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Abstract 

Reinforcement Learning (RL) can be implemented for 

building energy coordination in an open source OpenAI 

Gym environment called CityLearn. CityLearn has been 

implemented in several studies in hot and humid climates, 

yet barely studied in the climatic context where heating 

demand is dominant. The goal of this study is to evaluate 

the feasibility of using CityLearn in a cold climate context 

with various energy systems and to identify any potential 

barriers or limitations. To achieve this, we conducted a 

case study investigating the RL-based coordinated control 

of the energy storage system in a neighborhood in Norway 

with different energy systems by expanding the functions 

of CityLearn. The results show that the RL controller 

outperforms the rule-based control (RBC) scenario and 

net balance scenario. These dementated the adaptivity of 

the RL controller in CityLearn under different climates 

and energy system configuration. Additionally, this study 

showed the approach to processing poor-quality 

measurement data for RL control implementation. 

 

Highlights 

• Coordinated RL energy management of a campus  

• Real-world data processing for CityLearn 

implementation 

• Function extension of CityLearn for the Nordic 

climate and multiple renewable energy systems 

• RL control increased renewable energy penetration 

and reduced peak demand   

 

 

Introduction 

The coordination of the energy systems among buildings 

may play a key to unlocking energy flexibility and 

increasing renewable energy (RE) penetration, which is 

essential to achieve sustainable goals. The energy crisis 

during the winter of 2022 - 2023 in Europe further 

addresses the importance of building energy management 

both economically and environmentally. Energy 

management requires control of energy supply, storage, 

and demand agents.  The control of the energy systems in 

the neighborhoods can be a very complex task as the 

system is characterized by a high degree of 

interdependence between the agents that compose it 

(Authors, 2022). Furthermore, there are inherent conflicts 

of interest between building and neighborhood-level 

management (Hu et al., 2021), as building owners' 

interests lie in minimizing energy costs, which can result 

in peaks during low-price periods. In contrast, the 

neighborhoods aim to flatten the energy profile for grid 

stability. With the emergence of small-scale electric and 

thermal energy generation and storage, the prosumers can 

also contribute to a more flexible and efficient energy 

system by taking actions in demand-side management 

which require advanced control methods.  

Two advanced control techniques are addressed in (Goy 

& Sancho-Tomás, 2019): agent-based machine learning 

(ML) algorithms and Model Predictive Control (MPC). 

ML methods are data-driven and applied to achieving 

price-incentive-based demand response. MPC requires 

control model(s) and is mostly applied in the context of 

thermal load management. Thanks to the development of 

communication technology, the internet of things (IoT), 

and data acquisition and storage techniques are bringing 

more and more data from the building and energy 

automation system. This offers the opportunity to employ 

ML methods for multi-agent control. Among ML 

algorithms, deep reinforcement learning (DRL) stands out 

for neighborhood-level energy control optimization 

owing to its model-free nature and adaptivity. DRL learns 

the optimal policies by trial-and-error iteration with the 

environment and exhibits its flexibility in terms of 

changes in the context. Touzani et al. applied the deep 

reinforcement learning approach to optimal control of the 

HVAC system and on-site PV generation with an electric 

battery storage system by using EnergyPlus, Modelica, 

Pytorch, and PyFMI in a Python environment, and tested 

on a physical system. The results showed that the DRL 

controller can produce a cost-saving of up to 39.6% 

compared to the baseline controller. Wang et al. proposed 

a fully distributed energy trading framework based on 

DRL for energy trade optimization via coordinating the 

operation of distributed renewable resources and flexible 

loads (Wang et al., 2021). In (Pinto, Deltetto, et al., 2021), 

the researchers implemented long short time memory 

(LSTM) to predict the indoor temperature and centralized 

DRL (soft actor-critic algorithm) to manage the operation 

of heat pump and domestic hot water (DHW) storage of a 

cluster of four buildings. Results show that the peak 

energy demand decreased by 23%. 

There are several tools/frameworks that facilitate the 

implementation of RL control in building energy systems, 

for example, BOPTEST (Blum et al., 2021) and 
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CityLearn (Jose R Vazquez-Canteli, 2020). CityLearn is 

an open-source OpenAI Gym environment tailored to 

investigate the potential of artificial intelligence and 

distributed control systems to tackle multiple problems 

within the energy domain. CityLearn simulation 

environment was used by (Pinto, Piscitelli, et al., 2021) to 

train and evaluate RL models for demand response with 

hourly time-step. It serves as a useful tool and testbed to 

implement RL control and compare among control 

strategies. However, to the best of the authors’ 

knowledge, the up-to-date CityLearn applications are in 

the context of hot and humid climates, where the energy 

demand is dominated by space cooling. Furthermore, the 

multi-energy systems in the previous studies using 

CityLearn are limited to heat pumps, electric heaters and 

PVs. A showcase of the implementation of DRL control 

with different heating-dominated energy systems using 

CityLearn is lacking. The aim of this study is to address 

the gaps in existing research by conducting the following 

activities: 

• expanding the features of CityLearn to suit the 

Nordic climate with more energy systems such 

as biomass Combined Heat and Power (bio-

CHP) plant and a biomass boiler.  

• using real-life data of poor quality and 

demonstrated the possibility of using ML 

techniques for data imputation for a successful 

RL controller implementation.  

In other words, this study presents a case study of 

applying coordinated RL control to increase the self-

sufficiency ratio of a campus by manipulating the State of 

Charge (SoC) of the energy storage systems.   

 

Methodology 

This section outlines. 1), The configuration of CityLearn 

and the mechanism of the Soft Actor-Critic (SAC) 

controller as a type of RL algorithm. 2), The adaption of 

the CityLearn control framework to the case study.   3), 

The description of the studied neighborhood and the 

preparation for the input data, including measurement 

data pre-possessing, data imputation, and energy demand 

simulation. 4), Comparing scenarios and performance 

analysis. The workflow of this study is shown in Figure 1. 

The training of the RL controller is done offline prior to 

the deployment. The control optimization is conducted on 

a quadcore Intel Core i5-1145G7 with 16 GB RAM. 

 

1) CityLearn and Reinforcement Learning (RL) 

control 

CityLearn is developed for easy implementation of Multi-

Agent Reinforcement Learning (RL) for building energy 

coordination and demand response in cities (Jose R 

Vazquez-Canteli, 2020; Vázquez-Canteli et al., 2019). It 

aims to flatten the overall electric profile by manipulating 

the charging and discharging of the active energy storage 

system, such as the battery and water tank. 

 

Figure 1: The workflow of this study. 

 

The corresponding control signals are made by the RL 

controller, either centralized or distributed. RL is one of 

the advanced control techniques and gaining popularity 

due to its adaptability and model-free potential (Vázquez-

Canteli & Nagy, 2019). RL can be formalized using a 

Markov Decision Process (MDP), which provides a 

mathematical framework for modeling decision-making 

in a situation where the outcomes are partially random and 

partially under the control of the agent. The MDP process 

is represented by 4-tuple: (𝑆, 𝐴, 𝑃, 𝑅).  

𝑆  denotes the States space which describes the 

environment completely; 𝐴 denotes the Action space that 

contains the decision made by the agent; 𝑃 denotes the 

transition probability 𝑃: 𝑆 × 𝐴 × 𝑆′ , which depicts the 

environment’s dynamics. It is the probability of ending in 

state 𝑆′  at time t+1 when starting in state 𝑆  and 

performing action 𝑎  at the time t. The transition 

probability can be expressed as 

𝑃 (𝑆𝑡+1 = 𝑆′|𝑆𝑡 = 𝑆, 𝑎𝑡 = 𝑎).          

𝑅  denotes the Reward Function 𝑅: 𝑆 × 𝐴 × 𝑆′  which is 

used to map the immediate reward 𝑟 of ending in state 𝑆′ 

at time t+1 when starting in state 𝑆 and performing action 

𝑎 at the time t. 

It combines the advantage of dynamic programming with 

a trial-and-error approach and uses an agent-based control 

where the agent learns through iteration with the control 

environment by maximizing the long-term rewards. The 
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agent in CityLearn employs the algorithm Soft Actor-

Critic (SAC) to optimize stochastically. SAC is a 

successor of Q-learning, which is a model-free and off-

policy machine learning algorithm. In the model-free 

approach, the RL learns these action values directly 

without building an explicit model for the environment, in 

other words, without explicitly determining the transition 

probabilities between the states (Gläscher et al., 2010). 

Policy is a mapping from the current environment 

observation to a probability distribution of the actions to 

be taken. In the off-policy approach, the updates of the 

optimal policy do not have to follow a specific manner, 

but by learning from the historical data.  

The inputs of the CityLearn are the pre-simulated data in 

hourly resolution, user-defined building attributes, and 

state-action spaces. The outputs of the CityLearn 

environment are the control actions (decisions) and the 

performance metrics. The environment of the CityLearn 

reads the hourly building energy demand and energy 

production from the pre-simulated inputs; loads the 

building and energy system models which set the building 

and system attributes and energy balance of the energy 

demand, supply, and storage; updates the states-action 

spaces, the states and rewards that can be used by the RL 

agent. 

 

2) The adaption of the control framework to the case 

study by expanding the features of CityLearn 

CityLearn needs to be adapted to reflect the energy 

systems and energy distribution of this case study as 

CityLearn is developed for hot humid climates and the 

energy systems are limited to heat pumps, electric heaters 

and PVs. The energy distribution and consumption 

network are programmed in python as the space heating 

and cooling demand of the buildings is satisfied by a heat 

pump, while the DHW demand is covered by an electric 

heater. The heat pump is sized in a way to ensure the 

highest demand can be satisfied. And the Coefficient of 

Performance (COP) of the heat pump depends on the 

outdoor temperature and target heating/cooling 

temperature.  

This energy system configuration does not reflect the 

situation of our case study, which has only heat demand 

and is equipped with small-scale bio-CHP and biomass-

boiler. The differences between the CityLearn example 

and the case study are tabulated in Table 1 below. 

The environment in CityLearn is majorly composed of 

python classes and self-defined functions (Jose R 

Vazquez-Canteli, 2022). The equations below describe 

the dynamic energy balance in the RL(SAC) 

environment. 

𝐸𝑛𝑒𝑡,𝑡 = ∑(∆𝑆𝑡,𝑖 + 𝐷𝑆𝐻,𝑡,𝑖 + 𝐷𝐷𝐻𝑊,𝑡,𝑖 + 𝐷𝐸𝑆𝑈,𝑡,𝑖

6

𝑖=1

− 𝐺𝑠𝑜𝑙𝑎𝑟,𝑡,𝑖 − 𝐺𝐶𝐻𝑃𝐸𝑙 ,𝑡,𝑖 − 𝐺𝐶𝐻𝑃𝐻𝑡,𝑡,𝑖

− 𝐺𝑏𝑖𝑜𝑏𝑜𝑖𝑙𝑒𝑟,𝑡,𝑖) 

∆𝑆𝑡,𝑖  =   ∆𝑄𝑆𝐻𝑡𝑎𝑛𝑘,𝑡,𝑖 + ∆𝑄𝐷𝐻𝑊𝑡𝑎𝑛𝑘,𝑡,𝑖 + ∆𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑡,𝑖 

∆𝑄𝑆𝐻𝑡𝑎𝑛𝑘,𝑡,𝑖  = 𝑎𝑆𝐻𝑡𝑎𝑛𝑘,𝑡,𝑖 × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑆𝐻𝑡𝑎𝑛𝑘,𝑡,𝑖  

∆𝑄𝐷𝐻𝑊𝑡𝑎𝑛𝑘,𝑡,𝑖 =  𝑎𝑆𝐻𝑡𝑎𝑛𝑘,𝑡,𝑖 × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐷𝐻𝑊𝑡𝑎𝑛𝑘,𝑡,𝑖 

∆𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑡,𝑖 = 𝑎𝑆𝐻𝑡𝑎𝑛𝑘,𝑡,𝑖  × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑡,𝑖 

 

Table 1: The differences between the CityLearn example 

system and the case study. 

 CityLearn  Case study 

Heating 

demand 

Heat Pump CHP + Bio-boiler + 

Electric heater 

Cooling 

demand 

Heat Pump No 

DHW Electric 

heater 

Included in the heating 

demand 

Electrical use PV + Grid PV + CHP + Grid 

 

Where, 𝐸𝑛𝑒𝑡  denotes the net electric demand from the grid 

at the timestep 𝑡 . Positive  𝐸𝑛𝑒𝑡,𝑡  means the campus 

requires electricity from the grid, while the negative 

𝐸𝑛𝑒𝑡,𝑡  means the campus exports electricity to the 

grid. 𝐷, 𝐺, ∆𝑆 denote energy demand, energy generation, 

and the changes in the EES of the 𝑖th building at timestep 

𝑡, respectively. 𝑎 denotes the control actions, which are 

the energy charging or discharging ratio of the SH water 

tank, DHW water tank and, the battery. 𝑎 is in the range 

of [-1,1]. In which, -1 means the storage system is fully 

discharged while 1 means the storage system is fully 

charged. The constraints are that the EES cannot be 

discharged more than their or more than the total demand.  

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 is the capacity of the EES. The capacity of the 

EES of each building is the capacity in Table 2 allocated 

by the construction area.  

The objective of the optimization is to minimize the 

amount of electricity needed from the grid, but the 

mechanism of RL is to maximize the reward function. 

Therefore, the cube value of negative 𝐸𝑛𝑒𝑡  is designed as 

below: 

𝑅𝑒𝑤𝑎𝑟𝑑 = (−𝐸𝑛𝑒𝑡)3 if 𝐸𝑛𝑒𝑡 > 0, else 𝑅𝑒𝑤𝑎𝑟𝑑 = 0 

 

3) Overview of the case study and data preparation  

Campus Evenstad is a campus located inland in southern 

Norway with about 20 buildings and a total floor area of 

about 9 000 m2 as shown in Figure 2. Evenstad is 

Norway’s most self-sufficient campus with local RE. The 

neighborhood is in Nordic weather conditions (average 

temperature of -9 ℃ in December and 16 ℃ in July), and 

approx. 50% of the annual demand is heating demand 

while there is no cooling demand. A local district heating 

supplies the heat from the energy center to the east side 

and west side of the campus. Six buildings and one snow-

melting system are connected to the local district energy 

system and are metered. In this study, only these six 

buildings are investigated because these six buildings 

cover 91% of the total district heating energy use on the 

campus referring to the report (E. F. Åse Lekang 

Sørensen, Harald Taxt Walnum, Kristian Stenerud Skeie, 

Inger Andresen, 2017). 
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Figure 2: Aerial view of Campus Evenstad. 

This campus demonstrates well the RE technologies, such 

as CHP plant, PV, and a biomass boiler. The energy 

demand of the campus is satisfied by two energy carriers: 

woodchips and electricity. The annual electrical 

consumption is approx. 910 000 kWh. The woodchips 

power the operation of the biomass CHP and biomass 

boiler, and the rest of the energy demand is satisfied by 

electricity. The operation priority is as the sequence of 

biomass CHP, biomass boiler, and electric heater. The 

thermal production from the CHP is supposed to fulfill the 

base load of the campus. The electricity sources are the 

on-site generation of PV panels and biomass CHP, and 

from the grid if the local generation could not cover the 

electrical demand. The electricity demand consists of 

electric-specific use (ESU) and the demand from the 

electric heaters to satisfy remaining space heating (SH) 

and domestic hot water (DHW) needs. The assumption is 

that the efficiency of electric heaters is 1. The other 

flexibility sources are a li-ion battery for electrical storage 

and storage tanks for hot water. The power or capacity of 

the energy supply and storage system is tabulated below 

in Table 2 (E. F. Åse Lekang Sørensen, Harald Taxt 

Walnum, Kristian Skeie, Inger Andresen, 2017; Stian 

Backe, 2019) 

 

Table 2: The power or capacity of the energy supply and 

storage systems of the campus 

System Power / Capacity 

CHP 40𝑘𝑊𝑒𝑙 , 100 𝑘𝑊𝑡ℎ 

PV panels 60𝑘𝑊𝑒𝑙   

Bio-boiler 350 𝑘𝑊𝑡ℎ 

Electric boiler 315 𝑘𝑊𝑡ℎ 

li-ion battery Charge/discharge at 120 𝑘𝑊𝑒𝑙  with 

Capacity:204 𝑘𝑊ℎ𝑒𝑙 

Hot water tank 21600 l in total  

 

The inputs of the control framework consist of two parts: 

pre-simulated energy demand and generation data and 

user-defined building attributes and state-action spaces. 

This study intended to use real-life measurement data for 

the pre-simulated energy demand and generation. 

However, The real-life measurements are not as perfect as 

expected and contain a lot of missing data. The 

measurement data covers the period between October 

2017 and July 2019, with hourly resolution and 

timestamps of 16056. In our study, 76% and 85% of 

measurement data are missing as regards CHP and 

biomass boiler generation, respectively. And 17% to 53% 

of demand data is missing. Data preprocessing is 

conducted because the successful implementation of RL 

is highly dependent on the data quality. Data imputation 

methods are used as a remedy to the missing data and can 

be divided into two parts, energy demand simulation, and 

energy production predictive modeling. 

 

• Energy demand simulation  

The energy demand simulations in this study are 

performed with IDA ICE (Niclas Björsell, 1999) v. 4.8. 

IDA ICE is a commonly used building performance 

simulation tool in the Nordics and is validated according 

to several standards. For the energy demand simulations 

of the Evenstad campus, the six largest buildings 

connected to the district heating system were modeled 

according to architectural drawings and building physical 

information shared by Statsbygg, the public owner of the 

university campus. For the internal loads, ventilation rates 

and schedules, the Norwegian standard SN-NSPEK 

3031:2021 (Norge, 2020) was used.  As a simplification 

and because the standard requires the load inputs per m2 

of floor area, the buildings have been modeled with only 

one thermal zone per floor. However, internal walls have 

been added as internal masses to the simulation model to 

account for thermal mass.  

In accordance with the location of the building, the 

coordinates of Campus Evenstad (61.43° N, 11.08° N) are 

entered into every modeled building in IDA ICE. The 

weather data was downloaded from 

https://clima.cbe.berkeley.edu/ (Giovanni Betti, 2022), a 

website developed and operated by the Center for the 

Built Environment, University of California Berkeley. An 

.epw file was used for the exact location of Campus 

Evenstad, called Evenstad Overenget, NOR. The wind 

profile was chosen as “Open country” according to 

ASHRAE 1993 and the pressure coefficients are 

determined by selecting “Exposed” in the IDA ICE 

dialogue window. The same setups have been applied for 

all buildings in IDA ICE. 

Due to the merging of zones in the IDA ICE model (one 

zone per floor), modeling every single window on facades 

that are not shaded by surrounding obstacles does not 

increase accuracy but only prolongs simulation times 

because shading and solar gains are calculated for each 

window individually. Therefore, also the windows are 

merged façade-wise, where facades are not shaded by 

others (see also Figure 3). Doors were omitted. The zones 

are equipped with an “ideal heater”, a heating element that 

keeps the zone always at the heating setpoint temperature 

(21 °C for university and office buildings). 
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Figure 3: Building of Evenstad campus modeled in IDA ICE 

with shading elements representing surrounding buildings. 

 

• Energy production predictive modeling  

The predictive modeling is used to impute the missing 

values of the CHP plant electric production and biomass 

boiler heat generation. Two attributes with relatively 

complete data, namely PV electric production (𝑃𝑉𝑒𝑙) and 

total heat demand (𝑇𝑜𝑡ℎ𝑡) were selected as the inputs of 

the model in order to preserve more data. The PV 

production data is from the PV model described in 

(Rognan, 2018). The remaining feature selection of the 

input attributes is conducted based on domain knowledge. 

Four attributes were used in addition to 𝑃𝑉𝑒𝑙  and 𝑇𝑜𝑡ℎ𝑡 , 

which are the ambient temperature, week of the year, day 

of the week, and hour of the day. After data cleaning, 3852 

timestamps and 2381 timestamps were preserved for 

predicting CHP electric production and a biomass boiler 

generation respectively. And the training, test, and 

validate dataset split ratio is 0.8, 0.16, and 0.04.  

In this study, a three-layer Artificial Neural network 

(ANN) model is used to predict the missing values for 

both CHP and biomass boiler. The CHP heat production 

is calculated assuming that the heat-to-power ratio is 2.5. 

The first input layer is 32 units with an input dimension 

of 6, the second layer is 16 units and a one-dimension 

output layer. The predictive model is trained on 

measurement data while the prediction is made using the 

resulting total heat demand from building demand 

simulation. Two algorithms, namely long short-term 

memory (LSTM) and generative adversarial network 

(GAN) were tested against ANN, yet their performances 

were worse than ANN in our case. The other possible 

machine learning algorithms were not fully explored since 

this is outside of the main research scope of this paper.  

 

4) Comparing scenarios and performance analysis 

Three scenarios were designed to compare the 

effectiveness of different control strategies, namely, net 

balance, rule-based control (RBC), and SAC controller 

introduced in this study. The net balance scenario is the 

case assuming there is no ESS at the campus and feeding 

the energy back to the grid when excess. The RBC 

scenario is to store energy at night when the demand is 

low and release energy during the day. The daily schedule 

of the RBC can be referred to Figure 4. 

 

 

Figure 4: Scheduled daily state of charge in RBC scenario. 

Four metrics are used to evaluate the performance of 

different scenarios. They are Averaged Ramping Factor 

(ARF), Daily Average load (DAL), Daily Average Peak 

(DAP), and 𝐸𝑛𝑒𝑡  in kWh. The expressions of them are 

below: 

𝐴𝑅𝐹 =
1

𝑛
∑ |𝐸𝑛𝑒𝑡,𝑡−1 − 𝐸𝑛𝑒𝑡,𝑡−1|𝑛

𝑡=1                 

𝐷𝐴𝐿 =
1

𝑛
∑

1

24
∑ 𝐸𝑛𝑒𝑡,𝑡 

𝑡=24
𝑡=1 )𝑛

𝑡=1                           

𝐷𝐴𝑃 =  
1

𝑛
max (𝐸𝑛𝑒𝑡,𝑡 : 𝑡 = 1, … ,24))                

Where,  𝑛  denotes the number of timesteps during the 

analyzed period.  

 

Results 

The predictions of electric energy production by CHP and 

heat production by biomass boiler are shown in Figure 5. 

The Root Mean Square Error (RMSE) of the ANN model 

for CHP prediction is 8.06, and for the biomass boiler 

production is 6.8. The energy production profile during 

the year 2018 after data imputation is shown in Figure 6.  

 
Figure 5: Relationship between the predicted values and test 

values from the ANN model of CHP electric production (left) 

and biomass boiler heat production (right). 

 

Figure 6: The resulting energy production profile during the 

year 2018. 
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The results of the energy simulation from IDA ICE are 

shown in Figure 7Figure 8  below. The results are the sum 

of the ESU load, SH load, and DHW load of the simulated 

six buildings.  

 

Figure 7: Total energy demand of six buildings simulated in 

IDA ICE. 

Figure 8 shows the results of the net electric demand 

(𝐸𝑛𝑒𝑡 ) during the year 2018 under different scenarios 

introduced before. Particularly, the net electric demand 

during 2 weeks at the beginning of February is shown in 

Figure 9.  

  

Figure 8: Net electric demand of six buildings under different 

management scenarios. 

 

Figure 9: Net electric demand of six buildings under different 

management scenarios during 2 weeks in February. 

The DAL and DAP monthly plots and the differences 

between the SAC controller and the other two scenarios 

are shown in Figure 10. The annual DAL of the SAC 

controller is 3.7% and 6.3 % less than the net balance and 

RBC control scenario respectively; the annual DAP of the 

SAC controller is 8.3% and 16.5 % less than the net 

balance and RBC control scenario respectively. April and 

September are the two months the SAC failed to reduce 

the DAP the most notably. This is because the design of 

the reward function aims at optimizing the control only 

when the net electric demand 𝐸𝑛𝑒𝑡  is larger than zero. 

However, the energy peaks in April and September were 

barely above zero referring to Figure 8. Consequently, the 

SAC control is not activated and performed the worst 

among the optimized months.  

The performances of different scenarios of the entire 

optimization period, winter and autumn are evaluated by 

𝐸𝑛𝑒𝑡  and ARF, the results are shown in Table 3. During 

the entire of 2018, the net electric demand for using the 

SAC controller was 3.7% less than the net balance 

scenario, and 6.3% less than using RBC. The ARF of 

using SAC was almost the same as the net balance 

scenario over the entire 2018, but 20% lower than when 

using RBC. During the winter period, the performances 

of the SAC controller were outstanding by reducing both 

the net electric need by 2.6% and 1.2% and the ARF by 

3.9% and 29.3 when compared to the net balance and 

RBC scenario respectively. 

 

Figure 10: The monthly results of DAL and DAP, as well as the 

reduction in the SAC control scenario compared to the other 

two in 2018. 

Table 3: The performance evaluation of Enet and average 

ramping factor (ARF) for three scenarios 

Period Metric Net-

Balance 

RBC SAC 

Entire 

2018  

𝐸𝑛𝑒𝑡,2018  -93098 -90816 -96523 

ARF 6.56 8.15 6.55 

Winter  𝐸𝑛𝑒𝑡,𝑤𝑖𝑛𝑡𝑒𝑟  17623 17364 17160 

ARF 5.88 8.64 6.11 

Autumn 𝐸𝑛𝑒𝑡,𝑎𝑢𝑡𝑢𝑚𝑛 -5225 -5064 -5479 

 ARF 5.25 6.86 5.33 

 

 

Discussion 

As Figure 6 shows, the ANN model could capture the 

CHP and biomass boiler production features when the 

production power is beyond 5 kW, however, the 

predicting values are higher than the targeting power 

when the targeting power is less than 5 kW, or the 

production is stopped. Although the ANN models are not 

ideally accurate, they could adequately settle the problem 

of missing data since the resulting CHP production covers 
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the base load of the campus as specified in (Lien, 2021). 

Additionally, this offers more robustness to the control 

model. More machine leaning algorithms could be 

compared in predicting missing values in future study. 

When comparing the building energy simulation results 

of the investigated buildings with the real-life 

measurements from the campus during 2018, the ESU is 

304,860 kWh while the measured ESU is 764,000 kWh. 

The total heating load (sum of the SH and DHW) from the 

simulation is 443,800 kWh while the measured one is 

768,900 kWh. The deviation of the energy simulation 

results comes from the snow melting system and the rest 

of the small buildings that are not included in this study. 

Additionally, the non-ideally operation of the building 

energy system could lead those deviations between actual 

energy performance and energy simulation based on the 

standards.    

From Figure 8 and Figure 9, it can be observed that using 

the SAC controller reduced the peak load of the campus 

during mild cold periods, i.e., February to March, and 

October to November. When comparing the SAC and 

RBC scenarios, the SAC scenario had lower demand, 

especially for demand after middays, in 12 days among 

the analyzed 2 weeks. Moreover, the SAC scenario 

performed better load-shifting ability by reducing the late 

afternoon peak and filling the demand valley. The 

reduction in the demand and peak is more conspicuous 

when the outdoor temperature is lower (Feb 3rd to Feb 5th). 

When comparing the SAC and net balance scenarios, the 

differences are milder on a daily scale. Improvements in 

using SAC emerge when analyses are conducted for a 

longer period. 

The DAL and DAP monthly plots in Figure 10 show that 

the SAC controller reduced the DAL and DAP. From the 

results of monthly DAL, both the SAC controller and 

RBC controller exhibit seasonal peak shifting ability. 

Moreover, the reduction level of DAL is higher than that 

of DAP. These are due to the designed reward function in 

this study targeting at minimizing the 𝐸𝑛𝑒𝑡  instead of the 

peak load over the entire optimization period.  

Overall, the SAC controller scenario outperforms the 

other two control scenarios. The annual 𝐸𝑛𝑒𝑡,2018  is 

negative for all scenarios, which means the campus 

grossly exported electricity to the grid during 2018. This 

is not the case in real-life measurements because only the 

demand of six buildings is analyzed but the RE production 

profiles and EES capacity are for the entire campus in this 

study. These indicate that the SAC control scenario 

benefits both the energy self-sufficiency of the campus 

and the stability of the electric grid when the heating 

demand was the highest. 

 

Conclusion  

This study demonstrates the feasibility of implementing 

the state-of-art RL controller in a campus located in 

southern Norway to reduce the energy demand from the 

grid. In this study, CityLearn was tailored to match the 

specific energy system configuration of the case study, 

and then used as a framework to implement a RL 

algorithm named SAC. The RL control is data-driven and 

relies on good-quality data. To accommodate the 

unsatisfied real-life measurement data quality of this case 

study, data imputation techniques such as missing value 

prediction using machine learning and white-box 

modeling are used. Two other scenarios were designed 

and compared with the RL(SAC) control, named the RBC 

scenario and the net balance scenario. The results show 

that the RL(SAC) controller effectively increased the 

renewable energy penetration and self-sufficiency ratio. 

Moreover, the SAC controller contributed to the peak 

reduction and demand profile smoothing over. The 

performance of the controller is better during winter and 

mild winter periods when the heating demand was high in 

terms of self-sufficiency, peak load shaving, and load 

smoothing. To be more specific, the SAC controller 

reduced the electricity needed for the grid by 3.7% and 

reduced the daily average peak by 8.3% when compared 

with the net balance scenario over the entire optimization 

period. There is potential for further development of plug-

and-play energy system components in CityLearn as well 

as considering dynamic building thermal response and 

dynamic CHP in the control framework. 
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