
Evolutionary Computation with Islands:
Extending EvoLP.jl for Parallel Computing

Xavier F. C. Sánchez-Dı́az[0000−0003−2271−439X] and Ole Jakob
Mengshoel[0000−0003−2666−5310]

Norwegian University of Science and Technology
{xavier.sanchezdz, ole.j.mengshoel}@ntnu.no

https://saxarona.github.io
https://www.ntnu.edu/employees/ole.j.mengshoel

Abstract. The use of evolutionary computation for optimisation is a rel-
evant area of research in many fields of science and the industry, where
complex problems are frequently encountered. As an effort to support
the research in this niche, we present an extension for EvoLP.jl: the
evolutionary computation playground in Julia, that includes three new
operators for implementing island models for genetic algorithms. The ex-
tension enables the framework to run using the Message Passing Interface
protocol, an international standard for communication in parallel archi-
tectures that is available in most high performance computing clusters
today. We study the advantages of the implementation by performing
a series of tests on well-known numerical optimisation benchmarks of
various difficulties and on several dimensions. Both the code and the
data are available in a GitHub repository. This work enables researchers
to implement powerful parallel evolutionary algorithms without moving
away from the high level of abstraction that the framework provides.

Keywords: Evolutionary computation · Genetic algorithms · Optimi-
sation · Parallel computing.

1 Introduction

Context. Evolutionary Computation (EC) algorithms are heuristic techniques
for optimisation with high relevance in many engineering and statistics applica-
tions where non-convex fitness landscapes arise: structural design [34], layout op-
timisation [22], resource allocation [24], as well as optimising AI models through
feature selection [17], neuroevolution [31] and hyperparameter optimisation [6].
EC mimics how individuals and species evolve and adapt to their environments,
where those who adapt better will survive and reproduce, and conversely, unfit
individuals perish. The EvoLP.jl [32] software for EC, implemented in the Julia
programming language, provides a friendly platform for designing and experi-
menting with Evolutionary Algorithms (EA). EvoLP.jl is free, open source, and
hosted on the Norwegian Open AI Lab’s GitHub repository.1 EvoLP.jl is de-

1 See https://github.com/ntnu-ai-lab/EvoLP.jl

https://saxarona.github.io
https://www.ntnu.edu/employees/ole.j.mengshoel
https://github.com/ntnu-ai-lab/EvoLP.jl

2 X. F. C. Sánchez-Dı́az and O.J. Mengshoel

signed as an experimentation playground, with several “swappable” modules (or
building blocks) to create custom algorithms in one’s own workstation quickly.

Challenges and opportunities. Many industrial problems pose challenging
optimisation scenarios that can be solved using EC. The challenges include
(i) expensive fitness function evaluations and (ii) multimodal fitness landscapes
[2,13,34]. In the multimodal setting, diversity preservation is important, due to
the challenges of genetic drift and premature convergence [7]. Parallel comput-
ing can potentially tackle both challenges (i) and (ii). First, parallel computing
power can handle the expense of fitness function evaluation. Second, certain EC
algorithms, including the island model [12,7], map naturally to parallel comput-
ers. The island model evolves multiple populations in parallel, typically with one
island per computer, and thereby encourages solution diversity.

Contributions. The contributions of this paper are twofold. First, we study
uni- and multimodal problems, with an emphasis on the latter. Different EA
diversity preservation mechanisms for multimodal problems have been studied
in the literature, including crowding [14,16], fitness sharing [8], and the island
model [12,7,27]. We study the island model in this paper, and in particular con-
sider its integration into EvoLP.jl. Our second contribution is based on the fact
that EAs are inherently parallel. Thus, we are investigating the implementa-
tion of the island model on parallel computers. Specifically, we extend EvoLP.jl
[32] to work with high-performance computing (HPC) resources. We discuss the
extensions and modifications needed in EvoLP.jl to run EAs in parallel architec-
tures using the Message Passing Interface (MPI) protocol. In an empirical study
with EvoLP.jl, we compare the parallel island model with a serial variant, with
a focus on their different exploration and diversity preservation capabilities.

1.1 An Introduction to the EC Terminology

In this paper, we consider a Genetic Algorithm (GA) in which a population of
individuals (candidate solutions) are evaluated using an objective (or fitness)
function to be optimised [7,8,29]. Each individual is a vector of features. We
assume the population to be a bag of real-valued vectors. The evolution process
is simulated in an iterative manner via four basic operations: selection, recom-
bination or crossover, mutation and survival. Selection is a policy (also called
an operator) that dictates how to select the subset of individuals that will re-
produce, based on the fitness of each individual. Crossover is another policy—it
generates new vectors by combining two selected individuals. The mutation op-
erator is (usually) a stochastic component that slightly modifies a solution for
exploring the fitness landscape. Finally, survival is another selection policy that
determines the subset of surviving individuals for the next iteration. For the pur-
pose of this paper, we use a generational GA in which the survival policy is total
replacement: the old population dies and is entirely replaced by its offspring.

Extending EvoLP.jl for Parallel Computing 3

1.2 Mathematical Notation

We use italic bold symbols for individuals (x), with their i-th index (or feature)
shown as xi. For sets of individuals, we use blackboard bold font like P and M,
and their cardinality (or their size) is represented with two vertical bars, as |P|.
For policies, topologies, algorithms and objective functions we use maths script
font like S and R. We refer to random variables as uppercase letters in serif font,
and the distribution they are sampled from is typeset using calligraphic maths
font: X ∼ U(P) means that X is a random variable sampled from a uniformly
random distribution over the set of individuals P. Finally, we use brackets to
delimit a finite range of numbers: define the set of integers [n] := {1, . . . , n} for
vector indices. For vector values, we use [lb, ub] to denote a closed range between
two real numbers lb and ub, the lower and upper bounds respectively.

2 Background

2.1 The Island Model for Diversity Preservation

Among different EA diversity preservation mechanisms [8,14,16], we focus on the
island model [12,7,27]. In the island model of the GA [7], multiple populations
run in parallel and communicate. After a fixed number of generations (known
as migration rate), selected individuals migrate from one population to another.
The model resembles species migration from continental areas to remote islands,
and how some populations specialise in their own environmental niches (e.g. the
Galápagos finches).

In short, with multiple populations evolving at the same time but with some
interaction (the migration), there is a passive diversity preservation mechanism.
To describe how several island populations evolve in parallel and occasionally
exchange individuals, we adopt the definitions by Izzo et al. [12]:

Definition 1. Let an archipelago be a 2-tuple A = (I,T), where I is a set of
n islands I, and T is the migration topology represented as a directed graph with
I as its vertices.

Definition 2. Every island Ii ∈ I with i ∈ [n] is a 4-tuple Ii = (Ai, Pi,Si,Ri)
with the following components:

– An algorithm A with an epoch (or migration rate) µ
– A population description P = (P,P) where the population P is tied to its

objective function P
– A migratory selection policy S that determines the subpopulation (known as

deme) M ⊆ P to be sent to neighbouring islands (wrt T)
– A migratory replacement policy R that specifies how a received deme M

should be inserted into a population P

The pseudocode describing the communication scheme for each island Ii is
presented in Algorithm 1. Considering this formulation, we use the MPI com-
munication protocol for parallel computing architectures [18]. MPI is an inter-
national standard provided by many parallel computers including HPC clusters.

4 X. F. C. Sánchez-Dı́az and O.J. Mengshoel

Algorithm 1 Pseudocode for each island Ii ∈ I
1: Initialise P
2: while termination criterion is not met do
3: P ′ ← A (P, µi)
4: M← Si(P

′)
5: Send M to adjacent islands (wrt topology T)
6: Receive M′ solutions from adjacent islands
7: P ′′ ← R(P ′,M′)
8: P ← P ′′

2.2 Parallelism for Evolutionary Computation

Many parallel and distributed models for EC have been thoroughly studied be-
fore [11,20,21,28]. Some of these approaches focus on distributing the work-
load for improved performance using map/reduce calls [19,23]. Other approaches
modify the underlying EA instead, in order to make it asynchronous. However,
asynchronous EAs suffer from limitations such as being dependent of initiali-
sation [25] or experience performance drops in linkage problem settings [10]. A
third approach—most notable due to its ease of modelling—is the island model
discussed in Section 2.1.

Early theoretical work estimated the optimal number of populations and
processors to use in island models [4]. More recently, it has been shown that with
enough processors, archipelagos with homogeneous islands perform similarly to
archipelagos with different island populations [9]. An in-depth mathematical
description of a generalised island model was developed by Izzo et al. [12]. This
generalisation is used as the basis for the additional operators described in this
work, as discussed in Section 3.

Some EC software packages already include some form of parallelism. For
example, for Python, LEAP [5] allows distributed evaluation in both sync-
(map/reduce) and asynchronous mode. Pagmo (C++) [1] includes support for
distributed evaluation and island models. For Java, ECJ [26] includes support
for both sync/async communication, and island models as well. Similarly, an
extension to the GA package in R has been developed [27] that includes island
model support. In Julia, Evolutionary.jl and Metaheuristics.jl [15] allow paallel
evaluation using threads. Our work represents the first effort in parallel mod-
elling for a registered Julia package, with EvoLP.jl [32] being the first package
for EC to include support for island models.2

3 Implementing Parallel Islands in EvoLP.jl

We now elaborate on how to implement island models using EvoLP.jl [32]. We
follow the same paradigm we used for its design: implementing at a high level

2 EvoLP.jl is registered as a package in the General Julia Registry: it can be installed
via the package manager in the Julia REPL.

Extending EvoLP.jl for Parallel Computing 5

of abstraction where each step of the evolutionary process is performed by one
operator. In EvoLP.jl, this is achieved by first using a type to set the desired
policy, and then performing the transformations considering such policy by using
a function. The available building blocks in EvoLP.jl are:

– Generator. A function for randomly initialising the population.
– Selector. A policy for selecting parents for recombination using the select

function.
– Recombinator. A policy for performing crossover (between two parents)

using the cross function.
– Mutator. A policy for performing mutation (on an individual) using the

mutate function.

Using the definitions in Section 2.1, we now describe the necessary operations
for performing the communication in an island model using a similar level of
abstraction: selecting a type policy first and then performing a transformation
using a function. For this, we assume that each island is a process, and that we
are in control of communication. This is different from other EC libraries. For
example, in LEAP [5], islands are simulated. In pagmo [1], the communication
is transparent to the user as the archipelago is coded as a single object. In
EvoLP.jl we use communication operators as building blocks, more in line with
the playground metaphor.

3.1 The Drift, Strand and Reinsert Operators

Using the EvoLP.jl blocks, we can code a GA in a standard way [32], making
it run on a single core. To make it an island model, adding the following Julia
code at the end of the main loop suffices:

for i in 1:max_it # inside main loop

...

if i % mu == 0 # migration time

1. Select and send deme: drift

_, s_req = drift(MigrateSelect, population, fits, dest)

2. Receive deme: strand

M, r_req = strand(MigrateSelect, dims, src)

3. Add new deme to population: reinsert!

worst_idx = reinsert!(population, fits, MigrateReplace, M)

4. Delete old deme

deleteat!(population, worst_idx)

deleteat!(fits, worst_idx)

5. Evaluate new deme using function f

append!(fits, f.(M))

6. Wait

MPI.Barrier(comm)

end

end

6 X. F. C. Sánchez-Dı́az and O.J. Mengshoel

The full example can be consulted in this work’s GitHub repository.3 We now
define the communication operators formally, using the previous definitions and
thinking of individuals moving between islands in an archipelago.

Drift: an operator representing both the selection and the send steps of the
communication (lines 4 and 5 in Algorithm 1).

Definition 3. Given a defined migration selection policy S , select and encode
the deme M that will drift away to the destination island using the MPI Send
procedure.

Strand: an operator representing the receive step of the communication (line
6 in Algorithm 1).

Definition 4. Given a sent deme M′ that strands at the destination island,
receive the deme M′ using the MPI Recv procedure and then decode it.

To prevent any errors due to the nondeterministic nature of communication
in a parallel setting, manipulation of the population (insertion and replacement
of the individuals) is considered separately as follows.

Reinsert: an operator that acts into play once the communication has finished.
The receiving island’s population P is modified by appending the stranded in-
dividuals.

Definition 5. Given a received deme M′, reintroduce all individuals x ∈ M′ by
following its replacement policy R.

After reinsertion, the algorithm designer must make sure to perform the replace-
ment. For this, the reinsert operator returns the indices of the individuals that
should be removed. Due to the non-deterministic nature of parallel communica-
tion, NaN values may appear during computation. This can be avoided by using
the MPI blocking communication procedures (Send and Recv). Additionally, an
MPI Barrier can be used at the end of the main loop which will allow all islands
to synchronise. This is what we have done in the Julia code above.

4 Testing the Island Model

To test the new operators, we perform a comparison of the parallel island model
against the serial counterpart with no communication, i.e, using the same al-
gorithm but without the communication code shown in Section 3.1. To do the
parallel tests, we use Julia 1.7.2 on Idun, NTNU’s HPC solution [30]. A single
script is submitted through the Slurm Workload Manager, which initialises MPI
and then runs the code for one island in a distributed workload with as many

3 See https://github.com/saxarona/idun-islands

https://github.com/saxarona/idun-islands

Extending EvoLP.jl for Parallel Computing 7

CPUs as needed. For the parallel island model, we used 64 CPUs for a total of
64 solvers—one for each island. All MPI calls are provided by the JuliaMPI.jl
package [3] which is based on OpenMPI. OpenMPI is available on most of the
HPC clusters. The EC solver and its componentes were implemented using the
provided blocks in EvoLP.jl v1.2 [32].

4.1 Tests Setup

Parallel Island Model Parameters

– The island model is an archipelago A with |I| = 64 and a 1-way ring topology
T . For simplicity, all islands Ii ∈ I are identical.

– Each island Ii uses a generational GA as its solver A .
– In our archipelago, migration occurs every 10 iterations, i.e., µ = 10. In some

tests, we change the migration rate. When that is the case, we describe it
accordingly in its own subsection.

– To select the migrating individuals, we set the migratory selection policy S
as random uniform, i.e., every m individual in the deme M is obtained as
m ∈ M ∼ U(P).

– To select the set of individuals that will be replaced Pr, we set the migratory
replacement policy R as Worst(k) = Pr = argmaxxi

f(x) for all i ∈ [k].

Solver Parameters We use a generational GA solver Ai that uses the following
operators and parameters:

– Generator: Continuous uniform initialisation, i.e., with an initial popula-
tion of d-dimensional vectors x ∈ P such that P ∼ U([lb, ub]) for different
lower and upper bounds lb, ub.

– Selector: Rank-based selection.
– Recombinator: Uniform crossover.
– Mutator: Gaussian mutation with standard deviation σ = 0.1
– Algorithm parameters: population size |P| = 30 with a fixed stopping cri-

terion of 100 generations. Both the crossover and mutation probabilities are
set to 100%, and mutation affects all the offspring, similar to how evolution
strategies work [7].

These solver parameters are the same for the serial approach and for each
island Ii in the parallel island model. For an in-depth description of operators
above, we invite the reader to refer to the EvoLP.jl v1.2 documentation.4

4.2 Test 1: Consistency on Easy Functions

Goal. Our goal is to perform a comparison of the two approaches as stud-
ied empirically with three fitness functions. Regarding the overall fitness of the

4 See https://ntnu-ai-lab.github.io/EvoLP.jl/stable/index.html

https://ntnu-ai-lab.github.io/EvoLP.jl/stable/index.html

8 X. F. C. Sánchez-Dı́az and O.J. Mengshoel

solutions, are there any noticeable benefits of using the parallel island model
over a serial approach? This would reflect in improved exploration and diversity
preservation.
Method. Using EvoLP, we evolve 64 populations in two settings with equal
parameters: using the parallel island model (with communication) and using a
serial approach (without communication). The parallel island implementation
uses the communication operators between 64 islands: the drift, strand and rein-
sert methods. The serial consists of evolving a single island (no communication)
64 times, with a full reinitialisation after every run. Both approaches use the
same algorithm implementation with the parameters described in Section 4.1,
and the parameters are kept the same through all the runs.

We optimise three continuous minimisation benchmarks, well-known in the
optimisation community: Ackley (1), Rosenbrock (2) and Michalewicz (3) test
functions. The Ackley function (1) is a multimodal function with multiple local
minima far away from a central, global minimum f(x∗) = 0 achieved with the
optimiser at x = [0, .., 0], for all xi, i ∈ [d]:

f(x) = −a exp

−b

√√√√1

d

d∑
i=1

x2
i

− exp

(
1

d

∑
i=1

d cos(cxi)

)
+ a+ exp(1). (1)

We set a = 20, b = 0.2 and c = 2π, which are the typically used values. The island
migration rate µ was set to 10 generations, for all dimensions d ∈ {2, 5, 10}. For
the initial population, the values for xi ∈ x are xi ∈ [−32.768, 32.768].

The Rosenbrock function (2) is a unimodal function with optimum f(x∗) = 0
and optimiser x∗ = [1, .., 1] for all xi, i ∈ [d]:

f(x) = (a− x1)
2 + b(x2 − x2

1)
2. (2)

The parameters a and b were kept at their default values as in EvoL.jl, the
typically used a = 1 and b = 5. The migration rate µ was set to 10 generations
throughout the tests for all number of dimensions. For the initial population,
the values for xi ∈ x are xi ∈ [−2.048, 2.048].

The Michalewicz function (3) is a function with multiple valleys and different
optima depending on the number of dimensions [33]:

f(x) = −
d∑

i=1

sin(xi) sin
2m

(
ix2

i

π

)
. (3)

The optional parameter m was kept to its typical value m = 10. The island
migration rate µ was set to 5 generations for all problem dimensions, as the
optimum in this function is more difficult to converge to. For all dimensions, the
initial values for xi ∈ x are xi ∈ [0, π].

Each function is tested over three different number of dimensions d: 2, 5 and
10. These optimisation functions vary in difficulty, and difficulty increases with
dimensionality. In the case of Michalewicz, it is a multimodal function which
requires the solver to have some kind of diversity preservation mechanism.5

5 See Surjanovic and Bingham’s Simulation Library: https://www.sfu.ca/∼ssurjano/

https://www.sfu.ca/~ssurjano/

Extending EvoLP.jl for Parallel Computing 9

Results and discussion. Figure 1 shows the results for this test. As depicted
for the Ackley function, the parallel approach (in blue) was closer to the known
optimum (shown as a dashed line) more consistently than the serial approach (in
orange). In contrast, the Michalewicz function (that features different optima per
number of dimensions) seemed to be more difficult to traverse as both approaches
get similar distributions. These results suggests that using the parallel island
approach might bring convergence benefits and higher fitness on some functions.

4.3 Test 2: High Multimodality

Goal. The goal of this test is to highlight the impact of the exploration mech-
anism of island models regarding the fitness of solutions when tested on highly
multimodal functions.
Method. For this test, we use the same solver implementation but now on more
difficult, highly multimodal and non-linear functions: Eggholder (4) and Rana
(5). The Eggholder function (4) is a difficult function that features a rugged
landscape. Optima can be consulted in [33]. The values xi ∈ x for the initial
population are xi ∈ [−512, 512].

f(x) = −
n−1∑
i=1

[
(xi+1 + 47) sin

(√∣∣∣xi+1 +
x1

2
+ 47

∣∣∣)
−xi sin

(√
|x1 − (xi+1 + 47)|

)]. (4)

The Rana function (5) is a similar function to the Eggholder, however it is
far more rugged and it is symmetrical. Global minima can be consulted in [33].
The values xi ∈ x for the initial population are the usual, xi ∈ [−512, 512].

f(x) =

n−1∑
i=1

(
xi cos

√
|xi+1 + xi + 1| sin

√
|xi+1 − xi + 1|

+(1 + xi+1) sin
√

|xi+1 + xi + 1| cos
√
|xi+1 − xi + 1|

)
.

(5)

As opposed to the functions in Test 1, these functions have non-trivial global
minima, and their minima do not have identical components [33]. Dimensionality
d ∈ {2, 3, 5} and we fixed the migratory rate at µ = 10. All other parameters
were kept the same as in Test 1.
Results. The results for this test can be consulted in Figure 2. As with the
previous test, the island approach gets results closer to the optima more often.
This is in line with the expectation as migration preserves population diversity
by working as an exploration mechanism: The replacement policy refines the
population by removing the worst candidates. In contrast, the lack of communi-
cation makes diversity preservation and convergence to the best solution difficult
for the serial GA approach, especially in higher dimension problems.

10 X. F. C. Sánchez-Dı́az and O.J. Mengshoel

d = 2
Parallel Serial

F
itn

es
s

of
 b

es
t s

ol
ut

io
n

0

5

10

15

20
f(x *) = 0

d = 5
Parallel Serial

0

5

10

15

20

d = 10
Parallel Serial

0

5

10

15

20

Ackley Function

d = 2
Parallel Serial

F
itn

es
s

of
 b

es
t s

ol
ut

io
n

0.0000

0.0005

0.0010

f(x *) = 0

d = 5
Parallel Serial

0.0000

0.0005

0.0010

d = 10
Parallel Serial

0.0000

0.0005

0.0010

Rosenbrock Function

d = 2
Parallel Serial

F
itn

es
s

of
 b

es
t s

ol
ut

io
n

-10

-8

-6

-4

-2

f(x *) ≈ − 1.8013

d = 5
Parallel Serial

-10

-8

-6

-4

-2

f(x *) ≈ − 4.6876

d = 10
Parallel Serial

-10

-8

-6

-4

-2

f(x *) ≈ − 9.6601

Michalewicz Function

Fig. 1. Results overview for Test 1, with different functions per row and different
number of dimensions per column. In each plot, the global minimum, f(x∗), is marked
with a red dashed line. Each plot includes a histogram, a box plot and a scatter plot
of the distributions of the best solution found in each of the 64 populations. Results
of the 64-island parallel archipelago (featuring the drift, strand and reinsert methods)
are presented in blue. For the serial results (shown in orange), a single population was
evolved 64 times; with a full restart of the algorithm after meeting the termination
criterion.

Extending EvoLP.jl for Parallel Computing 11

d = 2
Parallel Serial

F
itn

es
s

of
 b

es
t s

ol
ut

io
n

-3000

-2000

-1000

f(x *) ≈ − 959.64066

d = 3
Parallel Serial

F
itn

es
s

of
 b

es
t s

ol
ut

io
n

-3000

-2000

-1000

f(x *) ≈ − 1888.32139

d = 5
Parallel Serial

F
itn

es
s

of
 b

es
t s

ol
ut

io
n

-3000

-2000

-1000

f(x *) ≈ − 3719.72483

Eggholder Function

d = 2
Parallel Serial

F
itn

es
s

of
 b

es
t s

ol
ut

io
n

-2000

-1500

-1000

-500

f(x *) ≈ − 511.73288

d = 3
Parallel Serial

F
itn

es
s

of
 b

es
t s

ol
ut

io
n

-2000

-1500

-1000

-500

f(x *) ≈ − 1023.41661

d = 5
Parallel Serial

F
itn

es
s

of
 b

es
t s

ol
ut

io
n

-2000

-1500

-1000

-500

f(x *) ≈ − 2046.83206

Rana Function

Fig. 2. Results overview for Test 2, with different functions per row and different
number of dimensions per column. As with Test 1, in each plot we include a histogram,
a box plot and a scatter plot of the distributions of the best solution found for each
of the 64 populations. The known minimum, f(x∗) is marked in each plot as a red
dashed line. The results of the parallel approach (in blue) show how the communication
mechanisms help to find better solutions more consistently, while the serial approach
(in orange) has difficulty optimising these highly rugged functions.

12 X. F. C. Sánchez-Dı́az and O.J. Mengshoel

5 Conclusion and Future Work

In this paper we described three new operators for EvoLP.jl, namely: drift,
strand and reinsert. These operators represent a meaningful extension to the
framework as they allow the implementation of island models for GAs in par-
allel and distributed architectures without sacrificing the abstraction that the
framework already provides. We defined the operators on a theoretical founda-
tion, and then tested them in an HPC cluster using the MPI communication
protocol. The tests highlighted that the communication in the parallel island
model is beneficial for the exploration in the algorithm, which represents an ad-
vantage in a complex multimodal landscape. In addition, the tests showed how
the parallel implementation gets better results than the serial implementation
more consistently, over different functions with various complexities and number
of dimensions.To ensure reproducibility, we provided an extensive description of
the tests and their setup. Moreover, both the code and the data are available in
the project repository.

For future work, we plan to ship this functionality as an extension in EvoLP.jl
v2.0, which is planned for Q1 2024. In this way, researchers can use these op-
erators directly from the official Julia package, regardless if they have access to
HPC or want to use multiprocessing on their own workstations. Other potential
areas of future work include expanding the analysis of diversity preservation in
multimodal landscapes and the development of additional migratory selection
and replacement policies. Exploring different topologies and an analysis of the
MPI communication overheads is also a possibility.

Acknowledgements

We would like to acknowledge the financial support for EvoLP.jl, partly funded
by Project no. 311284 of the Research Council of Norway, as well as access to
computing resources from the Department of Computer Science of the Norwe-
gian University of Science and Technology. We also thank the Norwegian Open
Artificial Intelligence Lab for hosting EvoLP.jl in its GitHub repository.

References

1. Biscani, F., Izzo, D.: A parallel global multiobjective framework for opti-
mization: Pagmo. Journal of Open Source Software 5(53), 2338 (Sep 2020).
https://doi.org/10.21105/joss.02338

2. Burak, J., Mengshoel, O.J.: A multi-objective genetic algorithm for jacket opti-
mization. In: Proceedings of the GECCO Companion. pp. 1549–1556. GECCO ’21,
ACM, New York, NY, USA (Jul 2021). https://doi.org/10.1145/3449726.3463150

3. Byrne, S., Wilcox, L.C., Churavy, V.: MPI.jl: Julia bindings for the Message
Passing Interface. Proceedings of the JuliaCon Conferences 1(1), 68 (Jul 2021).
https://doi.org/10.21105/jcon.00068

https://doi.org/10.21105/joss.02338
https://doi.org/10.1145/3449726.3463150
https://doi.org/10.21105/jcon.00068

Extending EvoLP.jl for Parallel Computing 13

4. Cantú-Paz, E., Goldberg, D.E.: On the scalability of parallel ge-
netic algorithms. Evolutionary Computation 7(4), 429–449 (Dec 1999).
https://doi.org/10.1162/evco.1999.7.4.429

5. Coletti, M.A., Scott, E.O., Bassett, J.K.: Library for evolutionary algo-
rithms in Python (LEAP). In: Proceedings of the GECCO Companion.
pp. 1571–1579. GECCO ’20, ACM, New York, NY, USA (Jul 2020).
https://doi.org/10.1145/3377929.3398147

6. Del Ser, J., Osaba, E., Molina, D., Yang, X.S., Salcedo-Sanz, S., Camacho, D., Das,
S., Suganthan, P.N., Coello Coello, C.A., Herrera, F.: Bio-inspired computation:
Where we stand and what’s next. Swarm and Evolutionary Computation 48, 220–
250 (Aug 2019). https://doi.org/10.1016/j.swevo.2019.04.008

7. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Natural Comput-
ing Series, Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
44874-8

8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., USA, 1st edn. (1989)

9. Gong, Y., Fukunaga, A.: Distributed island-model genetic algorithms using hetero-
geneous parameter settings. In: 2011 IEEE Congress of Evolutionary Computation
(CEC). pp. 820–827 (Jun 2011). https://doi.org/10.1109/CEC.2011.5949703

10. Guijt, A., Thierens, D., Alderliesten, T., Bosman, P.A.: The Impact of
Asynchrony on Parallel Model-Based EAs. In: Proceedings of the GECCO.
pp. 910–918. GECCO ’23, ACM, New York, NY, USA (Jul 2023).
https://doi.org/10.1145/3583131.3590406

11. Harada, T., Alba, E.: Parallel Genetic Algorithms: A Useful Survey. ACM Com-
puting Surveys 53(4), 86:1–86:39 (Aug 2020). https://doi.org/10.1145/3400031

12. Izzo, D., Ruciński, M., Biscani, F.: The Generalized Island Model. In: Fernández de
Vega, F., Hidalgo Pérez, J.I., Lanchares, J. (eds.) Parallel Architectures and Bioin-
spired Algorithms, pp. 151–169. Studies in Computational Intelligence, Springer
(2012). https://doi.org/10.1007/978-3-642-28789-3 7

13. Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W.:
NSGA-Net: Neural architecture search using multi-objective genetic algorithm. In:
Proceedings of the GECCO. pp. 419–427. GECCO ’19, ACM, New York, NY, USA
(Jul 2019). https://doi.org/10.1145/3321707.3321729

14. Mahfoud, S.W., et al.: Crowding and preselection revisited. In: PPSN. vol. 2, pp.
27–36 (1992)

15. Mej́ıa-de-Dios, J.A., Mezura-Montes, E.: Metaheuristics: A Julia Package for
Single- and Multi-Objective Optimization. Journal of Open Source Software 7(78),
4723 (Oct 2022). https://doi.org/10.21105/joss.04723

16. Mengshoel, O.J., Galán, S.F., de Dios, A.: Adaptive generalized crowd-
ing for genetic algorithms. Information Sciences 258, 140–159 (2014).
https://doi.org/https://doi.org/10.1016/j.ins.2013.08.056

17. Mengshoel, O.J., Foss, F., Sánchez-Dı́az, X.F.C.: Controlling Hybrid Evolutionary
Algorithms in Subset Selection for Multimodal Optimization. In: Proceedings of
the GECCO Companion. pp. 507–510. GECCO ’23 Companion, ACM, New York,
NY, USA (Jul 2023). https://doi.org/10.1145/3583133.3590545

18. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
Version 4.0 (Jun 2021)

19. Muniasamy, R.P., Singh, S., Nasre, R., Narayanaswamy, N.: Effective Paral-
lelization of the Vehicle Routing Problem. In: Proceedings of the GECCO.
pp. 1036–1044. GECCO ’23, ACM, New York, NY, USA (Jul 2023).
https://doi.org/10.1145/3583131.3590458

https://doi.org/10.1162/evco.1999.7.4.429
https://doi.org/10.1145/3377929.3398147
https://doi.org/10.1016/j.swevo.2019.04.008
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1109/CEC.2011.5949703
https://doi.org/10.1145/3583131.3590406
https://doi.org/10.1145/3400031
https://doi.org/10.1007/978-3-642-28789-3_7
https://doi.org/10.1145/3321707.3321729
https://doi.org/10.21105/joss.04723
https://doi.org/https://doi.org/10.1016/j.ins.2013.08.056
https://doi.org/10.1145/3583133.3590545
https://doi.org/10.1145/3583131.3590458

14 X. F. C. Sánchez-Dı́az and O.J. Mengshoel

20. Nowostawski, M., Poli, R.: Parallel genetic algorithm taxonomy. In: KES99. pp. 88–
92 (1999). https://doi.org/10.1109/KES.1999.820127, https://ieeexplore.ieee.org/
document/820127

21. Rudolph, G.: Global optimization by means of distributed evolution strategies.
In: Schwefel, H.P., Männer, R. (eds.) Parallel Problem Solving from Nature. pp.
209–213. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (1991).
https://doi.org/10.1007/BFb0029754

22. Salcedo-Sanz, S., Gallo-Marazuela, D., Pastor-Sánchez, A., Carro-Calvo,
L., Portilla-Figueras, A., Prieto, L.: Evolutionary computation approaches
for real offshore wind farm layout: A case study in northern Eu-
rope. Expert Systems with Applications 40(16), 6292–6297 (Nov 2013).
https://doi.org/10.1016/j.eswa.2013.05.054

23. Salza, P., Ferrucci, F.: Speed up genetic algorithms in the cloud using soft-
ware containers. Future Generation Computer Systems 92, 276–289 (Mar 2019).
https://doi.org/10.1016/j.future.2018.09.066

24. Schjølberg, M.E., Bekkevold, N.P., Sánchez-Dı́az, X.F.C., Mengshoel, O.J.:
Comparing Metaheuristic Optimization Algorithms for Ambulance Alloca-
tion: An Experimental Simulation Study. In: Proceedings of the GECCO.
pp. 1454–1463. GECCO ’23, ACM, New York, NY, USA (Jul 2023).
https://doi.org/10.1145/3583131.3590345

25. Scott, E., De Jong, K.: Initialization Matters for Asynchronous Steady-State
Evolutionary Algorithms. In: Proceedings of the GECCO Companion. pp.
1570–1578. GECCO ’23 Companion, ACM, New York, NY, USA (Jul 2023).
https://doi.org/10.1145/3583133.3596404

26. Scott, E.O., Luke, S.: ECJ at 20: Toward a general metaheuristics toolkit. In:
Proceedings of the GECCO Companion. pp. 1391–1398. GECCO ’19, ACM, New
York, NY, USA (Jul 2019). https://doi.org/10.1145/3319619.3326865

27. Scrucca, L.: On Some Extensions to GA Package: Hybrid Optimisation, Parallelisa-
tion and Islands EvolutionOn some extensions to GA package: Hybrid optimisation,
parallelisation and islands evolution. The R Journal 9(1), 187–206 (2017)

28. Shahrzad, H., Miikkulainen, R.P.: Accelerating Evolution Through Gene Masking
and Distributed Search. In: Proceedings of the GECCO. pp. 972–980. GECCO ’23,
ACM, New York, NY, USA (Jul 2023). https://doi.org/10.1145/3583131.3590508

29. Simon, D.: Evolutionary Optimization Algorithms. John Wiley & Sons (Jun 2013)
30. Själander, M., Jahre, M., Tufte, G., Reissmann, N.: EPIC: An Energy-Efficient,

High-Performance GPGPU Computing Research Infrastructure (Feb 2022).
https://doi.org/10.48550/arXiv.1912.05848

31. Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural net-
works through neuroevolution. Nature Machine Intelligence 1(1), 24–35 (Jan 2019).
https://doi.org/10.1038/s42256-018-0006-z

32. Sánchez-Dı́az, X.F.C., Mengshoel, O.J.: EvoLP.jl: a playground for evolutionary
computation in Julia. In: NAIS’23: Symposium of the Norwegian AI Society, in
press. Bergen, Norway (June 2023)

33. Vanaret, C., Gotteland, J.B., Durand, N., Alliot, J.M.: Certified Global
Minima for a Benchmark of Difficult Optimization Problems (Mar 2020).
https://doi.org/10.48550/arXiv.2003.09867

34. Zavala, G.R., Nebro, A.J., Luna, F., Coello Coello, C.A.: A survey of
multi-objective metaheuristics applied to structural optimization. Struc-
tural and Multidisciplinary Optimization 49(4), 537–558 (Apr 2014).
https://doi.org/10.1007/s00158-013-0996-4

https://doi.org/10.1109/KES.1999.820127
https://ieeexplore.ieee.org/document/820127
https://ieeexplore.ieee.org/document/820127
https://doi.org/10.1007/BFb0029754
https://doi.org/10.1016/j.eswa.2013.05.054
https://doi.org/10.1016/j.future.2018.09.066
https://doi.org/10.1145/3583131.3590345
https://doi.org/10.1145/3583133.3596404
https://doi.org/10.1145/3319619.3326865
https://doi.org/10.1145/3583131.3590508
https://doi.org/10.48550/arXiv.1912.05848
https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.48550/arXiv.2003.09867
https://doi.org/10.1007/s00158-013-0996-4

	Evolutionary Computation with Islands: Extending EvoLP.jl for Parallel Computing

