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Abstract— Explicit solutions are given for a set of n+m linear
hyperbolic observer backstepping kernel equations used for
leak detection in branched pipe flows. It is identified that the
kernel equations can be separated into N +1 distinct Goursat
problems for 2( j+1) coupled PDEs each, j ∈ {0,1, . . . ,N} and
N +1 being the number of pipes connected via the branching
point. Expressing the solutions as infinite matrix power series,
the solution to each set of equations is shown to depend on
a simplified, scalar Goursat problem, the solution of which is
given in terms of derivatives of a modified Bessel function of
the first kind. Furthermore, it is shown that the infinite matrix
power series expressing the solution writes in terms of modified
Bessel functions of the first kind and Marcum Q-functions, as
is the case for the previously solved 2× 2 constant coefficient
case. A numerical example showing adaptive observer gains for
leak detection computed via the explicit solutions for multiple
operating points of a branched pipe flow is given to illustrate
the results.

I. INTRODUCTION

A. Background

Techniques for automatically finding leaks range from
camera-based inspection using local [1] or satellite im-
agery [2], methods relying on hardware such as fibre-optic
cables [3] or ultrasonic flow monitors [4] being installed
along the pipelines, to software-based methods that find leaks
by processing signals from a limited number of sensors
placed at strategic points in the pipeline system [5]. One
promising approach in the latter class of methods is model-
based leak detection, where mathematical models of physical
variables of interest, such as pressure, flow or temperature
are used as starting points for algorithm development. In [6],
where a model-based leak detection methodology is pro-
posed, it is argued that using transient (rather than static)
models of the pipe flows allows the detection of significantly
smaller leaks. A range of model-based contributions consid-
ering leak detection using state observer tools, such as [7],
have followed.

As the field of control theory was at the time not ripe
enough for the design of state observers based directly on
distributed parameter models of the pipe flow, most initial
contributions relied on discretizing the models in space to
obtain finite-dimensional approximations on which algorithm
design could be performed with available tools. This re-
mained the case (apart from some heuristic contributions
such as [8]) until [9], where the first distributed parameter
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state observer-based leak detection method with rigorous
convergence guarantees was developed, relying on the de-
velopment of the infinite-dimensional backstepping method
for hyperbolic PDEs that appeared in [10].

To implement state observers designed via the backstep-
ping approach, one is required to solve a particular set of
PDEs, referred to as the kernel equations. In general these
do not have any (known) closed-form solution, and must
hence be approximated numerically. However, during the
development of the backstepping method it was identified,
initially for parabolic PDEs, that in certain (often simple)
cases the kernel solutions could be expressed in closed
form [11]. In [12] the kernel equations for 2 × 2 linear
hyperbolic PDEs with constant coefficients were solved in
closed form, which is exploited in [9] for application to leak
detection. In [13] explicit solutions are given for a 4 × 4
system of kernel equations.

The methodology proposed for a single pipeline in [9],
has later been extended to branched pipe flows in [14] and
pipes connected in a ring structure in [15]. The associated
kernel equations for these two respective designs are more
complex, and due to the non-triviality of solving them and
explicit solutions not being readily available in the literature,
they have previously only been approximated numerically.

We extend here the results from [12] by offering ex-
act analytical solutions to the kernel equations considered
in [14]. The practical benefit to having explicit solutions
of the kernel equations is most obvious in applications
where the underlying system parameters are time-varying.
For example, in practical water distribution systems the mean
flow (and consequently also the friction factor) is varying as
a function of time, based on the time of day and season of the
year [16]. In [17] the observer from [9] is implemented for a
nonlinear pipe flow model with varying levels of mean flow
by calculating the observer gains as a function of the resultant
friction factor through evaluating the explicit kernel solutions
directly. Thus, having closed-form solutions facilitates the
implementation of such an observer by removing the need
to numerically approximate the full kernel solutions every
time the operating point changes via a numerical algorithm,
something which can be computationally burdensome.

Additionally, as the friction factor is typically an uncertain
parameter, having explicit solutions opens up the possibility
for adaptive approaches such as updating an estimate of the
friction factor in closed loop together with the backstepping
gains. Other practical benefits to having the explicit solutions
at hand is the increased numerical accuracy at a cheap
computational price, especially for systems with a large



number of pipes in the branching point. Additionally it
removes the need to implement software to approximate the
kernels, which can be a time-consuming task. Furthermore,
the explicit solutions we obtain can be useful as a benchmark
to aid in the development of numerical methods for kernel
equations similar to the ones considered here, but where
explicit solutions are impossible to find.

B. Problem statement

We consider here the same setup as considered in [14],
namely N+1 pipelines of lengths li and cross-sectional areas
Ai, for i∈ {0,1,2 . . . ,N} interconnected at a single branching
point. The pressure pi and flow qi in pipe i are assumed, for
zi ∈ (0, li) and t > 0, to be governed by (with the index on z
dropped for brevity)

∂t pi(z, t)+
β

Ai
∂zqi(z, t) =− β

Ai
di(z)χi (1a)

∂tqi(z, t)+
Ai

ρ
∂z pi(z, t) =−Fi

ρ
qi(z, t)−Aigsinφi(z)

− ηi

Ai
di(z)χi (1b)

where β is the flow bulk modulus, ρ is the density, g is the
gravitational constant, Fi is the friction factor of pipe i and
φi is the inclination angle as a function of z. The leaks are
characterized by the gross volumetric flow χi of all leaks out
of pipe i, together with their (normalized) spatial distribution
di and factor ηi ∝ qi,0 (see [14], [18]), qi,0 being the mean
flow in pipe i.

The boundary conditions are given by
p0(l0, t) = p0,l0(t), qi(li, t) = qi,li(t) (2a)

q0(0, t) =−
n

∑
j=1

q j(0, t), pi(0, t) = p0(0, t) (2b)

expressing the reservoir pressure p0,l0 to be imposed at z =
l0 for pipe 0, consumer demands qi,li be imposed at z = li
for pipes i > 0, in addition to uniqueness of pressure and
continuity of flow in the branching point at z = 0.

It is shown in [14] that, under the assumption of pressure
and flow measured at the pipe inlet and outlet boundaries
only, the branched pipe flow system (1)–(2) can via an
invertible change of coordinates be mapped into an equiv-
alent system in Riemann coordinates. This system, defined
in terms of distributed state vectors u,v, evolves over space
and time (x, t) ∈ [0,1]× [0,∞) according to

ut(x, t)+Λux(x, t) =C1(x)v(x, t) (3a)
vt(x, t)−Λvx(x, t) =C2(x)u(x, t) (3b)

u(0, t) = Qv(0, t)+κ (3c)
v(1, t) = Ru(1, t)+Bql(t) (3d)

y(t) = u(1, t) (3e)

where an unknown vector parameter κ of dimension N + 1
characterises possible leaks. The state vectors u, v are each
of dimension N +1 so that

u =
[
u0 u1 . . . uN

]⊤
, v =

[
v0 v1 . . . vN

]⊤
.

The signals ql(t) = [q0(l0, t), . . . ,qn(ln, t)]⊤ and y(t) are mea-
sured, with y(t) physically corresponding to a linear combi-

nation of the measured pressure and flow at z = l (see [14]
for the exact definition). The remaining system coefficients
are assumed known, and defined as

Λ := diag{λ0,λ1, . . . ,λN}, (4a)
C j(x) := diag{c0, j(x),c1, j(x), . . . ,cN, j(x)} (4b)

Q := IN+1 −
2

AT
a11×(N+1) (4c)

R :=−exp(−2 ·diag{γ0,γ1, . . . ,γN}) (4d)
B := exp(−diag{γ0,γ1, . . . ,γN}) (4e)

in terms of physical parameters as

λi =
1
li

√
β

ρ
, γi =

liFi

2
√

βρ
(5a)

ci,1(x) =−λiγie2γix, ci,2(x) =−λiγie−2γix (5b)

a =
[
A0 A1 . . . AN

]
, AT =

N

∑
i=0

Ai. (5c)

It is assumed, without loss of generality, that the transport
speeds are ordered as

λ0 ≤ λ1 ≤ ·· · ≤ λN .
Remark 1.1: Although we develop the explicit solutions

for the particular branched pipeline system (1)–(2) written
in Riemann coordinates (3)–(5), the developed methodology
can, with minor modifications, be applied to a wide range
of applications modelling wave propagation in a network
topology, including (but not limited to) electrical transmis-
sion lines [19] and traffic flow [20]. In particular, it is only
necessary that the coupling matrices C1, C2 are diagonal and
defined so that each coupled pair of PDEs can be mapped to
a form with constant coupling coefficients, and all upper-
left submatrices of Q must be diagonalizable. However,
the transport speeds Λ for u and v may be different (but
constant), and R, B as well as signals κ , ql are irrelevant for
the kernel solutions.

An adaptive observer is designed in [14] to produce
estimates û, v̂ and κ̂ of the unknown states u,v and parameter
κ , using the signals ql , y. The observer reads

ût(x, t)+Λûx(x, t) =C1(x)v̂(x, t)+P1(x)(y(t)− û(1, t))
(6a)

v̂t(x, t)−Λv̂x(x, t) =C2(x)û(x, t)+P2(x)(y(t)− û(1, t))
(6b)

û(0, t) = Qv̂(0, t)+ κ̂(t) (6c)
v̂(1, t) = Ry(t)+Bql(t) (6d)

˙̂κ(t) = L(y(t)− û(1, t)) (6e)

with P1, P2 distributed observer matrix gains and L an
adaptive matrix gain. To define these gains, introduce the
kernel equations (originally introduced in [21])

ΛMα
x (x,ξ )+Mα

ξ
(x,ξ )Λ =C1(x)Mβ (x,ξ ) (7a)

−ΛMβ
x (x,ξ )+Mβ

ξ
(x,ξ )Λ =C2(x)Mα(x,ξ ) (7b)

ΛMα(x,x)−Mα(x,x)Λ = 0 (7c)

ΛMβ (x,x)+Mβ (x,x)Λ =C2(x) (7d)

Mα(0,ξ )−QMβ (0,ξ ) = Π(ξ ) (7e)
mα

i j(x,1) = 0, 0 ≤ j < i ≤ N (7f)
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Fig. 1: Direction of characteristics and corresponding bound-
ary conditions, depending on relative values of i and j (red
for j < i, blue for j = i and green for j > i). The character-
istics of mα

i j are shown to the left and the ones for mβ

i j are
to the right.

defining (N +1)× (N +1) matrix-valued functions
Mα(x,ξ ) = {mα

i j(x,ξ )}0≤i, j≤N

Mβ (x,ξ ) = {mβ

i j(x,ξ )}0≤i, j≤N
over the upper-triangular domain T = {(x,ξ )|0 ≤ x ≤ ξ ≤
1}. The boundary condition (7f) is artificial and added
to reduce discontinuities and ensure well-posedness of the
solutions (see [21]). The matrix Π = {ϖi j}1≤i, j≤N is strictly
lower triangular with elements

ϖi j(ξ ) =

{
0, if 0 ≤ i ≤ j ≤ N

mα
i j(0,ξ )−∑

N
k=0 Qikmβ

k j(0,ξ ) if 0 ≤ j < i ≤ N,

where Qik denotes the element in the ith row and kth column
of Q = {Qik}0≤i,k≤N . It is shown in [14] that convergence
of the estimates û, v̂, κ̂ in (6) to their respective true values
u,v,κ in (3) is guaranteed by choosing P1, P2 as

P1(x) = Mα(x,1)Λ−
∫ 1

x
Mα(x,ξ )dξ Fα L−Fα L (8a)

P2(x) = Mβ (x,1)Λ−
∫ 1

x
Mβ (x,ξ )dξ Fα L (8b)

and L so that LFα is Hurwitz, where

Fα =

(
IN+1 +

∫ 1

0
Π(ξ )dξ

)−1

with IN+1 denoting the (N +1)× (N +1) identity matrix.
Following similar steps to [12] and, as done in [9], ex-

ploiting structural properties of (7) specific to the application
considered, we solve in the following for the kernels Mα ,Mβ

explicitly in closed form. To the best of the authors’ knowl-
edge, this is the first closed-form solution to backstepping
kernels for an n+m system of linear hyperbolic PDEs.1

II. SIMPLIFICATION OF KERNEL EQUATIONS

Writing (7a)–(7b) out componentwise, we obtain (N+1)2

pairs of PDEs independently coupled in-domain over the
interior of T , taking the form

λi∂xmα
i j(x,ξ )+λ j∂ξ mα

i j(x,ξ ) = ci1(x)m
β

i j(x,ξ ) (9a)

−λi∂xmβ

i j(x,ξ )+λ j∂ξ mβ

i j(x,ξ ) = ci2(x)mα
i j(x,ξ ) (9b)

with i, j ∈ {0,1, . . . ,N}. The various pairs mα
i j,m

β

i j may, how-
ever, have couplings between each other via the boundary
conditions (7c)–(7e). Writing the boundary conditions out
explicitly and considering the directions of the characteris-
tics (see Figure 1), we can identify three different cases.

1Here n = m = N +1.

x

ξ

T̄i j Ti j

x = λi
λ j

Fig. 2: Triangular domain T = T̄i j ∪Ti j.

1) j < i:
mα

i j(x,x) = 0, mα
i j(x,1) = 0, mβ

i j(x,x) = 0. (10)
2) j = i:

mα
ii (0,ξ ) =

N

∑
k=0

Qikmβ

ki(0,ξ ), mβ

ii (x,x) =
ci2(x)
2λi

. (11)

3) j > i:

mα
i j(x,x) = 0, mα

i j(0,ξ ) =
N

∑
k=0

Qikmβ

k j(0,ξ ), (12a)

mβ

i j(x,x) = 0. (12b)

Firstly, from (10) it is immediately seen that for j < i
we can conclude mα

i j ≡ mβ

i j ≡ 0 across T . The remaining
equations (9), (11) for j = i and (9), (12) for j > i can thus
be identified as N+1 independent sets of respectively 2( j+
1) kernel equations each, for j ∈ {0,1, . . . ,N}. Considering
also the boundary conditions (12) and the direction of the
corresponding characteristics, we see that for j > i we have

mα
i j(x,ξ ) = mβ

i j(x,ξ ) = 0, for (x,ξ ) ∈ Ti j (13)
where the domain Ti j ⊆ T is defined as the union Ti j =

T l
i j ∪T r

i j of sub-domain T l
i j = {(x,ξ )|x ≤ ξ ≤ λ j

λi
x,0 ≤ x ≤

λi
λ j
} located to the left of x = λi

λ j
and T r

i j = {(x,ξ )|x ≤ ξ ≤

1, λ j
λi

≤ x ≤ 1} to the right (see Figure 2).
Since the kernels are only coupled in-domain in pairs and

otherwise via the boundaries along the ξ -axis at x = 0, we
define the scaled kernels

m̄α
i j(x,ξ ) = mα

i j

(
λi

λ j
x,ξ

)
, m̄β

i j(x,ξ ) =−mβ

i j

(
λi

λ j
x,ξ

)
,

(14)
valid for2 T̄i j = {(x,ξ )|0 ≤ λ j

λi
x ≤ ξ ≤ 1}.

Fixing an index j ∈ {0,1, . . . ,N}, dividing both sides by
±λ j, using the definition of cik from (5b) and defining the
( j+1)-dimensional vector states M̄α

j = [m̄α
0 j m̄α

1 j . . . m̄α
j j]

⊤,

M̄β

j = [m̄β

0 j m̄α
1 j . . . m̄β

j j]
⊤, we have the j + 1-dimensional

vector Goursat problem
∂xM̄α

j (x,ξ )+∂ξ M̄α
j (x,ξ ) = Γ

1
j(x)M̄

β

j (x,ξ ) (15a)

−∂xM̄β

j (x,ξ )+∂ξ M̄β

j (x,ξ ) = Γ
2
j(x)M̄

α
j (x,ξ ) (15b)

M̄α
j (0,ξ ) = Q̄ jM̄

β

j (0,ξ ) (15c)

M̄β

j (x,x) =
γ j

2
e−2γ jxe j+1 (15d)

2Note that T̄ j j = T .



where
Γ

1
j(x) = diag

{
λ0

λ j
γ0e2γ0x,

λ1

λ j
γ1e2γ1x, . . . ,γ je2γ jx

}
(16a)

Γ
2
j(x) = diag

{
λ0

λ j
γ0e−2γ0x,

λ1

λ j
γ1e−2γ1x, . . . ,γ je−2γ jx

}
,

(16b)
the matrix

Q̄ j := {−Qik}0≤i,k≤ j (17)
is the ( j + 1)× ( j + 1) upper-left sub-matrix of −Q, and
e j+1 = [0 0 . . . 0 1]⊤.

We consider next in Section III-A the problem of finding
the explicit solution to the Goursat problem (15) for any
j ∈ {0,1, . . . ,N}, before recovering the solutions to (7) in
Section III-B.

III. SOLVING THE KERNELS

A. Simplified kernels

To solve (15), similar to [12] we make the ansatz that the
solutions can be expressed as infinite sums taking the form

M̄α
j (x,ξ ) =

∞

∑
n=0

Q̄n
jAn(x,ξ ), M̄β

j (x,ξ ) =
∞

∑
n=0

Q̄n
jBn(x,ξ )

(18)
where An, Bn are to be found. Substituting this assumed form
into (15), it is straightforward to see that An, Bn satisfy the
set of equations
(∂x +∂ξ )An = Γ

1
j(x)Bn(x,ξ ), (−∂x +∂ξ )Bn = Γ

2
j(x)An(x,ξ )

(19a)
A0(0,ξ ) = 0, An(0,ξ ) = Bn−1(0,ξ )

(19b)

B0(x,x) =
γ j

2
e−2γ jxe j+1, Bn(x,x) = 0. (19c)

Since Γ1
j , Γ2

j are diagonal matrices and the boundary
conditions are defined element-wise, the set of equations (19)
represent j + 1 independent pairs of scalar equations. The
equations for the first j components have 0 at both bound-
aries at n = 0, and recursively solving these for n > 0 we see
the solutions take the form

An(x,ξ ) = ān(x,ξ )e j+1, Bn(x,ξ ) = b̄n(x,ξ )e j+1 (20)
with ān, b̄n scalar functions. Let now

ân(x,ξ ) = eγ j(ξ−x)ān(x,ξ ), b̂n(x,ξ ) = eγ j(ξ+x)b̄n(x,ξ )
(21)

and scaling the domain x̂ = γ jx, ξ̂ = γ jξ and an = 2
γ j

ân,

bn = 2
γ j

b̂n, we have the scalar Goursat problem (for ease

of readability the ˆ in x̂, ξ̂ is omitted)
(∂x +∂ξ )an = bn(x,ξ ), (−∂x +∂ξ )bn = an(x,ξ ) (22a)

a0(0,ξ ) = 0, an(0,ξ ) = bn−1(0,ξ ) (22b)
b0(x,x) = 1, bn(x,x) = 0 (22c)

over the scaled upper-triangular domain Tγ j = {(x,ξ ) | 0 ≤
x ≤ ξ ≤ γ j}. The solutions (an,bn) to (22) can be written
explicitly as power series in a straightforward manner.

Lemma 3.1: The solutions (an,bn) to (22) are for (x,ξ )∈
Tγ j given by

an(x,ξ ) = (∂x +∂ξ )
n
φ(x,ξ ) (23a)

bn(x,ξ ) = (∂x +∂ξ )
n+1

φ(x,ξ ) (23b)

with

φ(x,ξ ) = 2x
I1(

√
(−x+ξ )(x+ξ ))√

(−x+ξ )(x+ξ )
, (24)

and In denotes the modified Bessel function of the first kind
of order n.

Proof: Mirroring (22) across the line x= ξ by swapping
ξ → x, x → ξ and defining an(x,ξ ) = an(ξ ,x), bn(x,ξ ) =
bn(ξ ,x), we have that they are defined over the lower-
triangular domain T l

γ j
= {(x,ξ ) | 0 ≤ ξ ≤ x ≤ γ j}. Applying

Lemmas 3.2 and A.1 from [12], the solution to an, bn is
directly written as
an(x,ξ ) = (∂x +∂ξ )

n
φ̄(x,ξ ), bn(x,ξ ) = (∂x +∂ξ )

n+1
φ̄(x,ξ )

in terms of φ̄ given by

φ̄(x,ξ ) = 2ξ
I1(

√
(x+ξ )(x−ξ ))√

(x+ξ )(x−ξ )
.

Mirroring back into the upper-triangular domain Tγ j , we
obtain (23)–(24).

Using Lemma A.2 from [12], φ in (24) is expanded as

φ(x,ξ ) =
∞

∑
k=0

(−x+ξ

2 )k

(k+1)!
( x+ξ

2 )k+1

k!
−

∞

∑
k=0

(−x+ξ

2 )k+1

(k+1)!
( x+ξ

2 )k

k!
,

(25)
and from Lemma 3.3 in [12] we have the nth order derivative

(∂x +∂ξ )
n
φ(x,ξ ) =

∞

∑
k=0

(
−x+ξ

2

)k+n−1

(k+n−1)!

(
x+ξ

2

)k

k!

×

1−

(
−x+ξ

2

)2

(k+n)(k+n+1)

 . (26)

We introduce now two ( j + 1)× ( j + 1) matrix-valued
functions Ωα

j , Ω
β

j . Let

Ω
α
j (x,ξ ) :=

γ j

2
eγ j(x−ξ )

{
I j+1

√
x+ξ

−x+ξ
I1(γ j

√
ξ 2 − x2)

+ Q̄−1
j I0(γ j

√
ξ 2 − x2)+(Q̄ j − Q̄−1

j )PjS j(x,ξ )P−1
j

}
(27a)

Ω
β

j (x,ξ ) :=
γ j

2
e−γ j(ξ+x)

{
Q̄−1

j

√
−x+ξ

x+ξ
I1(γ j

√
ξ 2 − x2)

+ Q̄−2
j I0(γ j

√
ξ 2 − x2)+(I j+1 − Q̄−2

j )PjS j(x,ξ )P−1
j

}
.

(27b)
with

Pj :=


−1 −1 . . . −1 a0/a j
1 0 . . . 0 a1/a j
0 1 . . . 0 a2/a j

.

.

.

.

.

.
. . .

.

.

.

.

.

.
0 0 . . . 0 a j−1/a j
0 0 . . . 1 a j/a j

 (28)

and
S j(x,ξ ) := diag{σ(x,ξ ) σ(x,ξ ) . . . σ(x,ξ ) σ j(x,ξ )}. (29)

The terms σ , σ j are defined as

σ(x,ξ ) := e−γ jξ Q1

(√
γ j(−x+ξ ),

√
γ j(x+ξ )

)
(30)

σ j(x,ξ ) := e
γ j
2 (( 1

d j
−d j)x+( 1

d j
+d j)ξ )



×Q1

(√
|d j|γ j(−x+ξ ),

√
γ j

|d j|
(x+ξ )

)
, (31)

where Q1 denotes the generalized Marcum Q-function of
first order and d j :=−1+ 2

AT
∑

j
i=0 ai.

We will need the following technical Lemma, which is
stated without proof due to lack of space.

Lemma 3.2: The matrix power series

∞

∑
n=0

Q̄n
j

∞

∑
k=0

(
γ j
2 (−x+ξ )

)k+n

(k+n)!

(
γ j
2 (x+ξ )

)k

k!
= PjS j(x,ξ )P−1

j .

(32)
We then have the following result.

Lemma 3.3: The solutions M̄α
j , M̄β

j to (15) are given by
M̄α

j (x,ξ ) = Ω
α
j (x,ξ )e j+1 (33a)

M̄β

j (x,ξ ) = Ω
β

j (x,ξ )e j+1. (33b)

Proof: Applying Lemma 3.1, we can write
ān(x,ξ ) =

γ j

2
eγ j(x−ξ )(∂γ jx +∂γ jξ )

n
φ(γ jx,γ jξ ).

Substituting together with (20) into the assumed expres-
sion (18) for M̄α

j and using (25)–(26), we have
M̄α

j (x,ξ )

=
γ j

2
eγ j(x−ξ )

{
Q̄0

j

∞

∑
k=0

(
γ j
2 (−x+ξ )

)k

(k+1)!

(
γ j
2 (x+ξ )

)k+1

k!

+(Q̄ j − Q̄−1
j )

∞

∑
n=0

Q̄n
j

∞

∑
k=0

(
γ j
2 (−x+ξ )

)k+n

(k+n)!

(
γ j
2 (x+ξ )

)k

k!

+ Q̄−1
j

∞

∑
k=0

(
γ j
2 (−x+ξ )

)k

k!

(
γ j
2 (x+ξ )

)k

k!

}
e j+1.

Applying then Lemma 3.2 together with the identity ([22])
∞

∑
k=0

αk+n

(k+n)!
β k

k!
=

√
αn

β n In(2
√

αβ ) (34)

we obtain (33a). Performing similar steps for M̄β

j
yields (33b).

B. Main result

Lemma 3.3 is used together with the simplifications done
in Section II to express the solutions of (7) in closed form.
This is the main result of the paper.

Theorem 3.4: Denote by ωα
j = [ωα

0, j ωα
1, j . . . ωα

j, j]
⊤, ω

β

j =

[ω
β

0, j ω
β

1, j . . . ω
β

j, j]
⊤ the rightmost (number j + 1) column

vector of respectively Ωα
j , Ω

β

j in (27). The matrix-valued
solutions Mα , Mβ to (7) are upper triangular matrices given
by

Mα(x,ξ ) =

mα
0,0(x,ξ ) mα

0,1(x,ξ ) . . . mα
0,N (x,ξ )

0 mα
1,1(x,ξ ) . . . mα

1,N (x,ξ )

.

.

.
. . .

. . .
.
.
.

0 0 . . . mα
N,N (x,ξ )

 (35a)

Mβ (x,ξ ) =


mβ

0,0(x,ξ ) mβ

0,1(x,ξ ) . . . mβ

0,N (x,ξ )

0 mβ

1,1(x,ξ ) . . . mβ

1,N (x,ξ )

.

.

.
. . .

. . .
.
.
.

0 0 . . . mβ

N,N (x,ξ )

 (35b)

where for i ∈ {0,1, . . . , j}, j ∈ {0,1, . . . ,N} we have

mα
i, j(x,ξ ) =

{
ωα

i, j(
λ j
λi

x,ξ ), if (x,ξ ) ∈ T̄i j

0, if (x,ξ ) ∈ Ti j
(36a)

mβ

i, j(x,ξ ) =

{
−ω

β

i, j(
λ j
λi

x,ξ ), if (x,ξ ) ∈ T̄i j

0. if (x,ξ ) ∈ Ti j
(36b)

Proof: Write Mα = [Mα
0 Mα

1 . . . Mα
N ], Mβ =

[Mβ

0 Mβ

1 . . . Mβ

N ], where Mα
j , Mβ

j denotes for j ∈
{0,1, . . . ,N} the ( j + 1)th column vector of respectively
Mα , Mβ . Due to the boundary conditions (10) valid for
i ∈ { j+1, j+2, . . . ,N}, we have that Mα

j , Mβ

j take the form

Mα
j (x,ξ ) =

[
µα

j (x,ξ )
0(N− j)×1

]
, Mβ

j (x,ξ ) =

[
µ

β

j (x,ξ )
0(N− j)×1

]
(37)

where µα
j = [mα

0 j mα
1 j . . . mα

j j]
⊤, µ

β

j = [mβ

0 j mβ

1 j . . . mβ

j j]
⊤

are column vectors of length j+1, and 0(N− j)×1 denotes the
column vector of length N − j containing only zeros. This
shows that Mα , Mβ are upper triangular matrices as given
in (35).

Next, using (13)–(14) we have that

mα
i j(x,ξ ) =

{
m̄α

i j(
λ j
λi

x,ξ ), if (x,ξ ) ∈ T̄i j

0, if (x,ξ ) ∈ Ti j
(38a)

mβ

i j(x,ξ ) =

{
−m̄β

i j(
λ j
λi

x,ξ ), if (x,ξ ) ∈ T̄i j

0, if (x,ξ ) ∈ Ti j.
(38b)

From (33) in Lemma 3.3 it is straightforward to see that
M̄α

j (x,ξ ) = ω
α
j (x,ξ ), M̄β

j (x,ξ ) = ω
β

j (x,ξ )
and substituting this element-wise into (38) we obtain (36).

IV. NUMERICAL EXAMPLE

We demonstrate the results here on a numerical example.
We use the closed-form kernel solutions from Theorem 3.4 to
obtain the observer gains (8) for multiple different operating
points of a branched pipe flow, using the same system
parameters as used in Section 6 of [14]. This is to emphasize
the use of the explicit kernel solutions in a gain-scheduling
setting, where the kernels need to be recomputed as the
underlying parameters change. Here N = 2, implying the
observer gains are matrix-valued functions with (N+1)2 = 9
components each, for a total of 18 individual functions for
a given operating point.

In [14] the mean demand CW was fixed at CW = 6.25 L/hr
for the 50000 and 70000 consumers at the outlets of pipeline
1 and 2 respectively. As this in reality varies slowly through-
out the day and year we wish here to see how the observer
gains vary based on changing demand levels. The gains
are calculated for 6 different operating points around this,
namely CW ∈ {1.67,3.33,5.00,6.67,8.33,10.0} [L/hr]. The
resultant plots are shown in Figure 3, with Figure 3a showing
the plots for P1 and Figure 3b displaying P2.

In most cases the observer gains increase in magnitude as
the mean demand CW increases. There are a few exceptions
for P1 in Figure 3a, with the magnitude instead moving to-
wards 0 as CW increases, this being due to the constant offset
term −Fα L in (8a). Additionally, the gains corresponding to
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Fig. 3: Observer gain matrix components, plotted as functions of x ∈ (0,1) for values of mean water consumption CW
between 1.67 L/hr and 10.0 L/hr. Plots are organised as the individual components would appear in the respective matrix.

the three terms in the strictly upper triangular part of P1
have discontinuities at x = λi

λ j
for 0 ≤ i < j ≤ 2 , this being

a consequence of the kernel solution discontinuity drawn
schematically in Figure 2.

V. CONCLUSION

We have found the closed-form solution of observer
backstepping kernel equations associated with a particular
structure of n+m linear hyperbolic PDEs for use in leak
detection in branched pipe flows. This extends both the
work of [14], where the leak detection method is derived,
but also [12], which found the closed-form solutions of
backstepping kernels for 2×2 linear hyperbolic PDEs with
constant coefficients. Knowing these explicit kernel solutions
is shown to facilitate the computation of numerically accurate
observer gains with minimal computational effort, allowing
the leak detection method from [14] to be implemented
effectively in more realistic settings where the operating
point is varying.

This being the first closed-form kernel solution for an
n+m linear hyperbolic PDE system with a specific structure,
future work should investigate whether explicit solutions can
be found for more general forms of such kernel equations. To
complement the results in this paper, it should be investigated
whether the kernel solutions for the case of leak detection
in pipes connected in a loop, as considered in [15], can also
be expressed analytically. Also, the results from this paper
should be generalized to networks with multiple branching
points, as opposed to a single branching point that is con-
sidered here.
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