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ARTICLE INFO ABSTRACT

Article history: Fog computing promises improved service scalability and lower latency for IoT systems. The concept
closes the gap between full computing capabilities at the network's edge and cloud systems' centrally
located processing infrastructure. The drawback of the former is the high power requirements at the
edge nodes, and the latter is the high latency for the data being transmitted from the edge to the cloud
and back. One of the challenges for a digital forensic investigator facing a fog is the number of possible
data locations, as the node functioning as the server processing data can be selected among several nodes
in the network. An investigator typically has limited resources for an investigation; the more possible
evidence locations, the more resources are required to collect and examine the data locations. A triage is
thus needed to prioritize collecting and examining the evidence. This work analyzes measures that can
identify which fog nodes are more likely to contain data, and it uses simulations to test the measures’
precision and sensitivity. It aims for digital forensic investigators to maximize the utility of the available
investigation resources, such that all relevant evidence is found on time.
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1. Introduction

With increasingly more complex network architectures and
lower latency requirements, the need for placing services closer to
the edge of the network becomes apparent. Fog computing was
coined in 2012, characterized by low latency, location awareness,
wide geographical distribution, mobility, a large number of nodes,
wireless access, real-time applications, and heterogeneity (Bonomi
et al., 2012). These advantages stem from the fact that the pro-
cessing and data storage happen closer to the edges of the network,
but the decentralization of processing can increase the system's
complexity. This increase in the number of nodes and complexity
means that data being produced and processed in a fog network
can spread across more nodes, and the data processing might
change between nodes during regular operations.

A fog system moves the processing closer to where data is
produced and consumed, leading to lower latency for time-critical
applications. In addition, the amount of data that needs to be
moved between the producer of the data and the central cloud can
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be minimized, which means that more data can be processed in
applications with a limited transmission capacity to centrally
located cloud servers (Li et al., 2019).

Fog computing is a paradigm supported by new communication
technologies, such as 5G mobile network and Software Defined
Network (SDN). 5G networks promise a low latency for data
communication and have the flexibility needed for implementing
new and innovative solutions (Singh et al., 2017). Several studies
have shown how fog computing can be implemented in a 5G
network to improve latency for real-time applications (Singh et al.,
2016; Kitanov and Janevski, 2016).

SDN is also the focus of several studies on fog computing (Phan
et al.,, 2021; Lin et al., 2020). Using SDN in fog systems enables the
network’s topology to change and adapt to load, congestion, and
node movements. The network can distribute the workload be-
tween fog nodes, and nodes can move relative to each other. This
dynamic nature of the system causes uncertainty about how data
has moved and been processed in the system earlier.

A fog network is typically modelled with three layers: a cloud
layer, a fog layer, and an edge layer. The cloud infrastructure can be
a complex network with geographically distributed nodes. The
edge nodes can also consist of entire networks and communicate
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with the fog layer through gateways (Sabireen and Neelanarayanan,
2021). The focus of this paper is on the fog layer.

The fog layer is often organized as a hierarchical structure,
where leaf nodes are connected to the edge devices or gateways,
and the parent nodes will distribute the workload among the child
nodes. An example of this can be found in Hong et al. (2013), where
parent nodes help the load-balancing among child nodes.

An investigator or a team of investigators often has limited re-
sources available for the investigations. The investigation resource
must be carefully utilized and prioritized to identify and collect the
devices containing the most valuable evidence. Evidence in a fog
system is often assumed to be in the fog nodes processing data from
data-generating devices, in the cloud infrastructure, or in com-
panion applications functioning as a user interface to the system.
Companion apps and cloud accounts are typically easier to find
than the node processing data. The challenge for an investigator is
thus to identify the fog nodes that might have processed the data
before it disappears. The research questions this study will answer
are:

1. In which way does fog computing affect the identification,
collection, (and examination) of evidence that is disseminated
in the network?

2. How can available information and metrics be used to identify
and prioritize data collection from complex and dynamic
networks?

3. How sensitive are the identified measures for network attri-
butes and dynamics?

The rest of the paper is structured as follows: Section 2 discusses
related work, Section 3 develops the model for analyzing the
probability of finding evidence, followed by Section 4, which de-
scribes the implementation of a volatility class for the YAFS simu-
lator. Section 5 describes the experimental setup and results. The
paper is concluded with a discussion of the results in Section 6 and
conclusions in Section 7.

2. Related work
2.1. Fog computing

Bonomi et al. (2012) were the first to present fog computing,
where the system moved data processing from centrally placed
nodes towards the system's edges. They defined fog computing as
“[...] a highly virtualized platform that provides compute, storage, and
networking services between end devices and traditional Cloud
Computing Data Centers, typically, but not exclusively located at the
edge of network” (Bonomi et al., 2012).

The defining characteristics of a fog system envisioned by the
authors were that they would be low-latency systems where nodes
know their location. Furthermore, fog systems would have a wide
geographical distribution, high mobility among the nodes, and
considerable variability in the hardware and software in the sys-
tem. In addition, the authors anticipated that systems would be
optimized for streaming and real-time applications, and subscriber
models would open up for new providers.

The fog system described by Hong et al. (2013) contains a logical
tree structure, with the cloud as the root, the sensors and actuators
connected to gateways in the leaf nodes, and the fog nodes forming
the rest of the tree between these. In this system, nodes can enter or
leave the system, and they can also move between the branches
that are governed by different fog nodes. Processes in the fog nodes
can be split and merged depending on the load in the system,
where the parent node supervises the child nodes and can offload
work and assign work to siblings or itself.
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Dastjerdi et al. define a reference architecture in five layers,
where the applications is at the top layer, based on the software-
defined resource management (Dastjerdi et al., 2016). This man-
agement layer depends on cloud services and resources, which is
dependent on the network. At the bottom of the architecture is
the sensors, edge devices, gateways, and apps, which produce the
data and handle the routing of the data into the network. The
authors use the architecture by Hong et al. (2013) for their
experiments.

The YAFS simulator's authors researched graph centrality
indices for data placement (Lera et al., 2018). The authors differ-
entiate between the service location and the data location, as the
data cost more to move than the processing location. The authors
tested various centrality indices in the network and analyzed how
this affected the data placement. This experiment was repeated for
three different network topologies, and they concluded that the
eigenvector centrality produced better data placement locations.

The papers discussing the hierarchical setup of the nodes do not
specify how the hierarchy is supposed to be formed in a fog layer.
Alammari et al. (2021) assume an already existing hierarchy, and
Forti et al. (2021) use as an example a network that is distributed
over several locations and has a naturally occurring hierarchy.

Table 1 shows a summary of the fog system topologies, service
placement, and dynamic elements described in a selection of pa-
pers on fog computing.

Hegarty et al. (2014) discussed the challenges and opportunities
for forensic investigations in fog systems, where the authors show
how various types of information can be collected together with
the acquisition process. The authors describe a procedure for evi-
dence acquisition in fog systems, where the investigator first
identify devices that contain evidence and the scope of the investi-
gation, followed by the examination of the composition of the fog
system, and the decision on which methodology to use for data
collection together with the implementation of the collection plan.

2.2. Volatility

The volatility of traces has always been a concern for forensic
examiners and is no different for digital forensics. The relative
volatility of data is described in the order of volatility in many
textbooks on digital forensics (Casey, 2009, 2009rnes et al., 2017).
However, an absolute measure of volatility has been used to
quantify the data lifetime for secure deallocation (Chow et al.,
2005) and to measure the lifetime of MAC address data from
passing devices in routers Minnaard (2014).

Chow et al. (2005) defined a data life cycle, where data has an
ideal lifetime, which is the time the data is in use, a natural lifetime
when data exist and can be retrieved. The secure deallocation life-
time can shorten the natural lifetime by zeroing memory contents
after deallocation.

Sandvik et al. described a volatility model for IoT systems, where
the model consists of 6 elements (Sandvik et al., 2021): The storage
abstraction layers describe the abstraction layers that encode and
store the data, the events that affects the system, the application
activity functions which is the functionality of the running program,
the memory device reliability that describes the physical reliability,
the storage management functions describe the encoding of data in
each storage abstraction layer, and the environment contains con-
figurations and other attributes statistically affecting the volatility.

The volatility is defined as the expected time before the data is
inaccessible. The data can become inaccessible by data being
overwritten or erased, or the available collection methods cannot
access the data. The volatility can be viewed as a stochastic process,
where there is a probability distribution for the time until data
becomes inaccessible to the investigators.
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Table 1
Topologies, Service placement, and dynamic elements described in the literature.
Description Paper
Topology

Hierarchical tree structure

Fog colonies

Random, Barabasi-Albert, Lobster graphs, Grid layout
Gateways

Hong et al. (2013), Dastjerdi et al. (2016), Alammari et al. (2021), Forti et al. (2021)
Skarlat et al. (2017), Guerrero et al. (2018), Lera et al. (2019a)

Lera et al. (2018)

Huang et al. (2017)

Service Placement

Distributed services

Hierarchical deployment, offload to siblings
Preference to neighborhood

Close to edge

Gateway

Bonomi et al. (2012)

Hong et al. (2013), Dastjerdi et al. (2016)
Skarlat et al. (2017), Lera et al. (2019a)
Forti et al. (2021)

Huang et al. (2017)

Dynamic Element

Node mobility
Node failure
Routing changes, including SDN

Bonomi et al. (2012), Hong et al. (2013), Huang et al. (2017), Forti et al. (2021)
Lera et al. (2019a), Alammari et al. (2021)
Dastjerdi et al. (2016), Skarlat et al. (2017)

The period some data exists in one location consists of two
parts: the time from writing the data until the location of the data is
unlinked or freed by the application using the data, and the time
from the data is unlinked and until it is overwritten. The application
decides the first part, and the last part hinges on how fast the
location is overwritten, which is dependent on the type of memory,
the writing rate, and the memory size.

The probability distribution of volatility in devices running
Contiki OS was discussed in a paper by Sandvik et al. (2022), where
findings showed that each device had an almost uniform distri-
bution of the lifetime of data. In contrast, the combined lifetimes of
the data over all tested combinations of writing rates showed a
negative exponential distribution.

3. Analytical model

A model of the existence of data in a fog system needs to be
specified. This model shows how a subset of the devices can be
selected for acquisition/examination to yield the optimum com-
bined evidence value. It will also be used as a foundation for the
estimated probability of the existence of evidence.

3.1. Probability for the existence of data

The probability of data existing in a device after a time in a fog
system is given by the probability that the data has existed in the
device and remains after the elapsed time. The probability can be
expressed as:

P(k; € kdata’ tacg < tyol) = P(k; € kdata)Pki(tva < tyol) (1)
where P(k; € kqata) is the probability of node k; to be among nodes
in the set of nodes that contain the data, kgata, and Py (tacq < tye)) iS
the probability for the node to contain data at the time of acqui-
sition, tacquisition- Thus, the model can be split into two parts: to find
the probability for a particular node process data and the volatility
of the data in the nodes. The probability of data existing after time,
tvol, is further discussed in section 3.2, and the probability that the
data exists in node k; is discussed in 3.3.

Not all data in a system is essential for a particular investigation;
only the data that can be considered evidence in a case is sought
after. Evidence can be evidence that, in the end, shows up in court,
but it can also cover data that can illuminate questions that arise
during an investigation. Mainly, these questions are formed as

hypotheses, where data will support or refute the hypotheses. Thus,
the investigation seeks to find the data that can be used as evidence
to refute or strengthen the set of investigation hypotheses. This
subset of the data in the system is the evidence.

3.2. Data volatility

In this work, we follow the definition from Sandvik et al. (2021),
where data volatility is defined as the probability distribution of the
data lifetime and the centroid of this distribution given by the ex-
pected lifetime of the data. This definition is similar to the concept
of system reliability and the Mean Time to Failure (MTTF).

Similar to Chow et al. (2005) and Sandvik et al. (2021), the
volatility is considered the sum of two variables: The first variable is
the time from data is created in a storage location until the storage
location is unlinked, which happens when the application using the
data no longer needs it. The second variable is given as the time
from the storage location is unlinked until it is overwritten by
another value, which means the operating system reclaims the
location.

In this work, both variables are given by a negative exponential
distribution, with set parameters for the distributions:

P(tX = tunlink.,erase) = /\ei)‘tx (2)
—t
_ exp <tunun1<.erase) (3)
tunlinlgerase
ty
P(tx > tunlink erase) = JAE?M dt (4)

0

In reliability computing, the A parameter in the negative expo-
nential distribution is referred to as the static failure rate. In this
paper, A is statically set for each type of node and message, where the
types of nodes can be a source, a target, or a proxy that relays traffic.

3.3. Data distribution

The nodes generating and consuming data are more likely to
contain accessible data for longer than the nodes that relay the data
in the network. Apart from sensor and actuator nodes, the nodes
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acting as processing nodes most likely have more prolonged vola-
tility of the generated data than the nodes relaying the data be-
tween the source and target of the communication. Therefore,
identifying the nodes acting as server nodes in the fog system is
crucial in an investigation.

The service placement is selected when a node sending data
needs to find a node to receive the data. This receiving node is
selected from a set of nodes that meets the requirements to process
the data, which can be called S. The number of nodes that can act as
a server is given by the size of the set, |S|, and the set can be an
ordered or partially ordered set by the selection preference.

The distribution of data in a fog system depends on the distri-
bution of sources and targets of the data, the processing nodes, and
the nodes forwarding traffic in the system. Sensor nodes are usually
found at the edges of a tree network or spread across a mesh
network, and these are the source of data from their environments.
Some sensor nodes are small, resource-constrained devices that
have to run for a long time on batteries, while others are more
powerful devices connected to external power.

Target nodes can be fog service nodes that process the data or
actuation devices that act on the physical world based on the input
data. One target is the processing nodes, which in addition to just
processing the data, also can send new data to a new target based
on the input. Another target is the actuating nodes that will phys-
ically affect their environments based on the data they receive. Just
like the sensor nodes, the target nodes can be both resource-
constrained and more powerful nodes, but note that physical
movements will require more power than just sensing the
environment.

The data needs to be transmitted from the source nodes to the
target nodes, and the proxy nodes will forward data from one node
to the next on the path between the source and target. These proxy
nodes can contain the forwarded data if it is not encrypted during
transmission.

A workload can be distributed to neighbouring nodes if the
original processing node is overloaded and the new node can still
process and transmit the data within the required timeframe. In
many systems, the node closest to the source is used for processing
the data from a source node, but if the node is overloaded, other
nodes may take over.

Dynamics, such as load balancing of services between nodes, the
movement of sources, and the changing topology from SDNs, make
it hard to determine where data might have been stored. While the
selection of service nodes is usually deterministic regarding the
state, the knowledge about the state at a specific time is hard to
recover. The uncertainty of the exact state of the system makes the
system model a stochastic rather than a deterministic system.

The most straightforward service placement method is where
only one node is used as a fog node, typically a gateway node sitting
between the edge nodes and the central cloud node. In this case,
the placement only depends on the source nodes’ physical location.
In contrast, the location of the evidence is only dependent on which
gateway the edge nodes are connected. Therefore, the probable
evidence location is among the gateways that administer the net-
works the source node can have been connected to during the
period in question. As there are a limited number of gateway nodes,
the number of possible evidence locations is also limited in this
case. However, it can be challenging to identify all gateways if the
device has moved between several physical locations and
networks.

Another model is a complete mesh network, where all nodes
can communicate with everyone else in their vicinity. Rafi et al.
(2019) is an example of a fog network structure where all nodes
are in a mesh network, and sensor nodes are evenly distributed
among fog computing nodes.
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Most fog systems in the literature are between these extremes
and consist of a layer between the edge nodes and the cloud. The
architecture and service placement algorithms in these fog systems
vary between implementations, and most describe a hierarchical
system where the cloud layer has a complete overview of the fog
nodes. The constraints to the service placement given by a hierar-
chy or fog colonies affect the set of nodes considered to meet the
selection criteria. However, the hierarchy and fog colonies are
defined given some existing connection measures, either physical
locations, organizational locations, or centrality-based measures.
This paper assumes that the constraints do not affect the order of
the node's probability of containing data to a considerable degree,
but this assumption must be tested.

The objective functions used to optimize the service placement
and routing often considers network latency, energy usage, close-
ness to the source nodes, and the workload in nodes. For this work,
we use the messages’ latency between the system endpoints and
the memory constraints as the weighting and constraints of the
service placement, but other attributes can also be used.

If several possible fog nodes can process the data from a source
node, the number of evidence locations can increase considerably.
In the extreme version, a fog network can be a complete mesh
network, where any node with enough resources for the processing
task can act as a fog node. In this system, the probability of a node
being selected as a service location is the probability that any node
with enough resources to process the data is equally likely to
process the data from a sensor node. Equation (5) defines the set of
nodes that meets the requirements for a processing task, and
Equation (6) shows a uniform distribution over the nodes that meet
the minimum required resources:

S= {U(x,-) :x; € X ARes(x;, a) > Resmin(a)} (5)
i
l ,xeS
Pyniform (X) = S| ’ (6)
0 X ES

where X is the set of all nodes, x is one node, || is the cardinality of
the set, Res is a function returning the node's resources, and Respjp,
is the minimum resources required for a node to be a fog service
node for a particular application, a.

However, Eq. (6) does not consider the network's attributes that
affect the placement of the services, such as the network and server
loads, routing, or the physical location of the data sources and cloud
servers. To generalize the approach, Equation (7) shows the general
equation for the probability of a node processing data:

W(g(x)
S wiglx)
J

,XeS

: (7)

Pgeneral (X) =

0 JXES

where x € S, g() is a graph measure that corresponds with the
likelihood of a node to be selected for processing data, and w() is a
function for weighting the graph measure. The question is thus to
find a measure to use and a weighting that corresponds to the
probability for nodes to be data processing nodes.

Note that in Eq. (7), if the weighting is uniform among the
nodes, then the equation reduces to Vx: w(g(x)) = 1 and
S xw(g(x)) = |S|, which is equal to Eq. (6).

The weighting can be estimated by analyzing the relative dif-
ference between the value of the graph measure and the
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parameters that decide the placement of a particular service. For a
randomly assigned service, the probability for a more central node
to be the one that is processing the data is higher because there are
more paths leading through the node between the data-producing
node and any nodes using the data.

3.4. Distance based weighting

The simplest model for finding the weight a node has among all
nodes is to find the shortest distance between the data source and
the target nodes. The weight of a node can be expressed in the
following equation:

1
d(s7 Tl) + ZtETd(nv t)7

where d(n, m) is the shortest distance between two nodes, s is the
source node, and T is the set of target nodes that are consuming the
information from the processing of data from s.

This distance measure can be the number of edges or the time it
would take to send the data through the shortest path. The
simplicity of the method makes it a good option for analyzing
networks.

(8)

Wp =

3.4.1. Path weighting

The order of the selectable nodes depends on the application's
requirements. One of the main arguments for using fog computing
systems is the decreased latency for data processing. The time for
sending a message is likely to give an ordering similar to the exact
ordering used by the service placement algorithms.

In this work, we use the inverse of the time a small probe packet
would use between a source sensor, being sent and processed by a
server, and retransmitted to a target actuator is used as the weight
of a path. The inversion step in Eq. (10) ensures that the shorter
latency will be associated with a higher weight.

tiat = tproc + Z bissn + Z trouting.y + Z Z bisp (9)

i€ {en} vEVparn JeT ie{ey}

1
Wiat = m’ (10)
a

where {es;} and {ey;} are the set of edges that the data will pass
between the source and fog node, and the fog node and target
nodes, respectively, where T is the set of target nodes. b; is the
bandwidth of the i-th edge, ss; and sp; are the message size/amount
of data sent between the source and fog node, and the fog node and
the targets, respectively. Vpan is the set of nodes in each path,
trouting,v 1S the time a node will use for routing data, and tpy is the
time the fog node use for processing the data and send out new
data for the sink node.

Note that tj¢ used in Eq. (9) is used for the distance metric in Eq.

(8).

3.4.2. Path-based internode weighting

If the fog layer is distributed among nodes in a network, there
has to be some central orchestration service that knows which
nodes can be used for which tasks, and it has to have some idea
about which nodes that can reach the latency requirements of the
task, given a source node.

As the latency is minimized, the probability of a node laying on
the lowest latency path is high. In addition, more than one path can
meet the minimum requirements for latency, and the actual path
can be on any of the paths within the latency requirements. An
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investigator does not necessarily know the latency requirements or
the load in the system, so these are unknowns that make deter-
mining the probability more challenging.

The probability of a node containing data is thus given by the
number of non-cyclic, latency-weighted paths through the node. A
high-latency path results in a lower probability of the node being
selected than a low-latency path. The sum of weighted paths that
pass through a node in S divided by all possible weighted paths
between the source and sink gives the probability that a node has
processed the data.

Wh = Z k(tlat‘p)v (1)

pEP,

where P, is the set of paths passing fog node n between the source
and sink, tjap is the total latency, or cost, of the path p, and k(t) is a
scaling function for how suppressed higher latency paths should
be, in this paper, k(t) = t !, but this might be needed to be updated
based on the observed behaviour of the network.

The weighted ratio of paths containing a node, n, is given by Eq.
(12).

- w

xeN

R (12)

The model for the architecture is given in Eq. (13), where the
probability of a node containing data is given by the shortest path
between the source and sink node that contains at least one fog
node from the set, S.

P(S=n) = " (13)

where s is a service location, n is a fog node, and R, is the total
weight of the latency of the paths passing that node, given in Eq.
(12).

An example of a small network is shown in Fig. 1, where nodes A
and E are the source and target, and edges are labelled with the cost
of each path connecting the nodes. The five non-cyclic paths be-
tween A and E are listed in Table 2 with the total weight of each
path.

The weighted ratio of the paths going through node B is given by
applying Eq (12): Wp = 0.64. The same calculation can be done for
the paths through the other nodes. The weighted ratio for paths
through node C is thus: W = 0.24.

The probability for a particular node containing the service is
then given by the weighted ratio of all paths passing a node divided
by all weighted ratios: P(S = B) = 0.204. Table 3 shows the results
for the rest of the nodes, and it shows that the source and target

Fig. 1. A small network example showing the cost of the paths between node A and E.
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Table 2

The paths Between A and E, together with the total cost.
# Path Cost
1 ABE 2
2 ADE 11
3 ACE 13
4 ACDE 15
5 ADCE 23

Table 3

The results for the weighted ratio and the probability of a node in the example

network in Fig. 1 containing the service. Weighting function = t(ag.

Node Wh P(S=n) P(S =n) \{A E}
A 1 0.318 -

B 0.642 0.204 0.562

C 0.240 0.076 0.210

D 0.260 0.083 0.228

E 1 0318 -

nodes, A and E, are very likely to contain the service, as they are a
part of all the paths. Node B is on a path with a low cost and has a
20% probability of containing the service, while nodes C and D are
on high-cost paths and, therefore, unlikely to contain the service.

If there are some minimum requirements for the service nodes,
not all nodes in the paths are eligible for being selected as service
nodes. These nodes will be removed in calculating the probabilities
for containing data as described in Eq. (13). For example, if the end
nodes, A and E, are excluded from the set, then the corresponding
probabilities for nodes B, C, and D to be the node processing data
are 0.562, 0.210, and 0.228, respectively.

The probabilities changes to the ones shown in Table 4 if the
weighting of the path cost is squared. The graph has only one path
through the low-cost edges but several possible paths through the
high-cost edges. The difference in the number of paths might skew
the result, as several high-cost paths might not necessarily mean
that they are preferred to the low-cost path. The table shows that
the weighting is vital for the absolute probability of the node
containing data.

3.5. Computational optimization

The path-based internode weighting of nodes is computation-
ally expensive, and the implementation ran for more than 170 h on
a network with 1000 nodes and approximately 2000 edges. Even
though there are many simple paths through a particular node, the
more costly the path is, the less that path affects the weighting of
the node. Thus, the path enumeration can be optimized by only
enumerating the paths with a high weight and dismissing those of
low weight.

A path of length n always has less latency of the same path with
an added node to the end. The weight of a path will therefore
decrease as the length increases. The latency is related to the path
length, as a longer path will have more propagation delays than a

Table 4
The results for the weighted ratio and the probability of a node in the example
network in Fig. 1 containing a service. Weighting function = tl;f.

Node Wy P(S =n) P(S =n) \{A, E}
A 1 0.331 -

B 0.924 0.301 0.903

C 0.045 0.015 0.044

D 0.054 0.018 0.053

E 1 0.331 —

Forensic Science International: Digital Investigation 44 (2023) 301506

single path. For short network packets, the propagation delay in
each node is relatively huge compared to the time to send the
probe.

The number of edges in the path can therefore be used as a
proxy for the weight of the paths, and we can use existing cutoff
functionality in standard path-enumerating functions. For our
work, we set the cutoff at the distance of the shortest path plus five
edges or 110% of the shortest path length between the source node
and the destination, depending on which is the highest. This cutoff
gives most of the relevant paths while keeping the computational
cost reasonably low, but a long path with a very high weight will be
missed with this optimization.

3.6. Fog network dynamics

A network is seldom static but continuously changes by the
movement of nodes, varying connection quality between nodes,
and nodes being shut down or inserted into the network. Other
dynamic elements are the changing load on the nodes, both
instantaneous and periodic, and changes to the effective network
topology by SDN.

A varying connection quality leads to the amount of data sent
between nodes varying over time. The connection quality will
affect the time for transmitting a message, which will affect the
weighting of the path and the graph measures that use the path
weight for the measure.

Nodes failing, being repaired, and reconnecting, or nodes shut
down and turned on again can be modelled by nodes suddenly
disappearing from the network and later reappearing in the same
place. This behaviour can also affect the measures, especially if the
node is essential in the network as interpreted by the metric.

A changing load in the network will affect the ability to transmit
traffic, both for the network load and the server load. A server load
and the corresponding traffic will have to be routed to another
server node, while a network load will have to route the traffic to
the same node but via a different path.

In this work's experiments, only the dynamics of the network
connections are tested by varying the bandwidth between nodes
and the propagation delay and disconnecting and connecting new
edges in the network. The bandwidth variation emulates the vari-
ability of the wireless communication strength between nodes,
where a lower bandwidth corresponds to a longer distance be-
tween nodes, an object blocking the radio waves between the
nodes or RF interference. The variation in propagation delay emu-
lates the variance in the workload in a node.

4. Implementation in YAFS

The YAFS simulator is a framework built on the SimPy Python
simulation library and the NetworkX graph library. It can simulate
various fog computing systems (Lera et al., 2019b). The original
simulator can be downloaded from Github.! The fork that contains
the volatility extension and code used in the experiments can be
downloaded from the author's Git repository,” where the volatility
branch contains the added functionality.

4.1. Implementation of data location distribution
In this paper, three different fog systems are implemented, each

described in the literature: A complete mesh network, a network
overlay with a tree structure, and a fog colony-based overlay. The

! https://github.com/acsicuib/YAFS.
2 https://github.com/jenspets/YAFS|tree/volatility.
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trivial systems that include processing in a single gateway node are
not covered, as the probability of data being in the gateway node is
given solely by the volatility of the data.

Each node in the simulator received a randomly assigned
resource amount using a negative exponential distribution. The
sensor nodes were selected among the ones with the least re-
sources. The fog server nodes were selected among the nodes with
resources over a given threshold. The actuator nodes were selected
among the remaining nodes such that none of the nodes was
assigned different tasks simultaneously. The attributes of the con-
nections between the nodes were set using randomly assigned
bandwidth and propagation delay attributes. The weight was
determined by the time it would take to send a small packet over
the connection.

The processing node will process the data, which may be stored
there for longer. This work assumes that the volatility of data in
relaying nodes is so high that it is highly likely to be overwritten
when an investigation is performed. The second assumption is that
the data-producing node is known but highly volatile, so there is a
high probability for the data to be overwritten. The most likely
node to contain data is thus the node processing the data.

The three implementations selected for this research are: (i) fog
nodes placed randomly in a mesh network, (ii) the generation of a
hierarchical structure in an existing network, and (iii) a fog colony
system.

There are several standards today for routing in a mesh network,
such as IPv6 Routing Protocol for Low-Power and Lossy Networks
(RPL) (Winter et al., 2012) and Thread (Unwala et al., 2018). Some
authors have used architectures with a more generic routing al-
gorithm in their research. Such algorithms often use the routing
finding algorithms that are available in simulation algorithms, such
as Dijkstra's shortest path found in NetworkX (Hagberg et al.,
2008). For this research, we selected one open mesh network as a
baseline for mesh networks, using Dijkstra's shortest path algo-
rithm to find the optimal network path. The path weight is the
combined propagation delay given by the size of the message sent,
the bandwidth of each of the edges, and the propagation delay.
These values were selected from a gamma distribution, with pa-
rameters shown in Table 5.

The hierarchical structure is often described as a tree structure
with or without connections between siblings in the hierarchy. The
routing hierarchy is made by first generating a network that acts as
the physical network. From this network, a subgraph is generated
by creating a minimal spanning tree, where the weighting of the
edges is created by the latency a small probe would use between
nodes. The most central node is selected as the cloud node, and the
hierarchy is created from this cloud node.

The fog colony architecture is modelled after the fog colony al-
gorithm by Guerrero et al. (2018), where the most central nodes are
selected as fog colony controller nodes. These controller nodes are
responsible for distributing the workload within the colony and

Table 5

Parameters used for network generation and fog setup.
Parameter Value
Ratio of sources 0.1
MEM distribution N.ED
MEM lambda 104

Min. MEM for server
Propagation delay distribution

10° (MB)
Gammavariate

Propagation delay alpha 1

Propagation delay beta 0.2

Bandwidth distribution Gammavariate
Bandwidth alpha 1.5

Bandwidth beta 1
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submitting the task to other nodes in case none have available re-
sources for processing the task. When the controller nodes have
been selected, the rest of the nodes are assigned to colonies by their
closest fog colony controller node. All connections between col-
onies from processing nodes are severed, so only the controller
nodes communicate outside the colony.

4.2. Implementation of volatility in YAFS

The volatility extension is a new class added to the simulator
and consists of an abstract Volatility class. This class contains four
functions; two that set the volatility distribution (set_unlink-
distr and set_erasedistr) and two that sample from the dis-
tribution (get_unlinktime and get_erasetime). The two
functions for setting and sampling the distributions represent the
time from creation to deletion and the time from deletion to
erasure/overwriting. These processes are represented with two
different distributions, where the total volatility of the data is the
sum of these two times. The distribution for each node is up to the
subclasses to implement.

The sampling functions are called from the Sim class, where the
network process runs, and each fog application has its Volatility
class. This way, different applications can behave differently. The
function _ volatility function in the Sim class is called
whenever a message reaches a node. This function will sample one
volatility time from the unlink distribution and one from the erase
distribution. Two periods define volatility: the time between the
message being received and deleted and the time between the
message being deleted and erased.

If the node is a message source, the unlink sample time is sub-
tracted from the message creation time, as the source message has
to be created before the message is sent. The simulator then as-
sumes that the message is deleted when it is sent.

The creation, unlinking, and erasure timestamps are then logged
to a file, together with the time deltas between these timestamps
and the node, application and message created in the node. From
this file, the volatility statistics are calculated. Again, the Stats class
is responsible for this.

5. Experiments

As noted in Section 3.3, the nodes using and processing the data
from the data generator typically have lower volatility. Therefore, in
the experiments, we are testing the measure developed in Section
3.4.2 to see how well this can identify the nodes that contain the
service.

The absolute probability of a node being the server node is
highly dependent on the path length, so the order of the proba-
bilities better describes the precision of our method and can be
compared with the order of other centrality measures. The place-
ment of the actual server node in the top end of the ordered set
means that the measure is better at identifying the server nodes
than a result in the lower end of the ordered set.

The following section describes the experimental setup and the
results from the experiments.

5.1. Experimental setup

All experiments were done using a version of the YAFS simulator
with a volatility extension, as described in Section 4. The following
sections describe the setup for each of the experiments for the
various aspects of prioritization of nodes, and Table 6 is an over-
view of the experiments.

The measures were ranked by their value for each experiment,
and the rank of the service node was recorded. The measure with a
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Table 6 consistent rank close to the top will yield a higher probability for
Overview of the experiments. nodes to be selected as server nodes.
Ex. Description
1 Measure compared with centrality measures for small and big network 5.2. Comparison between measures
2 Measure sensitivity for network types
3 Measure sensitivity of fog architectures The following centrality measures were compared against the
4 Measure sensitivity for dynamic networks path-based internode weighting: Degree centrality, Betweenness
5 Measure sensitivity for server probability . . . . .
centrality, Closeness centrality, Eigenvector centrality, and Harmonic
centrality. The experiments were performed with a Barabasi-Albert
graph with several network sizes, varying between 50 and 1000
Table7 . nodes, and an attachment parameter of 2. For all these experi-
Configuration of networks used for comparing measures. ’ Al . : .
ments, the probability of selecting a node as a fog service node was
id Type Size Prob serv set to 0.5. Each experiment was done with ten runs for each set of
1 Barabasi-Albert 50 0.5 parameters, and Table 7 shows the configuration of the simulated
2 BaraEasi—AiEert 250 0.5 networks.
i E:Zbgz::ﬁlb:i fl_’ 380 8'2 Two variants of the internode weighting were done: one where
- the end nodes were ranked among the rest and one where the end
nodes were exempt from the ranking. The latter would give a more
precise rank assuming that the end nodes are not server nodes.
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Fig. 2. Comparison of the centrality rank of the fog server node for the set of measures for different network sizes.
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Fig. 3. Comparison of the aggregated rank of all graph types of size 250 together with individual graphs for each network type.

Fig. 2 shows the set of boxplots for the sizes of graphs, and we
can see that for smaller size networks, all centrality measures give
similar results, but for larger networks, the internode weighting
performs better.

5.3. Sensitivity for network types

The type of network can impact the measurements, which are
tested by running the experiment with the same parameters but
varying the network generator used for creating the network. The
Barabasi-Albert graph generator is a preferential attachment type of
graph where popular nodes are more likely to receive new con-
nections. A BA network is a type of network often found in nature.
The Erdos-Renyi generator will create what is often referred to as a
random network, with no preference for new connections. The last
generator used in this experiment is the Random Lobster generator,
which connects a backbone and adds connections to this backbone
with a set probability.

The probability for an edge to form was set to 0.05 for the Erdos-
Renyi generator. For the Random Lobster generator attributes, the
probability of adding an edge to the backbone was set to 0.2, and
adding an edge one level beyond the backbone was set to 0.1.

Fig. 3 shows a boxplot for the aggregated results from simulations
of networks created with a size of 250, together with the results for
the individual graphs. The internode weight is performing well for all.

5.4. Sensitivity for fog architecture

The fog architecture types tested in this experiment are the

complete mesh, a tree structure, and a fog colony structure. In all
three cases, the number of nodes was set to 250, each run ten times,
generating new networks for each run. For all experiments, the
server selection probability was set to 0.5, and 10% of the nodes
were selected as message sources. The rankings were aggregated
for all ten runs.

The full mesh is the original network generated by a Barabasi-
Albert generator. The tree architecture was created from a BA-
generated network by making a minimum spanning tree and con-
necting siblings with a probability of 0.5. The fog colony architecture
was created from a BA-generated network by making ten colonies,
disconnecting nodes in one colony from nodes outside the colony,
and retaining the connections of each colony's controller node.

Fig. 4 shows the result of this experiment.

5.5. Sensitivity for dynamic networks

Dynamics is expected to be a challenge for any measure used
post facto, after the event, and after the system has changed. The
experiments were done by adding two sources of dynamics:
changing the weight of the edges by changing the propagation
delay and bandwidth and by removing and adding edges with new
attributes.

The parameters for the dynamic attributes are: probability for
changing an attribute is 0.1, and it is the same parameters for the
gamma variate distribution for propagation delay and bandwidth
as the original graph. Fig. 5 shows the results from this experiment,
where the results show a degradation when the network changes
during the simulation.
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Fig. 5. The effect of dynamics on the rank of server node for the measures.

5.6. Sensitivity for number of servers

The robustness of the number of servers in the network in-
dicates how the measure would perform if there are fewer available
server nodes or if a load on the existing nodes makes the system
select server nodes further away. Fig. 6 shows the result forms a
gradual increase in the number of nodes for the internode
weighting.

6. Discussion

The experiments in this work have been done using simulations
of fog systems. The robustness of the results among the variations
implemented in the simulator indicates that the method is among
the best measures, even if the examined network differs from the
ones simulated here.

The basis of the model is the probability of a node containing
data after a time. The nodes have in this work been ordered by their
likelihood to process evidence. This order is the relative probability,
and while this is what the investigator would need to prioritize the
evidence collection, the absolute probability for the nodes to
contain evidence is also of interest if the triage has to consider more
than one type of evidence. To validate the correctness of the ab-
solute probabilities given by the model is thus a task for future
work.

This method assumes that the investigator can assess the con-
nections between nodes, the latency and bandwidth of the con-
nections between them, the weight of the service placement
probability, and the data volatility in the nodes. The cost function
for the network connection can be estimated by the type of net-
works they use and the distance between the nodes, as the
connection speed depends on network quality, which degrades the
distance between the nodes. The weight of the service placement
probability will not affect the order of the nodes, sorted by their
probability for containing the service unless the weighting is not
merely a scaling function. The volatility can be estimated using the
assumed memory size, encryption, and the assumed load of the
node. However, the attributes in the model need to be estimated,
and the model's sensitivity to these attributes should be further
investigated in later work.

As fog computing is still a young research area, no existing
systems yet utilize the concept's full potential. Therefore, the ar-
chitecture of future systems can still be different from what is
envisioned today, and the market might take another route than
this paper assumes. Still, node weightings like those described in
this paper can be used for other types of network investigations,
such as finding probable attack vectors by locating the more central
nodes among all possible attacks.

10
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7. Conclusion and future work

In this work, we have studied how the fog computing concept
affects the digital forensic process to discover relevant forensic
evidence in a fog system. New methods for triage are necessary to
find relevant evidence with limited resources among hundreds or
thousands of evidence locations.

We presented a measure of the probability of a service being
placed in the node by calculating the weight of the paths passing
through the node. The measure ranked the nodes more likely to
contain the service higher than other centrality measures. Further,
we showed that the measure is robust when varying several at-
tributes of the network, such as size, dynamics, network architec-
ture, fog architecture, and the number of eligible server nodes.

However, the method is computationally expensive, even for
moderately sized networks. Optimizing the algorithm by restricting
the path length traversed based on the shortest path length be-
tween nodes did not impact the method's performance. Future
work must address how the network connections and attributes
can quickly be estimated so that the investigator does not need to
use valuable time and resources to determine the nodes' ranking.
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