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Abstract—Communication errors caused by noisy links can
negatively impact the accuracy of federated learning (FL) algo-
rithms. To address this issue, we introduce an FL algorithm that
is robust to communication errors while concurrently reducing
the communication load on clients. To formulate the proposed al-
gorithm, we consider a weighted least-squares regression problem
as a motivating example. We recast this problem as a distributed
optimization problem over a federated network, which employs
random scheduling to enhance communication efficiency, and solve
the reformulated problem via the alternating direction method
of multipliers. Unlike conventional FL approaches employing
random scheduling, the proposed algorithm grants the clients
the ability to continually update their local model estimates even
when they are not selected by the server to participate in FL.
This allows for more frequent and ongoing client involvement,
resulting in performance improvement and enhanced robustness
to communication errors compared to when the local updates are
only performed when the respective clients are selected by the
server. We demonstrate the effectiveness and performance gains
of the proposed algorithm through simulations.

I. INTRODUCTION

Federated learning (FL) [1]–[6] is a distributed machine-
learning approach that enables the training of models across
multiple decentralized devices without transferring the data to
any global server. FL allows devices to share their knowledge
in terms of model estimates or gradients without revealing their
raw data, thereby improving data privacy and security [7]. FL
holds significant potential in a range of critical applications,
including healthcare [8], finance [9], and industrial IoT [10],
[11]. These data-sensitive domains demand utmost priority
on data privacy, making FL an ideal approach to safeguard
sensitive information while enabling effective machine learning.

The literature on FL encompasses a diverse array of methods
that have been extensively investigated to address a multitude
of aspects and challenges such as preserving privacy [9], [12]–
[14], handling Byzantine attacks [15], [16], and improving com-
munication efficiency [7], [17]. However, a significant number
of these works operate under the assumption of ideal com-
munication links, neglecting the presence of communication
errors or noise [18]–[22]. In practical real-world applications,
however, the communication links connecting clients and the
server are susceptible to noise corruption, posing a potential
threat to the performance of the model [23]. To tackle this
challenge, several studies have introduced different techniques
aimed at enhancing the accuracy of FL models when confronted
with communication noise. Some works focus on the uplink

noise and neglect the downlink noise [24], [25] while some
other also consider the effects of the downlink noise [26].

Distributed algorithms that are based on the alternating
direction method of multipliers (ADMM) can exhibit a certain
degree of robustness to additive communication noise [27]. This
is due to the inherent characteristics of ADMM that allow it
to alleviate the impact of noise present in the communication
channel. However, it requires complete collaboration among
all clients, which stands in contrast to the objectives of FL,
particularly those associated with system heterogeneity, such
as varying computation and storage capacities across different
clients. Hence, there exists a need for noise-robust ADMM-
based algorithms that achieve convergence even when only a
subset of clients participate in each iteration.

In this paper, we introduce a new FL algorithm that exhibits
both communication efficiency and robustness to communica-
tion noise/errors. Additionally, our algorithm facilitates contin-
ual local updates at the clients, even when they are not selected
by the server. This results in improved accuracy with no extra
communication. We derive the proposed algorithm by using
ADMM to solve a weighted least-squares (WLS) regression
problem. We consider the communication links in both uplink
and downlink to be noisy. To achieve noise robustness, we elim-
inate the dual variable update step at each client and transmit
a linear combination of the last two global model updates. Our
extensive simulation results corroborate the effectiveness of the
proposed algorithm.

II. BACKGROUND

Let us consider a federated network with K clients and a
server. Each client k has an exclusive dataset denoted by Dk =
{Hk,yk} where yk ∈ dk is a column vector and Hk is a matrix
of size dk×L. Each client independently trains a local model on
its respective dataset using an FL algorithm. The process entails
exchanging model updates with the global server, allowing for
collaborative model training while preserving data privacy. For
client k, a linear regression model relating Hk to yk can be
described as

yk = Hkx
∗ + νk, (1)

where x∗ ∈ RL is the global regression parameter vector and
νk represents noise or perturbation.



The goal of FL is to find an estimate of x∗ that is the optimal
solution to

min
{xk}

K∑
k=1

Jk(xk) s.t. xk = x, k = 1, 2, · · · ,K, (2)

where Jk(x) = ∥yk −Hkx∥2Wk
is the local objective function

at client k and Wk is the appropriate weight matrix of client
k. In addition, xk represents the local model estimate at client
k, and x denotes the global model estimate.

We use an ADMM-based approach to solve (2). In this
approach, primal and dual updates are computed by each client
and transmitted to the global server via a noisy communication
channel. Each client implements local iterations to update its
local model and shares its updated local model estimate with
the global server. The global server aggregates the received
model estimates from the clients and updates the global model
estimate. The server then sends the updated global model esti-
mate to the clients over a noisy channel. The clients utilize the
received global model estimate in updating their local estimates
and the process continues until a convergence criterion is met.

To solve (2) using ADMM, we express the related augmented
Lagrangian function as

K∑
k=1

Lk(x,xk,πk) =

K∑
k=1

Jk(xk)+⟨xk−x,πk⟩+
ρk
2
∥xk−x∥22,

(3)
where πk ∈ RL and ρk > 0 are, respectively, the Lagrange
multiplier vector and the penalty parameter associated with
client k. Hence, the corresponding ADMM iterations at each
client k are given as

πk,n = πk,n−1 + ρk(xk,n − xn) (4a)

xk,n+1 = x̂k −N−1
k (πk,n − ρkxn) (4b)

and at the global server as

xn+1 =
1

K∑
k=1

ρk

K∑
k=1

(ρkxk,n+1 + πk,n) (5)

where we define Nk = 2H⊺
kWkHk + ρkI and x̂k =

2N−1
k H⊺

kWkyk, and the index n denotes the iteration number.
In the above iterations, each client shares the local estimate

ρkxk,n+1+πk,n with the global server after computing (4a) and
(4b). The global server then aggregates the received estimates
to obtain the global estimate as in (5).

As it is evident from the recursions (4) and (5), both
primal and dual model updates are sent to the server for it to
estimate the global model update. However, by making a careful
selection of the initial values, the information of the dual update
can be incorporated into the primal update. Therefore, using
the initial values x−1 = 0, πk,−1 = 0, and xk,0 = x̂k, we can

eliminate the Lagrange multiplier vectors πk,n and restate the
recursions (4)-(5) as

xk,n+1 = (I− ρkN
−1
k )xk,n + ρkN

−1
k (2xn − xn−1) (6a)

xn+1 =
1

K∑
k=1

ρk

K∑
k=1

ρkxk,n+1. (6b)

By defining sk,n = 2xk,n − xk,n−1 and sn = 2xn − xn−1,
we can further rewrite (6) as

xk,n+1 = (I− ρkN
−1
k )xk,n + ρkN

−1
k sn (7a)

sk,n+1 = 2xk,n+1 − xk,n (7b)

sn+1 =
1

K∑
k=1

ρk

K∑
k=1

ρksk,n+1. (7c)

In this algorithm, the clients share sk,n+1 with the server, and
the server broadcasts sn+1 to the clients. When the exchange of
model parameters occurs over noisy communication channels,
the iterations (7) are more robust to communication noise
compared to (6) as they utilize a single noisy global estimate
received from the server to update the local estimate, i.e., sn,
rather than two in (6), i.e., xn and xn−1.

In the downlink, noisy versions of the aggregated global
model updates are received by the clients as s̃kn = sn + ζk

n

where ζk
n denotes the downlink noise of client k at iteration n.

In the uplink, a noisy version of the local model update of each
client is received by the server as s̃k,n = sk,n + ηk,n where
ηk,n denotes the uplink noise of client k at iteration n.

In recursions (7), all clients are required to take part in each
global model update. However, FL clients often have limited
and diverse communication capabilities. Hence, participation of
all clients in each global update round can be costly. Therefore,
FL servers usually employ random scheduling of their clients
by selecting only a subset of the clients, denoted by Sn,
to participate in model aggregation during each iteration n.
The scheduling reduces the communications required at each
iteration, leading to improved efficiency and better resource
management. Utilizing random scheduling and considering
noisy communications, we can rewrite the recursions (7) as
mentioned in [28] as

xk,n+1 =

{(
I− ρkN

−1
k

)
xk,n + ρkN

−1
k s̃kn, k ∈ Sn

xk,n, otherwise
(8a)

sk,n+1 = 2xk,n+1 − xk,n, k ∈ Sn (8b)

sn+1 =
1∑

k∈Sn

ρk

∑
k∈Sn

ρks̃k,n+1. (8c)

III. PROPOSED ALGORITHM

It is important to enhance the energy efficiency of FL by
reducing its communication load, particularly considering that
clients often have constraints on their energy resources in real-
world scenarios. Lowering the communication burden on the
clients can also improve the scalability and cost-effectiveness of



FL algorithms. The efficiency of communication during model
training is related to the amount of data exchanged between
the clients and the server. Thus, minimizing the exchanges of
models, parameters, gradients, or other relevant information
while upholding high accuracy levels presents a significant
challenge in FL.

Random scheduling of clients is a practical method to
enhance communication efficiency within FL, using which
the overall communication load can be effectively reduced
and resource utilization can be optimized more efficiently. It
helps alleviate the potential bottlenecks that can arise from
simultaneous communication by all clients. As a result, it
improves the efficiency of data transmissions and plays a role
in enhancing the overall performance of FL. However, in the
conventional random scheduling approach as in (8), the clients
that are not selected during each iteration do not carry out any
local update and their most recent local model estimates are
not incorporated into the global model aggregation process.

Here, we propose to allow all clients, including those not
selected through random scheduling, to update their local model
estimates during every iteration. As we will show later, this can
improve the performance without introducing any additional
communication overhead or imposing any significant increase
in computations on the clients or the server. To realize the
proposed algorithm, we let the clients store the most recent
global model estimate received from the server and the server
store the latest local model estimates received from the clients.
Hence, the clients continually update their local models using
their most recent global model estimate and the server updates
the global model using the latest local updates from all clients.
When a client is selected at iteration n, its latest local model
estimate is made up-to-date at the server and the global model
estimate received from the server replaces its older version at
the client.

Therefore, the recursions of the proposed resource-efficient
and noise-robust FL algorithm featuring continual local updates
are given by

xk,n+1 = (I− ρkN
−1
k )xk,n

+ ρkN
−1
k

[
ak,ns̃

k
n + (1− ak,n)s̃

k
m

]
(9a)

sk,n+1 = 2xk,n+1 − xk,n, k ∈ Sn (9b)

sn+1 =
1

K∑
k=1

ρk

K∑
k=1

ρk [ak,ns̃k,n+1 + (1− ak,n)s̃k,m] , (9c)

where ak,n represents random scheduling, i.e., ak,n = 1 when
k ∈ Sn and ak,n = 0 otherwise. In addition, s̃km represents
the most recent global model estimate received from the server
and stored in client k, which is utilized when the client is not
chosen by the server. Moreover, s̃k,m denotes the most recent
local model estimate associated with client k, which is stored
at the server and utilized during iterations when the client is
not selected through random scheduling. We summarize the
proposed algorithm in Algorithm 1.

Algorithm 1 The proposed communication-efficient and noise-
robust FL algorithm with continual local updates.
Parameters: penalty parameters ρk, number of clients K, set
of clients S
Initialization: global model x0 = x−1 = 0, local models
xk,0 = x̂k

For n = 1, · · · , N
The server randomly selects a subset Sn of its clients and

sends the aggregated global model sn to them.
Client Local Update:

If k ∈ Sn

Receive s̃kn, a noisy version of sn, from the server.
Store the latest global model s̃km = s̃kn.
Update the local model as

xk,n+1 = (I− ρkN
−1
k )xk,n + ρkN

−1
k s̃kn.

Send sk,n+1 = 2xk,n+1 − xk,n to the server.
Else

Update the local model as
xk,n+1 = (I− ρkN

−1
k )xk,n + ρkN

−1
k s̃km.

EndIf
Aggregation at the Server:

The server receives s̃k,n+1, noisy versions of the locally
updated models from the selected clients k ∈ Sn and aggregates
them with s̃k,m, the stored local model estimates of the non-
selected clients via

sn+1 = 1
K∑

k=1

ρk

K∑
k=1

ρk [ak,ns̃k,n+1 + (1− ak,n)s̃k,m] .

EndFor

Fig. 1. NMSD of (8) and (9) versus iteration number for |Sn| = 4 and
different link noise variances.



Fig. 2. NMSD of (8) and (9) versus iteration number for |Sn| = 10 and
different link noise variances.

Fig. 3. NMSD of (8) and (9) versus iteration number for |Sn| = 25 and
different link noise variances.

IV. SIMULATION RESULTS

In this section, we conduct a series of numerical experiments
to examine the performance of the proposed algorithm. We
consider a scenario with K = 100 clients directly connected
to a global server. The goal of the federated network is to
estimate a global model x∗ of dimension L = 128. To induce
data imbalance among the clients, we draw the size of each
client’s local dataset, dk, from a uniform distribution, i.e.,
dk ∈ U(50, 90). Each client k has synthetic and imbalanced
non-IID data {Hk,yk} with the matrices Hk drawn from a
multivariate normal distribution N (µHk

, σ2
Hk

) where µHk
∈

U(−0.5, 0.5) and σ2
Hk

∈ U(0.5, 1.5). The weight matrices are

set to the inverse covariance matrix of yk at each client k, i.e.,
Wk = Σ−1

yk
= E[(yk − E[yk]) (yk − E[yk])

⊺
]−1. We set the

global parameter vector x∗ arbitrarily by drawing each entry
from a standard normal distribution N (0, 1). The observation
noise νk at each client k is zero-mean IID Gaussian with
variance 10−4. The additive noise in both uplink and downlink
are zero-mean IID white Gaussian. In all experiments, we
set the penalty parameter to ρk = 1 for all clients. At each
iteration n, the server selects a subset of the clients with equal
probability of selection assigned to each client. We evaluate
the performance using the network-wide average normalized
mean-square deviation (NMSD) defined at each iteration n as

NMSD(n) =
1

K

K∑
k=1

∥xk,n − x⋆∥22
∥x⋆∥22

. (10)

We obtain the learning curves (i.e., NMSD in dB vs. iteration
number n) by averaging over 100 independent trials.

In Figs. 1-3, we present a performance comparison between
the proposed algorithm, i.e., (9), and its closest contender,
i.e. (8), which does not feature continual local updates. We
obtain the results by including noise in the communication links
and utilizing random scheduling for communication efficiency.
We set the number of clients selected at each iteration to
|Sn| ∈ {4, 10, 25} and use different link noise variances of
σ2
ηk,n

= σ2
ζk
n

∈ {6.25 · 10−4, 10−2}. We plot the corre-
sponding learning curves in the figures. We observe that the
proposed algorithm exhibits robustness against communication
noise/error even when a small portion of the clients participate
in every FL round. It also outperforms (8) significantly in
terms of the steady-state NMSD in all considered cases. In
summary, the results demonstrate that permitting the clients,
which are not selected by random scheduling, to continually
update their local models leads to a notable reduction in the
steady-state NMSD without compromising the convergence
rate. Moreover, as expected, when the variance of the noise
in the communication links increases, the learning accuracy
decreases.

V. CONCLUSIONS

We proposed a new FL algorithm that leverages random
scheduling to enhance communication efficiency while being
robust to additive noise in the communication links, in part,
due to eliminating the dual parameters and minimizing the use
of noisy estimates in update equations. The key novel feature
of the proposed algorithm is that it allows the clients to update
their model estimates locally even when they are not selected
by the global server for participation in FL as per random
scheduling. Our simulation results showed that the continual
local updates lead to performance improvements in terms of
both learning accuracy and robustness to link noise.
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