71]. However, these techniques are in
their early stages and cannot yet be integrated into conventional risk assessment
methodologies. Therefore, designers and regulators have a limited ability to use
deductive inference to demonstrate that ANN-SCSs are adequately safe. Similarly,
there is a lack of inductive tools for incorporating these approaches into statistical
risk assessment methodologies. The difficulty lies in predicting how complex training
data will shape the future operation of these systems when exposed to their operating
environments, as past interactions might not provide accurate hazard predictions.

FTA, introduced in 1962 at Bell Telephone Laboratories during a safety evaluation
of the Minuteman Missile launch control system [59], is one of the most widely used
methods for ensuring reliability and safety in complex systems. FTA provides an
overall framework for hazard identification. Supplemental techniques like FMEA [58]
can further detail mechanical and electrical component failures, while STPA [62]
can be used to analyze control hierarchies.

If an ANN’s performance solely depended on independent variations in input
parameters, conventional FTA could be utilized with discrete events, such as
“perturbation exceeds the performance threshold.” However, in many instances, an
ANN’s performance depends on two or more continuously varying disturbance
parameters. In such cases, fuzzy fault tree analysis (FFTA) [99] can be considered.
Still, establishing fuzzy membership functions can be a challenging and subjective
process. Therefore, it is necessary to enhance FTA methodologies to effectively
incorporate ANNs into comprehensive hazard identification and risk analysis. In
Section 5.2 of this thesis, we address this challenge by proposing an extended FTA
method that enables the analysis of the impact of ANN robustness on the safety of
AVs.

3.3 Robustness Evaluation of ANN-SCSs in
Operation - RQ3

There is a significant body of research exploring the robustness of ANN models [100,
101, 102]. However, none of these studies offers a dedicated overview of metrics
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and corresponding methods for evaluating these models’ robustness in operational
environments.

França et al. [103] evaluated techniques used for measuring the robustness of DNN
models. Their research predominantly focused on methods employed to test image
classifiers’ robustness, particularly in the context of AVs. One technique often used
is fuzz testing [104], which leverages invalid or unexpected inputs to test system
resilience. Fault injection has also been proposed as a robustness testing method.
In the survey on ML testing [2], several fault injection-based methods are identified
to simulate hardware errors of AVs to evaluate their robustness.

In laboratory settings, robustness analysis has been extensively studied in relation
to adversarial ML [39, 40, 41, 42]. Adversarial ML aims to guard against attacks
on the system, evaluate ML algorithms’ worst-case robustness, and measure these
algorithms’ progress towards human-level capabilities [105]. For instance, Carlini
et al. [105] outlined common evaluation pitfalls when assessing robustness, includ-
ing neglecting different attack methods or natural perturbations, such as noise
variants [106, 107, 108].

In contrast, non-adversarial robustness has received less attention. Drenkow et
al. [43] conducted a systematic review on non-adversarial robustness within the
computer vision domain, categorizing their findings based on robustness tactics
such as architecture, data augmentation, and optimization.

Many of these methods may not be directly applicable in operational environments
as they often rely on the availability of labeled data for robustness evaluation.
However, these labeled data may not always be accessible or might be delayed due
to the high cost of labeling in operation. Furthermore, these techniques typically
focus on the robustness of a single ML model, such as an ANN classifier. For
ANN-SCSs, it’s crucial to consider robustness at both the individual model and the
system level when assessing operational contexts.

Microsoft researchers have considered robustness across several application do-
mains [10], proposing a unified taxonomy and framework to address ANN model
failures. Although this work provides a comprehensive perspective on ML robustness
risk in operation, it does not specify metrics and methods tailored to each operating
environment [10].

To date, to our knowledge, no review paper has explicitly organized definitions,
metrics, and methods specifically targeting the robustness evaluation of ANN-SCSs
in operation. In Section 5.3 of this thesis, we tackle this challenge by providing a
systematic summary of knowledge and a framework for assessing the robustness of
ANN-SCSs in operational settings. The differences between the focus of our survey
from existing surveys is illustrated in Table 3.1.
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Table 3.1: Chronological comparison of focuses of previous surveys.

Year Survey
Studying

Definitions

Studying Metrics

and Methods

Identifying

Challenges
Operation

2019 Kumar et al. [10] ✓

2019 Carlini et al. [105] ✓ ✓ ✓

2020 Zhang et al. [44] ✓ ✓

2020 Huang et al. [42] ✓ ✓

2021 França et al. [103] ✓ ✓

2021 Drenkow et al. [43] ✓ ✓ ✓

2022 Mohseni et al. [45] ✓ ✓

Our survey ✓ ✓ ✓ ✓

3.4 Dynamic Ranking of ANN Robustness in
Operation - RQ4

We foresee a growing trend of operating multiple versions of models, such as Chat-
GPT [109], for three primary reasons: 1) rapid AI/ML advancements promote
flexibility and experimentation; 2) multiple models reduce the risk of failure or
underperformance; and 3) diverse environments and contexts necessitate optimized
models for specific needs. This has been demonstrated in many non-safety-critical
applications. For instance, cloud providers switch between different models based
on service-level agreements (SLAs) in operational settings to trade between com-
putational cost and service accuracy [110]. In light of this emerging trend, it is
crucial to develop dedicated methods for continuously comparing the robustness of
multiple ANN models and deciding which model should be used within the SCS in
operation. Methods developed for dynamic robustness evaluation of ANN classifiers
in operation should consider the following two challenges: 1) the ground truth
(labels) is often not accessible or delayed; 2) the acceptable level of performance for
ANN models must be determined.

Several studies have proposed test-selection-based methods [111, 112] to rank
multiple models with minimum labeling effort. For instance, Ma et al. [111]
proposed various metrics based on model uncertainty to identify data likely to
cause misclassification. Meng et al. [112] combined majority voting [113] and item
discrimination [114] techniques to measure the discrimination of inputs and select
a set of “error-inducing inputs” to differentiate the robustness of multiple ANN
models. However, test-selection-based methods, which rely on labeling a subset of
data, are not suitable for addressing our specific problem of unlabeled robustness
ranking in operation.

Labeling-free model performance estimation is a task aimed at predicting the
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accuracy of models on test sets without access to ground-truth labels. For example,
AutoEval [115] and SelfChecker [116] propose learning an accuracy regression model
using a synthetic meta-dataset, resulting in accurate predictions of model accuracy
for real-world unlabeled test datasets. However, the methods presented in [115,
116], require a separate supervisor model to monitor and predict the performance
of a single deployed ANN model. While it is technically possible to train multiple
supervisor models to monitor and predict the performance of multiple deployed
ANN models, there are several practical challenges associated with this approach.
Firstly, training and maintaining multiple supervisor models can be computationally
expensive and time-consuming. Secondly, each supervisor model may have its own
biases and limitations, leading to inconsistent and incomparable results across
different models.

Regarding determining the acceptable level of performance for ANN models, industry
best practices often involve detecting drift to indicate whether an ANN model’s
performance is above the acceptable level [117]. Data drift detection primarily
focuses on identifying changes in the input data, while model shift detection aims
to detect shifts in the output of deployed ANN classifiers. Measuring distribution
differences between input data to derive model robustness is unreliable since data
shifts can often have trivial impacts on model performance [118]. There are two
main approaches to detecting model shifts: statistical-based and distance-based.
Statistical-based methods rely on a given confidence level, usually 95%, to determine
if a shift is detected. However, this approach does not measure the magnitude of
shift and provides only a binary (Yes/No) result, making it unsuitable for ranking
multiple models. Distance-based approaches measure the distance between the
distributions that generate the training and test data. Goldenberg and Webb [119]
assessed the practical application of several state-of-the-art distance metrics for
estimating the magnitude of model shifts. Their study showed that distance-based
methods offer an alternative for estimating performance degradation. However,
further investigation is needed to determine whether these techniques can effectively
compare and rank the robustness of multiple ANN classifiers. This motivates us to
explore various distance-based metrics and examine their effectiveness in ranking
the robustness of multiple ANN classifiers during operation. In Section 5.4 of this
thesis, we contribute new knowledge and understanding by demonstrating how the
robustness of multiple ANN models can be ranked using unlabeled data.
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4 Research Methodology

While the choices of specific methods in this thesis are separately justified within
the methodological section of each paper, this chapter is devoted to how the
methodologies of the individual papers fit together in response to the research
questions of the thesis.

4.1 Overview

In this thesis, we mainly focus on the robustness of ANN-SCSs and associated
domains. We have adopted a design research methodology (DRM) as a structured
process [120] to systematically address our RQs in sequential order. In particular,
we follow two distinct research strategies within this methodology, inspired by
Robson’s classification [121]:

• Exploratory: This strategy is about discovering what is happening, seeking
new insights, and generating ideas and hypotheses for future research.

• Improving: This strategy aims to enhance a specific aspect of the studied
phenomenon.

The initial stage, research clarification, aims to explain the research problem at
hand and formulate a clear and realistic overall research plan. To answer RQ1, we
performed SLR to gain a deeper understanding of the T&V of ANN-SCSs. This
enabled us to identify the gaps and challenges in the current state of the art, leading
to the formulation of RQ2 and guiding our subsequent research steps.

The second step of the thesis aims to address the research problem by leveraging the
findings from the previous stages for problem-solving and empirical development.
We focused on addressing RQ2 by filling a gap in risk analysis methods for assessing
the influence of ANN robustness on SCS safety.

Based on the insights acquired when answering RQ1 and RQ2, it became apparent
that an additional systematization of knowledge study was necessary to gather
more information about the robustness evaluation of ANN-SCSs in operation. This
additional study focused on answering RQ3, aimed to improve our understanding

29



4. Research Methodology

Figure 4.1: Research design of this thesis.

of evaluating the robustness of ANN-SCSs by systematizing the current state of the
art and providing insights into the definition, methods, and metrics of robustness
evaluation during operation.

The findings from answering RQ3 revealed that the existing support for evaluating
and comparing the robustness of multiple ANNs for automated model selection was
ineffective or insufficient. Consequently, we decided to concentrate on a systematic
evaluation of the use and usefulness of the existing support to answer RQ4. In the
study, we evaluated the applicability and usefulness of distance-based metrics for
ranking the OOD robustness of multiple ANN models and automating the selection
of the best model during operation in the context of multi-model decision-makers.

The subsequent sections will provide detailed accounts of the research activities
undertaken to address the research questions in this thesis. The logical structure
and research strategies used in this thesis are illustrated in Figure 4.1.

4.2 Literature Reviews—RQ1

In the first stage of exploration, the thesis focuses on RQ1. The objective of this
research was to shape the extensive research problem addressed in this thesis and
recognize the necessity and challenges of T&V for ANN-SCS. Hence, the focus of
this research was further refined into three sub-research questions as follows:

• RQ 1.1: What are the profiles of the studies focusing on testing and verifying
ANN-SCSs?

• RQ 1.2: What approaches and associated tools have been proposed to test and
verify ANN-SCSs?
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• RQ 1.3: What are the limitations of current studies with respect to testing
and verifying ANN-SCSs?

Research method. To address RQ 1.1-1.3, we conducted an SLR of T&V approaches
for ANN-based SCSs (i.e., Paper P1 in Part II). The review protocol was based on
established guidelines by Kitchenham [122] and others [123, 124, 125] and included
four stages: developing a search strategy, setting inclusion and exclusion criteria,
outlining the selection process, and establishing a framework for data extraction
and synthesis. We employed the population, intervention, outcome, context (PIOC)
criteria [122] for defining search terms and used a five-step thematic analysis [126]
for data analysis. This structured approach helped us ensure the reliability of
our findings and effectively structure the vast research field of ANN robustness
evaluation in SCSs.

Research steps. We first collected relevant research papers based on the following
steps:

• Search strategy. In this SLR, the search terms were formulated to identify
relevant papers that address system/component T&V for improving the
safety or functional safety of ANN-SCSs. Fig. 4.2 presents the search terms
formulated based on the PIOC criteria. These search terms were refined
through trial searches, and the final search was conducted in six digital libraries:
Scopus, IEEE Xplore, Compendex EI, ACM Digital Library, SpringerLink,
and Web of Science (ISI).

TITLE-ABS-KEY(("Cyber-physical system*" or "Cyber-physical 
system*" or CPS* or "Smart grid" or "Smart car" or "Automotive 
cyber-physical system*" or "Self-driving car*" or "Autonomous 
vehicle*" or "Autonomous driving system*" or "Automotive 
electronic control system*" or "Automotive embedded system*" or 
"Unmanned Aerial Vehicles" or "aircraft collision avoidance 
system*")AND(“Risk assessment” or “verification” or “test” or 
” t e s t i n g ” o r “ a n a l y s i s ” o r “ C e r t i f i c a t i o n ” o r 
“ a s s u r a n c e ” ) A N D ( “ S a f e t y ” o r “ F u n c t i o n a l 
safety”)AND(“Autonomous decision” or “Autonomous agent*” or 
“Deep learning” or “Deep neural networks”)

Population: “Cyber-physical system*” or “Cyber physical 
system*” or CPS* or “Smart grid” or “Smart car” or “Automotive 
cyber-physical system*” or “Self-driving car*” or “Autonomous 
vehicle*” or “Autonomous driving system*” or “Automotive 
electronic control system*” or “Automotive embedded system*”
Intervention: “Risk assessment” or “verification” or “test” or 
”testing” or “analysis” or “Certification” or “assurance”
Outcome: “Safety” or “Functional safety”
Context: “Deep learning” or “Deep neural networks” or 
“Autonomous decision” or “Autonomous agent”

Figure 4.2: Search terms.

• Inclusion and exclusion criteria. The inclusion criteria require papers to have
a context in SCSs, focus on T&V approaches for ANN-SCSs, and address
modern ANNs. Exclusion criteria include non-peer-reviewed papers, papers
not written in English, papers without full-text availability, and papers not
relevant to modern ANNs. These criteria were applied to ensure the relevance
and quality of the selected papers for the SLR.

• Selection process. The selection process for the SLR involved multiple stages.
Initially, a search string was used to retrieve papers from six digital libraries,
resulting in 950 papers after deduplication. These papers were then filtered
based on title, keywords, and abstracts, resulting in 105 potential papers.
After reading the introduction and conclusion of these papers, 27 papers were
selected. Further snowballing was conducted, resulting in the inclusion of
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56 additional papers. In total, 83 primary studies were selected for detailed
analysis, and the selection process was verified through cross-checking and
discussions between the authors.

The steps of the data analysis to answer RQ1.1-1.3 were as follows:

• RQ1.1: Examining the profiles of the studies focusing on testing and verifying
ANN-SCSs. In this phase, we analyzed the distribution of the surveyed studies,
considering their publication years, research types, and application domains.
This detailed exploration provided us with a comprehensive understanding of
the current landscape.

• RQ1.2: Categorizing approaches for testing and verifying ANN-SCSs. We
employed the thematic analysis method [126], through which we identified
five higher-order themes along with several subthemes. To strike a balance
between accuracy and simplicity in categorization, we chose to assign each
study to only one category, reflecting its primary contribution. This approach
facilitated a structured representation of the T&V techniques for ANN-SCSs.

• RQ1.3: Identifying challenges in testing and verifying ANN-SCSs. Despite
significant efforts from academia and industry, there is a notable gap between
existing T&V methods for ANNs and safety standards such as IEC 61508
[56] and ISO 26262 [127]. To bridge this gap, we first mapped the methods
identified in our review to these standards, using IEC 61508 [56] as the
reference standard due to its influence on ISO 26262 [127]. We employed
the safety integrity properties outlined in IEC 61508-3 and IEC 61508-7
as indicators to assess the extent to which current methods fulfill the T&V
requirements for ANN-SCSs. Through this mapping process, we identified and
summarized the key challenges involved in testing and verifying ANN-SCSs,
providing valuable insights into the current landscape and the obstacles that
need to be overcome.

Further details on the research design are available in Section 3 of Paper P1 in Part
II.

4.3 Case Study—RQ2

The second stage of this thesis focuses on RQ2. The objective of this research was to
gain a deeper understanding of the interplay between ANN robustness and overall
system safety, ultimately facilitating a more integrated method of risk analysis.

Research method. To fulfill this objective, we selected the case study as our research
methodology. This choice allowed us to develop a new risk analysis method and carry
out an empirical evaluation based on real-world data. The case study methodology
is ideal for extracting detailed insights from complex scenarios, especially when the
goal is to comprehend the subject [128] systematically. In our work, presented in
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Paper P2 of Part II, we aimed to introduce a new method for assessing the impact
of ANN classifier robustness on the total system’s safety. By following the research
protocol suggested in [129], which includes designing the case study, collecting data,
analyzing data, and formalizing results, we can ensure the reliability and validity of
our findings.

Research steps. The steps of the research performed to answer RQ2 were as follows:

• Analyzing safety and security threats in ANN-based perception for AVs. We
conducted a comprehensive analysis of various factors that have the potential
to impact the performance of an ANN. This analysis was carried out through
morphological brainstorming and by reviewing accident reports to identify
key safety and security threats. This qualitative investigation allowed us to
understand the vulnerabilities of ANNs, including incorrect deductions from
perception systems, which have proven to be a major cause of disengagement
incidents in AVs. By examining these potential threats, we constructed a risk
profile encapsulating both safety and security aspects, providing us with a
deep understanding of the risks and threats associated with the application
of ANNs in AVs.

• Proposing the extended fault tree analysis (FTA) including ANN components.
We introduced an extended FTA method that enables the risk analysis of
ANN components in SCS. We believe that reasoning about the probability
and consequences of adverse events is needed when ANN components are used
in SCSs. Given the challenges in analyzing ANNs and the impracticality of
extensive real-world testing (as highlighted by Kalra and Paddock’s statistical
assessment [130]), we propose a new approach that links reliability and safety
through risk analysis and component reliability assessments. By incorporating
reliability assessments into the risk analysis process, we can identify potential
failures or weaknesses in the ANN components that may impact the system’s
overall safety. This method integrates ANN failures into the FTA by consider-
ing the ANN as a “black box” with specific functional requirements, such as
recognizing a stop sign in AVs. Failure modes are then defined based on these
functions, including failures like incorrect identification or classification of an
image. The network’s failure probability is considered as the likelihood of an
observed image falling outside the network’s reliable domain or in a domain
where the network lacks robustness. Using this approach, we conduct hazard
analysis using standard methods to identify the causes of such occurrences.
This method places emphasis on developing measures of ANN robustness
against different threats. The goal is to understand ANNs’ performance limits
and the conditions in the operating environment that may challenge these
limits. The model we propose also includes the potential influence of ANN
failures on the overall system risk. The aim is to evaluate the impact of
these failures on the safety of the SCS in which the ANN is embedded. This
comprehensive approach to risk analysis goes beyond examining the ANN in
isolation and instead considers the broader system context.
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• Evaluating the proposed methodology using a case study of a traffic sign
recognition neural network. To evaluate the effectiveness of our proposed
methodology, we conducted a case study on a traffic sign recognition neural
network. The focus of our evaluation was on a specific top event, namely
“Wrong classification of a road sign,” which served as the basis for our analysis.
We considered two important input variations, namely contrast and light
intensity, as potential factors influencing the accuracy of the neural network’s
predictions. In order to demonstrate the impact of small deviations on
prediction accuracy, we also examined the combined effect of contrast and
brightness on the network’s performance. By systematically varying these
parameters, we were able to observe that even slight deviations in contrast
and brightness levels can lead to failures in the classification of road signs.

4.4 Systematization of Knowledge—RQ3

The purpose of RQ3 was to systematize knowledge of the perception and current
treatment of robustness evaluation in ANN-SCSs in operation. Hence, the focus of
this research was further refined into three sub-research questions as follows:

• RQ 3.1: What are the definitions of ANN-SCSs’ robustness in operation?

• RQ 3.2: What metrics and methods are used to measure the robustness of
ANN-SCSs?

• RQ 3.3: What are the challenges of measuring ANN-SCSs’ robustness in
operation?

Research method. To address RQ 3.1–3.3, we conducted a review analysis (i.e., Paper
P3 in Part II) that aimed to systematize and contextualize the existing knowledge
on the robustness evaluation of ANN-SCSs in operation. The field of robustness
evaluation is still in its early stages, making it challenging to automatically find
relevant papers based on predefined search terms. Therefore, instead of using an
SLR approach, we opted for a review analysis approach. This allowed us to delve
deeper into the subject matter and offered more flexibility in exploring underexplored
connections between different metrics and methods for the robustness evaluation
of ANN-SCSs. By conducting a thorough examination of academic literature and
industry standards, we aimed to gain valuable insights into the problem at hand.
This comprehensive exploration enabled us to identify potential research gaps and
incorporate the latest advancements in the field into practical applications. Our goal
was to uncover the underexplored link between the available metrics and methods
for deploying and operating ANN-SCSs, providing a deeper understanding of the
robustness evaluation landscape in operation.

Research steps. We first collected relevant research papers based on the following
steps:
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• Search terms. The chosen search terms were based on their relevance to
the research questions. The terms included “robust*,” “classification,” “deep
learning” or “deep neural network,” or “artificial neural network,” “operation”
or “industry,” and “safety-critical system” or specific systems like “unmanned
aircraft system (UAS),” “medical system (MS),” and “autonomous driving
system (ADS).” These terms aimed to cover the metrics and methods for
evaluating ANN-SCSs in operation.

• Digital library search. Papers were searched in digital libraries such as the
ACM Digital Library, IEEE Xplore, SpringerLink, Scopus, and Web of Science,
as well as Google Scholar. This comprehensive search aimed to identify relevant
studies on the evaluation of ANN-SCSs in operation.

• Standard.no search. To specifically identify robustness definitions, the Nor-
wegian portal of international standards (Standard.no) was searched. This
portal provides free access to IEC, ISO, and Norwegian standards, which are
relevant to the research.

• Inclusion and exclusion criteria. The inclusion criteria were defined to select
papers that address robustness conceptually, propose metrics for measuring
ANN-SCS robustness, perform explicit robustness evaluation, and focus on
robustness in operation. Exclusion criteria included papers published before
2018, non-peer-reviewed papers, and papers not in the English language.

• Filtering process. The manual search initially returned 298 papers. After
evaluating the title and abstract, 216 obviously irrelevant papers were excluded.
The full content of the remaining ones (i.e., 82 papers) was thoroughly
examined, leading to the exclusion of 69 additional papers. Snowballing
techniques were then applied, resulting in the identification of 10 new related
papers from the examination of 13 remaining papers.

We then use different approaches to analyze the data to answer RQ3.1 - 3.3,
respectively.

• RQ3.1 Summarizing definitions of ANN-SCS robustness in operation. To
answer RQ3.1, constant comparison [131] was adopted to identify similarities
and differences in the ANN robustness definitions we found. The definitions
of ANN robustness in operation were compared and summarized from three
scales, i.e., system/component level, ANN classifier level, and data level.
Further, we extracted key components associated with a robustness evaluation
technique for the ANN-SCSs.

• RQ3.2 Systematizing the knowledge of robustness evaluation for ANN-SCSs
in operation. To answer RQ3.2, we follow the typical workflow to assess
robustness described in international standard ISO/IEC TR 24029-1 [132].
More precisely, for each selected paper, we identify their application domain,
robustness goals, operational context, data source, and metrics, methods to
measure robustness.

35



4. Research Methodology

• RQ3.3 Identifying challenges of measuring ANN-SCSs’ robustness in operation.
To answer RQ3.3, we extracted metrics and methods-related challenges for
each selected paper. We then use thematic analysis [133] to analyze the
extracted information.

4.5 Case Study—RQ4

Building upon the exploratory study associated with RQ3, we proceeded with an
empirical evaluation to delve deeper into one of the complex scenarios highlighted
in Paper 3 of Part II, namely, evaluating OOD robustness using a multi-model
decision-maker architecture. Our goal here was to tackle the challenge of assessing
the robustness of multiple ANN models in dynamic environments, where operational
data can significantly deviate from training data due to unforeseen OOD instances.

Research method. To address RQ4, we conducted a case study to empirically
evaluate the effectiveness of adapting distance-based metrics to select more robust
ANN models among several operational alternatives. As a research strategy, the
case study method focuses on a specific case, providing a more profound and
comprehensive understanding of the subject under investigation. In our work (i.e.,
Paper 4 in Part II), we employed a comparative case study approach, examining
different distance metrics. Particular emphasis was placed on the applicability of
these metrics to high-dimensional data, such as images, in the context of ranking
the robustness of multiple ANN classifiers.

Research steps. The steps of the research performed to answer RQ4 were as follows:

• Selecting the candidate distance-based metrics. Distance-based approaches
measure the distance between the distributions that generate the training
and test data. Previous studies [119, 118] demonstrated the usefulness of
distance-based methods for identifying issues with model performance degrad-
ation. The distance-based metrics we considered were drawn from the drift
detection literature, including Wasserstein distance (WD) [53], maximum
mean discrepancy (MMD) [55], Kolmogorov–Smirnov Statistic (KS) [134],
Hellinger distance (HL) [135], and Kullback-Leibler (KL) divergence [54] (refer
to Paper 4 in Part II for more information). Although these metrics were
not explicitly designed for robustness ranking, they serve as natural starting
points for this study.

• Evaluating the effectiveness of distance-based metrics on ranking models. To
ensure a comprehensive evaluation of the robustness of multiple models, several
factors need to be considered, including the selection of distance metrics, the
nature and extent of input perturbations, and the sample size. The relationship
between these factors can introduce complexities and dependencies that may
impact the effectiveness of distance-based metrics in robustness comparison.
To address these considerations, we begin by formulating two evaluation
questions as follows:
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4.5. Case Study—RQ4

– RQ4.1 (Effectiveness under OOD shifts): How well do the selected metrics
rank multiple ANN classifiers when provided with various types of OOD
data and their combinations?

– RQ4.2 (Sample size impact): What is the minimum sample size re-
quired for selected metrics to achieve over 0.50 precision in ranking the
robustness of multiple ANN classifiers under varying levels of corruption?

RQ4.1 explores the effectiveness of the selected metrics in ranking multiple
ANN classifiers using OOD test data. By considering various conditions such
as corruption types, varying percentages of corrupted input, and a mixture
of corruption types, we aim to provide a comprehensive evaluation of the
metrics’ performance in scenarios that simulate real operational settings.
This is important because in practical applications, models may encounter
unknown corruptions or a combination of different types of corruptions, and
it is crucial to assess their robustness under such conditions. RQ4.2 targets
at providing insights into the practical feasibility of using these metrics in
real-world scenarios where the amount of labeled data for evaluation may be
limited.
We then carefully selected datasets and models to ensure the representativeness
of our evaluation. Ten state-of-the-art robust ANN classifiers against natural
corruption (Models 1–10 in Table 4.1) were chosen from RobustBench [136].
RobustBench is a standardized robustness benchmark. It contains a robustness
evaluation of 40+ models in image classification on natural corruptions. Here,
we selected five robust models from the CIFAR10 leaderboard and five from the
ImageNet leaderboard, respectively, because these models have demonstrated
strong performance and robustness against a wide range of natural corruptions
in the RobustBench benchmark. By choosing models from the leaderboard,
we ensure that we are evaluating state-of-the-art models that have undergone
rigorous testing and evaluation, making them reliable candidates for our study.

Table 4.1: Datasets and models used in our experiments.

No. Dataset Model ID Source Clean
Accuracy

1 CIFAR10-C,Corruptions Diffenderfer2021Winning LRR CARD Deck [30] 0.97
2 Diffenderfer2021Winning LRR [30] 0.97
3 Diffenderfer2021Winning Binary CARD Deck [30] 0.95
4 Hendrycks2020AugMix ResNeXt [27] 0.96
5 Hendrycks2020AugMix WRN [27] 0.95
6 ImageNet-3DCC,Corruptions Tian2022Deeper DeiT-B [137] 0.81
7 Tian2022Deeper DeiT-S [137] 0.80
8 Erichson2022NoisyMix new [138] 0.77
9 Hendrycks2020Many [139] 0.77
10 Erichson2022NoisyMix [138] 0.77

Model robustness is sensitive to input variations [107]. The choice of corruption
datasets to use in our study was made to simulate OOD scenarios in operation.
To thoroughly evaluate the consistency of selected distance-based metrics for
robustness ranking, we consider a variety of natural corruptions and their
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4. Research Methodology

mixtures. We utilize the CIFAR10-C dataset [107], which consists of 15
corruption types. These corruptions include Gaussian noise, motion blur,
brightness variations, etc. Additionally, we employ the ImageNet dataset
with 3D Common Corruptions (ImageNet-3DCC) [140], which introduces
corruptions that align with real-world scenarios, such as camera motion,
weather conditions, occlusions, depth of field, and lighting. Besides, each type
of corruption in CIFAR10-C and ImageNet-3DCC has five levels of severity.
In evaluating the ranking results, we used robust accuracy as the reference
ranking, which is measured based on the correct labels. Robust accuracy is a
well-established measure in the ML literature for assessing the performance of
ANN models under various corruptions. To compare the rankings produced by
the distance metrics with the ground truth, we employed the average precision
at k (AP@k) metric [141]. This metric, commonly used in recommendation
systems and ranking-related problems, evaluates the relevance of recommended
items and their positioning in the ranking. In our study, we selected k=1 to
focus on selecting the best model, considering the context of a multi-model
decision-maker.
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5 Results

This chapter presents the main findings of the thesis, which are organized according
to the research questions and corresponding research steps. The findings encompass
four aspects: a systematic review of T&V methods for ANN-SCSs, an extended
fault tree analysis for analyzing the influence of ANN robustness on system safety, a
systematization of knowledge and a framework for assessing ANN-SCSs’ robustness
in operation, and an empirical assessment of metrics for ranking the robustness of
ANN models under OOD shifts.

5.1 Testing and Verification (T&V) of ANN Classifiers in
SCSs - RQ1

We conducted an SLR to uncover techniques made so far in the field of T&V of
ANN-based SCSs, as well as to identify the research gaps. The high-level summaries
of the results of RQ1 are as follows, and Section 4 of Paper P1 in Part II provides
a more detailed explanation of the findings.

5.1.1 Results of RQ1.1: Profiles of the Studies Focusing on
Testing and Verifying ANN-SCSs

Study distribution. We covered papers from January 2011 to November 2018. Figure
5.1 shows the distribution of selected papers based on the publication year and
type of work. There have been 68 papers (81.9%) published between 2016 and 2018,
indicating that researchers are paying more attention to the T&V of ANN-based
SCSs. Conference was the most popular publication type with 48 papers (57.8%),
followed by pre-print (25 papers, 30.1%), workshop (6 papers, 7.2%), and journal
(4 papers, 4.8%).

We also examined the geographic distribution of the reviewed studies to identify the
leading countries in research related to T&V of ANN-SCSs. The analysis revealed
that researchers from the USA had contributed the most primary studies, with
56 publications, followed by researchers from Germany and the UK, with ten and
nine publications, respectively. It is noteworthy that 47 out of the 83 publications
(56.6%) involved collaboration with industry partners.
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5. Results

2011 2012 2013 2014 2015 2016 2017 2018
Pre-print 0 0 2 0 3 0 13 7
Workshop 0 0 0 1 1 0 3 1
Journal 0 1 0 0 1 0 1 1
Conference 1 0 0 2 3 12 20 10
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Figure 5.1: Publication year and types of selected papers.

Research types. We categorized the selected papers into six research types, namely
evaluation research, solution proposal, validation research, philosophical papers,
opinion papers, and experience papers, based on the criteria proposed by Kai et
al. [123]. The majority of the selected papers fell into the categories of evalu-
ation research (31.3%, 26 papers) and validation research (61.4%, 51 papers). It
is not surprising that the percentage of solution proposal papers was relatively
low (6 papers) because most of the reviewed papers focused on presenting and
demonstrating their T&V approaches through academic and industrial case studies,
simulations, and controlled experiments. The other three types of research papers
(i.e., philosophical papers, opinion papers, and experience papers) were not found
in the selected studies, as our inclusion criteria specifically targeted papers that
addressed testing/verification approaches.

Application domains. To provide valuable insights into the domain-specific aspects of
the approaches, we conducted an analysis of the application domains covered in the
selected studies. Our findings indicate that a significant amount of research focuses
on utilizing ANN algorithms for general-purpose control logic (59 papers, 71.1%).
Additionally, considerable attention is given to the application of ANN algorithms
in automotive CPSs, particularly AVs (13 papers, 15.7%). Furthermore, there are
also several studies that explore the use of ANN algorithms in autonomous aerial
systems, specifically airborne collision avoidance systems for unmanned aircraft (5
papers, 6%).

5.1.2 Results of RQ1.2: Classification of T&V Approaches

The initial literature review on T&V approaches and associated tools for ANN-based
SCSs resulted in 79 research papers, which we classified into five high-order themes
based on the research goals:
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5. Results

• CA1: Assuring the robustness of ANNs, i.e., an ANN can cope with
erroneous inputs, where the erroneous inputs can be an adversarial example
(i.e., an input that adds a small perturbation intentionally to mislead an
ANN’s classification), or benign but misleading input data.

• CA2: Improving the failure resilience of ANNs, so that the ANN-SCSs
are more tolerant of possible hardware and software failures.

• CA3: Measuring and ensuring test completeness to ensure good
coverage when testing ANNs.

• CA4: Assuring the safety property of ANN-SCSs by providing formal
verification or mathematical proof that a system satisfies some desired safety
properties (e.g., the system should always stay within some allowed region,
namely a safe region).

• CA5: Improving the interpretability of ANNs to facilitate a better
understanding of how ANNs generate outputs from inputs.

In Table 5.1, we summarize the reviewed papers according to the themes and
subthemes. Section 4.2 of Paper P2 in Part II provides a more detailed analysis of
the identified methods and tools for T&V of ANNs.

5.1.3 Results of RQ1.3: Challenges for Testing and Verifying
ANN - SCSs

In order to assess the extent to which state-of-the-art methods for testing and
verifying ANN-SCSs fulfill the desired safety integrity properties, we mapped the
identified challenges onto relevant properties and major T&V phases in the software
safety lifecycles of IEC 61508-3. Table 5.2 presents the grouping of challenges and
the corresponding safety integrity properties. Among these properties, correctness,
completeness, freedom from intrinsic faults, and fault tolerance have received
significant attention from the research community. However, achieving repeatability
and addressing common cause failure have been relatively overlooked. Notably, no
reviewed study specifically focused on precisely defined testing configurations and
defense against common cause failure, which are crucial aspects for ensuring the
safety of production-ready ANN-SCSs [36]. For a more detailed analysis of the
identified limitations and corresponding suggestions based on the required safety
integrity properties, please refer to Section 4.3 of Paper P1 in Part II.
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5.1. Testing and Verification (T&V) of ANN Classifiers in SCSs - RQ1

Table 5.2: A detailed mapping of reviewed approaches to the IEC 61508 safety
lifecycle

Phase Property
Relevant primary

studies

C
at

eg
or

y

Remaining challenges

Software Completeness None N/A

architecture

design
Correctness [168] CA4 Training process of ANN-based

algorithm is time-consuming.

Freedom from
intrinsic faults

[13, 142, 15, 17, 20],

[22] - [26]
CA1 ❶ Limited to specific model

classes or tasks (e.g., image clas-
sifier), or small size ANNs [142];
❷ Not immune to adversarial
adaptation [20]; ❸ Lack of un-
derstanding of how the sys-
tem can be free from different
kinds of attacks other than ad-
versarial examples.

Understand-

ability
[175] - [203] CA5 ❶ Limited to specific model

classes or tasks (e.g., image clas-
sifier), or small size ANN mod-
els [194]; ❷ Not able to provide
real-time explanations; ❸ Lack
of evaluation method for the ex-
planation of ANNs.

Verifiable and
testable design

[157] CA3 ❶ Lack of integrated computer-
aided toolchains to support
verification activities; ❷ Lim-
ited to specific models, tasks,
or ANN sizes.

[46] CA4 ❶ Limited to specific ANN
architectures (i.e., piece-wise
linear activation functions),
need a better understanding of
ANN architectures; ❷ Trade-
off between efficient verification
and linear approximation of the
ANN behavior is not studied
sufficiently.
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5. Results

Table 5.2 — continued from the previous page

Phase Property
Relevant primary

studies

C
at

eg
or

y

Remaining challenges

Fault

tolerance
[147, 148, 152,
155, 156]

CA2 ❶ Decouple the fault tolerance
from the classification perform-
ance [148]; ❷ Lack of studies
on unexpected environmental
failures.

Defense against
common cause
failure

None N/A

Software module

testing and

integration

Completeness [16, 26] CA1 Lack of comprehensive criteria
to evaluate testing adequacy.

[158] - [163] CA3 Low fidelity of testing cases
compared with real-world cases
[159].

Correctness
[12, 14, 16, 18, 143]

[19, 21]
CA1 ❶ Vulnerable to the variation

of adversarial examples; ❷ Lim-
ited to specific ANN model
classes or tasks.

[151] CA2 Insufficient validation of input
raw data.

Repeatability [157, 158, 159] CA3 Testing cases generated by
automated tools may be biased.

Precisely
defined testing
configuration

None N/A

Programm-

able electronics

integration

(hardware

and software)

Completeness None N/A

Correctness [146, 149, 150,
153]

CA2 Insufficient testing of hardware
accelerator.
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5.2. The Influence of ANN Robustness on the Safety of Autonomous Vehicles
(AVs) - RQ2

Table 5.2 — continued from the previous page

Phase Property
Relevant primary

studies

C
at

eg
or

y

Remaining challenges

Repeatability None N/A

Precisely
defined testing
configuration

None N/A

Software

verification
Completeness [167, 169] CA4 ❶ Limited to specific ANN mod-

els; ❷ Lack of scalability.

Correctness [154] CA2 ❶ Automatic generation of com-
plete testing scenario sets.

[164, 165, 166, 204, 170]

[171] - [173]
CA4 ❶ Scalability and computa-

tional performance need to im-
prove; ❷ SMT encoding for
large-scale ANN model; ❸ Lack
of model-agnostic verification
methods; ❹ Automatic gener-
ation of feature space abstrac-
tions [173].

Repeatability None N/A

Precisely
defined testing
configuration

None N/A

5.2 The Influence of ANN Robustness on the Safety of
Autonomous Vehicles (AVs) - RQ2

The findings of RQ2 contribute to the preservation of risk assessment as a valuable
tool for safety engineering in the context of developing safety-critical applications,
with AVs serving as a representative example. For a more comprehensive explanation
of these findings, please refer to Paper P2 in Part II.

5.2.1 Safety and Security Threats in ANN-Based Perception for
AVs

ANNs have exhibited outstanding performance in AV’s perception applications.
However, ANNs inherently exhibit vulnerability to perturbations such as instances
outside their training sets, scene noise, instrument noise, image translation or
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rotation, or minor changes deliberately added to the original image, referred to as
adversarial perturbations. Incorrect deductions from perception systems, including
missing objects, incorrect classification, and traffic sign misdetection or misreading,
have been identified as significant causes of disengagement incidents in AVs.

In this context, we categorize the failure modes of these perturbations in ANN-based
perception methods into two major groups: safety threats and security threats.
Safety threats cover a broad range of circumstances that may impact an ANN’s
performance in AV control. These include environmental factors, obscurations,
training deficiencies, and inherent limitations of the ANN. Security threats, on the
other hand, emerge in adversarial contexts, where the ANN may be exposed to
intentional manipulations designed to exploit its vulnerabilities.

Safety threats. We identified a wide range of situations that can affect the
performance of an ANN for AV control, ranging from environmental conditions to
training deficiencies.

• Fundamental functional omissions (such as lack of training to recognize road
diversion signs or failure to recognize vehicles crossing a roadway due to lack
of trajectory prediction)

• Sensitivity to ambient conditions, especially low lighting

• Sensitivity to low-contrast conditions

• Sensitivity to misleading patterns (such as camouflage) or to textures

• Obscuration: intended objects hidden behind others, behind a blind curve, or
behind vegetation

• Obscuration by snow, blown sand, frost, or ice

• Reduction in visibility due to fog, snow, or sandstorm

• Inadequate training set

• Poor separability of different object types due to similar feature sets

• Interference with well-trained recognition by extensions to the training set

• Orientation of the objects to be recognized (“pose”)

• Unusual elevation of objects to be recognized (such as lane markings on a
transition to a steep hill)

• Road reflectance, such as lights reflected from wet roads

• Strong backlight (e.g., driving into a sunset)

• Mirage effects in reflections from roadways

• Shadows
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(AVs) - RQ2

Further threats were identified from the validation studies, that is, by reviewing
accident reports:

• Unstable object recognition (with consequent erroneous or absent of emergency
response)

• Obscuration by leading vehicle

• Vehicles crossing the roadway (vehicle not in the detection field or failure to
measure velocity)

Security threats. In an adversarial context, threats to the ANN could arise from:

• Training data poisoning. Training data poisoning refers to deliberately intro-
ducing false data during the training process.

• ANN model attack. An ANN model attack takes advantage of the model’s
flaws to fool the system.

• Adversarial example. An adversarial example is small changes intentionally
added to the original input that are invisible to human eyes. There is a
long history of work on understanding, detecting, mitigating the impact, and
increasing the robustness of ANNs by using adversarial examples [2].

• Physical adversarial attack. A physical adversarial attack aims to fool ANN
models by creating perturbations on physical objects.

• Sensor sabotage. Sensor sabotage can be conducted by using spotlights to
blind cameras or laser-targeting of cameras.

In this study, we focus on the practical consequences of adversarial examples on
the design of AV perception models. Evaluating the security threats to ANNs is
a safety consideration, and adversarial examples can further be used to improve
ANN robustness.

5.2.2 The Extended fault tree analysis (FTA), Including ANN
Components

In order to assess the robustness and performance limits of the ANN components
in the context of AV control, we proposed an extension to the traditional FTA
methodology. The core of this extended FTA methodology is to determine the
conditions under which the operating environment could potentially challenge the
performance limits of the ANNs. Additionally, we aimed to identify the extent
to which additional robustness enhancements and other safety measures could
compensate for any deficiencies in the ANNs’ performance. We developed a generic
template that integrates ANN failure into the fault tree analysis, as depicted in
Figure 5.2. This template serves as a structured framework for systematically
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Figure 5.2: General template for an ANN failure subtree in an FTA (for independent
threats).

analyzing the potential failure modes and their corresponding causes within the
ANN components of the AV control system.

Functional failures of the ANN can then be integrated into FTs as multiple subtrees
related by an OR relationship. The probability of the ANN failing in any given
subtree is then expressed as:

Pfunction failure i = Probustness limit i exceeded × Predundancy measures fail (5.1)

In this equation, the events for mechanical and electrical components in the fault
tree represent functional failures identified by failure analysis. Their probabilities
could be determined through testing or field observations. The functional failure
probabilities for the ANNs could be established by conducting robustness tests
and determining the likelihood of threats exceeding the robustness threshold. For
example, to understand the threat to performance posed by low illumination levels,
we can drive along selected routes at different times and in various weather conditions
and record the illumination brightness levels.

5.2.3 Evaluation of the Methodology
To evaluate the extended FTA methodology, we applied it to a traffic sign recognition
task both theoretically and practically.

Problem formalism. We considered a possible hazardous event triggered by a decision
made by the ANN, namely, “Wrong classification of a road sign.” Robustness can be
measured as above by the prediction accuracy given perturbed inputs as a function
of, for example, the lighting level or the contrast in the image. Assume that two
variables influence whether the sign is classified correctly. One is contrast intensity,
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C, and the other is light intensity (i.e., brightness), L. Suppose TC stands for the
lower limit for C, below which the sign cannot be classified correctly. In that case,
we can define the event EC = {EC : c < TC} that is “too low contrast to recognize
correctly.” Similarly, EL = {EL : l < TL} is the event “too low lighting to recognize
correctly”. The third misclassification event is defined by the following condition:
ELC = {ELC : (l, c) < f(c, l), c > TC , l > TL}. This should be understood as
follows: “while contrast and lighting both lie in the correct classification region,
their combination may belong to the misclassification region.” The border dividing
the two regions is determined by the function f(c, l). Usually, this type of event
occurs when variables (parameters) lie in the vicinity of the border points. That
is to say, the effect of small deviations results in failure. A possible region of
misclassification is shown in Figure 5.3. In the case where there are two variables
that influence whether the sign is classified correctly, the performance can be
represented as in Figure 5.3.

Figure 5.3: Misclassification region(conceptual).

The region of misclassification can formally be written as follows:
Ω = {(c < TC)

⋃
(l < TL)

⋃
((l, c) < f(c, l), c > TC, l > TL)}

As soon as the misclassification events are determined, a simple fault sub-tree can
be constructed in Figure 5.4.

Given that C and L are independent random variables and their probability dens-
ity functions are known, fC(x) and fL(y), the probability of misclassification
Pmisclassification can be calculated:

Pmisclassification =
∫∫

Ω
fC(x)fL(y)dxdy (5.2)

An AV example of misclassification. To demonstrate the influence of the perturba-
tions and their combination, we trained a five-layer CNN with the German Traffic
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Figure 5.4: A simple fault sub-tree for misclassification (with interacting threats).

Sign Recognition Benchmark (GTSRB) dataset for the traffic sign classification
[205]. The GTSRB dataset has 43 different traffic signs in various sizes and lighting
conditions and is very similar to real-life data. The prediction accuracy for clean
test images is 98.97%.
We adopt the algorithm from [206] to emulate the deviation of brightness and
contrast and the algorithm from [207] to implement the fast gradient sign method
(FGSM) attack. Figure 5.5 presents a) a set of misclassified images with bright-
ness=0.8, in which case the prediction accuracy dropped to 84.8%; b) brightness=0.6,
FGSM attack with attack strength=0.2, in which case the prediction accuracy
dropped to 18.76%.

Original image

True class

Predicted class

Perturbed image

(a) brightness=0.8 (b) brightness=0.6, FGSM attack strength=0.2

Figure 5.5: Examples of misclassified traffic signs.

Then we test the combination of brightness and contrast reduction. In this experi-
ment, we set the prediction accuracy at 90% as the benchmark for model robustness.
We first examined the impact of increased brightness and contrast reduction, given
the naturally low brightness/contrast characteristics of the GTSRB dataset. Figure
5.6 shows prediction accuracy curves corresponding to a) brightness variations and
b) contrast variations. It shows that the upper limit for brightness increase is 0.66
in Figure 5.6 a), and the upper limit for contrast reduction is 0.54 in Figure5.6 b).
Subsequently, we tested the combined effect of brightness and contrast reduction.
The aim of this experiment was to explore how the small deviation of contrast and
brightness affects prediction accuracy. The brightness level is set from 0.01 to 1,
and the contrast reduction is from 0.01 to 1. In Figure 5.7, the values of prediction
accuracy are represented as colors. The lighter the color, the higher the prediction
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Figure 5.6: Examples of prediction accuracy curves when brightness and contrast
vary.

accuracy. It shows that even brightness level and contrast reduction do not exceed
their upper limits (i.e., in the correct classification region). Their combination can
fall into the misclassification region (i.e., prediction accuracy is lower than 90%). A
detailed analysis is provided in Section 6.2 in Paper P2 in Part II.

The experimental results highlighted that even slight deviations in pairs of threats
can, when they occur together, worsen the impact on the ANN’s performance more
than the effect of a single deviation. Notably, brightness and contrast represent
merely two of the myriad challenges to ANN performance necessitating the use of a
hybrid fault tree approach. Indeed, almost all of the threats identified in Section
5.2.1 present variable intensities. In several cases, such as the complex scenario of
combined obscurations and shadows, these threats interact in a way that amplifies
their impact on the ANN. Some threats, like adversarial examples, are particularly
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Figure 5.7: Prediction accuracy matrix with small deviation of brightness and
contrast in combination.

challenging because they are difficult for humans to perceive. To shed light on the
impact of such threats on ANN performance, we can utilize methods from the field
of explainable AI (XAI) [2].

Procedure of extended FTA for ANNs This study demonstrated that we could carry
out comprehensive hazard identification for autonomous vehicles, which includes
both hardware and ANN components. Building on the previous evaluation, we have
outlined the procedure for the extended FTA as follows:

• Complete the overall high-level hazard identification using an FTA approach;

• Identify the functional failures of ANNs’ which contribute to the overall FTA;

• Identify the challenges which can cause the ANN functional failure, e.g., using
the checklist in Section 5.2.1;

• Determine the robustness of the ANNs when challenged by both perturbations
of single parameters and a combination of parameter perturbations via testing
ANN performance;

• Determine the probability of the occurrence of parameter perturbations;

• Incorporate the contribution of ANNs to the FTA using the templates given
in Figure 5.2. and Figure 5.4.

5.3 Robustness Evaluation for SCSs Utilizing ANN
Classifiers in Operation - RQ3

Building upon the pivotal insights from previous findings, the importance of meas-
uring and enhancing the robustness of ANNs in the design and operation of SCSs
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utilizing ANN classifiers, like AVs, becomes paramount. The widespread integration
of ANN classifiers in various safety-critical sectors, such as AVs, aircraft control
systems, smart grids, and healthcare services [2], presents significant challenges
that demand immediate attention. Accordingly, we focused on evaluating the
robustness of ANN-SCSs in operation, considering the potential for compromised
model performance when input data deviates from training data. Our study sys-
tematically outlines the robustness evaluation of ANN-SCSs at the system, ANN
model, and input levels. We classified evaluation methods and metrics and identified
opportunities and gaps for future research. More detailed insights from this study
are presented in Paper P3 in Part II.

5.3.1 Results of RQ3.1: Definitions of ANN-SCS Robustness in
Operation

Despite the popularity of the term “robustness” in the literature, a limited portion
of papers addresses this system attribute from a conceptual point of view. We
identified nine definitions from scientific papers and industry standards. Table 5.3
summarizes the identified robustness definitions at different granularity levels, i.e.,
the system, ANN model, and input data levels.

• Robustness definitions at the system level. The identified system-level defini-
tions are generally concerned with the system’s ability to maintain its perform-
ance and function correctly when facing exceptional or unforeseen conditions.
These conditions can include unavailability of resources, communication fail-
ures, environmental disturbances [208], invalid inputs [208], and changes in
the system’s operating conditions [132].

• Robustness definition at the ANN model level. All of the identified definitions
at the ANN model level refer to the model’s ability to maintain its performance
when faced with inputs or conditions that differ from what it was trained on.
The most commonly studied input deviations include malicious perturbations
(i.e., an input that adds a small, intentional perturbation to mislead the
classification of an ANN) [207] and natural perturbations [107]. Malicious
perturbations usually have the purpose of making the perturbation invisible,
while natural perturbations have no such constraint. Natural perturbations
are noises that exist in natural environments. They may be more noisy and
visible than malicious perturbations. In addition to adversarial robustness
and robustness to natural perturbations, a specific concern in operation is
the impact of the mismatch between the training data distribution and the
operational distribution (referred to as distributional shift [74] on the model’s
performance).

• Robustness definition at the data level. This level of robustness definition
generally states that a robust model should be able to correctly classify inputs
that are similar to the inputs it was trained on. In this case, the “similar
inputs” are defined as the neighbors of the original data point.
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Table 5.3: Definitions of robustness in literature.

Level Ref. Definition of robustness

System [208] [Robustness] is the degree to which a system or
component can function correctly with invalid inputs
or in stressful environmental conditions.

[209] [Robustness] is the ability of a system to maintain
its level of performance under a variety of circum-
stances.

[132] [Robustness] is the ability of an AI system to main-
tain its performance level under any circumstances
(domain change, hardware failure, etc.).

[127] [Robustness] provides safe behavior at boundaries
(corner case, core event, extreme case).

ANN model [207] [Robustness] is the classifier’s worst-case perform-
ance on small, additive, classifier-tailored perturba-
tions.

[175, 210] An ANN classifier is robust if it achieves correct
classification on a testing sample that is “close” to
a training sample.

[107] Robustness is the classifier’s average-case perform-
ance on small, general, classifier-agnostic corruptions
or perturbations.

[74, 211,
212]

An ANN classifier is robust if it achieves “consistent”
classification (i.e., prediction accuracy) on known
and unknown inputs as long as the unknowns are
not too different from the known inputs.

Data [213] An original data point is strong (robust) concerning
the ANN model under test if its neighbor accuracy
is higher than a predefined threshold.

Based upon the existing definitions identified in the literature, we found that most
of the existing robustness definitions and corresponding evaluations include several
factors, i.e., the scale of the system architecture, the operational context, and
the nature of the data (covering both input and output). Often, these factors
are determined by the application domain in which the robustness needs to be
evaluated. Figure 5.8 shows the key components associated with a robustness
evaluation technique for ANN-SCSs.

5.3.2 Results of RQ3.2: Methods and Metrics to Measure
ANN-SCS Robustness in Operation

Proposed framework to organize the categories and illustrate the knowledge. Based
on the different levels of robustness definitions and the five elements of robustness
evaluation, which are explained in Section 5.3.1, we proposed a framework that
adopts a hierarchical conceptual approach to categorize and illustrate existing
methods and metrics in evaluating the robustness of ANN-SCSs (see Figure 5.9).
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Application domains

Aerospace Systems
Medical Systems
Industrial Control Systems
Autonomous Systems
…

Problem Characteristics

Nature of Data
(Input and Output)System Architecture Robustness

Goal 

Robustness Evaluation Technique

Operational 
Context

Metrics and Method

Figure 5.8: Key components associated with a robustness evaluation technique for
ANN-SCSs.

Figure 5.9: Template for the proposed multidimensional framework.
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• Scale of the System Architecture. The system architecture scale refers to the
level at which the ANN-SCS is, which includes: 1) system level, where the
ANN-SCS is evaluated as a whole within its operational environment; 2) ANN
model level, which involves evaluating a single ANN model independently;
and 3) input level, where the input data utilized in operation are evaluated.

• Application Domains and Context. Recognizing the application domain and
context is crucial for selecting suitable metrics and methods to assess a model
or system’s robustness. SCS application domains analyzed in this study
include ADS, MS, and UAS.

• Robustness Goals. These include performance requirements such as maintain-
ing consistent performance when dealing with altered inputs, generalizing
effectively within and across domains, and resisting adversarial attacks [43].

• Data Input and Task Output. This study specifically focuses on using ANN for
classification tasks, with image data as the primary input and class prediction
as the primary output, and thus limits its discussion to data and task outputs
related to this particular focus.

Categories of methods and metrics to measure ANN-SCS robustness in Operation.
We analyzed five system-level, 15 ANN model-level, and eight input-level studies
that focus on evaluating the robustness of ANN-SCS in operation. In Tables
5.4, 5.5, and 5.6, we summarize the identified methods and metrics in the
corresponding three levels. The results show that classification accuracy is the
primary metric used for robustness evaluation at all three levels. Additionally,
sensitivity-based evaluation methods are popular across these levels. For system-
level assessments, simulation-based evaluation is commonly employed. In contrast,
input-level assessments use coverage-based metrics to evaluate the effectiveness
of various scenarios and conditions in the dataset. Utilizing a combination of
complementary methods and metrics can help that the robustness of the system
is thoroughly analyzed and potential vulnerabilities are identified under various
conditions and scenarios. Section 5.2 of Paper P3 in Part II provides a complete
analysis of the identified methods and metrics.

5.3.3 Results of RQ3.3: Challenges of Measuring ANN-SCS
Robustness in Operation

There are many metrics to evaluate robustness in operation. However, the focus
should not be on the number of metrics but rather on effectively integrating or
selecting the appropriate metrics to capture various aspects of robustness and address
genuine concerns in real-world application scenarios. Building upon the results
of the state-of-the-art knowledge, we unfold challenges related to the application
domain, robustness goal, and methods/metrics at each level.

• Challenges of robustness evaluation at the system level. Research on the
robustness evaluation of ANN-SCSs in operation is still in its early stages.
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Table 5.4: Techniques for evaluating the robustness of ANN-SCSs in operation
(system level).

SCS

Domain

Operational

Context

Robustness

Goal
Measurement Method Robustness Metrics Ref.

ADS End-to-end steering
Min. MSE of steer angle in the presence of

adversarial examples and synthetic noisy input

Input-output

evaluation

Likelihood-based surprise adequacy,

Distance-based surprise adequacy
[214]

Attacking strength,

Average angle error,

Percentage of frames whose angle

error exceeds a predefined threshold

[215]

Object perception Ensuring safe driving in rare failure scenarios
Simulation-based

Fault injection

Minimum time to collision,

Failure probability
[216]

MS Diagnose
Accurate and reliable

diagnosis
Field testing

False positive rate

False negative rate
[217]

UAS VLG Reliable landing Fault tree analysis Failure probability [218]

ADS: Autonomous Driving System; MS: Medical System; UAS: Unmanned Aircraft System; VLG: Visual Landing Guidance

Table 5.5: Techniques for evaluating the robustness of ANN-SCSs in operation
(ANN model level).

SCS Domain Operational Context
Robustness Goal

(i.e., be robust against)
Method Metric Ref.

Image

classification
Generic Pixel perturbations Sensitivity-based

Level-threshold-safe,

Level-pixel-safe
[219]

Spatial deformations Sensitivity-based Attack success rate [220]

Natural corruptions Simulation-based

Threat severity,

Minimal perturbations,

fooling success rate

[206]

Sensitivity-based Accuracy loss [221]

Hardware and software faults
Simulation-based

fault injection

Bit error rate-accuracy

curves
[222]

SDC rate [223]

ADS
Traffic sign

recognition
Natural corruptions Sensitivity-based Classification accuracy [224]

Object detection Natural corruptions Sensitivity-based AP and AP@50; mAP [225]

MS Gastroenterology Distributional shift Sensitivity-based Sensitivity, specificity [226]

UAS VLG Distributional shift Sensitivity-based Classification accuracy [218]

ADS: Autonomous Driving System; MS: Medical System; UAS: Unmanned Aircraft System; VLG: Visual Landing Guidance

We distinguish two types of system architecture variations based on different
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Table 5.6: Techniques for evaluating the robustness of ANN-SCSs in operation
(input level).

SCS

Domain

Operational

Context

Robustness Goal

(i.e., be robust against)
Method Metric Ref.

Generic Generic Semantic diversity Coverage-based Importance-driven coverage (IDC) [227]

Generic Generic Natural corruptions Sensitivity-based
Neighbor accuracy,

Neighbor diversity score
[213]

Generic Generic Distributional shift Sensitivity-based F-measure for threshold values [228]

Adversarial filtration Top1 accuracy [139, 229]

Generic Generic Triggering misclassifications
Test input selection

and prioritization
Maximum mean discrepancy-critic [230]

Model uncertainty-based [111]

Sample discrimination-based [112]

evaluation goals: 1) an ANN-SCS as a black box, with the aim of assessing
potential performance degradation due to input changes, and 2) an ANN-SCS
with redundant ANN models, with the objective of comparing the performance
of multiple models and recommending the optimal one for use.

• Challenges of robustness evaluation at ANN model level. The reviewed pa-
pers evaluate ANN models focusing on adversarial perturbations, which are
mainly generated based on the lp norm distance (i.e., measures the distance
between an instance and its neighboring points in the input space, p value
can be 0, 1, 2, and ∞.), realistic environment lighting and geometry, spatial
transformations, and distributional shifts, respectively. However, the goal of
robustness in practice is more comprehensive, as highlighted by Hendrycks
and Dietterich [231]. For example, to assess adversarial robustness, it is crucial
to consider perceptible attacks, as attackers may not only construct small lp
perturbations to deceive the system. They may also rotate the adversarially
modified images or apply other novel distortions to the image [232]. The areas
of adversarial robustness and corruption robustness, distributional shift, and
unusual events should be considered in a unified manner. In addition, ANN
model-level robustness evaluation still lacks definitions of acceptable levels of
performance.

• Challenges of robustness evaluation at input level. Mincu et al. [233]
addressed the challenges of obtaining high-quality healthcare datasets due
to privacy-preserving considerations. They suggested techniques such as
federated learning to encourage reproducibility while retaining data privacy.
Liu et al. [234] pointed out that it can be difficult to define which cases
are in-distribution and which are out-of-distribution given the complexity
of most medical data. We envision that the use of fine-grained, actionable
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taxonomies of perturbations, collaborative documentations of domain-specific
perturbations, libraries to generate such perturbations semi-automatically,
and frameworks and metrics to uncover new types of perturbations in the
wild are necessary studies to be performed in the future.

In sum, we have identified three types of challenges, namely, identifying compre-
hensive abnormal conditions, standardizing the definition of an acceptable level
of performance, and acquiring sufficient labeled data, at the system, ANN model,
and input levels. Furthermore, we have highlighted an emerging need to assess
ANN-SCSs using redundant models, which has been overlooked. Section 5.3 of
Paper P3 in Part II provides a complete analysis of the identified challenges.

5.4 Dynamic Robustness Evaluation for Automated Model
Selection - RQ4

Building on one of the challenges identified from RQ3, our research focused on
exploring the applicability of existing distance metrics for evaluating and ranking
model robustness in real-world operational scenarios. Through this investigation,
we contribute new knowledge and understanding of dynamic robustness evaluation
during operation. P4 in Part II provides a comprehensive and detailed explanation
of the empirical findings.

5.4.1 The Selected Distance-based Metrics
As explained in Section 4.5, we have chosen five distance-based metrics for our
analysis. While these metrics were not specifically designed for robustness rank-
ing, they have demonstrated utility in identifying issues with model performance
degradation in previous studies [117, 118].

The first metric we considered is the Wasserstein distance (WD) [53], which measures
the first- and second-order distance between two distributions. Another metric
is the maximum mean discrepancy (MMD) [55], a kernel-based technique that
distinguishes between two probability distributions based on their mean embeddings
in a reproducing kernel Hilbert space. The Kolmogorov–Smirnov (KS) statistic [134]
is a statistical test that is sensitive to differences in the mean and dispersion of two
distributions. The Hellinger distance (HL) [135] measures the similarity between
two probability distributions. HL is symmetric, well-defined for categorical and
numerical features, and widely accepted in the industry. A larger HL value indicates
greater dissimilarity between the distributions, while a smaller value indicates
higher similarity or overlap. Lastly, we considered the Kullback-Leibler (KL)
divergence [54], which is a widely used measure that captures the information-based
disparity between two distributions. KL divergence assesses how much information
is lost when one distribution is used to approximate another.

We believe that this set of selected metrics covers different assumptions about the
underlying data and captures various deviations between the output features of

59



5. Results

trained and operational data. For example, WD considers the mean and standard
deviation of the distributions, while MMD measures the discrepancy between
distribution features in a reproducing kernel Hilbert space. HL is symmetric and
has a clear analogy to Euclidean distance, making it widely accepted in the industry
for capturing the dissimilarity between probability distributions. KS test compares
each dimension separately and identifies the largest difference across all dimensions.
Although KL divergence is not strictly a distance-based metric, we included it in
our study because it can quantify the difference between the distributions of model
outputs on operation data and training data in terms of information content. By
incorporating KL divergence alongside other distance-based metrics, we can obtain
a more comprehensive understanding of the distributional differences and their
impact on model performance.

5.4.2 Evaluation Results
Result of RQ4.1: Effectiveness under OOD shifts. We assessed the suitability of
different metrics in ranking the robustness of both CIFAR10 and ImageNet models.
The impact of corruption types, varying percentages of corrupted input, and a
mixture of corruption types can be summarized as follows:

• Corruption type. For CIFAR10 models, WD and MMD emerged as the top
two performing metrics, whereas, MMD and KS outperformed other metrics
when ranking ImageNet models.

• Percentage of corruptions. For CIFAR10 models, all five metrics exhibited
an increasing trend in ranking accuracy as the percentage of corrupted data
rose. However, for ImageNet models, WD and MMD metrics showed an
increasing trend in ranking accuracy with increasing corruption percentage,
where KS shows almost constant ranking accuracy.

• Mixtures of corruptions. For CIFAR10 models, WD and MMD showed
effectiveness in ranking robustness under mixed input scenarios, while KS
and MMD achieved satisfactory performance for ImageNet models.

Result of RQ4.2: Sample size impact. Our empirical results indicate that a minimum
of 200 samples is required to achieve reliable ranking performance with a mean
AP@1 score of over 0.50 for CIFAR10 (M1–M5) models. In the case of ImageNet
models, the MMD metric consistently outperforms others even with a smaller
sample size of 50. while the KS metric shows satisfactory performance in some cases
but lacks stability. We observed that with a sample size of 500 samples, the ranking
results tended to be more consistent and satisfactory. The impact of sample size on
model ranking may vary depending on the dataset and the specific metric being
used. However, to ensure a reliable model ranking, we recommend a minimum
sample size of 500.

Our findings demonstrate that the WD metric performs best in ranking the robust-
ness of CIFAR10 models, while the KS metric is optimal for ranking the robustness
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of ImageNet models. In contrast, the MMD metric is found to be sub-optimal for
both datasets. To further understand these findings, a visualizing technique called
UMAP (Uniform Manifold Approximation and Projection for Dimension Reduc-
tion) [235] was employed. The UMAP visualizations (Figure 5.10) showed that the
softmax outputs of CIFAR10 models exhibited a scattered stripe-like distribution,
indicating more diverse and spread-out predictions across the output space. This
characteristic was effectively captured by the WD metric, which considers both
the mean and standard deviation of the distributions. In contrast, the softmax
outputs of ImageNet models exhibited a cluster-based distribution, indicating more
concentrated and less variable predictions. The KS metric, sensitive to differences
in mean and dispersion, performed well in detecting variations in these clustered
distributions. The MMD metric, which considers mean embeddings, was able to
capture variations in distributions regardless of their specific patterns or structures.
It suggests that the metrics assumptions and characteristics of the data to be
analyzed shall be considered when selecting the most appropriate metric. Section 4
of Paper P4 in Part II provides a comprehensive analysis of the evaluation results.
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Figure 5.10: 3D UMAP visualization: Some examples of the softmax output of
Models M1-M10 given training data and corrupted operation data. Data source:
blue – training data, orange – operation data.
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6 Discussion

This chapter consolidates the research findings from the previous chapter, discussing
the contributions made to ensure the trustworthiness and reliability of ANN-SCSs.
It provides implications for both academia and industry. Furthermore, the chapter
examines the social impact of robustness evaluation and acknowledges the limitations
of the study, emphasizing the need for further research.

6.1 Comparison with Related Work

The first contribution of this Ph.D. thesis, related to RQ1, is to provide a compre-
hensive overview of the current research on the T&V of ANN-SCSs.

The T&V of ANN-SCSs has been inadequately investigated, especially modern
ANNs using deep learning techniques. This gap reflects increasingly serious concerns
to assure robustness, improve failure resilience, ensure test completeness, and ensure
safety properties since ANNs are increasingly being used in safety-critical domains.
Existing research at the time of writing this thesis has referred to the T&V of
ANN-SCSs from the traditional V&V perspective [34]. This perspective categorizes
methods into automated testing and testing data generation methods, run-time
monitoring, formal methods, cross-validation, and visualization. At the same time,
many traditional T&V techniques are no longer effective for verifying ANNs in many
cases. Hence, the complete investigation of T&V approaches for modern ANN-SCSs
was essential in the evolution and progress of this field. The prerequisite to deal
with any potential unexpected performance of ANN models in critical systems is a
comprehensive understanding of approaches and tools to verify ANNs’ performance.
The results of P1 revealed that ANN robustness evaluation is a crucial aspect that
needs to be addressed in order to ensure the reliability and safety of SCSs. The
research community has become increasingly aware of the importance of ANN
robustness, recognizing it as a widespread issue affecting the trustworthiness of
ANN-SCSs. This highlights the need for further research and investigation to pave
the way for the wider adoption and deployment of ANN models in SCSs.

The second contribution of this thesis, related to RQ2, is to shed light on the impact
of ANN robustness on the identification and management of risks of autonomous
systems [236].
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At the time of this study, little research addressed the risk management of AVs,
not to mention conducting a quantitative risk analysis. It is clear that detailed
hazard identification can partly be done using traditional hazard identification
methods for AVs. Determining the probabilities of failure and the risk from failures
depends in part on identifying errors and weaknesses in the design and in part
on determining the performance limits of the AV controller components. Many
of the potential accidents involve the demands on the controllers being outside
the domains of robust controller performance. Determining the limits of robust
performance requires testing, preferably at the component level rather than on-road
entire system testing. The probabilities of failure and the resultant risk will in many
cases be the probabilities of circumstances arising outside the robust performance
domains of the components. But robustness determination of ANN components in
AVs is not often taken into consideration in the risk analysis. Contributing to this
gap, we proposed an extended FTA to perform functional failure analysis for the
ANN components of the AV control. After our work, Dong et al. [71] introduced a
reliability assessment model (RAM) for ANN classifiers that utilizes the operational
profile and robustness verification evidence. The scope of RAM [71] is complemented
by our work. They focus on predicting the reliability of a necessarily flawed classifier,
accepting that perfect robustness is not attainable. RAM [71] avoids considerations
of rare but extreme classifications, focusing on average performance assuming that
there will normally be errors in classification and that the probability of these must
be reduced, since they cannot be eliminated. Our study (Paper P2 in Part II)
focused on the probability of a robust classifier or recognizer failing due to operation
at the limits of its design. For good risk analysis, different methods to deal with
both sources of risk (rare and average events) are needed.

The third contribution of this thesis, related to RQ3, focuses on the critical analysis
of a specific robustness evaluation context by investigating how the robustness of
ANN-SCSs can be evaluated during operation and what factors should be included
in the evaluation.

Tocchetti et al. [237] surveyed the terminology of concepts around AI robustness.
They introduced three taxonomies: 1) robustness by methods and approaches in
different phases of the machine learning pipeline; 2) robustness for specific model
architectures, tasks, and systems; and 3) robustness assessment methodologies
and insights from a fundamental and applied point of view. They also identified
the lack of human perspective in evaluating AI robustness and the need to better
understand practices and develop supportive tools for AI practitioners. Surveys
such as the ones by Zhang et al. [44], Riccio et al. [238], and Ashmore et al. [69]
provide a detailed view of the state-of-the-art techniques for evaluating particular
properties of ML systems and obtaining assurances. While existing reviews offer
useful insights into the robustness research considering ANN models, our study
is different because, to our knowledge, it is the first comprehensive study that
analyzes existing robustness evaluation approaches and metrics applicable to ANN-
SCSs in operation. Recently, researchers have highlighted the need to consider the
entire system and the interactions of various components within the system [239].
Furthermore, our study goes beyond the ANN model or input data aspect by
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investigating the robustness evaluation at the system, model, and input levels.

The fourth contribution of this thesis, in relation to RQ4, is to evaluate the suitability
of different distance-based metrics for dynamically ranking the robustness of multiple
ANN models within an SCS during operation. This involves identifying appropriate
distance-based metrics and comparatively assessing these metrics based on their
capability to rank the robustness of multiple ANN models.

With the growing trend of using multiple versions of AI models in operation, such as
in ChatGPT, we expect redundant ANN models to become standard in ANN-SCS
to increase reliability. This is similar to traditional SCSs, where redundant hardware
and software are used to enhance reliability by intentionally duplicating critical
components or functions. However, there is currently a lack of research on robustness
evaluation for ANN-SCS with redundant ANN models. We understand that different
ANN models can be fooled by the same input perturbations, like adversarial
examples, and often fail silently. Increased uncertainty and risk are becoming
inherent in ANN-SCS during operation, which necessitates the development of
dedicated evaluation methods to compare the robustness of multiple ANN models
and automatically decide which one to use during operation.

The dynamic ranking of multiple ANN models faces two main challenges. First,
evaluation metrics typically require the ground truth, which might not be available
during inference. This leads to using sample-selection-based methods or techniques
like AutoEval [115] for automated model ranking, but these methods still require
labeling or training a separate supervisor model. Second, determining the acceptable
performance level for ANN models is another challenge. Standard industry practices
include drift detection, but existing approaches like statistical-based and distance-
based methods have limitations in directly comparing multiple models or estimating
the magnitude of performance degradation. Thus, further investigation is needed
to determine if these techniques can effectively compare and rank the robustness of
multiple ANN classifiers. Through an extensive comparative evaluation of distance-
based metrics in the context of robustness ranking for multiple ANN models, the
study of this thesis provides novel valuable insights into a better understanding of
robustness evaluation for ANN-SCS using multi-model decision-maker architecture.
It guides researchers and practitioners in selecting appropriate metrics for their
studies, ultimately improving the reliability and trustworthiness of utilizing optimal
ANN models in SCSs.

6.2 Implications

The results of this thesis have several implications that can benefit both the research
community and industry and provide suggestions for future research.

6.2.1 Implications for Academia
The results of the thesis outline the pre-paradigmatic nature of this research field
and the need for further research through both qualitative and quantitative studies.
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With regard to the contribution made by this thesis, several opportunities for future
research have been identified, as follows:

• AI quality testing and framework. The development of a comprehensive
AI quality framework is essential to ensure that ANN-SCSs meet the required
robustness and reliability standards. Recently, Germany’s first AI Quality
and Testing Hub was established by the Hessian Minister of Digital Strategy
and Development to enhance AI quality through standardization, certification
schemes, and testing capabilities. Similar initiatives to promote AI quality are
also being pursued in other countries such as the United States, France, China,
and Australia [240]. This framework should address both model robustness
and resilience in the face of real-world changes and the security of AI models.

• Model management and evaluation. As the complexity of ANN-SCSs
grows, managing and evaluating the various ANN models becomes increasingly
challenging. For example, the fatal accident involving Uber’s self-driving car
demonstrates the consequences of inadequate model robustness evaluation.
Moreover, in many ANN-SCSs, the system operator can choose which ANN
model to use for a particular task [31]. This, however, may lead to potential
issues with model maintenance and evaluation. As the number of ANN models
increases, some may become outdated (e.g. having lower robust accuracy) due
to insufficient training data or an outdated algorithm. This could result in life-
threatening consequences if an obsolete model is chosen. Additionally, choosing
the appropriate ANN model for a task can be difficult. Future research should
support system operators in selecting the optimal ANN model for a task under
various conditions (e.g., different operational profiles), aid in the maintenance
of multiple variants of the models by ML engineers, and assist in the evaluation
of the model’s performance. By developing strategies for effective model
selection and maintenance that prioritize robustness, researchers can help
ensure that ANN-SCSs maintain reliable performance even when faced with
unexpected or challenging inputs. This includes methods for evaluating model
robustness and techniques for updating and maintaining models to ensure
they remain robust throughout their lifecycle.

• Monitoring and observability for models. ANN models must have been
trained and tested rigorously before deployment. While an ANN model is
being used in operation, the model’s performance may deteriorate due to a
change in data distribution or adversarial attacks. Therefore, the ANN-SCS
should be regularly monitored to detect any significant mismatch between
the current operational distribution and the data distribution the system was
last trained on [132]. Performance degradation can occur in the deployment
stage of any model and degrades community trust in the models’ validity. For
example, in 2021, OpenAI’s GPT-3 [241], a state-of-the-art language model,
showcased its limitations when it produced incorrect or nonsensical answers
to specific queries. These issues were attributed to distribution shifts and the
model’s inability to generalize well to some new inputs. Unlike traditional
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model monitoring, which focuses on aggregated metrics and alerts, model
observability goes beyond surface-level monitoring [110, 242]. By examin-
ing the model’s predictions, explainability information, production feature
data, and training data, model observability aims to uncover insights and
understand the factors driving regressions or anomalies in model behavior. It
provides a deeper understanding of the model’s actions and informs workflows
for improvement. To enhance model observability, researchers can explore
techniques for diagnosing, foreseeing, and managing performance degradation.
Strategies for enhancing model robustness and generalizability should also
be developed. By doing so, researchers can contribute to increased trust and
confidence in ANN-SCSs.

• Understanding error propagation and robustness in hierarchical
ANN-SCS. We found that current system-level evaluation usually ignores
knowledge from the low-level components (such as ANN models). While
understanding the error propagation from ANN models to the system output
is crucial for evaluating the robustness of an ANN-SCS. The reason is that
such an understanding helps us to identify the potential sources of errors and
evaluate their impact on the overall system’s performance. By considering
error propagation, we can assess how the errors in low-level components affect
the system’s output and how these errors can propagate and accumulate to
cause failures or safety hazards. Recognizing that system-level evaluation
is a multi-stage process, it is essential to consider how variations from one
stage are accumulated and transmitted to subsequent stages. Some stages
may generate variations, while others may absorb them. Though it might
be possible to develop robustness metrics for individual stages, such as an
ANN model or non-ANN component, aggregating these metrics to evaluate a
hierarchical ANN-SCS is a complex and unexplored challenge. This highlights
the significance of addressing error propagation from low-level components to
enhance system-level evaluation and improve overall system performance.

6.2.2 Implications for Industry
Predicting the behavior of the complex ANN-SCS in active interaction with natural
environments and humans, such as AV, is difficult. To overcome this challenge,
TEVV practitioners may use various techniques, including simulation, modeling,
testing, and analysis, to ensure that the ANN-SCS meets specifications and performs
as expected. This thesis focuses on the TEVV tasks of ANN-SCSs and makes
contributions to the industry as follows:

• The mapping of reviewed T&V approaches to the software safety lifecycle in
IEC 61508 can be used by practitioners to make informed decisions about
testing and verifying their ANN-SCSs. It provides practitioners with a
valuable resource for understanding the best practices and challenges in the
field. Our literature review identified robustness evaluation as one of the
biggest challenges in testing and verifying ANN-SCSs. Robustness evaluation
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must be a key consideration in the development and deployment of ANN-SCSs.
It requires changes in industry standards and regulations to ensure their safe
and trustworthy deployment. This research could lead to the development of
new standards and regulations for testing and verifying ANN-SCSs, enhancing
their safety.

• We developed an extended FTA to better understand and address the risks
of ANN classifiers used in AVs. This enables TEVV practitioners to perform
functional failure analysis for ANN classifiers of AV control, determine the
robustness and performance limits of these ANNs, identify the conditions
that challenge the ANNs’ performance limits in the operating environment,
and assess the extent to which additional robustness enhancements and
other safety measures can compensate for any performance deficiencies in the
ANNs. The implications of this research for the industry include the need to
address potential vulnerabilities and failures in ANNs used in safety-critical
applications, such as AVs, resulting in improved design and testing of these
systems and a better understanding of potential vulnerabilities and failure
modes.

• The proposed multidimensional robustness evaluation framework offers com-
prehensive and consistent knowledge and a roadmap for practitioners to assess
the robustness of the system and its ANN models for deployment and to eval-
uate model performance during operation. The industry could have greater
assurance in their deployment models to increase customer confidence in the
product.

• We empirically compare and evaluate the effectiveness of several distance
metrics to continuously rank the robustness of multiple ANN classifiers used
in SCSs. This opens up potential avenues for future research on the ongoing
monitoring of ANN-SCSs without labeling efforts for operation. To enable this,
a collaborative effort between practitioners and those responsible for operating
the ANN-SCS is essential. This involves assessing system output, periodically
updating the ANN models, and tracking and improving the robustness of the
ANN-SCS.

6.2.3 Social Impact
AI has rapidly become a critical part of our lives and is expected to impact society
substantially. To be trusted, AI must be robust, a key characteristic highlighted
by organizations such as NIST, the Organisation for Economic Co-operation and
Development (OECD)1, the European Union Digital Strategy2, and U.S. Executive
Order 139603. The social impact of this thesis lies in its contribution towards the
development and deployment of robust and trustworthy AI systems, which have

1https://www.oecd.org/digital/ai/principles/
2https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
3https://www.federalregister.gov/documents/2020/12/08/2020-27065/promoting-the-use-of-

trustworthy- artificial-intelligence-in-the-federal-government
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the potential to bring positive outcomes, mitigate negative consequences, uphold
ethical considerations, and shape regulatory frameworks.

• Trustworthy AI Systems: By addressing the robustness evaluation of
ANN-SCSs, the thesis addresses a critical aspect of AI safety. Robust AI
systems inspire trust, particularly in safety-critical domains like healthcare,
transportation, finance, and national security.

• Ethical Considerations: Ethical AI systems are built on principles such
as fairness, transparency, and accountability [50]. Robustness plays a crucial
role in upholding these ethical considerations. By focusing on robustness
evaluation, the thesis contributes to the development of AI systems that are
not only technically competent but also aligned with ethical guidelines. This
ensures that AI technologies are developed and deployed in a manner that
respects human values and promotes fairness and transparency.

• Regulatory and Policy Implications: The research findings and implica-
tions of this thesis can inform regulatory bodies and policymakers in shaping
guidelines and standards for AI systems. Organizations such as NIST, OECD,
and the European Union have already emphasized the importance of robust-
ness in AI systems. By providing insights and recommendations for robustness
evaluation, this thesis can support the development of regulations and policies
that promote the deployment of trustworthy AI systems.

6.3 Limitations

This thesis serves as a first step in understanding and addressing the robustness
evaluation of ANN-SCSs throughout their entire lifecycle, including design, devel-
opment, deployment, and operation. Despite the contributions made, there are
some limitations. First, an inherent limitation of the research (related to RQ1 with
Paper P1 and RQ3 with Paper P3 in Part II) was the scarcity of publicly available
information. To address this, we combined knowledge from various sources and used
snowballing procedures to identify as many relevant studies as possible. Second,
our case study (related to RQ2, Paper P2 in Part II) only relied on simplified
mathematical formalism regarding failure causes in multidimensional space. A
comprehensive safety analysis and reliability modeling for ANN components in
SCSs are needed. However, this study is a foundation for further applying risk
analysis methods to assess ANN component reliability, as confirmed by a recently
published paper [71]. Finally, for the last part of this thesis (related to RQ4, Paper
P4 in Part II), one limitation is that we only validate OOD robustness, which may
have affected our conclusions’ generalization. Robustness in practice is more compre-
hensive, as highlighted by Hendrycks and Dietterich [231]. For example, assessing
adversarial robustness requires considering perceptible attacks and other distortions.
The areas of adversarial robustness and OOD robustness and unusual events should
be considered in a unified manner. Future work could involve evaluating system
robustness in multiple scenarios and testing against diverse attacks and disturbances.
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Additionally, the research could explore ways to increase the interpretability and
transparency of ANNs to understand their behavior better and improve robustness.
Overall, the focus should be on developing robustness-enhancing techniques and
incorporating robustness evaluation as an integral part of the design and deployment
process for ANN-SCSs.
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This chapter presents the final remarks along with avenues for future work.

7.1 Conclusions

The increasing reliance on ANNs in decision-making systems has highlighted the
need for robust and reliable models operating in real-world environments. This
Ph.D. thesis has provided a comprehensive view on evaluating ANN robustness
for SCSs by identifying and addressing the challenges, proposing a systematic
robustness evaluation framework, and investigating methods for analyzing and
measuring ANN robustness in operation. The research was motivated by the new
challenges in assuring the robustness of ANN-SCSs, particularly in the context
of operation. In addition, the research could increase public trust in autonomous
systems by enabling the safe and trustworthy deployment of ANN-based systems
in safety-critical applications. This was done through the following four main
contributions:

C1: The systematization of knowledge and understanding for T&V of
ANN-SCSs.This includes a systematic classification of T&V approaches
for ANN-SCSs and the identification of challenges for advancing the
state-of-the-art in T&V for ANN-SCSs.

C2: A new method for analyzing the influence of ANN robustness on
the safety of AVs.This new method allows for a more comprehensive
and quantitative analysis of the relationship between ANN robustness
and the safety and reliability of autonomous systems.

C3: A systematization of knowledge and a framework for assessing
ANN-SCSs’ robustness in operation.The knowledge is organized by a
framework, which allows for a more effective and efficient evaluation of
the robustness of ANN models under real-world conditions.

C4: New knowledge and understanding of how the robustness of multiple
ANN models can be ranked using unlabeled data.This comprehensive
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empirical investigation enhances the understanding of utilizing distance-
based metrics for automated model selection and ranking the robustness
of multiple models in operation.

7.2 Future Work

This thesis has shown that the robustness of ANN-SCSs can be evaluated through
appropriate techniques. Furthermore, this thesis has provided important insights
into the challenges of evaluating and assuring the robustness of ANNs for SCSs.
Despite the challenges, it is important to continue researching and developing
methods to ensure the safe and reliable deployment of ANNs in SCSs. The proposed
framework and methods presented in this thesis can be a starting point for future
research.

Building on the insights from this research, there is a clear need for a more in-
depth understanding and resolution of the potential vulnerabilities of ANNs in
SCSs. In future work, I intend to further explore the extension of FTA to handle
continuum disturbances, not just discrete events. This novel approach has significant
implications for risk analysis, particularly in relation to ANNs. While risk analysts
and ANN experts will benefit from this insight, the potential to apply this method
in a wider context could revolutionize risk analysis across various domains.

In addition, my future work will delve deeper into the critical challenges faced by
AVs, particularly the question of the system’s response when it fails to interpret a
scenario correctly, or when interpretations are unstable or conflicting. Two potential
responses exist: revert the control to the human driver or trigger an automated
emergency procedure, with each choice presenting its unique complexities. If control
is handed back to the driver, we must ensure continued situational awareness, which
is an intricate challenge to be addressed. Alternatively, if the decision is to automate
emergency responses, there’s a significant need for improvement in risk analysis
methods for potential accident scenarios. This would involve handling a broad
range of situations and establishing automated responses that prioritize the safety
of all involved.
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Context: Neural Network (NN) algorithms have been successfully adopted in a number of Safety-Critical Cyber- 

Physical Systems (SCCPSs). Testing and Verification (T&V) of NN-based control software in safety-critical do- 

mains are gaining interest and attention from both software engineering and safety engineering researchers and 

practitioners. 

Objective: With the increase in studies on the T&V of NN-based control software in safety-critical domains, it is 

important to systematically review the state-of-the-art T&V methodologies, to classify approaches and tools that 

are invented, and to identify challenges and gaps for future studies. 

Method: By searching the six most relevant digital libraries, we retrieved 950 papers on the T&V of NN-based 

Safety-Critical Control Software (SCCS). Then we filtered the papers based on the predefined inclusion and ex- 

clusion criteria and applied snowballing to identify new relevant papers. 

Results: To reach our result, we selected 83 primary papers published between 2011 and 2018, applied the the- 

matic analysis approach for analyzing the data extracted from the selected papers, presented the classification of 

approaches, and identified challenges. 

Conclusion: The approaches were categorized into five high-order themes, namely, assuring robustness of NNs, 

improving the failure resilience of NNs, measuring and ensuring test completeness, assuring safety properties of 

NN-based control software, and improving the interpretability of NNs. From the industry perspective, improv- 

ing the interpretability of NNs is a crucial need in safety-critical applications. We also investigated nine safety 

integrity properties within four major safety lifecycle phases to investigate the achievement level of T&V goals 

in IEC 61508-3. Results show that correctness, completeness, freedom from intrinsic faults, and fault tolerance 

have drawn most attention from the research community. However, little effort has been invested in achieving re- 

peatability, and no reviewed study focused on precisely defined testing configuration or defense against common 

cause failure. 

1. Introduction 

Cyber-Physical Systems (CPSs) are systems involving networks of 

embedded systems and strong human-machine interactions [1] . Safety- 

critical CPSs (SCCPSs) are a type of CPSs that highlights the severe non- 

functional constraints (e.g., safety and dependability). The failure of SC- 

CPSs could result in loss of life or significant damage (e.g., property and 

environmental damage). Typical applications of SCCPSs are in nuclear 

systems, aircraft flight control systems, automotive systems, smart grids, 

and healthcare systems. 

In the last few years, advances in Neural Networks (NNs) have 

boosted the development and deployment of SCCPSs. The NN is con- 

∗ Corresponding author. 

E-mail addresses: jin.zhang@ntnu.no (J. Zhang), jingyue.li@ntnu.no (J. Li). 

sidered the most viable approach to meet the complexity requirements 

of Safety-Critical Control Softwares (SCCSs) [2,3] . In this study, we re- 

fer to NN-based SCCS as SCCS that heavily use NNs (e.g., to implement 

controller). For example, in the transportation industry, deep-learning- 

based NNs have been widely used to developing self-driving cars [4] and 

collision avoidance systems [5] . It is also worth noting that several safety 

incidents caused by autonomous vehicles have been presented in media, 

e.g., Uber car’s fatal incident [6] , Tesla’s fatal Autopilot crash [7] , and 

Google’s self-driving car crash [8] . In addition to the safety incidents 

caused by failures of the autonomous system, security breaches of au- 

tonomous vehicles can potentially lead to safety issues, e.g., a demo 

showed that autonomous vehicles can be remotely controlled and hi- 

jacked [9] . How can we ensure that an SCCS containing NN technology 
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will behave correctly and consistently when system failures or malicious 

attacks occur? 

Increasing interest in the migration of Industrial Control Systems 

(ICSs) towards SCCPSs has encouraged research in the area of safety 

analysis of SCCPSs. Kriaa et al. [10] surveyed existing approaches for 

an integrated safety and security analysis of ICSs. The approaches cover 

both the design stage and the operational stage of the system lifecycle. 

Some approaches (such as [11,12] ) are aimed at combining safety and 

security techniques into a single methodology. Others (such as [13,14] ) 

are trying to align safety and security techniques. These approaches are 

either generic, which consider both safety and security at a very high 

level, or model-based, which build upon the formal or semi-formal rep- 

resentation of the system’s functions. 

There are many studies that focus on the T&V of NNs in the past 

decade. Several review articles [15–18] on this topic have been pub- 

lished. Studies [15,19] have reviewed methods focusing on verification 

and validation of NNs for aerospace systems. Studies [17,18] are limited 

in automotive applications. None of these review articles have applied 

the Systematic Literature Review (SLR) [20] approach. 

Recently there has been more concern about Artificial Intelligence 

(AI) safety. The state-of-the-art advancements in the T&V of NN-based 

SCCS are increasingly important; hence, there is a need to have a thor- 

ough understanding of present studies to incentivize further discussion. 

This study aimed to summarize the current research on T&V methods 

for NN-based control software in SCCPSs . We have systematically 

identified and reviewed 83 papers focusing on the T&V of NN-based 

SCCSs and synthesized the data extracted from those papers to answer 

three research questions. 

• RQ1 What are the profiles of the studies focusing on testing and 

verifying NN-based SCCSs? 

• RQ2 What approaches and associated tools have been proposed to 

test and verify NN-based SCCSs? 

• RQ3 What are the limitations of current studies with respect to test- 

ing and verifying NN-based SCCSs? 

To our best knowledge, our study is the first SLR on testing and veri- 

fying NN-based control software in SCCPSs. The results of these research 

questions can help researchers identify the research gaps in this area, 

and help industrial practitioners choose proper verification and certifi- 

cation methods. 

The main contributions of this work are: 

• We made a classification of T&V approaches in both academia and 

industry for NN-based SCCSs. 

• We identified and proposed challenges for advancing state-of-the-art 

T&V for NN-based SCCSs. 

The remainder of this paper is organized as follows: In Section 2 , we 

define terminologies related to NN-based SCCPSs and summarize related 

work from academia and industry. Section 3 describes the SLR process 

and the review protocol. The results of the research questions are re- 

ported in Section 4 . Section 5 discusses the industry practice of T&V of 

NN-based SCCSs, and the threats to validity of our study. Section 6 con- 

cludes the study. 

2. Background 

In this section, we first introduce terminology related to CPSs and 

modern NNs and show how NN algorithms have been used in SCCPSs. 

Then, we present the current state of practice of T&V of SCCSs. 

2.1. Cyber-physical systems 

As defined in Rajkumar et al. [1] , “cyber-physical systems (CPSs) are 

physical and engineered systems whose operations are monitored, coordi- 

nated, controlled and integrated by a computing and communication core. ”

Several other systems, such as Internet of Things (IoTs) and ICSs have 

very similar features compared to CPSs, since they are all systems used 

to monitor and control the physical world with embedded sensor and ac- 

tuator networks. In general, CPSs are perceived as the new generation 

of embedded control systems, which can involve IoTs and ICSs [21,22] . 

In this SLR, we adopted the CPS conceptual model in Griffor et al. 

[23] as a high-level abstraction of CPSs to describe the different per- 

spectives of CPSs and the potential interactions of devices and systems 

in a system of systems (SoS) as shown in Fig. 1 . From the perspective 

of unit level, a CPS at least includes one or several controllers, many 

actuators, and sensors. A CPS can also be a system consisting of one or 

more cyber-physical devices. From the SoS perspective, a CPS is com- 

posed of multiple systems that include multiple devices. In general, a 

CPS must contain the decision flow (from controller to actuators), in- 

formation flow (from sensors to controller), and action flow (actuators 

impacting the physical state of the physical world). 

In the context of SCCPS, safety and performance are dependent on 

the system (to be more specific, the controller of the system) making 

the right decision according to the measurement of the sensors, and 

operating the actuators to take the right action at the right time. Thus, 

verification of the process of decision-making is vital for a SCCPS. 

2.2. Modern neural networks 

The concept of “neural network ” was first proposed in 1943 by War- 

ren McCullough and Walter Pitts [24] , and Frank Rosenblatt in 1957 

designed the first trainable neural network called “the Perceptron ” [25] . 

A perceptron is a simple binary classification algorithm with only one 

layer and output decision of “0 ” or “1. ” By the 1980s, neural nets with 

more than one layer were proposed to solve more complex problems, 

i.e., multilayer perceptron (MLP). In this SLR, we regard multilayer NNs 

that emerged after the 1980s as modern NNs. 

Artificial Neural Network (ANN) is the general name of computing 

systems designed to mimic how the human brain processes information 

[26] . An ANN is composed of a collection of interconnected computa- 

tion nodes (namely “artificial neurons ”), which are organized in lay- 

ers. Depending on the directions of the signal flow, an ANN can have 

feed-forward or feedback architectures. Fig. 2 shows a simplified feed- 

forward ANN architecture with multiple hidden layers. Each artificial 

neuron has weighted inputs, an activation function, and one output. 

The weights of the interconnections are adjusted based on the learning 

rules. There are three main models of learning rules, which are unsu- 

pervised learning, supervised learning, and reinforcement learning. The 

choice of learning rules corresponds to the particular learning task. The 

common activation functions contain sigmoid, hyperbolic tangent, ra- 

dial bases function (RBF), and piece-wise linear transfer function, such 

as Rectified Linear Unit (ReLU) [27] . In a word, an ANN can be defined 

by three factors: the interconnection structure between different layers, 

activation function type, and procedure for updating the weights. 

Multi-Layer Perceptron ( MLP [28] ) represents a class of feed- 

forward ANN. An MLP consists of an input layer, one or several hidden 

layers, and an output layer. Each neuron of MLP in one layer is fully 

connected with every node in the following layer. An MLP employs a 

back-propagation technique (which belongs to supervised learning) for 

training. 

Convolutional Neural Network ( CNN [29] ) is a special type of 

multi-layer NN with one or more convolutional layers. A convolutional 

layer includes “several feature maps with different weight vectors. A se- 

quential implementation of a feature map would scan the input image with 

a single unit that has a local receptive field, and store the states of this 

unit at corresponding locations in the feature map. This operation is equiv- 

alent to a convolution, followed by an additive bias and squashing func- 

tion, hence the name convolutional network ”[29] . CNNs are superior for 

processing two-dimensional data (particular camera images) because of 

the convolution operations, which are capable of detecting features in 

images. CNNs are now widely applied to develop partially-autonomous 

and fully-autonomous vehicles. 98
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Fig. 1. CPS conceptual model. 

Fig. 2. A simplified feed-forward ANN architecture. 

Deep Neural Networks ( DNNs [30] ) represent an ANN with mul- 

tiple hidden layers between the input and output layers. DNNs (e.g., a 

MLP with more than three layers or a CNN) differ from shallow NNs 

(e.g., a three-layer MLP) in the number of layers, the activation func- 

tions that can be employed, and the arrangement of the hidden layer. 

Compared to shallow NNs, DNNs can be trained more in-depth to find 

patterns with high performance even for complex nonlinear relation- 

ships. 

An NN could be trained offline or online. An NN trained offline 

means it only learns during development. After training, the weights 

of the NN will be fixed and the NN will act deterministically. Therefore 

static verification methods could be possible. In contrast, online training 

will allow the NN to keep learning and evolving during operation, which 

requires run-time verification methods. In some applications, such as the 

Intelligent Flight Control System developed by NASA [15] , both offline 

and online training strategies are employed to meet the system require- 

ments. 

NNs are fundamentally different with algorithmic programs, but a 

formal development methodology can still be derived for an NN system. 

Development process of an NN system can include six phases [31] : 

1. Formulation of requirements and goals; 

2. Selection of training and test data sets; 

3. Selection of the NN architecture; 

4. Training of the network; 

5. Testing of the network; and 

6. Acceptance and use by the customer. 

Like [31] , Falcini et al. introduced a similar development lifecycle 

for DNNs in automotive software [32] and proposed a W-model inte- 

grated data development with standard software development to high- 

light the importance of data-driven in DNN development. Falcini et al. 

[32] also summarized that the DNN’s functional behavior depends on 

both its architecture and its learning outcome through training. 

2.3. The trends of using NN algorithm in SCCPSs 

From 1940s automated range finders (developed by Norbert Wiener 

for anti-aircraft guns) [164] to today’s self-driving cars, AI, especially 

NN algorithms, is widely applied in both civilian (e.g., autonomous cars) 

and military domains (e.g., military drones). Boosted by the advances of 

AI, state-of-the-art CPSs can plan and execute more and more complex 

operations with less human interaction. Here we present the applica- 

tions of NNs in the following four representative SCCPSs. 

2.3.1. Autonomous cars 

For automobile, the Society of Automotive Engineers (SAE) pro- 

posed six levels of autonomous driving [33] . A level 0 vehicle has no 

autonomous capabilities, and the human driver is responsible for all 

aspects of the driving task. For level 5 vehicle, the driving tasks are 

only managed by the autonomous driving system. When developing 

autonomous vehicles targeting a high level of autonomy, one indus- 

try trend is to use DNNs to implement vehicle control algorithms. The 

deep-learning-based approach enables vehicles to learn meaningful road 

features from raw input data automatically and then output driving ac- 

tions. The so-called end-to-end learning approach can be applied to re- 

solve complex real-world driving tasks. When using deep-learning-based 

approaches, the first step is to use a large number of training data sets 

(images or other sensor data) to train a DNN. Then a simulator is used to 

evaluate the performance of the trained network. After that, the DNN- 

based autonomous vehicle will be able to “execute recognition, predic- 

tion, and planning ” driving tasks in diverse conditions [10] . Nowadays, 

CNNs are the most widely adopted deep-learning model for fully au- 

tonomous vehicles [5–8] . NVIDIA introduced an AI supercomputer for 

autonomy [34] . The development flow using NVIDIA DRIVE PX includes 

four stages: 1) data acquisition to train the DNN, 2) deployment of the 

output of a DNN in a car, 3) autonomous application development, and 

4) testing in-vehicle or with simulation. 

One essential characteristic of deep-learning-based autonomy is that 

the decision-making part of the vehicle is almost a black box. This means 

that in most cases, we as human drivers must trust the decisions made 

by the deep-learning algorithms without knowing exactly why and how 

the decisions are made. 99
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2.3.2. Industrial control systems 

Industrial Control System (ICS) is the general term for control sys- 

tems, also called Supervisory Control and Data Acquisition (SCADA) 

systems. ICSs make decisions based on the specific control law (such as 

lookup table and non-linear mathematical model) formulated by human 

designers. In contrast to the classical design procedure of control law, 

reinforcement-learning-based approaches learn the control law simply 

from the interaction between the controller and the process, and then 

incrementally improving control behavior. Such approaches and NNs 

have been used in process control two decades ago [35] . Concerning 

the recent progress in AI and the success of DNNs in making complex 

decisions, there are high expectations for the application of DNNs in 

ICSs. For instance, DNNs and reinforcement learning can be combined 

to develop continuous control [36] . Spielberg et al. extended the work 

in Lillicrap et al. [36] to design control policy for process control [37] . 

Even though the proposed approach in Spielberg et al. [37] is only tested 

on linear systems, it shows a practical solution for applying DNNs in 

non-linear ICSs. 

2.3.3. Smart grid systems 

The smart grid is designed as the next generation of electric power 

system, dependent on information communications technology (ICT). 

There is tremendous initiative of research activities in automated smart 

grid applications, such as FLISR (which is a smart grid multi-agent 

automation architecture based on decentralized intelligent decision- 

making nodes) [38] . NNs have been considered for solving many pattern 

recognition and optimization problems, such as fault diagnosis [39] , and 

control and estimation of flux, speed [2] , and economical electricity dis- 

tribution to consumers. MLP is one of the most commonly used topology 

in power electronics and motor drives [2] . 

2.3.4. Healthcare 

Medical devices is another emerging area where research and in- 

dustry practitioners are seeking to integrate AI technologies to improve 

accuracy and automation. ANNs and other machine learning approaches 

have been proposed to improve the control algorithms for diabetes treat- 

ment in recent decades [40,41] . In 2017, an AI-powered device for auto- 

mated and continuous delivery of basal insulin (named MiniMed 670G 

system [42] ) was approved by the U.S. Food and Drug Administration. 

In the same year, it was reported that GE Healthcare had integrated 

the NVIDIA AI platform into their computerized tomography scanner to 

improve speed and accuracy for the detection of liver and kidney le- 

sions [43] . Using deep learning solutions, such as CNNs, in the medical 

computing field has proven to be effective since CNNs have excellent 

performance in object recognition and localization in medical images 

[44] . 

2.4. Testing and verification of safety-critical control software 

IEC 61508 and ISO 26262 are two standards highly relevant to the 

T&V of SCCS. IEC 61508 is an international standard concerning Func- 

tional safety of electrical/electronic/programmable electronic safety-related 

systems . It defines four safety integrity levels (SILs) for safety-critical 

systems [45] . The higher the SIL level a SCCPS requires, the more time 

and effort for verification are needed. In IEC 61508, formal methods 

are highly recommended techniques for verifying high SIL systems. Be- 

cause formal methods can be used to construct the specification and 

provide a mathematical proof that the system matches some formal re- 

quirements, this is quite a strong commitment for the correctness of a 

system. 

ISO 26262, titled Road vehicles – functional safety , is an international 

standard for the functional safety of electrical and/or electronic systems 

in production automobiles [46] . Besides using classical safety analysis 

methods such as Fault Tree Analysis (FTA) and Failure Mode and Effects 

Analysis (FMEA), ISO 26262 explicitly states that the production of a 

safety case is mandated to assure system safety. It defines a safety case 

as “an argument that the safety requirements for an item are complete 

and satisfied by evidence compiled from work products of the safety 

activities during development ” [46] . 

The development of suitable approaches, which can verify the sys- 

tem behavior and misbehavior of a SCCPS is always challenging. Not 

to mention that the architecture of NNs (especially DNNs) makes it 

even harder to decipher how the algorithmic decisions were made. 

The current version of IEC 61508 is not applicable for the verifi- 

cation of NN-based SCCSs because AI technologies are not recom- 

mended there. The latest version of ISO 26262 and its extension, 

ISO/PAS 21448, which is also known as safety of the intended func- 

tionality (SOTIF) [47] , will likely provide a way to handle the de- 

velopment of autonomous vehicles. However, SOTIF will only pro- 

vide guidelines associated with SAE Level 0–2 autonomous vehicles 

[48] , which are not ready for the verification of NN-based autonomous 

vehicles. 

In practice, in order to reduce test and validation costs, high-fidelity 

simulation is a commonly used approach in the automotive domain. 

The purpose of using a simulator is to predict the behavior of an au- 

tonomous car in a mimicked environment. NVIDIA and Apollo dis- 

tributed their high-fidelity simulation platforms for testing autonomous 

vehicles. CARLA [49] and Udacity’s Self-Driving Car Simulator [50] are 

two popular open-source simulators for autonomous driving research 

and testing. 

3. Research method 

We conducted our SLR by following the SLR guidelines in Kitchen- 

ham and Charters [20] as well as consulting other relevant guidelines 

in Petersen et al. [51] and Shahin et al. [52] , Nguyen et al. [53] . Our 

review protocol consisted of four parts: 1) search strategy, 2) inclusion 

and exclusion criteria, 3) selection process, and 4) data extraction and 

synthesis. 

3.1. Search strategy 

Based on guidelines provided in Kitchenham and Charters [20] , we 

use the Population, Intervention, Outcome, Context (PIOC) criteria to 

formulate search terms. In this SLR, 

• The population should be an application area (e.g., general CPS) or 

specific CPS (e.g., self-driving car). 

• The intervention is methodology, tools and technology that address 

system/component testing or verification. 

• The outcome is the improved safety or functional safety of CPSs. 

• The context is the NN-based SCCPSs in which the T&V take place. 

Fig. 3 shows the search terms formulated based on the PIOC crite- 

ria. We first used these search terms to run a series of trial searches 

and verify the relevance of the resulting papers. We then revised the 

search string to form the final search terms. The final search terms were 

composed of synonyms and related terms. 

We executed automated searches in six digital libraries, namely, Sco- 

pus, IEEE Xplore, Compendex EI, ACM Digital library, SpringerLink, and 

Web of Science (ISI). 

3.2. Inclusion and exclusion criteria 

Table 1 presents our inclusion and exclusion criteria. We set three 

inclusion criteria to restrict the application domain, context, and out- 

come type. We excluded papers that were not peer-reviewed, such as 

keynotes, books, and dissertations, and papers not written in English. 

It should be clarified that, unlike most other SLR studies, we did not 

directly exclude short papers (less than six pages), work-in-progress pa- 

pers, and pre-print papers. The reason is that this research area is far 100
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Fig. 3. Search terms. 

Table 1 

Inclusion and exclusion criteria. 

Inclusion criteria 

I1 The paper must have a context in SCCPSs, either in general or in a specific application domain 

I2 The paper must be aimed at testing/verification approaches for NN-based SCCSs 

I3 The paper must be aimed at modern neural networks 

Exclusion criteria 

E1 Papers not peer-reviewed 

E2 Not written in English 

E3 Full-text is not available 

E4 Not relevant to modern neural networks 

Fig. 4. Search process. 

from mature, so many initial thoughts or in-progress papers are still 

valuable to review. 

3.3. Selection process 

We used the inclusion and exclusion criteria to filter the papers in 

the following steps. We covered papers from January 2011 to November 

2018. Fig. 4 shows the whole search and filtering process. 

Stage 1: Ran the search string on the six digital libraries and re- 

trieved 1046 papers. After removing those duplicated papers, we had 

950 papers. 

Stage 2: Excluded studies by reading title and keywords. If it was not 

excluded simply by reading titles and keywords, the paper was kept for 

further investigation. At the end of this stage, we selected 254 papers. 

Stage 3: Further filtered the papers by reading abstracts and found 

105 potential papers with high relevance to the research goal of our 

SLR. 

Stage 4: Read the introduction and conclusion to decide on selec- 

tion. We recorded the reasons for exclusion for each excluded paper. We 

excluded the papers that were irrelevant, or whose full texts were not 

available. Furthermore, we critically examined the quality of primary 

studies to exclude those that lacked sufficient information. We ended 

up with 27 papers. 

Stage 5: Read full text of the selected studies from the fourth stage, 

applied snowballing by scanning the reference of the selected papers. 

The snowballing process can be implemented in two directions: back- 

wards (which means scanning the references of a selected paper and 

find any other relevant papers published before the selected paper), and 

forwards (which means checking if any other relevant paper was pub- 

lished after the selected paper and cited the selected paper). In our SLR, 

we adapted mainly backward snowballing to include additional papers. 

To limit the scope of the snowballing, we covered only references pub- 

lished between 2011 and 2018. From snowballing, we found 56 new 

relevant papers. 

Finally, we selected 83 papers as primary studies for detailed analy- 

sis. We listed all of the selected studies in Appendix A. The first author 

conducted the selection process with face-to-face discussions with the 

second author. The second author performed a cross-check of each step 

and read all the final selected papers to confirm the selection of the 

papers. 

3.4. Data extraction and synthesis 

Data Extraction: We extracted two kinds of information from the 

selected papers. To answer RQ1, we extracted information for statistical 

analysis, e.g., publication year and research type. To answer RQ2 and 

RQ3, we collected information to identify key features (such as research 

goal, technique and tools, major contribution and limitation) of T&V 

approaches. 

Synthesis: We used descriptive statistics to analyze the data for an- 

swering RQ1. To answer RQ2 and RQ3, we analyzed the data using the 

qualitative analysis method by following the five steps of thematic anal- 

ysis [54] : 1) extracting data, 2) coding data, 3) translating codes into 

themes, 4) creating a model of higher-order themes, and 5) assessing 

the trustworthiness of the synthesis. 101



J. Zhang and J. Li Information and Software Technology 123 (2020) 106296 

Fig. 5. Publication year and types of selected papers. 

Table 2 

Research type classification (T = True, F = False, ● = irrelevant 

or not applicable, R1–R6 refer to rules). 

R1 R2 R3 R4 R5 R6 

Conditions 

Used in practice T ● T F F F 

Novel solution ● T F ● F F 

Empirical evaluation T F F T F F 

Conceptual framework ● ● ● ● T F 

Opinion about something F F F F F T 

Authors’ experience ● ● T ● F F 

Decisions 

Evaluation research 
√

● ● ● ● ●
Solution proposal ●

√
● ● ● ●

Validation research ● ● ●
√

● ●
Philosophical papers ● ● ● ●

√
●

Opinion papers ● ● ● ● ●
√

Experience papers ● ●
√

● ● ●

Note: Reprinted from [51] ,Copyright 2015 by the Elsevier. 

4. Result 

4.1. RQ1. What are the profiles of the studies focusing on testing and 

verifying NN-based SCCSs? 

Studies distributions: Fig. 5 shows the distribution of selected pa- 

pers based on publication year and the types of work. There has been 

68 papers (81.9%) published since 2016, indicating that researchers are 

paying more attention to the T&V of NN-based SCCSs. Conference was 

the most popular publication type with 48 papers (57.8%), followed by 

pre-print (25 papers, 30.1%), workshop (6 papers, 7.2%), and journal 

(4 papers, 4.8%). 

We also investigated the geographic distribution of the reviewed 

studies. It allowed us to identify which countries are leading the research 

in this domain. We considered a study to be conducted in one country 

if the affiliation of at least one author is in that country. Moreover, the 

involvement of industry would be an indicator of industry’s interest in 

this domain. We classified the reviewed papers as industry if at least 

one author came from industry or the study used real-world industrial 

systems to test/verify the proposed approach. A paper would be cate- 

gorized as academia if all authors came from academia. It shows that 

researchers based in the USA have been involved in the most primary 

studies for testing or verification of NN-based SCCSs with 56 publica- 

tions, followed by the researchers based in Germany and the UK with 10 

and 9 publications, respectively. It is worth noting that 47 of 83 (56.6%) 

publications have involvement from industry. 

Research types: We classified the selected papers based on the cri- 

teria proposed by Kai et al. [51] (See Table 2 ). According to Table 2 , the 

research type of the paper is governed by rules (i.e., R1-R6). Each rule is 

Table 3 

Distribution of application domains of the se- 

lected studies. 

Application domain No. of studies 

General SCCPSs 59 

Automotive CPSs 13 

Autonomous aerial systems 5 

Robot system 5 

Health care 1 

a combination of several conditions. The six research types (i.e., evalu- 

ation research, solution proposal, validation research, philosophical pa- 

pers, opinion papers, and experience papers) correspond to R1-R6, re- 

spectively. For example, both evaluation research (corresponding to R1) 

and validation research (corresponding to R4) must present empirical 

evaluation. The difference between evaluation and validation research is 

that validation is not used in practice (e.g., experimental or simulation- 

based approaches), whereas evaluation studies should be conducted in a 

real-world context. Solution proposal means that it has to propose a new 

solution that may or may not be used in practice. We found that eval- 

uation and validation research are the majority of the selected papers, 

corresponding to 31.3% (26 papers) and 61.4% (51 papers) of the se- 

lected papers, respectively. The low percentage of the solution proposal 

(6 papers) was not surprising because a majority of the reviewed papers 

presented and demonstrated their T&V approaches through academic 

and industrial case studies, simulation, and controlled experiments. The 

other three types of research papers (i.e., philosophical papers, opinion 

papers, and experience papers) do not exist in selected studies because 

we only included papers that aimed at testing/verification approaches 

(refer to inclusion criteria I2). 

Application domains: We analyzed the application domain of se- 

lected studies to provide useful information for researchers and prac- 

titioners who are interested in the domain-specific aspects of the ap- 

proaches. The results are shown in Table 3 . We found that considerable 

effort is now being put into using NN algorithms to accomplish control 

logic for general purpose (59 papers, 71.1%), automotive CPSs, such as 

autonomous vehicles (13 papers, 15.7), and autonomous aerial systems, 

such as airborne collision avoidance systems for unmanned aircrafts (5 

papers, 6%). 

4.2. RQ2. What approaches and associated tools have been proposed to 

test and verify NN-based SCCSs? 

As 4 of the 83 papers focused mainly on high-level ideas and con- 

cepts without presenting detailed approaches or tools, we did not in- 

clude them to answer RQ2. For the remaining 79 out of 83 (95.2%) 

papers, we applied the thematic analysis approach [54] and identified 

five high-order themes and some sub-themes. Some papers contain more 

than one themes. In order to balance the accuracy and the simplicity of 

categorization, we decided to assign each study only one category based 

on its major contribution. Table 4 presents the themes, sub-themes, and 

the corresponding papers. Fig. 6 compares the interests difference of 

academia and industry for the five identified themes. 

4.2.1. CA1: Assuring robustness of NNs 

One high-order theme of the studies is to assure the robustness of 

NNs. Robustness of an NN is its ability to cope with erroneous inputs. 

The erroneous inputs can be an adversarial example (i.e., an input that 

adds small perturbation intentionally to mislead classification of an NN), 

or benign but wrong input data. Methods under this theme can be further 

classified into four sub-themes. 

Studies focusing on understanding the characteristics and impacts of ad- 

versarial examples Some studies tried to identify the characteristics and 

impacts of adversarial examples. The study [56] found the character- 

istics, such as the linear nature, of adversarial examples. The study 102
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Table 4 

A classification of approaches to test and verify NN-based SCCSs. 

Themes Sub-themes Papers # 

Assuring robustness of 

NNs 

Understanding the characteristics and impacts of adversarial examples [55–61] 17 

Detect adversarial examples [62–67] 

Mitigate impact of adversarial examples [68,69] 

Improving robustness of NNs through using adversarial examples [70,71] 

Improving failure 

resilience of NNs 

[72–82] 11 

Measuring and 

ensuring test 

completeness 

[83–89] 7 

Assuring safety 

properties of NN-based 

CPSs 

[90–102] 13 

Improving 

interpretability of NNs 

Understand how a specific decision is made [103–121] 

Facilitate understanding of the internal logic of NNs [122–127] 31 

Visualizing internal layers of NNs to help identify errors in NNs [128–133] 

Fig. 6. Comparing the interests difference of academia and industry. 

[58] measured the impact of adversarial examples by counting their 

frequencies and severities. Nguyen et al. [55] found that a CNN trained 

on ImageNet [134] is vulnerable to adversarial examples generated 

through Evolutionary Algorithms (EAs) or gradient ascent. 

A few other studies, such as [57,59–61] , tried to understand the char- 

acteristics of robust NNs. Cisse et al. [59] introduced a particular form 

of DNN, namely Parseval Networks, that is intrinsically robust to adver- 

sarial noise. Gu et al. [61] concluded that some training strategies, for 

example, training using adversarial examples or imposing contractive 

penalty layer by layer, are robust to certain structures of adversarial ex- 

amples (e.g., inputs corrupted by Gaussian additive noises or blurring). 

Higher-confidence adversarial examples (i.e., adversarial instances that 

are extremely easy to classify into the wrong category) were used to 

evaluate the robustness of the state-of-the-art NN in Carlini and Wagner 

[60] and the robot-vision system in Melis et al. [57] . 

Studies focusing on methods to detect adversarial examples Detecting ad- 

versarial examples that are already inserted into training or testing data 

set are the primary targets of [62,64–67] . Wicker et al. [62,66] for- 

mulated the adversarial examples detection as a two-player stochas- 

tic game and used the Monte Carlo Tree Search to identify adversarial 

examples. Reuben [64] applied density estimates, and Bayesian uncer- 

tainty estimates to detect adversarial samples. Xu et al. [65] proposed 

a feature squeezing framework to detect adversarial examples, which 

are generated by seven state-of-the-art methods. According to [65] , an 

advantage of feature squeezing is that it did not change the underly- 

ing model. Therefore, it can easily be integrated with other defenses 

methods. Metzen et al. [67] embedded DNNs with a subnetwork (called 

“detector ”) to detect adversarial perturbations. The Deepsafe presented 

in Gopinath et al. [63] used clustering technology to find candidate-safe 

regions first and then verified whether the candidates were safe using 

counter-examples as a proof. 

Studies focusing on methods to mitigate impact of adversarial examples 

Papemot et al. [68] adopted defensive distillation as a defense strat- 

egy to train DNN-based classifiers against adversarial examples. How- 

ever, several powerful attacks have been proposed to defeat defensive 

distillation and have demonstrated that defensive distillation does not 

actually eliminate adversarial examples [60] . Papemot et al. [69] revis- 

ited defensive distillation and proposed a more effective way to defend 

against three recently discovered attack strategies, i.e., the Fast Gradi- 

ent Method (FGM) [56] , the Jacobian Saliency Map Approach (JSMA) 

[135] , and the AdaDelta optimization strategy (AdaDelta) [60] . 

Studies focusing on increasing robustness of NNs through using adversar- 

ial examples. In studies [70,71] , the authors proposed methods to lever- 

age adversarial training (e.g., generating a large amount of adversarial 

examples and then training the NN not to be fooled by these adversarial 

examples) to increase the robustness of NNs. 

4.2.2. CA2: Improving failure resilience of NNs 

Studies under this theme focused on improving the resilience of NNs, 

so that the NN-based CPSs are more tolerant of possible hardware and 

software failures. 

Studies [74,76,77] investigated error detection and mitigation mech- 

anisms, while studies [75,79] focused on understanding error propaga- 

tion in DNN accelerators. Vialatte et al. [74] demonstrated that faulty 

computations can be addressed by increasing the size of NNs. Santos 

et al. [76] proposed an algorithm-based fault tolerance (ABFT) strategy 

to detect and correct radiation-induced errors. In [77] , a binary clas- 

sification algorithm based on temporal and stereo inconsistencies was 

applied to identify errors caused by single frame object detectors. Li 

et al. [75] developed a general-purpose GPU (GPGPU) fault injection 

tool [136] to investigate error propagation patterns in twelve GPGPU 

applications. Later, Li et al. revealed that the error resilience of DNN ac- 

celerators depends on “the data types, values, data reuse, and the types of 

layers in the design [80] ”. Based on this finding, they devised guidelines 

for designing resilient DNN systems and proposed two DNN protection 

techniques, namely Symptom-based Error Detectors (SED) and Selective 

Latch Hardening (SLH) to mitigate soft errors that are typically caused 

by high-energy particles in hardware systems [137] . 

Mhamdi et al. explored error propagation mechanism in an NN [78] , 

and they theoretically and empirically proved that the key parame- 

ters that can be used to estimate the robustness of an NN are: “Lip- 

schitz coefficient of the activation function, distribution of large synaptic 

weights, and depth of the network ”. The study [80] characterized the faults 

propagation through an open-source autonomous vehicle control soft- 

ware (i.e., openpilot) to assess the failure resilience of the system. The 

Systems-Theoretic Process Analysis (STPA) [138] hazard analysis tech- 

nique was used to guide fault injection. Existing work in Rubaiyat et al. 103
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[80] showed that STPA is suited for an in-depth identification of unsafe 

scenarios, and thus, the fault injection space was reduced. 

Based on the diversified redundancy strategies, the study [81] de- 

veloped diverse networks in the context of different training data sets, 

different network parameters, and different classification mechanisms 

to strengthen the fault tolerance of the DNN architecture. 

Studies [72,73] tried to improve computation efficiency without 

compromising error resilience. Studies [72,73] also predicted the error 

resilience of DNN accelerators to make reconfigurable NN accelerators. 

The study [72] demonstrated a more accurate neuron resilience assign- 

ment than the state-of-the-art techniques and provided the possibility 

of moving parts of the neuron computations to unreliable hardware at 

the given quality constraint. Zhang et al. [73] proposed a framework to 

increase efficiency of computation by approximating the computation 

of certain less critical neurons. Daftry et al. [82] provided an interesting 

idea about “how to enable a robot to know when it does not know? ” The 

idea of [82] is to utilize the resulting features of the controller, which 

are learned from a CNN to predict the failure of the controller, and then 

let the system self-evaluate and decide whether to execute or discard an 

action. 

4.2.3. CA3: Measuring and ensuring test completeness 

The approaches and tools under this theme aim to ensure good cover- 

age when testing NNs. The testing approaches include black-box testing 

(i.e., focusing on whether the tests cover all possible usage scenarios), 

white-box testing (i.e., focusing on whether the tests cover every neuron 

in the NN), and metamorphic testing, which focuses on both test case 

generation and result verification [139] . 

O’Kelly et al. [83] proposed methods to ensure good usage cover- 

age through first making a formal Scenario Description Language (SDL) 

to create driving scenarios, and then translating the scenarios to a 

specification-guided automatic test generation tool named S-TALIRO to 

generate and run the tests. Raj et al. [86] proved the possibility of speed- 

ing up the generation of new and interesting counterexamples by intro- 

ducing fuzzing patterns obtained from an unrelated DNN on a different 

image database, although the proposed method provides no guarantee 

of test completeness. 

DeepXplore [84] first introduced neuron coverage as a testing metric 

for DNNs, and then used multiple different DNNs with similar function- 

ality to identify erroneous corner cases. Compared to [84] , DeepTest 

[85] and DLFuzz [89] aimed at maximizing the neuron coverage with- 

out requiring multiple DNNs. The study [85] employed metamorphic 

relations to identify erroneous behaviors. The study [89] proposed a 

differential fuzzing testing framework to generate adversarial inputs. 

However, methods proposed in Pei et al. [84] , Tian et al. [85] , Guo et al. 

[89] cannot guarantee the generation of test cases that can precisely 

reflect real-world cases (e.g., driving scenes in various weather condi- 

tions when taking a DNN-based autonomous driving system). DeepRoad 

[88] employed Generative Adversarial Network (GAN) based techniques 

and metamorphic testing to synthesize diverse real driving scenes, and 

to test inconsistent behaviors in DNN-based autonomous driving sys- 

tems. In contrast to earlier works, DeepGauge [87] argued that the test- 

ing criteria for traditional software are no longer applicable for DNNs. 

Ma et al. [87] proposed neuron-level and layer-level coverage criteria 

for testing DNNs and for measuring the testing quality. 

4.2.4. CA4: Assuring safety property of NN-based SCCPSs 

Formal verification can provide a mathematical proof that a system 

satisfies some desired safety properties (e.g., the system should always 

stay within some allowed region, namely a safe region). Formal verifi- 

cation usually presents NNs as models and then apply a model checker, 

such as Boolean satisfiability (SAT) solvers (e.g., Chaff [140] , SATO 

[141] , GRASP [142] ) to verify the safety property. Pulina et al. [92] de- 

veloped NeVer ( “Ne ”ural networks “Ver ”ifier), which solves Boolean 

combinations of linear arithmetic constraints, to verify safe regions of 

MLPs. Through adopting an abstraction-refinement mechanism, NeVer 

can verify real-world MLPs automatically. As an extended experiment 

analysis of results of [92] , Pulina and Tacchella [90] compared the per- 

formance (e.g., competition-style and scalability) of state-of-the-art Sat- 

isfiability Modulo Theories (SMT) solvers [143] , and demonstrated that 

scalability and fine-grained abstractions remain challenges for realistic 

size networks. The studies [91,97] verified the “feed-forward NNs with 

piece-wise linear activation functions ” by encoding verification problems 

into solving a linear approximation exploring network behavior in a 

SMT solver. 

The next generation of collision avoidance systems for unmanned air- 

crafts (ACAS Xu) adopted DNNs to compress large score table [5] . Julian 

et al. [95] explored the performance of ACAS Xu by measuring a set of 

safety and performance metrics. A simulation in study [95] shows that 

the system based on DNNs performed as correctly as the original large 

score table but with better performance. Reluplex [97] had successfully 

been used to verify the safety property of a DNN for the prototype of 

ACAS Xu. Although the outcomes of Reluplex [97] are limited to veri- 

fying the correctness of NNs with specific type of activation functions 

(i.e., ReLUs and max-pooling layers), the study sheds a light on which 

types of NN architectures are easier to verify, and thus paves the way 

for verifying real-world DNN-based controllers. 

The method proposed in studies [99,100] verified that Binarized 

Neural Networks (BNNs) are efficient and scalable to moderate-sized 

BNNs. Study [99] represented BNNs as boolean formulas, and then ver- 

ified the robustness of BNNs against adversarial perturbations. In study 

[100] , BNNs and their input-output specifications were transferred into 

equivalence hardware circuits. The equivalence hardware circuits con- 

sist of a BNN structure module and a BNN property module. The authors 

of [100] then applied a SAT solver to verify the properties (e.g., “simul- 

taneously classify an image as a priority road sign and as a stop sign 

with high confidence ”) of the BNN in order to identify the risk behavior 

of the BNN. 

When verifying a SCCS, one of the fundamental concerns is to make 

sure that the SCCS will never violate a safety property. An example of 

a safety property is that the system should never reach an unsafe re- 

gion. The main ideas of studies under this sub-theme are to calculate 

the output reachable set of MLPs, such as in studies [94,96] , or DNNs 

in study [93] , to verify if unsafe regions will be reached. Xiang et al. 

[96] proposed a layer-by-layer approach to compute the output reach- 

able set assisted by polyhedron computation tools. The safety verifica- 

tion of a ReLU MLP is turned into checking if a non-empty intersection 

exists between the output reachable set and the unsafe regions. In a 

later work of Xiang et al. [94] , they introduced maximum sensitivity to 

perform a simulation-based reachable set estimation with few restric- 

tions on the activation functions. By combining local search and linear 

programming problems, Dutta et al. [93] developed an output bound 

searching approach for DNNs with ReLU activation functions, which is 

implemented in a tool called SHERLOCK to check whether the unsafe 

region is reached. Study [98] focused on the safety verification of image 

classification decisions. In [98] , Huang et al. employed discretization to 

enable a finite exhaustive search for adversarial misclassifications. If no 

misclassifications are found in all layers after the exhaustive search, the 

NN is regarded as safe. 

The idea of [101] was to formulate the formal verification of tempo- 

ral logic properties of a CPS with Machine Learning (ML) components as 

the falsification problem (finding a counterexample that does not satisfy 

system specification). The study [101] adopted an ML analyzer to ab- 

stract the feature space of ML components (which approximately repre- 

sents the ML classifiers). The identified misclassifying features are then 

used to drive the process of falsification. The introduction of the ML 

analyzer narrowed down the searching space for counterexamples and 

established a connection between the ML component and the rest of the 

system. 

Another direction to make sure the system will not violate safety 

properties is to use run-time monitoring. The study [102] envisioned 

an approach named WISEML, which combines reinforcement learning 104
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and run-time monitoring technique, to detect invariants violations. The 

purpose of this work was to create a safety envelope around the NN- 

based SCCPSs. 

4.2.5. CA5: Improving interpretability of NNs 

NNs have proved to be effective ways to generalize the relationship 

between inputs and outputs. As the models of NNs are learned from 

training data sets without human intervention, the relationship between 

the inputs and outputs of NNs is like a black box. Due to the black-box 

nature of NNs, it is difficult for people to understand and explain how an 

NN works. Studies under this theme focus on facilitating the understand- 

ing on how NNs generate outputs from inputs. Studies in this theme can 

be classified into the following three sub-themes, which can be over- 

lapped. However, this can be a way to capture the different motivations 

for the interpretability of NNs. 

Studies focusing on understanding how a specific decision is made This 

line of work mainly focuses on providing explanations for individual pre- 

dictions (also defined as local interpretability). One study is called Lo- 

cal Interpretable Model-agnostic Explanations (LIME) [129] . LIME can 

approximate the original NN model locally to provide an explanation 

for a specific prediction of interest. The problem of LIME is that it as- 

sumes the local linearity of the classification boundary, which is not 

true for most complex NNs. The creators of LIME later extended their 

work by introducing high-precision rules (i.e., if-then rules), which they 

called anchors [104] . The study [130] developed an explanation sys- 

tem named LEMNA for security applications and Recurrent Neural Net- 

works (RNNs). LEMNA can locally approximate a non-linear classifica- 

tion boundary and handle feature dependency problems and therefore 

is able to provide a high fidelity explanation. 

In the case of an image classifier, it is also common to use gradient 

measurements to estimate the importance value of each pixel for the 

final classification. DeepLIFT [115] , Integrated Gradients [105] , and 

more recently, SmoothGrad [120] fall into this category. The study 

[121] proposed a unified framework, SHapley Additive exPlanations 

(SHAP), by integrating six existing methods (LIME [122] , DeepLIFT 

[115] , Layer-Wise Relevance Propagation, Shapley regression values, 

Shapley sampling values, and Quantitative Input Influence) to measure 

feature importance. 

Several approaches attempted to decompose the classification deci- 

sion (output) into the contributions of individual components of an input 

based on specific local decomposition rules (i.e., Pixel-Wise decomposi- 

tion [106,116] , and deep Taylor decomposition [108] ). 

Szegedy et al. [103] investigated the semantic meaning of individual 

units and the stability of DNNs while small perturbations were added to 

the input. They pointed out that the individual neurons did not contain 

the semantic information, while the entire space of activations does. 

They also experimentally proved that the same small perturbation of 

input can cause different DNN models (e.g., trained with different hy- 

perparameters) to generate wrong predictions. 

There are several methods for improving local explanations for 

NN models compared to the above-mentioned approaches. The study 

[113] argued that explanation approaches for NN models should pro- 

vide sound theoretical support. Ross et al. [118] presented their idea as 

“Right for the right reasons, ” which means that the output of NN models 

should be right with the right explanation. In Ross et al. [118] , incorrect 

explanations for particular inputs can be identified, and NN models can 

be guided to learn alternate explanations. Both [113,117] made efforts 

on real-time explanations since their approaches can generate accurate 

explanations quickly enough. 

Studies focusing on facilitating understanding of the internal logic of NNs. 

Studies in this sub-theme are also known as global interpretability. To 

help interpret how NN models work, model distillation is used in Frosst 

and Hinton [122] , Che et al. [123] , Hinton et al. [124] , Tan et al. [126] . 

The initial intention of distillation was to reduce the computational cost. 

For example, Hinton et al. [124] distilled a collection of DNN models 

into a single model to facilitate deployment. The knowledge distilled 

from NN models has later been applied for interpretability. Some studies 

compressed information (e.g., decision rules) from deep learning models 

into transparent models such as decision trees [122,131] and gradient 

boosting trees [123] to mimic the performance of models. Others tended 

to explain the inner mechanisms of NN models through analyzing the 

feature space. Study [126] distilled the relationship between input fea- 

tures and model predictions (outputs of the model) as a feature shape 

to evaluate the feature contribution to the model. 

Another attempt to produce global interpretability is to reveal the 

features learned by each neuron. For example, in Nguyen et al. [127] , 

the authors leveraged deep generator networks to synthesized the input 

(i.e., image) that highly activates a neuron. Dong et al. [110] adopted an 

attentive encoder-decoder network to learn interpretable features, and 

then proposed an algorithm called prediction difference maximization to 

interpret the features learned by each neuron. 

One interesting work [119] used an additional NN module that is 

fit for relational reasoning to reason the relations between the input 

and response of the NN models. There is also another promising line of 

work (e.g., [109,114] ) that combined local and global interpretability 

to explain NN models. 

Studies focusing on visualizing internal layers of NNs to help identify 

errors in NNs In study [128] , activities, such as the operation of the clas- 

sifier and the function of intermesdiate feature layers within the CNN 

model, were visualized by using a multi-layered deconvolutional net- 

work (named DeconvNet). These visualizations are useful to interpret 

model problems. Unlike [128] , which visually depicted neurons in a 

convolutional layer, the study [107] visualized neurons in a fully con- 

nected layer. Zhou et al. [112] proposed Class Activation Mapping (CAM) 

for CNNs to visualize the discriminative object parts on any given im- 

age. Fong and Vedaldi [111] highlighted the most responsible part of 

an image for a decision by perturbing meaningful images. DarkSight 

[125] combined the ideas of model distillation and visualization to vi- 

sualize the prediction of an NN model. Thiagarajan et al. [132] built a 

TreeView representation via feature-space partitioning to interpret the 

prediction of an NN. Mahendran et al. [133] reconstructed semantic in- 

formation (images) in each layer of CNNs by using information from the 

image representation. 

4.3. RQ3. What are the limitations of current research with respect to 

testing and verifying NN-based SCCSs? 

Analyzing failure modes and how the system reacts to failures are 

crucial parts of the safety analysis, especially in safety-critical domains. 

When testing and verifying the safety of NN-based SCCPSs, we need to 

rethink how to perform failure mode and effect analysis, how to analyze 

inter-dependencies between sub-systems of SCCPSs, and how to analyze 

the resilience of the system. We need to ensure that even if some of the 

system’s hardware or software do not behave as expected, the system 

can sense the risk, avoid the risk before the incident, and mitigate the 

risk effectively when an incident happens. Looking into T&V activities 

through software development, the ideal situation is that we would find 

appropriate T&V methods to verify whether the design and implemen- 

tation are consistent with the requirements, construct complete test cri- 

teria and test oracle, and generate test data and test any objects (such as 

code modules, data structures) that are necessary for the correct devel- 

opment of software [144] . Unfortunately, the fact is that complete T&V 

is hard to guarantee. In order to investigate the gap between industry 

needs for T&V of NN-based SCCPS and state-of-the-art T&V methods, we 

performed a mapping of identified approaches to the relevant standard. 

4.3.1. Mapping of reviewed approaches to the software safety lifecycles in 

IEC 61508 

An increased interest in the application of NNs within safety-critical 

domains has encouraged research in the area of T&V of NN-based SCCSs. 

Research institutions and industry T&V practitioners are working on 

different aspects of this problem. However, we have not found strong 105
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Table 5 

A mapping of reviewed approaches to IEC 61508 safety lifecycle. 

Phase Property Relevant primary studies Category Remaining challenges 

Software Completeness None N/A 

architecture design Correctness [95] CA4 Training process of NN-based algorithm is 

time-consuming. 

Freedom from intrinsic 

faults 

[56,58,59,61,65,67–71] CA1 ❶ Limited to specific model classes, or tasks (e.g., image 

classifier), or small size NNs [58] ; ❷ Not immune to 

adversarial adaptation [65] ; ❸ Lack of understanding on 

how system can be free from different kinds of attacks 

other than adversarial examples. 

Understand- ability [103–133] CA5 ❶ Limited to specific model classes, or tasks (e.g., image 

classifier), or small size NN models [122] ; ❷ Not able to 

provide real-time explanations; ❸ Lack of evaluation 

method for the explanation of NNs. 

Verifiable and testable 

design 

[83] CA3 ❶ Lack of integrated computer- aided toolchains to 

support the verification activities; ❷ Limited to specific 

models, tasks or NN size. 

[91] CA4 ❶ Limited to specific NN architectures (i.e., piece-wise 

linear activation functions), need better understanding of 

NN architectures; ❷ Trade-off between efficient 

verification and linear approximation of the NN behavior 

is not studied sufficiently. 

Fault tolerance [73,74,78,81,82] CA2 ❶ Decouple the fault tolerance from the classification 

performance [74] ; ❷ Lack of studies on unexpected 

environmental failures. 

Defense against common 

cause failure 

None N/A 

Software module testing 

and integration 

Completeness [60,71] CA1 Lack of comprehensive criteria to evaluate testing 

adequacy. 

[84–89] CA3 Low fidelity of testing cases compared with real-world 

cases [85] . 

Correctness [55,57,60,62–64,66] CA1 ❶ Vulnerable to the variation of adversarial examples; ❷

Limited to specific NN model classes or tasks. 

[77] CA2 Insufficient validation of input raw data. 

Repeatability [83–85] CA3 Testing cases generated by automated tools may be 

biased. 

Precisely defined testing 

configuration 

None N/A 

Programm- able 

electronics integration 

(hardware and software) 

Completeness None N/A 

Correctness [72,75,76,79] CA2 Insufficient testing of hardware accelerator. 

Repeatability None N/A 

Precisely defined testing 

configuration 

None N/A 

Software verification Completeness [94,96] CA4 ❶ Limited to specific NN models; ❷ Lack of scalability. 

Correctness [80] CA2 ❶ Automatic generation of complete testing scenarios 

sets. 

[90,92,93,97–101] CA4 ❶ Scalability and computational performance need to 

improve; ❷ SMT encoding for large-scale NN model; ❸

Lack of model-agnostic verification methods; ❹

Automatic generation of feature space abstractions [101] . 

Repeatability None N/A 

Precisely defined testing 

configuration 

None N/A 

connections between those potentially useful methods for T&V of NNs 

and relevant safety standards (such as IEC 61508 [45] and ISO 26262 

[46] ). 

We hereby adopt IEC 61508 [45] as a reference standard to exe- 

cute the mapping analysis since ISO 26262 [46] is the adaptation of 

IEC 61508 [45] . We found that the major T&V activities listed in the 

software safety lifecycles of IEC 61508-3 (including evaluation of soft- 

ware architecture design, software module testing and integration, pro- 

grammable electronics integration, and software verification) are still 

valid when conducting T&V for NN-based SCCSs. But for most of them, 

new techniques/measures for supporting the T&V of NN-based software 

are demanded. Therefore, we decided to employ safety integrity prop- 

erties (which are explained in IEC 61508-3 Annex C and Annex F of IEC 

61508-7) as indicators to justify to what extent these desirable prop- 

erties have been achieved by the state-of-the-art methods for T&V of 

NN-based SCCSs. The detailed mapping information can be found in 

Table 5 . 

In Table 5 , we mapped existing T&V methods for NN-based SCCSs 

(column 3 and column 4) into relevant properties (column 2) of four 

major T&V phases (column 1) in the software safety lifecycles of IEC 

61508-3. For column 5 in Table 5 , we summarized the remaining chal- 

lenges in testing and verifying NN-based SCCSs based on reviewed pa- 

pers. The overviews of these remaining challenges can potentially in- 

spire researchers to look for a focus in the future. 

4.3.2. Limitations and suggestions for testing and verifying NN-based 

SCCSs 

In Table 5 , we show the limitations and gaps of state-of-the-art T&V 

approaches for NN-based SCCSs. In this section, we will take two T&V 

phases (evaluation of software architecture design and software mod- 

ule testing and integration) as examples to provide detailed analysis 

of identified limitations and corresponding suggestions on the basis of 

required safety integrity properties. For the other two T&V phases (pro- 

grammable electronics integration and software verification), only sum- 106
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maries of limitations and suggestions will be presented to avoid dupli- 

cation. 

4.3.2.1. Evaluation of software architecture design. The top three prop- 

erties that have been addressed are: simplicity and understandability (31 

papers), freedom from intrinsic design faults (10 papers), and fault toler- 

ance (5 papers). Correctness with respect to software safety requirements 

specification (1 paper) and verifiable and testable design have drawn little 

attention (2 papers) for reviewed studies. There are two properties, i.e., 

completeness with respect to software safety requirements specification and 

Defense against common cause failure from external events , which have not 

been addressed in reviewed papers. 

4.3.2.1.1. Completeness with respect to software safety requirements 

specification. No study contributes to the achievement of completeness, 

which requires the architecture design to be able to address all the safety 

needs and constraints. The achievement of completeness depends on the 

achievement of other properties, such as fully understanding the behav- 

ior of NN models. The design and deployment of NN-based SCCSs are in 

its infancy stage. When NN-based SCCS design becomes more practical, 

more studies may address this topic. 

4.3.2.1.2. Correctness with respect to software safety requirements spec- 

ification. To achieve correctness, software architecture design needs 

to respond to the specified software safety requirements appropriately. 

Study [95] reported their successful design of a DNN-based compres- 

sion algorithm for aircraft collision avoidance systems. Even though 

they demonstrated that the DNN-based algorithm preserves the required 

safety performance, the training process is still time-consuming. 

4.3.2.1.3. Freedom from intrinsic design faults. Intrinsic design faults 

can be interpreted as failures derived from the design itself. State-of-the- 

art NNs have proved to be vulnerable to adversarial perturbations due 

to some intriguing properties of NNs [56] . Most of the studies in this cat- 

egory were aimed at understanding, detecting, and mitigating adversar- 

ial examples. Study [98] reported that their approach could generalize 

well on several state-of-the-art NNs to find adversarial examples suc- 

cessfully. However, the verification process of founded features is time- 

consuming, especially for larger images. In this sense, the scalability and 

computational performance of adversarial robustness are expected to be 

addressed in the future. In addition, adversarial robustness does not im- 

ply that the NN model is truly free from intrinsic design faults. How to 

assure freedom from interferences (e.g., signal-noise ratio degradation) 

other than adversarial perturbations is a research gap that needs to be 

filled. 

4.3.2.1.4. Understandability. This property can be interpreted as 

the predictability of system behavior, even in erroneous and failure sit- 

uations. In this category, studies focusing on providing explanations for 

individual prediction (e.g., [103] ) and on visualizing internal layers of 

NN (e.g., [128–130] ) are not meaningful for safety assurance. Studies 

focusing on facilitating understanding of the internal logic of NNs (such 

as presenting NNs as decision trees [122] ) could be a solution to im- 

prove the understandability of NN-based architecture design. However, 

this line of work is rare, and most methods are only applied to small- 

scale DNNs with image input, or specific NN models. Besides, assuming 

the explanation of NN is available, confirming the correctness of the ex- 

planation is still a challenge. Interpretability of NNs is undoubtedly a 

crucial need in safety-critical applications. Methods in this line should 

capable of explaining different types of sensor data (e.g., image, text, 

and point data) and both local and global decisions. 

4.3.2.1.5. Verifiable and testable design. The evaluation metrics of 

verifiable and testable design may be derived from modularity, sim- 

plicity, provability, and so on. We observed that existing verifiable and 

testable designs are limited to specific NN architectures (e.g., [91] ) or 

specific tasks (e.g., [83] ). There is no standard procedure for determin- 

ing which type of NNs will be easier to verify. Ehlers [91] argued that 

NNs that adopt piece-wise linear activation functions are easier to ver- 

ify, but their method still need to face the conflict between efficient 

verification and accuracy of linear approximation for the NN behavior. 

4.3.2.1.6. Fault tolerance. Fault tolerance implies that the architec- 

ture design can assure the safe behavior of the software whenever in- 

ternal or external errors occur. To achieve fault tolerance, features like 

failure detection and failure impact mitigation of both internal and ex- 

ternal errors should be included in the design. Existing methods showed 

that unexpected environmental failures are hard to detect and miti- 

gate. Besides, many of the proposed approaches in this category have 

not yet been evaluated in the real-world. Some studies formulated ap- 

proximated computational models to represent real-world systems (e.g., 

[73] ). The study [82] did not use any test oracle when executing system 

flight tests. Some studies used simulation models to verify the perfor- 

mance of the original NN (e.g., [74] ). They are not able to prove the 

fidelity of the model compared with the real-world system. 

4.3.2.1.7. Defense against common cause failure from external events. 

Software common cause failure is a type of concurrent failure of two 

or more modules in the software, which is caused by software design 

defects and triggered by external events such as time, unexpected in- 

put data, or hardware abnormalities [145] . Many safety critical systems 

adopt redundant architectures (meaning two or more independent sub- 

systems have identical functions to back-up each other) to prevent a 

single point of failure. However, redundant architectures are vulnerable 

considering common cause failure. In the context of NN-based SCCSs, it 

is common to employ multiple NNs with similar architectures in order 

to improve the accuracy of prediction. If a common cause failure occurs 

in this kind of software design, the prediction might be totally wrong, 

and thus the control software might make the wrong decision. DeepX- 

plore, reported in Pei et al. [84] , used more than two different DNNs 

with the same functionality to automatically generate a test case. If all 

the DNNs in DeepXplore are affected by common cause failure, such as 

if a sensor failure causes all the DNNs to make the same misclassifica- 

tion, then it will not be able to generate the corresponding test case. 

No method is found in reviewed papers that can identify common cause 

failure modes and defend against such failures. In order to effectively 

defend against common cause failure, designers need to inspect the com- 

pleteness and correctness of the safety requirements specification, trace 

the implementation of the safety requirements specification, and make 

a thorough T&V plan to reveal the common cause failure modes in the 

early stage. 

4.3.2.2. Software module testing and integration. The top two properties 

that have been addressed are: completeness of testing and integration with 

respect to the design specifications (9 papers) and correctness of testing and 

integration with respect to the design specifications (8 papers). Repeatability 

has drawn little attention (3 papers) from the reviewed studies. There is 

one property, precisely defined testing configuration , which has not been 

addressed in the reviewed papers. This property aims to evaluate the 

precision of T&V procedures, which is not in the scope of our selected 

papers. Therefore, we will not give more explanation on this property. 

4.3.2.2.1. Completeness of testing and integration with respect to the de- 

sign specifications. We observed some efforts that tried to find a sys- 

tematic way to generate testing cases (e.g., [85,88] ) to measure testing 

quality (e.g., [87] ) or to connect different T&V stages in the develop- 

ment of SCCSs (e.g., [146] ). As analyzed in Section 4.2 , we can infer that 

an NN-based control software is instinctually different in design work- 

flow and software development compared to the design of traditional 

control software. We suggest that the testing criteria should thoroughly 

align with the software design. To be more specific, the instinctive fea- 

tures of NN-based softwares (e.g., NN model’s architectural details and 

the working mechanism of NNs) should be carefully considered when 

setting the testing criteria. That is testing criteria should be defined com- 

prehensively and explicitly under the consideration of not only test case 

coverage but also the robustness of NN-based system performance (for 

instance, test how an NN will respond when input data change slightly) 

and the features of training data sets, such as the data density issue 

mentioned in Ashmore and Hill [147] . 107
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4.3.2.2.2. Correctness of testing and integration with respect to the de- 

sign specifications. Several studies (e.g., [55,62,63] ) reported that their 

methods are vulnerable to the variation of adversarial examples. An- 

other common limitation is that most methods are model-specific, mean- 

ing that they can only apply to a single type or class of NN model. To 

achieve correctness of testing and integration, the module testing task 

should be completed, which means the testing should cover both NN 

models and external input. However, few studies focused on the valida- 

tion of input data. One study [77] identified that sufficient validation of 

input raw data remains a challenge. 

4.3.2.2.3. Repeatability. The complexity and un-interpretable fea- 

ture of NNs make manual testing almost infeasible. In order to be able 

to generate consistent results from testing repeatedly, some studies were 

dedicated to achieving automatic test execution or even automatic test 

generation. We found three papers (i.e., [83–85] ) addressing automatic 

test generation. However, generating test cases automatically is still a 

challenge. For instance, studies [84,85] claimed that the test cases gen- 

erated by an automated testing tool may not cover all real-world cases. 

4.3.2.3. Programmable electronics integration. The major limitation of 

this line of work is insufficient testing for hardware accelerators. NN- 

based SCCPSs requires typically high-performance computing systems, 

such as Graphics Processing Units (GPUs). Some industry participants 

have provided specialized hardware accelerators to accelerate NN-based 

computations. For example, Google deployed a DNN accelerator (called 

Tensor Processing Unit) in its data centers for DNN applications [148] . 

NVIDIA introduced an automotive supercomputing platform named 

DRIVE PX 2 [34] , which now has been used by over 370 companies and 

research institutions in the automotive industry [149] . However, little 

research effort has been put into the T&V of the reliability of using hard- 

ware accelerators for NN applications. We found seven studies (i.e. [72–

77,79] ) addressing the evaluation of the error resilience of hardware 

accelerators. However, the testing is limited to specific type errors (e.g., 

radiation-induced soft errors, which are presented in Schorn et al. [72] , 

Santos et al. [76] , Li et al. [79] ). The mitigation method proposed in San- 

tos et al. [76] (called ABFT: Algorithm-Based Fault Tolerance) can only 

protect portions of the accelerator (e.g., sgemm kernels, which is one 

kind of matrix multiplication kernels). The study [77] identified errors 

made by single frame object detectors, but the result showed that the 

method is not capable of detecting all mistakes. The studies [72,79] in- 

vestigated the propagation characteristic of soft errors in the DNN sys- 

tem, but they used a DNN simulator instead of a real DNN accelerator 

for fault injection. 

4.3.2.4. Software verification. In general, there is a lack of a comprehen- 

sive and standardized framework for verifying the safety of NN-based 

SCCSs. Formal verification procedures are highly demanding. The com- 

mon limitation of formal verification approaches is the scalability issues. 

Most proposed methods are limited to a specific NN structure and size 

(e.g., [91,92,97,99,100] ). The study [92] reported that their approaches 

can only verify small-scale systems (i.e., the layer of NN is 3 and the 

maximum amount of input neurons is 64). One approach reported in 

Narodytska et al. [99] can verify medium size NNs. The verification of 

large-scale NNs is still a challenge. Another limitation is that proposed 

approaches are not robust to NN variations. For example, verification 

methods in studies [91,97] are only adapted to specific network types 

and sizes. 

5. Discussion 

In this section, we first discuss industry practices for T&V of NN- 

based SCCPSs. Then, we compare this SLR with related works. At the 

end of this section, we present the threats to the validity of our study. 

5.1. Industry practice 

Our findings on the research questions (RQ1 to RQ3) mainly re- 

flected the academic efforts addressing T&V of NN-based SCCPSs. NN- 

based applications have drawn a lot of attention from industry prac- 

titioners. Taking the automotive industry as an example, several car 

makers (e.g., GM, BMW, and Tesla) and some high technology compa- 

nies (e.g., Waymo and Baidu) are leading the revolution in autonomous 

driving safety. 

5.1.1. Safety of the intended functionality 

At the beginning of this year, ISO/PAS 21448:2019 [47] was pub- 

lished. It listed recommended methods for deriving verification and val- 

idation activities (See ISO/PAS 21448:2019 Table 4 ). In Table 6 , we 

highlighted six of the recommended methods, which shared similar ver- 

ification interests with existing academic efforts. 

5.1.2. Safety reports 

In 2018, three companies (Waymo, General Motor, and Baidu 

Apollo) published their annual safety reports. As a pioneer in the de- 

velopment of self-driving cars, Waymo proposed the “Safety by Design ”

[150] approach, which entails the processes and techniques they used to 

face safety challenges of a level 4 autonomous car on the road. For the 

cybersecurity consideration, Waymo adopted Google’s security frame- 

work [151] as the foundation. After that, General Motor (GM) released 

their safety report [152] for Cruise AV (also level 4). GM’s safety process 

combined conventional system validation (such as vehicle performance 

tests, fault injection testing, intrusive testing, and simulation-based soft- 

ware validation) with SOTIF validation through iterative design. Baidu 

adopted the Responsibility-Sensitive Safety model [153] proposed by 

Mobileye [154] (an Intel company) to design the safety process for the 

Apollo Pilot for a passenger car (level 3). 

In addition, we noticed that Tesla started releasing quarterly safety 

data since October 2018 [155] . It seemed that Tesla has a completely 

different approach to self-driving cars than other companies. Accord- 

ing to TESLA NEWS [156] , AutoPilot will rely for its self-driving func- 

tion on cameras, not on LIDAR; the AutoPilot software is trained online 

(which means that the NN keeps learning and evolving during opera- 

tion). The Autopilot’s safety features are continuously evolved and en- 

hanced through understanding real-world driving data from every Tesla. 

Referring to these safety reports of existing autonomous cars, we 

should be aware that when testing DNN-based control software (the 

core part of autonomous vehicles), black-box system level testing (by 

observing inputs and its corresponding outputs, e.g., closed course test- 

ing and real-world driving) is still the leading method. More systematic 

T&V criteria and approaches are needed for more complete and reliable 

testing results. 

5.2. Comparison with related work 

5.2.1. Verification and validation of NNs 

Taylor et al. [15] conducted a survey on the Verification and Val- 

idation (V&V) of NNs used in safety-critical domains in 2003. Study 

[15] is the closest work we found, although they did not adopt an SLR 

approach. Our study covered new studies from 2011 to 2018. The au- 

thors of [15] also made a classification of methods for the V&V of NNs. 

They grouped the methods into five traditional V&V technique cate- 

gories, namely, automated testing and testing data generation methods, 

run-time monitoring, formal methods, cross validation, and visualiza- 

tion. In contrast to [15] , our study adopted a thematic analysis approach 

[54] and identified five themes based on the research goals of the se- 

lected studies. We thought it was better to classify the proposed T&V 

methods of NNs based on their aims rather than on the traditional tech- 

nique categories since many traditional V&V techniques are no longer 

effective for verifying NNs in many cases. New methods and tools should 

be explored and developed without being limited by the traditional V&V 108
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Table 6 

Shared verification interests of ISO/PAS 21448 and academic efforts. 

ISO/PAS 21448 Academic efforts 

Analysis of triggering events CA1: Assuring robustness of NNs 

Analysis of sensors design and their known potential limitations CA2: Improving failure resilience of NNs 

Analysis of environmental conditions and operational use cases CA3: Measuring and ensuring test completeness 

Analysis of boundary values CA4: Assuring safety property of NN-based SCCPSs 

Analysis of algorithms and their decision paths CA5: Improving interpretability of NNs 

Analysis of system architecture CA1–CA5 

categories. Another difference is our study specialized more in the T&V 

of modern NNs, such as MLP and DNN, whereas the study [15] provided 

more in-depth analysis of V&V methodologies for NNs used in flight 

control system, such as Pre-Trained Neural Network (PTNN) and Online 

Learning Neural Network (OLNN). Our study and [15] have some com- 

mon findings. For example, one category, named Visualization in Taylor 

et al. [15] , falls into our category CA5 Improving interpretability of NNs. 

5.2.2. Surveys of security, safety, and productivity for deep learning (DL) 

systems development 

Hains et al. [16] surveyed existing work on “attacks against DL sys- 

tems; testing, training, and monitoring DL systems for safety; and the verifi- 

cation of DL systems. ” Our study and [16] shared a similar motivation. 

The critical difference between our SLR and [16] are threefold: 1) We 

conducted our literature review on 83 selected papers based on specific 

SLR guidelines, while they used an ad hoc literature review (ALR) ap- 

proach and reviewed only 21 primary papers. 2) They only focused on 

DL systems, whereas our scope covered modern NN-based software sys- 

tems, which embodies DL-based software systems. 3) They inferred that 

formal methods and automation verification are the two promising re- 

search directions based on the reviewed works. In contrast, we focused 

more on safety issues, and found more categories to be addressed for 

safety purposes. 

5.2.3. Surveys of certification of AI technologies in automotive 

Falcini et al. [17,18] reviewed the existing standards in the auto- 

motive industry and pointed out the related applicability issues of au- 

tomotive software development standards to deep learning. Although 

our SLR takes the automotive industry as an example, we are concerned 

with SCCPSs in general. This concern is reflected in the distribution of 

the selected papers (only 13 of the 83 selected papers are oriented to 

automotive CPSs). 

5.2.4. SLR of explainable artificial intelligence (XAI) 

There are two very recent SLRs, Adadi and Berrada [157] and 

Hohman et al. [158] , on the interpretation of artificial intelligence. 

Both [157,158] employed similar commonly accepted guidelines to con- 

duct their SLRs. The fundamental difference between our study and 

[157,158] is the scope. Adadi and Berrada [157] reviewed 381 papers on 

existing XAI approaches from interdisciplinary perspectives. As reported 

in Hohman et al. [158] , the scope of their SLR is visualization and vi- 

sual analytics for deep learning. The study [158] focused on studies that 

adopted visual analytics to explain NN decisions. Our study has a more 

comprehensive coverage of T&V approaches that were employed to not 

only interpret NN behaviors but also to assure the robustness of NNs, to 

improve the failure resilience of NNs, to ensure test completeness, and to 

assure the safety property of NN-based SCCPSs. In a summary, our SLR 

tried to provide an overview of key aspects related to T&V activities for 

NN-based SCCSs. 

5.3. Threats to validity 

In this section, we discuss some threats to the validity of our study. 

5.3.1. Search strategy 

The most possible threat in this step is missing or excluding relevant 

papers. To mitigate this threat, we used six of the most relevant digital 

libraries to retrieve papers. Additionally, we employed two strategies to 

mitigate potential limitations in the search terms: 1) adopted an PIOC 

criteria to ensure the coverage of search terms; and 2) improved search 

terms iteratively. Further, we conducted an extensive snowballing pro- 

cess on references of the selected papers to identify related papers. The 

search keywords were cross-checked and agreed on by both authors. 

5.3.2. Study selection 

Researchers’ subjective judgment could be a threat to the study se- 

lection. We strictly followed the pre-defined review protocol to mitigate 

this threat. For example, we started recording the inclusion and exclu- 

sion reasons from the 3rd stage. We validated the inclusion and exclu- 

sion criteria with two authors on the basis of the pilot search. Further- 

more, the second author performed a cross-check of all selected papers. 

Any paper that raised doubts about its inclusion or exclusion decision 

was discussed between the first and second authors. For example, the 

“smart grid ” is included in the search term, but no relevant papers were 

found after the 3rd stage. Then, we conducted a snowballing search to 

identify papers that presented how to use NNs in smart grids. We found 

out that AI is mainly used to solve the economically relevant problems 

[159] of the smart grid system (e.g., prediction of energy usage and 

efficient use of resources). AI is not involved in the safety-critical appli- 

cations (e.g., decision making on optimal provision of power) of smart 

grids. Therefore, there were no relevant papers addressing safety anal- 

ysis or testing/verification (refer to Inclusion criteria I2). 

5.3.3. Data extraction 

The first author was responsible for designing the data extraction 

form and conducting the data extraction from selected papers. In order 

to avoid the first author’s bias in data extraction, the two authors con- 

tinuously discussed the data extraction issues. The extracted data were 

verified by the second author. 

5.3.4. Data synthesis 

Data analysis outcomes could vary with different researchers. To re- 

duce the subjective impact on data synthesis, besides strictly following 

the thematic synthesis steps [54] , the data synthesis was first agreed 

on by both authors. We disseminated our preliminary findings to two 

internal research groups at our university (i.e., the autonomous vehi- 

cle lab and autonomous ships lab) and presented at a Ph.D. seminar on 

IoT, Machine Learning, Security, and Privacy for comments and feed- 

back. In summary, the audiences agreed with our research design and 

results, and they thought that the mapping of reviewed approaches to 

the IEC61508 is a valuable attempt. Several researchers working in for- 

mal verification and safety verification thought that safety cases would 

be a promising direction to address the challenges of T&V of NN-based 

SCCSs. One suggestion is adding information about self-driving car sim- 

ulators. Based on these comments and feedback, we revised our paper 

accordingly. 109
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6. Conclusion and future work 

In this paper, we have presented the results of a Systematic Litera- 

ture Review (SLR) of existing approaches and practices on T&V meth- 

ods for neural-network-based safety critical control software (NN-based 

SCCS). The motivation of this study was to provide an overview of the 

state-of-the-art T&V of safety-critical NN-based SCCSs and to shed some 

light on potential research directions. Based on pre-defined inclusion 

and exclusion criteria, we selected 83 papers that were published be- 

tween 2011 and 2018. A systematic analysis and synthesis of the data 

extracted from the papers and comprehensive reviews of industry prac- 

tices (e.g., technical reports, standards, and white papers) related to our 

RQs were performed. Results of the study show that: 

1. The research on T&V of NN-based SCCSs is gaining interest and at- 

tention from both software engineering and safety engineering re- 

searchers/practitioners according to the impressive upward trend in 

the number of papers on T&V of NN-based SCCSs (See Fig. 5 ). Most 

of the reviewed papers (68/83, 81.9%) have been published in the 

last three years. 

2. The approaches and tools reported for the T&V of NN-based con- 

trol software have been applied to a wide variety of safety-critical 

domains, among which “automotive CPSs ” has received the most at- 

tention. 

3. The approaches can be classified into five high-order themes, 

namely, assuring robustness of NNs, improving failure resilience 

of NNs, measuring and ensuring test completeness, assuring safety 

properties of NN-based SCCPSs, and improving interpretability of 

NNs. 

4. The activities listed in the software safety lifecycles of IEC 61508- 

3 are still valid when conducting safety verification for NN-based 

control software. However, most of the activities need new tech- 

niques/measures to deal with the new characteristics of NNs. 

5. Four safety integrity properties within the four major safety lifecy- 

cle phases, namely, correctness, completeness, freedom from intrin- 

sic faults, and fault tolerance, have drawn the most attention from 

the research community. Little effort has been put on achieving re- 

peatability. No reviewed study focused on precisely defined testing 

configuration and defense against common cause failure, which are 

extremely crucial for assuring the safety of a production-ready NN- 

based SCCS [160] . 

6. It is common to combine standard testing techniques with formal 

verification when testing and verifying large-scale, complex safety- 

critical software [15,144] . As explained in Section 4.3 , we found 

that an increasing concern of the reviewed works is the integration 

of different T&V techniques in a systematic manner to gain assurance 

for the whole lifecycle of the NN-based control software. 

This SLR is just a starting point in our studies to test and verify 

NN-based SCCPSs. In the future, we will focus on improving the inter- 

pretability of NNs. To be more specific, we plan to develop a method 

for explaining why an NN model is more (or less) robust than other 

models. It can guide software designers to design an NN model with 

an appropriate robustness level, which will greatly support safety by 

design. 
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[103] Szegedy, C., W. Zaremba, I. Sutskever, 

J. Bruna, D. Erhan, I. Goodfellow and 

R. Fergus 
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perturbations against deep neural networks 

IEEE Symposium on Security & Privacy 
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Goodfellow 

2016 Improving the robustness of deep neural 
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IEEE conference on computer vision and pattern 
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IEEE/RSJ International Conference on Intelligent 
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[112] Zhou, B., A. Khosla, A. Lapedriza, A. 

Oliva and A. Torralba 

2016 Learning deep features for discriminative 

localization 

IEEE conference on computer vision and pattern 

recognition 

[58] Bastani, O., Y. Ioannou, L. 

Lampropoulos, D. Vytiniotis, A. Nori 

and A. Criminisi 

2016 Measuring neural net robustness with constraints Advances in neural information processing 

systems 

[115] Shrikumar, A., P. Greenside, A. 

Shcherbina and A. Kundaje 

2016 Not just a black box: Interpretable deep learning 

by propagating activation differences 

arXiv Preprint 

[95] Julian, K. D., J. Lopez, J. S. Brush, M. P. 

Owen and M. J. Kochenderfer 

2016 Policy compression for aircraft collision avoidance 

systems 

IEEE/AIAA international conference on Digital 

Avionics Systems Conference (DASC) 

[127] Nguyen, A., A. Dosovitskiy, J. Yosinski, 

T. Brox and J. Clune 

2016 Synthesizing the preferred inputs for neurons in 

neural networks via deep generator networks 

Advances in Neural Information Processing 

Systems 

[132] Thiagarajan, J. J., B. Kailkhura, P. 

Sattigeri and K. N. Ramamurthy 

2016 TreeView: Peeking into deep neural networks via 

feature-space partitioning 

arXiv preprint 

[75] Li, G., K. Pattabiraman, C.-Y. Cher and 

P. Bose 

2016 Understanding error propagation in GPGPU 

applications 

International Conference on High Performance 

Computing, Networking, Storage and Analysis 

[129] Ribeiro, M. T., S. Singh and C. Guestrin 2016 Why should i trust you?: Explaining the 

predictions of any classifier 

ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining 

[105] Sundararajan, M., A. Taly and Q. Yan 2017 Axiomatic attribution for deep networks International Conference on Machine Learning 
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Mangharam 

2017 Computer-aided design for safe autonomous 

vehicles 
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Systems with Machine Learning Components 

NASA Formal Methods 

[85] Tian, Y., K. Pei, S. Jana and B. Ray 2017 DeepTest: Automated testing of 

deep-neural-network-driven autonomous cars 

arXiv preprint 

[64] Reuben, F., R. R. Curtin, S. Saurabh and 

A. B. Gardner 

2017 Detecting Adversarial Samples from Artifacts arXiv preprint 

[122] Frosst, N. and G. Hinton 2017 Distilling a Neural Network Into a Soft Decision 

Tree 

arXiv preprint 

[84] Pei, K., Y. Cao, J. Yang and S. Jana 2017 DeepXplore: Automated Whitebox Testing of Deep 

Learning Systems 

ACM Symposium on Operating Systems Principles 

(SOSP) 

[63] Gopinath, D., G. Katz, C. S. Pasareanu 

and C. Barrett 
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adversarial robustness in neural networks 

arXiv preprint 

[108] Montavon, G., S. Lapuschkin, A. Binder, 
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2017 Evaluation and Mitigation of Soft-Errors in Neural 
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Neural networks (NNs) have shown remarkable performance of perception in their application in autonomous
vehicles (AVs). However, NNs are intrinsically vulnerable to perturbations, such as occurrences outside of the
training sets, scene noise, instrument noise, image translation, and rotation, or small changes intentionally added
to the original image (called adversarial perturbations). Incorrect conclusions from the perception systems (e.g.,
missing objects, wrong classification, and traffic sign misdetection or misreading) have been a major cause of
disengagement incidents in AVs. In order to explore the dynamic nature of hazardous events in AVs, we develop
a range of methods to analyze AV safety and security. This work is part of the project and is devoted to analyzing
the influence of robustness in the NN-based perception system by using fault tree analysis (FTA). We extend the
traditional FTA to represent combinations of failure causes in the multi-dimensional space, i.e., two variables that
influence whether the image is classified correctly. The extended FTA is demonstrated on the traffic sign recognition
module of AV theoretically and in practice.

Keywords: safety, neural network, autonomous vehicles, robustness, failure mode, hazard identification.

1. Introduction
The development of Autonomous Vehicles (AVs)
is proceeding rapidly and promises safer and more
efficient roads. However, safety and security prob-
lems remain, and disengagement incidents, that is,
the handover of vehicle control to a human driver,
present a major problem Banerjee et al. (2018).
ISO 26262:2011 (2011) and ISO/PAS21448:2019
(2019) intended to address the growing complex-
ity of vehicle systems. However, ISO 26262 does
not clearly specify the methods for safety analysis.
In the automotive domain, traditional hazard anal-
ysis techniques such as Fault Tree Analysis (FTA)
and Failure Mode and Effects Analysis (FMEA)
or Hazard and Operability Analysis (HAZOP) are
generally used for the complex system. In this
study, the methods are extended to cover problems
arising particularly in Neural Networks (NNs).

One of the major problems in analyzing AV
controllers is that of NN components. Deep Neu-
ral Networks (DNNs) have been widely used for
object detection, image recognition, navigation,
and control in AVs. Although DNNs are powerful
methods for performing complex tasks compared
to humans, they are extremely vulnerable to natu-
ral noise Hendrycks and Dietterich (2019) and to
small perturbations intentionally added to the in-
put to cause mispredictions Szegedy et al. (2013).
A DNN is different from traditional human written
programs with certain intended behaviors. Risk
analysis of the use of DNNs is at present chal-
lenging due to its black-box nature. Analyzing the
internal working of a NN with no underlying de-
sign is computationally hard Shalev-Shwartz et al.
(2017); Johnson (2018). This sets a limit on what
can be achieved by hazard identification.

Kalra and Paddock of Rand Corporation made
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a statistical assessment on the number of miles
of driving that would be needed for AV safety
Kalra and Paddock (2016). Their results show that
demonstrating with 95% confidence that the AV
failure rate is 20% better than the human driver
failure rate would require 11 billion miles of on-
road driving (equivalent to 500 billion vehicle
years to complete the requisite miles). This level
of testing is impractical. Therefore, it is desirable
to analyze safety in the same way that other rare
hazards are analyzed, that is, by risk analysis
based on component reliabilities and by in-depth
assessment of defense. This does not mean that
on-road testing would not be needed. On-road
testing is an evidence-based way of performing
this validation. The risk analysis provides a way of
amplifying the value of on-road testing, allowing
near miss and partial failure cases to be included
in the evidence base while providing a framework
for assessing such less serious incidents Taylor
et al. (2021).

This paper describes the part of the study that
investigates the influence of perturbations in NNs
in the context of AVs from an integrated perspec-
tive. We consider both safety hazards due to nat-
ural perturbations and security threats due to ad-
versarial perturbations as part of an entire system
risk assessment. We analyze the failure modes of
perturbations in the NN-based perception system
by using various hazard identification methods
and a combination of methods, i.e., the use of
dynamic fault tree methods to explicit reliability
analysis of NNs. We also use the Systems The-
oretic Process Analysis (STPA) of control loops
but include emergent hazards Taylor and Kozin
(2021a) as well as component functional failures
and the semi-automated fault tree construction to
help obtain completeness and consistency in the
FTAs. The proposed methods are tested using a
design for a 1/4 scale AV. The physical model
enables the effects of “real world” problems such
as camera resolution, processing response times,
the field of view, camera alignment etc., to be
investigated in the context of NN performance. An
FTA was made for the entire vehicle, including
physical, control, and sensor components. The de-
sign used as an example for the analysis includes
vision algorithms and NNs for control of steering,
acceleration, and braking. Due to the space limits,
we present the whole FTA in a technical report
Taylor et al. (2021).

Our main contribution is to show that NNs and
vision algorithms can be included in overall risk
analysis in the form of a Fault Tree (FT) by using
the concept of exceeding robustness of NNs as FT
events alongside the traditional component failure
probabilities. The second contribution is that we
demonstrate how an FT can include failure events
that stem from multiple small deviations of param-
eters influencing image recognition. These failure
events are a very special class of failures that are

difficult to identify and quantify. The difficulty
is rooted in the phenomenon that arises when all
parameters - considered one by one - lie in op-
erational regions. While multiple small variations
occur together, they cause performance to fall in a
region where the image can be misclassified.

The remainder of the paper is organized as
follows: In section 2, we introduce background
related to the AV hazard analysis. Section 3 sum-
marizes the hazard identification methods we used
for this study. In section 4, we identify both
safety and security threats to the NN performance.
Section 5 discusses robustness determination and
robustness enhancement. Section 6 demonstrates
our extended FTA for the traffic sign recognition
network both theoretically and in practice. Section
7 concludes the study.

2. AV hazards analysis
AVs are composed of many functional modules –
physical, electronic, and software. Since the most
important safety issues involve crashes, FTAs pro-
vided the overall framework for hazard identifi-
cation. Still, FMEA was used to provide details
of mechanical and electrical component failure,
STPA was used to analyze the control hierarchies,
and emergent hazard analysis was used for con-
trol loop failures. Dynamic methods, including
cause consequence analysis and dynamic FTs,
were needed, especially for the navigation proce-
dures, such as lane changing navigation functions
and emergency response functions. A major prob-
lem has previously been that risk analysis of the
NNs used for the vision systems and some control
functions could not be included in the overall
risk analysis. It is, therefore, necessary to extend
FTA to incorporate NNs into the overall hazard
identification and risk analysis.

Convolutional neural networks (CNNs), recur-
rent neural networks (RNNs), and deep reinforce-
ment learning (DRL) are the three most common
deep learning methodologies used in AVs Grig-
orescu et al. (2020). CNNs are widely adopted for
AV perception. The perception algorithms are the
most critical module to detect objects and make
image classification. Any incorrect conclusions
from the perception algorithms, such as missing
objects, wrong classification, and traffic sign mis-
detection, may lead to potentially fatal incidents.
RNNs are suitable for trajectory prediction, and
DRL is for path planning, for example, learning
driving trajectories.

A vital impact factor for NN hazards is the
selection of the training set. Any omission of es-
sential phenomena in the training set will result in
a system that may fail to recognize critical cases.
This results in the strategy of using massive train-
ing sets. Waymo, for example, trains its vision sys-
tems for AVs with millions of real traffic scenarios
and billions of simulated scenarios Schwall et al.
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(2020). However, meeting new phenomena can
lead to accidents. The existing AV incidents indi-
cate the difficulties in developing safe AI systems.
Even if a system is empirically demonstrated to be
safe with millions of tests, there is no guarantee
that it will not fail when new situations arise. The
selection of test cases needs to consider the wide
range of challenges to performance identified by
explicit hazard identification.

3. Methodologies for hazard
identification of AVs

The overall risk assessment for the AV was made
using FMEA for the components and sequential
and dynamic FTA Taylor (1975). Sequential FTs
are needed to deal with the sequence and timing
of responses to hazardous situations versus the
dynamic development of the accident situation. If
the performance of the NN only depended on in-
dependent variations in input parameters, conven-
tional FTs with discrete events could be used, such
as ”perturbation exceeds the performance thresh-
old.” Hybrid events are needed because, in many
cases, NN’s performance depends on two or more
continuously varying disturbance parameters. For
this reason, we introduce hybrid events in FTs
Taylor and Kozin (2021b) that can be interpreted
as a point in a multi-parameter space belonging to
the region where safety issues may occur with a
rather high probability. The probability of failure
is dependent on the probability of challenges to
NN robustness. For example, a failure to function
is often the result of deviations of two or more
parameters, such as a braking force, vehicle speed,
and distance to an obstacle at the start of braking.
These must be determined empirically (as must
failure rates in physical systems). The frequency
of challenges can be observed by actually driving
typical AV routes at different times and under dif-
ferent conditions. The NN robustness can be mea-
sured by the probability of correct image classi-
fication (i.e.,prediction accuracy) given perturbed
inputs.

4. NN functional failures
One challenge of analyzing NNs is that of seem-
ing randomness in the design of NNs. When the
reverse analysis is performed on most NNs trained
with a given set of test images, the features that
are recognized seem to be distributed in inexplica-
ble ways among the network layers Bengio et al.
(2013).

4.1. Safety threats to NNs
There is a wide range of situations that can affect
the performance of a neural network for AV con-
trol:

• Fundamental functional omissions (such as lack
of training to recognize road diversion signs)

• Sensitivity to ambient conditions, especially
low lighting

• Sensitivity to low contrast conditions
• Sensitivity to patterns (such as camouflage) or

textures
• Obscuration due to intended objects hidden be-

hind others or a blind curve or vegetation
• Obscuration by snow, blown sand, frost or ice
• Interference with well-trained recognition by

extensions to the training set
• Orientation of the objects to be recognized

(“pose”)
• Unusual elevation of objects to be recognized

(such as lane markings on a transition to a steep
hill)

• Road reflectance lights reflected from wet roads

A straightforward solution is to improve the vision
system by data augmentation, sensor fusion, etc.
Hendrycks and Dietterich (2019) evaluated NN
robustness to common corruptions and perturba-
tions, such as Gaussian noise, motion blur, and
snow. They found that as accuracy of NN ar-
chitectures improves, for instance, from AlexNet
to ResNet, corruption robustness has no signifi-
cant changes. All tested NN models are surpris-
ingly vulnerable to common perturbations. Zhong
et al. (2020) reported robustness of thirteen image
classifiers and three object detectors to five real-
world perturbations, i.e., luminance, spatial trans-
formation, blur, corruption, and weather. Based on
their results, some models outperform others for
a particular perturbation, and a more complex NN
architecture does not necessarily lead to a more ro-
bust model. Their results also showed that object
detectors are more robust than image classifiers
across various real-world perturbations.

4.2. Security threats to NNs
In an adversarial context, threats to the neural
network could arise from:

• Training data poisoning
• NN model attack
• Adversarial example
• Physical adversarial attack
• Sensor sabotage

Training data poisoning refers to deliberately in-
troduce false data during the training process. NN
model attack takes advantage of the model flaws to
fool the system. An adversarial example is small
changes intentionally added to the original input
that are invisible to human eyes. There is a long
history of work on understanding, detecting, and
mitigating impact of adversarial examples Zhang
and Li (2020). Physical adversarial attack aims
to fool NN models by creating perturbations on
physical objects. Sensor sabotage can be con-
ducted by using spotlights to blind cameras or
laser-targeting of cameras. In this study, we fo-
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cus on the practical consequences of adversarial
examples on the design of AV perception models.
Evaluating the security threats to NNs is a safety
consideration, and adversarial examples can fur-
ther be used to improve the model robustness.

5. NN robustness measures
Each of the threats to NN performance (intro-
duced in Section 4) requires robustness testing and
the probability that each threat will arise needs
to be determined. For instance, the likelihood of
poor illumination can be determined by driving
representative routes at different times using a
recording photometer.

5.1. Robustness determination
In a traditional risk analysis, the probability of an
adverse consequence is determined by obtaining
failure probabilities for components (generally by
observing over a long period or looking them up
in failure rate databases collected from observa-
tion). Here, failure probability for a component
is derived by determining the robustness against
perturbations or attacks, that is, the probability
that the robustness limits will be challenged and
exceeded. The probability of the AV failing must
take account of redundancy in the whole AV sys-
tem. The contribution of the NN to the AV FT will
then be as shown in Fig. 1.

Threat i

O
R

Threat 1 Others

Problem in image 
classification

A
N
D

Threat i arises which 
exceeds the NN 
robustness limit i

Redundancy 
measures fail

Fig. 1. General template for an NN failure subtree in
an FTA (for independent threats)

Functional failures of the NN can then be in-
corporated into fault trees in the form of multiple
subtrees in an OR relationship. The probability of
failure of the NN in any subtree is then:

Pfunctional failure i = Probustness limit i exceeded

× Predundancy measures fail
(1)

Robustness metrics can be developed to deter-
mine the functional range of NNs during testing.

Most of the previous works propose accuracy-
based metrics to measure NN robustness, i.e., the
accuracy (fraction of intended targets recognized)
of the NN when inputs are perturbed Hendrycks
and Dietterich (2019); Zhong et al. (2020). In an
adversarial setting, the minimum perturbation dis-
tance (i.e., size of deviation for a loss of function)
and adversarial accuracy (i.e., the accuracy of the
model when an attack takes place) are two stan-
dard metrics to evaluate NN robustness Moosavi-
Dezfooli et al. (2016); Zhang et al. (2019). The AV
we analyze in this study is relatively simple. Still,
the perceptional module of our testing car has over
50 NNs and vision algorithms for different pur-
poses and different navigation situations. There
are tens of potential disturbances for each of these,
which will affect performance, most being contin-
uous factors rather than discrete yes/no influences.
Each of these, and in many cases combinations
of these, require robustness tests. Each test can
involve hundreds or even thousands of test cases
in order to obtain a stable measure of robustness.
Laboratory testing is used for robustness deter-
mination because it seems doubtful that on-road
testing could generate sufficient cases to explore
the space of potential failures fully. Laboratory
testing has been found to be practicable because
the components can be set up and tested automat-
ically.

5.2. Robustness enhancement
Data augmentation and increasing model com-
plexity are commonly used approaches for im-
proving NN robustness. However, robustness im-
provement is not uniform across perturbation
types. For instance, increasing performance in the
presence of Gaussian noise may cause reduced
performance on other perturbations Hendrycks
and Dietterich (2019). In Table 1, we identified ro-
bustness enhancements to perturbations based on
perturbation types. We also map these robustness
enhancements into appropriate safety strategies,
i.e., inherently safe design, fail-safe design, and
safety margins on components Varshney (2016).
The inherently safe design aims to exclude po-
tential hazards from the system. Fail-safe design
is to keep the system in a safe state at the time
of failure. Safety margins on a component are to
reserve extra space for achieving safety.

Some defense mechanisms cannot enhance the
robustness. For instance, Henriksson et al. (2019)
used probability values from a normalized output
layer of NNs as anomaly scores because they
hypothesize that samples from an outlier distri-
bution will have uncertain class results. This will
not be true when the outlier is an adversarial
example. Some methods (e.g., adversarial logit
pairing Kannan et al. (2018) are less valuable to
increase adversarial robustness. But they can be
used to remarkably enhance common perturbation
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Table 1. Robustness enhancements to perturbations

Perturbation type Method/Example Safety strategy
Natural perturbation Multiscale networks Ke et al. (2017) Inherently Safe Design

Feature aggregating Xie et al. (2017) Inherently Safe Design
Adversarial Logit Pairing Kannan et al. (2018) Inherently Safe Design
Run-time out-of-distribution detection Henriksson et al. (2019) Fail-safe design
Histogram equalization Pizer et al. (1987) Safety Margin

Adversarial perturbation Adversarial training Madry et al. (2019) Inherently Safe Design
Randomized smoothing Lecuyer et al. (2019) Inherently Safe Design
Adversarial detection Smith and Gal (2018) Fail-safe design

robustness Hendrycks and Dietterich (2019).

6. FTA for the traffic sign recognition
network

The starting point and basis for safety analysis
of AVs is a functional block diagram picturing
all top-level functions and connections between
them. A hazard identification analysis can be
made by analyzing each function and indicating
components/subsystems for their failure modes
and effects (functional FMEA analysis). To iden-
tify more complex failure scenarios caused by
several failures, degraded performances, and other
internal and external factors, like weather and road
conditions, causal models are needed. In this pa-
per, we focus on FTs that, if properly analyzed,
can generate a comprehensive set of hazard sce-
narios and provide the basis for the use of prob-
abilistic reasoning to estimate the probabilities
of the identified scenarios. However, constructing
FTs for NN-controlled AVs is not a standard pro-
cedure and requires a substantial modification of
classical FTA. This is due to two reasons. One is a
possible malfunction of the NN and the difficulty
of constructing the internal causal structure, re-
sulting in outputting erroneous decisions. The sec-
ond is that continuously changing processes (vari-
ables) influencing a vehicle’s performance (pos-
sibly in combination) can result in safety issues
and eventually in crashes. The second point mo-
tivates us to introduce failure events that manifest
themselves when continuously evolving variables
in a multi-dimensional space enter the “prohibited
region”. This is like in structural reliability – a
failure occurs when stress exceeds the strength of
the construction.

Given that the functional requirement placed on
a NN is that of a simple function, such as recog-
nizing a traffic sign, the NN can be considered a
black box. The failure modes can be defined as
failure to identify an image, incorrect classifica-
tion of an image, or in some cases, wrong esti-
mation of an image parameter. The NN will have
a certain correct performance set and a certain
level of robustness against image imperfections or

distortions. The probability of failure of the NN is
then the probability of the observed image lying
in a domain outside the NN’s capability or in a
domain for which the NN is not robust. The hazard
analysis can then be completed using standard
methods (e.g., conventional FTA) to determine the
possible causes of the inputs lying outside the
NN’s reliable domain. Our emphasis is placed on
developing robustness measures for NNs against
different types of threats.

6.1. Problem formalism
We propose a mathematical formalism to be able
to calculate the probabilities of failure states. One
of the possible hazardous events triggered by a
decision made by the NN is the “Wrong classi-
fication of a traffic sign”. This event can occur be-
cause of inadequate robustness of the NN, which
in turn can be caused by naturally or intentionally
perturbed inputs.

Robustness can be measured by the prediction
accuracy given perturbed inputs. The prediction
accuracy is unlikely to achieve unity, and there is
a threshold of Tr < 1 where, if achieved, the NN
decides that the image in question is recognized.
Hence there is always a probability of misclassifi-
cation that is greater than 0.

Assume that two variables influence whether
the sign is classified correctly. One is contrast
intensity, C, and the other is light intensity (i.e.,
brightness), L. If TC stands for the lower limit
for C, below which the sign cannot be classified
correctly, we can define the event EC = {EC :
c < TC} that is “too low contrast to recognize
correctly”. Similarly, EL = {EL : l < TL} is
the event “too low lighting to recognize correctly”.
The third misclassification event is defined by the
following condition: ELC = {ELC : (l, c) <
f(c, l), c > TC , l > TL}. This should be un-
derstood as follows: while contrast and lighting
both lie in the correct classification region, their
combination may belong to the misclassification
region. The border dividing the two regions is
determined by function f(c, l). Usually, this type
of event occurs when variables (parameters) lie in
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the vicinity of the border points. That is to say,
the effect of small deviations results in a failure.
A possible region of misclassification is shown in
Fig. 2.

Fig. 2. Misclassification region(Conceptual)

The region of misclassification can formally be
written as follows:
Ω = {(c < TC)

⋃
(l < TL)

⋃
((l, c) <

f(c, l), c > TC , l > TL)}
As soon as the misclassification events are de-

termined, a simple fault sub-tree can be con-
structed (see Fig. 3).

EL

O
R

EC ELC

Misclassification

Fig. 3. A simple fault sub-tree for misclassification
(with interacting threats)

Given C and L are independent random vari-
ables and their probability density functions are
known, fC(x) and fL(y) , the probability of mis-
classification Pmisclassification can be calculated:

Pmisclassification =

∫∫

Ω

fC(x)fL(y)dxdy (2)

6.2. An AV example of misclassification
To demonstrate the influence of the perturbations
and their combination, we trained a 5-layer-CNN
with the German Traffic Sign Recognition Bench-
mark (GTSRB) dataset for the traffic sign clas-
sification Stallkamp et al. (2012). The GTSRB
dataset has 43 different traffic signs in various
sizes and lighting conditions and is very similar
to real-life data. The prediction accuracy for clean
test images is 98.97%.

We adopt the algorithm from Zhong et al.
(2020) to emulate the deviation of brightness and
contrast, and algorithm from Goodfellow et al.
(2014) to implement the FGSM attack. Fig. 4
presents: (a) a set of misclassified images with
brightness=0.8. In this case, the prediction accu-
racy dropped to 84.8%, (b) brightness=0.6, FGSM
attack with attack strength=0.2, the prediction ac-
curacy dropped to 18.76%.

1) Brightness X
′
= Clip(X + l), where X

is the original test image, l is a constant value
to be added, X

′
is the resulting new image, Clip

is a function to make sure X
′

is in a valid pixel
intensity range of [0,255] or [0,1].

2) Contrast Reduction X
′
= Clip((1 − c) ·

X + c · C), where X is the original test image, c
is the contrast level, C is a constant factor.

In this experiment, we set prediction accuracy
at 90% as the acceptance level of model robust-
ness. Instead of showing the case of low bright-
ness/contrast, we test the influence of increasing
brightness and contrast reduction due to the low
brightness/contrast nature of the GTSRB dataset.
Fig. 5 shows prediction accuracy curves corre-
sponding to (a) brightness variations, and (b) con-
trast variations. It shows that the upper limit for
brightness increase is 0.66 in Fig. 5 (a), and the
upper limit for contrast reduction is 0.54 in Fig.5
(b).

Then we test the combination of brightness and
contrast reduction. The brightness level is set from
0.01 to 1, and contrast reduction is from 0.01 to 1,
respectively. This experiment is intended to show
how the small deviation of contrast and brightness
affects prediction accuracy. In Fig. 6, the values
of prediction accuracy are represented as colors.
The lighter the color, the higher the prediction
accuracy. It shows that even brightness level and
contrast reduction do not exceed their upper limits
(i.e., in the correct classification region). Their
combination can fall into the misclassification re-
gion (i.e., prediction accuracy is lower than 90%).

It is worth noting that contrast and lighting are
just two of the challenges to the NN performance,
which require a hybrid fault tree approach. In fact,
almost all of the threats listed in Sections 4.1 and
4.2 have continuously varying intensities. In most
cases, pairs of threats can interact to make the joint
deviation worse than any single deviation alone.
A particularly difficult example that was found is
obscurations coupled with shadows. Some of the
threats (e.g., adversarial examples) are hard for
a human to understand. Methods in the field of
explainable AI (XAI) can be employed to identify
the influence of threats on the NN performance
Zhang and Li (2020). We include more results
and discussions in a technical report Taylor et al.
(2021) due to the page limits.126
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Original image

True class

Predicted class

Perturbed image

s

s

(a) brightness=0.8 (b) brightness=0.6, FGSM attack strength=0.2

Fig. 4. Examples of misclassified traffic signs

Contrast=0.54

Brightness=0.66

Fig. 5. Examples of prediction accuracy curves when
brightness and contrast vary

Fig. 6. Prediction accuracy matrix with small devia-
tion of brightness and contrast in combination

7. Conclusion
From this study, it became clear that detailed haz-
ard identification can be made for AVs, including
both hardware and NN components. The proce-
dure is:

(1) Complete the overall high-level hazard identi-
fication using an FTA approach.

(2) Identify the functional failures of the NNs
which contribute to the overall FTA.

(3) Identify the challenges which can cause the
NN functional failure, e.g., using the checklist
in Sections 4.1 and 4.2.

(4) Determine the robustness of the NNs when
challenged by perturbations of single parame-
ters or by the combination of parameter per-
turbations via testing NN performance and
making a heatmap as in Fig. 6.

(5) Determine the probability of the occurrence
of parameter perturbations.

(6) Incorporate the contribution of NNs into the
FTA using the templates given in Fig. 1 and
Fig 3.

A further conclusion is that a detailed hazard as-
sessment can be essential in determining the scope
of controller component testing.

One of the key findings of the studies described
here is that safety and security analysis becomes
much easier when an integrated approach is taken.
There are many potential cases where individual
controller components (e.g., NN for image recog-
nition) can fail due to an attack, but where acci-
dents can be avoided by other components taking
over. This is particularly an issue where there is
a possibility of a crash and poor visibility condi-
tions. In these cases, lidar and radar provide less
informative but more robust detection of hazards.

Safety in AVs is not ensured by hazard detec-
tion alone. It is not safe, for example, to simply
stop the vehicle when a crash potential is detected
in fast-moving traffic. Policies, strategies, plans,
and algorithms for safe state recovery are needed.
Our next challenge, then, is to carry out hazard
identification and risk assessment on these recov-
ery plans.
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Abstract

Artificial neural networks (ANNs) have become increasingly prevalent in various industries, with applications
in safety-critical domains such as image recognition, medical diagnosis, and autonomous vehicles. Assessing the
robustness of ANN classifier-based safety-critical systems (ANN-SCSs) in operation is crucial, as model performance
can be compromised when input data deviate from the training data. While existing reviews provide useful insights
into the robustness research considering ANN models, a structured discussion on ANN-SCS robustness evaluation in
operation is still missing. This study aims to systematize how to evaluate the robustness of ANN-SCSs on different
granularity levels of a system in operation, classify evaluation methods and metrics, and identify challenges and gaps
for future research. We analyzed five system-level, 15 ANN model-level, and eight input-level studies that focus on
evaluating the robustness of ANN-SCS in operation. Our results provide a summary of nine ANN-SCS robustness
definitions at the system, ANN model, and input levels, respectively; present a classification of eight major evaluation
approaches and 30 metrics; and identify three categories of research gaps, namely, defining abnormal conditions,
determining acceptable performance levels, and obtaining labeled data.

Keywords: artificial neural network, safety-critical systems, robustness evaluation, operation.

1. Introduction

Artificial neural network (ANN) classifiers are being used in various safety-critical application sectors, such as
autonomous cars, aircraft control systems, smart grids, and healthcare services (Zhang and Li, 2020). The increased
complexity and connectivity of these systems can make them more fragile to disturbances and attacks. If a failure
occurs in an ANN model, it may progressively trigger physical damage, cause harm to people, and lead to further
economic loss and/or environmental or reputational damages. Several incidents have been specifically tied to the
robustness of ANN classifier-based safety-critical systems (ANN-SCSs), such as fatal incident involving a Tesla self-
driving car in which the deployed model failed to differentiate between a white truck and the bright sky (Boudette,
2017). IBM Watson for Oncology is another well-known example of an ANN-SCS failure, where it frequently gave
unsafe and erroneous cancer treatment advice to patients (Ross and Swetlitz, 2018). The potential consequences of
damages necessitate enhancing the robustness of ANN-SCSs and considering effective evaluation methods for the
general robustness of any type of machine learning (ML) system (Chen et al., 2022).

Unless the robustness of ANN-SCS can be measured effectively, there is no path to structured robustness im-
provement, as the disparity between the desired performance and the actual performance remains unidentified. Ex-
isting metrics, evaluation methods, and challenges surrounding the robustness of ANN models have been discussed
in several surveys (Rawat and Wang, 2017; Thomas and Tabrizi, 2018; Akhtar and Mian, 2018; Huang et al., 2020).
However, the surveys’ focuses are quite diverse, targeting adversarial robustness (Thomas and Tabrizi, 2018; Akhtar
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and Mian, 2018), corruption robustness (Drenkow et al., 2021), or distributional robustness (Kumar et al., 2019). First,
this diversity makes it challenging to produce a unifying taxonomy, evaluation metrics, measurement techniques, and
evaluation framework for real-world applications. Second, most evaluation metrics and methods are designed for the
model development stage (Zhang et al., 2020; Huang et al., 2020; Drenkow et al., 2021; Mohseni et al., 2022) and thus
cannot be directly applied to ANN-SCSs in operation. The robustness challenges for operationalizing ANN-SCSs
require unique solutions considering harsh operational (including industrial) environments (Shankar et al.,
2022). Besides, ANN models are often a small part of a large system (Sculley et al., 2015; Li et al., 2022). The failure
of an ANN model may propagate to or be mitigated by other components, including dedicated backup systems (Peng
et al., 2020). Thus, the robustness of ANN systems should be measured on three levels: 1) ANN-related input data; 2)
the ANN model itself; and 3) the whole system, including other relevant components. Understanding how the failure
of ANN models affects the robustness of the whole system is essential. To our knowledge, no existing studies have
summarized the robustness of ANN-SCSs on different granularity levels of a system in operation.

Regarding ANN-SCSs’ robustness in operation, there have been some efforts in the literature. For example, Kumar
et al. presented a joint taxonomy of intentional and unintentional robustness challenges for ML systems (Kumar et al.,
2019), and Mohseni et al. (Mohseni et al., 2022) reviewed dependability limitations for ML algorithms and methods
for improving model performance and robustness.

Furthermore, there have been a number of conceptualizations of system-level robustness and its relationship to
component robustness without specifically focusing on ANN safety components, e.g. the impact of centralization vs
decentralization in decision-making architectures (Boss and Gralla, 2023), the robustness of complex system archi-
tectures specifically against catastrophic cascading failures (Potts et al., 2020), or the non-safety impact of designing
robust systems and implications for, e.g., flexibility and adaptability to future needs (Ross et al., 2008). However, a
concise discussion of the robustness evaluation of ANN-SCSs in operation is still missing.

To fill this research gap, this study aims to answer the following main research question (MRQ): What are the
perceptions and practices of robustness evaluation in ANN-SCSs in operation?

We refine this MRQ into three sub-research questions as follows:

• RQ1: What are the definitions of ANN-SCSs’ robustness in operation?

• RQ2: What metrics and methods are used to measure the robustness of ANN-SCSs?

• RQ3: What are the challenges of measuring ANN-SCSs’ robustness in operation?

RQ1 aims to bridge this gap by extracting and analyzing various robustness definitions to provide the basis for mea-
suring robustness. RQ2 focuses on reviewing methods and metrics employed to assess the robustness of ANN-SCSs
at the system, ANN model, and input levels, aiming to establish a consistent evaluation framework for researchers and
practitioners. RQ3 identifies remaining challenges in evaluating ANN-SCSs’ robustness in operation.

This study focuses on SCSs that use ANNs for classification tasks. Figure 1 illustrates the categories of ML
methodologies and our focus. By concentrating on classification tasks, we can tackle a substantial portion of real-
world use cases and provide valuable insights to a wide audience. Although ANNs are only one of the machine
learning (ML) approaches for SCSs, they serve as a representative example to demonstrate the challenges we address.

We present a comprehensive analysis of the different methods and metrics proposed in the literature over the past
five years for conducting robustness evaluation of ANN-SCSs based on well-established guidelines (Molléri et al.,
2016). We examine 23 studies (five system-level, ten ANN model-level, and eight input-level) and offered a summary
of ten ANN-SCS robustness definitions, and we classify eight major evaluation approaches and 30 metrics. For exam-
ple, at the system level, one robustness definition focuses on maintaining system reliability under abnormal conditions.
An evaluation approach may involve injecting faults into the system to assess its response. At the ANN model level,
a robustness definition may involve the model’s ability to maintain accurate predictions despite adversarial attacks.
A possible evaluation approach could involve the use of adversarial training and testing. A robustness definition at
the input level could encompass the system’s ability to manage noisy or corrupted inputs effectively. One evaluation
approach might involve measuring test coverage to assess how well the representation of data inputs captures various
input scenarios and conditions. Furthermore, we identify three categories of research gaps, namely, defining abnormal
conditions, determining an acceptable level of performance, and obtaining labeled data.
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Figure 1: Machine learning categories (Zhang et al., 2020) and our focused task.

This work is the first attempt to provide a structured discussion on ANN-SCS robustness evaluation in operation,
covering aspects like definitions, metrics, methods, challenges, and future directions. Moreover, our paper investigates
the robustness of entire ANN-SCSs, considering different levels rather than just focusing on individual components
or models.

The rest of the paper is organized as follows. In Section 2, we provide an overview of standards related to
ANN-SCSs and the relations between ANN robustness and SCS risks. Section 3 describes related work. Section
4 introduces the research methodology used in this work. Section 5 presents the results of the research questions.
Section 6 discusses the results. Section 7 contains the conclusions and outlines our future work.

2. Background

ANNs are increasingly utilized in various safety-critical sectors, including transportation, healthcare, finance,
and the military, to enhance the performance and safety of systems. For instance, ANNs have been applied for
predicting wing deformations in aircraft control systems (Yasuda and Yang, 2022), object detection, lane-keeping,
and decision-making in autonomous vehicles (AVs) (Grigorescu et al., 2020), as well as image recognition, target
tracking, and decision-making in unmanned aerial vehicles (UAVs) (Kyrkou and Theocharides, 2019). Ensuring that
ANN classifiers maintain accurate results even with noisy data is vital for SCSs.

2.1. Standards Related to Safety-critical Systems Containing AI Elements

Amershi et al. (2019) proposed nine stages of the ML workflow. We grouped the ML lifecycle stages into two
phases, namely, “before deployment” and “in operation” (as shown in Figure 2). Robustness evaluation is critical
and complements both the “before development” and “in operation” phases. Before deployment, the ANN classifier
is normally systematically evaluated on different robustness benchmarks to ensure model performance on known
inputs (Hendrycks and Dietterich, 2019; Croce et al., 2020). In operation, the ANN is integrated into a system that
operates in an environment that may differ from the testing environment (e.g., low-quality of input data (Javier et al.,
2019) or unseen attacks on the model (Zhu et al., 2021)). This means that a model benchmarked before deployment
may not guarantee the same level of performance in a real-world environment since the robustness evaluation during
the development stage may not sufficiently cover all realistic threat models. How to deal with the risks of the system’s
deployment has been the subject of many regulations, such as:

• European medical devices, including those using AI, need to comply with good clinical practice (ISO 14155)
and undergo “clinical investigations” (Beede et al., 2020a).

• For non-medical systems using AI, such as facial recognition (BUNDESAMT, 2004), and self-driving car (UK
Government, 2022; Schwall et al., 2020), field trials are one of the recognized means of comparing and assessing
the robustness at the system level.
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Figure 2: Paper scope.

• In the field of unmanned aircraft systems (UASs), international standard ISO 21384-3 has defined minimum
covering elements for robustness evaluation of unmanned aircraft systems, which include “procedures to evalu-
ate environmental conditions before and during the mission (i.e., real-time evaluation), procedures to cope with
unintended adverse operating conditions, and contingency procedures to cope with abnormal situations.”

• The Food and Drug Administration (FDA) of the United States identified the necessity for enhanced techniques
to evaluate algorithm robustness in the face of evolving clinical inputs and conditions in the “Artificial Intel-
ligence/Machine Learning (AI/ML)-Based Software as a Medical Device Action Plan” (US Food and Drug
Administration, 2019).

• Developers of automated driving systems in the automation industry validate their laboratory testing by con-
ducting controlled field testing on public roads (Schwall et al., 2020; Webb et al., 2020).

2.2. Relations between ANN Robustness and SCS Risks
The international standard on trustworthiness in AI (ISO/IEC TR 24028-1) states that an AI system’s ability can

be assessed based on robustness, reliability, and resilience. Robustness is “a system’s ultimate ability to maintain its
performance level under any circumstances, including external interference or harsh environmental conditionsarXiv
preprint (ISO/IEC TR 24028-1). The National Institute of Standards and Technology (NIST) AI Risk Management
Framework (NIST, 2023) highlighted the discrepancy between laboratory and real-world risk assessment, i.e., mea-
suring AI risks in a laboratory or controlled environment could provide valuable pre-deployment insights. Still, these
measurements may not accurately reflect the risks that occur in operational settings. The robustness of an ANN-SCS
can affect other adjacent system attributes, such as safety (e.g., for autonomous vehicles (Boudette, 2017)), security
(e.g., access control (Oberhaus, 2017)), and reliability (e.g.,commercial facial recognition software (Snow, 2018)). In
Table 1, we present examples of real-world incidents due to the lack of robustness in ANN models.

3. Related Work

Despite numerous studies on the robustness of ANN models, e.g., (Bastani et al., 2016; Yu et al., 2019; Buzhinsky
et al., 2021), there has been no dedicated study summarizing the methods and corresponding metrics for assessing the
robustness of these models in operation.

Reviews on robustness evaluation of ML model in general or a single ANN model in a lab environment.
França et al. (2021) reviewed state-of-the-art techniques for evaluating the robustness of DNN models. Their work
focuses on methods employed to test the robustness of image classifiers associated with AVs. For example, fuzz
testing (Xie et al., 2019) is reported as one methodology to test robustness as it employs invalid or unexpected inputs
in the testing process. Alternatively, fault injection can be used to test robustness. In the survey on ML testing (Zhang
and Li, 2020), several fault injection-based methods are identified to simulate hardware errors of AVs to evaluate their
robustness.

In controlled environments like laboratories, robustness has been extensively explored and evaluated in the context
of adversarial ML (Rawat and Wang, 2017; Thomas and Tabrizi, 2018; Akhtar and Mian, 2018; Huang et al., 2020)
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Table 1: Examples of real-world incidents caused by lacking robustness in operation.

Case Incident Description Cause Affected
Attribute

1 IBM Watson for Oncology fre-
quently gave unsafe and erroneous
cancer treatment advice to pa-
tients(Ross and Swetlitz, 2018).

Lacking distributional robustness:
a few synthetic cancer patient data
were used for training instead of
real patient data .

Safety

2 Apple’s facial recognition ID sys-
tem was fooled by 3D-printed
masks (Oberhaus, 2017).

Lacking adversarial robustness: the
anti-spoofing neural network only
considers cosmetic changes, wear-
ing a scarf, or the presence of
glasses on the face.

Security

3 Tesla autopilot failed to recog-
nize a white truck against a bright
sky (Boudette, 2017).

Lacking corruption robustness: Im-
age contrast

Safety

4 Amazon’s facial recognition soft-
ware mistakenly identified mem-
bers of the U.S. congress (Snow,
2018).

Lacking distributional robustness:
the facial identification system
demonstrated better performance
for lighter-skinned faces but en-
countered difficulties in recogniz-
ing darker-skinned faces.

Reliability

to defend against an adversary who will attack the system to test ML algorithms’ worst-case robustness, and to
measure the improvements in ML algorithms towards human-level abilities (Carlini et al., 2021). Carlini et al. (2021)
developed a checklist of common evaluation pitfalls when evaluating adversarial robustness. Examples of the pitfalls
include “not using the right attack method,” as the robustness of an ANN to one attack method may not necessarily
indicate its robustness to other attack methods. Another example is “not considering the effect of different types of
natural perturbations,” as the robustness of a ANN model can be affected by various types of noise, such as rotations
and translations (Engstrom et al., 2019), common corruptions and perturbations (Hendrycks and Dietterich, 2019),
and Gaussian noise (Gilmer et al., 2019). Non-adversarial robustness has received disproportionately less attention
than adversarial robustness. Drenkow et al. (2021) performed a systematic review to measure computer vision’s non-
adversarial robustness. The identified papers were categorized based on different robustness tactics, i.e., architecture,
data augmentation, and optimization robustness. Their work also pointed out the absence of formal definitions of
robustness in operation.

Most methods in this direction are not directly applicable in the operational context, as they require labeled data for
robustness evaluation. Labeled data may be inaccessible or delayed due to the high cost of labeling cost in operation.
Besides, these techniques are typically employed to evaluate the robustness of a single ML model (e.g., an ANN
classifier). However, suitable methods that can measure robustness at both single model levels and the entire system
level must be investigated in the operational context.

Reviews on robustness evaluation in operation. Microsoft researchers discussed robustness in several applica-
tion domains (Kumar et al., 2019). Their work (Kumar et al., 2019) provides a unified taxonomy and framework that
covers both intentional and unintentional failures of an ANN model. The classification in (Kumar et al., 2019) aimed
to summarize all possible risks associated with ML systems in one place. Although their work gives an overall view of
ML robustness risk in operation, they didn’t identify metrics and methods that apply to each operating environment.

Assessment methods for the robustness of cyber-physical systems. ANN or ML-based SCSs are a specific
subset of safety risk assessment methods for cyber-components in cyber-physical systems (e.g., industrial control sys-
tems, ICSs). Existing methods stress the need for a system-level approach that considers the role and interaction of
physical, cyber-physical, and cyber components (e.g., (Carreras Guzman et al., 2020; Guzman et al., 2021)). These
are embedded in a broader literature of designing SCSs, driven by specific models of accidents causation that reflect
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Table 2: Chronological comparison of focuses of previous surveys.

Year Survey Studying
Definitions

Studying Metrics
and Methods

Identifying
Challenges Operation

2019 Kumar et al. (2019) ✓
2019 Carlini et al. (2021) ✓ ✓ ✓
2020 Zhang et al. (2020) ✓ ✓
2020 Huang et al. (2020) ✓ ✓
2021 França et al. (2021) ✓ ✓
2021 Drenkow et al. (2021) ✓ ✓ ✓
2022 Mohseni et al. (2022) ✓ ✓

Our survey ✓ ✓ ✓ ✓

current real-life complexity due to technology changes, accident nature, new hazards, decreased tolerance for even
single accidents, increased system complexity, increased complexity of human-automation interaction, and evolving
safety standards and public views (e.g., Leveson (2004)). The complexities addressed in safety and robustness assess-
ments in the cyber-physical domain as well as in the general safety of complex systems domain are currently only
incompletely reflected in the conversations on the robustness of ANN-based SCSs.

Additionally, no current review paper explicitly organizes definitions, metrics, and methods specifically targeting
the robustness evaluation of ANN-SCSs in operation. The distinctions between the focus of our survey and existing
surveys are illustrated in Table 2.

4. Research Methodology

We conducted our survey-based research utilizing the methodology proposed by Molléri et al. (2016), which in-
volves defining research questions, designing a collection strategy, and analyzing and reporting findings. The research
steps are shown in Figure 3.

Data collection. To answer the research questions, we searched papers published in digital libraries, including
the ACM Digital Library, IEEE Xplore, SpringerLink, Scopus, Web of Science, and Google Scholar. To identify
relevant robustness definitions, we also searched the Norwegian portal of international standards (Standard.no), which
provides free access to us. Standard.no contains all active IEC (International Electrotechnical Commission) and ISO
(International Standards Organization) standards, and some Norwegian standards in full text. The search terms as
below were selected according to their relevance to the research questions and the scope to explore the metrics and
methods for evaluating ANN-SCSs in operation. The terms “robust*,” “classification,” “artificial neural network,”
and “operation” were used as the main search terms, as they are central to the investigated topic. In addition, the
term “safety-critical system” and the three typical safety-critical systems, namely, unmanned aircraft system (UAS),
medical system (MS), and autonomous driving system (ADS), were included to ensure that relevant studies in the
context of SCS were included in the final analysis.

(robust*) AND (classification) AND (deep learning OR deep neural network OR artificial neural network) AND
(operation OR industry) AND (safety-critical system OR autonomous driving systems OR medical system OR un-
manned aircraft system)

Inclusion and exclusion criteria. The inclusion criteria are:

• Studies that address robustness from a conceptual point of view, i.e., provide a concrete definition of robustness;

• Studies that propose metrics to measure ANN-SCS robustness;

• Studies that perform an explicit robustness evaluation;

• Studies that focus on robustness in operation (as opposed to robustness evaluation before deployment).

The exclusion criteria are:
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Data collectionTopic

• ANN-SCSs
• Robustness evaluation
• ML Operations (MLops)

• Manual search
• Study selection
• Snowballing search

Data analysis

Multi-dimensional matrix analysis 
    (1) Scale: System, ANN model, Data
    (2) Typical workflow to determine robustness:
          Application domain
          Operational context
          Robustness goal
          Nature of Data (input and output)

Systematisation

• Taxonomy
•  Framework
• Remaining challenges

Figure 3: Research steps overview.

• Studies published before 2018;

• Studies that are not peer-reviewed;

• Studies that are not in the English language.

We included studies published between 2018 and 2022. Studies published before 2018 were excluded since the con-
cept of MLOps (machine learning operations)1 gained significant traction and recognition around 2018-2019 (Treveil
et al., 2020). Our survey focuses on robustness evaluation for ANN-SCSs in operation, and this exclusion criterion
helps ensure the relevance of the included papers.

Filtering process. The manual search returned 298 papers. After reading the title and abstract, we excluded
216 papers that were obviously irrelevant. After reading the full content of the remaining ones (i.e., 82 papers), we
excluded 69 papers. To achieve a comprehensive coverage of relevant studies, we supplemented the manual search
with the backward and forward snowballing procedure, adhering to the procedure guidelines proposed by Wohlin
(2014). After examining the remaining 13 papers, we identified an additional ten related papers.

Data analysis To answer RQ1, constant comparison (Glaser and Strauss, 2017) was adopted to identify similarities
and differences in the robustness definitions we found. Constant comparison is used in qualitative data analysis by
continually comparing and contrasting the data. It is used to identify patterns, themes, and relationships in the data
and to develop an understanding of the data systematically and rigorously. To answer RQ2, we followed the typical
workflow to assess robustness described in international standard ISO/IEC TR 24029-1. More precisely, for each
selected paper, we identified its application domain, robustness goals, operational context, data source, metrics, and
methods to measure robustness. To answer RQ3, we extracted methods and metrics-related challenges for each
selected paper. Thematic analysis (Cruzes and Dyba, 2011) was then used to analyze the extracted information.
To ensure the accuracy of the data analysis, two rounds of data analyses were performed for each RQ, and minor
corrections were made during the second round.

1MLOps combines the best practices from software development (DevOps) and data engineering with ML, streamlining and managing the
machine learning lifecycle from development to deployment and monitoring in production.
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Table 3: Definitions of robustness in literature.

Level Ref. Definition of robustness

System IEEE Std 610.12 [Robustness] is the degree to which a system or component
can function correctly with invalid inputs or in stressful en-
vironmental conditions.

ISO/IEC TS 5723 [Robustness] is the ability of a system to maintain its level
of performance under a variety of circumstances.

ISO/IEC TR 24029-1 [Robustness] is the ability of an AI system to maintain
its performance level under any circumstances (domain
change, hardware failure, etc.).

ISO 26262 [Robustness] provides safe behavior at boundaries (corner
case, core event, extreme case).

ANN
model

Goodfellow et al. (2015) [Robustness] is the classifier’s worst-case performance on
small, additive, classifier-tailored perturbations.

Diochnos et al. (2018); Szegedy
et al. (2013)

An ANN classifier is robust if it achieves correct classifica-
tion on a testing sample that is “close” to a training sample.

Hendrycks and Dietterich (2019) Robustness is the classifier’s average-case performance on
small, general, classifier-agnostic corruptions or perturba-
tions.

ISO/IEC TR 24028-1; Zheng et al.
(2016); Wang et al. (2021)

An ANN classifier is robust if it achieves “consistent”
classification (i.e., prediction accuracy) on known and un-
known inputs as long as the unknowns are not too different
from the known inputs.

Data Zhong et al. (2021) An original data point is strong (robust) concerning the
ANN classifier being tested if the accuracy of its neigh-
boring points exceeds a predefined threshold.

5. Results of Research Questions

5.1. Results of RQ1: Definitions of ANN-SCS Robustness in Operation
Despite the popularity of the term “robustness” in literature, a limited portion of papers addresses this system

attribute from a conceptual point of view. We identified nine definitions from scientific papers and industry standards.
Table 3 summarizes the identified robustness definitions at different granularity levels, i.e., the system, an ANN model,
and input data levels. More specifically, we use the results of the constant comparative technique to analyze the focus
of the identified definitions and explain their links and relationships (what needs to be measured) with robustness
evaluation methods and metrics (how it can it be measured).

Robustness definitions at the system level. In an SCS, each component is designed to carry out a specific func-
tion or set of functions that are essential to the overall operation of the system. Identified definitions at the system
level are generally concerned with the system’s ability to maintain its performance and function correctly when facing
exceptional or unforeseen conditions. These conditions can include unavailability of resources, communication fail-
ures, environmental disturbances (IEEE Std 610.12), invalid inputs (IEEE Std 610.12), and changes in the system’s
operating conditions (ISO/IEC TR 24029-1). Most definitions state that robustness requirements must be met under
any circumstances. A recent study (ISO/IEC TS 5723) on the trustworthiness of systems changed the word “any” to
“a variety of,” which eliminates the ambiguity in understanding the requirement to meet robustness under specific cir-
cumstances and allows for a more focused approach rather than an all-encompassing definition. The specific focus of
each definition varies. For example, some definitions emphasize that a system’s performance must be stable (ISO/IEC
TR 24029-1) and remain on an acceptable level (IEEE Std 610.12), while the definition in ISO 26262 emphasizes the
significance of robustness in preserving safe behavior under a variety of operating conditions.

Robustness definition at the ANN model level. All the identified definitions at the ANN model level refer to the
model’s ability to maintain its performance when faced with inputs or conditions that differ from what it was trained
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Figure 4: Key components associated with a robustness evaluation technique for ANN-SCSs.

on. The most commonly studied input deviations include malicious perturbations (i.e., an input that incorporates a
subtle, deliberate perturbation with the aim of causing misclassification by an ANN) (Goodfellow et al., 2015) and
natural perturbations (Hendrycks and Dietterich, 2019). Malicious perturbations are typically designed to be invisible,
while natural perturbations have no such constraint. Natural perturbations are noises that exist in natural environments
and may be noisier and more noticeable than malicious perturbations. Some studies (Szegedy et al., 2013; Goodfellow
et al., 2015; Diochnos et al., 2018) emphasizes the model’s robustness to adversarial examples, while (Hendrycks and
Dietterich, 2019) focuses on the model’s robustness to natural perturbations. In addition to adversarial robustness
and robustness to natural perturbations, a specific concern in operation is the impact of the discrepancy between the
training data distribution and the operational distribution (referred to as distributional shift (ISO/IEC TR 24028-1)) on
the model’s performance.

Robustness definition at the data level. An original data point can be considered robust concerning a ANN
classifier being tested if the accuracy of its neighboring points exceeds a predefined threshold (Zhong et al., 2021).
This means that the model’s performance on inputs similar to the original data point (i.e., its neighbors) is above a
certain level of accuracy. This definition of robustness is closely related to the second definition (Diochnos et al.,
2018; Szegedy et al., 2013) in the category of the ANN model level, which states that a robust model should be able
to correctly classify inputs that are similar to the inputs it was trained on. In this case, the “similar inputs” are defined
as the neighbors of the original data point, and the threshold represents the acceptable performance level. Note that
robustness is a relative concept, and the threshold can differ depending on the application and use case.

Key components associated with robustness evaluation for ANN-SCSs. Based upon the existing definitions
identified in the literature, we summarized that ANN robustness in operation is the ability of an ANN-SCS to maintain a
stable performance at an acceptable level even in the face of unexpected or adverse conditions to continue to function
correctly. First, the performance must be stable. The specific threshold for what is considered a minor deviation
must be determined for each SCS. Second, the performance must always remain at least at an acceptable level. This
aspect raises the need for dynamic robustness evaluation to guarantee that the system continues to perform correctly
in operation. An acceptable performance level does not require that the system works at its best, as it would in a

9

139



Figure 5: Template for the proposed multidimensional framework.

reference situation, but the performance must stay above a certain threshold.
The constant comparative analysis of the robustness definitions also revealed that most of the existing robustness

definitions and corresponding evaluations include several factors, i.e., the scale of the system architecture, the oper-
ational context, the nature of the data (covering both input and output), etc. The determination of these factors often
depends on the specific application domain in which the evaluation of robustness is required. Figure 4 illustrates the
key components related to a robustness evaluation technique for ANN-SCSs.

Answer to RQ1: The existing studies define robustness in operation on the system, model, and data levels.
Five essential elements for evaluating ANN-SCS in operation are identified: system architecture, application
domain, operational context, robustness goal, and the nature of data.

5.2. Results of RQ2: Methods and Metrics to Measure ANN-SCS Robustness in Operation

5.2.1. Proposed Framework
Based on the different levels of robustness definitions and the five elements of robustness evaluation, which were

explained in Section 5.1, we proposed a framework that adopts a hierarchical conceptual approach to categorize and
illustrate existing methods and metrics in evaluating the robustness of ANN-SCSs (see Figure 5).

Scale of the system architecture. The system architecture scale refers to the level at which the ANN-SCS
is: 1) At the system level, where the ANN-SCS is evaluated as a whole within its operational environment. In
this context, multiple models can be combined either serially, as in a traffic light perception task that requires both
detection and recognition or in parallel, where several alternative models address a problem. For example, in the
camera perception component of Apollo, a cutting-edge autonomous vehicle system, four models are associated with
obstacle detection (Peng et al., 2020). Developers must decide which of these four models to employ when identifying
obstacles. 2) The ANN model level involves evaluating a single ANN model independently. 3) The input level is where
the input data utilized in operation are evaluated.

Application domains and context. Recognizing the application domain and context is crucial for selecting
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suitable metrics and methods to assess a model or system’s robustness. SCS application domains analyzed in this
study include ADSs, MSs, and UASs.

Robustness goals. These include performance requirements such as maintaining consistent performance when
dealing with altered inputs, generalizing effectively within and across domains, and resisting adversarial attacks (Drenkow
et al., 2021).

Data input and task output. This paper specifically focuses on using ANNs for classification tasks, with image
data as the primary input and class prediction as the primary output, and thus limits its discussion to data and task
outputs related to this particular focus.

In the following sections, we present how the aforementioned factors influence the selection of methods and
metrics.

5.2.2. Methods and Metrics of Robustness Evaluation at the System Level
Robustness measurement techniques vary at the system level, with many being application domain-specific. Table

4 summarizes studies, measurement methods, and metrics for system-level robustness evaluation in operation.

Table 4: Methods and Metrics for evaluating the robustness of ANN-SCSs in operation (system level).

SCS
Domain

Operational
Context

Robustness
Goal Method Metrics Ref.

ADS End-to-end steering

Min. MSE of steer angle
in the presence of
adversarial examples and
synthetic noisy input

Input-output
evaluation

Likelihood-based surprise adequacy,
Distance-based surprise adequacy Kim et al. (2019)

Attacking strength,
Average angle error,
Percentage of frames whose angle
error exceeds a predefined threshold

Zhou et al. (2020)

Object perception
Ensuring safe driving
in rare failure scenarios

Simulation-based
fault injection

Minimum time to collision,
Failure probability Norden et al. (2019)

MS Diagnose
Accurate and reliable
diagnosis Field testing

False positive rate,
False negative rate Beede et al. (2020b)

UAS VLG Reliable landing Fault tree analysis Failure probability Cluzeau et al. (2020)
ADS: Autonomous Driving System; MS: Medical System; UAS: Unmanned Aircraft System; VLG: Visual Landing Guidance

Autonomous driving systems (ADSs). A crucial element of an AV is its perception module, governed by the
underlying ANN (Peng et al., 2020; Grigorescu et al., 2020). The ANN processes input from a variety of sensors,
including cameras, LiDAR, and infrared sensors, to analyze the surroundings and produce outputs such as steering
directions or class predictions. For end-to-end steering tasks, the robustness goals aim for minimal mean squared error
(MSE) between predicted and actual steering directions.

Kim et al. (2019) assessed ADS output correctness in the presence of adversarial examples and synthetic noisy
input. They introduced two metrics to measure how surprising an input is to an ADS. They quantified surprise by
evaluating the deviation in the system’s behavior (i.e., predicted steering angle) between the training data and the
test input. Likelihood-based surprise adequacy measures the surprise by calculating the probability of the system
encountering a similar input during training. In contrast, distance-based surprise adequacy calculates the Euclidean
distance between neuron activation representations of the given input in operation and the training data.

Zhou et al. (2020) developed DeepBillboard, a systematic input-output evaluation method for dynamic driving
conditions, such as varying viewing angles, lighting, and distances. The objective is to maximize the likelihood,
degree, and duration of steering-angle errors in an AV caused by a generated adversarial billboard. The study proposed
several metrics to assess perturbation effectiveness in both digital and physical domains, including attacking strength,
attack possibility, average angle error, and the percentage of frames with angle error exceeding a predefined threshold.

The primary goal of object perception is to ensure safe driving during rare events (Norden et al., 2019). As
validating performance requires driving the vehicle billions of miles to test it, many studies suggest simulation-based
evaluations to efficiently assess AV systems and identify rare failure scenarios (Webb et al., 2020; Zhou et al., 2020;
Yamaguchi et al., 2016). A simulation-based testing framework should prioritize scenarios, evaluate coverage of
failure modes, and rank them by importance. Considering the AV system as a black box, Norden et al. (2019)
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Figure 6: System architecture overview of visual landing guidance (VLG) (Cluzeau et al., 2020).

developed a simulation testing framework to measure accident probabilities based on standard traffic behavior. The
testing framework can efficiently identify and rank failure scenarios using adaptive importance-sampling methods.
They proposed two metrics: minimum time-to-collision (TTC) and failure probability. Their findings revealed that
a widely deployed ADS, OPENPILOT (Comma AI, 2019), often fails due to uncertain perception of other vehicles
or lane boundaries in specific weather conditions. Additionally, they found that collisions can be either glancing or
high-impulse, depending on the vehicles’ relative velocities.

Medical systems (MSs). Clinical investigations or trials (Beede et al., 2020b) are common methods for assessing
the robustness of deployed MSs. Although there is no current requirement for ANN systems to undergo observational
clinical studies, the success of an ANN model depends not only on its accuracy but also on its impact on patient care
and outcomes (Shah et al., 2019). Beede et al. (2020b) conducted a user-centered field trial to evaluate the robustness
of an ANN-based diabetic eye disease detection system used in clinical environments. The primary users of the
system were nurses and retinal specialists. The robustness goal was to accurately and reliably detect diabetic eye
disease and provide appropriate diagnoses to improve patient care. The study used live patient data in the form of eye
images, either taken in a dedicated screening room with controlled lighting conditions for high-quality fundus photos
or in the nurse’s office with less controlled lighting conditions, which may have resulted in low-quality images the
ANN system could not recognize. The study found that lighting conditions were significant factors in using the ANN
system, and ungradable images and user frustration often resulted from suboptimal lighting conditions. Although
the ANN system aimed to reduce the time required for patients to receive care, its deployment sometimes caused
unnecessary delays or misdiagnoses. The study emphasized the importance of evaluating ANN-system performance
using live data generated at the clinical site.

Unmanned aircraft systems (UASs). Object detection from UASs equipped with cameras has been increasingly
deployed in many industrial applications. The mobility of UAS-mounted cameras brings greater challenges in robust-
ness evaluation, such as variations in altitude and object scale, view angles, weather, and illumination (Yu et al., 2020).
Visual landing guidance (VLG) facilitates landing an aircraft on a runway or vertiport (Cluzeau et al., 2020). It com-
prises traditional software and an ANN (see Figure 6). A quantitative ANN failure mode and effect analysis (FMEA)
is proposed to estimate the failure rates of ANN-SCS, given adequate error metrics and failure definitions (Cluzeau
et al., 2020).

5.2.3. Methods and Metrics of Robustness Evaluation at the ANN Model Level
The model-level evaluation focuses on evaluating an ANN model in isolation without considering any other com-

ponents of the ANN-SCS. Consequently, most of the papers in this category did not conduct evaluations tailored to
specific applications of the model. Thus, we list their application domains in Table 5 as “image classification.” Addi-
tionally, we identified ANN model-level evaluations for particular domains, i.e., ADS, MS, and UAS. The robustness

12

142



goals of each study vary, including being robust to pixel perturbations, spatial transformations, natural corruptions,
distribution shifts, and hardware and software faults. Depending on the different robustness goals, various meth-
ods are employed to conduct robustness evaluations. One category of technique was sensitivity analysis (Saltelli,
2002), which attributes uncertainty in the output to diverse factors contributing to uncertainty in the model input.
The sensitivity-based method requires zero knowledge of ANN classifiers, making it more applicable for assessing
the robustness of ANN models in operation. Another category of technique was simulation-based, such as injecting
fault (Hsueh et al., 1997) into systems to evaluate their behavior in fault scenarios. Table 5 summarizes the research
identified on the methods and metrics of robustness evaluation at the ANN model level. Note that these methods
and metrics originate from lab evaluations but can be applied when labeled data are available in operational
settings.

Table 5: Methods and Metrics for evaluating the robustness of ANN-SCSs in operation (ANN model level).

SCS Domain Operational
Context

Robustness Goal
(i.e., be robust against) Method Metric Ref.

Image
classification Generic Pixel perturbations Sensitivity-based

Level-threshold-safe,
Level-pixel-safe Kotyan and Vargas (2019)

Spatial deformations Sensitivity-based Attack success rate Liu et al. (2018)

Natural corruptions Simulation-based
Threat severity,
Minimal perturbations,
Fooling success rate

Zhong et al. (2020)

Sensitivity-based Accuracy loss Laugros et al. (2019)

Hardware and software faults
Simulation-based
fault injection

Bit error rate-accuracy
curves Reagen et al. (2018)

SDC rate Chen et al. (2020b)

ADS
Traffic sign
recognition Natural corruptions Sensitivity-based Classification accuracy Berghoff et al. (2021)

Object detection Natural corruptions Sensitivity-based AP and AP@50, mAP Michaelis et al. (2019)
MS Gastroenterology Distributional shift Sensitivity-based Sensitivity, specificity Hicks et al. (2022)
UAS VLG Distributional shift Sensitivity-based Classification accuracy Cluzeau et al. (2020)
ADS: Autonomous Driving System; MS: Medical System; MS: Medical System, UAS: Unmanned Aircraft System; VLG: Visual Landing Guidance

Across-domain evaluation methods and metrics for image classification. ANNs can be susceptible to misclas-
sification when small disturbances, known as adversarial samples, are added to original samples (Kotyan and Vargas,
2019). Pixel perturbation refers to introducing minor changes to individual pixels in an image. The extent of these
changes is determined by the Lp (p=0, 1, 2, inf) norm, which limits the number or magnitude of pixel alterations. Re-
searchers have employed sensitivity-based methods to evaluate pixel perturbation robustness. Sensitivity-based meth-
ods investigate how input attacks can affect output (Kotyan and Vargas, 2019). Kotyan and Vargas (2019) suggested a
dual evaluation method using L0 and L1 metrics to generate adversarial samples that humans do not misclassify. The
concept of robustness levels was introduced to represent the degree of disruption added to the original sample and
thresholds were defined to limit the spatial distribution of noise in the adversarial sample. They utilized two metrics,
level-threshold-safe and level-pixel-safe, to assess an ANN model’s resilience against adversarial attacks.

Pixel norm perturbations in model evaluation have limited practicality. Liu et al. (2018) proposed a parametric
norm-ball attack that directly alters physical parameters such as lighting and geometry to create adversarial examples.
Their differentiable rendering approach effectively assesses the sensitivity of model output to spatial transformations
in real-world inputs. Zhong et al. (2020) introduced a simulation-based framework that measures the robustness of
ANN models against natural perturbations in five categories: luminance, spatial transformation, blur, corruption, and
weather. They used various metrics to evaluate the smallest perturbation needed to cause misclassification and the
fooling success rate, indicating model robustness. Additionally, they introduced a threat severity metric that measures
the minimum real-world perturbation required to change model predictions, quantified using Lp norm-based distance.
A larger Lp norm-based distance signifies lower threat severity (Zhong et al., 2020). Laugros et al. (2019) examined
the potential correlations between adversarial robustness and robustness to natural corruptions. They assessed the
accuracy loss, which measures the ratio of the ANN model’s accuracy on perturbed data to its accuracy on non-
perturbed data, for each model against each perturbation. The robustness of the ANN model to unseen perturbations
was evaluated through experiments, such as assessing the accuracy loss of an adversarially trained model against an
unseen natural corruption or vice versa. The authors concluded that adversarial robustness and robustness to common
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perturbations are distinct attributes, suggesting that ANN robustness should be evaluated more broadly.
In addition to focusing on input data perturbations, a few studies have evaluated ANN model robustness against

hardware and software faults (Reagen et al., 2018; Chen et al., 2020b). Reagen et al. (2018) introduced Ares, an ANN-
specific fault injection framework designed to assess the relationship between hardware fault rate and model accuracy.
Their research found that ANN fault tolerance varies significantly depending on the model, layer type, and structure.
Chen et al. (2020b) introduced TensorFi to investigate faults at the interfaces of TensorFlow operators, assuming
that faults within operators only affect their outputs. TensorFI considers output corruption in the form of “random
value replacement” or “single bit-flip” for any data processed by the ANN system, such as weights, biases, or inputs.
TensorFI evaluates ANN model robustness based on the occurrence of one type of output corruption, specifically,
silent data corruption (SDC).

Domain-specific evaluation methods and metrics for ADSs. In ADSs, ANN models are used for traffic sign
recognition and object detection. Despite the different operational contexts, environmental changes, such as weather
conditions, have been identified as a key challenge for state-of-the-art ADSs. Typically, sensitivity-based methods are
employed to analyze how domain-specific noises affect the output (Temel et al., 2017; Michaelis et al., 2019; Berghoff
et al., 2021).

Berghoff et al. (2021) used a set of robustness properties (including image noise, pixel perturbations, geometric
transformations, and color transformations) to evaluate ANN models trained on the German Traffic Sign Recognition
Benchmark dataset under various environmental conditions. Their method helps identify failure modes that require
attention in operation. For example, they discovered that the models perform well under normal conditions but have
weaknesses when faced with direct sunlight or similar backgrounds. Similarly, Michaelis et al. (2019) assessed the
robustness of object detection models under different image distortions and weather conditions, focusing on ADSs.
They proposed three benchmark datasets (COCO-C, Cityscapes-C, and PASCAL-C) containing corrupted versions
of commonly used object detection datasets. They demonstrated that a variety of object detection models undergo
significant degradation in performance on corrupted images. The authors used dataset-specific performance measures
to evaluate the robustness of object detection models. They adopted the PASCAL average precision (AP) metric at
50% intersection over union (IoU) for the PASCAL VOC dataset (Everingham et al., 2010) and the COCO AP metric,
which averages over IoUs between 50% and 95%, for the MS COCO (Lin et al., 2014) and Cityscapes (Cordts et al.,
2016) datasets. The challenge of applying sensitivity-based methods in the ADS domain is the cost of manually
labeling thousands or even millions of inputs.

Domain-specific evaluation methods and metrics for MSs. Hicks et al. (2022) comprehensively discussed
the evaluation metrics for binary ANN models in gastroenterology. In addition to commonly used metrics such
as accuracy, precision, and recall, they emphasized the importance of incorporating clinically relevant metrics, like
sensitivity and specificity. Sensitivity is determined by calculating the proportion of correctly classified positive
samples to all samples assigned to the positive class. A high sensitivity value indicates the model’s effectiveness in
identifying the majority of positive cases, which is crucial in medical research. Specificity, conversely, represents the
rate at which negative samples are accurately classified and serves as the negative class counterpart to sensitivity.

Domain-specific evaluation methods and metrics for UASs. In a study by Cluzeau et al. (2020), an ANN model
was used for the perception component of a VLG system, which helps land aircraft on runways or vertiports. They
assessed the ANN model’s performance using traditional metrics such as accuracy, precision, recall, and F1 score. Yet,
they emphasized that evaluation metrics should be selected considering the context of the entire system and its specific
use case rather than in isolation. For example, a system designed to identify runways might prioritize minimizing false
positives, which occur when the system makes incorrect predictions regarding the presence of runways. In contrast, a
system focused on detecting other aircraft to prevent collisions might prefer tolerating false positives, ensuring that it
does not overlook any aircraft in the vicinity. In light of these considerations, decision thresholds should be established
based on different predefined rates of false negatives and positives during operation.

5.2.4. Methods and Metrics of Robustness Evaluation at the Input Data Level
The input-level evaluation aims to examine the representativeness of data inputs. A trend involves using large-scale

realistic data across all application domains. Large volumes of data can help uncover patterns and trends, whereas
small volumes may not provide enough information for accurately evaluating system robustness. For ADSs, large-
scale public datasets primarily consist of annotated frames from LiDAR, radar, and stereo cameras, offering various
city scenarios, weather conditions, times of day, and scene types (Yates, 2022). The variety of data used is also crucial.
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If the data cover only a narrow range of scenarios, the evaluation may not be robust enough to handle unexpected
events or outliers. Different applications can have various types of adverse conditions to consider. For instance, in
ADSs, perturbations could include luminance, spatial transformation, blur, corruption, and weather (Zhong et al.,
2020). In contrast, the UAS benchmark focuses on complex scenarios with viewpoint changes, fast motion, rare
weather conditions, and flying altitude changes (Yu et al., 2020). Table 6 summarizes the identified research on
methods and metrics for robustness evaluation at the input level. As input-level evaluation is domain-independent, we
categorized the identified papers based on their robustness goals.

Table 6: Methods and Metrics for evaluating the robustness of ANN-SCSs in operation (input level).

SCS
Domain

Operational
Context

Robustness Goal
(i.e., be robust against) Method Metric Ref.

Generic Generic Semantic diversity Coverage-based Importance-driven coverage (IDC) Gerasimou et al. (2020)

Generic Generic Natural corruptions Sensitivity-based
Neighbor accuracy,
Neighbor diversity score Zhong et al. (2021)

Generic Generic Distributional shift Sensitivity-based F-measure for threshold values Dola et al. (2021)
Adversarial filtration Classification accuracy Hendrycks et al. (2021c,a)

Generic Generic Triggering misclassifications
Test input selection
and prioritization Maximum mean discrepancy-critic Chen et al. (2020a)

Model uncertainty-based Ma et al. (2021)
Sample discrimination-based Meng et al. (2021)

Gerasimou et al. (2020) proposed DeepImportance to evaluate the adequacy of test cases in ANN systems. They
introduced an importance-driven criterion (IDC) to assess the semantic adequacy of an input dataset by measuring
how well it activates various combinations of important neurons’ behaviors. A high IDC score implies a diverse input
set that effectively triggers numerous combinations of significant neuron clusters.

ANN models can be easily deceived by slight changes in input data, making it crucial to identify data points that
negatively impact robustness. Zhong et al. (2021) investigated the robustness of individual inputs when subjected to
natural variations, such as rotations or rain in the original input. They determined neighbor accuracy as the percentage
of a data point’s neighbors, including the data point itself, that can be accurately classified by the ANN model being
tested. A data point is considered robust with respect to the ANN model being tested if the accuracy of its neighboring
points surpasses a pre-established threshold. On the contrary, a input point is non-robust if its neighbor accuracy
falls below a predefined threshold. To quantify the diversity of classes that a data point’s neighbors belong to, they
calculated the neighbor diversity score (λ) using the simpson diversity index (Simpson, 1949) for each input data
point. Then, the test images are ranked based on their λ values, and the top k images (where k is chosen according to
the user requirements) are marked as potentially the most non-robust inputs.

Existing coverage-based methods struggle to differentiate between invalid and valid test cases, which can result
in test suites being biased towards incorporating more invalid inputs to achieve higher coverage. Dola et al. (2021)
proposed a deep generative model-based input validation approach to determine if test inputs are valid. Valid inputs
are those from a dataset under test that follows the same distribution as the training data of the ANN being tested. They
utilized a variational auto-encoder (VAE) model to classify test inputs generated by ANN test generation techniques.
Test inputs with reconstruction probabilities lower than a specified threshold were identified as invalid. To find the
optimal reconstruction probability threshold for identifying invalid inputs, they employed the F-measure, which is the
harmonic mean of precision and recall.

Hendrycks et al. (2021c,a) introduced various robustness benchmark datasets to reveal the failure modes of ANN
models. These benchmarks include ImageNet-A, a dataset comprising images that belong to ImageNet classes but are
more challenging and can cause errors in different models. Other benchmark datasets, such as StreetView StoreFronts
(SVSF), DeepFashion Remixed (DFR), and ImageNet-Renditions (ImageNet-R) (Hendrycks et al., 2021a), capture
naturally occurring data distribution shifts in aspects like image style, geographical settings, and camera operation.
These datasets were created using a straightforward adversarial filtration technique to eliminate spurious cues and
examine model performance with easy-to-classify examples removed.

Several works focus on selecting an efficient subset of samples to save the labeling effort in operational contexts.
Chen et al. (2020a) proposed PACE (practical accuracy estimation) to precisely estimate the accuracy of an ANN
model for the entire testing set by using a selected subset of test inputs. PACE incorporates clustering to divide test
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inputs into distinct groups, uses the maximum mean discrepancy (MMD) measure to select representative prototypes,
and employs adaptive random testing to ensure diverse coverage with the specified number of test inputs. Ma et al.
(2021) proposed various metrics based on model uncertainty to identify data likely to cause misclassification. They
used the maximum probability score to measure the highest prediction probability for a specific input across vari-
ous mutant models. They also calculated the variance score, representing the variation in prediction probabilities.
Samples with higher variance scores are considered more prone to causing misclassification. Furthermore, Ma et al.
(2021) employed the Kullback-Leibler score to compare the actual class prediction distribution of an input with a
worst-case scenario where class predictions are evenly distributed across all classes. Their findings revealed that
model uncertainty-based metrics are highly effective in identifying misclassified inputs, surpassing the performance
of coverage-based metrics. Meng et al. (2021) combined majority voting (Sagi and Rokach, 2018) and item dis-
crimination (Ebel, 1954) techniques to measure the discrimination of inputs and choose “error-inducing inputs” to
discriminate the robustness of multiple ANN models.

Answer to RQ2: Classification accuracy is the primary metric used for robustness evaluation at all three
levels. Additionally, sensitivity-based evaluation methods are quite popular across these levels. For system-
level assessments, simulation-based evaluation is commonly employed. In contrast, input-level assessments use
coverage-based metrics to evaluate the effectiveness of various scenarios and conditions in the dataset. Utilizing
a combination of complementary methods and metrics can help ensure that the robustness of the system is
thoroughly analyzed and potential vulnerabilities are identified under various conditions and scenarios.

5.3. Results of RQ3: Challenges of measuring ANN-SCS Robustness in Operation

There are many metrics to evaluate robustness in operation. However, the focus should not be on the number of
metrics but rather on effectively integrating or selecting the appropriate metrics to capture various aspects of robustness
and address genuine concerns in real-world application scenarios. Building upon the results of RQ1 and RQ2, we
unfold challenges related to the application domain, robustness goal, and methods/metrics at each level.

5.3.1. Challenges of Robustness Evaluation at the System Level
Research on the robustness evaluation of ANN-SCS in operation is still in its early stages. Studies of robustness

evaluation at the system level are rarely reported in the literature. We distinguish two types of system architecture
variations based on different evaluation goals: 1) an ANN-SCS as a black box, with the aim of assessing potential
performance degradation due to input changes; and 2) an ANN-SCS with redundant ANN models, with the objective
of comparing the performance of multiple models and recommending the optimal one for use.

Evaluating robustness at the system level as a black box. Three out of five studies (Kim et al., 2019; Zhou et al.,
2020; Norden et al., 2019) have used simulated abnormal inputs to ensure the comprehensiveness of the abnormal
conditions. While measuring the robustness of systems in a controlled laboratory environment can offer valuable
insights before deployment, such measurements may differ from robustness measurements taken in operational, real-
world settings. Although some studies have targeted user-centered field testing using operational data (Beede et al.,
2020b), no metrics are currently available to quantify the comprehensiveness of defined abnormal conditions. To
minimize the likelihood that ANN-SCSs will fail in scenarios involving rare failures, Hendrycks et al. (2021b) argued
that systems must exhibit unusual robustness. They recommended creating more benchmarks, including unusual and
extreme distribution shifts and rare failure scenarios, to stress-test systems.

Due to the absence of a system specification governing ANN’s training inference mechanism and the use of
data-centric approach, it becomes challenging to explicitly determine the expected performance of the ANN-SCS and
evaluate whether it meets the required standards and regulations. For an SCS, a safety integrity level (SIL) specifies the
level of performance required to maintain and achieve safety (IEC61508). The acceptable level of stable performance
of an ANN-SCS directly contributes to the determination of the SIL of a system. However, no study provides a specific
answer to deciding the acceptable level of robustness for an ANN-SCS. Indeed, the acceptable level would likely vary
depending on the specific application and potential consequences of failure. We would suggest that a methodology to
guide the decision of an acceptable level of stable performance should be developed for ANN-SCSs.

Although it is likely to obtain a considerable number of labeled data during the development phase, getting a
similar amount of labeled data in operation in real time could be challenging. Data labeling requires significant
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manual effort. Labeling requiring particular expertise, e.g., labeling medical images (Liu et al., 2022), can be more
costly. This implies that robustness evaluation methods in operation ideally should use unlabeled data. While some
sample-based methods (Chen et al., 2020a; Ma et al., 2021) can estimate the robustness of ANN models based on
a selected subset from unlabeled data, they still require manual labeling for the chosen samples, which can be a
drawback. We didn’t find studies addressing this challenge in system-level evaluation.

Evaluating robustness at the system level with redundant ANN models. In this scenario, multiple models are
connected in a standby mode, waiting to be activated to perform some specific task or function. By having multiple
models in standby mode, the system can continue to operate even if one model experiences an issue, providing high
reliability and stability (Peng et al., 2020). Currently, it is popular to store multiple model variants in a dedicated
cluster and serve the optimal model in operation (Vittal, 2021; Barla, 2023). This refers to homogeneous redun-
dancy (Lu et al., 2022), a common strategy of using multiple identical components or models to perform the same
task in a system.

Redundant hardware and software have been extensively used in traditional SCSs to increase reliability by inten-
tionally duplicating critical components or functions of a system (Johnson, 1996; Jain and Gupta, 2011), and majority
voting or fail-safe criteria are often employed to determine the active component. However, the study of robustness
evaluation for ANN-SCSs with redundant ANN models has not yet been reported in the literature. Majority voting
criteria can be ineffective due to the susceptibility of ANN models to the same input perturbations, such as adversarial
examples. Furthermore, ANN models often fail silently when facing invalid inputs, indicating the ineffectiveness of
fail-safe criteria.

Dedicated evaluation methods should be developed to compare the robustness of multiple ANN models and de-
cide which model should be used within the SCS. While accuracy is a common and acceptable metric, it is hardly
measurable when data are not labeled in operation. Consequently, industry best practices often involve drift detection
as an alternative approach. However, drift detection faces two key issues when comparing the robustness of multiple
ANN models: it does not measure the extent of degradation and provides a binary result (Yes/No), making it unfit for
comparing multiple models, and it is complex to measure data drift in high-dimensional data like images. Developing
reliable unsupervised metrics is an essential solution to address the challenge of data labeling in operation.

5.3.2. Challenges of Robustness Evaluation at the ANN Model Level
The reviewed papers evaluate ANN models focusing on adversarial perturbations, which are mainly generated

based on the Lp norm distance, realistic environment lighting and geometry, spatial transformations, natural corrup-
tions, and distributional shifts, respectively. However, the goal of robustness in practice is more comprehensive, as
highlighted by Hendrycks et al. (2021b). For example, to assess adversarial robustness, it is crucial to consider per-
ceptible attacks, as attackers may not only construct small Lp perturbations to deceive the system. They may also
rotate the adversarially modified images or apply other novel distortions to them (Gilmer et al., 2018). The areas of
adversarial robustness and corruption robustness, distributional shift, and unusual events should be considered in a
unified manner.

ANN model-level robustness evaluation still lack definitions of acceptable levels of performance. For instance,
mean absolute percentage error (MAPE) is an evaluation metric used to measure the accuracy of predictions across
industries. A lower MAPE value indicates a more accurate prediction. A MAPE of 20% may be considered good or
bad, depending on the situation. There is no industry standard for what the acceptable level of MAPE should be for a
good model.

5.3.3. Challenges of Robustness Evaluation at the Input Level
Mincu and Roy (2022) addressed the challenges of obtaining high-quality healthcare datasets due to privacy-

preserving considerations. They suggested techniques, such as federated learning, to encourage reproducibility while
retaining data privacy. Liu et al. (2022) pointed out the challenge of differentiating between in-distribution and out-
of-distribution cases given the complexity of most medical data. We envision that the use of fine-grained, actionable
taxonomies of perturbations, collaborative documentations of domain-specific perturbations, libraries to generate such
perturbations semi-automatically, and frameworks and metrics to uncover new types of perturbations in the wild must
be studied in the future.
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Answer to RQ3: We have identified three types of challenges, namely, identifying comprehensive abnormal
conditions, standardizing the definition of an acceptable level of performance, and acquiring sufficient labeled
data, at the system, ANN model, and input levels. Furthermore, we have highlighted an emerging need to assess
ANN-SCSs using redundant models, which has been overlooked.

6. Discussion

In this section, we compare our results with related work and analyze the impacts of the results for the industry
and validity threats to our studies.

6.1. Comparison with Related Work
Tocchetti et al. (2022) surveyed the terminology of concepts around AI robustness. They introduced three tax-

onomies: 1) methods and approaches that ensure robustness at different stages of the ML pipeline; 2) robustness
tailored to specific model architectures, tasks, and systems; and 3) methodologies for assessing robustness from both
a theoretical and practical perspective. They also highlighted the lack of a human perspective in evaluating AI ro-
bustness. They emphasized the urgent need to understand AI practitioners’ practices and develop tools that assist in
enhancing the robustness of AI systems. Surveys conducted by Riccio et al. (2020), Zhang et al. (2020), and Ashmore
et al. (2021) offer an in-depth perspective on existing methods for evaluating ML systems’ properties and obtaining
assurances.

While existing reviews provide useful insights into the robustness research considering ANN models, our study,
to the best of our knowledge, is the first comprehensive study to analyzes existing robustness evaluation approaches
and metrics applicable to ANN-SCSs in operation. Our paper goes beyond the ANN model or input data aspect
by investigating robustness evaluation at the system, model, and input levels. Recently, researchers have started to
highlight the need to consider the entire system and the interactions of various components within the system (Li et al.,
2022).

6.2. Implications
The lack of precise mathematical definitions for real-world robustness results in unclear and potentially misleading

uses of the term within the research community. Robustness evaluations vary not only because robustness goals and
available data are different from one test to another, but also because, there is no widely accepted guideline. The
CONSORT-AI2 and SPIRIT-AI3 Steering Group (con, 2019) reported emerging issues in clinical trials involving AI
interventions, including the study setting, the criteria for inclusion at the input data level, and the interaction between
the human, and the algorithm. Liu et al. (2022) proposed a medical algorithmic audit framework to identify potential
algorithmic errors, map the components contributing to errors, and anticipate their consequences. They suggested
several methodologies for assessing these algorithmic errors, including “exploratory error analysis, subgroup testing,
and adversarial testing.” Considering the issues discussed earlier, we suggest that more guidelines aimed at enhancing
future research on robustness evaluation in operations should be developed.

Existing literature states robustness goals at either the system level or the ANN model level. However, based on
the technical reports we have reviewed, industry practitioners consider robustness goals from the top down (Cluzeau
et al., 2020). That said, during analysis, it is often useful for analysts to break down system robustness objectives
into their component or model-level goals to better understand the specific need for robustness evaluation and how
to perform it. In turn, understanding the error propagation from low-level components (such as ANN models) to the
system output is crucial. We should treat the system-level evaluation as a multi-stage process, given that variations
introduced in earlier stages may accumulate and propagate to subsequent stages. Although it is possible to develop
robustness metrics for individual stages (i.e., an ANN model or non-ANN component), how to combine these metrics
to assess the robustness of a hierarchical ANN-SCS remains underexplored.

Assessing the robustness of ANN-SCSs by simply adopting principles recommended by standards and regulations
is not straightforward. Business owners tend to care more about business KPIs. An adjacent system attribution of

2CONSORT-AI: Consolidated Standards of Reporting Trials—Artificial Intelligence
3SPIRIT-AI: Standard Protocol Items: Recommendations for Interventional Trials—Artificial Intelligence
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robustness, i.e., resilience, is considered in operation. A resilient ANN model will perform well on a wide range
of datasets beyond just the training set. It will also perform better for a longer period, as it is more robust and less
overfitted. While no single KPI measures ANN model resilience, industry practitioners in machine learning operations
(MLOps) have suggested a few ways to evaluate the resiliency of models (Chen et al., 2022):

• Smaller standard deviations in a cross-validation run

• Similar error rates for longer times in production models

• Less discrepancy between error rates of test and validation datasets

• How much input drift impacts the model

We believe that the robustness evaluation of ANN-SCSs in operation should also address business owners’ concerns.
This could involve finding a solution to aggregate evaluation results from the system, model, and input levels into a
meta-index reflecting the system’s robustness.

While researchers have made significant strides in proposing various metrics to evaluate robustness, the lack of
consensus on which metric to use has limited their adoption by practitioners. As a result, ML teams often rely on ad
hoc approaches when testing and evaluating the robustness of their models (Shankar et al., 2022), which may lead to
inconsistent and unreliable assessments. To address this issue, researchers and industry professionals must collaborate
to identify the key factors that define robustness across a broad range of ML models and applications.

Our literature review also shows that significant work remains to integrate our knowledge on ANN data, compo-
nent and system-level robustness assessment into existing frameworks of cyber-physical safety assessment (Guzman
et al., 2021) or broader approaches to designing robust complex SCSs (Leveson, 2004). However, we believe that
our understanding of ANN-SCSs has now reached a point where we can begin integrating them into (and adaptating)
established safety design and assessment frameworks and methods.

6.3. Threats to Validity

External Validity. First, the term “robustness” tends to be overused and is subject to a wide array of interpre-
tations, targeting adversarial, corruption, and distributional robustness. As a result, many methods and metrics were
initially designed to address only one of these robustness objectives. To mitigate this threat, we considered all ro-
bustness objectives during the paper selection process to ensure that our findings were relevant to a wide range of
robustness challenges in operation. Another issue is that research on the robustness evaluation of ANN-SCSs in
operation is still in its early stages, and studies of robustness evaluation at the system level are rarely reported in
the literature. To address this, we combined knowledge from various sources, such as scientific papers and industry
standards to provide a comprehensive understanding of the current state of robustness evaluation of ANN-SCSs in op-
eration. Additionally, we are aware of the potential limitation in external validity arising from our focus on a limited
number of application domains. To address this concern, we carefully selected three representative domains: ADSs,
MSs, and UASs. These domains were chosen based on their well-established status and the availability of relevant
studies. It is crucial to highlight that the insights and findings derived from these domains can be extrapolated to
enhance robustness evaluation in other application domains.

Internal Validity. To minimize the risk of overlooking pertinent studies, we utilized six of the most relevant
digital libraries. We also executed an extensive process of snowballing on the references of the selected papers. To
ensure our search was thorough and appropriate, the authors cross-checked and reached an agreement on the search
keywords. The primary author designed the data extraction template, and conducted the data extraction from the
selected papers. To counter potential bias, both authors engaged in ongoing discussions about issues related to data
extraction. Furthermore, to ensure accuracy and consistency, the second author verified the data that was extracted.

7. Conclusion and Future Work

In this survey, we gathered, organized, and analyzed existing literature on the evaluation of robustness for ANN-
SCS in operation. Based on the identified literature, we first summarized the definitions of ANN-SCS robustness. We
identified the key factors—application domain, operational context, system architecture, robustness goal, and nature of
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data—which are associated with robustness evaluation in operation. We then proposed a multi-dimensional framework
to demonstrate the application of the reviewed methods and metrics to evaluate the robustness of ANN-SCSs. The
study includes an in-depth analysis of the robustness evaluation methods and metrics for ANN-SCSs at the system,
ANN model, and input levels. We provide insights to industry by describing the remaining research gaps in defining
abnormal conditions, determining an acceptable level of performance, and obtaining labeled data. We believe that our
findings will be a starting point for future studies focusing on the continuous evaluation of robustness in operational
ANN-SCSs. In our future work, we plan to propose an evaluation methodology that enables the continuous assessment
of multi-model robustness and facilitates the automated selection of the most robust model in operational settings. Our
objective is to explore the impact of utilizing different distance metrics to establish a practical approach for ranking
the robustness of multiple models in real-world ANN-SCSs. This research endeavor aims to address the dynamic risk
assessment requirements of ANN-SCSs in operation. Additionally, we will focus on developing runtime decision-
making support tools. These tools will involve monitoring and evaluating the output of large language models, such
as ChatGPT, to ensure the generation of trustworthy outcomes and enhance overall system reliability.
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Abstract

Context: The increasing use of artificial neural network (ANN) classifiers in systems, especially
safety-critical systems (SCSs), requires ensuring their robustness against out-of-distribution (OOD)
shifts in operation, which are changes in the underlying data distribution from the data training
the classifier. However, measuring the robustness of classifiers in operation with only unlabeled
data is challenging. Additionally, machine learning engineers may need to compare different
models or versions of the same model and switch to an optimal version based on their robust-
ness.
Objective: This paper explores the problem of dynamic robustness evaluation for automated
model selection. We aim to find efficient and effective metrics for evaluating and comparing the
robustness of multiple ANN classifiers using unlabeled operational data.
Method: To quantitatively measure the differences between model outputs and assess robust-
ness under OOD shifts using unlabeled data, we choose distance-based metrics. An empirical
comparison of five such metrics, suitable for higher-dimensional data like images, is performed.
The selected metrics include Wasserstein Distance (WD), Maximum Mean Discrepancy (MMD),
Hellinger distance (HL), the Kolmogorov-Smirnov Statistic (KS), and Kullback-Leibler (KL) di-
vergence, known for their efficacy in quantifying distribution differences. We evaluate these
metrics on ten state-of-the-art models (five CIFAR10-based models and five ImageNet-based
models) from a widely used robustness benchmark (RobustBench) using data perturbed with
various types and magnitudes of corruptions to mimic real-world OOD shifts.
Results: Our findings reveal that the WD metric outperforms others when ranking multiple ANN
models for CIFAR10-based models, while the KS metric demonstrates superior performance for
ImageNet-based models. MMD can be used as a reliable second option for both datasets.
Conclusion: This study highlights the effectiveness of distance-based metrics in ranking mod-
els’ robustness for automated model selection. It also emphasizes the significance of advancing
research in dynamic robustness evaluation.

Keywords: Artificial neural network classifier, automated model selection, robustness, dynamic
evaluation, distance-based metrics
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1. Introduction

Artificial neural network (ANN) models in operation are susceptible to input data changes
from the training data [1], which are commonly referred to as out-of-distribution (OOD) shifts.
Due to the diverse underlying mechanisms that cause OOD shifts, the best methods for enhanc-
ing models’ OOD robustness differ across different datasets and shifts [2, 3]. As emphasized
by [4, 5], one crucial research direction for effective artificial intelligence (AI) risk manage-
ment is continuously monitoring and validating the outcomes of AI systems. This highlights the
need for practitioners to dynamically evaluate and choose optimal models for deployment under
changing conditions. In addition, employing different models to perform the same task, known
as the multi-model decision-maker [4], presents a promising solution for maintaining system
performance and accuracy when facing OOD shifts [6], as it leverages the diversity of models to
provide robust predictions in dynamic and changing conditions.

The multi-model decision-maker has been observed in various AI applications, including
AWS fraud detection1 and IBM Watson natural language understanding.2 However, naive av-
eraging, or taking the models’ majority decision, followed by most of today’s multi-model
decision-makers, is not optimal as models may be sensitive to different OOD shifts, resulting
in misleading conclusions when averaging the models’ outputs or using votes. Automated rank-
ing to choose the best model regularly in the context of a multi-model decision-maker can be a
better strategy, particularly in the presence of OOD shifts. However, implementing such a strat-
egy is challenging due to several factors. Firstly, the introduction of OOD shifts in the data brings
about uncertainties and variations, posing challenges in accurately assessing the performance of
each model. Secondly, selecting the best model requires an effective evaluation metric that can
capture the model’s robustness under different shifts. Third, unlike model training data, most
data in model operation are unlabeled. Thus, we aim to answer the following question:

How can we compare and rank the robustness of multiple ANN models using unlabeled input
during operation, supposing OOD shifts may happen at any time during operation?

This study focuses on ANNs for classifying high-dimensional data, such as images, to serve
as a representative example demonstrating the challenges we are addressing. We consider OOD
(also referred to as natural corruption [6]) robustness since natural corruption is the main in-
put that influences ANN classifiers’ performance in real-world scenarios [7], e.g., autonomous
vehicles (AVs) [8].

Although the scientific community has developed methods to facilitate the testing of ANN
models without relying on data labels [9, 10], these methods typically require the training of a
dedicated supervisor model to monitor the performance of the deployed ANN model individu-
ally. While the approach is effective for assessing a single model, it becomes impractical when
comparing multiple ANN models because the training of a dedicated supervisor model for each
deployed model is resource-intensive, especially when dealing with a large number of models.
Additionally, each supervisor model may have its own biases and limitations, leading to incon-
sistent and incomparable results across different models. Another promising category of research
uses distance-based metrics [11] to estimate the performance degradation of a single model given
the changing input data. The single-model scenario measures performance degradation given an

1AWS fraud detection: https://aws.amazon.com/cn/solutions/implementations/fraud-detection-using-machine-
learning/

2IBM Watson natural language understanding: https://www.ibm.com/au-en/cloud/watson-natural-language-
understanding
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identical model but different input data. In contrast, the robustness comparisons in the multi-
model decision-maker scenario need to compare the performance difference of selected models
given identical input data. The differences in ANN models’ architectural, training scheme, and
inherent properties can result in variations in how the models respond to OOD shifts. There-
fore, it is uncertain whether the performance degradation measured by distance-based metrics
can effectively differentiate the robustness of multiple models.

Research comparing the robustness of multiple models using these distance-based metrics is
relatively scarce. The lack of extensive experimental evidence makes it challenging to determine
these metrics’ suitability for robustness comparison among multiple models. Comparing the
robustness of multiple models must consider various factors, such as the choice of distance-based
metrics, the nature and extent of input perturbations, and the sample size. The interplay between
these factors can introduce complexities and dependencies that may affect the effectiveness of
distance-based metrics in robustness comparison.

The distance-based metrics that we consider are drawn mainly from the drift detection lit-
erature [11, 12, 13], including Wasserstein distance (WD) [14], maximum mean discrepancy
(MMD) [15], the Kolmogorov-Smirnov statistic (KS) [16], Hellinger distance (HL) [17], and
Kullback-Leibler (KL) divergence [18]. Our main experiments were carried out on two OOD
shift datasets, i.e., CIFAR10-C [19] and ImageNet-3DCC [20]. The experiments provide ev-
idence about the effectiveness of the selected distance-based metrics under different types of
shifts, and for what percentage of the shifts they are effective, as well as the minimum number
of samples needed to make reliable rankings. Our empirical findings demonstrate the superiority
of WD and KS over other metrics in ranking multiple ANN models for CIFAR10-based models
and ImageNet-based models, respectively. MMD is a suboptimal option for both datasets. Based
on our empirical findings and analysis, we recommend a minimum sample size of 500 to achieve
stable ranking accuracy of over 0.50.

Our main contribution is novel empirical evidence on the applicability of using distance-
based metrics to dynamically select the best model under OOD shift using only unlabeled data
in the context of multi-model decision-makers. Furthermore, our research has revealed the im-
portance of considering the metrics’ assumptions and characteristics of the data to be analyzed
when selecting the most appropriate metric.

The paper is organized as follows: Section 2 provides an overview of the related work. Sec-
tion 3 presents the problem formulation and our research design. In Section 4, we describe the
evaluation design and results. Section 5 discusses our results’ implications and the limitations of
our work. The conclusions and future work are presented in Section 6.

2. Related Work

Methods developed for dynamic robustness evaluation of ANN classifiers in operation should
consider the following two challenges: 1) the ground truth (labels) is often inaccessible or de-
layed; 2) the types of shifts in machine learning (ML) operation can be unknown. Three cate-
gories of related work have been proposed to address the two challenges.

Model evaluation using a subset of test data. Several test selection-based methods [21, 22]
have been proposed to rank multiple models with minimum labeling effort. For instance, Ma
et al. [21] proposed various metrics based on model uncertainty to identify data likely to cause
misclassification. Meng et al. [22] combined majority voting [23] and item discrimination [24]
techniques to measure the discrimination of inputs and select a set of “error-inducing inputs” to
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differentiate the robustness of multiple ANN models. These methods still rely on labeling a sub-
set of data, making them unsuitable for addressing our specific problem of using only unlabeled
data for robustness ranking in operation.

Labeling-free model performance estimation. For example, AutoEval [10] and SelfChecker [25]
propose learning an accuracy regression model using a synthetic meta-dataset, resulting in accu-
rate predictions of model accuracy for real-world unlabeled test datasets. However, the methods
in [10, 25] require a separate supervisor model to monitor and predict the performance of a single
deployed ANN model. Although it is technically possible to train multiple supervisor models to
monitor and predict the performance of multiple deployed ANN models, there are several prac-
tical challenges associated with this approach. Firstly, training and maintaining multiple super-
visor models can be computationally expensive and time-consuming. Secondly, each supervisor
model may have its own biases and limitations, leading to inconsistent and incomparable results
across different models.

Shift detection of a single model. Data shift detection primarily focuses on identifying
changes in the input data, while model shift detection aims to detect shifts in the output of ANN
classifiers. Measuring distribution differences between input data to derive model robustness is
unreliable since data shifts can often have trivial impact on model performance [12]. There are
two main approaches to detecting model shifts: statistical-based and distance-based. Statistical-
based methods rely on a given confidence level, usually 95%, to determine if a model shift is
detected. However, this approach does not measure the magnitude of shift and provides only a
binary (Yes/No) result, making it unsuitable for ranking multiple models. Distance-based ap-
proaches measure the distance between the distributions that generate the training and test data.
Igor et al. [11] assessed the practical application of several state-of-the-art distance-based metrics
for estimating the magnitude of model shifts. Their study showed that distance-based methods
offer an alternative for estimating performance degradation. However, further investigation is
needed to determine whether these techniques can effectively compare and rank the robustness
of multiple ANN classifiers. This motivates us to explore various distance-based metrics and ex-
amine their effectiveness in ranking the robustness of multiple ANN classifiers during operation.

3. Research Methodology

In this section, we begin by introducing the problem we aim to address, which is the com-
parison of robustness among multiple models using distance-based metrics. We then provide an
overview of our research design, outlining the methodology and specific distance-based metrics
employed in our study.

3.1. Problem Formulation

This paper focuses on image classification tasks using the multi-model decision-maker archi-
tecture. We aim to address the problem of assessing the robustness of ANN models in dynamic
environments where the operation data can be different from the training data due to OOD shift.
First, we differentiate two types of data:

• The modeling data Xmodel, which include Xtr (training datasets) and Xte (test datasets), are
the data used in the modeling (model development) stage.

• The operation data Xop are the input data to the model in the operation stage.
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Second, we assume that the model predicts accurately in the modeling stage. This as-
sumption prevents meaningless random or underfitting models, which holds in practice as people
usually only deploy models with high accuracy [26].

Considering the context of operational environments, the acceptable level of performance
can be case-specific. We prefer to adopt the contrastive measures strategy, which measures the
dissimilarity between the feature distribution of a model’s soft predicted labels on a reference
dataset and operational data. In this study, we use the training dataset as the reference dataset.
Therefore, the precise formulation of the problem is as follows. Let Xtr ∈ RD1×D2×N denote N
training images of dimension D1 ×D2, A = {ak}mk=1 denote a set of m different data augmentation
schemes (e.g., adding random cropping or Gaussian noise to training images [6]), and Sa(Xtr)
denote training datasets where augmentation a ∈ A has been applied to Xtr. To address the
problem of ranking models within a multi-model decision-maker system FN , where FN consists
of N models, we consider the output of the softmax layer of each model, denoted as f a(·). Our
goal is to select the most robust model f ∗ from the set of models in FN using a distance-based
metric dist applied to the augmented training data Sa(Xtr) and the unlabeled operation data Xop.
The ranking problem can be formulated as follows:

f ∗ = arg min
f a∈FN

dist( f a(Sa(Xtr)), f a(Xop)), (1)

In Equation (1), the distance-based metric dist compares the outputs of each model when
applied to the augmented training data Sa(Xtr) and the unlabeled operation data Xop. The model
with the minimum distance ( f ∗) is selected as the most robust model because the distance reflects
the similarity between the model’s predictions on familiar data (training data) and unseen data
(operation data). The smaller the distance, the better the model’s ability to generalize and handle
variations or shifts in the data distribution. Figure 1 illustrates the above-described workflow.

f* = arg	min dist	(fa (Sa(Xtr), fa (Xop))
(a=1,2,3)

Rank Models

……..

Operation data stream 

Selected Model

f∗

FN

f1

f2

f3

Xop

dist	(f3 (S3(Xtr), f3 (Xop))

dist	(f1 (S1(Xtr), f1 (Xop))

dist	(f2 (S2(Xtr), f2 (Xop))
S1(Xtr)

S2(Xtr)

S3(Xtr)

Figure 1: Illustration of the studied problem.
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Terminology for distance-based metrics. A statistical distance is a quantitative measure
of dissimilarity between two objects [27]. A distance-based metric is a non-negative function
D(x, y) that defines the distance between objects X and Y that satisfies the following axioms [28]:

• Non-negativity: D(x, y) ≥ 0.

• Identity of indiscernibles: D(x, y) = 0⇔ x ≡ y.

• Symmetry: D(x, y) = D(y, x)

• Triangle inequality: D(x, y) + D(y, z) ≥ D(x, z).

Theoretical justifications for using distance-based metrics for robustness ranking. We
are inspired by AutoEval [10], which showed a very strong negative correlation between robust-
ness and distribution difference. This finding indicates that it is feasible to estimate robustness
with distribution statistics. Furthermore, Theorem 1 in [29] states that the OOD robustness of
classifiers can be bounded as the conditional Wasserstein distance between the training data dis-
tribution and corrupted data distribution. It provides theoretical support for the promising use of
distance-based metrics to solve our robustness ranking problem.

3.2. Research Design

Previous papers have shown that the last few layers of ANN classifiers before the output
contain valuable information to represent ANN robustness [30, 31]. Among the layers, we find
that softmax appears in all popular ANN classifiers because it outputs class probabilities and
provides a differentiable surrogate for hard classification. This key observation motivates us
to employ the information in the output of the softmax layer (i.e., f a(·) in Eq. 1) to compare
the robustness of ANN classifiers. This choice avoids domain-specific feature representation.
Furthermore, the neural network forward pass naturally gives the soft predicted labels. Therefore,
using such information to evaluate the ANN classifier’s robustness can reduce the demand to
manually label the prediction results.

Selecting the candidate distance-based metrics. As explained in Section 1, we have chosen
five distance-based metrics for our analysis. While these metrics were not specifically designed
for robustness ranking, they have demonstrated utility in identifying issues with model perfor-
mance degradation in previous studies [12, 13].

The first metric we considered is the Wasserstein distance (WD) [14], which measures the
first- and second-order distance between two distributions. Another metric is the maximum
mean discrepancy (MMD) [15], a kernel-based technique that distinguishes between two proba-
bility distributions based on their mean embeddings in a reproducing kernel Hilbert space. The
Kolmogorov-Smirnov (KS) statistic [16] is a statistical test that is sensitive to differences in the
mean and dispersion of two distributions. The Hellinger distance (HL) [17] measures the simi-
larity between two probability distributions. HL is symmetric, well-defined for categorical and
numerical features, and widely accepted in the industry. A larger HL value indicates greater
dissimilarity between the distributions, while a smaller value indicates higher similarity or over-
lap. Lastly, we considered the Kullback-Leibler (KL) divergence [18], which is a widely used
measure that captures the information-based disparity between two distributions. KL divergence
assesses how much information is lost when one distribution is used to approximate another.

By selecting this set of metrics, we ensure coverage of various assumptions about the under-
lying data and the ability to capture different deviations between the output features of trained
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and operational data. For example, WD considers the mean and standard deviation of the dis-
tributions, while MMD measures the discrepancy between distribution features in a reproducing
kernel Hilbert space. HL is symmetric and has a clear analogy to Euclidean distance, making it
widely accepted in the industry for capturing the dissimilarity between probability distributions.
KS test compares each dimension separately and identifies the largest difference across all di-
mensions. Although KL divergence is not strictly a distance-based metric, we included it in our
study because it can quantify the difference between the distributions of model outputs on op-
eration data and training data in terms of information content. By incorporating KL divergence
alongside other distance-based metrics, we can obtain a more comprehensive understanding of
the distributional differences and their impact on model performance.

4. Evaluation of the Effectiveness of Distance-Based Metrics on Ranking Models

4.1. Evaluation Design

Evaluation questions. This study addresses the following two evaluation questions:

• RQ1 (Effectiveness under OOD shifts): How well do the selected metrics rank multiple
ANN classifiers when provided with various types of OOD data and their combinations?

RQ1 is broken down into three sub-questions as follows:

– RQ 1.1: How do the selected metrics perform in ranking the robustness of multiple
ANN classifiers under different types of corruptions?

– RQ 1.2: What is the impact of varying percentages of corrupted input on the effec-
tiveness of the selected metrics in ranking the robustness of multiple ANN classifiers?

– RQ 1.3: How well do the selected metrics rank the robustness of multiple ANN
classifiers when faced with mixed combinations of corruption types?

• RQ2 (Sample size impact): What is the minimum sample size required for the selected
metrics to achieve over 50% precision in ranking the robustness of multiple ANN classi-
fiers under varying levels of corruption?

RQ1 explores the effectiveness of the selected metrics in ranking multiple ANN classifiers using
OOD test data. By considering various conditions such as corruption types (RQ 1.1), varying
percentages of corrupted input (RQ 1.2), and a mixture of corruption types (RQ 1.3), we aim to
provide a comprehensive evaluation of the metrics’ performance in scenarios that simulate real
operational settings. This is important because in practical applications, models may encounter
unknown corruptions or a combination of different types of corruptions, and it is crucial to assess
their robustness under such conditions. RQ2 aims to provide insights into the practical feasibility
of using these metrics in real-world scenarios where the amount of labeled data for evaluation
may be limited.

Model selection. The variability in robustness among ANN classifiers can be attributed to
various factors, including the classifier’s architecture, training methods, and evaluation settings.
For example, ANN models can be trained using standard training datasets or augmented inputs
through data augmentation techniques [32]. The proportion of augmented inputs used during
training, as well as the type and strength of augmentations, can significantly impact the robust-
ness of the trained models. Additionally, some ANN classifiers may perform well against certain
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corruptions but poorly against others. To ensure the representativeness of our evaluation, we
carefully consider all these factors during the model selection process.

Ten state-of-the-art ANN classifiers robust against natural corruption (Models 1-10 in Table
1) were chosen from RobustBench [32]. RobustBench is a standardized robustness benchmark.
It contains a robustness evaluation of 40+ models in image classification on natural corruptions.
Here, we selected five robust models from the CIFAR10 leaderboard and five from the Ima-
geNet leaderboard, respectively, because these models have demonstrated strong performance
and robustness against a wide range of natural corruptions in the RobustBench benchmark. By
choosing models from the leaderboard, we ensured that we were evaluating state-of-the-art mod-
els that have undergone rigorous testing and evaluation, making them reliable candidates for our
study. After selecting the models, we measured their clean accuracy to classify the images in
the training dataset. The results are shown in the last column of Table 1 and illustrate that all
selected models have been trained to a satisfactory accuracy. Among them, Models 1, 2, and 3
are trained based on a backbone network WideResNet-18-2, while Models 4 and 5 are trained on
Augmix [33]. In Augmix, diverse augmentations are randomly selected and applied to a training
image, followed by the mixture of the augmented image with the original. Models 6 and 7 are
two vision transformers (ViTs)-based models. They are the top two state-of-the-art models on
the leaderboard of ImageNet. Models 8, 9, and 10 are ResNet-50-based models. Models 8 and
10 are trained by leveraging noisy augmentations in input and feature space to achieve high OOD
robustness on ImageNet-C.

Table 1: Datasets and models used in our experiments.

No. Dataset Model ID Source Clean
Accuracy

1 CIFAR10-C,Corruptions Diffenderfer2021Winning LRR CARD Deck [6] 0.97
2 Diffenderfer2021Winning LRR [6] 0.97
3 Diffenderfer2021Winning Binary CARD Deck [6] 0.95
4 Hendrycks2020AugMix ResNeXt [33] 0.96
5 Hendrycks2020AugMix WRN [33] 0.95
6 ImageNet-3DCC,Corruptions Tian2022Deeper DeiT-B [34] 0.81
7 Tian2022Deeper DeiT-S [34] 0.80
8 Erichson2022NoisyMix new [35] 0.77
9 Hendrycks2020Many [2] 0.77
10 Erichson2022NoisyMix [35] 0.77

Corruption datasets. Model robustness is sensitive to input variations [19]. The choice
of the corruption datasets in our study was made to simulate OOD scenarios in operation. To
thoroughly evaluate the consistency of selected distance-based metrics for robustness ranking,
we considered a variety of natural corruptions and their mixtures. We utilized the CIFAR10-C
dataset [19], which consists of 15 corruption types. These corruptions include Gaussian noise,
motion blur, brightness variations, etc. Additionally, we employed the ImageNet dataset with 3D
Common Corruptions (ImageNet-3DCC) [20], which introduces 12 corruption types that align
with real-world scenarios, such as lighting, weather conditions, and camera motion. Besides,
each type of corruption in CIFAR10-C and ImageNet-3DCC has five levels of severity.

Determining the ground truth for comparing ranking results. To evaluate the ranking
results, we utilized ranking based on robust accuracy measured using the correct labels as the
ground truth. Robust accuracy is a widely accepted measure in the ML literature for evaluating
the performance of ANN models under corruptions [36, 37, 38]. In order to compare the rankings
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produced by the distance-based metrics with the ground truth, we employed the average precision
at k (AP@k) metric [39] commonly used in evaluating recommendation systems and ranking-
related problems. AP@k evaluates two aspects: 1) the relevance of the recommended items and
2) whether the most relevant items are placed at the top.

In our study, we selected k=1 to focus on selecting the best model, considering the context of
a multi-model decision-maker. Precision@1 checks if the model in the top position matches the
ground truth. AP@1 provides a measure of how accurately the ranking generated by a specific
distance-based metric, aligns with the ground truth for a specific type of corruption across all
severity levels. The mean AP@1 calculates the average AP@1 for recommendations across
different corruption types, providing an overall measure of ranking accuracy.

We implemented the proposed approach and carried out experiments using a state-of-the-art
framework, i.e., PyTorch 1.7.1, and toolbox, i.e., RobustBench [32].

4.2. Result of RQ1: Effectiveness under OOD Shifts

RQ 1.1 Corruption type. The robustness of ANN classifiers is corruption-dependent [3, 6,
19]. A model that is robust against a certain corruption can still be vulnerable to other corrup-
tions. This implies that the ranking of model robustness could change when testing environments
vary (e.g., new testing inputs, corruption type, application field, etc.). For each experimental set-
ting and distance-based metric, we evaluated how well different metrics performed in ranking
the robustness of CIFAR10 and ImageNet models under a single type of corruption.

CIFAR10 models. As introduced in Section 4.1, we compared the ranking accuracy of the five
selected distance-based metrics by using the mean AP@1 score. Table 2 shows the evaluation
result for the CIFAR10 models (Model 1-5) under 15 corruptions. For each corruption type, the
AP@1 in the table is the average ranking across CIFAR10-C severity levels 1 through 5, and
the bold number indicates which metric achieves the highest performance on that corruption.
Both WD and MMD achieve a mean AP@1 exceeding 0.50, indicating their effectiveness in
robustness ranking under most types of corruption. WD demonstrates superior results with 14
out of 15 corruption types. MMD emerges as the second-best metric and can serve as a viable
alternative to WD. On the other hand, HL, KS, and KL exhibit relatively poor AP@1 scores,
with values below or equal to 0.47.

ImageNet models. Note we only evaluated 11 ImageNet-3DCC corruptions (excluding cor-
ruption type: xy motion blur) due to download errors encountered with the original source. Ta-
ble 3 presents the evaluation results for the ImageNet models (Model 6-10) under 11 ImageNet-
3DCC corruptions. The AP@1 values in the table represent the average performance across
severity levels 1 through 5 for each corruption type, and the bold numbers indicate the metric
with the highest average performance for that corruption. MMD achieves the best performance,
and KS and WD also achieve a mean AP@1 exceeding 0.50, demonstrating their effectiveness
in robustness ranking across most corruption types. However, HL and KL exhibit relatively poor
mean AP@1 scores, below 0.40.

Answer to RQ 1.1: For CIFAR10 models, WD and MMD emerged as the top two perform-
ing metrics, whereas, MMD and KS outperformed other metrics when ranking ImageNet
models.

RQ 1.2: Percentage of corruptions. Building on the insights from Rabanser et al. [12],
which emphasized the significance of considering varying percentages of affected data in de-
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Table 2: Ranking precision of different distance-based metrics on CIFAR10-C. Bold font indicates the more accurate
ranking estimation across five metrics, i.e., WD, MMD, HL, KS, and KL.

Corruption WD MMD HL KS KL
shot noise 1.00 1.00 0.80 0.00 0.80
motion blur 1.00 1.00 0.00 0.60 0.00
snow 1.00 0.80 0.00 0.80 0.00
pixelate 1.00 0.80 0.40 0.60 0.40
gaussian noise 1.00 1.00 1.00 0.00 1.00
defocus blur 1.00 0.80 0.00 0.20 0.00
brightness 1.00 0.60 0.00 0.20 0.00
fog 1.00 1.00 0.00 1.00 0.00
zoom blur 1.00 1.00 0.00 0.40 0.00
frost 1.00 1.00 0.00 1.00 0.00
glass blur 1.00 1.00 0.80 0.20 0.80
impulse noise 1.00 0.60 0.60 0.00 0.60
contrast 0.80 0.80 0.00 1.00 0.00
jpeg compression 1.00 1.00 1.00 0.00 1.00
elastic transform 1.00 0.80 0.00 1.00 0.00
Mean AP@1 0.99 0.88 0.31 0.47 0.31

Table 3: Ranking precision of different distance-based metrics on ImageNet-3DCC. Bold font indicates the most accurate
ranking estimation across five metrics, i.e., WD, MMD, HL, KS, and KL.

Corruption WD MMD HL KS KL
near focus 0.80 1.00 0.00 1.00 0.00
far focus 1.00 1.00 0.00 1.00 0.00
bit error 0.40 1.00 0.00 1.00 0.00
color quant 0.20 0.40 0.20 0.40 0.20
flash 1.00 1.00 1.00 1.00 1.00
fog 3d 0.60 0.00 0.60 0.00 0.80
h265 abr 0.40 1.00 0.00 1.00 0.00
h265 crf 0.00 1.00 0.00 1.00 0.00
iso noise 1.00 0.80 1.00 0.60 1.00
low light 1.00 0.40 1.00 0.20 1.00
z motion blur 1.00 1.00 0.40 1.00 0.00
Mean AP@1 0.67 0.78 0.38 0.75 0.36

tecting shifts, we adopted a similar approach to examine the influence of different corruption
percentages on the performance of our selected metrics. Specifically, we explored multiple cor-
ruption percentages, ranging from δ = 0.2 to δ = 1.0, for each corruption type. In the following
sections, we analyze the effects of different corruption percentages on the performance of our
selected metrics separately for the CIFAR10 and ImageNet models.

CIFAR10 models. We present the analysis of the mean AP@1 across all corruption types
to explore the relationship between the amount of affected data and the accuracy of ranking
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estimation using distance-based metrics. The results in Figure 2 indicate that WD consistently
achieves a mean AP@1 score of over 0.50 across all three levels of affected data. Furthermore,
we observe an increasing trend in ranking accuracy for all five metrics as the percentage of
affected data increases. Notably, ranking models becomes more challenging when the input data
exhibit only 20% corruption.

Figure 2: Ranking precision of varying corruption percentages (CIFAR10-C).

ImageNet models. Figure 3 provides valuable insights into the impact of different corruption
percentages on the ranking accuracy of the selected metrics for ImageNet models, in comparison
to the findings for CIFAR10 models. Notably, MMD and KS consistently achieve a mean AP@1
score of over 0.50 across all three levels of affected data, indicating their effectiveness in captur-
ing the robustness of ImageNet models under different levels of data corruption. Conversely, the
other metrics demonstrate relatively lower ranking accuracy across varying corruption percent-
ages. In addition, the WD and MMD metrics show an increasing trend in ranking accuracy as
the percentage of affected data rises.

Answer to RQ1.2: For CIFAR10 models, all five metrics exhibited an increasing trend in
ranking accuracy as the percentage of corrupted data rose. However, for ImageNet models,
WD and MMD metrics showed an increasing trend in ranking accuracy with increasing
corruption percentage, where KS showed almost constant ranking accuracy.

RQ1.3: Mixtures of corruptions. To evaluate the robustness of models in scenarios with
unknown types and combinations of corruptions, we conducted evaluations using mixed per-
turbations. This approach allowed us to account for real-world operations where the specific
corruption types and their combinations are uncertain. To simulate this unknown corruption sce-
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Figure 3: Ranking precision AP@1 of varying corruption percentages (ImageNet-3DCC).

nario, we employed the Poisson distribution [40], which describes the probability distribution of
random events occurring over time.

In our evaluation, we utilized the CIFAR10-C dataset, which consists of 15 types of corrup-
tions, each with five severity levels. Each severity level contains 10 000 samples, resulting in a
total of 50 000 images per corruption type. We created a perturbed data pool by incorporating
750 000 perturbed inputs from the CIFAR10-C dataset. We focused on Models 1-5 for this anal-
ysis. In each experiment run, we randomly selected 1000 mixtures of corrupted samples as a test
data batch using Poisson and uniform processes to emulate the corruption types, severity levels,
and probabilities encountered in real-world scenarios. After generating the test data batches, we
calculated the mean AP@1 for the WD, MMD, HL, and KS metrics. We repeated this evaluation
process for 50 batches to obtain robust performance estimates. This approach allowed us to as-
sess the ranking accuracy of the distance-based metrics under mixed perturbations and evaluate
their ability to handle unknown corruption scenarios.

To simulate mixtures of corruptions for Models 6-10, we employed a similar strategy using
the ImageNet-3DCC dataset. The ImageNet-3DCC dataset comprises 12 types of corruptions,
each with five severity levels. Each severity level provides 5000 samples for testing purposes.
We created a perturbed data pool consisting of 275 000 perturbed inputs from the ImageNet-
3DCC dataset, covering 11 types of corruptions (excluding xy motion blur) due to download
errors encountered with the original source. The results in Table 4 align with our findings for
RQ 1.1, demonstrating that WD and MMD are effective in ranking the robustness of multiple
ANN classifiers under mixed input scenarios for CIFAR10 models. Additionally, MMD and
KS show satisfactory performance in ranking the robustness of multiple ANN classifiers for
ImageNet models. This suggests that different metrics may be more suitable for assessing model
robustness depending on the dataset characteristics and the nature of the input data.
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Table 4: Ranking accuracy AP@1 under mixed perturbations.

Data source Batches WD MMD HL KS KL
CIFAR10C 50 0.9 0.72 0.48 0.42 0.48
ImageNetC 50 0.4 0.86 0.14 0.98 0.02

Answer to RQ 1.3: For CIFAR10 models, WD and MMD showed effectiveness in ranking
robustness under mixed input scenarios, while KS and MMD achieved satisfactory perfor-
mance for ImageNet models.

4.3. Result of RQ2: Sample Size Impact

We conducted model ranking experiments using different sample sizes of corrupted images
from the operation set, ranging from 10 to 1000. The corruption type was randomly selected,
and the severity level was fixed at 5. As the HL and KL metrics were found to be ineffective in
ranking multiple models based on the results of RQ1, they were excluded from this experiment.

Table 5: Ranking accuracy AP@1 of varying sample sizes.

Model Metric Sample size
10 20 50 100 200 500 1000

M1-M5 WD 0.60 0.20 0.80 0.40 0.60 1.00 1.00
MMD 0.40 0.20 0.60 0.40 0.60 0.60 1.00
KS 0.20 0.60 0.20 0.20 0.40 0.60 0.40

M6-M10 WD 0.09 0.00 0.09 0.18 0.00 0.36 0.40
MMD 0.64 0.36 0.82 0.82 0.73 0.73 0.91
KS 0.45 0.55 0.82 0.73 0.45 0.64 0.91

The results presented in Table 5 verify the effectiveness of WD and MMD for ranking CI-
FAR10 models, and of MMD and KS for ranking ImageNet models given 1000 samples. Further,
the results show that at least 200 samples are required to achieve reliable ranking performance
with a mean AP@1 score of over 0.50 for CIFAR10 (M1-M5) models. In the case of ImageNet
models, the MMD metric consistently outperformed the others even with a smaller sample size of
50, while the KS metric showed satisfactory performance in some cases but lacked stability. We
observed that with a sample size of 500 samples, the ranking results tended to be more consistent
and satisfactory.

Answer to RQ2: The impact of sample size on model ranking may vary depending on the
dataset and the specific metric being used. However, to ensure a reliable model ranking, we
recommend a minimum sample size of 500.

5. Discussion

5.1. Comparison with Related Work

To address the issue of estimating model performance using unlabeled data, we have adopted
a different approach from the studies conducted by Schelter et al. [9] and Deng et al. [10]. While
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their methods relied on synthetic perturbations and model prediction information to train per-
formance predictors for each pretrained model to measure models’ performance with unlabeled
data, we have chosen a straightforward strategy by directly employing distance measurements
of model output statistics. In contrast to [9, 10], distance-based estimation does not require a
separate training step. It directly measures performance degradation based on the soft predicted
label. The benefit is that a distance-based metric is simple and effective.

5.2. Implications for Academia
Our results show that the performance of different metrics varied depending on the complex-

ity of the datasets. CIFAR10 [41] is a smaller dataset that consists of 60 000 32×32 color images
in 10 classes, with 6,000 images per class. ImageNet [42] is a more complex dataset containing
over 1.2 million high-resolution images distributed among 1000 different classes. The images in
ImageNet cover a wide range of object categories and exhibit greater diversity in terms of visual
appearance, background complexity, and object scales.

The reason that CIFAR10 and ImageNet models require different distance-based metrics to
achieve accurate ranking results could be attributed to the characteristics of these metrics and
the nature of the classification task. For CIFAR10-based models, the superiority of the WD and
MMD metrics in accurately predicting the best model suggests that these models align well with
the assumptions and capabilities of the WD and MMD metrics. In contrast, for ImageNet-based
models, the KS and MMD metrics outperformed others, indicating that these models’ charac-
teristics were better captured by the KS and MMD metrics in terms of the observed distribution
differences in their softmax outputs.

We used a visualizing technique named UMAP (Uniform Manifold Approximation and Pro-
jection for Dimension Reduction) [43] to further understand the rationale behind our findings.
UMAP enables the compression of high-dimensional data/features into two or three dimensions
for visualization. For instance, researchers from Google and OpenAI used UMAP to analyze the
space of activations of a neural network [44]. We fed the softmax outputs produced by training
data and operation data through UMAP to reduce them to two dimensions. They were then plot-
ted, with similar softmax outputs placed near each other. Figure 4 shows the three-dimensional
UMAP illustrations of some examples of CIFAR10 models and ImageNet models under several
OOD shifts. According to the UMAP visualization, we observed that the softmax outputs of
CIFAR10 models have a scattered stripe-type distribution, while ImageNet models’ outputs have
a cluster-based distribution. The scattered stripe-like distribution of CIFAR10 models’ softmax
outputs suggests that the models’ predictions are more diverse and spread out across the output
space. The WD metric, which measures the first- and second-order distance between two dis-
tributions, can effectively capture these variations by considering both the mean and standard
deviation of the distributions. In the case of ImageNet models, the cluster-based distribution
implies that the models’ softmax output distributions are more concentrated and have less vari-
ability compared to CIFAR10 models. The KS metric, being sensitive to differences in mean
and dispersion, can effectively detect variations in the distributions even when they are clustered
together. The MMD metric, which considers the mean embeddings of the distributions, allows it
to capture variations in distributions regardless of their specific patterns or structures.

5.3. Implication for Industry
Dynamic robustness evaluation directly aligns with the ISO 26262 automotive standard [45]

for functional safety, which emphasizes the importance of emergency operation as a mode acti-
vated when transitioning to a safe state is not feasible within a specified timeframe. By regularly
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Figure 4: 3D UMAP visualization: Some examples of the softmax output of Models M1-M10 given training data and
corrupted operation data. Data source: blue: training data; orange: operation data.

assessing backup model robustness and ensuring fail-operational behavior, stakeholders in the
automotive industry can develop AI-based SCSs that adhere to the ISO 26262 standard and up-
hold ethical and responsible AI principles.

In another popular scenario, a large-scale ML-powered system typically utilizes diverse ML
models and leverages their interactions to enable complex functionalities. Dynamic robustness
evaluation offers a comparative measure for assessing the robustness of multiple models or ver-
sions within the same operational environment. It can facilitate automated monitoring and eval-
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uation of ANN-SCSs against robustness requirements, triggering risk mitigation strategies when
necessary. In Figure 5, we envision the application of dynamic robustness evaluation in three
phases. In the initial phase, the performance of the main model is continuously monitored to
determine if it meets the required level of robustness. If the requirements are not satisfied, it
automatically proceeds to the second phase, which involves evaluating backup models to ensure
their acceptable performance. In the third phase, it ranks the models to select the optimal one
for deployment, enabling a seamless transition from the main model. The dynamic robustness
evaluation offers a systematic and automated approach to assess the robustness of ANN-SCSs
and choose the most robust model for operation, particularly in SCSs.

Figure 5: Envisioned use case of dynamic robustness evaluation.

5.4. Threats to Validity
Although distance-based metrics can be applied to scenarios when the type of corruptions

from the target operational circumstances are unknown, we piloted only individual known cor-
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ruptions to verify the correlation between the distance metric scores and state-of-the-art evalu-
ation methods using labeled inputs because we had to use these known corruptions on existing
methods to build the ground truth for comparisons. Another construct validity threat originates
from the selection of distance-based metrics. To mitigate this issue, we chose metrics widely
used in the industry. The possible threat to external validity is that we only piloted our exper-
iments with limited numbers of datasets, ANN classifiers, and natural corruptions. To address
this validity, we chose datasets, ANN classifiers, and corruptions popularly used in ANN robust-
ness studies. distance-based metrics apply to ANN classifiers of any size and type of corruption
because it compares the dissimilarity of the soft predicted label information in the modeling and
operation settings.

6. Conclusion and Future Work

This paper presents a comprehensive empirical investigation aimed at enhancing our under-
standing of the utilization of distance-based metrics for robustness ranking and automated model
selection. By considering various factors such as the dataset, model, corruption type, corruption
percentage, and sample size impact, we conducted a thorough evaluation to assess the perfor-
mance of these metrics. Among the five selected distance-based metrics, we assessed which
metrics perform best under OOD shifts. Our findings demonstrate that the WD metric performs
best in ranking the robustness of CIFAR10 models, while the KS metric is optimal for ranking
the robustness of ImageNet models. In contrast, the MMD metric is found to be suboptimal for
both datasets.

The complexity of model robustness and the diverse nature of OOD shifts make it difficult to
derive a universally applicable theory. However, our study highlights the importance of consider-
ing the matches between the assumptions and characteristics of the metrics and the profile of the
possible data using, e.g., UMAP analysis. This knowledge can guide future research toward de-
veloping more robust and comprehensive theories for model ranking and robustness assessment.
In the future, research efforts should aim to extend the evaluation to other application domains
and explore additional evaluation techniques. This will help improve the generalizability of our
findings.
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Could we issue driving licenses to autonomous vehicles?

Jingyue Li, Jin Zhang, and Nektaria Kaloudi

In: Conference on Computer Safety, Reliability, and Security (pp. 473-480).

Abstract: Many companies are studying autonomous vehicles. One trend in the
development of control algorithms for autonomous vehicles is the use of deep-learning
approaches. The general idea is to simulate a human driver’s decision-making and
behavior in various scenarios without necessarily knowing why the decision is made.
In this position paper, we first argue that traditional safety analysis methods need to
be extended to verify deep-learning-based autonomous vehicles. Then, we propose
borrowing ideas from the process of issuing driving licenses to human drivers to
verify autonomous vehicles. Verification of autonomous vehicles could focus on
sufficient training as well as mental and physical health checks. Based on this
position, we list several challenges that need to be addressed.
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A comparative study of STPA-extension and the UFoI-E
method for safety and security co-analysis,

Nelson H. Carreras Guzman, Jin Zhang, Jing Xie and Jon Arne Glomsrud

In: Journal of Reliability Engineering and System Safety, 211, 107633.

Abstract: Emerging challenges in cyber-physical systems (CPSs) have been encour-
aging the development of safety and security co-analysis methods. These methods
aim at mitigating the new risks associated with the convergence of safety-related sys-
temic flaws and security-related cyber-attacks that have led to major losses in CPSs.
Although several studies have reviewed existing safety and security co-analysis meth-
ods, only a few empirical studies have attempted to compare their strengths and
limitations to guide risk analysis in practice. This paper bridges the gap between two
novel safety and security co-analysis methods and their practical implementations.
Namely, this paper compares a novel extension of the System-Theoretic Process
Analysis (STPA-Extension) and the Uncontrolled Flows of Information and Energy
(UFoI-E) method through a common case study. In our case study, the CPS under
analysis is a conceptual autonomous ship. We conducted our comparative study
as two independent teams to guarantee that the implementation of one method
did not influence the other method. Furthermore, we developed a comparative
framework that evaluates the relative completeness and the effort required in each
analysis. Finally, we propose a tailored combination of these methods, exploiting
their unique strengths to achieve more complete and cost-effective risk analysis
results.
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Safety and security analysis for autonomous vehicles,

Robert Taylor, Jin Zhang, Igor Kozin, and Jingyue Li. Technical University of

Denmark

Abstract: This technical report has been composed to provide a consolidated
framework for these extensive studies. The purpose is twofold. Firstly, we wish to
avoid the repetitiveness of reiterating the safety analysis background every time
we publish a detailed study. Secondly, we aim to eliminate the need to start from
scratch for every new project on AV safety and security. In this report, we present
the development of a comprehensive range of methods to assess and improve the
safety and security of AVs. The methods proposed are not only theoretical but have
also been practically tested with the help of an actual AV design project, specifically
a 1⁄4 scale vehicle design.
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Traiger, Jon Arne Glomsrud, and Kristian Bertheussen Karolius.

In the 41 Annual International Conference of the British Computer Society’s
Specialist Group on Artificial Intelligence (SGAI 2021), AI-CyberSec 2021

workshop.

Abstract: Object detectors are increasingly deployed in safety-critical systems,
including autonomous vehicles. Recent studies have found that object detectors
based on convolutional neural networks are fundamentally vulnerable to adversarial
attacks. Adversarial attacks on object detectors involve adding a carefully chosen
perturbation to the input, which causes the object detector to make mistakes. The
potential consequences of adversarial attacks must be known to make sure these
safety-critical systems are reliable. This paper investigates the influence of transfer
attacks on object detectors, where the attacker does not access the target detector
and its training set. Devising an attack with this assumption requires the attacker
to train their model on data that resembles the target detector’s training set. Using
their model as a surrogate, attackers can generate adversarial attacks without
accessing the target detector. Our study investigates whether one can effectively
attack a black box model using publicly available data. We have performed targeted
objectness gradient attacks on the state-of-the-art object detector (i.e., YOLO V3).
Initial transferability between the attacking and target model is low. However,
increasing attack strength from 8 to 24 strengthens transferability and reduces the
target detector performance by about half. Transferability is also studied when
the datasets for the attacking and the target model intersect. Attack performance
is proportional to the size of the intersection. With the stronger transferability
caused by intersecting datasets, attack strength can be dropped to 16 and retain
the attack performance.

183





Secondary Paper 5

Monitoring the robustness of safety critical artificial
neural networks,

Jin Zhang, Josef Oehmen, and Igor Kozin.

In: European Safety and Reliability Association Newsletter, 3, 4-5.

Abstract: ANNs play a crucial role in executing safety-related tasks such as
object detection, image recognition, navigation, and control in AVs. However, there
have been instances where AVs using ANNs have misbehaved due to incorrectly
comprehending sensor input variations or diverse environmental conditions, leading
to accidents and failures. This newsletter highlights the challenges in monitoring
the performance of ANN models in real-world operational domains. Changes in
data-gathering modules, operational data shifts, and adversarial attacks can affect
the performance of ANN models over time, leading to degraded predictions and
reduced trustworthiness of the system. Additionally, the decision-making process of
ANNs is often considered a black box, making it difficult for humans to understand
why and how decisions are made. To address these challenges, the newsletter
presents a research initiative aimed at building decision-making support tools for
understanding the reliability of ANNs in safety-critical systems. The research focuses
on analyzing how ANNs interact with other components and human operators. It
identifies three key aspects of ANN reliability and robustness: component reliability
of ANNs, system reliability, and interaction with human operators. Furthermore, the
newsletter highlights the lack of automated methods/tools to help safety operators
interpret and trust ANN predictions during system operations.
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