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Abstract
Master-key key-dependent message (mKDM) security is a strong security notion for attribute-based

encryption (ABE) schemes, which has been investigated in recent years. This line of research was
started with identity-based encryption (IBE; Garg, Gay, and Hajiabadi, PKC 2020) and then was
extended to (more general) ABE (Feng, Gong, and Chen, PKC 2021). Both these constructions are
based on dual system techniques which crucially rely on pairings. How to construct mKDM secure
ABEs without pairings or even generically was an open problem.

In this paper, we propose two generic constructions of mKDM secure ABE from an ABE secure
against chosen-plaintext attacks in the random oracle model (ROM) and standard model. In the
ROM, our construction is very efficient, and it gives rise to the first mKDM secure ABE from lattices.
Our construction in the standard model requires indistinguishability obfuscation, but it shows that,
even in the standard model, mKDM security can be achieved generically, and it is not limited to
dual-system-based techniques.

Keywords: Master-key KDM, attribute-based encryption, identity-based encryption, generic
construction, indistinguishability obfuscation.

1 Introduction
Indistinguishability against chosen-plaintext attacks (IND-CPA, or semantic security) is the most basic
security notion for encryption schemes, which guarantees that an adversary can hardly learn any
information of the plaintext encrypted in a ciphertext. Key-dependent message (KDM) security [BRS03]
is a stronger form of semantic security where the encrypted plaintext may depend on the secret key. This
stronger notion is desirable due to the use of encryption in practice, and also as a building block for more
advanced cryptosystems, such as fully homomorphic encryption [Gen09].
mKDM Security for IBE and ABE. Identity-based encryption (IBE) allows to encrypt with respect
to identities instead of public keys. Its classical security requirement, IND-CPA, is a natural extension of
that of public-key encryption, but additionally allows adversaries to ask many user secret keys adaptively.

∗Corresponding author: Chen Qian
†Supported by the Research Council of Norway under Project No. 324235
‡Supported by the National Key Research and Development Program of China (Grant No. 2018YFA0704702), the Major

Basic Research Project of Natural Science Foundation of Shandong Province, China (Grant No. ZR202010220025)

mailto:mail here 
mailto:mail here 
mailto:mail here 
mailto:mail here 
mailto:mail here 
mailto:mail here 
mailto:mail here 
mailto:mail here 
mailto:mail here 
mailto:mail here 


As for public key encryption, one can consider the stronger notion of KDM security for IBE. Most
works that investigate KDM security for IBE consider the notion of user-key KDM (uKDM) security
[AP12, CZDC16, KT18], where the messages encrypted can arbitrarily depend on a set of user secret keys.
Another notion is master-key KDM security (mKDM) [GHV12, GGH20, FGC21], which is technically
more challenging to achieve. Here, the messages can arbitrarily depend on the master secret key.

As it has been discussed in [GGH20], the notion of mKDM is interesting in its own right and more
natural than uKDM security. For instance, an mKDM secure IBE scheme implies a KDM-CCA secure
public-key encryption scheme [GHV12], which is not the case for a uKDM secure one. We refer [GGH20]
for detailed discussions.

Using predicate encoding schemes Feng, Gong, and Chen [FGC21] have constructed the first mKDM
secure attribute-based encryption (ABE) schemes. ABE is a generalization of IBE, and offers more
fine-grained access control. Concretely, in an ABE scheme for boolean predicate P , messages are encrypted
under descriptive values x, user-secret keys are associated with values y, and a user-secret key decrypts
the ciphertext if and only if P(x, y) = 1. Here, the predicate P may express arbitrary access policy. In
this paper, we construct mKDM secure ABE.
Prior Work on mKDM security. We note that mKDM security is difficult to achieve, and most
prior works on mKDM security focus on IBE schemes. The study of mKDM security was initiated by
Galindo et al. [GHV12] in 2012, and their IBE construction is restricted in the sense that it is only
selectively secure and the number of its KDM queries must be bounded beforehand.

The first adaptively mKDM secure IBE scheme was proposed by Garg et al. [GGH20] in 2020 using
techniques from tightly secure IBEs [HKS15, AHY15, GDCC16]. The Garg et al. scheme contains Θ(λ2)
many group elements1 in a master public key due to the tight security technique. The first mKDM secure
ABE scheme was only constructed recently by Feng et al. [FGC21]. Furthermore, their ABE implies a
mKDM secure IBE with constant-size master public keys (cf. Table 1).

Both works on adaptive mKDM security require dual system techniques [Wat09, LW10] which heavily
rely on pairing-based assumptions. Especially, mKDM secure IBE or ABE from other assumptions, e.g.
lattice-based assumptions, was not known before our work. Motivated by this state of affairs, we raise
the natural question whether there is a generic construction of mKDM secure ABE schemes, for instance,
from any IND-CPA secure ABE. We note that there are generic constructions of uKDM secure IBE
[CZDC16, KT18], while this is the missing piece for mKDM security.

1.1 Our Contributions
We propose the first two generic constructions of mKDM secure ABE with and without random oracles.
They are the first constructions that do not rely on dual system techniques.
Our Efficient Construction in the Random Oracle Model. Our construction with random or-
acles is a generic transformation that turns an IND-CPA secure ABE to an mKDM secure one by
computing one additional hash. In fact, our transformation only requires one-wayness against chosen-
plaintext attacks (OW-CPA) of the underlying ABE scheme, which is a security notion weaker than and
implied by IND-CPA. If we assume OW-CPA security with multiple challenge ciphertexts, our security
proof is tight, namely, its security loss is constant. This approach is an extension of hybrid encryption
approach for PKEs in the ABE setting, and we borrow techniques from Kitagawa et al. [KMHT16] which
carefully program the random oracle.

We stress that using the schemes in [GPV08, KYY18] our generic construction gives us the first
(tightly) mKDM secure IBE schemes based on lattices. Unfortunately, there is no tightly OW-CPA secure
ABE, and hence we do not have suitable scheme to implement our mKDM secure ABE tightly. But with
an adaptively secure lattice-based ABE (such as the Tsabary scheme [Tsa19]), our generic construction
yields the first mKDM secure ABE scheme from lattices.

Our generic construction in the random oracle model is very efficient, and we view it as obtaining
mKDM security almost for free. Moreover, we provide another transformation from OW-CPA to mKDM
security against chosen-ciphertext attacks (mKDM-CCA) using the Fujisaki-Okamoto transformation
[FO99] for ABEs. This transformation is as efficient as the first one. One should always aim for the
strongest security notion while keeping schemes efficient, and our result provides one way of achieving
this.

1Here, λ is the security paramter.
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To support the claim of efficiency, we instantiate our generic construction with pairings for IBE and
compare it with the previous known mKDM secure IBE schemes, which are all in the pairing setting, in
Table 1. In this table, our schemes are instantiated with the Boneh-Franklin IBE [BF01] and its tight
variant using the Katz-Wang random-bit technique [KW03], see also Section 3.3. We only focus on IBE,
since most works on mKDM security are about IBE and we want to take tightness into account (while
there is no tightly secure ABE).

Scheme Assumption ROM CCA tight |mpk| |skid| |ct|
GGH [GGH20] SXDH ✗ ✗ ✓ Θ(λ2) Θ(λ) Θ(λ)
FGC [FGC21] SXDH ✗ ✓ ✗ 15 10 4
BF [BF01] + Sec. 3.2 BDH ✓ ✓ ✗ 1 1 2
BF-KW [BF01] + Sec. 3.2 BDH ✓ ✓ ✓ 1 1 3

Table 1: Comparison of existing adaptively mKDM secure identity-based encryption schemes (above the
line) and our schemes in the ROM (below the line) in the pairing setting. Sizes of keys and ciphertexts
are given as the number of group elements. For |ct|, we only count the overhead, i.e. we subtract the
encoding size of a message. λ is the security parameter. Note that our CPA and CCA constructions in
Sections 3.1 and 3.2, respectively, have the same efficiency in terms of |mpk|, |skid| and |ct|.

Our Construction in the Standard Model. Although our construction in the ROM is practical,
it crucially relies on the random oracle model. To remove the need for such an idealized model, we
propose another generic construction of mKDM secure ABEs in the standard model. It transforms an
IND-CPA secure ABE to an mKDM secure one using indistinguishability obfuscation (iO) [BGI+01] and
non-interactive proof systems. iO has been constructed recently from circular security of the GSW FHE
scheme [GP21] and well-formed (sub-exponential) assumptions [JLS21].

Due to the use of iO, our construction of mKDM ABE is only a feasibility result, and it is far from
being practical. However, it is theoretically interesting, and introduces new ways of achieving mKDM
security. Our techniques can serve as a starting point for further study of generic constructions of mKDM
ABE in the standard model.

Similar to our practical constructions in the ROM, we have constructions with mKDM-CPA and
mKDM-CCA security in the standard model. In particular, we use a Naor-Yung-like [NY90, CCS09]
transformation to lift mKDM-CPA security to mKDM-CCA security.
Open Problems. To obtain efficiency of our constructions in the standard model, we leave generically
constructing mKDM secure ABE without iO as our main open problem. Further, our standard model
construction relies on a perfectly complete and sound NIZK proof system. This motivates the study of
such a proof system.

1.2 Technical Overview
We give an high-level overview of our techniques. Due to space limitations, we only discuss our construction
in the standard model. For simplicity of exposition, we consider the special case of IBE in this overview.
The detailed construction (for ABE) can be found in Section 4.

In general, the technical tension of proving KDM security is that an adversary will submit a function
and the reduction needs to apply this function on the secret key and encrypts its result. However, the
reduction itself usually does not know this secret key and therefore it seems rather challenging to achieve
this security. Our starting point is trying to shift the burden of constructing KDM ciphertexts of master
secret keys to the adversary. This has been proposed in the PKE setting by Marcedone, Pass, and shelat
[MPs16]. However, it is difficult to “translate” this to the mKDM IBE setting. In the following, we first
recall their idea, demonstrate the difficulty in achieving mKDM IBE, and explain how we resolve it.
Warmup: KDM Security for PKE. We first demonstrate our idea using the simpler case of public
key encryption. This idea is from the work of Marcedone, Pass, and shelat [MPs16]. Let R be an NP
relation and LR ⊆ X is the corresponding language such that LR and X \ LR are computationally
indistinguishable. Our KDM secure public key encryption scheme is as follows. Our public key is a
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statement x∗ ∈ LR and its secret key is a witness w∗ such that (x∗, w∗) ∈ R. A ciphertext for message
m = f(w∗) is an obfuscation of the circuit Cx∗,m:

w 7−→

{
f(w∗) if (x∗, w) ∈ R
⊥ otherwise

.

Here f is given by the adversary for KDM queries. With the correct secret key w∗, one can decrypt and
get back m by the functionality of Cx∗,m.

At the first glance, this does not solve our problem, since Cx∗,m depends on m = f(w∗) which still
depends on w∗. Namely, m is hardcoded in Cx∗,m. But if w∗ is unique, we can use the security of
obfuscation to switch this to an obfuscation of the circuit Cx∗,f :

w 7−→

{
f(w) if (x∗, w) ∈ R
⊥ otherwise

.

Now the secret key w∗ is not hardcoded in Cx∗ anymore. Instead, it is provided by the decryptor. Using
the computational indistinguishability between LR and X \ LR and the obfuscation security again, we
can switch this circuit Cx∗ to a circuit that always returns ⊥.
mKDM Security for IBE. In our generic construction we transfer this idea to the IBE setting.
However, we encounter another dilemma: On the one hand, it is natural to let w∗ of the above construction
be the master secret key, in order to achieve mKDM security. On the other hand, in an IBE’s decryption,
no master secret key, but only the user secret key, is given. In fact, the above approach can only give us
a user-key KDM secure IBE, but we need some novel insights for mKDM security.

Our approach is to embed the master secret key msk into every user secret key in some encrypted
form, and the ciphertext is an obfuscated circuit that outputs m (m = f(msk) for KDM queries) if a
user secret key is a valid one, namely, includes an encrypted msk. The validity of a user secret key is
guaranteed by a NIZK proof.

In our security proof, we switch this obfuscated circuit to a circuit that first checks the validity of the
NIZK proof and then decrypts and gets the msk to simulate KDM queries for challenge identities id∗. To
conclude the security, we also need to remove the information about msk in user secret key queries for
identities different to id∗. Therefore, the aforementioned encrypted form of msk needs to be implemented
carefully together with the NIZK proof, otherwise, we may encounter a problem where we need to extract
msk and simulate the proof simultaneously.

Our strategy to solve the above problem can be viewed as an identity-based extractable NIZK proof
system. More precisely, a user secret key of an identity id contains the user secret key of the underlying
IND-CPA secure IBE and a NIZK proof showing that this user secret key is generated under msk which
is the witness. This NIZK proof is an identity-based extractable NIZK. Such a proof system has the
following “all-but-many” property: For all identities except the many challenge ones, the proofs can be
perfectly simulated without witness; and for the many challenge identities, the proofs are extractable.
We implement this proof system using another IND-CPA secure IBE and a dual mode NIZK system.

As an extension, we also show how to obtain mKDM-CCA security generically from mKDM-CPA
security in the standard model using a variant of Naor-Yung transformation [NY90, CCS09] for public
key encryption. To do so, we encrypt the message under the mKDM-CPA secure scheme and under a
public key encryption scheme, and show the consistency of both ciphertexts using a simulation-sound
NIZK.

2 Preliminaries
By N,P,R,Z,Zq, {0, 1}∗ we denote sets of natural numbers, primes, real numbers, integers, integers
modulo q ∈ N and bit strings, respectively. By [n] := {1, . . . , n} we denote the set of the first n natural
numbers. The security parameter is denoted by λ ∈ N and all algorithms will get 1λ implicitly as input.
We say that a probabilistic algorithm A is PPT (probabilistic polynomial time) if its running time T(A)
is bounded by a polynomial in its input size. We use asymptotic notation for positive functions such as ω
and O. A function ν : N→ R is negligible in its input λ if ν ∈ λ−ω(1) and negl(λ) denotes a negligible
function. Conversely, a function ν with ν ≥ 1− negl(λ) is said to be overwhelming. We write x← D to
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state that x is sampled from a distribution D. For a finite set S the expression x $← S states that x is
sampled from the uniform distribution over S. If the statistical distance between two distributions is
negligible in λ, we say they are statistically close. We treat probabilistic algorithms A on an input x as a
distribution and write y ← A(x) accordingly. If we make the randomness used by an algorithm explicit
we will write y = A(x; r) for randomness r ∈ {0, 1}∗. The notation y ∈ A(x) means that y is a possible
output of A on input x. In all security games, numerical values are assumed to be implicitly initialized as
0, sets, lists and associative array as ∅. The symbol ⊥ indicates an uninitialized value or the output of an
algorithm if it aborts. For a game G, we write GA(λ)⇒ b to state that the game G outputs b ∈ {0, 1}
considering adversary A and security parameter λ. We will now introduce cryptographic primitives that
are relevant for this work.
Public Key Encryption. We give the standard definition of public key encryption and its security.

Definition 2.1 (Public Key Encryption Scheme). A public key encryption scheme (PKE) is defined as a
tuple of PPT algorithms PKE = (Gen, Enc, Dec), where

• Gen(1λ) takes as input the security parameter λ and outputs a public key pk and a secret key sk.
We assume that pk implicitly defines a message space M =Mpk.

• Enc(pk, m) takes as input a public key pk and a message m ∈M and outputs a ciphertext ct.

• Dec(sk, ct) is deterministic, takes as input a secret key sk and ciphertext ct and outputs a message
m ∈M.

We say that PKE is ρ-complete, if for every (pk, sk) ∈ Setup(1λ), m ∈M we have

Pr [Dec(sk, ct) = m | ct← Enc(pk, m)] ≥ ρ.

If ρ = 1, we say that PKE is perfectly complete.

Definition 2.2 (IND Security of PKE). Let PKE = (Gen, Enc, Dec) be a public key encryption scheme.
Consider games IND-CPAb for b ∈ {0, 1} given in Figure 1. We say that PKE is IND-CPA secure, if for
every PPT adversary A the following advantage is negligible in λ:

AdvIND-CPA
A,PKE (λ) :=

∣∣∣Pr
[
IND-CPAA0,PKE(λ)⇒ 1

]
− Pr

[
IND-CPAA1,PKE(λ)⇒ 1

]∣∣∣ .

Game IND-CPAAb,PKE(λ)
01 (pk, sk)← Gen(1λ)
02 (St, m0, m1)← A(pk)
03 if |m0| ≠ |m1| : return 0
04 ct∗ ← Enc(pk, mb)
05 return b′ ← A(St, ct∗)

Figure 1: The games IND-CPAb for bit b ∈ {0, 1}, public key encryption scheme PKE and adversary A.

Indistinguishability Obfuscation. We introduce indistinguishability obfuscation [BGI+01, GGH+13,
JLS21].

Definition 2.3 (Indistinguishability Obfuscator). We call a PPT algorithm iO an indistinguishability
obfuscator for polynomial size circuit class C = {Cλ}λ if iO(C) takes as input a circuit C ∈ Cλ and outputs
a circuit Ĉ, such that

• Preserved Functionality: For every C ∈ Cλ with input length z, all x ∈ {0, 1}z, all Ĉ ∈ iO(C) we
have C(x) = Ĉ(x).
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Game IODISTAb,iO(λ)
01 (St, C0, C1)← A(1λ)
02 if C0 /∈ Cλ ∨ C1 /∈ Cλ : return 0
03 if |C0| ≠ |C1| : return 0
04 if ∃x ∈ {0, 1}∗ : C0(x) ̸= C1(x) : return 0
05 Ĉ0 ← iO(C0), Ĉ1 ← iO(C1)
06 return b′ ← A(St, Ĉb)

Figure 2: The games IODISTb for bit b ∈ {0, 1}, an obfuscator iO and an adversary A.

• Security: For every PPT algorithm A the following advantage is negligible in λ:

Adviodist
A,iO (λ) :=

∣∣∣Pr
[
IODISTA0,iO(λ)⇒ 1

]
− Pr

[
IODISTA1,iO(λ)⇒ 1

]∣∣∣ ,

where the games IODISTb for b ∈ {0, 1} are given in Figure 2.

Non-interactive Zero-Knowledge. The definition of non-interactive zero-knowledge proof systems
and their properties follows [Gro06, GS08, GHKP18]. For any binary relation R ⊆ {0, 1}∗ × {0, 1}∗, we
define the corresponding language LR ⊆ {0, 1}∗ via

x ∈ LR ⇐⇒ ∃w ∈ {0, 1}∗ : (x, w) ∈ R,

for all x ∈ {0, 1}∗. If membership in R is efficiently (i.e. polynomial time) decidable and there is a
polynomial p such that for all (x, w) ∈ RL we have |w| ≤ p(|x|), we say that R is an NP relation.
In this case, we clearly have LR ∈ NP, which motivates the terminology. We assume that languages
and relations implicitly depend on the security parameter, with the restriction that there exists some
polynomial poly, such that for any x ∈ LR we have |x| ≤ poly(λ).

Definition 2.4 (Non-interactive Zero-Knowledge Proof System). Let R = {Rλ} be an NP relation. A
(ρ, εso, εzk)-non-interactive zero-knowledge (NIZK) proof system PS = (PGen, PTrapGen, PProve, PVer, PSim)
for R is a tuple of PPT algorithms, where

• PGen(1λ) takes as input the security parameter λ and outputs a common reference string crs. We
assume that crs implicitly defines a proof space P = Pcrs.

• PTrapGen(1λ) has the same syntax as PGen, but additionally outputs a trapdoor td.

• PProve(crs, x, w) takes as input the common reference string crs, a statement x and a witness w
and outputs a proof π.

• PVer(crs, x, π) takes as input the common reference string crs, a statement x and a proof π and
outputs a bit b ∈ {0, 1}.

• PSim(crs, td, x) takes as input the common reference string crs, a trapdoor td and a statement x
and outputs a proof π.

We require the scheme to be perfectly complete and sound in the following sense:

• Completeness: For all crs ∈ PGen(1λ) and all (x, w) ∈ R it holds that

Pr [PVer(crs, x, π) = 1 | π ← PProve(crs, x, w)] ≥ ρ.

If ρ = 1, we say that PS is perfectly complete and omit ρ.

• Soundness: For all (not necessarily efficient) adversaries A we have

Pr
[
PVer(crs, x, π) = 1 ∧ x /∈ LR | crs← PGen(1λ), (x, π)← A(crs)

]
≤ εso.

If εso = 0, we say that PS is perfectly sound and omit εso.

6



We also require the following zero-knowledge properties to hold:

• CRS Indistinguishability: For all PPT algorithms A the following advantage is negligible in λ:

Advkeydist
A,PS (λ) := |Pr

[
A(crs) = 1 | crs← PGen(1λ)

]
−Pr

[
A(crs) = 1 | (crs, td)← PTrapGen(1λ)

]
|.

• Zero-Knowledge: For all (x, w) ∈ R the following distributions have statistical distance at most
εzk :

{(π, crs, td) | (crs, td)← PTrapGen(1λ), π ← PProve(crs, x, w)}

and

{(π, crs, td) | (crs, td)← PTrapGen(1λ), π ← PSim(crs, td, x)}.

We also define the stronger notion of simulation soundness. However, we do not need it all the time,
which is why we give it in a separate definition.

Definition 2.5 (Simulation Soundness). Let R = {Rλ} be an NP relation and PS = (PGen, PTrapGen,
PProve, PVer, PSim) an (ρ, εso, εzk)-NIZK proof system for R. Consider the game SIMSO in Figure 3.
We say that PS is εsso-simulation-sound if for any (not necessarily efficient) adversary A we have

Pr
[
SIMSOAPS ⇒ 1

]
≤ εsso.

Game SIMSOAPS(λ)
01 (crs, td)← PTrapGen(1λ), (x, π)← ASim(crs)
02 if (x, π) /∈ L ∧ x /∈ LR ∧ PVer(crs, x, π) = 1 :
03 return 1
04 return 0

Oracle Sim(x)
05 π ← PSim(crs, td, x)
06 L := L ∪ {(x, π)}
07 return π

Figure 3: The game SIMSO for a NIZK proof system PS and an adversary A.

Attribute-Based Encyption. We define attribute-based encryption (ABE) and different security
notions for it. We remark that we define all security notions in the multi-challenge setting. For IND-CPA
and OW-CPA, this notion is implied by the single-challenge setting, using a standard hybrid argument.

Definition 2.6 (Attribute-Based Encryption Scheme). Let X = Xλ and Y = Yλ be two (families of) sets,
and P : X × Y → {0, 1} be an efficiently computable predicate on X ,Y. An attribute-based encryption
scheme (ABE) for P is a tuple of PPT algorithms ABE = (Setup, KeyExt, Enc, Dec), where

• Setup(1λ) takes as input the security parameter λ and outputs a master public key mpk and a
master secret key msk. We assume that mpk implicitly defines a message spaceM =Mmpk, and an
user-secret key space K = Kmpk.

• KeyExt(msk, y) takes as input a master secret key msk and an attribute y ∈ Y and outputs a secret
key sky ∈ K. We assume that sky implicitly contains y.

• Enc(mpk, x, m) takes as input a master public key mpk, an attribute x ∈ X and a message m ∈M
and outputs a ciphertext ct.

• Dec(sky, ct) is deterministic, takes as input a user secret key sky ∈ K and ciphertext ct and outputs
a message m ∈M.

We say that ABE is ρ-complete, if for every (mpk, msk) ∈ Setup(1λ), m ∈M, x ∈ X , y ∈ Y with P(x, y) = 1,
we have

Pr [Dec(sky, ct) = m | sky ← KeyExt(msk, id), ct← Enc(mpk, x, m)] ≥ ρ.

If ρ = 1, we say that ABE is perfectly complete.
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Game mKDM-CPAAb,ABE(λ),
Game mKDM-CCAAb,ABE(λ)
01 (mpk, msk)← Setup(1λ)
02 O := (Key, Kdmb)
03 O := (Key, Kdmb, Dec)
04 return b′ ← AO(mpk)

Oracle Dec(y, ct)
05 if ∃x ∈ X s.t. P(x, y) = 1 ∧ (x, ct) ∈ Lct :
06 return ⊥
07 sky ← KeyExt(msk, y)
08 return Dec(sky, ct)

Oracle Key(y)
09 if hitP(Lch, {y}) : return ⊥
10 Lsk := Lsk ∪ {y}
11 return sky ← KeyExt(msk, y)

Oracle Kdmb(x, f ∈ F)
12 if hitP({x},Lsk) : return ⊥
13 Lch := Lch ∪ {x}
14 m0 := 0|f(·)|, m1 := f(msk)
15 ct← Enc(mpk, x, mb)
16 Lct := Lct ∪ {(x, ct)}
17 return ct

Figure 4: The games mKDM-CPAb, mKDM-CCAb for bit b ∈ {0, 1}, an attribute-based encryption
scheme ABE for predicate P, and an adversary A. The shaded statement is only executed in game
mKDM-CCAb.

The above notion captures both ciphertext-policy (CP) and key-policy (KP) ABE. For example,
KP-ABE for a class of policies {P} is obtained by considering the universal predicate P(x, P ) = P (x).

Definition 2.7 (Smoothness of ABE). Consider an attribute-based encryption scheme ABE = (Setup,
KeyExt, Enc, Dec). We say that ABE is ε-smooth if we have

E(mpk,msk)←Setup(1λ)

[
max

x,m,ct′
Pr[ct = ct′ | ct← Enc(mpk, x, m) ]

]
≤ ε.

To improve readability of our security games, we introduce a predicate hit. Informally, it extends the
predicate P to lists and sets.

Definition 2.8 (List Predicate of ABE). Consider a predicate P : X × Y → {0, 1}. We define the
predicate hitP : 2X × 2Y → {0, 1} as follows:

hitP(Lx,Ly) = 1⇐⇒ ∃x ∈ Lx, y ∈ Ly : P(x, y) = 1.

Definition 2.9 (mKDM Security of ABE). Let ABE = (Setup, KeyExt, Enc, Dec) be an attribute-based
encryption scheme with master secret key space Km for a predicate P : X × Y → {0, 1}. Let F be a
class of efficiently computable functions with domain Km. We assume that the range of F is a subset
of the message space M of ABE. Consider games mKDM-CPAb, mKDM-CCAb for b ∈ {0, 1} given
in Figure 4. We say that ABE is F-mKDM-CPA secure, if for every PPT adversary A the following
advantage is negligible in λ:

AdvmKDM-CPA
A,ABE (λ) :=

∣∣∣Pr
[
mKDM-CPAA0,ABE(λ)⇒ 1

]
− Pr

[
mKDM-CPAA1,ABE(λ)⇒ 1

]∣∣∣ .

We say that ABE is F-mKDM-CCA secure, if for every PPT adversary A the following advantage is
negligible in λ:

AdvmKDM-CCA
A,ABE (λ) :=

∣∣∣Pr
[
mKDM-CCAA0,ABE(λ)⇒ 1

]
− Pr

[
mKDM-CCAA1,ABE(λ)⇒ 1

]∣∣∣ .

Definition 2.10 (IND Security of ABE). Let ABE = (Setup, KeyExt, Enc, Dec) be an attribute-based
encryption scheme for a predicate P : X × Y → {0, 1}. Consider games IND-CPAb for b ∈ {0, 1} given
in Figure 5. We say that ABE is IND-CPA secure, if for every PPT adversary A the following advantage
is negligible in λ:

AdvIND-CPA
A,ABE (λ) :=

∣∣∣Pr
[
IND-CPAA0,ABE(λ)⇒ 1

]
− Pr

[
IND-CPAA1,ABE(λ)⇒ 1

]∣∣∣ .
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Game IND-CPAAb,ABE(λ)
01 (mpk, msk)← Setup(1λ)
02 return b′ ← AKey,Chb(mpk)

Oracle Chb(x, m0, m1)
03 if hitP({x},Lsk) : return ⊥
04 if |m0| ≠ |m1| : return ⊥
05 Lch := Lch ∪ {id}
06 return ct← Enc(mpk, x, mb)

Game OW-CPAAABE(λ)
07 (mpk, msk)← Setup(1λ)
08 Lans ← AKey,Ch(mpk)
09 return Lans ∩ Lpt ̸= ∅

Oracle Ch(x)
10 if hitP({x},Lsk) : return ⊥
11 Lch := Lch ∪ {x}
12 m $←M,Lpt := Lpt ∪ {(x, m)}
13 return ct← Enc(mpk, x, m)

Figure 5: The games IND-CPAb (left) and OW-CPA (right) for bit b ∈ {0, 1}, an attribute-based
encryption scheme ABE for predicate P , and an adversary A. Oracle Key is defined exactly as in Figure 4.

Definition 2.11 (OW Security of ABE). Let ABE = (Setup, KeyExt, Enc, Dec) be an attribute-based
encryption scheme for a predicate P : X × Y → {0, 1}. Consider game OW-CPA given in Figure 5. We
say that ABE is OW-CPA secure, if for every PPT adversary A the following advantage is negligible in λ:

AdvOW-CPA
A,ABE (λ) := Pr

[
OW-CPAAABE(λ)⇒ 1

]
.

3 Generic Construction in the Random Oracle Model
In this section, we construct two attribute-based encryption schemes, which are mKDM-CPA and
mKDM-CCA secure. We use hybrid encryption to transform any OW-CPA secure ABE into an mKDM-CPA
secure one. Then we show that using an attribute-based variant of the Fujisaki-Okamoto transform
[FO99], we can construct an mKDM-CCA secure ABE from any OW-CPA secure ABE. An overview of
the results in this section is given in Figure 6.

ABE : OW-CPA ABEH : mKDM-CPA

ABEFO : mKDM-CCA

Sec. 3.1

Sec. 3.2

Figure 6: Overview of our construction of mKDM-CPA and mKDM-CCA secure attribute-based encryption
in the random oracle model. We transform any OW-CPA secure attribute-based encryption scheme into
mKDM-CPA and mKDM-CCA secure schemes.

3.1 mKDM-CPA Secure ABE via Hybrid Encryption
In this section, we construct an mKDM-CPA secure attribute-based encryption scheme ABEH with message
space M = {0, 1}ℓ for predicate P : X × Y → {0, 1} from a OW-CPA secure attribute-based encryption
scheme ABE with message space M for predicate P using a random oracle H : X × {0, 1}ℓ → {0, 1}ℓ via
hybrid encryption. The construction is presented in Figure 7. Completeness of ABEH immediately follows
from the completeness of ABE.

Alg EncH(mpk, x, m)
01 r $← {0, 1}ℓ

, K := H(r)
02 c← Enc(mpk, x, r)
03 return ct := (c, d := K ⊕m)

Alg DecH(sky, ct = (c, d))
04 r := Dec(sky, c)
05 K := H(r)
06 return m := K ⊕ d

Figure 7: The attribute-based encryption scheme ABEH = (SetupH := Setup, KeyExtH := KeyExt, EncH,
DecH) for a given attribute-based encryption scheme ABE = (Setup, KeyExt, Enc, Dec) and a random
oracle H.
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Theorem 3.1 (mKDM-CPA Security of ABEH). Let F be a class of efficiently computable functions
with oracle access to H. If ABE is a OW-CPA secure attribute-based encryption scheme, then ABEH
given in Figure 7 is F-mKDM-CPA secure in the random oracle model. More precisely, for every PPT
algorithm A making QC , QH queries to the oracles Kdm, H, respectively, there exists a PPT algorithm B
with T(B) ≈ T(A) and

AdvmKDM-CPA
A,ABEH

(λ) ≤ QC ·QH

2ℓ−1 + 2 · AdvOW-CPA
B,ABE (λ).

Proof. First, as in [KMHT16], during the security game, random oracle H is called in one of the following
three cases:

• publicly called by the adversary,

• privately called by the game in the Kdm oracle,

• privately called by the game while computing the function fH in the Kdm oracle.

We will gradually separate these three different cases of the random oracle through the security games. We
denote them by H, H⋆, Ĥ, respectively, see Figures 8 and 9. For each game Gi, we denote the probability
that it outputs 1 by pri, namely,

pri := Pr
[
GAi (λ)⇒ 1

]
.

Game G0: This game is the mKDM-CPA security game that always encrypts f Ĥ(msk). We make the
conceptual modification that the answers of the random oracle queries are separated into H, H⋆, Ĥ. More
specifically, the random oracles H and H⋆ maintain two lists for the hash values (r, K). They are also
sharing access of their lists in the sense that every time r′ is queried to H (resp. H⋆), if there is already a
K ′ such that (r′, K ′) ∈ LH ∪ LH⋆ , then it returns K ′. The random oracle Ĥ does not maintain any list, it
behaves exactly as H. The detailed behavior of oracles Kdm, H, H⋆, Ĥ is given in Figure 8. Note that the

Oracle Kdm(x, f)
01 m := f Ĥ(msk)
02 r $← {0, 1}ℓ

03 K := H⋆(r)
04 c← Enc(mpk, x, r)
05 return ct := (x, c, K ⊕m)

Oracle H⋆(r)
06 if ∃K : (r, K) ∈ LH ∪ LH⋆ :
07 return K
08 else :
09 K $← {0, 1}ℓ

10 LH⋆ := LH⋆ ∪ {(r, K)}
11 return K

Oracle H(r)
12 if ∃K : (r, K) ∈ LH ∪ LH⋆ :
13 return K
14 else :
15 K $← {0, 1}ℓ

16 LH := LH ∪ {(r, K)}
17 return K

Oracle Ĥ(r)
18 if ∃K : (r, K) ∈ LH ∪ LH⋆ :
19 return K
20 else :
21 K $← {0, 1}ℓ

22 LH := LH ∪ {(r, K)}
23 return K

Figure 8: The description of the oracles Kdm, H, H⋆ and Ĥ in game G0 in the proof of Theorem 3.1.

only difference between G0 and the game mKDM-CPA1 is that we have conceptually differentiated the
hash queries to H⋆ from the ones to H and Ĥ. Therefore we have

pr0 = Pr
[
mKDM-CPAA1,ABEH

(λ)⇒ 1
]
.

Game G1: In game G1, we modify the behavior of the random oracle H⋆ in the following way: Every
query H⋆(r) is answered with a freshly generated K. Then, H⋆ adds the pair (r, K) to the list LH⋆ .
Note that H and Ĥ still need LH⋆ to answer queries. Given r, if there exist multiple values K such that
(r, K) ∈ LH⋆ , H and Ĥ take the first entry as the random oracle’s output. The detailed behavior of H⋆ is
given in Figure 9.
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We define the event COL that when Kdm(x, f) generates r $← {0, 1}ℓ, there already exists an entry
of the form (r, ·) in the list LH ∪ LH⋆ . We can see that G1 is different from G0 only if COL happens.
Further, there are at most QH many entries in the list LH∪LH⋆ . Moreover, since in each query Kdm(x, f)
the value r is uniformly chosen at random r $← {0, 1}ℓ, the probability that COL happens in such a query
is at most QH/2ℓ. By the union bound over all the Kdm queries, we have

|pr0 − pr1| ≤ Pr[COL] ≤ QC ·QH

2ℓ
.

Game G2: In game G2, the only difference compared to G1 is that the simulation of H does not refer
to list LH⋆ anymore. However, Ĥ still refers to LH and LH⋆ in this game. The behavior of H is given
in Figure 9.

We define the event BHQi (“Bad Hash Query”) that in Gi when A queries r to H, there already exists
an entry of the form (r, ·) in LH⋆ . Note that G2 differs from G1 only if BHQ2 happens. Therefore, we
have

|pr1 − pr2| ≤ Pr[BHQ2].

Game G3: In game G3, we modify the behavior of the Kdm queries Kdm(x, f). It returns the encryption
of a uniformly random message of length |f(·)|. See Figure 9 for details.

Note that in G3 every query to Kdm is answered with a randomly generated ciphertext. Further,
note that we can do a similar sequence of game transitions starting with the game mKDM-CPA0 and
end up at the very same game G3. Thus, by the triangle inequality, it is sufficient to bound |pr0 − pr3| to
finish our proof. To do so, we use the following lemmas to bound |pr2 − pr3| and Pr[BHQ2].

Oracle H⋆(r) // G1, G2, G3

01 K $← {0, 1}ℓ

02 LH⋆ := LH⋆ ∪ {(r, K)}
03 return K

Oracle Kdm(x, f) // G3

04 r $← {0, 1}ℓ; m $← {0, 1}|f(·)|

05 K := H⋆(r)
06 c← Enc(mpk, x, r)
07 return ct := (c, K ⊕m)

Oracle H(r) // G2, G3

08 if ∃K : (r, K) ∈ LH :
09 return K
10 else :
11 K $← {0, 1}ℓ

12 LH := LH ∪ {(r, K)}
13 return K

Figure 9: The changes of the oracles Kdm, H, H⋆ and Ĥ from G1 to G3 in the proof of Theorem 3.1.

Lemma 3.2 |pr2 − pr3| = 0.

Proof. Note that the only difference between G3 and G2 is the output of the oracle Kdm. Suppose
that there are QC Kdm queries. We will introduce QC + 1 intermediate hybrids G2.0, . . . , G2.QC

that
gradually change the Kdm oracle answers. Note that, G2.0 will be identical to G2 and G2.QC

will be
identical to G3. The game G2.i for i ∈ [QC ] is defined as follows:
Game G2.i: In this game, the challenger answers the first QC − i queries to Kdm as in G2. From the
(QC − i + 1)-th to the QC-th Kdm queries, the challenger answers as in G3 (described in Figure 9).
Namely, the remaining Kdm queries are answered with random ciphertexts.

To bound the success probability of distinguishing G2.i−1 and G2.i, note that the only difference is
the behavior of the (QC − i)-th Kdm query. Due to the change of H⋆ in G1, K := H⋆(r) is a freshly
generated randomness in G2.i regardless of whether r has been queried to H or H⋆ before. Moreover,
the value K is only stored in LH⋆ . Due to change in G2, the values stored in LH⋆ are only accessible by
the adversary indirectly via the hash query Ĥ as part of the Kdm queries. However, in G2.i, from the
(QC − i + 1)-th to the QC-th Kdm queries are all answered without quering Ĥ. In summary, K is an
uniformly generated randomness in the (QC − i)-th query, and it is not reused afterwards. This implies
that K acts as a one-time pad and K ⊕m returned by the (QC − i)-th query is statistically identical
to a uniformly random element in {0, 1}ℓ. Therefore we have |pr2.i−1 − pr2.i| = 0. By using the triangle
inequality over all QC + 1 hybrids, we have |pr2 − pr3| = 0.
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Lemma 3.3 There exists an algorithm B with T(B) ≈ T(A) and

Pr[BHQ3] ≤ AdvOW-CPA
B,ABE (λ).

Proof. Given an adversary A, we construct an adversary B that wins the OW-CPA security game of the
underlying scheme ABE whenever BHQ3 happens. The construction of B is given in Figure 10. Firstly,

BKey,Ch(mpk)
01 b′ ← AKey,Kdm,H(mpk)
02 return Lans

Oracle Kdm(x, f)
03 m $← {0, 1}|f(·)|; K $← {0, 1}|f(·)|

04 c← Ch(x)
05 return ct := (c, K ⊕m)

Oracle H(r)
06 if ∃K : (r, K) ∈ LH :
07 return K
08 else :
09 Lans := Lans ∪ {r}
10 K $← {0, 1}ℓ

11 LH := LH ∪ {(r, K)}
12 return K

Figure 10: The reduction B in the proof of Theorem 3.1. It simulates G3 for adversary A to win the
OW-CPA security game.

it is straightforward that B perfectly simulates game G3 to A. Moreover, the OW-CPA security game
maintains a list Lpt which corresponds to all the queries by H⋆ in G3. If BHQ happens, then there is
(r, K) ∈ LH with r ∈ Lpt. Therefore B is successful.

We can now summarize as follows:

AdvmKDM-CPA
A,ABEH

(λ) ≤ 2|pr0 − pr3| ≤ 2
(

QC ·QH

2ℓ
+ Pr [BHQ2]

)
≤ 2

(
QC ·QH

2ℓ
+ |Pr [BHQ2]− Pr [BHQ3]|+ Pr [BHQ3]

)
≤ 2

(
QC ·QH

2ℓ
+ |Pr [BHQ2]− Pr [BHQ3]|+ AdvOW-CPA

B,ABE (λ)
)

≤ QC ·QH

2ℓ−1 + 2 · AdvOW-CPA
B,ABE (λ),

where the last inequality follows from |Pr[BHQ2]− Pr[BHQ]3| ≤ |pr2 − pr3| = 0. This is because any
difference between Pr[BHQ2] and Pr[BHQ3] can be used to distinguish G2 from G3.

3.2 mKDM-CCA Secure ABE via the Fujisaki-Okamoto Transform
In this section, we turn any OW-CPA secure attribute-based encryption scheme ABE with message space
M = {0, 1}ℓ for predicate P : X × Y → {0, 1} into an mKDM-CCA secure scheme ABEFO with message
space M for predicate P. We do so using random oracles H : X × {0, 1}ℓ → {0, 1}ℓ

, G : X × {0, 1}ℓ ×
{0, 1}ℓ → {0, 1}ℓ following the Fujisaki-Okamoto transform. The scheme is presented in Figure 11.
Completeness follows directly from the completeness of ABE. The proof of its mKDM-CCA security is an
extension of the proof of Theorem 3.1.

Alg EncFO(mpk, x, m)
01 r $← {0, 1}ℓ

, K := H(r)
02 d := K ⊕m, ρ := G(r, d)
03 c := Enc(mpk, x, r; ρ)
04 return ct := (c, d)

Alg DecFO(sky, ct = (c, d))
05 r := Dec(sky, c), ρ← G(x, r, d)
06 m = H(r)⊕ d
07 if c = Enc(mpk, x, r; ρ) :
08 return m
09 return ⊥

Figure 11: The attribute-based encryption scheme ABEFO = (SetupFO := Setup, KeyExtFO := KeyExt,
EncFO, DecFO) for a given attribute-based encryption scheme ABE = (Setup, KeyExt, Enc, Dec) and random
oracles H, G.
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Theorem 3.4 (mKDM-CCA Security of ABEFO). Let F be a class of efficiently computable functions
with oracle access to H, G. If ABE is a OW-CPA secure and ε-smooth identity-based encryption scheme,
then ABEFO given in Figure 11 is F-mKDM-CCA secure in the random oracle model. More precisely,
for every PPT algorithm A making QC , QD, QH , QG queries to the oracles Kdm, Dec, H, G, respectively,
there exists a PPT algorithm B with T(B) ≈ T(A) and

AdvmKDM-CCA
A,ABEFO

(λ) ≤ QC · (QG + QH)
2ℓ−1 + 4QD · ε + 8 · AdvOW-CPA

B,ABE (λ).

Proof. We give the proof via a sequence of hybrid games. For each game Gi, we denote the probability
that it outputs 1 by pri, namely,

pri := Pr
[
GAi (λ)⇒ 1

]
.

We note that the random oracle G and H can be called throughout the security game in three different
cases:

• publicly called by the adversary,

• privately called by the game in the Kdm oracle,

• privately called by the game while computing the function fH,G in the Kdm oracle.

We will gradually separate these three different cases of the random oracle through the security games by
denoting them by G, G⋆, Ĝ and H, H⋆, Ĥ, respectively.
Game G0: The game G0 is the mKDM-CCA security game that always encrypts the message fH,G(msk),
except that the answers of the random oracle G, H are conceptually separated into G, G⋆, Ĝ and H, H⋆, Ĥ.
More explicitly, the behavior of the random oracles is given as follows: The random oracles G and
G⋆ independently maintain two lists for the hash values ((r, d), ρ). They are also sharing the list of
values in the sense that every time (r′, d′) is queried to G (resp. G⋆), if there is already a ρ′ such that
((r′, d′), ρ′) ∈ LG ∪ LG⋆ , then the oracle returns ρ′. The random oracle Ĝ does not maintain any list,
it behaves exactly as G. The random oracles H, H⋆, Ĥ behave similarly. The details of how oracles

Oracle Kdm(x, f)
01 m := f Ĥ,Ĝ(msk)
02 r $← {0, 1}ℓ

03 K := H⋆(r), d := K ⊕m
04 ρ := G⋆(r, d)
05 c := Enc(mpk, x, r; ρ)
06 return ct := (c, d)

Oracle G⋆(r, d)
07 if ∃ρ : ((r, d), ρ) ∈ LG ∪ LG⋆ :
08 return ρ
09 else :
10 ρ $← {0, 1}ℓ

11 LG⋆ := LG⋆ ∪ {((r, d), ρ)}
12 return ρ

Oracle G(r, d)
13 if ∃ρ : ((r, d), ρ) ∈ LG ∪ LG⋆ :
14 return ρ
15 else :
16 K $← {0, 1}ℓ

17 LG := LG ∪ {(r, ρ)}
18 return ρ

Oracle Ĝ(r, d)
19 if ∃ρ : ((r, d), ρ) ∈ LG ∪ LG⋆ :
20 return ρ
21 else :
22 ρ $← {0, 1}ℓ

23 LG := LG ∪ {((r, d), ρ)}
24 return ρ

Figure 12: The description of the oracles Kdm, G, G⋆ and Ĝ in G0 in the proof of Theorem 3.4.

Kdm, G, G⋆, Ĝ behave are given in Figure 12. Note that the only difference between G0 and the game
mKDM-CCA1 is that we have conceptually differentiated the hash queries to G and H in three different
cases. Therefore we have

pr0 = Pr
[
mKDM-CCAA1,ABEFO

(λ)⇒ 1
]
.

Game G1: In game G1, we modify the behavior of the random oracles G⋆ and H⋆. Every query G⋆(r, d)
and H⋆(r) is answered with a freshly generated ρ and K. Then, we add the pairs ((r, d), ρ) and (r, K)
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to the lists LG⋆ and LH respectively. Note that G, Ĝ and H, Ĥ still refer to LG⋆ . Given (r, d), if there
exits multiple values ρ or K such that ((r, d), ρ) ∈ LG ∪ LG⋆ or (r, K) ∈ LH ∪ LH⋆ , then G⋆, Ĝ and H⋆, Ĥ
take the first entry as the random oracle’s output. The detailed behavior of G⋆ is given in Figure 13, the
behavior of H⋆ is similar to G⋆ and we omit it here.

Similar to the proof of Theorem 3.1, we denote by COL the event that in a Kdm(x, f) query there
already exists an entry of the form ((r, d), ·) ∈ LG ∪ LG⋆ or an entry of the form (r, ·) ∈ LH ∪ LH⋆ . It is
easy to see that G1 and G2 only differ when COL happens. We can use the union bound over all QC

queries in an argumentation similar to the step from G0 to G1 in the proof of Theorem 3.1 to show

|pr0 − pr1| ≤ Pr[COL] ≤ QC ·QG

2ℓ
+ QC ·QH

2ℓ
.

Game G2: In game G2, we further modify the behavior of the random oracle G and H, in the sense that
G and H no longer refer to LG⋆ and LH⋆ . We emphasize that Ĝ and Ĥ still refer to both LG,LG⋆ and
LH,LH⋆ respectively in this game. The behavior of G⋆ is presented in Figure 13 and H⋆ behaves similarly,
so we omit it here.

We denote by BHQi the event that when A queries (r, d) to G in Gi, there already exists an entry of
the form ((r, d), ·) in LG⋆ or when A queries r to H in Gi, there already exists an entry of the form (r, ·)
in LH⋆ . Note that the only difference between G1 and G2 is when BHQ2 occurs. Therefore, we have

|pr1 − pr2| ≤ Pr[BHQ2].

Game G3: In game G3, we modify how decryption queries (i.e. queries of the form Dec(x, ct = (c, d)))
are answered. That is, the game searches for an entry ((r, d), ρ) ∈ LG ∪ LG⋆ such that for m := Ĥ(r)⊕ d,
c is an encryption of m under ABE for attribute x with randomness ρ. It then returns m. If such an
entry does not exist, it returns ⊥. We emphasize that, due to the change in this game, the challenger
does not need the secret key to answer the decryption queries. The modified decryption oracle is given
in Figure 13.

We define SMTH to be the event that A makes a decryption query (x, ct = (c, d)) /∈ Lch such that
there exists m, r, ρ such that

c = Enc(mpk, x, r; ρ) ∧ ((r, d), ρ) /∈ LG ∪ LG⋆ .

Note that the only difference between G2 and G3 is when SMTH occurs. Further, for each fixed query, if
SMTH occurs in this query, then ρ is freshly sampled at random and the probability that the given c
coincides with Enc(mpk, x, m; ρ) can be bounded by ε due to the smoothness of ABE. Using a hybrid over
all QD queries, we obtain

|pr2 − pr3| ≤ Pr [SMTH] ≤ QD · ε.

Game G4: We further modify the decryption oracle Dec. In this game, instead of searching in the list
LG ∪ LG⋆ , Dec only searches in LG, and the decryption oracle uses H instead of Ĥ to compute K, see
Figure 13.

We also define the event BDQ (“Bad Decryption Query”) that A makes a decryption query (x, ct =
(c, d)) /∈ Lch which satisfies that there exists ((r, d), ρ) ∈ LG ∪ LG⋆ such that

c = Enc(mpk, x, r; ρ) ∧ ∃K : (r, K) ∈ LH⋆ .

Note that any difference between G3 and G4 implies that BDQ occurs. Therefore we have

|pr3 − pr4| ≤ Pr[BDQ].

Game G5: In G5, we modify the behavior of the Kdm queries Kdm(x, f). It returns the encryption of a
uniformly random message of length |f(·)|.

Similar to the transitions we presented from mKDM-CCA1 to G5, we can follow similar transitions
from mKDM-CCA0 to G5. That is, we have

AdvmKDM-CCA
A,ABEFO

(λ) ≤ 2|pr0 − pr5|.

Thus, it is sufficient to bound |pr0 − pr5| to finish the proof. To do so, it remains to bound Pr[BHQ2], Pr[BDQ]
and |pr4 − pr5|, which we do using the following lemmas. Note that the proof of Lemma 3.5 is similar to
the proof of Lemma 3.3 in the proof Section 3.1 and the proof of Lemma 3.8 is similar to the proof of
Lemma 3.2. Therefore we omit it here.
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Oracle G⋆(r, d) // G1-G5

01 ρ $← {0, 1}ℓ

02 LG⋆ := LG⋆ ∪ {((r, d), ρ)}
03 return ρ

Oracle G(r, d) // G2-G5

04 if ∃ρ : ((r, d), ρ) ∈ LG :
05 return ρ
06 else :
07 ρ $← {0, 1}ℓ

08 LG := LG ∪ {((r, d), ρ)}
09 return ρ

Oracle Dec(x, ct) // G3

10 let ct = (c, d)
11 for ((r, d), ρ) ∈ LG ∪ LG⋆ :
12 K := Ĥ(r), m := K ⊕ d
13 if c = Enc(mpk, x, r; ρ) :
14 return m
15 return ⊥

Oracle Dec(x, ct) // G4-G5

16 let ct = (c, d)
17 for ((r, d), ρ) ∈ LG :
18 K := H(r), m := K ⊕ d
19 if c = Enc(mpk, x, r; ρ) :
20 return m
21 return ⊥

Figure 13: The changes of the oracles Dec, G, G⋆ and Ĝ from G1 to G6 in the proof of Theorem 3.4.
The random oracles (H, H⋆, Ĥ) change similarly.

Lemma 3.5 There exists an algorithm B with T(B) ≈ T(A) and

Pr[BHQ5] ≤ 2 · AdvOW-CPA
B,ABE (λ).

Lemma 3.6 Pr[BHQ2] ≤ Pr[BHQ5] + |pr4 − pr5|+ Pr[SMTH] + Pr[BDQ].

Proof. By the triangle inequality, we have:

Pr[BHQ2] ≤Pr[BHQ5] + |Pr[BHQ4]− Pr[BHQ5]|
+ |Pr[BHQ3]− Pr[BHQ4]|+ |Pr[BHQ2]− Pr[BHQ3]|.

Since BHQi is a detectable event by the adversary, we can upper bound the probability |Pr[BHQi+1]− BHQi|
by |pri+1 − pri| and the claim follows.

Lemma 3.7 There exists an algorithm B with T(B) ≈ T(A) and

Pr[BDQ] ≤ AdvOW-CPA
B,ABE (λ).

Proof. Suppose that BDQ occurs, i.e. the adversary A queries (x, ct = (c, d)) /∈ Lch, which satisfies that
there exists ((r, d), ρ) ∈ LG ∪ LG⋆ such that

c = Enc(mpk, x, r; ρ) ∧ ∃K : (r, K) ∈ LH⋆ .

We can define the following events as subcases of BDQ:

BDQ1 := ∃((r, d), ρ) ∈ LG : (c = Enc(mpk, x, r; ρ) ∧ ∃K : (r, K) ∈ LH⋆) ,

BDQ2 := ∃((r, d), ρ) ∈ LG⋆ : (c = Enc(mpk, x, r; ρ) ∧ ∃K : (r, K) ∈ LH⋆) .

It is straightforward that we have Pr[BDQ] = Pr[BDQ1] + Pr[BDQ2]. For BDQ1, we can construct an
adversary B against the OW-CPA security of ABE. The description of B is given in Figure 14. Note that
B perfectly simulates G4 for A and if BDQ1 happens, we have Lans ∩ Lpt ̸= ∅, where Lpt is the list hold
by the OW-CPA security game. Therefore, we have

Pr[BDQ1] ≤ AdvOW-CPA
B,ABE (λ).

For BDQ2, note that ((r, d), ρ) ∈ LG⋆ implies that there exists ct′ = (c′, d) such that

(x, ct′) ∈ Lch ∧ c′ = Enc(mpk, x, r; ρ) = c.

Therefore, we have ct = ct′, which contradicts the condition (x, ct) /∈ Lch and the claim follows.
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BKey,Ch(mpk)
01 b′ ← AKey,Kdm,H,G(mpk)
02 return Lans

Oracle H(r)
03 if ∃K : (r, K) ∈ LH :
04 return K
05 else :
06 Lans := Lans ∪ {r}
07 K $← {0, 1}ℓ

08 LH := LH ∪ {(r, K)}
09 return K

Oracle Kdm(x, f)
10 m, K $← {0, 1}|f(·)|

, c← Ch(x)
11 return ct := (c, K ⊕m)

Oracle G(r, d)
12 if ∃ρ : ((r, d), ρ) ∈ LG :
13 return ρ
14 else :
15 Lans := Lans ∪ {r}
16 ρ $← {0, 1}ℓ

17 LG := LG ∪ {((r, d), ρ)}
18 return ρ

Figure 14: The reduction B in the proof of Lemma 3.7, which simulates G4 for adversary A to win the
OW-CPA security game.

Lemma 3.8 |pr4 − pr5| = 0.

In summary, we can now bound AdvmKDM-CCA
A,ABEFO

(λ) by

2 (Pr [COL] + Pr [BHQ2] + Pr [SMTH] + Pr [BDQ] + |pr4 − pr5|)
≤ 2 (Pr [COL] + Pr [BHQ5] + 2 (Pr [SMTH] + Pr [BDQ] + |pr4 − pr5|))

≤ QC · (QG + QH)
2ℓ−1 + 4QD · ε + 8 · AdvOW-CPA

B,ABE (λ).

3.3 Instantiation
In this section, we discuss instantiations of our transformation in Section 3.2. Note that we defined
OW-CPA security in the multi-challenge setting, and our transformation is tight. This means that as
long as the underlying scheme ABE is tightly OW-CPA secure in the multi-challenge setting, the resulting
scheme ABEFO is tightly mKDM-CCA secure. The same holds for the transformation in Section 3.1 and
mKDM-CPA security. As mentioned in the introduction, we are not aware of any tightly secure ABE.
Lattice Setting. In the lattice setting, the modification of the GPV IBE [GPV08] presented in [KYY18]
is tightly OW-CPA secure in the multi-challenge setting in the random oracle model. In particular, using
our transformation, we obtain the first mKDM-CPA (resp. mKDM-CCA) secure identity-based encryption
scheme from lattices and the scheme is tightly secure. Instantiating our transformation with the Tsabary
ABE scheme [Tsa19], we get the first mKDM-CPA (resp. mKDM-CCA) secure attribute-based encryption
scheme from lattices.
Pairing Setting. We can instantiate our construction in the pairing setting using the Boneh-Franklin
(BF) IBE scheme [BF01]. This scheme is not tightly IND-CPA secure in the multi-challenge setting.
However, it is folklore knowledge that applying a Katz-Wang technique [KW03] yields a tightly secure
scheme BF-KW and only increases the size of the ciphertext by one group element. For completeness, we
describe both schemes in Figure 15.

4 Generic Construction in the Standard Model
Here, we generically construct an mKDM-CCA secure attribute-based encryption scheme in the standard
model, starting from an underlying attribute-based encryption scheme with IND-CPA security. An
overview of our construction is given in Figure 16. Before we do so, we define some properties of the
underlying attribute-based encryption scheme that will be useful for our construction. In Sections 4.3
and 4.4, we explain how to achieve these properties.
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Alg Setup(1λ)
01 (G, Ĝ,GT, e, p)← GGen(λ)
02 s $← Zp

03 mpk := ĝs ∈ Ĝ, msk := s
04 return (mpk, msk)

Alg Enc(mpk, id, m)
05 r $← {0, 1}ℓ

, K := H(r)
06 w := K ⊕m
07 t := G(r, w)
08 gid := e(H(id), mpk)
09 ctid := (ĝt, r ⊕ HT(gt

id), w)
10 gid,0 := e(H(id||0), mpk)
11 gid,1 := e(H(id||1), mpk)
12 ctid := (ĝt, r ⊕ HT(gt

id,0), r ⊕ HT(gt
id,1), w)

13 return ctid

Alg KeyExt(msk, id)
14 skid := H(id)s

15 if bid =⊥: bid
$← {0, 1}

16 skid := (H(id||bid)s, bid)
17 return skid

Alg Dec(skid, ctid)
18 let skid = (u,bid)
19 let ctid = (û, v, w)
20 let ctid = (û, v0, v1, w)
21 // For BF, bid is an empty string
22 r := vbid ⊕ HT(e(u, û))
23 t := G(r, w)
24 m := H(r)⊕ w
25 hid,bid ← H(id||bid)
26 gid,bid := e(hid,bid , mpk)
27 if (û, vbid) = (ĝt, r ⊕ HT(gt

id,bid
)) :

28 return m
29 return ⊥

Figure 15: Our instantiations of IBEFO in Section 3.2 using BF and its tight variant BF-KW. Codes in grey
are only executed in the instantiation from BF-KW. H : {0, 1}∗ → G, G : {0, 1}∗ → Zp, HT : GT → {0, 1}ℓ

are hash functions modeled as random oracles. GGen generates a pairing group with e : G× Ĝ → GT,
where G, Ĝ,GT are three groups of prime order p with generators g, ĝ, gT, respectively.

4.1 Definitions of Key Verifiability
For the following definitions, we consider a perfectly complete attribute-based encryption scheme ABE =
(Setup, KeyExt, Enc, Dec) with message space M for predicate P : X × Y → {0, 1}.
Definition 4.1 (Verifiable User Secret Keys). We say that ABE has verifiable user secret keys, if there
exists a deterministic polynomial time algorithm VerK satisfying the following properties:

• VerK(mpk, x, sky) takes as input a master public key mpk, an attribute x ∈ X , and a user secret key
sky and outputs a bit b ∈ {0, 1}.

• For all (mpk, msk) ∈ Setup(1λ), x ∈ X and all sky with P(x, y) = 1, we have:

sky ∈ KeyExt(msk, y) =⇒ VerK(mpk, x, sky) = 1 and
VerK(mpk, x, sky) = 1 =⇒ ∀m ∈M : Dec(sky, Enc(mpk, x, m)) = m.

Definition 4.2 (Verifiable Master Secret Keys). We say that ABE has verifiable master secret keys, if
there exists a deterministic polynomial time algorithm VerMK satisfying the following properties:

• VerMK(mpk, msk) takes as input a master public key mpk and a master secret key msk and outputs
a bit b ∈ {0, 1}.

• For all (mpk, msk) ∈ Setup(1λ) and all msk′ we have:

VerMK(mpk, msk′) = 1⇐⇒ (mpk, msk′) ∈ Setup(1λ).

Definition 4.3 (Uniquely Verifiable Master Secret Keys). We say that ABE has uniquely verifiable master
secret keys if ABE has verifiable master secret keys with algorithm VerMK and for every (mpk, msk) ∈
Setup(1λ) there does not exist a msk′ ̸= msk such that VerMK(mpk, msk′) = 1.

We highlight that while we defined functional verifiability of user secret keys, we defined syntactical
verifiability of master secret keys. That is, for user secret keys it should be verifiable if they can decrypt
correctly, while for master secret keys it should be verifiable if they are really honestly generated. Note
that this may be different conditions. We also want to remark that the properties only have to hold for
honestly generated master public keys.

17



ABE
IND-CPA
verif. sky

ABE
IND-CPA
verif. sky

uniquely verif. msk

PKE
IND-CPA

uniquely verif. sk

ABE
IND-CPA

ABE
mKDM-CPA

iO

PS
perf. sound

ABE
mKDM-CCA

Sec. 4.3

Sec. 4.4

Sec. 4.2

Sec. 4.5

Figure 16: Overview of our construction of mKDM-CPA/mKDM-CCA secure attribute-based encryption
in the standard model. We transform an IND-CPA secure attribute-based encryption scheme into an
mKDM-CPA secure one, using an indistinguishability obfuscator iO and a NIZK PS.

4.2 Main Construction
We first define when two predicates are compatible.

Definition 4.4 (Compatible Predicates). We say that two predicates P ′ : X×Y → {0, 1} and P ′ : Y×X →
{0, 1} are compatible, if for all attributes x ∈ X , y ∈ Y, it holds that P ′(x, y) = P ′′(y, x).

For our construction, let ABE′ = (Setup′, KeyExt′, Enc′, Dec′) and ABE′′ = (Setup′′, KeyExt′′, Enc′′,
Dec′′) be two IND-CPA secure attribute-based encryption schemes for compatible predicates P ′ : X ×Y →
{0, 1} and P ′′ : Y × X → {0, 1}, respectively. Further, we assume that ABE′ and ABE′′ are perfectly
complete, and that ABE′ has uniquely verifiable master secret keys and verifiable user secret keys with
algorithms VerMK and VerK, respectively. We assume that the encryption randomness of ABE′′ has length
z = z(λ) and that ABE′′ can encrypt the master secret key of ABE′. In addition to that, we need a perfectly
sound and perfectly complete non-interactive zero-knowledge proof system PS = (PGen, PTrapGen, PProve,
PVer, PSim) for the relation

R :=
{

((ct, y, mpk′, mpk′′), (msk′, ρ))
∣∣∣∣ Enc′′(mpk′′, y, msk′; ρ) = ct
∧ VerMK(mpk′, msk′) = 1

}
.

That is, PS can be used to prove that a given ciphertext is an encryption (with respect to ABE′′) of the
valid master secret key under a given attribute. Finally, we assume an indistinguishability obfuscator
iO2. Let L = L(λ) be an upper bound on the size of all circuits presented in this section. We denote the
execution of iO with a padding of a circuit C to size L as input by iOp. Equipped with these primitives,
we construct a new attribute-based encryption scheme ABE[ABE′, ABE′′, iO, PS] for predicate P = P ′
with message spaceM. The scheme is given in Figure 17. At a high level, the idea is to construct a circuit
that outputs the message if the input is a valid user secret key and use this circuit as the ciphertext. Also,
the master secret key is embedded into user secret keys in a hidden way.

Remark 4.5 (Message Space). In our construction, the message space M can be arbitrary. However,
mKDM-CPA security will hold only with respect to efficiently computable functions with range M that
have descriptions which can be encrypted by ABE′. Thus, there is a relation between security and the
message spaces of ABE′ and ABE[ABE′, ABE′′, iO, PS].

Lemma 4.6 (Completeness). Let ABE′ be a perfectly complete attribute-based encryption scheme for
predicate P ′ with verifiable master secret keys and verifiable user secret keys. Let ABE′′ be a perfectly
complete attribute-based encryption scheme. Assume that P ′ and P ′′ are compatible. Let PS be a perfectly
complete (εso, εzk)-NIZK proof system for the relation R. Let iO be an indistinguishability obfuscator.
Then ABE[ABE′, ABE′′, iO, PS] is perfectly complete for predicate P := P ′.

2We do not explicitly define the circuit class for which iO works. It is implicitly given in the construction and proof, see
circuits Cmpk,x,m in Figure 17 and Cmpk,x,ctf ,sk′′

x
in Figure 18.
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Alg Setup(1λ)
01 (mpk′, msk′)← Setup′(1λ)
02 (mpk′′, msk′′)← Setup′′(1λ)
03 crs← PGen(1λ)
04 mpk := (mpk′, mpk′′, crs), msk := msk′
05 return (mpk, msk)

Alg KeyExt(msk, y)
06 sk′y ← KeyExt′(msk′, y)
07 ρ $← {0, 1}z

08 ctmsk := Enc′′(mpk′′, y, msk′; ρ)
09 stmt := (ctmsk, y, mpk′, mpk′′)
10 witn := (msk′, ρ)
11 π ← PProve(crs, stmt, witn)
12 return sky := (sk′y, ctmsk, π)

Alg Enc(mpk, x, m)
13 Ĉ := iOp(Cmpk,x,m)
14 return ct := Ĉ

Alg Dec(sky, ct = Ĉ)
15 return Ĉ(sky)

Circuit Cmpk,x,m(sky)
16 let sky = (sk′y, ctmsk, π)
17 if VerK(mpk′, x, sk′y) = 0 :
18 return ⊥
19 stmt := (ctmsk, y, mpk′, mpk′′)
20 if PVer(crs, stmt, π) = 0 :
21 return ⊥
22 if P(x, y) = 0 : return ⊥
23 return m

Figure 17: The attribute-based encryption scheme ABE[ABE′, ABE′′, iO, PS] = (Setup, KeyExt, Enc, Dec)
for given attribute-based encryption schemes ABE′ = (Setup′, KeyExt′, Enc′, Dec′) and ABE′′ = (Setup′′,
KeyExt′′, Enc′′, Dec′′), an indistinguishability obfuscator iO and a proof system PS = (PGen, PTrapGen,
PProve, PVer, PSim).

Proof. Let (mpk, msk) ∈ Setup(1λ), x ∈ X , y ∈ Y such that P(x, y) = 1, and sky ∈ KeyExt(msk, y), m ∈M.
Recall that mpk = (mpk′, mpk′′, crs) and sky = (sk′y, ctmsk, π) for sk′y, ctmsk, mpk′, mpk′′, crs, π as in Fig-
ure 17. Consider a ciphertext ct = iOp(Cmpk,x,m). Also, recall that decryption of ABE[ABE′, ABE′′, iO, PS]
works by executing the circuit iOp(Cmpk,x,m) on input sky. We have to show that this execution returns m.
As iO and padding preserves functionality of circuits, it is sufficient to show that Cmpk,x,m as defined in
Figure 17 returns m. To see that, note that Cmpk,x,m returns m unless the condition in Line 17, the condi-
tion in Line 20, or the condition in Line 22 is satisfied. Here, the first condition is never satisfied due to
the definition of verifiable user secret keys, completeness of ABE′, P(x, y) = 1, and sk′y ∈ KeyExt′(msk′, y).
The second condition is never satisfied due to the definition of verifiable master secret keys, perfect
completeness of PS and (mpk′, msk′) ∈ Setup′(1λ). The third condition is never satisfied by assumption.
The claim follows.

Theorem 4.7 Let ABE′ be a perfectly complete IND-CPA secure attribute-based encryption scheme for
predicate P ′ with master secret key space Km, uniquely verifiable master secret keys and verifiable user
secret keys. Let ABE′′ be a perfectly complete IND-CPA secure attribute-based encryption scheme for
predicate P ′′. Assume that P ′ and P ′′ are compatible. Let PS be a perfectly complete and perfectly sound
εzk-NIZK proof system for the relation R. Let iO be an indistinguishability obfuscator. Finally, let F be
the class of all efficiently computable functions with domain Km and descriptions that can be encrypted by
ABE′.

Then ABE := ABE[ABE′, ABE′′, iO, PS] is F-mKDM-CPA secure. In particular, for every PPT al-
gorithm A making QC , QK queries to the oracles Kdm, Key, respectively, there are PPT algorithms
B∗1 ,B∗2 ,B∗3 ,B′ with T(B∗i ) ≈ T(A) ≈ T(B′) for i ∈ {1, 2, 3} and

AdvmKDM-CPA
A,ABE (λ) ≤ 2QC · Adviodist

B∗
1 ,iO(λ) + 2 · Advkeydist

B∗
2 ,PS(λ) + 2QK · εzk

+ 2 · AdvIND-CPA
B∗

3 ,ABE′′(λ) + AdvIND-CPA
B′,ABE′ (λ).

Proof. Let A be a PPT algorithm and ABE := ABE[ABE′, ABE′′, iO, PS]. We have to show that∣∣∣Pr
[
mKDM-CPAA0,ABE(λ)⇒ 1

]
− Pr

[
mKDM-CPAA1,ABE(λ)⇒ 1

]∣∣∣
is negligible. To do so, we interpolate between both games via intermediate games Gi for 0 ≤ i ≤ 9. For
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each game Gi, we denote the probability that it outputs 1 by pri, namely,

pri := Pr
[
GAi (λ)⇒ 1

]
.

First, let us introduce the structure of the proof on a high level. Starting with the game mKDM-CPA1,ABE,

Game G0-G9
01 (mpk′, msk′)← Setup′(1λ)
02 (mpk′′, msk′′)← Setup′′(1λ)
03 crs← PGen(1λ) // G0, G1, G8, G9

04 (crs, td)← PTrapGen(1λ)
// G2-G7

05 mpk := (mpk′, mpk′′, crs)
06 b′ ← AKey,Kdm(mpk)
07 return b′

Oracle Kdm(x, f ∈ F)
08 if hitP({x},Lsk) : return ⊥
09 Lch := Lch ∪ {x}
10 m := f(msk′) // G0-G4

11 m := 0|f(msk′)| // G5-G9

12 Ĉ := iOp(Cmpk,x,m) // G0, G9

13 ctf := Enc′(mpk′, x, f) // G1-G4

14 ctf := Enc′(mpk′, x, Z) // G5-G8

15 sk′′x ← KeyExt′′(msk′′, x)
// G1-G8

16 Ĉ := iOp(Cmpk,x,ctf ,sk′′
x
) // G1-G8

17 return ct := Ĉ

Oracle Key(y)
18 if hitP(Lch, {y}) : return ⊥
19 Lsk := Lsk ∪ {y}
20 sk′y ← KeyExt′(msk′, y)
21 ρ $← {0, 1}z

22 ctmsk := Enc′′(mpk′′, y, msk′; ρ)
// G0-G3, G6-G9

23 ctmsk := Enc′′(mpk′′, y, 0|msk′|; ρ)
// G4-G5

24 stmt := (ctmsk, y, mpk′, mpk′′)
25 witn := (msk′, ρ) // G0-G2, G7-G9

26 π ← PProve(crs, stmt, witn)
// G0-G2, G7-G9

27 π ← PSim(crs, td, stmt) // G3-G6

28 return sky := (sk′y, ctmsk, π)

Circuit Cmpk,x,ctf ,sk′′
x
(sky)

29 let sky = (sk′y, ctmsk, π)
30 if VerK(mpk′, x, sk′y) = 0 :
31 return ⊥
32 stmt := (ctmsk, y, mpk′, mpk′′)
33 if PVer(crs, stmt, π) = 0 :
34 return ⊥
35 if P(x, y) = 0 : return 0
36 m̂sk := Dec′′(sk′′x , ctmsk)
37 f̂ := Dec′(sk′y, ctf )
38 if VerMK(mpk′, m̂sk) = 0 :
39 return ⊥
40 return f̂(m̂sk)

Figure 18: The games G0-G9 in the proof of Theorem 4.7. Lines with highlighted comments are only
executed in the corresponding games. Here, Z is the all-zero function.

which encrypts m = f(msk) in every query Kdm(x, f), we first use perfect soundness of PS and the
security of iO to change the ciphertext to a circuit that can be constructed without knowing msk = msk′.
Instead, we use msk′′ to enable the circuit to extract msk from its input. Next, we use zero-knowledge and
the security of ABE′′ with respect to mpk′′ to remove msk = msk′ from all key queries Key(y). Finally,
we apply the security of ABE′ with respect to mpk′ and undo all our previous changes, resulting in the
game mKDM-CPA0,ABE. Let us now go into the details of the proof.
Game G0: We set G0 = mKDM-CPA1,ABE. That is, the adversary has access to oracles Kdm and
Key that return ciphertexts and user secret keys, respectively. Recall that in this game, every query
Kdm(x, f) returns a ciphertext ct encrypting f(msk) with respect to x. This ciphertext is the obfuscation
of a circuit Cmpk,x,f(msk′) computing the function

(sk′y, ctmsk, π) 7→

f(msk′), if VerK(mpk′, x, sk′y) = 1 ∧ P(x, y) = 1
∧ PVer(crs, (ctmsk, y, mpk′, mpk′′), π) = 1

⊥, otherwise
.

Game G1: In G1 we change the ciphertexts constructed in queries Kdm(x, f). The game computes
an ABE′ ciphertext ctf := Enc′(mpk′, x, f) and a user secret key sk′′x ← KeyExt′′(msk′′, x) and returns
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ct = iOp(Cmpk,x,ctf ,sk′′
x
), where Cmpk,x,ctf ,sk′′

x
is a circuit that takes (sk′y, ctmsk, π) as input, decrypts m̂sk :=

Dec′′(sk′′x , ctmsk) and f̂ := Dec′(sk′y, ctf ), and the returnsf̂(m̂sk), if VerK(mpk′, x, sk′y) = 1 ∧ VerMK(mpk′, m̂sk) = 1 ∧ P(x, y) = 1
∧ PVer(crs, (ctmsk, y, mpk′, mpk′′), π) = 1

⊥, otherwise
.

In the following, we argue that the circuits Cmpk,x,f(msk′) and Cmpk,x,ctf ,sk′′
x

are functionally equivalent.
First, assume that both circuits do not output ⊥. In this case, Cmpk,x,f(msk′) outputs the hardcoded
f(msk′), and Cmpk,x,ctf ,sk′′

x
outputs f̂(m̂sk). As Cmpk,x,ctf ,sk′′

x
did not output ⊥, it must hold that (1)

VerMK(mpk′, m̂sk) = 1 and (2) VerK(mpk′, x, sk′y) = 1 and P(x, y) = 1. As ABE′ has uniquely verifiable
master secret keys, (1) implies that m̂sk = msk′. By definition of verifiable user secret keys, (2) implies
that

f̂ = Dec′(sk′y, ctf ) = Dec′(sk′y, Enc′(mpk′, x, f)) = f,

and therefore f̂(m̂sk) = f(msk′).
Second, we claim that the set of inputs for which circuit Cmpk,x,f(msk′) outputs ⊥ and the set of inputs for

which Cmpk,x,ctf ,sk′′
x

outputs ⊥ are identical. Note that both circuits output ⊥ if (1) VerK(mpk′, x, sk′y) = 0,
or (2) PVer(crs, (ctmsk, y, mpk′, mpk′′), π) = 0, or (3) P(x, y) = 0. Additionally, circuit Cmpk,x,ctf ,sk′′

x
outputs

⊥, if (4) VerMK(mpk′, m̂sk) = 0. We argue that if conditions (1),(2) and (3) do not hold, then (4) does
not hold either. To see this, observe that the perfect soundness of PS and the definition of R imply that
ctmsk is an encryption with respect to msk′′, y of some msk such that VerMK(mpk′, msk) = 1. As condition
(3) does not hold, we have P(x, y) = 1 and therefore, by completeness of ABE′′,

msk = Dec(sk′′x , ctmsk) = m̂sk.

Thus, it holds that VerMK(mpk′, m̂sk) = 1, showing that condidion (4) does not hold. Functional
equivalence follows. Now, the security of iO implies that for one query, the change is unnoticed by A.
Using a hybrid argument over all such queries, we obtain a reduction B1 with

|pr0 − pr1| ≤ QC · Adviodist
B1,iO(λ).

Game G2: In G2, we change the way crs is generated. That is, we generate it in combination with a
trapdoor td via (crs, td)← PTrapGen(1λ). A straight-forward reduction B2 shows that

|pr1 − pr2| ≤ Advkeydist
B2,PS (λ).

Game G3: In G3, we change the way the proofs π in queries of the form Key(y) are generated. Recall
that in G2, the proofs are generated via π ← PProve(crs, stmt, witn), where stmt = (ctmsk, y, mpk′, mpk′′)
and witn = (msk′, ρ). In G3, proofs are generated using the trapdoor td and the simulation algorithm via
π ← PSim(crs, td, stmt). The games are statistically close by the zero-knowledge property of PS, i.e.

|pr2 − pr3| ≤ QK · εzk.

Game G4: In G4, we change the way the ciphertexts ctmsk in queries of the form Key(y) are generated.
Recall that before, we generated these ciphertexts as ctmsk := Enc′′(mpk′′, y, msk′; ρ). In G4, we generate
them as ctmsk := Enc′′(mpk′′, y, 0|msk′|; ρ). We claim that we can show indistinguishability of both games
using the IND-CPA security of ABE′′ with regards to the public key mpk′′. To see this, note that we do
not need ρ and to generate the proof π anymore, due to the changes in G3. Furthermore, the only point
where we need msk′′ is during queries of the form Kdm(x, f) to extract user secret keys sk′′x . However, in
a reduction, we can simulate these extractions using our own key oracle. Using this insight, we build a
reduction B′′, formally presented in Figure 19. Reduction B′′ gets a public key mpk′′ as input, samples
public and secret key (mpk′, msk′) using algorithm Setup′ and simulates the rest of the game G3, G4
for adversary A. For key queries Key(y) the reduction uses its challenge oracle Ch′′(y, msk′, 0|msk′|) to
interpolate between the games. As described, it uses its own key oracle Key′′ to simulate queries of the
form Kdm(x, f). To see the correctness of the reduction, define the set Lsk of attributes y ∈ Y for which
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A issues a query Key(y) and the set Lch of attributes x ∈ X for which A issues a query Kdm(x, f). Note
that the reduction B′′ issues challenge queries for exactly the attributes in Lsk and key queries exactly for
the attributes in Lch. If A is a valid adversary, these sets satisfy hitP′′(Lsk,Lch) = hitP(Lch,Lsk) = 0,
and hence B′′ is valid. Hence,

|pr3 − pr4| ≤ AdvIND-CPA
B′′,ABE′′(λ).

Alg B′′Key′′,Ch′′(mpk′′)
01 (mpk′, msk′)← Setup′(1λ)
02 (crs, td)← PTrapGen(1λ)
03 mpk := (mpk′, mpk′′, crs)
04 return b′ ← AKey,Kdm(mpk)

Oracle Kdm(x, f ∈ F)
05 if hitP({x},Lsk) : return ⊥
06 Lch := Lch ∪ {x}
07 ctf := Enc′(mpk′, x, f)
08 sk′′x ← Key′′(x)
09 Ĉ := iOp(Cmpk,x,ctf ,sk′′

x
)

10 return ct := Ĉ

Oracle Key(y)
11 if hitP(Lch, {y}) : return ⊥
12 Lsk := Lsk ∪ {y}
13 sk′y ← KeyExt′(msk′, y)
14 ρ $← {0, 1}z

15 m0 := msk′, m1 := 0|msk′|

16 ctmsk ← Ch′′(y, m0, m1)
17 stmt := (ctmsk, y, mpk′, mpk′′)
18 π ← PSim(crs, td, stmt)
19 return sky := (sk′y, ctmsk, π)

Figure 19: The reduction B′′, used to interpolate between games G3 and G4 in the proof of Theorem 4.7.
Circuit Cmpk,x,ctf ,sk′′

x
is defined as in Figure 18. Here, Z is the all-zero function.

Game G5: In game G5 we change the way we answer queries of the form Kdm(x, f). First of all, we
set m := 0|f(msk′)| (which was m := f(msk′) before). This is only a conceptual change, as the variable m
has no influence on the output of Kdm(x, f) since G1. Secondly, we change the generation of variable
ctf . Recall that in G4, it was defined as ctf := Enc′(mpk′, x, f). Instead, we will now generate it as
ctf := Enc′(mpk′, x, Z), where Z is the description of a all-zero function. Without loss of generality we
can assume that |f | = |Z| by using an appropriate padding. We claim that similarly to the change from
G3 to G4, the games G4 and G5 are indistinguishable. This time, we use a reduction B′ in against
the IND-CPA security of ABE′ that gets the public key mpk′ as input, samples keys (mpk′′, msk′′) and
simulates games G4, G5 for A. The reduction is formally given in Figure 20. Note that due to the changes
we introduced before, the reduction never needs msk′ to simulate these games. To simulate queries of the
form Key(y), the reduction uses its own oracle Key′. To answer queries of the form Kdm(x, f), B′ can
interpolate between G4 and G5 using its oracle Ch′. The validity of A transfers directly to the validity
of B′, i.e. it never asks for challenge ciphertext and secret keys for attributes x, y with P(x, y) = 1. We
obtain

|pr4 − pr5| ≤ AdvIND-CPA
B′,ABE′ (λ).

Games G6-G9: From G6 to G9 we undo all changes we did from G1 to G4. That is, G5+i is defined as
G4−i for i ∈ [4], except for the changes we introduced between G4 and G5 (i.e the definition of m and
ctf in Kdm(x, f) queries). In particular, G9 is as G0 except that queries of the form Kdm(x, f) always
return an encryption of 0|f(msk′)|. Thus we have G9 = mKDM-CPA0,ABE. It is easy to see, that all the
arguments used above work again on the path from G5 to G9, which shows that there are adversaries
B̂1, B̂2, B̂′′

|pr5 − pr9| ≤ QC · Adviodist
B̂1,iO(λ)+Advkeydist

B̂2,PS (λ)

+QK · εzk + AdvIND-CPA
B̂′′,ABE′(λ).

To summarize, using the triangle inequality and the best reductions B∗1 ,B∗2 ,B∗3 of {B1, B̂1}, {B2, B̂2}, {B′′, B̂′′},
respectively we obtain the statement.
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Alg B′Key′,Ch′(mpk′)
01 (mpk′′, msk′′)← Setup′′(1λ)
02 (crs, td)← PTrapGen(1λ)
03 mpk := (mpk′, mpk′′, crs)
04 return b′ ← AKey,Kdm(mpk)

Oracle Kdm(x, f ∈ F)
05 if hitP({x},Lsk) : return ⊥
06 Lch := Lch ∪ {x}
07 m0 := f(msk′), m1 := 0|f(msk′)|

08 ctf ← Ch′(x, m0, m1)
09 sk′′x ← KeyExt′′(msk′′, x)
10 Ĉ := iOp(Cmpk,x,ctf ,sk′′

x
)

11 return ct := Ĉ

Oracle Key(y)
12 if hitP(Lch, {y}) : return ⊥
13 Lsk := Lsk ∪ {y}
14 sk′y ← Key′(y)
15 ρ $← {0, 1}z

16 ctmsk := Enc′′(mpk′′, y, 0|msk′|; ρ)
17 stmt := (ctmsk, y, mpk′, mpk′′)
18 π ← PSim(crs, td, stmt)
19 return sky := (sk′y, ctmsk, π)

Figure 20: The reduction B′, used to interpolate between games G4 and G5 in the proof of Theorem 4.7.
Circuit Cmpk,x,ctf ,sk′′

x
is defined as in Figure 18. Here, Z is the all-zero function.

4.3 Constructing ABE with Verifiable User Secret Keys
We show how to add verifiability of user secret keys (cf. Definition 4.1) to any perfectly complete
attribute-based encryption scheme, while preserving IND-CPA security. The idea is to add a NIZK proof
to user secret keys to make them verifiable. Formally, let ABE′ = (Setup′, KeyExt′, Enc′, Dec′) be an
attribute-based encryption scheme for some predicate P : X × Y → {0, 1}. We assume that ABE′ is
perfectly complete. For simplicity, we assume that both Setup′ and KeyExt′ use λ bits of randomness. Our
goal is to construct a new attribute-based encryption scheme for predicate P, such that user secret keys
are verifiable (cf. Definition 4.1). The idea is to add a NIZK proof to user secret keys. More precisely,
consider the relation

R :=
{

((mpk′, sk′y), (ρ0, msk′, ρ))
∣∣∣∣ Setup′(1λ; ρ0) = (mpk′, msk′)
∧ KeyExt′(msk′, y; ρ) = sk′y

}
,

and a perfectly sound and perfectly complete non-interactive zero-knowledge proof system PS =
(PGen, PTrapGen, PProve, PVer, PSim) for R. Our transformed scheme ABE = (Setup, KeyExt, Enc, Dec)
for predicate P and the associated algorithm VerK are given in Figure 21. We show that ABE has verifiable

Alg Setup(1λ)
01 ρ0

$← {0, 1}λ

02 (mpk′, msk′)← Setup′(1λ; ρ0)
03 crs← PGen(1λ)
04 mpk := (mpk′, crs)
05 msk := (msk′, ρ0)
06 return (mpk, msk)

Alg VerK(mpk = (mpk′, crs), x, sky)
07 let sky = (sk′y, π)
08 if P(x, y) = 0 : return 0
09 stmt := (mpk′, sk′y)
10 return PVer(crs, stmt, π)

Alg KeyExt(msk = (msk′, ρ0), y)
11 ρ $← {0, 1}λ

12 sk′y ← KeyExt′(msk′, y; ρ)
13 stmt := (mpk′, sk′y)
14 witn := (ρ0, msk′, ρ)
15 π ← PProve(crs, stmt, witn)
16 return sky := (sk′y, π)

Alg Enc(mpk = (mpk′, crs), x, m)
17 return ct← Enc′(mpk′, x, m)

Alg Dec(sky = (sk′y, π), ct)
18 return Dec′(sk′y, ct)

Figure 21: The attribute-based encryption scheme ABE = (Setup, KeyExt, Enc, Dec) for a given attribute-
based encryption scheme ABE′ = (Setup′, KeyExt′, Enc′, Dec′) and a non-interactive zero-knowledge proof
system PS = (PGen, PTrapGen, PProve, PVer, PSim).

user secret keys, and the transformation preserves IND-CPA security.

23



Lemma 4.8 (Verifiable User Secret Keys). If ABE′ is perfectly complete, and PS is perfectly complete
and perfectly sound, then ABE has verifiable user secret keys.

Proof. We consider algorithm VerK as in Figure 21. Let (mpk, msk) ∈ Setup(1λ). Write mpk = (mpk′, crs).
Let x ∈ X and sky = (sk′y, π) be attributes such that P(x, y) = 1. If sky ∈ KeyExt(msk, y), then by
completeness of PS, we have VerK(mpk = (mpk′, crs), x, sky) = PVer(crs, (mpk′, sk′y), π) = 1. On the
other hand, assume that VerK(mpk = (mpk′, crs), x, sky) = PVer(crs, (mpk′, sk′y), π) = 1. Then, by perfect
soundness of PS, we know that there is some witness (ρ0, msk′, ρ) such that ((mpk′, crs), (ρ0, msk′, ρ)) ∈ R.
By definition of R, we have (mpk′, msk′) ∈ Setup′(1λ) and sk′y ∈ KeyExt′(msk′, y). By perfect completeness
of ABE′, we know that Dec(sky, Enc(mpk, x, m)) = m for all messages m.

Lemma 4.9 (Security). Let PS be a εzk-NIZK proof system for the relation R, and assume that ABE′
is IND-CPA secure. Then ABE is IND-CPA secure. In particular, for every PPT algorithm A there are
PPT algorithms B1,B2 with T(B1) ≈ T(B2) ≈ T(A) and

AdvIND-CPA
A,ABE (λ) ≤ 2QK · εzk + 2 · Advkeydist

B1,PS (λ) + AdvIND-CPA
B2,ABE′ (λ).

Proof. Let A be an efficient adversary against the IND-CPA security of ABE. We prove the statement via
a sequence of games G0 - G5. For each game Gi, we denote the probability that it outputs 1 by pri,
namely,

pri := Pr
[
GAi (λ)⇒ 1

]
.

Game G0: G0 is IND-CPA0. To recall, the game first generates (mpk, msk) ← Setup(1λ) and A is
given mpk and access to oracles Key, Ch, where Ch returns an encryption of m0 under attribute x on
input x, m0, m1. Write mpk = (mpk′, crs), where (mpk′, msk′) ∈ Setup′(1λ) and crs ∈ PGen(1λ). We have

pr0 = Pr
[
IND-CPAA0,ABE(λ)⇒ 1

]
.

Game G1: In G1, we modify how crs (contained in mpk) is generated. Namely, we generate crs with a
trapdoor td via (crs, td)← PTrapGen(1λ). A straight-forward reduction B1 shows that

|pr0 − pr1| ≤ Advkeydist
B1,PS (λ).

Game G2: In G2, we change how proofs π that are part of user secret keys sky are generated in queries
of the form Key(y). Namely, instead of using the witness (ρ0, msk′, ρ), we now compute them using
algorithm PSim, i.e. π ← PSim(crs, td, stmt). The games are statistically close by the zero-knowledge
property of PS. Concretely, we have

|pr1 − pr2| ≤ QK · εzk.

Game G3: In G3, we change oracle Ch. Namely, from now on, it returns an encryption of m1 under
attribute x on input x, m0, m1. It is easy to see that games G2 and G3 are indistinguishable, assuming
IND-CPA security of ABE′. This is because in game G2, we only need msk′ to simulate the oracle
Key. Therefore, a reduction B2 against the IND-CPA security of ABE′ can interpolate between G2 and
G3. Concretely, reduction B2 gets mpk′ as input and oracle access to oracles Key′, Ch′. It generates
crs← PTrapGen(1λ) and sets mpk = (mpk′, crs). Then, it runs A on inoput mpk. It then uses its own key
and challenge oracles Key′, Ch′ to simulate the oracles Key, Ch′ for A. Finally, it outputs whatever A
outputs. We have

|pr2 − pr3| ≤ AdvIND-CPA
B2,ABE′ (λ).

Game G4: In this game, we undo the change that we introduced in game G2. Namely, we generate
proofs π using the witness again. As before, we have

|pr3 − pr4| ≤ QK · εzk.

Game G5: In this game, we undo the change that we introduced in game G1. Namely, we generate crs
via crs← PGen(1λ) again. As before, we have

|pr4 − pr5| ≤ Advkeydist
B1,PS (λ).

Finally, we note that game G5 is identical to game IND-CPA1, finishing the proof.
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4.4 Constructing ABE with Uniquely Verifiable Master Secret Keys
We show how to achieve uniqueness of the master secret key from any attribute-based encryption scheme,
nearly for free. The only ingredient we need is a public key encryption scheme having unique secret keys,
which is easier to achieve. At a high level, we can add an encryption of the master secret key under the
public key encryption scheme to the master public key. Using the fact that we defined verifiability for
master secret keys in a syntactical way, we can show that this satisfies the definition of uniquely verifiable
master secret keys. In this way, our construction may still have many different master secret keys per
master public key that are functional, but only one that is a possible output of the honest algorithm
Setup. Let us define this type of public key encryption scheme formally.

Definition 4.10 (Uniquely Verifiable Secret Keys). Consider a public key encryption scheme PKE =
(Gen, Enc, Dec). We say that PKE has uniquely verifiable secret keys, if there exists a deterministic
polynomial time algorithm VerKPKE satisfying the following properties:

• VerKPKE(pk, sk) takes as input a public key mpk and a secret key sk and outputs a bit b ∈ {0, 1}.

• For all (pk, sk) ∈ Gen(1λ) and all sk′ we have:

VerKPKE(pk, sk′) = 1⇐⇒ (pk, sk′) ∈ Gen(1λ).

• For all (pk, sk) ∈ Gen(1λ) there does not exists a key sk′ ̸= sk such that VerKPKE(pk, sk′) = 1.

Now, let ABE′ = (Setup′, KeyExt′, Enc′, Dec′) be an attribute-based encryption scheme for some
predicate P : X × Y → {0, 1}. Further, let PKE = (GenPKE, EncPKE, DecPKE) be a public key encryption
scheme. We assume that PKE has uniquely verifiable secret keys, perfect completeness, and that we can
encrypt master secret keys of ABE′ using PKE. Then, we construct a new attribute-based encryption
scheme ABE = (Setup, KeyExt, Enc, Dec) for the same predicate P in Figure 22. The message space
remains unchanged. We show that if ABE′ is perfectly complete and IND-CPA secure, then ABE also
satisfies these properties and additionally has uniquely verifiable master secret keys. Further, if ABE′
has verifiable user secret keys, then so has ABE. The idea is to add an encryption under PKE of the
master secret key to the public key. We highlight that this construction relies heavily on the fact that
we defined verifiability for master secret keys in a syntactical way. That is, our construction may still
have many different master secret keys per master public key that are functional, but only one that is a
possible output of Setup. As key extraction and encryption essentially remained unchanged, it is clear

Alg Setup(1λ)
01 (mpk′, msk′)← Setup′(1λ)
02 (pk, sk)← GenPKE(1λ)
03 ctmsk′ ← EncPKE(pk, msk′)
04 mpk := (mpk′, pk, ctmsk′)
05 msk := (msk′, sk)
06 return (mpk, msk)

Alg KeyExt(msk = (msk′, sk), y)
07 return sky ← KeyExt′(msk′, y)

Alg Enc(mpk = (mpk′, pk, ctmsk′), x, m)
08 return ct← Enc′(mpk′, x, m)

Alg Dec(sky, ct)
09 return Dec′(sky, ct)

Figure 22: The attribute-based encryption scheme ABE = (Setup, KeyExt, Enc, Dec) for a given
attribute-based encryption scheme ABE′ = (Setup′, KeyExt′, Enc′, Dec′) and an encryption scheme
PKE = (GenPKE, EncPKE, DecPKE).

that completeness and verifiability of user secret keys is preserved. We will now show that ABE has
uniquely verifiable master secret keys and remains IND-CPA secure.

Lemma 4.11 (Uniquely Verifiable Master Secret Keys). If PKE is perfectly complete and has uniquely
verifiable secret keys, then ABE has uniquely verifiable master secret keys.

Proof. We present a deterministic polynomial time algorithm VerMK in Figure 23. Here, we assume
that PKE has uniquely verifiable secret keys with algorithm VerKPKE. Let mpk = (mpk′, pk, ctmsk′) be a
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Alg VerMK(mpk, msk)
01 let mpk = (mpk′, pk, ctmsk′)
02 let msk = (msk′, sk)
03 if VerKPKE(pk, sk) = 0 : return 0
04 if DecPKE(sk, ctmsk′) ̸= msk′ : return 0
05 return 1

Figure 23: The deterministic polynomial time algorithm VerMK for attribute-based encryption scheme
ABE. Here, we assume that PKE has uniquely verifiable secret keys with algorithm VerKPKE.

honestly generated master public key, i.e. (mpk, msk) ∈ Setup(1λ) for some msk. First of all, it easily
follows from the definitions and perfect completeness of PKE that for all m̃sk we have

(mpk, m̃sk) ∈ Setup(1λ) =⇒ VerMK(mpk, m̃sk) = 1.

Next, we show that for any msk0, msk1, we have:

(VerMK(mpk, msk0) = 1 ∧ VerMK(mpk, msk1) = 1) =⇒ msk0 = msk1.

Note that this is already sufficient to show unique verifiability of master secret keys. To prove this, assume
VerMK(mpk, msk0) = 1 and VerMK(mpk, msk1) = 1 and let msk0 = (msk′0, sk0), msk1 = (msk′1, sk1).
Then, by definition of VerMK it holds that VerKPKE(pk, sk0) = 1 and VerKPKE(pk, sk1) = 1. As PKE
has uniquely verifiable secret keys, we have sk0 = sk1. Further, by definition of VerMK it holds that
DecPKE(sk0, ctmsk′) = msk′0 and DecPKE(sk1, ctmsk′) = msk′1. In combination we obtain

msk′0 = DecPKE(sk0, ctmsk′) = DecPKE(sk1, ctmsk′) = msk′1,

which finishes the proof. Finally, we want to note that we do not need any verifiability of the master
secret keys of ABE′, as Definition 4.2 only deals with honestly generated master public keys.

Lemma 4.12 (Security). If PKE is IND-CPA secure and ABE′ is IND-CPA secure, then ABE is IND-CPA
secure. In particular, for every PPT algorithm A there are PPT algorithms B1,B2 with T(B1) ≈ T(B2) ≈
T(A) and

AdvIND-CPA
A,ABE (λ) ≤ 2 · AdvIND-CPA

B1,PKE (λ) + AdvIND-CPA
B2,ABE′ (λ).

Proof. Let A be an efficient adversary against the IND-CPA security of ABE. We prove the statement via
a sequence of games G0 - G3, as defined in Figure 24. For each game Gi, we denote the probability that
it outputs 1 by pri, namely,

pri := Pr
[
GAi (λ)⇒ 1

]
.

Game G0: G0 is defined to be the game IND-CPA0. That is, the game first generates (mpk, msk)←
Setup(1λ) and A is given mpk and access to oracles Key, Ch, where Ch returns an encryption of m0 under
attribute x on input x, m0, m1. Recall that mpk = (mpk′, pk, ctmsk′), where (mpk′, msk′) ∈ Setup′(1λ), pk
is a public key of the scheme PKE and ctmsk′ is an encryption of msk′ under pk. Clearly, we have

pr0 = Pr
[
IND-CPAA0,ABE(λ)⇒ 1

]
.

Game G1: In G1, we change the public key mpk that is given to the adversary. In particular, we set
ctmsk′ ← EncPKE(pk, 0|msk′|). Indistinguishability follows from a straight-forward reduction B1 against the
IND-CPA security of PKE. Note that this is possible, as sk is never needed during the simulation of the
game, in particular, although it is formally part of msk, only msk′ is needed to simulate Key. We obtain

|pr0 − pr1| ≤ AdvIND-CPA
B1,PKE (λ).

Game G2: In G2, we change the way oracle Ch is simulated. In particular, Ch now returns an encryption
of m1 under attribute x on input x, m0, m1. Note that in game G1 we only need msk′ to simulate the
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oracle Key. Thus, a reduction B2 against the IND-CPA security of ABE′ can interpolate between G1
and G2. That is, reduction B2 gets mpk′ as input and oracle access to oracles Key′, Ch′. It generates
(pk, sk) ← GenPKE(1λ) and runs A on input mpk := (mpk′, pk, EncPKE(pk, 0|msk′|)). It then uses its own
key and challenge oracles Key′, Ch′ to simulate the oracles Key, Ch′ for A. Finally, it returns whatever
A outputs. We have

|pr1 − pr2| ≤ AdvIND-CPA
B2,ABE′ (λ).

Game G3: In G3, we undo the change we did in G1. That is, we set ctmsk′ ← EncPKE(pk, msk′) as in
the real scheme. Similarly to the transition from G0 to G1, we obtain

|pr2 − pr3| ≤ AdvIND-CPA
B1,PKE (λ).

Finally, note that G3 is equivalent to the real IND-CPA game with respect to ABE and bit b = 1, namely

pr3 = Pr
[
IND-CPAA1,ABE(λ)⇒ 1

]
,

which finishes the proof.

Game G0-G3
01 (mpk′, msk′)← Setup′(1λ)
02 (pk, sk)← GenPKE(1λ)
03 ctmsk′ ← EncPKE(pk, msk′) // G0, G3

04 ctmsk′ ← EncPKE(pk, 0|msk′|) // G1, G2

05 mpk := (mpk′, pk, ctmsk′)
06 msk := (msk′, sk)
07 return b′ ← AKey,Ch(mpk)

Oracle Chb(x, m0, m1)
08 if hitP({x},Lsk) : return ⊥
09 Lch := Lch ∪ {x}
10 if |m0| ≠ |m1| : return ⊥
11 ct← Enc′(mpk′, x, m0) // G0, G1

12 ct← Enc′(mpk′, x, m1) // G2, G3

13 return ct

Figure 24: The games G0-G3 in the proof of Lemma 4.12. Lines with highlighted comments are only
executed in the corresponding games. Oracle Key is as in Figure 5.

4.5 From mKDM-CPA to mKDM-CCA
In this section we show how to turn any mKDM-CPA secure attribute-based encryption scheme into
an mKDM-CCA secure one. In combination with the construction in Section 4.2 we obtain a generic
mKDM-CCA secure construction in the standard model.

To do that, we use an IND-CPA secure public key encryption scheme and a simulation-sound NIZK proof
system. The intuition is to encrypt with both schemes and add a proof, which is similar to the well-known
construction of Naor and Yung [NY90, CCS09] for public key encryption. Let ABE′ = (Setup′, KeyExt′,
Enc′, Dec′) be an mKDM-CPA secure attribute-based encryption scheme for a predicate P : X×Y → {0, 1},
and PKE = (GenPKE, EncPKE, DecPKE) be an IND-CPA secure public key encryption scheme. We assume
that both support the same message space and encryption randomness of both has length z = z(λ).
Further, we let PS = (PGen, PTrapGen, PProve, PVer, PSim) be a simulation-sound NIZK proof system for
the relation

Rcca :=
{

((mpk′, pk′′, x, ct′, ct′′), (m, ρ′, ρ′′))
∣∣∣∣ ct′ = Enc′(mpk′, x, m; ρ′)∧

ct′′ = EncPKE(pk′′, m; ρ′′)

}
.

That is, PS allows to prove that two ciphertexts encrypt the same message.
Using these building blocks, we define a new scheme ABEcca[ABE′, PKE, PS] for the same predicate

P in Figure 25. Completeness of ABEcca[IBE′, PKE, PS] follows immediately from the completeness of
ABE′, PKE, PS.

Theorem 4.13 Let F be some class of functions, and ABE′ = (Setup′, KeyExt′, Enc′, Dec′) be an
F-mKDM-CPA secure attribute-based encryption scheme, and PKE = (GenPKE, EncPKE, DecPKE) be an
IND-CPA secure public key encryption scheme. Let PS = (PGen, PTrapGen, PProve, PVer, PSim) be an
εsso-simulation-sound (ρ, εso, εzk)-NIZK proof system for the relation Rcca.
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Alg Setup(1λ)
01 (mpk′, msk′)← Setup′(1λ)
02 (pk′′, sk′′)← GenPKE(1λ)
03 crs← PGen(1λ)
04 mpk := (mpk′, pk′′, crs)
05 msk := msk′
06 return (mpk, msk)

Alg Dec(sky, ct = (x, ct′, ct′′, π))
07 stmt := (mpk′, pk′′, x, ct′, ct′′)
08 if PVer(crs, stmt, π) = 0 : return ⊥
09 if P(x, y) = 0 : return ⊥
10 return Dec′(sky, ct′)

Alg Enc(mpk = (mpk′, pk′′, crs), x, m)
11 ρ′, ρ′′ $← {0, 1}z

12 ct′ ← Enc′(mpk′, x, m; ρ′)
13 ct′′ ← EncPKE(pk′′, m; ρ′′)
14 stmt := (mpk′, pk′′, x, ct′, ct′′)
15 witn := (m, ρ′, ρ′′)
16 π ← PProve(crs, stmt, witn)
17 return ct := (x, ct′, ct′′, π)

Alg KeyExt(msk = msk′, y)
18 sky ← KeyExt′(msk′, y)
19 return sky

Figure 25: The attribute-based encryption scheme ABEcca[ABE′, PKE, PS] = (Setup, KeyExt, Enc, Dec) for
a given attribute-based encryption scheme ABE′ = (Setup′, KeyExt′, Enc′, Dec′), public key encryption
scheme PKE = (GenPKE, EncPKE, DecPKE) and a proof system PS = (PGen, PTrapGen, PProve, PVer, PSim).

Then ABE := ABEcca[ABE′, PKE, PS] is F-mKDM-CCA secure. In particular, for every PPT algorithm
A making QC , QK , QD queries to the oracles Kdm, Key, Dec, respectively, there are PPT algorithms
B1,B2,B3 with T(Bi) ≈ T(A) for i ∈ {1, 2, 3} and

AdvmKDM-CCA
A,ABE (λ) ≤ 2QD · εsso + 2QC · εzk + Advkeydist

B1,PS (λ)
+ QC · AdvIND-CPA

B2,PKE (λ) + AdvmKDM-CPA
B3,ABE′ (λ).

Proof. We show the statement via a sequence of games G0-G8. The most important games are formally
presented in Figure 26. For 0 ≤ i ≤ 8 we define

pri := Pr [Gi ⇒ 1].

Recall that we have to show that∣∣∣Pr
[
mKDM-CCAA0,ABE(λ)⇒ 1

]
− Pr

[
mKDM-CCAA1,ABE(λ)⇒ 1

]∣∣∣
is negligible.
Game G0: We set G0 = mKDM-CCA1,ABE. Recall that in this game the adversary A gets access to
oracles Key, Kdm and Dec and Kdm(x, f) returns an encryption of f(msk) under attribute x. In the
scheme ABE this encryption contains attribute x, ciphertexts ct′ and ct′′, as well as a proof π showing
that both encrypt the same message. Also, recall that the decryption oracle Dec uses a user secret key
derived from msk′ to decrypt given ciphertext. We already introduce a (purely conceptual) change in
oracle Dec. Namely, while in the real game this oracle on input (y, ct) checks if there is some x such that
P(x, y) = 1 and (x, ct) ∈ Lct, our game now only checks if P(x, y) = 1 and (x, ct) ∈ Lct for the x that is
contained in ct = (x, ct′, ct′′, π). This is equivalent, by the definition of list Lct.
Game G1: In this game, we change how the public key is generated. Namely, we generate crs in
combination with a trapdoor td using algorithm PTrapGen instead of using algorithm PGen. Note that a
direct reduction B′1 from the CRS indistinguishability of PS shows that

|pr0 − pr1| ≤ Advkeydist
B′

1,PS (λ).

Game G2: Recall that a challenge ciphertext (i.e. a ciphertext returned by Kdm(x, f)) has the form
ct = (x, ct′, ct′′, π). In G2, we change how π is generated when A calls Kdm(x, f). That is, we generate
it by using the simulator PSim instead of PProve. Note that we can apply a hybrid over all QC queries
using the zero-knowledge property of PS to obtain

|pr1 − pr2| ≤ QC · εzk.
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Also note that from now on, we do not longer need the witness (f(msk), ρ′, ρ′′) to answer challenge queries.
Game G3: In G3 we change the challenge ciphertexts again. This time, we change how ct′′ is generated.
Recall that until G2, it was computed as an encryption of f(msk), i.e ct′′ = EncPKE(pk′′, f(msk); ρ′′). Now,
we generate it as ct′′ := EncPKE(pk′′, 0|f(msk)|; ρ′′). Note that at this point, the game can be simulated
without knowing sk′′, as msk = msk′ does not contain sk′′. Thus, a sequence of QC direct reductions from
the IND-CPA security of PKE shows

|pr2 − pr3| ≤ QC · AdvIND-CPA
B2,PKE (λ).

Game G4: In G4, we change the way decryption queries Dec(y, ct) for ct = (x, ct′, ct′′, π) are answered.
Recall that until this point, the decryption oracle derives a user secret key sky for attribute y from
msk′ and decrypts ct using sky. Also, note that this decryption process involves verifying the proof
π, checking if P(x, y) = 1, and decrypting ct′ using sky. In G4, we still verify the proof and check if
P(x, y) = 1, but decrypt ct′′ using sk′′ instead. Note that this can only result in a difference visible to
the adversary, if ct′ and ct′′ encrypt different messages but the proof π still verifies. Denote the event
that this happens in the ith query by badi for i ∈ [QD]. For each i, we can bound the probability of badi

using the simulation-soundness of PS. That is, we construct a (non-efficient) reduction B̂i that wins the
game SIMSO if badi happens. The reduction gets as input crs and sets up all the keys as in G3. To
simulate oracle queries of the form Kdm(x, f), it uses its own oracle Sim. In the ith query of the form
Dec(y, ct = (x, ct′, ct′′, π)) it returns ⊥ if (x, ct) is in list Lct. Otherwise, it checks if badi happens (this
is why the reduction is not efficient) and if so, it returns the statement stmt := (mpk′, pk′′, x, ct′, ct′′) and
the proof π to its own challenger. It remains to argue that this pair is fresh. Suppose it were not fresh,
i.e. B̂i queried Sim(stmt) at some point and received π. This can only happen during a query of the form
Kdm(x, f), in which B̂i would have added (x, ct) to list Lct, a contradiction. Thus, we obtain

|pr3 − pr4| ≤
QD∑
i=1

Pr [badi] ≤
QD∑
i=1

Pr
[
SIMSOB̂i

PS ⇒ 1
]
≤ QD · εsso.

Game G5: In G5 we change the challenge ciphertexts again. This time, we change how ct′ is generated.
Namely, we generate it as ct′ = Enc′(mpk′, x, 0|f(msk)|; ρ′). Note that in G4 the only remaining direct
dependencies on msk = msk′ are the ciphertexts ct′ and the oracle Key. In particular, we do not need
msk′ to simulate the oracle Dec. Thus, a direct reduction B3 from the mKDM-CPA security of IBE′ can
be constructed and we obtain

|pr4 − pr5| ≤ AdvmKDM-CPA
B3,ABE′ (λ).

Games G6-G8: From G6 to G8 we revert changes that we did. To be precise, in G6 we use msk′ again
to simulate decryption queries, which can be analyzed in a similar way to the step from G3 to G4. In G7
we generate the proofs π in challenge queries honestly again. In G8 we generate crs using PGen again.
Note that all previously used arguments apply and we have

|pr5 − pr8| ≤ QD · εsso + QC · εzk + Advkeydist
B′′

1 ,PS(λ),

for some reduction B′′1 . Further, G8 is equivalent to game mKDM-CCA0,ABE. Thus, setting B1 to be
arg maxB∈{B′

1,B′′
1 } Advkeydist

B,PS (λ) we obtain the result.

4.6 Instantiation and Extension
Here, we want to reference to example instantiations for the building blocks of our construction in the
standard model. We highlight that this is only a prototypical proof-of-concept instantiation, and due to
the use of obfuscation, a practical instantiation is out of scope. First of all, for iO, we can use the work by
Jai, Lin and Sahai [JLS21] relying on subexponential hardness of the assumptions LWE, LPN, SXDH and
PRG0, where PRG0 stands for a pseudorandom generator that can be evaluated in constant depth. We
can use any perfectly complete attribute-based encryption scheme. If PKE is needed (cf. Section 4.4), we
can use ElGamal encryption [ElG84]. We can instantiate the proof system PS using GOS proofs [GOS12].
For the simulation-sound proof system PS′ we can use the system by Groth [Gro06]. Both proof systems
are based on the DLIN assumption and can be used for any NP relation using Karp reductions.
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Game G0-G5
01 (mpk′, msk′)← Setup′(1λ)
02 (pk′′, sk′′)← GenPKE(1λ)
03 crs← PGen(1λ) // G0

04 (crs, td)← PTrapGen(1λ) // G1-G5

05 mpk := (mpk′, pk′′, crs)
06 O := (Key, Kdm, Dec)
07 b′ ← AO(mpk)
08 return b′

Oracle Dec(y, ct = (x, ct′, ct′′, π))
09 if P(x, y) = 1 ∧ (x, ct) ∈ Lct :
10 return ⊥
11 stmt := (mpk′, pk′′, x, ct′, ct′′)
12 if PVer(crs, stmt, π) = 0 : return ⊥
13 if P(x, y) = 0 : return ⊥
14 sky ← KeyExt′(msk′, y) // G0-G3

15 m := Dec′(sky, ct′) // G0-G3

16 m := DecPKE(sk′′, ct′′) // G4, G5

17 return m
Oracle Kdm(x, f ∈ F)
18 if hitP({x},Lsk) : return ⊥
19 Lch := Lch ∪ {x}, ρ′, ρ′′ $← {0, 1}z

, m0 := 0|f(·)|, m1 := f(msk)
20 ct′ := Enc′(mpk′, x, m1; ρ′) // G0-G4

21 ct′ := Enc′(mpk′, x, m0; ρ′) // G5

22 ct′′ := EncPKE(pk′′, m1; ρ′′) // G0-G2

23 ct′′ := EncPKE(pk′′, m0; ρ′′) // G3-G5

24 stmt := (mpk′, pk′′, x, ct′, ct′′)
25 witn := (m1, ρ′, ρ′′), π ← PProve(crs, stmt, witn) // G0, G1

26 π ← PSim(crs, td, stmt) // G2-G5

27 ct := (x, ct′, ct′′, π), Lct := Lct ∪ {(x, ct)}
28 return ct

Figure 26: The games G0-G5 in the proof of Theorem 4.13. Lines with highlighted comments are only
executed in the corresponding games. Oracle Key(y) is as in the real game (Figure 4).

Remark 4.14 (Imperfect Completeness). As written, the construction in Section 4.2 only works for
identity-based and public key encryption schemes with perfect completeness. This is due to the use
of indistinguishability obfuscation, as this primitive only guarantees security for perfectly functionally
equivalent circuits. However, we note that one can still adopt most of the constructions in a lattice-based
setting. To see that, note that in lattice-based (identity-based) encryption schemes based on dual-style
Regev encryption, such as [GPV08, CHKP10], the completeness error results from two potentially long
vectors that influence the decryption process: First, a user secret key corresponds to a Gaussian SIS
solution, which can have a large norm with non-zero probability. Second, the ciphertext contains Gaussian
errors which can be to long as well. To solve this problem, the key extraction and encryption algorithms
can just abort if these vectors are to long. As this happens with negligible probability and can be done
outside of any obfuscation, we can still allow such an abort in our construction. To be more precise, it is
important that the modified key extraction and encryption algorithms abort with negligible probability
and that if they do not abort, then decryption always succeeds. Then, to make our proof work, we change
the original algorithms to the aborting ones, then we apply the obfuscation transition. Afterwards, we
go back to the original algorithms that guarantee security, and follow the rest of the proof. It remains
to instantiate the proof system and the public key encryption scheme with unique secret keys. We
focus on the latter in Section 5. A different approach to solve the imperfect completeness issue is the
error-removing transformation by Bitanski and Vaikuntanathan [BV17].

Remark 4.15 (Identity-Based Encryption). As a special case with the identity predicate (which is
compatible with itself), the constructions in Sections 4.2 and 4.4 directly imply similar constructions for
identity-based encryption.

Remark 4.16 (Attribute-Hiding). In the context of attribute-based encryption, one may additionally aim
to achieve attribute-hiding, which means that a ciphertext generated for attribute x does not reveal x.
We note that extending our results to this setting requires additional techniques. This is because in all
steps of our proof, x is hardcoded in the challenge ciphertext circuit.
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5 Lattice Public Key Encryption with Unique Secret Keys
In this section we modify the well-known Regev encryption scheme [Reg05] such that whenever a public
key is generated and the generation algorithm does not abort, there exists only one valid secret key for it.
Note that with overwhelming probability the key of the original Regev scheme is already unique. However,
even during key generation, it is not straight-forward to check if this holds, because the uniqueness
depends on the length of a shortest vector in the lattice given by the public key. Thus, if we want to use
the Regev encryption scheme as a building block in our construction in Section 4.4 using the aborting
technique as discussed in Remark 4.14 we need to apply some minor modifications to the key generation
algorithm, such that a lower bound on this shortest vector is known.

Before we go into detail, we need to recall some lattice background. For notation, the Euclidean norm
of a vector v is denoted by ∥v∥. Let q ∈ P be a prime and Λ be an m-dimensional lattice. That is, a
discrete additive subgroup of Rm. Any such lattice is of the form Λ = B · Zk for some B ∈ Zm×k with
linearly independent columns, where k ≤ m is the rank of the lattice. We denote its dual lattice by Λ∗,
which is defined as

Λ∗ := {x ∈ Rm : ∀y ∈ Λ : xty ∈ Z}.
Also, for 1 ≤ i ≤ n we denote its i-th successive minimum by λi(Λ), which is the smallest B ∈ R such
that there are i linearly independent vectors of length at most B in Λ. For any vector c ∈ Rm we denote
the discrete Gaussian distribution with parameter s > 0 over the coset c + Λ by Dc+Λ,s. Any matrix
A ∈ Zn×m

q , m > n defines m-dimensional lattices and lattice cosets:

Λq(A) := {Ats : s ∈ Zn}+ qZm,

Λ⊥q (A) := {z ∈ Zm : Az = 0 mod q},
Λ⊥u (A) := {z ∈ Zm : Az = u mod q}.

These lattices are dual up to scaling by q:

Λq(A) = qΛ⊥q (A)∗, Λq(A)∗ = 1
q

Λ⊥q (A).

We also need some tail bounds for discrete Gaussians, see Lemmas 5.1, 5.2 and 5.3 in [GPV07] and
Lemma 4.4 in [MR04].

Lemma 5.1 ([GPV07]). Let n, m ∈ N, q ∈ P at least polynomial in n, m ≥ 2n log q. Consider any
ω(
√

log m) function and s ≥ ω(
√

log m). Then for all but a negligible (in n) fraction of all A ∈ Zn×m
q

the following distribution is statistically close to uniform over Zn
q : {Ae | e← DZm,s}. Furthermore, the

conditional distribution of e← DZm,s given u = Ae mod q is exactly DΛ⊥
u (A),s.

Lemma 5.2 ([MR04, GPV07]). Consider any ω(
√

log m) function and s ≥ ω(
√

log m). Then we have

Pr
[
∥x∥ > s

√
m | x← DZm,s

]
≤ 2−m+1.

Lemma 5.3 ([MR04, GPV07]). Let n ∈ N, q ∈ P and m ≥ 2n log q. Consider any ω(
√

log m) function
and s ≥ ω(

√
log m). Then for all but an at most q−n fraction of all A ∈ Zn×m

q and any vector u ∈ Zn
q ,

we have
Pr

[
∥x∥ > s

√
m | x← DΛ⊥

u (A),s

]
≤ 2−m+1.

Lemma 5.4 ([Ajt96, Reg05, GPV07, GPV08]). Let n ∈ N, q ∈ P and m ≥ 2n log q. The for all but an
at most q−n fraction of all A ∈ Zn×m

q , the subset sums of the columns of A generate Zn
q , i.e. for every

u ∈ Zn
q there is an e ∈ {0, 1}m with Ae = u mod q.

For our modification of the Regev encryption scheme we need a result by Ajtai [Ajt99]. We note
that [GPV08] claims a more efficient bound L = m1+ϵ for any ϵ > 0, which would also result in a more
efficient instantiation of our parameters. As [GPV08] give no details, we use the bound given in [Ajt99].

Lemma 5.5 ([Ajt99, GPV08]). Let n = Θ(λ). For any prime q ∈ P polynomial in n, any m ≥ 5n log q,
there is an L = m3.5 and a PPT algorithm GenWithBasis such that GenWithBasis(1n, 1m, q) takes as input
n, m and q and outputs a matrix A ∈ Zn×m

q and a basis S ⊂ Λ⊥q (A). For these outputs it holds that A is
distributed statistically close to uniform over Zn×m

q and all vectors in S have length at most L.
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For the proof of uniqueness we also need the following lemma and show a corollary.

Lemma 5.6 (Transference Theorem [Ban93]). For any lattice Λ of rank m it holds that 1 ≤ λ1(Λ) ·
λm(Λ∗) ≤ m.

Corollary 5.7 Let n = Θ(λ), q ∈ P polynomial in n, m ≥ 5n log q, L = m3.5 and GenWithBasis be as in
Lemma 5.5. Let (A, S)← GenWithBasis(1n, 1m, q). Define the map

gA : Zn
q × {e ∈ Zm | ∥e∥ ≤ B} −→ Zm

q

(s, e) 7−→ Ats + e.

If A is full-rank and 2 · L ·B < q, then gA is injective.

Proof. Let D := Zn
q × {e ∈ Zm | ∥e∥ ≤ B} and assume gA(s1, e1) = gA(s2, e2). This implies that

e1 − e2 = At(s2 − s1).

Thus, ē := e1−e2 (reduced modulo q) is a lattice vector in Λq(A). In particular, by the triangle inequality
we have ∥ē∥ ≤ 2 · B. Next, we want to lower bound λ1(Λq(A)). To do so, recall that by Lemma 5.5
we have λm(Λ⊥q (A)) ≤ L. Using the Transference Theorem (Lemma 5.6) and the duality of Λq(A) and
Λ⊥q (A) (up to scaling) we obtain

λ1(Λq(A)) ≥ 1
λm(Λq(A)∗) ≥

q

λm(Λ⊥q (A)) ≥
q

L
.

Thus, using the assumption 2 · L · B < q we see that ē is shorter than λ1(Λq(A)), implying e1 = e2.
Finally, this also implies Ats1 = Ats2. As A is full-rank, we have s1 = s2.

We define the LWE assumption.

Definition 5.8 (Learning With Errors Assumption (LWE)). Let λ, n = n(λ) ∈ N,q = q(n) be prime
number and χ = χ(n) be a distribution over Z. We say that the LWEn,q,χ assumption holds, if for every
PPT algorithm B and every polynomial m = poly(n) the following advantage is negligible in λ:

AdvLWEn,q,χ

B (λ) := |Pr
[
B(A, b) = 1 | A $← Zn×m

q , b $← Zn×m
q

]
−Pr

[
B(A, Ats + e) = 1 | A $← Zn×m

q , s $← Zn
q , e← χm

]
|.

A sequence of works [Reg05, Pei09, BLP+13] shows the hardness of LWE for discrete Gaussian error
distributions of parameter αq with αq ≥ 2

√
n based on the worst-case hardness of lattice approximation

problems.
We define our modified Regev encryption in Figure 27 with message spaceM = {0, 1}. Note that it is

basically the Regev encryption scheme, but the matrix A is generated using Lemma 5.5 and some aborts
are added. It makes use of LWE parameters n, q, m ≥ 5n log q and α > 0 with αq ≥ 2

√
n and q ∈ P.

Then we have αq ≥ ω(
√

log m), meaning that we can apply Lemmata 5.1 and 5.3. For completeness we
need 4α2mq < 1 and for uniqueness of secret keys 2αm4 < 1. To be concrete, fixing m := 5n log q and
αq := 2

√
m an easy calculation shows that any q > max{16m2, 4m4.5} is sufficient. We will now show

that if neither Gen nor Enc do abort, then we always have correct decryption. Further, Gen and Enc only
abort with negligible probability.

Lemma 5.9 (Completeness). If 4α2mq < 1, then for PKE = (Setup, KeyExt, Enc, Dec) as defined in
Figure 27 the following hold:

• Gen(1λ) aborts with negligible probability.

• For all (pk, sk) ∈ Gen(1λ) and any m ∈M the algorithm Enc(pk, m) aborts with negligible probability.

• For all (pk, sk) ∈ Gen(1λ), any m ∈M and any ct ∈ Enc(pk, m) we have Dec(sk, ct) = m.
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Alg Gen(1λ)
01 set parameters as in the text.
02 (A, S)← GenWithBasis(1n, 1m, q)
03 if A not full-rank: return ⊥
04 e← Dm

Z,αq

05 if ∥e∥ > αq
√

m : return ⊥
06 s $← Zn

q , b := Ats + e ∈ Zm
q

07 pk := Ā :=
[

A
bt

]
∈ Z(n+1)×m

q

08 return (pk, sk := s)

Alg Dec(sk, ct)
09 if |[−st|1]ct| > q/2 : return 1
10 return 0

Alg Enc(pk, m)
11 x← Dm

Z,αq

12 if ∥x∥ > αq
√

m : return ⊥

13 return ct := Āx +
[

0
m⌊q/2⌉

]
Alg VerKPKE(Ā, s)

14 let Ā =
[

A
bt

]
∈ Z(n+1)×m

q

15 e := b−Ats
16 if ∥e∥ > αq

√
m : return 0

17 return 1

Figure 27: The public key encryption scheme PKE = (Setup, KeyExt, Enc, Dec) and the associated key
verification algorithm VerKPKE. The scheme is a modification of the classical Regev encryption scheme
[Reg05] such that unique keys are guaranteed.

Proof. For the first claim, note that Gen only aborts if A is not full-rank or ∥e∥ > αq
√

m. Note that
by Lemma 5.5 the matrix A is statistically close to uniform. Thus, the former happens with negligible
probability, by Lemma 5.4, and the latter happens with negligible probability by Lemma 5.2. Similarly,
the second claim follows directly from Lemma 5.2. For the third claim, note that by the Cauchy-Schwarz
inequality

|[−st|1]ct−m⌊q/2⌉| = |etx| ≤ ∥e∥∥x∥ ≤ α2q2m,

where the last inequality is always true if neither Gen(1λ) nor Enc(pk, m) aborts. Finally, the assumption
4α2mq < 1 implies that this term is less than q/4, which finishes the proof.

Lemma 5.10 (Uniquely Verifiable Secret Keys). If 2αm4 < 1, then for PKE = (Setup, KeyExt, Enc, Dec)
and VerKPKE as defined in Figure 27 the following holds:

• For all (pk, sk) ∈ Gen(1λ) we have VerKPKE(Ā, s) = 1.

• For all (pk, sk) ∈ Gen(1λ) and any sk′ with VerKPKE(pk, sk′) = 1 we have sk = sk′.

Proof. The first claim is clear by the definition of algorithms Gen, VerKPKE. For the second claim, let
sk = s, sk′ = s′ and define

e := b−Ats, e′ := b−Ats′.
By assumption, matrix A is generated using GenWithBasis(1n, 1m, q). As Gen did not abort, we know
that A is full-rank. Next, set B := αq

√
m. Then 2αm4 < 1 implies that all the conditions of Corollary 5.7

are satisfied. If VerKPKE accepts both sk and sk′ then

(s, e), (s′, e′) ∈ Zn
q × {x ∈ Zm | ∥x∥ ≤ B}.

Finally, with notation as in Corollary 5.7 and by definition of e, e′ we have

gA(s, e) = b = gA(s′, e′).

As gA is injective, the statement follows.

For completeness of our presentation, we also sketch IND-CPA security, although it is nearly the same
as the standard proof for the original Regev scheme.

Lemma 5.11 (Security). The scheme PKE = (Setup, KeyExt, Enc, Dec) as defined in Figure 27 is IND-CPA
secure under the LWEn,q,DZ,αq

assumption. In particular, for every PPT algorithm A there is a PPT
algorithm B such that T(B) ≈ T(A) and

AdvIND-CPA
A,PKE (λ) ≤ 2 · Adv

LWEℓ,q,DZ,αq

B (λ) + negl(λ).
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Proof. We give a short proof sketch using a sequence of games. For each game Gi, we denote the
probability that it outputs 1 by pri, namely,

pri := Pr
[
GAi (λ)⇒ 1

]
.

Game G0 is the original IND-CPA0 game. In G1, we generate A uniformly random instead of using
GenWithBasis and remove all aborts whenever the game uses algorithms Gen(1λ) and Enc(pk, m0). As A
is statistically close to uniform in G0 by Lemma 5.5 and Lemma 5.9 states that the aborts only happen
with negligible probability we have

|pr0 − pr1| ≤ negl(λ).
Now we are in the setting of the classical Regev proof. Thus, in game G2 we change the last row of the
public key to random:

b $← Zm
q .

A straight-forward reduction B shows that this change is not noticed by the adversary, under the LWE
assumption:

|pr1 − pr2| ≤ Adv
LWEℓ,q,DZ,αq

B (λ).
We note that now the matrix pk = Ā is uniformly random, thus Lemma 5.1 implies that the ciphertext
is statistically close to uniformly random over Zn+1

q . In game G3 we generate the challenge ciphertext
ct $← Zn+1

q and we have
|pr2 − pr3| ≤ negl(λ).

We repeat all steps in reverse order to end up at the game IND-CPA1, which finishes the proof.
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