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A new power prediction method using ship in-service data: a case study on a
general cargo ship
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ABSTRACT
To increase energy efficiency and reduce greenhouse gas (GHG) emissions in the shipping
industry, an accurate prediction of the ship performance at sea is crucial. This paper
proposes a new power prediction method based on minimizing a normalized root mean
square error (NRMSE) defined by comparing the results of the power prediction model with
the ship in-service data for a given vessel. The result is a power prediction model tuned to
fit the ship for which in-service data was applied. A general cargo ship is used as a test case.
The performance of the proposed approach is evaluated in different scenarios with the
artificial neural network (ANN) method and the traditional power prediction models. In all
studied scenarios, the proposed method shows better performance in predicting ship
power. Up to 86% percentage difference between the NRMSEs of the best and worst power
prediction models is also reported.
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Nomenclature

AE/Ao expanded area ratio
Axv transverse projected area above the waterline
CAA wind resistance coefficient
CB block coefficient
CM midship section coefficient
CWP waterplane area coefficient
d ship draft
Dp propeller diameter
g gravity acceleration
Hs significant wave height
J advance coefficient
KQ torque coefficient
KT thrust coefficient
Lpp length between perpendiculars
n number of samples
np rotational speed of the propeller in Hz
nrpm propeller rpm
P/Dp pitch ratio
PAW added power in waves
Paux auxiliary power
PCalm calm water power
Ps shaft power
PsOpr operation shaft power
PsCal calculated shaft power
Ptot total power
PWind added power due to the wind
Raw added resistance in waves
RCalm calm water resistance
RWave added resistance in irregular waves
RWind added resistance due to the wind
RT total resistance
s power exponent

t power exponent
Tp peak wave period
u power exponent
v power exponent
VA advance velocity
Vd design speed
VG ship speed over ground
VS ship forward speed
VWRref relative wind velocity at the reference height
VWTref corrected true wind velocity
w wake factor
Z number of blades
β encounter wave angle
hD quasi-propulsive efficiency
hH hull efficiency
ho open water efficiency
hR relative rotative efficiency
hS shaft efficiency
hP total propulsive efficiency
∇ ship displacement volume
ω wave frequency
ψ ship heading
cWRref relative wind direction at the reference height
cWT true wind direction
rA density of air
za wave amplitude

1. Introduction

The shipping industry contributes between 2-3% of
total carbon emissions worldwide. By the year 2050,
it is projected that the greenhouse gas (GHG) emis-
sions from the maritime industry will experience an
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increase ranging from 50% to 250% (Smith
et al. 2015). For a more effective analysis of these
trends, it is essential to have knowledge of typical mar-
ine emission modelling techniques and their respect-
ive impacts. In addition, the estimation of GHG
emissions in the shipping industry and evaluation of
their effects on climate play a vital role in the develop-
ment of regulations, identifying the most effective sol-
utions for mitigating emissions, and making well-
informed decisions concerning the reduction of emis-
sions in the future. All activity-based marine emission
models encompass an estimate of ship propulsive
power, for which an array of methods with varying
levels of complexity are available. However, the influ-
ence of ship power models on marine emissions
inventories has not received much focus while signifi-
cant differences in the results of different power pre-
diction models have been reported (Brown and
Aldridge 2019).

A power prediction model is applied for a variety
of applications, including ship and propeller
design (Esmailian et al. 2019, 2017), weather
routing (Kim and Kim 2017; Shao et al. 2012), fleet per-
formance analysis (Vernengo et al. 2016; Kim
et al. 2023), modelling and analysis of the ship propul-
sion system (Saettone et al. 2020; Tadros et al. 2021),
energy management of the ship power system (Planakis
et al. 2022), modelling the ship emission and the
fuel consumption (Wang and Rakha 2017; Kim
et al. 2021), hull condition monitoring (Koboević
et al. 2019), and other operational optimization
purposes (Sun et al. 2013; Tillig et al. 2020). Over the
past few decades, a large number of research have
been published suggesting methods to compute
different components of a power prediction model,
including calmwater resistance (Guldhammer andHar-
vald 1974; Holtrop 1984; Hollenbach 1998; Kristensen
and Lützen 2012), added resistance due to
waves (Faltinsen 1980; ISO 2015; Grin 2015), added
resistance due to winds (Blendermann 1995; Wat-
son 1998; ISO 2015; Kitamura et al. 2017), propulsion
system efficiency (Oosterveld and van Oossanen 1975;
Schneekluth and Bertram 1998; ITTC 2014), and so
on. Along with this, there has been a growing number
of power prediction models using regression formulas
in recent years (Kristensen and Lützen 2012; Johansson
et al. 2017; Tillig et al. 2018). They require low compu-
tational time and cost. However, the accuracy of the pre-
dicted power might vary substantially from ship to ship
depending on the methods used to calculate the differ-
ent components of the power prediction model.

Ships are increasingly equipped with data acqui-
sition systems onboard. The data can be utilized by
shipowners, operators, as well as ship designers to
improve vessel performance at sea . In the past few
years, a large number of machine-learning methods
have been also proposed to predict ship power at sea

using the ship in-service data (Petersen et al. 2012;
Beşikçi et al. 2016; Parkes et al. 2018; Zhang
et al. 2019; Moreira et al. 2021). However, the effec-
tiveness of this category of power prediction models
is highly dependent on the amount and quality of
the training data. Machine learning models are also
notoriously bad at extrapolation, meaning that the
training data must properly cover the entire range of
validity of the model. In-service data tends to provide
an ample amount of data only for normal service con-
ditions, while prediction of the power requirement for
off-design conditions is often desired. Further,
machine learning models are typically thought of as
“black boxes,” with users having little to no under-
standing of the reasons behind a prediction. In this
case, by providing a certain level of explainability for
the model, users’ confidence in the models can
increase (Shin 2021).

Numerical methods, i.e., CFD simulations validated
against the results of a model test, are traditionally
used to predict ship power (Lee et al. 2021). However,
they require a lot of time and resources, as well as
access to detailed ship and propeller geometry
information. Also, they require an experienced user
to calculate reliable results.

In conclusion, a wide variety of methods can be
used to predict ship power. Each method has its own
pros and cons, and thus its applicability and accuracy
would vary depending on the ship type and the appli-
cation scenario. However, despite having access to a
variety of prediction methods, the shipping industry
still lacks a quantification of the expected prediction
accuracy and an understanding of possibilities for
improving the accuracy (Tillig et al. 2018). In addition,
it is still quite challenging to find proper methods and
input parameters for calculating different components
of a power prediction model for a given ship.

In this study, we propose a new method based on
the use of ship in-service data to obtain the best
combination of existing methods and their input par-
ameters for calculating different components of a
power prediction model, with the goal of improving
the accuracy of the power prediction model for a
given ship. For this purpose, a normalized root
mean square error (NRMSE) is defined by comparing
the results from the power prediction model with the
ship in-service data of a reference vessel. Then, a tun-
ing surrogate-based optimization problem is devel-
oped to minimize the NRMSE and find the optimal
combination of existing methods and input par-
ameters used to compute different components of
the ship power (calm water resistance, added resist-
ance in wind and wave, wetted surface, wake, etc.).
In this way, the optimum combination of existing
elements of the power prediction method can be
applied. Since the method requires access to in-service
data, it is applicable in cases where there is a need for a
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good and robust powering prediction method for a
ship already in operation. This could be for weather
routing, hull condition monitoring, and other oper-
ational optimization purposes. It is also likely that
using the method to predict the performance at an
early design stage of a ship quite similar to the ship
for which in-service data exists would work. The pro-
posed method is tested on a general cargo ship operat-
ing on a route between Italy and Norway. In addition,
the performance of the proposed approach is evalu-
ated for different missions and voyages. It is also com-
pared with the artificial neural network (ANN)
method under the studied operational scenarios. An
investigation is conducted into the effects of the
sampling time interval and the length of time history
on the performance of the proposed approach and
ANN method. Finally, a comparison is made with
conventional power prediction models proposed by
Lindstad et al. (2013), Johansson et al. (2017), and
Kristensen et al. (2017).

The suggested method is described in Section 2.
The proposed method is implemented on a general
cargo ship as a test case in Section 3. Comparisons
between the ANN and traditional methods are pre-
sented in Section 4. Section 5 contains the conclusion.

2. Proposed method

The main idea behind the proposed method is the use
of ship in-service data to obtain the best combination
of existing methods and their input parameters. The
implementation of the suggested power prediction
method can be divided into four steps, as follows:

Step 1. Select a target ship

The proposed method is theoretically applicable to
different ship types and application scenarios as long
as the in-service data for the studied ship or a similar
ship is available. Also, it might be applied to other
types of performance data than in-service data as
long as the performance data is accurate and covers
a large enough range of variation in the involved
parameters.

In the proposed method, we are considering two
essential categories of inputs; ship data and environ-
ment data. Combining these two inputs provides a
more complete picture. The first one gives us an
insight into what was happening on the ship, and
the second tells us about the environmental conditions
the ship was facing. It should be noted that the inputs
depend on which candidate methods are included in
the proposed method in Step 3. The details of those
inputs are discussed below.

. Ship Data: This includes information from the ship
hull and propeller (length, breadth, depth, propeller

diameter, pitch ratio, number of blades, geometry,
etc.) and ship in-service data. The ship’s in-service
data includes information collected by a number
of sensors placed on the ship. Table 1 displays a
typical categorized list of all the different types of
data recorded on a ship. These variables are divided
into several categories, each representing a specific
type of information about the ship. The categories
are:

– Ship Identity – Information that identifies the
ship, including the ship name and IMO number.

– Navigation – Information related to the ship’s
course and position.

– Auxiliary Power System – Information about the
ship’s supporting power systems.

– Propulsion System – Information related to the
propulsion system, such as shaft speed and
power.

There is also ‘Time’, which is kept separate and
considered its own variable. Navigation data is used
to interpolate historical weather data, representing
the environmental loads acting on the ship. In this
study, shaft power is the focus, and data about the
auxiliary power system is irrelevant.

Variables related to the propulsion system are
mainly associated with the ship’s hydrodynamic per-
formance. The ‘State’ variable specifies the oper-
ational status of the vessel at any given moment,
with one of the following four values for each time
step: ‘At Berth’, ‘Manoeuvring’, ‘Sea Passage’, or
‘Anchor/Waiting’. Only data labelled ‘Sea Passage’
is used for the analysis in this study. In addition,
the Shaft Power and Shaft Rpm are inputs to the
power prediction method. ‘Draft Fore’ and ‘Draft
Aft’ variables are utilized to create two additional

Table 1. A typical list of variables recorded onboard the ship.
Abbreviations: IMO = International Maritime Organization;
COG = Center of Gravity; Aux. = Auxiliary; DG = Diesel
Generator (for auxiliary power systems); ME = Main Engine
(for propulsion system); GPS = Global Positioning System
(Gupta et al. 2021).
Ship
Identity Navigation Auxiliary Power System

Propulsion
System

Ship Name Latitude Aux. Consumed State
IMO
Number

Longitude Aux. Electrical Power
Output

ME Load
Measured

Gyro
Heading

DG1 Power Shaft Power

COG
Heading

DG2 Power Shaft Rpm

Shaft Torque
ME Consumed
Draft Fore
Draft Aft
GPS Speed
Log Speed
Cargo Weight
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variables: mean draft and trim-by-aft, which are
more pertinent from a hydrodynamics perspective.
The effects of the cargo weight are accounted for
by taking into consideration the variations in the
ship’s draft.

There is often a debate regarding whether to utilize
speed through water (known as log speed) or speed
over the ground (known as GPS speed) for analysis
(Gupta et al. 2022). It is a well-recognized fact that
the measurement of speed through the water is only
somewhat reliable. This is because the flow of water
passing through the device can be altered by the
ship’s hull or by various environmental conditions.
However, it is widely acknowledged that GPS speed
measurements are more reliable since GPS sensors
have become highly accurate in recent times. How-
ever, log speed is more applicable for hydrodynamic
analysis as it reflects the actual speed of the ship
through the water, which is directly associated with
the effective power of the propeller. The difference
between GPS and log speed arises due to the speed
of the longitudinal sea current. In the absence of
any sea current, the GPS and log speeds should
coincide. However, when there is a lack of reliable
log speed data and the impact of the current is sub-
stantial, it could be advantageous to incorporate
GPS speed measurements into the analysis, coupled
with reliable data on the longitudinal water current
speed from the hindcast.

. Environment Data: It contains the environment’s
constant parameters and weather hindcast data.
Constant parameters, such as salinity and water
density, can affect ship buoyancy, resistance, and
propulsion efficiency. The weather hindcast data
(also known as metocean data) contains infor-
mation about the weather conditions that the ship
likely encountered during its journey. It is gathered
from three publicly accessible sources, namely: (a)
European Centre for Medium-Range Weather
Forecasts (ECMWF) (ECMWF 2017), (b) Hybrid
Coordinate Ocean Model (HYCOM) (Chassignet
et al. 2007), and (c) Copernicus Marine Environ-
ment Monitoring Service (CMEMS)
(CMEMS 2018). These sources offer data variables
that encompass information related to the three
principal environmental loads – wind (obtained
from ECMWF), waves (also from ECMWF), and
sea currents (sourced from either HYCOM or
CMEMS). Additionally, information on geoid
depth at sea is procured from CMEMS.

In this study, the historical weather data, which
includes information on wind and waves, is gathered
from the ECMWF, specifically from its Copernicus
Climate Change Service (C3S). The data from
ECMWF is sourced from the ERA5 High Resolution

(HRES) climate reanalysis dataset. In this context,
ERA5 HRES has a spatial resolution of 0.25 degrees,
meaning the data points are spaced 0.25 degrees
apart, and a temporal resolution of 1 hour, meaning
the data is updated every hour. The weather data
elements are adjusted both in terms of location and
time to match the ship’s position using the available
navigation data through a process called linear
interpolation.

Step 2. Data preprocessing

Data preprocessing is a data mining technique used to
turn raw data into a useful and efficient form. This
technique consists of cleaning up raw data sets by
removing outliers or noise that are inappropriate for
analysis before implementing a model. In this study,
the method presented by Gupta et al. (2021) is used
for the data preprocessing.

Step 3. Select candidate methods and
parameters

This step aimed at selecting the alternative procedures
for calculating different aspects of the power prediction
model, such as the wetted surface area, the added resist-
ance in wind and waves, the calm water resistance, the
propulsion system efficiency, etc. Several factors, such
as applicability to a wide range of ship types, high accu-
racy, computational efficiency, and low numbers of
inputs, should be taken into account while selecting
the candidate method. The user might need to select
different candidate methods, parameters, and assump-
tions, depending on the ship in question. The selection
of methods provided in the case study in Section 3 is
believed to be appropriate for many normal merchant
vessels, but in order to apply the proposed methodology
to, for instance, high-speed ships, quite different candi-
date methods are needed.

Step 4. Implement the proposed power
prediction method

The general flowchart of the proposed approach is
presented in Figure 1. The aim is to use the ship’s
in-service data to obtain the best combination of the
candidate methods and parameters to reach more
accurate power prediction models. The inputs depend
on which candidate methods are included in the pro-
posed method from Step 3. Additionally, the selection
of the methods and parameters is based on the user’s
expectations for reaching desired error margins and
limitations in computational time. Nevertheless, it
goes without saying that including a greater number
of input parameters and methods increases the likeli-
hood of achieving more accurate power prediction
models. The calculated shaft power (PsCal) in different
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speeds (VS) is determined as follows.

PsCal = RTVS

hP

where RT and hP are the total resistance and total pro-
pulsive efficiency, respectively. Error in a dataset can be
evaluated with a variety of metrics, such as mean absol-
ute error (MAE), root mean square error (RMSE),
mean square error (MSE), and normalized root mean
square error (NRMSE). When evaluating the perform-
ance of a model, RMSE is commonly preferred toMAE.
This is due to the fact that RMSE is more useful as users
frequently aim to minimize the occurrence of large out-
liers in their predictions, and MAE may be viewed as
overly simple for assessing overall model performance.
Large prediction errors are also penalized by the Mean
Square Error (MSE). But it is more common to use
RMSE over MSE because it is measured in the same
units as the response variable. A ship might experience
different ranges of power in different voyages over the
ship’s entire operation. To be able to compare the per-
formance of the power prediction model among differ-
ent voyages, the NRMSE that is scale-free is favoured
over the RMSE for comparison of the performance of

the power prediction model among different voyages.
Then normalization is done on the maximum continu-
ous rating (MCR) of the engine, which is defined as the
maximum continuous power at the engine’s maximum
continuous rotation rate. Now, knowing the calculated
power PsCal and the shaft power from ship in-service
data, the NRMSE is determined as follows.

NRMSE(X) = RMSE(X)
MCR

with

RMSE(X) =
��������������������������∑n

i=1 (PsCal(X)− PsOpr)
2

n

√

where n is the number of samples. Also, X is the vector
of the decision variables, including the candidate
methods and input parameters selected in Step 3. In
this study, the Matlab surrogate optimization method
is used as the optimization algorithm to minimize the
NRMSE, which is recommended for time-consuming
objective functions (MathWorks 2022). Table 2 pre-
sents the optimization settings that correspond to
Matlab’s default settings. The tuning process terminates
when it exceeds the function evaluation limit. During
the optimization process, different candidate methods
and parameters are evaluated by the optimization algor-
ithm to find the best combination of methods and par-
ameters that corresponds to the minimum value of the
NRMSE and thus the highest accuracy of the power
prediction model. The surrogate optimization method
is applicable for solving problems of the form

Figure 1. The flowchart of the proposed power prediction method.

Table 2. Optimization algorithm settings.
Option Value

Batch Update Interval 1
Constraint Tolerance 1e−3
Max Function Evaluations max(20, 5*nvar)
Max Time Inf
Min Sample Distance 1e−6
Min Surrogate Points max(20, 2*nvar)

SHIP TECHNOLOGY RESEARCH 5



MathWorks (2022)

min
X

f (X) such that

AX ≤ b (inequality constraint)
AeqX = beq (equality constraint)
c(X) ≤ 0 (nonlinear inequality constraint)
lb ≤ X ≤ ub (bound constraint)
Xi [ Z (integer constraint)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

In this study, f (X) = NRMSE(X).

3. Case study

Step 1. Select a target ship

Here, the proposed method is tested on a general
cargo ship operating on a route between Italy and
Norway (Figure 2) referred to as Mission 1. Mission
1 is considered as the main mission of the ship.
Table 3 provides the main particulars of the general
cargo ship.

The studied ship is seven years old and data on its
ship-in-service condition are automatically collected
with a sampling frequency of 15 minutes almost
throughout the entire operation. For location data,
the Automatic Identification System (AIS) database
is used. The ECMWF database is used for the weather
hindcast data. The shaft power, shaft rpm, mean

draft, ship speed, significant wave height, peak wave
period, and encounter wave angle (obtained based
on the difference between the mean wave direction
and ship heading) are the inputs to the power predic-
tion model.

Step 2. Data preprocessing

Here, the data preprocessing is carried out using the
method presented by Gupta et al. (2021).

Step 3. Select candidate methods and
parameters

Here, the candidate method and parameter selections
for the proposed method are discussed. The main
goal is to assess the performance of the suggested
method for providing more accurate power predic-
tion models. However, the proposed approach can
be broadened to incorporate more elements and
approaches than those applied in this study based
on the user’s decision to provide even better results.
The selection of methods provided here is believed
to be appropriate for many normal merchant vessels,
but in order to apply the proposed methodology to,
for instance, high-speed ships, quite different candi-
date methods are needed.

3.1. Resistance

Previous studies have mostly focused on assessing the
ship performance in the calm water condition, despite

Figure 2. The ship operational route for Mission 1.

Table 3. Main particulars of the general cargo ship.
Parameters Value

Ship type General cargo
Length [m] 194
Breadth [m] 32
Block coefficient [−] 0.8
Design draught [m] 12.6
Service speed [knots] 15.5
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the fact that ships seldom operate in calm water and
that their performance may vary significantly in the
actual sea states. It is therefore necessary to calculate
the added resistance based on the ship’s operational
conditions. The added resistances due to waves and
winds are taken into account in this study. Conse-
quently, the ship’s total resistance is formulated as fol-
lows.

RT = RCalm + RWave + RWind

where RWave, RWind, and RCalm stand for the added
resistance brought on by waves, the wind, and the
calm water resistance, respectively. The added resist-
ance will also be caused by maneuvering and rudder
effect. However, these are often not as important
and are thus disregarded in the present work.

3.1.1. Calm water resistance
For estimating the calm water resistance, the revised
Guldhammer-Harvald’s (GH) (2017), Holtrop-Men-
nen’s (HM) (1984), and Hollenbach’s (HB) (1998)
techniques are taken into account. Those methods,
which are still widely used today, provide regression-
based equations resulting from comprehensive
model testing analyzes. Since Holtrop-Mennen’s
approach has the broadest applicability, it should be
included. Studies conducted by Hollenbach suggest
that Holtrop-Mennen’s and Hollenbach’s methods
are more accurate than the original Guldhammer-
Harvald’s model. Hence, Hollenbach’s and Holtrop-
Mennen’s methods are both included. However, it is
acceptable to add the improved version of Guldham-
mer-Harvald’s approach because it fits modern ships,
as noted by Kristensen et al. (2017). Holtrop-
Mennen’s method has fewer limitations compared to
Guldhammer-Harvard’s and Hollenbach’s. However,
it is believed that all three are applicable to typical
cargo ships. Here, Hollenbach’s method is applied
using the mean line. The mean values of GH & HM,
GH & HB, and HM & HB combinations are also
included in the tuning process.

The average hull roughness (AHR) for a new ship
usually falls within the range of 75 to 125mm. In
this study, when calculating the resistance in calm
waters, an AHR of 150mm is used, including the
effects of fouling. This 150mm is the standard value
that ITTC suggests using in cases where there is no
available measured data (ITTC 2014). This assump-
tion is based on the fact that ship-in-service data are
studied within a short period, wherein the effects of
the change in fouling are not significant. For a long-
term analysis of the power prediction model, the in-
service performance data should preferably be cor-
rected for the effect of changing levels of roughness
and fouling.

3.1.2. Added resistance in waves
The mean added resistance in the irregular waves is
determined by numerically integrating a sequence of
regular waves with frequency ω and wave amplitude
za for a given peak wave period Tp, encounter wave
angle β, and the significant wave height Hs. It is
expressed as

RAW = 2
∫2p
0

∫1
0
S(v, Hs, Tp)

Raw(v, b, VS)

z2a
dv db

where VS, S, and Raw denote the ship speed, the wave
spectrum, and the frequency-dependent added resist-
ance due to waves, respectively. The encounter wave
angle β can be obtained based on the mean wave direc-
tion and navigation data (latitude and longitude coor-
dinates of the ship). In the present work, the modified
Pierson-Moskowitz (Bretschneider) wave spectrum is
used (Perez 2006). In the literature, there are several
ways to calculate Raw. STA-1 and STA-2 are suggested
by ISO 15016, while the STA-1 method is for moderate
sea conditions (ISO 2015). Then, STA-2 was suggested
to improve its applicability in higher sea states. How-
ever, both STA-1 and STA-2 are solely applicable for
head seas (+− 45 degrees off the bow). Different tech-
niques, including CTH (Lang and Mao 2021),
SNNM (Liu and Papanikolaou 2020), and
Combined (Kim et al. 2022) approaches, have recently
been developed. These techniques outperformed
STA2 substantially in almost all comparison scenarios,
and they also have the benefit of being able to estimate
Raw for arbitrary wave headings. They also only need a
limited number of hull data. CTH, SNNM, and Com-
bined techniques are therefore used in the tuning
approach. There are undoubtedly numerous numeri-
cal techniques for calculating added resistance in
waves. However, the present study does not use any
of them due to the general need for comprehensive
meshing, high computational time, and possible lack
of robustness.

3.1.3. Added resistance due to wind
The total resistance might be significantly increased
for ships with large volumes above the waterline due
to the added wind resistance. The added resistance
due to wind can be written as ISO (2015).

Rwind = 0.5rA · CAA(cWRref ) · Axv · V2
WRref − 0.5rA

· CDA(0) · Axv · V2
G

where CAA(cWRref ) is the wind resistance coefficient,
wherein cWRref is the relative wind direction at the
reference height (usually 10 meters above the free sur-
face). Also, rA, Axv, VG, and VWRref are the air density,
the transverse projected area above the waterline, the
ship speed over the ground, and the relative wind vel-
ocity at the reference height, respectively. Here, VG=
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VS. VWRref is expressed as

VWRref =
�����������������������������������������������
V2
WTref +V2

G+2 ·VWTref ·VG · cos(cWT −c)
√

where VWTref , cWT , and ψ denote the corrected true
wind velocity, true wind direction, and the ship head-
ing, respectively. More details about this method can
be found in (ISO 2015). In this study, it is assumed
that the wind and wave are both pointing in the
same direction for simplification. Thus,
b=cWT −c. However, the user can replace each
with more accurate information depending on the
situation. Also, VWTref is given by Stewart (2008):

VWTref =
�����
gHs

0.22

√

where g is the gravity acceleration. Model tests in a
wind tunnel, CFD analysis, or coefficients derived
from tabular data, which are frequently based on pre-
vious research with comparable ship forms, can be
used to predict the wind resistance coefficients CAA.
It is known that Blendermann (1995) and ISO
15016 (ISO 2015) might provide accurate estimations
of wind resistance coefficients in the absence of wind
tunnel measurements. Therefore, these two techniques
are part of the tuning strategy in this work.

3.2. Propulsion system

The overall propulsive efficiency hP is calculated as

hP = hDhS

where hS is the shaft efficiency. Also, hD is the quasi-
propulsive efficiency and is defined as

hD = hHhohR

where hH , ho, and hR are the hull efficiency, the open
water efficiency, and the relative rotative efficiency,
respectively. The Wageningen B-series method is fre-
quently used to assess propeller performance during
the early phase of the estimation of the open water
efficiency Oosterveld and van Oossanen (1975).
These non-ducted fixed pitch propellers range in
blade area ratios from 0.30 to 1.05, pitch ratios from
0.5 to 1.4, and blade numbers from 2 to 7. Polynomials
based on a regression analysis of the test results of 120
B-screw series propeller models are used to express the
open water characteristics of the Wageningen B-series
propellers as follows.

KT = SCT
s,t,u,v(J)

s P
Dp

( )t AE

Ao

( )u

(Z)v

KQ = SCQ
s,t,u,v(J)

s P
Dp

( )t AE

Ao

( )u

(Z)v

where J, P/Dp, AE/Ao, and Z are the advance

coefficient, the pitch ratio, the blade expanded area
ratio, and the number of blades, respectively. Further,
based on the information provided in Oosterveld and
van Oossanen (1975), the regression coefficients CQ

s,t,u,v

and CT
s,t,u,v and exponents s, t, u, and v are determined.

The expression for the advance coefficient, J, is

J = VA

npDp

with

VA = VS(1− w).

where w is the wake factor. The open water efficiency
is expressed as follows:

ho =
KTJ
KQ2p

.

Knowing the propeller parameters, the ship speed, the
wake factor, and the propeller revolution rate, the
open water efficiency can be obtained from
Equation (16). The wake factor, the thrust deduction
factor, and the relative rotative efficiency are calcu-
lated using the formulas and assumptions given in
the respective resistance prediction method (e.g. if
Holtrop’s method is used for resistance, the formulas
for the wake, thrust deduction, and relative rotative
efficiency given in that method are applied). Even
though operation in waves may have an impact on
the wake and thrust deduction factors, this effect is
not taken into consideration here. Also, it is assumed
that the shaft efficiency is hS = 0.98 (Kristensen
et al. 2017).

For the full-scale vessel, it is not recommended to
use the same KT and KQ values as those used in the
open water test. The Reynolds number of model pro-
pellers is often less than that of full-scale propellers
and thus there is a difference in the turbulence level
of the model and full scale. The thrust and torque
coefficient polynomials should thus be modified to
take the full-scale Reynolds number into account.
The ITTC method (ITTC 2014), which calculates
full-scale thrust and torque, can be used to make the
correction as follows-

KTs = KT − DKT

KQs = KQ − DKQ

where the procedure to calculate the corrections of
DKT and DKQ is presented in ITTC (2014). There
are also a number of well-known empirical methods
that have been developed to assess propulsive
efficiency as follows.

Auf’m Keller formula (Schneekluth and
Bertram 1998):

hD = 0.885− 0.00012 · nrpm · ����
Lpp

√
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Emerson’s formula (Watson 1998):

hD = 0.84− nrpm · ����
Lpp

√
10000

where nrpm and Lpp are the propeller rpm and the
length between perpendiculars. According to Watson
(1998), Emerson’s formula applies to different ship
types and is derived for low propeller speeds, but has
been extended to modern propellers. Auf’m Keller’s
formula is applicable for cargo and passenger ships.
Thus, the B-screw series formulas, the B-screw series
formulas with ITTC full-scale correction procedure,
the Auf’m Keller formula, and Emerson’s formula
are applied in the tuning process.

3.3. Hydrostatic parameters

Numerical methods or regression-based formulas can
be used to calculate a ship’s hydrostatic characteristics.
Here, the wetted surface area (Swet), midship section
coefficient (CM), and waterplane area coefficient
(CWP) are considered in the proposed method. These
parameters fall into the group of input parameters
usually derived either numerically or via regression
in the literature. Therefore, it is interesting to explore
the impact of this selection on the performance of the
power prediction model. Hence, even though the ship
offset table is available for the studied ship and is uti-
lized for numerical calculations, hydrostatic par-
ameters such as Swet , CWP, and CM are also
computed using the regression-based method with
the aim of providing a comparative analysis. Then,
the following well-known regression-based formulae
are considered in this study:

Mumford’s formula (Kristensen and Lützen 2012):

Swet = 1.025 · ∇
d
+ 1.7 · LPP · d

( )

Papanikolaou (2014):

CWP = 1+ 2CB

3

Schneekluth and Bertram (1998):

CM = 0.93+ 0.08CB

where CB, ∇ and d are the block coefficient, the ship
displacement volume, and the ship draft, respectively.
Other hydrostatic parameters are obtained numeri-
cally using the ship offset table.

Step 4. Determination of the optimum power
prediction method

Asmentioned earlier, power prediction models rely on
predetermined assumptions, which may adversely
affect the accuracy of the power prediction models.
This section aims to present an example that demon-
strates the potential of the proposed method for
achieving more accurate power prediction models, as
well as examining the impact of assumptions typically
used in such models. To this end, Model 1 is formu-
lated to assess the potential of the proposed approach
in achieving the optimal power prediction model.
Meanwhile, Model 2 is designed to evaluate the nega-
tive effects of these assumptions and determine how
the prediction accuracy differs between the worst
and best models.

In this example, seven components – namely,
RCalm, RWave, RWind, h, Swet, CM , and CWP – are con-
sidered. Candidate methods for each of these com-
ponents are defined and are listed in Table 4. To
incorporate candidate methods into the optimization
process, each candidate method of every component
is assigned a unique integer. The bounds of these

Table 4. Candidate methods for different decision variables.
RCalm RWave RWind η Swet CM CWP

Holtrop-Mennen (HM) SNNM Blendermann B-series Mumford’s
formula

Schneekluth and
Bertram

Papanikolaou

Hollenbach (HB) CTH ISO 15016 B-series with ITTC
correction

Num.
computation

Num. computation Num.
computation

Guldhammer-Harvald
(GM)

Combined Auf’m Keller

mean (HB & HM)
mean (HB & GM)
mean (GM & HM)

Table 5. Bounds of the design variables vector.
Lower limit Upper limit

iRCalm 1 6
iRWave 1 3
iRWind 1 2
ih 1 3
iSwet 1 2
iCM 1 2
iCWP 1 2

Table 6. Constant parameters (xconst) in the optimization
problem.
Parameters Definition Value Unit

AE/Ao Expanded area ratio 0.54 –
Dp Propeller diameter 7.00 m
g Gravity acceleration 9.81 m/s2

P/Dp Pitch ratio 0.83 –
Z Number of blades 4 –
hR Relative rotative efficiency 1.0 –
hs Shaft efficiency 0.98 –
rA Air density 1.225 kg/m3

rW Seawater density 1025 kg/m3
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integers are given in Table 5, and the bound limits are
determined by how many candidate methods are
being considered for each component.

It is worth noting that surrogate optimization can
be applied to problems with both integer and continu-
ous bounds. Thus, the proposed method can be valu-
able for problems that require tuning specific
parameters as well as for finding optimal methods
for the power prediction model. The optimization
problem is then defined as follows.

Decisionvariables X=[iRCalm , iRWave , iRWind , ih, iSwet , iCM , iCWP ]

Objective minNRMSE(X,xinp)

where the input vector xinp=[xdata, xconst], where xdata=
[VS,nrpm,d,Hs,Tp,b] are obtained based on the ship
in-service data and weather hindcast data. In addition,
xconst represents the constant parameter vector as
given in Table 6. The optimization algorithm searches
for the most suitable integer that corresponds to the
optimal method for each component of the power pre-
diction model from a total of 6×32×24=864 possible
power prediction models.

The proposed power prediction method is trained
based on 1600 data points for a voyage of the ship
within Mission 1 called M1V1 (Mission 1, Voyage
1). Scatter plots of different input features across
M1V1 are shown in Figure 3. Figure 4 shows that
for most parts of the studied voyage, GPS and log
speeds are quite similar. Therefore, the effects of the
sea current have been disregarded in the analysis.

Figure 5 illustrates a simple schematic of imple-
menting the proposed power prediction method for
the studied general cargo ship. Through this process,
Model 1 is obtained. The worst power prediction
model, Model 2, is obtained by specifying the optimiz-
ation objective as the negative value of NRMSE. Here,
the percentage of NRMSE, NRMSE pc, is defined as
NRMSE pc=NRMSE ×100. It is found that the best
combination, Model 1, reached the NRMSE pc of
4.72%, while the worst combination of methods,
Model 2, reaches the NRMSE pc of 33.73%, indicating
an 86% percentage difference between the results
achieved through the worst and the best combi-
nations. The results indicate that the error difference
between the two models is largely due to the difference
in the propulsion system efficiency.

The details of the obtained models by the tuning
optimization algorithms are provided in Table 7. Except
for Swet , CM, and CWP, other hydrostatic parameters are
calculated numerically through the ship offset table for
Model 2. However, for Model 1, they are all calculated
numerically through the ship offset table. It is primarily
the geometric input parameters and the efficiency of the
propulsion system that determine the difference
between the worst and best models for this problem.
An interesting point about the results is that as a result
of the different input parameters and combination
effects, Holtrop, CTH, and ISO 15016 are both in the
category of the best and the worst models (Model 1
and Model 2) with about an 86% percentage difference
in the NRMSE results. These results clearly

Figure 3. The scatter plots of different input features from the general cargo ship’s processed data across M1V1.
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demonstrate that the input parameters and the combi-
nation effect among various methods and parameters
have a significant impact on the accuracy of the
power prediction model, and emphasize the value of

the proposed method when it comes to improving the
accuracy of a power prediction model. In addition, cal-
culating open-water efficiency through B-series propel-
lers, the most common method compared to other

Figure 4. Log speed against GPS speed across M1V1.

Figure 5. A simple schematic of implementing the proposed method for the studied general cargo ship.
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studied methods falls into the worst power prediction
category for the studied ship. These results show that
assumptions used for developing power prediction
methods can have a considerable negative effect on
the accuracy of the prediction, and the proposed
method can be useful for evaluating those assumptions.

The results of the power prediction models for the
different models in the studied operational condition
(M1V1) are shown in Figure 6. The results for Model
1 indicate the high performance of the proposed
approach in decreasing the inaccuracy of the model in
most operating points. The worst model, however,
shows a poorer performance in the majority of the
conditions.

The tuning data obtained from M1V1 corresponds
to a short-term voyage of a ship. However, a ship
might experience different weather conditions on
different voyages during her mission. Therefore, it is
necessary to evaluate the efficiency of power prediction
models across different voyages the ship might encoun-
ter. Here, a test data set of 800 samples with a time
interval of 15 minutes from a different voyage across
Mission 1 (referred to as M1V2 (Mission 1, Voyage
2) is employed for testing the performance of the result-
ing models. Scatter plots of the different input features
across M1V2 are presented in Figure 7. The compari-
son of Figures 3 and 7 shows that the ship experiences
higher significant wave heights and mostly operates in
the ballast draft in M1V2, while other input features
fall within the range of M1V1 with a different distri-
bution. The results are presented in Figure 8. It can
be seen that Model 1 keeps its high performance in
M1V2 while Model 2 still shows relatively poor per-
formance. Also, the NRMSEpc of Model 1 and Model
2 are 3.78% and 27.16%, respectively, indicating an
88% percentage difference in the NRMSE pc of the two
models.

4. Comparison analyzes

4.1. Comparison with artificial neural network
(ANN)

Perhaps the most popular machine learning technique
for sophisticated data-driven (black-box) models is
artificial neural networks. ANN is composed of three
layers, including an input layer, one or more hidden

layers, and an output layer. Each node, or artificial
neuron, is connected to others and has a correspond-
ing weight and threshold. If the node output exceeds a
predefined threshold value, it is activated and starts
transferring data to the next layer. Otherwise, no
data is sent to the network’s next layer. The procedure
used for implementing the ANN used in this study is
described below.

(i) Data preprocessing: Here, we use the same in-ser-
vice data as we did in the previous section for the
proposed method.

(ii) ANN main parameters: For the purpose of com-
paring the ANN model with the proposed
method, ANN power prediction models are
developed in this study. Thus, the same input
variables and outputs as the proposed method
are also used here. As a result, ship speed over
ground (SOG), mean draught, significant wave
height, mean wave period, and wave encounter
angle are the input variables and shaft power is
the output variable. For the training of the ANN
model, typical ranges of hyperparameters used
in ANN are considered, as shown in Table 8,
and the optimal combination of parameters
within the range is selected through the grid
search (Pedregosa et al. 2011). Here, the nrpm
has not been included as an input in the ANN
model due to the strong correlation between VS

and nrpm. This decision might be based on the
rationale to avoid multicollinearity, which can
affect the reliability of the estimates in the model.

(iii) Model implementation and validation: This step
sought to implement the ANN power prediction
model using pre-processed data and the ANN
main parameters obtained from the previous
step. The M1V1 (Mission 1 Voyage 1) is used
as the training voyage.

Running ANN yields an NRMSE pc of 5.33% for the
training data, which is slightly higher than that of
the suggested approach (4.72%). We can see that the
models obtained through the ANN and the proposed
methods have quite similar prediction performance
and perform well for the training data. To further
compare the performance of these two methods, it is
interesting to see how they perform for different
data sets. This is accomplished by evaluating the
ANN’s and proposed method’s sensitivity to different
voyages, missions, sampling time intervals, and
lengths of time history. The results of the comparison
between the predicted propulsion power by the pro-
posed approach (Model 1) and ANN against the
measured power for the test voyage (M1V2) are
shown in Figure 9. The results of ANN for the test
dataset indicate an NRMSE pc value of 4.29%, which
is also slightly greater than that of the suggested

Table 7. The results of the tuning algorithms for different
models.

Model 1 (optimum) Model 2 (worst combination)

RCalm Holtrop-Mennen Holtrop-Mennen
RWave CTH CTH
RWind ISO 15016 ISO 15016
η Auf’m Keller B-series
Swet Numerical computation Mumford’s formula
CM Numerical computation Schneekluth and Bertram
CWP Numerical computation Papanikolaou
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approach, which is 3.78%. Therefore, both the pro-
posed approach and ANN perform well in predicting
ship power, while the suggested approach performs
slightly better. As a further comparison between the
proposed approach and ANN, the effects of the change
in the sampling interval and the ship mission are also
provided in the upcoming sections.

4.1.1. Sensitivity of models to different missions
In the context of the market, the ship owner’s decision,
etc., a ship might change her mission. Here, different
power prediction models will be compared for a new
mission (Mission 2) presented in Figure 10. 3000
samples from Mission 2, representing a one-month
voyage of the ship, are considered for studying the per-
formance of the power prediction models. This voyage
is referred to as M2V1 (Mission 2, Voyage 1). Because

Mission 2 is longer than Mission 1, more samples have
been considered for M2V1. The scatter plots of differ-
ent input features acrossM2V1 are shown in Figure 11.
Comparing Figure 11 with Figures 3 and 7 reveals that
the ship is encountering higher significant wave
heights and drafts in M2V1 than in M1V1 and
M1V2. The results show that the ANN, the proposed
method (Model 1), and Model 2 experience NRMSE pc

of 9.4%, 5.07%, and 46.82%, respectively. Figure 12
compares the shaft power predicted by different
power prediction models against the measured
power across M2V1. In comparison with the pre-
viously studied voyage and mission, the results of
M2V1 indicate a considerably higher increase in the
NRMSE pc for the ANN and Model 2 compared to
the proposed approach, implying that the proposed
approach has shown more performance robustness

Figure 6. The comparison between the shaft power predicted by Model 1 and Model 2 against the measured power across M1V1.

Figure 7. The scatter plots of different input features from the general cargo ship’s processed data across M1V2.
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under the changes in the mission and voyage. These
results also emphasize the advantage of a physics-
based approach (Model 1) over a machine-learning
approach in which its performance can be negatively
affected by data outside of the trained set. However,
it might not always be the case. If the physics-based
model is not carefully developed, it might lead to
even worse results, as Model 2 did. But this issue can
be addressed using the proposed approach.

4.1.2. Sensitivity of models to the sampling time
interval
Data for the studied ship is available with a sampling
time interval of 15 minutes. Power prediction
methods, particularly machine learning methods
whose results are directly dependent on data, might
perform differently depending on the sampling inter-
val. Thus, it is of interest to evaluate the robustness of
power prediction models at different sampling inter-
vals. This is accomplished by running the proposed
approach and ANN on training data with sampling
intervals of 15 minutes, 30 minutes, 1 hour, 2 hours,
and 4 hours. The results for the sampling time interval
of 15 minutes have already been obtained. The per-
formance of the resultant models is then assessed for
the test voyages (M1V2 and M2V1).

Table 9 presents the NRMSEs of different models
obtained by the ANN and the proposed methods at
different sampling time intervals. According to these
results, both ANN and proposed methods present
quite similar prediction accuracy and perform well
at each sampling time interval. To assess the

prediction performance of these models across differ-
ent test voyages, Figure 13 is provided. Comparing the
results of the ANN for the training data and the test
voyage of M1V2 in Table 9 and Figure 13 reveals a
relative increase in the NRMSE in the test voyage
with sampling time intervals, indicating the negative
effects of increasing the sampling time interval on
the performance of the ANN.While for the test voyage
of M2V1, the effects of the mission change are more
significant than the sampling time interval. Therefore,
the sampling interval and mission change can signifi-
cantly affect ANN performance, while the proposed
method shows more robustness, indicating another
advantage of the suggested strategy over a machine
learning approach.

It should be noted that a larger sampling interval
means fewer samples and thus less computational
time and cost. As a result, the presented approach
should be useful for analyzing the performance of
fleets with more ships involved. In the optimization
process, this might also facilitate the use of methods
that require more computational time or examine
more parameters than those used in this study.

4.1.3. Sensitivity of models to the length of time
history
In practice, if a ship has an automatic data collection
system, it is not customary to have lower data rates
than 15 minutes. If it does not have an automatic sys-
tem, the sampling frequency is usually daily when
using the default data rate of 15 minutes. Thus, it is
interesting to know how quickly the ANN method
will achieve acceptable accuracy. That can be tested
by systematically varying the length of time in the
training data set. This is done by running the proposed
approach and ANN on the training data with the
lengths of the time history of l = 100, 200, 400, 800,
and 1600 samples collected from the beginning of
M1V1. The results for the entire voyage (l = 1600)
have already been obtained. The resultant models
are then evaluated on the test voyages (M1V2 and
M2V1). Table 10 shows the models obtained using
the proposed approach over different lengths of time
history. According to this table, the more data is

Figure 8. The comparison between the shaft power predicted by Model 1 and Model 2 against in-service measured power across
the test voyage (M1V2).

Table 8. The main parameters of the ANN model.
Option Value

Input 5 params (VS[knots], d[m], Hs[m], Tp[s], b[deg])
Output 1 param (Ps [kW])
Optimizer Adam
Activation function ReLu
Loss function neg mean squared error
Dropout rate 0.1–0.5
Epochs 300–1000
Learning rate 0.001–0.1
Cross validation 5-fold cross validation
No. of hidden layers 1-2
No. of hidden nodes 3–7
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available for the proposed approach, the more similar
components of the resultant model are to the best
model (l = 1600).

Table 11 presents the NRMSEs of different
models obtained by the ANN and the proposed
methods at different lengths of time history. Based
on these results, the models obtained through the
ANN and the proposed methods show quite similar
prediction accuracy and work well at each length of
time history. To evaluate the prediction perform-
ance of these models across different test voyages,
Figure 14 is provided. The results of test voyages
in Figure 14 show that different models developed
based on the suggested approach still perform well
in predicting ship power across different lengths
of time history. The results of the ANN test
voyages, however, show poor performance until
the length of the time history of 800. These results
indicate the robustness of the proposed approach

compared to ANN in the presence of the change
in the length of time history.

In some applications, the number of tuning
samples in the proposed approach needs to be
reduced due to computation time and cost con-
straints. Comparing the results in this section with
those in Section 4.1.2 suggests that the proposed
approach might yield better models if the number
of samples is reduced by increasing sampling time
intervals rather than reducing the length of time
history; this is because the data tend to cover a
wider range of ship operation profiles and weather
conditions.

4.2. Comparison with traditional power
prediction models

Toward energy-efficient shipping, an accurate pre-
diction of the ship performance at sea is crucial.

Figure 9. The comparison between the shaft power predicted by the proposed approach (Model 1) and ANN and the measured
power across the test voyage (M1V2).

Figure 10. The ship operational route for Mission 2.
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Previous power prediction models are built on pre-
determined and presumable techniques. The power
prediction model’s performance, however, may
vary significantly depending on the ship type and
the operational scenarios. Here, the aim is to com-
pare the results of three traditional methods, i.e.,
Lindstad et al. (2013), Kristensen et al. (2017),
and Johansson et al. (2017), with the suggested
methodology. In the following sections, a brief

explanation of those approaches is given, followed
by a comparison with the recommended strategy
and the ship in-service data.

4.2.1. Kristensen et al. (2017)
The power prediction approach proposed by Kris-
tensen et al. (2017) uses regression estimations for
the input parameters using already-established
empirical formulae. In the original ITTC 1957

Figure 11. The scatter plots of different input features from the general cargo ship’s processed data across M2V1.

Figure 12. The comparison between the shaft power predicted by different power prediction models against the measured power
across M2V1.
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approach, the total resistance coefficient is
expressed as

CT = CF + CA + CAA + CR

where CF , CA, and CR are the frictional resistance
coefficient, correlation allowance, and residual
resistance coefficient, respectively. The ITTC 57
friction line (ITTC 2014) is used to estimate fric-
tional resistance, and the Harvald’s approach (1983)
is employed to calculate wave-making resistance.
Also, the total power is defined as follows.

Ptot = RT · VS

hP
· 1+ service allowance in%

100

( )

The service allowance includes wind and wave
effects, which are suggested to be in the range of
20–35% depending on the operational region. The
study offers new estimates for the thrust deduction
fraction and wake factor in addition to a novel
technique for doing bulbous bow corrections.
Mumford’s formula is used to calculate the wetted
surface area. Also, a regression analysis on Mum-
ford’s formula for 129 modern ships was conducted

to obtain more accurate formulae for the wetted
surface depending on the ship type and size. The
open water efficiency is calculated using an approxi-
mated version of the Wageningen B-series.

4.2.2. Johansson et al. (2017)
Johansson et al. (2017) suggested a power prediction
model known as STEAM3. The ITTC friction line
and Hollenbach’s method are used to calculate the
calm-water resistance components (RF and RR). The
Kwon approach (Kwon 2008) is applied to estimate
the added weather resistance. Moreover, Emerson’s
formula (Campana et al. 2009) is used to calculate
the quasi-propulsive efficiency.

4.2.3. Lindstad et al. (2013)
In Lindstad et al. (2013), the following formula is
suggested to calculate the ship total power.

Ptot = K(PCalm + PAW + PWind)+ Paux

where PCalm, PAW , PWind, and Paux are the calm water
power, added power in waves, added power due to
wind, and auxiliary power, respectively. Also, the

Table 9. A comparison of the NRMSEs of the ANN and proposed models developed based on the training data with different
sampling time intervals.

Sampling time interval (Dt)

15 min 30 min 1 hr 2 hr 4 hr

ANN 0.0533 0.0415 0.042 0.0344 0.0368
Proposed method 0.0472 0.0474 0.0473 0.0460 0.0473

Figure 13. A comparison of the NRMSEs of the ANN and the proposed models developed at different sampling time intervals
across various test voyages.
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coefficient of K is adjusted to account for the impacts
of waves on the sea state and corrected for voluntary
speed losses as follows.

K = h(VS, Hs)

= max
1

hD(j+ k ·
����
VS

Vd

√
)

,
1

hD(1− r · Hs)

⎛
⎜⎜⎝

⎞
⎟⎟⎠

Holtrop-Mennen (HM), STAWAVE-1, and ITTC
methods are used to compute PCalm, PAW , and PWind,

respectively. The following constants are applied:
hD = 0.7, j = 0.7, k = 0.3, and r = 0.05. Lindstad’s
model has been used in several studies to assess the
performance of new technologies in reducing ship
GHG emissions (Lindstad et al. 2017; Lindstad and
Bø 2018; Lindstad et al. 2022a, 2022b).

4.2.4. Results of comparisons
Here, the input parameters that are used in the pro-
posed method are also employed in the conventional
power prediction models, with the power being the

Table 10. The models obtained for different lengths of time history through the proposed method.
Length of time history (l )

100 200 400 800 1600

Calm water resistance HM & GH HM & GH HM HM HM
Added resistance in wave CTH SNNM Combined Combined CTH
Added resistance in wind ISO 15016 ISO 15016 ISO 15016 ISO 15016 ISO 15016
Propulsion system
efficiency

Auf’m Keller Auf’m Keller Auf’m Keller Auf’m Keller Auf’m Keller

Wetted surface area Numerical
computation

Numerical
computation

Numerical
computation

Numerical
computation

Numerical
computation

Midship section
coefficient

Schneekluth and
Bertram

Schneekluth and
Bertram

Numerical
computation

Numerical
computation

Numerical
computation

Waterplane area
coefficient

Numerical
computation

Numerical
computation

Papanikolaou Numerical
computation

Numerical
computation

Table 11. A comparison of the NRMSEs of the ANN and proposed models developed based on the training data with different
lengths of time history.

Length of time history (l )

100 200 400 800 1600

ANN 0.0145 0.0129 0.016 0.0301 0.0533
Proposed method 0.0293 0.0258 0.0268 0.0311 0.0472

Figure 14. A comparison of the NRMSEs of the ANN and the proposed models developed at various lengths of time history across
different test voyages. To better present the comparison, the y-axis has broken between 0.11 and 1.
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output. Figure 15 compares the NRMSE pc of the
suggested approach to that of traditional power pre-
diction models in various operating conditions. Also,
a comparison of the shaft power obtained by the pro-
posed approach with conventional power prediction
models across different operational scenarios is
shown in Figure 16. These results indicate that the per-
formance of the traditional power prediction methods
might vary significantly depending on the ship’s oper-
ational condition, while the proposed method has
maintained its performance with higher accuracy. In
light of the crucial importance of improving ship

performance prediction at sea, these results emphasize
the importance of using the proposed approach rather
than the previously suggested power prediction
models that are based on predetermined and presum-
able formulas.

5. Conclusion

This study suggests a tuning method based on a com-
parison of ship in-service data for a reference vessel
and the result of the power prediction model. To do
so, by comparing the results from the power

Figure 15. A comparison of NRMSE pc between the proposed method and conventional power prediction models in different
operational scenarios.

Figure 16. A comparison of the shaft power obtained by the proposed approach with conventional power prediction models
across different operational scenarios.
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prediction model with the ship in-service data of a
reference vessel, the normalized root mean square
error (NRMSE) is computed. Then, a tuning surro-
gate-based optimization problem is developed to
minimize the NRMSE and find the optimal combi-
nation of methods and input parameters applied to
compute different components of the ship power.
We used a general cargo ship operating between
Italy and Norway as a test case. The results show
that the accuracy of the power prediction model is
improved by roughly 86% when comparing the
worst and best combinations of approaches. More-
over, Holtrop-Mennen, CTH, and ISO 15016 fall
within the categories of both the poorest and best
power prediction models, indicating a significant
effect of the input parameters and method selection.
The test results also confirm the efficiency of the
suggested methodology.

The performance of the suggested approach was
also assessed throughout different ship voyages,
missions, sampling time intervals, and lengths of
time history. The recommended approach’s robust-
ness in the presence of changing sample intervals
and missions was shown compared to the artificial
neural network (ANN). The longer the sampling
interval, the fewer samples and the lower the com-
putational cost and time. Thus, the presented
approach should be useful for analyzing the fleet
performance with more ships involved or with
only small amounts of in-service available.
Additionally, it might facilitate the use of more
computationally intensive methods or the analysis
of more parameters in the optimization process.
Moreover, it was demonstrated that the rec-
ommended approach is robust to changing the
length of time history when compared to ANN.
As the length of time history was reduced, the
ANN performed poorly, whereas the proposed
approach performed with approximately the same
accuracy.

The effectiveness of the proposed method was
further demonstrated by comparison with the well-
known traditional power prediction methods devel-
oped by Kristensen et al., STEAM3 (Johanson et al.),
and Lindstad et al. In all operational scenarios tested,
the suggested approach showed better performance
and accuracy.

In light of the growing number of studies that
employ ship in-service data for verification and pre-
diction purposes, we recommend implementing the
suggested tuning strategy in order to reach a more
accurate power prediction model and quantify the
expected prediction accuracy. It would be interesting
to assess the effectiveness of the suggested method-
ology in various ship types and scenario applications
in further research. Also, as long as the performance
data is accurate and covers a large enough range of

variation in the involved parameters, the technique
might be applied to other types of performance data
than in-service data.

Furthermore, it is interesting to include machine
learning techniques in the tuning approach in future
studies. Based on the user’s decision, the proposed
approach can be expanded to incorporate more par-
ameters and methods than those used in this study
to provide even better results. Also, the user might
need to change candidate methods, parameters, and
even assumptions used in this study to achieve the
expected accuracy. It is also interesting to include
the parameters of the empirical methods in the pro-
posed tuning method to develop better semi-empirical
methods for a given case.

If the in-service data for a similar ship is available,
the proposed approach might be used in the early
design phase of a new ship. However, the sensitivity
of the accuracy of the proposed approach to changes
in the ship design has not been investigated yet, but
is of interest as a topic for further work.

The ship behavior at sea might change over the long
term due to factors such as fouling, wear and tear of
the propulsion system, etc. Additionally, this might
influence the accuracy of the resultant power predic-
tion model on a long-term basis. In this case, classify-
ing the data over different time periods and
implementing the proposed approach for each classifi-
cation might improve the accuracy of the power pre-
diction model over the long term.
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