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Abstract
We provide a calculus of mates for functors to the ∞-
category of∞-categories and extend Lurie’s unstraight-
ening equivalences to show that (op)lax natural transfor-
mations correspond to maps of (co)cartesian fibrations
that do not necessarily preserve (co)cartesian edges. As
a sample application, we obtain an equivalence between
lax symmetricmonoidal structures on right adjoint func-
tors and oplax symmetric monoidal structures on the
left adjoint functors between symmetric monoidal ∞-
categories that is compatible with both horizontal and
vertical composition of such structures. As the technical
heart of the paper, we study various new types of fibra-
tions over a product of two ∞-categories. In particular,
we show how they can be dualised over one of the two
factors and how they encode functors out of the Gray
tensor product of (∞, 2)-categories.
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1 INTRODUCTION

The goal of the present paper is to establish a version of the calculus of mates for diagrams of∞-
categories, encoded in terms of (co)cartesian fibrations. Recall that if we have an oplax square in
a 2-category, that is a diagram of the form

∙ ∙

∙ ∙

𝐿

𝑓 𝑔

𝐿′

𝛼

given by a 2-morphism 𝛼∶ 𝐿′𝑓 → g𝐿, where 𝐿 and 𝐿′ have right adjoints 𝑅 and 𝑅′, then we can
form themate square, which is the lax square

∙ ∙

∙ ∙,

𝑅

𝑔 𝑓

𝑅′

𝛽

where 𝛽 is the Beck–Chevalley transformation

𝑓𝑅⟶ 𝑅′𝐿′𝑓𝑅
𝛼
⟶ 𝑅′g𝐿𝑅⟶ 𝑅′g

defined using the unit of the adjunction 𝐿′ ⊣ 𝑅′ and the counit of 𝐿 ⊣ 𝑅. It is not hard to show
that this procedure and its dual give an isomorphism between oplax squares with horizontal left
adjoints and lax squareswith horizontal right adjoints.Moreover, thismate correspondence is com-
patiblewith compositions of squares both vertically andhorizontally. Ausefulway to encode some
of this functoriality is in terms of (op)lax natural transformations. If 𝐶,𝐷 are 2-categories, a lax
transformation 𝜙 between functors 𝐹,𝐺∶ 𝐶 → 𝐷 has lax naturality squares

𝐹(𝑥) 𝐺(𝑥)

𝐹(𝑦) 𝐺(𝑦)

𝜙𝑥

𝐹(𝑓) 𝐺(𝑓)

𝜙𝑦

for each morphism 𝑓∶ 𝑥 → 𝑦 in 𝐶, and similarly for oplax transformations. By taking mates, we
obtain an equivalence between oplax transformations given pointwise by left adjoints and lax
transformations given pointwise by right adjoints.
In this paper, we will prove an ∞-categorical version of this equivalence in the special case

where 𝐶 is an∞-category and 𝐷 is the (∞, 2)-category of∞-categories. This arises as a combina-
tion of our twomain results: on the one hand, we will prove a version of the mate correspondence
for (co)cartesian fibrations (Theorem B), and on the other hand, we will provide a fibrational
description of (op)lax transformations (Theorem E).
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 891

1.1 Lax monoidal adjunctions

Since many∞-categorical structures are conveniently encoded using fibrations, we believe that
this fibrational approach to mates is very useful in its own right. Before we discuss our general
results in more detail, we will look at a concrete special case that illustrates this point: the left
adjoint of a lax symmetric monoidal functor between∞-categories admits a canonical oplax sym-
metric monoidal structure, and vice versa. To state this more precisely, let us briefly recall the
definitions of symmetric monoidal∞-categories and (op)lax monoidal functors among them:
If 𝑋 is an∞-category with finite products and Fin∗ denotes the category of finite pointed sets,

a commutative monoid in 𝑋 can be defined as a functor𝑀∶ Fin∗ → 𝑋 such that the Segal maps
𝑀⟨𝑛⟩ →∏𝑛

𝑖=1 𝑀⟨1⟩ are equivalences; here ⟨𝑛⟩ = {0, … , 𝑛} is pointed by 0 and themap is induced by
the projections ⟨𝑛⟩→ ⟨1⟩ that send all but one element to the base point. (The underlying object
of the monoid is𝑀⟨1⟩.) Such a commutative monoid in the∞-category Cat of small∞-categories
is then a symmetric monoidal∞-category. Moreover, a homomorphism of commutative monoids
is simply a natural transformation of functors Fin∗ → 𝑋; in the case of symmetric monoidal∞-
categories, these correspond to strong symmetric monoidal functors.
A functor 𝐵 → Cat can be encoded as either a cocartesian fibration over 𝐵 or a cartesian fibra-

tion over 𝐵op. A symmetric monoidal structure on an ∞-category 𝐶 can therefore be described
either by a cocartesian fibration 𝐶⊗ → Fin∗ or a cartesian fibration 𝐶⊗ → Fin

op
∗ . In terms of these

fibrations, a strong monoidal functor from 𝐶 to𝐷 corresponds to a commutative triangle of either
of the forms

where 𝑓⊗ preserves cocartesian morphisms and 𝑓⊗ preserves cartesian morphisms.
By weakening the conditions on 𝑓⊗ and 𝑓⊗, we obtain good definitions of lax and oplax sym-

metricmonoidal functors. To this end, recall that amorphism 𝜙∶ ⟨𝑛⟩→ ⟨𝑚⟩ in Fin∗ is called inert
if it restricts to an isomorphism ⟨𝑛⟩ ⧵ {𝜙−1(0)} ∼

⟶ ⟨𝑚⟩ ⧵ {0}. In [23], Lurie defines a lax symmetric
monoidal functor to be a commutative triangle as on the left where 𝑓⊗ only preserves the cocarte-
sian morphisms that cover inert morphisms in Fin∗. Informally, we can think of an object of 𝐶⊗
over ⟨𝑛⟩ as a list (𝑐1, … , 𝑐𝑛) of objects in𝐶, and this condition should be thought of as requiring the
image of this object in 𝐷⊗ to be the list (𝑓(𝑐1), … , 𝑓(𝑐𝑛)). For objects 𝑥, 𝑦 ∈ 𝐶, we have a cocarte-
sian morphism starting at (𝑥, 𝑦) ∈ 𝐶⊗⟨2⟩ covering the map ⟨2⟩→ ⟨1⟩ that takes both 1 and 2 to 1. Its
target encodes (essentially by definition) the tensor product 𝑥 ⊗ 𝑦. This morphism gets sent to a
morphism (𝑓𝑥, 𝑓𝑦) → 𝑓(𝑥 ⊗ 𝑦) in 𝐷⊗, which may no longer be cocartesian; taking a cocartesian
factorisation, we then obtain the lax monoidal structure map 𝑓𝑥 ⊗ 𝑓𝑦 → 𝑓(𝑥 ⊗ 𝑦) in 𝐷.
If we instead decide to similarly relax the conditions on𝑓⊗ and require that it only preserves the

cartesianmorphisms covering inerts, we obtain Lurie’s definition of an oplax symmetricmonoidal
functor. Namely, now the tensor product of 𝑥 and 𝑦 in 𝐶 is encoded by a cartesian morphism 𝑥 ⊗

𝑦 → (𝑥, 𝑦) in 𝐶⊗ covering the same map as before. Its image in 𝐷⊗ factors into a cartesian edge
preceded by a map 𝑓(𝑥 ⊗ 𝑦) → 𝑓(𝑥) ⊗ 𝑓(𝑦), which by definition is the oplax structure map of 𝑓.
We remark that the opposite functor (𝐶⊗)op → Fin∗ is actually the cocartesian fibration which
encodes the natural symmetric monoidal structure on 𝐶op, and so an oplax monoidal functor can
also be described as a lax monoidal functor 𝐶op → 𝐷op, as the name suggests.

 1460244x, 2023, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12548 by N

tnu N
orw

egian U
niversity O

f S, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



892 HAUGSENG et al.

In this fibrational context, we can easily deduce the following from our general results.

Proposition A. Given two symmetric monoidal∞-categories 𝐶 and 𝐷, the extraction of adjoints
gives inverse equivalences between the∞-category of lax symmetric monoidal right adjoints 𝐶⊗ →
𝐷⊗ and the opposite of the∞-category of oplax monoidal left adjoints 𝐷⊗ → 𝐶⊗.

In fact, we will produce an equivalence of (∞, 2)-categories that also encodes the compatibil-
ity of taking mates with compositions of (op)lax monoidal functors. We note that since the first
version of this paper appeared, another proof of Proposition A has been given by Torii in [30, 31],
based on the two universal properties of Day convolution on presheaves. Let us also say immedi-
ately that in [23] Lurie already proved that the right adjoint of a strong monoidal functor admits
a lax monoidal structure, which suffices for a great many applications. Moreover, Torii has more
generally produced a lax monoidal structure (but none of the accompanying coherences) on the
right adjoint of an oplax monoidal functor in [29], by means of a span category construction. (We
compare his construction to ours in [14].)

1.2 Parametrised adjunctions

With the example of lax monoidal adjunctions in mind, it hopefully seems reasonable that the
fibrational calculus of mates should relate fibrewise right adjoint functors between cocartesian
fibrations and fibrewise left adjoint functors between the corresponding cartesian fibrations. Our
first main result shows that this holds generally:

Theorem B. Let 𝐵 be an∞-category. Then there is an equivalence of (∞, 2)-categories

𝐂𝐨𝐜𝐚𝐫𝐭lax,R(𝐵) ≃
(
𝐂𝐚𝐫𝐭opl,L(𝐵op)

)(1,2)−op
extracting adjoints fibrewise; here the left-hand side denotes the (∞, 2)-category with cocartesian
fibrations over 𝐵 as objects, fibrewise right adjoint functors (that need not preserve cocartesian lifts)
as 1-morphisms, and natural transformations between these as 2-morphisms. The right-hand side is
defined dually, using cartesian fibrations and fibrewise right adjoints, with the directions of 1- and 2-
morphisms reversed by the superscript. Furthermore, these equivalences are natural in pulling back
along the base.

Taking 𝐵 to be an ∞-operad and taking appropriate subcategories cut out by the Segal
conditions, this specialises to give the following.

CorollaryC. For any∞-operad𝑂, the extraction of adjoints gives a canonical equivalence of (∞, 2)-
categories

𝐌𝐨𝐧𝐂𝐚𝐭lax,R
𝑂

≃
(
𝐌𝐨𝐧𝐂𝐚𝐭

opl,L
𝑂

)(1,2)−op
,

where the left-hand side denotes the (∞, 2)-category of 𝑂-monoidal ∞-categories, lax 𝑂-monoidal
functors that admit (objectwise) left adjoints and 𝑂-monoidal transformations; the right-hand side
is defined dually using oplax 𝑂-monoidal functors that admit right adjoints. Furthermore, these
equivalences are natural in pulling back along operad maps in the base.
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 893

Proposition A is contained in this statement by taking 𝑂 = 𝔼∞ and examining the morphism
∞-categories between two symmetric monoidal∞-categories 𝐶 and 𝐷. We also use Corollary C
to extend a result of Hinich: We show that the internal mapping functor

[−,−]∶ 𝐶op × 𝐶⟶ 𝐶

in a closed 𝔼𝑛+1-monoidal ∞-category 𝐶 admits a canonical lax 𝔼𝑛-monoidal structure, where
1 ⩽ 𝑛 ⩽ ∞; in [18], Hinich established the case 𝑛 = ∞ by different means.
In order to prove TheoremB, we need to describe functors to the full subcategoriesCocartlax(𝐵)

and Cartopl(𝐵) of cocartesian and cartesian fibration in Cat∕𝐵 in terms of fibrations.
We show that functors 𝐴 → Cocartlax(𝐵) correspond under covariant unstraightening to

functors 𝑝 = (𝑝1, 𝑝2)∶ 𝐸 → 𝐴 × 𝐵 such that

(1) 𝑝1 is a cocartesian fibration,
(2) 𝑝1-cocartesian morphisms map to equivalences under 𝑝2,
(3) for every 𝑎 ∈ 𝐴, the functor (𝑝2)𝑎 ∶ 𝐸𝑎 → 𝐵 on fibres over 𝑎 is a cocartesian fibration.

We call such a functor a Gray fibration, for reasons that will become clear in a moment. Dually,
functors 𝐴op → Cocartlax(𝐵) correspond under contravariant unstraightening to functors 𝑝 =
(𝑝1, 𝑝2)∶ 𝐸 → 𝐴 × 𝐵 such that

(1) 𝑝1 is a cartesian fibration,
(2) 𝑝1-cartesian morphisms map to equivalences under 𝑝2,
(3) for every 𝑎 ∈ 𝐴, the functor (𝑝2)𝑎 ∶ 𝐸𝑎 → 𝐵 on fibres over 𝑎 is a cocartesian fibration.

We call these functors curved orthofibrations. While the notion of Gray fibrations admits a carte-
sian dual, op-Gray fibrations, which encode functors 𝐴op → Cartopl(𝐵), the key point for our
proofs is that curved orthofibrations are self-dual in the sense that they can also be charac-
terised by 𝑝2 being a cocartesian fibration, 𝑝2-cocartesian morphisms mapping to equivalences
under 𝑝1 and the functors (𝑝1)𝑏 ∶ 𝐸𝑏 → 𝐴 being cartesian fibrations. They can therefore also be
straightened covariantly in the second variable, and hence correspond to functors𝐵 → Cartopl(𝐴).
Combining these one-variable straightenings, we obtain the following ‘dualisation’ equiva-

lences.

Theorem D. There is a natural equivalence of∞-categories

Gray(𝐴, 𝐵) ≃ CrvOrtho(𝐴op, 𝐵) and OpGray(𝐴, 𝐵) ≃ CrvOrtho(𝐴, 𝐵op);

here Gray(𝐴, 𝐵) and OpGray(𝐴, 𝐵) are the ∞-category of Gray fibrations and op-Gray fibrations
over 𝐴 × 𝐵, respectively, whereas CrvOrtho(𝐴op, 𝐵) is the∞-category of curved orthofibrations over
𝐴op × 𝐵 and in both cases, the morphisms are required to preserve the defining (co)cartesian mor-
phisms.

Special cases of this duality were already known. For example, bifibrations are precisely those
curved orthofibration whose fibres are∞-groupoids, and under the equivalences above, they cor-
respond precisely to the left and right fibrations, respectively. An equivalence of this kindwas first
established by Stevenson in [27] by different means.
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894 HAUGSENG et al.

To see the relation of these results on two-variable fibrations to Theorem B, let us explain how
the equivalence we build acts on a morphism 𝑓∶ 𝐷 → 𝐸 of cartesian fibrations over 𝐵 which is
given fibrewise by left adjoints:

(1) Firstly, 𝑓 can be covariantly unstraightened to a curved orthofibration over 𝐵 × [1].
(2) Using Theorem D, this corresponds to a Gray fibration over 𝐵op × [1]. Furthermore, because

𝑓 is given fibrewise by left adjoints, this Gray fibration is also a curved orthofibration over
[1] × 𝐵op.

(3) Therefore, this new curved orthofibration can be covariantly straightened to a functor [1]op →
Cocartlax(𝐵op), corresponding to a morphism 𝐸∨ → 𝐷∨ over 𝐵op between the cocartesian
fibrations dual to the cartesian fibrations we started with.

Here the second half of the second step is the parametrised analogue of the statement that adjunc-
tions among∞-categories can be encoded by functors to [1] that are both cocartesian and cartesian
fibrations, with the left and right adjoints obtained by cocartesian and cartesian straightening,
respectively. At the level of spaces of objects, a very similar argument appears in work of Ayala,
Mazel-Gee and Rozenblyum, where the base 𝐵 is allowed to be an (∞, 2)-category [2, Lemma
B.5.7]. Their work also contains Corollary C at the level of objects, as [2, Remark 4.1.7].

1.3 Unstraightening lax natural transformations

So far we have explained the fibrational perspective on lax natural transformation and how in this
context, we produce an analogue of the calculus of mates. However, there is a second perspec-
tive on lax natural transformations which is more intrinsic to (∞, 2)-category theory. To explain
it, recall that in terms of diagrams of∞-categories, a lax natural transformation 𝑓 between two
functors 𝐹,𝐺∶ 𝐵 → Cat should be encoded by maps 𝐹(𝑏) → 𝐺(𝑏) for each 𝑏, together with lax
commuting squares

𝐹(𝑏) 𝐹(𝑏)

𝐹(𝑏′) 𝐹(𝑏′)

𝛽!

𝑓𝑏

𝛽!
𝑓𝛽

𝑓𝑏′

for each map 𝛽∶ 𝑏 → 𝑏′ in 𝐵 (together with coherence data for compositions). For oplax trans-
formations, the direction of the natural transformation 𝑓𝛽 is reversed. The (∞, 2)-categorical
approach to defining such (op)lax natural transformations is to use the Gray tensor product ⊠,
for which a goodmodel has been introduced by Gagna, Harpaz and Lanari in [7]. Indeed, one can
define lax and oplax natural transformations between functors of (∞, 2)-categories 𝐹,𝐺∶ 𝐗 → 𝐘

in general as functors [1] ⊠ 𝐗 → 𝐘 and𝐗⊠ [1] → 𝐘 restricting to 𝐹 and𝐺 under the two embed-
ding [0] → [1], respectively. To seewhy this is reasonable, we observe that the Gray tensor product
[1] ⊠ [1] of the 1-simplex with itself is exactly the lax square

∙ ∙

∙ ∙.
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 895

Therefore, a functor 𝑓∶ [1] ⊠ 𝐗 → 𝐘 in particular encodes the data of a lax square

𝐹(𝑏) 𝐹(𝑏)

𝐹(𝑏′) 𝐹(𝑏′)

𝛽!

𝑓𝑏

𝛽!
𝑓𝛽

𝑓𝑏′

for every 1-morphism 𝛽 in 𝐗. The Gray tensor product [1] ⊠ 𝐗 further encodes all of the higher
coherences that these lax squares should satisfy.
Our second main result relates these definitions to the fibrational approach discussed above.

To explain the statement, let us introduce two (∞, 2)-categories 𝐅𝐮𝐧lax(𝐗, 𝐘) and 𝐅𝐮𝐧opl(𝐗, 𝐘)
universally defined via

Fun(−, 𝐅𝐮𝐧lax(𝐗, 𝐘)) ≃ Fun(−⊠𝐗,𝐘) and Fun(−, 𝐅𝐮𝐧opl(𝐗, 𝐘)) ≃ Fun(X⊠ −,𝐘)

as functors Cat2 → Cat. By definition, the 1-morphisms in the (∞, 2)-category 𝐅𝐮𝐧lax(𝐗, 𝐘) cor-
respond to lax natural transformations and analogously for oplax transformations. By means of
Lurie’s locally cocartesian unstraightening equivalence [22], we show the following.

Theorem E. There are natural equivalences of∞-categories

Gray(𝐴, 𝐵) ≃ Fun(𝐴 ⊠ 𝐵,𝐂𝐚𝐭),

and consequently natural equivalences of (∞, 2)-categories

𝐂𝐨𝐜𝐚𝐫𝐭lax(𝐵) ≃ 𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭), 𝐂𝐚𝐫𝐭opl(𝐵) ≃ 𝐅𝐮𝐧opl(𝐵op, 𝐂𝐚𝐭),

given on objects by straightening of (co)cartesian fibrations; here the targets are defined as above,
and so have functors as objects, (op)lax natural transformations as morphisms, and modifications
between these as 2-morphisms.

In particular, this implies that the cocartesian unstraightening of a functor 𝐵⟶ Cat has the
universal property of the lax colimit: it is given by the left adjoint of the constant diagram functor
𝐂𝐚𝐭 ⟶ 𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭) (see Observation 5.3.3). Furthermore, using Theorem E, we obtain the
following reformulation of Theorem B.

Corollary F. Extracting adjoints gives an equivalence of (∞, 2)-categories

𝐅𝐮𝐧lax,R(𝐵, 𝐂𝐚𝐭) ≃
(
𝐅𝐮𝐧opl,L(𝐵, 𝐂𝐚𝐭)

)(1,2)−op
for every∞-category 𝐵, where the superscript R denotes the locally full (or 1-full) sub-2-category of
𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭) spanned by those lax natural transformations that admit pointwise left adjoints, and
dually for the right-hand side. Furthermore, these equivalences are natural for restriction in 𝐵.

We will show that the equivalence of (∞, 2)-categories in Corollary F is given by a higher cate-
gorical form of the calculus of mates, in the following sense: on 1-morphisms, it takes a lax natural

 1460244x, 2023, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12548 by N

tnu N
orw

egian U
niversity O

f S, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



896 HAUGSENG et al.

transformation 𝜃𝑅 ∶ [1] ⊠ 𝐵 → 𝐂𝐚𝐭 such that 𝜃𝑅
𝑏
is a right adjoint for every 𝑏 ∈ 𝐵 to an oplax

transformation 𝜃𝐿 ∶ 𝐵 ⊠ [1] → 𝐂𝐚𝐭 such that the lax naturality squares for 𝜃𝑅 are themates of the
oplax naturality squares for 𝜃𝐿. This procedure of taking mates should make sense in any (∞, 2)-
category, which suggests that a version of Corollary F should hold for any two (∞, 2)-categories
in lieu of 𝐵 and 𝐂𝐚𝐭. This generality does not seem to be directly within reach of our methods.
Furthermore, we provide two elaborations on the equivalences of Theorem B and Corollary F.

Firstly, we describe the (co)unit of a fibrewise adjunction fibrationally, and consequently also the
passage to adjoint morphisms in families. Secondly, we provide a characterisation of fibrewise
adjoints in terms of mapping functors, to identify these in practice.
Let us finally point out that the book of Gaitsgory and Rozenblyum contains Theorem E as a

consequence of their general 2-categorical straightening procedure [9, Corollary 11.1.2.6]. It also
outlines a version of Corollary F with 𝐵 and 𝐂𝐚𝐭 replaced by arbitrary (∞, 2)-categories [9, Sec-
tion 12.3], using constructions somewhat similar to the ones presented here; in particular, our
notions of curved orthofibrations and op-Gray fibrations are also introduced in Sections 12.2.1
and 12.2.3 of [9]. However, as far as we can tell they deduce both results using arguments different
fromours, which at some points seem to rely on some of the unproven statements from [9, Chapter
10], notably about models for (∞, 2)-categories in terms of bisimplicial spaces of lax squares.

Remark. This article is one part of a recombination of our earlier preprints [12] and [17], which
contain many of the results we present here, most of them twice; the other part is [14]. For the
reader interested in archaeology, we mention that Theorems 1.1, 1.2 and 1.3 from [12] are now
contained in Corollary F, Proposition A and Proposition 3.4.9, whereas Theorems A, B and C
from [17] are now part of Proposition A, Theorem D and Corollary C, respectively.

1.4 Organisation

Section 2 introduces curved orthofibrations and Gray fibrations in more detail and establishes
their basic properties. In particular, we deduce Theorem D as Theorem 2.5.1. In Section 3, we
then introduce and study parametrised adjunctions in fibrational form. We prove Theorem B
as Theorem 3.1.11, and deduce Proposition A and Corollary C as Corollary 3.4.8 and Theo-
rem 3.4.7, respectively. In between, this section also contains the identification of the functor
in Theorem B on morphisms with the Beck–Chevalley construction and the characterisation
of parametrised adjoints in terms of mapping ∞-groupoids. Section 4 then discusses units and
counits for parametrised adjunctions and derives the functoriality of the passage to adjoint mor-
phisms in the parametrised context. Finally, in Section 5,we establish the connection to lax natural
transformations, prove Theorem E as a combination of Corollary 5.2.10 and Theorem 5.3.1 and
lastly deduce Corollary F as Theorem 5.3.5.

1.5 Conventions

As mentioned above, in order to declutter notation, we will write Gpd, Cat and Cat2 for the
∞-categories of ∞-groupoids (or spaces), ∞-categories and (∞, 2)-categories, respectively. By
default, we use complete 2-fold Segal spaces as the definition of the latter, but we will also need
to discuss other models in Section 5.
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 897

The letter 𝜄 will denote the core of an∞-category, that is, the∞-groupoid spanned by its equiv-
alences, and | ⋅ | its realisation. By a subcategory of an∞-category, we mean a functor such that
the induced morphisms on mapping∞-groupoids and cores are inclusions of path components.
A subcategory is full if the functor furthermore induces equivalences on mapping∞-groupoids,
while it is wide if the functor induces an equivalence on cores. Similarly, a sub-2-category of
an (∞, 2)-category is a functor inducing subcategory inclusions on mapping ∞-categories and
a inclusion of path components on underlying∞-groupoids; we say that such a sub-2-category is
1-full if it is locally full, that is, given by full subcategory inclusions on mapping∞-categories.
Throughout, we shall use small caps such as Cat to indicate the large variants of∞-categories

and boldface such as 𝐂𝐚𝐭 to indicate the (∞, 2)-categorical variants. We have also reserved sub-
and superscripts on category names to refer to changes on morphisms, for example, Cart(𝐴) ⊆
Cartopl(𝐴).
We will writeAr(𝐶) for the arrow∞-category Fun([1], 𝐶) of an∞-category 𝐶, and Tw𝓁(𝐶) and

Tw𝑟(𝐶) for the two versions of the twisted arrow category, geared so that the combined source-
target map defines a left fibraton in the former, and a right fibration in the latter case, see 2.5.8.

2 TWO-VARIABLE FIBRATIONS

Our main goal in the present section is to introduce two new classes of fibrations over a product
of two∞-categories, namely curved orthofibrations and Gray fibrations, and describe how they
can be unstraightened over one of the two factors, and consequently dualised.We first recall some
basic material about (co)cartesian fibrations in §2.1. Then in §2.2, we discuss functors to a product
of two ∞-categories that behave like a (co)cartesian fibration in one of the two variables; both
curved orthofibrations and Gray fibrations are special cases of such functors. In §2.3, we then
introduce (curved) orthofibrations and study their partial unstraightenings. We consider Gray
fibrations in §2.4 and characterise cocartesian and left fibrations among these. Finally, in §2.5,
we record the various ways in which these fibrations can be dualised. In particular, we prove
Theorem D there.

2.1 Background

For the reader’s convenience, we begin by briefly reviewing some basic material on (co)cartesian
morphisms and fibrations.

Definition 2.1.1. Let 𝑝∶ 𝑋 → 𝑆 be a functor of∞-categories. Then a morphism 𝛼∶ 𝑦 → 𝑧 of 𝑋
is 𝑝-cartesian if the square

is a pullback square in Gpd for every 𝑥 ∈ 𝑋. Dually, the morphism 𝛼 is 𝑝-cocartesian if it
is 𝑝op-cartesian when regarded as a morphism in 𝑋op, or in other words if for every 𝑥 ∈ 𝑋,
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898 HAUGSENG et al.

the square

is cartesian.

Notation 2.1.2. To make diagrams more readable, for 𝑝∶ 𝑋 → 𝐵, we will sometimes indicate a
𝑝-cocartesian morphism of 𝑋 by 𝑥 � 𝑦 and a 𝑝-cartesian morphism of 𝑋 by 𝑥 � 𝑦.

Definition 2.1.3. Let 𝑝∶ 𝑋 → 𝑆 be a functor of∞-categories. If 𝑇 is a subcategory of 𝑆, we say
that𝑋 has all 𝑝-cartesian lifts over 𝑇 if for everymorphism 𝑓∶ 𝑎 → 𝑏 in 𝑇 and every object 𝑥 such
that 𝑝(𝑥) ≃ 𝑏, there exists a filler in the commutative square

which is a 𝑝-cartesian morphism. Dually, 𝑋 has all 𝑝-cocartesian lifts over 𝑇 if 𝑋op has all 𝑝op-
cartesian lifts over 𝑇op. The functor 𝑝∶ 𝑋 → 𝑆 is a cartesian fibration if 𝑋 has all 𝑝-cartesian lifts
over 𝑆, and a cocartesian fibration if 𝑋 has all 𝑝-cocartesian lifts over 𝑆.

Notation 2.1.4. We will write Cocartlax(𝑆) and Cartopl(𝑆) for the full subcategories of Cat∕𝑆
spanned by the cocartesian and cartesian fibrations, respectively, and Cocart(𝑆) and Cart(𝑆) for
the wide subcategories thereof in which morphisms are required to preserve (co)cartesian edges.

Remark 2.1.5. The definition above is an invariant version of the definition for quasi-categories
given by Lurie in [21, Definition 2.4.2.1]. More precisely, a map 𝑝 between quasi-categories corre-
sponds to a (co)cartesian fibration in our sense if and only if for some (and then any) factorisation
of 𝑝 into a categorical equivalence followed by a categorical fibration the latter is a (co)cartesian
fibration in Lurie’s sense.

Definition 2.1.6. Let 𝑝∶ 𝑋 → 𝑆 be a functor of ∞-categories. A morphism 𝛼∶ 𝑦 → 𝑧 in 𝑋 is
locally 𝑝-(co)cartesian if it is a (co)cartesian morphism for the pullback 𝑋 ×𝑆 [1] → [1] of 𝑝 along
𝑝(𝛼)∶ [1] → 𝑆. The functor 𝑝 is a locally (co)cartesian fibration if the pullback 𝑋 ×𝑆 [1] → [1] is
a (co)cartesian fibration for every map [1] → 𝑆.

Notation 2.1.7. We write LocCocartlax(𝑆) and LocCartopl(𝑆) for the full subcategories of Cat∕𝑆
spanned by the locally cocartesian and locally cartesian fibrations, respectively. We also denote
by LocCocart(𝑆) and LocCart(𝑆) the wide subcategories of these where morphisms are required
to preserve locally (co)cartesian morphisms.

Definition 2.1.8. We call a functor 𝑝∶ 𝑋 → 𝑆 that is both a cartesian and a cocartesian fibration
a bicartesian fibration. We write Bicart(op)lax(𝑆) for the full subcategory of Cat∕𝑆 spanned by the
bicartesian fibrations.
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 899

Remark 2.1.9. In the category theory literature, our ‘bicartesian fibrations’ are often called
‘bifibrations’; we will instead use the latter term as in [21], see Definition 2.3.14.

We recall the following characterisation from [21, Lemma 2.4.2.7] of cartesian morphisms in a
locally cartesian fibration, which will be used repeatedly below.

Proposition 2.1.10. Suppose 𝑝∶ 𝐸 → 𝐵 is a locally cartesian fibration. Then the following are
equivalent for a locally 𝑝-cartesian morphism 𝑓∶ 𝑥 → 𝑦 in 𝐸:

(1) 𝑓 is a 𝑝-cartesian morphism.
(2) For every locally 𝑝-cartesian morphism g∶ 𝑧 → 𝑥, the composite 𝑓g∶ 𝑧 → 𝑦 is also locally

𝑝-cartesian.

Corollary 2.1.11. Suppose 𝑝∶ 𝐸 → 𝐵 is a locally cartesian fibration. Then 𝑝 is a cartesian fibration
if and only if any composite of locally 𝑝-cartesian morphisms is locally 𝑝-cartesian.

The following is [21, Proposition 2.4.2.4].

Lemma 2.1.12. The following conditions on a cartesian fibration 𝑝∶ 𝑋 → 𝑆 are equivalent:

(1) the fibres 𝑋𝑠 are∞-groupoids for all 𝑠 in 𝑆,
(2) all morphisms in 𝑋 are 𝑝-cartesian,
(3) 𝑝 is conservative.

Definition 2.1.13. A right fibration is a cartesian fibration satisfying the equivalent conditions of
the previous lemma. A left fibration is a functor whose opposite is a right fibration.

Finally, let us briefly discuss functoriality. Consider the functor 𝑡 ∶ Ar(Cat) → Cat extracting
the target of a morphism. Its cartesian edges are precisely the pullback squares, so since Cat is
complete we obtain a functor

Catop ⟶ Cat, 𝑆 ⟼ Cat∕𝑆

by cartesian unstraightening, where Cat denotes the ∞-category of large ∞-categories. By [21,
Proposition 2.4.1.3], the pullback of a (co)cartesian fibration is a (co)cartesian fibration and the
structure map in a pullback preserves cocartesian edges. Therefore, one obtains subfunctors

LFib, RFib, Cocart, Cart∶ Catop ⟶ Cat

via the construction above. Combining Lurie’s unstraightening equivalence with [8, Appendix A],
one finds inverse equivalences

which restrict to equivalences
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900 HAUGSENG et al.

The resulting equivalence between cartesian and cocartesian fibrations we shall denote

Its restriction to left and right fibrations is simply given by taking opposites, but this is not true
in general, since Dct and Dcc are given by the identity on Cart(∗) ≃ Cat ≃ Cocart(∗); an explicit
description of the equivalence in the general case is the main result of [3].

2.2 Straightening in one variable

Before we introduce the main classes of fibrations we are interested in, here we will consider the
most general kinds of functors to a product of∞-categories that can be straightened over one of
the two factors. The basic observation we need for this is the following.

Proposition 2.2.1. Givena functor of∞-categories𝑝 = (𝑝1, 𝑝2)∶ 𝑋 → 𝐴 × 𝐵, amorphism𝛼∶ 𝑥 →
𝑦 in 𝑋 such that 𝑝1(𝛼) is an equivalence is 𝑝-cocartesian if and only if it is 𝑝2-cocartesian.

Proof. Since equivalences are always cocartesian, this is an immediate consequence of [21, Propo-
sition 2.4.1.3(3)], which says that given 𝑋

𝑞
→ 𝑌

𝑟
→ 𝑍, a morphism in 𝑋 whose image in 𝑌 is

𝑟-cocartesian is 𝑞-cocartesian if and only if it is 𝑟𝑞-cocartesian. □

Corollary 2.2.2. The following are equivalent for a functor 𝑝 = (𝑝1, 𝑝2)∶ 𝑋 → 𝐴 × 𝐵:

(1) 𝑋 has all 𝑝-cocartesian lifts over 𝐴 × 𝜄𝐵.
(2) 𝑝1 is a cocartesian fibration and all 𝑝1-cocartesian morphisms lie over equivalences in 𝐵.
(3) In the commutative triangle,

the map 𝑝1 is a cocartesian fibration, and 𝑝 takes 𝑝1-cocartesian morphisms to pr1-cocartesian
morphisms.

Proof. The equivalence of (1) and (2) is immediate from Proposition 2.2.1, while that of (2) and
(3) amounts to the observation that the cocartesian morphisms for pr1 ∶ 𝐴 × 𝐵 → 𝐴 are precisely
those morphisms that project to equivalences in 𝐵. □

Definition 2.2.3. We say that a functor 𝑝∶ 𝑋 → 𝐴 × 𝐵 is cocartesian over the left factor, or
simply cocartesian over 𝐴 when no confusion can arise, if it satisfies the equivalent conditions
of Corollary 2.2.2. Dually, we say that 𝑝 is cartesian over 𝐴 if 𝑝op is cocartesian over 𝐴op. We
write LCocart(𝐴, 𝐵) and LCart(𝐴, 𝐵) for the subcategories of Cat∕(𝐴 × 𝐵) whose objects are
(co)cartesian over 𝐴, with the morphisms required to preserve the (co)cartesian morphisms over
𝐴 × 𝜄𝐵. Similarly, we write RCocart(𝐴, 𝐵) and RCart(𝐴, 𝐵) for the subcategories of Cat∕(𝐴 × 𝐵)
whose objects are (co)cartesian over the right factor 𝐵, with the morphisms required to preserve
the (co)cartesian morphisms over 𝜄𝐴 × 𝐵.
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 901

Of course, we obtain equivalences

RCocart(𝐴, 𝐵) ≃ LCocart(𝐵, 𝐴), RCart(𝐴, 𝐵) ≃ LCart(𝐵, 𝐴)

by restricting the obvious equivalence Cat∕(𝐴 × 𝐵) ≃ Cat∕(𝐵 × 𝐴).
From the third condition in Corollary 2.2.2, we immediately see:

Corollary 2.2.4. Wewrite pr1 ∶ 𝐴 × 𝐵 → 𝐴 for the projection to𝐴. The equivalenceCat∕(𝐴 × 𝐵) ≃
(Cat∕𝐴)∕pr1 restricts to equivalences of subcategories

LCocart(𝐴, 𝐵) ≃ Cocart(𝐴)∕pr1, LCart(𝐴, 𝐵) ≃ Cart(𝐴)∕pr1. (2.2.5)

Combining these equivalences with straightening over 𝐴, we get natural equivalences

LCocart(𝐴, 𝐵) ≃ Fun(𝐴, Cat∕𝐵), LCart(𝐴, 𝐵) ≃ Fun(𝐴op, Cat∕𝐵), (2.2.6)

since pr1 ∶ 𝐴 × 𝐵 → 𝐴 straightens over 𝐴 to the constant functor with value 𝐵.

For later use, we also note the following consequence of Proposition 2.2.1 here.

Corollary 2.2.7. Let 𝐼 be an∞-groupoid and 𝐶 an∞-category. The following are equivalent for a
functor 𝑝∶ 𝑋 → 𝐼 × 𝐶:

(1) 𝑝 is a cocartesian fibration.
(2) For every 𝑖 ∈ 𝐼, the morphism on fibres 𝑝𝑖 ∶ 𝑋𝑖 → 𝐶 is a cocartesian fibration.
(3) The composite 𝑋

𝑝
→ 𝐼 × 𝐶 → 𝐶 is a cocartesian fibration.

Proof. The equivalence of (1) and (3) follows from Proposition 2.2.1, while (1) implies (2) since
cocartesian fibrations are closed under base change. Finally, applying the criterion of [15, Lemma
A.1.8] to the commutative triangle

shows that (2) implies (1). □

Notation 2.2.8. Given a functor 𝑝∶ 𝑋 → 𝐴 × 𝐵, we define 𝑝𝓁 and 𝑝𝑟 by the cartesian squares

To make diagrams more readable, we will sometimes indicate a 𝑝𝓁-cartesian edge of 𝑋 by 𝑥�� 𝑦
and a 𝑝𝑟-cocartesian edge of 𝑋 by 𝑥�� 𝑦.
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902 HAUGSENG et al.

Remark 2.2.9. From Corollary 2.2.7, it follows immediately that for a functor 𝑝∶ 𝑋 → 𝐴 × 𝐵, the
pullback 𝑝𝓁 is a (co)cartesian fibration if and only if for every 𝑏 ∈ 𝐵, the map on fibres 𝑝𝑏 ∶ 𝑋𝑏 →
𝐴 is a (co)cartesian fibration, and similarly for 𝑝𝑟.

2.3 Curved orthofibrations

If we combine our conditions from the previous subsection for a functor to 𝐴 × 𝐵 to straighten
contravariantly over 𝐴 and covariantly over 𝐵, we obtain the following definition.

Definition 2.3.1. A curved orthofibration is a functor of∞-categories 𝑝∶ 𝑋 → 𝐴 × 𝐵 such that 𝑝
is cartesian over𝐴 and cocartesian over 𝐵, that is, 𝑋 has all 𝑝-cartesian lifts over𝐴 × 𝜄𝐵 and all 𝑝-
cocartesian lifts over 𝜄𝐴 × 𝐵. We write CrvOrtho(𝐴, 𝐵) for the subcategory of Cat∕(𝐴 × 𝐵) whose
objects are the curved orthofibrations, with the morphisms required to preserve both cartesian
morphisms over 𝐴 and cocartesian morphisms over 𝐵.

Let us record two alternative characterisations:

Observation 2.3.2. Using Corollary 2.2.2, we can reformulate the definition of a curved
orthofibration as a functor 𝑝 = (𝑝1, 𝑝2)∶ 𝑋 → 𝐴 × 𝐵 such that

(1) 𝑝1 is a cartesian fibration,
(2) 𝑝2 is a cocartesian fibration,
(3) every 𝑝1-cartesian morphism in 𝑋 lies over an equivalence in 𝐵,
(4) every 𝑝2-cocartesian morphism in 𝑋 lies over an equivalence in 𝐴.

Proposition 2.3.3. The following are equivalent for a functor 𝑝 = (𝑝1, 𝑝2)∶ 𝑋 → 𝐴 × 𝐵:

(1) 𝑝 is a curved orthofibration.
(2) In the commutative triangle

𝑝1 is a cartesian fibration, 𝑝 takes 𝑝1-cartesian morphisms to pr1-cartesian morphisms, and for
every 𝑎 ∈ 𝐴, the map on fibres 𝑋𝑎 → 𝐵 is a cocartesian fibration.

(3) 𝑝 is cartesian over 𝐴 and 𝑝𝑟 ∶ 𝑋𝑟 → 𝜄𝐴 × 𝐵 is a cocartesian fibration.
(4) In the commutative triangle

𝑝2 is a cocartesian fibration, 𝑝 takes 𝑝2-cocartesian morphisms to pr2-cocartesian morphisms,
and for every 𝑏 ∈ 𝐵, the map on fibres 𝑋𝑏 → 𝐴 is a cartesian fibration.

(5) 𝑝 is cocartesian over 𝐵 and 𝑝𝓁 ∶ 𝑋𝓁 → 𝐴 × 𝜄𝐵 is a cartesian fibration.
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 903

Proof. The equivalence of (2) and (3), as well as of (4) and (5), follows from Remark 2.2.9 and
Corollary 2.2.2. It thus remains to show that (1) is equivalent to one of these pairs, since they
correspond to each other under taking opposites.
If 𝑝 is a curved orthofibration, then it is immediate from the definition that 𝑝𝓁 is a cartesian

and 𝑝𝑟 a cocartesian fibration, that is, (1) implies (3) and (5). Conversely, the implication (2) ⇒
(1) is [15, Lemma A.1.10]. For completeness, we also include a brief argument that (5) implies (1):
We need to show that a 𝑝𝓁-cartesian lift 𝜆∶ 𝑥 → 𝑦 in 𝑋 of an arrow (𝛼, 𝛽)∶ (𝑎, 𝑏) → (𝑎′, 𝑏′), for
which 𝛽∶ 𝑏 → 𝑏′ is an equivalence, is automatically 𝑝-cartesian.
Consider thus the black part of the diagram

which is a lifting problem in which one has to find a black dashed arrow in an essentially unique
manner. First take an (essentially unique) 𝑝-cocartesian lift 𝑧⟶ 𝑤 of (𝑐, 𝑑) → (𝑐, 𝑏). Since this
arrow is cocartesian in all of 𝑋, there is an essentially unique dotted red arrow lifting the outer
triangle on the right. Since the lower horizontal part of the diagram lives over 𝐴 × 𝜄𝐵, there now
exists an essentially unique map 𝑤⟶ 𝑥 (not drawn) lifting the lower triangle. The composition
with 𝑧⟶ 𝑥 is the desired black dotted map, and using that 𝑧⟶ 𝑤 is 𝑝-cocartesian, one can
then complete the diagram in an essentially unique way. The essential uniqueness of the map
𝑧⟶ 𝑥 is seen by reading the argument in reverse. □

By definition, a functor to 𝐴 × 𝐵 is a curved orthofibration if and only if it lies in both
LCart(𝐴, 𝐵) and RCocart(𝐴, 𝐵), and thus, by Corollary 2.2.4, a curved orthofibration can be
straightened in either of the two variables. The previous lemma allows us to see precisely what a
curved orthofibration straightens to.

Corollary 2.3.4. Straightening over 𝐴 and 𝐵 give natural equivalences

Fun(𝐴op, Cocartlax(𝐵))cc ≃ CrvOrtho(𝐴, 𝐵) ≃ Fun(𝐵, Cartopl(𝐴))ct,

respectively, whereFun(𝐵, Cartopl(𝐴))ct denotes the wide subcategory ofFun(𝐵, Cartopl(𝐴)) in which
the morphisms are natural transformations whose components all preserve cartesian morphisms
over 𝐴, and similarly, for Fun(𝐴op, Cocartlax(𝐵))cc.

Proof. (2) and (4) of Proposition 2.3.3 immediately imply the result at the level of objects. We will
exhibit the claim on morphisms for the left equivalence, the right being dual. Suppose that

is the unstraightening of a map 𝜂 ∈ Fun(𝐴op, Cocartlax(𝐵)). Because it is given by cartesian
unstraightening, it will necessarily preserve cartesian edges over 𝐴. Naturality of unstraighten-
ing implies that the components of 𝜂 preserving cocartesian edges is equivalent to the maps 𝑓𝑎 on
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904 HAUGSENG et al.

fibres preserving cocartesian edges. Proposition 2.2.1 then implies that 𝑓𝑟 is a map of cocartesian
fibrations. However, we have seen in Proposition 2.3.3 that for a curved orthofibration, the 𝑝𝑟-
cocartesian edges agree with the 𝑝-cocartesian edges over 𝐵. Therefore, 𝜂 preserves cocartesian
edges pointwise if and only if 𝑓 preserves cocartesian edges over 𝐵, and is thus a map of curved
orthofibrations. □

We saw above that curved orthofibrations over 𝐴 × 𝐵 can be straightened to functors 𝐴op →
Cocartlax(𝐵) or 𝐵 → Cartopl(𝐴). Our next goal is to introduce a further condition that will ensure
that these functors actually land in the subcategories Cocart(𝐵) and Cart(𝐴) (and thus encode
functors𝐴op × 𝐵 → Cat), giving the notion of orthofibrations. We also specialise further to bifibra-
tions as considered by Lurie in [21, Section 2.4.7], and studied in detail, for example, in Stevenson
[27] or [15, Appendix A]; these straighten to functors 𝐴op → LFib(𝐵) and 𝐵 → RFib(𝐴).

Construction 2.3.5. Suppose that𝐴 = [1]op and𝐵 = [1], and let us write 𝛼, 𝛽 for the unique non-
degenerate simplices in 𝐴 and 𝐵. Consider the diagram 𝜌∶ [1]⟶ Cocartlax([1]) corresponding
to the map of cocartesian fibrations (between ordinary categories)

(2.3.6)

Note that this diagram is characterised by a universal property in Ar(Cocartlax([1]))cc, which
is our slightly shorter notation for Fun([1], Cocartlax([1]))cc: for each object g∶ 𝑋⟶ 𝑌 in
Ar(Cocartlax([1]))cc, evaluation at {0} ∈ [1] = 𝜌(0) yields a natural equivalence to the fibre of 𝑋
over 0

MapAr(Cocartlax([1]))cc (𝜌, g) ≃ 𝜄𝑋0.

Indeed, unravelling the definitions shows that a natural transformation 𝜌 ⇒ gwhose components
preserve cocartesian arrows is given by a cocartesian arrow 𝛽∶ 𝑥⟶ 𝛽!𝑥 in 𝑋 over 𝛽, together
with a factorisation of g(𝛽) into a cocartesian morphism followed by a fibrewise one,

(2.3.7)

Now the cartesian unstraightening of 𝜌 over 𝐴 = [1] is the curved orthofibration

𝑞∶ 𝑄⟶ [1]op × [1],

where 𝑄 is the poset given by
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 905

and the projection is the evident one, sending 11′ ⟶ 11 to the identity. Then 𝑄⟶ [1]op × [1]

has the following universal property: for every curved orthofibration 𝑝∶ 𝑋⟶ 𝐴× 𝐵 and every
𝛼∶ 𝑎′ ⟶ 𝑎 and 𝛽∶ 𝑏⟶ 𝑏′, there is a natural equivalence between the∞-groupoid 𝜄(𝑋(𝑎,𝑏)) of
objects in the fibre over (𝑎, 𝑏) and the∞-groupoid of maps of curved orthofibrations

Let us refer to such diagrams as 𝑝-interpolating diagrams. Explicitly, the 𝑝-interpolating diagram
associated to 𝑥 ∈ 𝑋(𝑎,𝑏) is given by

where we choose 𝑝-(co)cartesian morphism and (dotted) compositions as indicated, and finally,
the dashed arrow is given by either factoring the horizontal dotted morphisms through the
cocartesian morphism over (id, 𝛽), or equivalently by factoring the vertical dotted morphism
through the cartesian morphism over (𝛼, id).

Definition 2.3.8. Let 𝑝∶ 𝑋⟶ 𝐴× 𝐵 be a curved orthofibration.We will refer to a morphism in
𝑋 as 𝑝-interpolating if it arises as the evaluation at 11′ → 11 of a 𝑝-interpolating diagram 𝑄 → 𝑋.

Remark 2.3.9. The 𝑝-interpolating edges in 𝑋 are precisely the edges that arise under
unstraightening from the morphisms 𝜌𝛽(𝑥) described in (2.3.7).

Definition 2.3.10. A functor 𝑝 = (𝑝1, 𝑝2)∶ 𝑋 → 𝐴 × 𝐵 is an orthofibration if it is a curved
orthofibration and all 𝑝-interpolatingmorphisms in𝑋 are invertible, that is, for every pair of mor-
phisms 𝛼∶ 𝑎′ → 𝑎 in 𝐴 and 𝛽∶ 𝑏 → 𝑏′ in 𝐵 and every object 𝑥 in 𝑋 over (𝑎, 𝑏), the interpolating
morphism

(id, 𝛽)!(𝛼, id)
∗𝑥⟶ (𝛼, id)∗(id, 𝛽)!𝑥

is an equivalence.WewriteOrtho(𝐴, 𝐵) for the full subcategory ofCrvOrtho(𝐴, 𝐵) spanned by the
orthofibrations. (Note that our orthofibrations are the same as the two-sided fibrations defined in
[26, Section 7.1].)

Proposition 2.3.11. The following are equivalent for a curved orthofibration 𝑝 = (𝑝1, 𝑝2)∶ 𝑋 →
𝐴 × 𝐵:

(1) 𝑝 is an orthofibration.
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906 HAUGSENG et al.

(2) For every morphism 𝛼∶ 𝑎′ → 𝑎 in 𝐴, the cartesian transport functor 𝛼∗ ∶ 𝑋𝑎 → 𝑋𝑎′ preserves
𝑝2-cocartesian morphisms.

(3) For every morphism 𝛽∶ 𝑏′ → 𝑏 in 𝐵, the cocartesian transport functor 𝛽! ∶ 𝑋𝑏′ → 𝑋𝑏 preserves
𝑝1-cartesian morphisms.

Proof. Let us consider a curved orthofibration 𝑝, morphisms 𝛼∶ 𝑎′ ⟶ 𝑎 and 𝛽∶ 𝑏⟶ 𝑏′, and
𝑥 ∈ 𝑋(𝑎,𝑏). By Construction 2.3.5, the associated interpolating morphism fits into commuting
triangles

Here, the diagonal morphisms are the image of the cocartesian morphism 𝛽∶ 𝑥⟶ (id, 𝛽)!𝑥

under 𝛼∗ ∶ 𝑋𝑎 ⟶ 𝑋𝑎′ and the image of the cartesian morphism (𝛼, id)∗ ∶ (id, 𝛼)∗𝑥⟶ 𝑥 under
𝛽! ∶ 𝑋𝑏 ⟶ 𝑋𝑏′ . It follows that the interpolating morphism is an equivalence if and only if these
images remain cocartesian and cartesian, respectively. This shows that condition (1) is equivalent
to both (2) and (3). □

From this, we see that restricting the equivalence of Corollary 2.3.4 to orthofibrations gives the
following.

Corollary 2.3.12. Straightening over 𝐴 and 𝐵 gives natural equivalences

Fun(𝐴op, Cocart(𝐵)) ≃ Ortho(𝐴, 𝐵) ≃ Fun(𝐵, Cart(𝐴)).

Of course, one can now apply another instance of the straightening functor on both outer terms.
We will discuss the result in §2.5 below. For now, let us instead specialise the discussion further.
Since interpolating edges always lie over equivalences in 𝐴 × 𝐵, we find the following.

Proposition 2.3.13. For a functor 𝑝∶ 𝑋 → 𝐴 × 𝐵, the following are equivalent:

(1) 𝑝 is a conservative curved orthofibration.
(2) 𝑝 is a curved orthofibration whose fibres are∞-groupoids.
(3) 𝑝 is a curved orthofibration and 𝑝𝓁 is a left fibration.
(4) 𝑝 is a curved orthofibration and 𝑝𝑟 is a right fibration.
(5) 𝑝1 is a cartesian fibration and a morphism in 𝑋 is 𝑝1-cartesian if and only if it is sent to an

equivalence by 𝑝2, and 𝑝2 is a cocartesian fibration and a morphism in 𝑋 is 𝑝2-cocartesian if
and only if it is sent to an equivalence by 𝑝1.

If these conditions are satisfied, then 𝑝 is in particular an orthofibration.

Definition 2.3.14. A bifibration is a functor 𝑝 = (𝑝1, 𝑝2)∶ 𝑋 → 𝐴 × 𝐵 satisfying the equivalent
conditions of the previous proposition.

Restricting the equivalence of Corollary 2.3.12 to bifibrations gives:
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 907

Corollary 2.3.15. Straightening over 𝐴 and 𝐵 give natural equivalences

Fun(𝐴op, LFib(𝐵)) ≃ Bifib(𝐴, 𝐵) ≃ Fun(𝐵, RFib(𝐴)).

2.4 Gray fibrations

We saw above that curved orthofibrations over 𝐴op × 𝐵 could be unstraightened to functors 𝐴 →
Cocartlax(𝐵). We can also consider the functors to 𝐴 × 𝐵 that correspond to such functors under
cocartesian unstraightening over 𝐴, which leads to the following definition.

Definition 2.4.1. A Gray fibration over (𝐴, 𝐵) is a functor 𝑝∶ 𝑋 → 𝐴 × 𝐵 such that 𝑝 is
cocartesian over 𝐴 and 𝑝𝑟 ∶ 𝑋𝑟 → 𝜄𝐴 × 𝐵 is a cocartesian fibration. We write Gray(𝐴, 𝐵) for the
subcategory of Cat∕(𝐴 × 𝐵) whose objects are the Gray fibrations, with morphisms required to
preserve both types of cocartesian morphisms.
Dually, we say 𝑝∶ 𝑋 → 𝐴 × 𝐵 is an op-Gray fibration if 𝑝op is a Gray fibration over (𝐴op, 𝐵op),

and denote the∞-category they span by OpGray(𝐴, 𝐵).

We will see in Corollary 5.2.10 below that Gray fibrations over (𝐴, 𝐵) encode functors of (∞, 2)-
categories 𝐴⊠ 𝐵 → 𝐂𝐚𝐭, where⊠ denotes the Gray tensor product, which is the reason for the
name. In particular, just as the Gray tensor product is not symmetric, let us point out that a Gray
fibration (𝑝1, 𝑝2)∶ 𝑋⟶ 𝐴× 𝐵 typically does not determine a Gray fibration (𝑝2, 𝑝1)∶ 𝑋⟶
𝐵 × 𝐴.

Observation 2.4.2. FromCorollary 2.2.2 andRemark 2.2.9, we see that a functor𝑝 = (𝑝1, 𝑝2)∶ 𝑋 →
𝐴 × 𝐵 is a Gray fibration if and only if in the commutative triangle

𝑝1 is a cocartesian fibration,𝑝 takes𝑝1-cocartesianmorphisms to pr1-cocartesianmorphisms, and
for every 𝑎 ∈ 𝐴, the map on fibres 𝑋𝑎 → 𝐵 is a cocartesian fibration.

Combining this observation with Corollary 2.2.4, and the same analysis as in Corollary 2.3.4,
we see the following:

Corollary 2.4.3. Straightening over 𝐴 gives a natural equivalence

Gray(𝐴, 𝐵) ≃ Fun(𝐴, Cocartlax(𝐵))cc.

Ournext goal is to give an alternative characterisation ofGray fibrations, namely as those locally
cocartesian fibrations that are cocartesian over certain triangles in the base. This characterisation
will be the key to relating them to Gray tensor products below in §5.2. We first observe that Gray
fibrations are in particular locally cocartesian fibrations:
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908 HAUGSENG et al.

Lemma 2.4.4. Let 𝑝∶ 𝑋 → 𝐴 × 𝐵 be a Gray fibration. Then every morphism in𝑋 over (𝛼, 𝛽) of the
form 𝑥 → (id, 𝛽)!𝑥 → (𝛼, id)!(id, 𝛽)!𝑥, where the first morphism is 𝑝-cocartesian over (id, 𝛽) and the
second is 𝑝𝑟-cocartesian over (𝛼, id), is locally 𝑝-cocartesian. In particular, 𝑝 is a locally cocartesian
fibration where all locally 𝑝-cocartesian morphisms are of this form, and we have a fully faithful
inclusion

Gray(𝐴, 𝐵) ⊆ LocCocart(𝐴 × 𝐵).

Proof. It follows from Proposition 2.1.10 that the morphisms of the given form are locally 𝑝-
cocartesian, since any 𝑝𝑟-cocartesian morphism in 𝑋𝑟 is in particular locally 𝑝-cocartesian. Thus,
𝑋 has all locally 𝑝-cocartesian lifts, that is, 𝑝 is a locally cocartesian fibration.Moreover, all locally
𝑝-cocartesian morphisms are of the given form by uniqueness.
It remains to show that a morphism 𝑓∶ 𝑋 → 𝑌 between Gray fibrations over 𝐴 × 𝐵 preserves

locally cocartesian morphisms if and only if it lies in Gray(𝐴, 𝐵), which is immediate from the
description of locally𝑝-cocartesianmorphisms in terms of the two types of cocartesianmorphisms
for a Gray fibration. □

Remark 2.4.5. It is immediate from the definition that any cocartesian fibration over 𝐴 × 𝐵 is a
Gray fibration. Since Cocart(𝐴 × 𝐵) is also a full subcategory of LocCocart(𝐴 × 𝐵), it follows that
we have a fully faithful inclusion

Cocart(𝐴 × 𝐵) ⊆ Gray(𝐴, 𝐵).

The following characterisation pins down exactly how Gray fibrations fit in between cocartesian
and locally cocartesian fibrations.

Lemma 2.4.6. A locally cocartesian fibration 𝑝∶ 𝑋⟶ 𝐴× 𝐵 is a Gray fibration if and only if it
restricts to a cocartesian fibration over each triangle𝜎∶ [2]⟶ 𝐴 × 𝐵 of one of the following forms:

Proof. For a locally cocartesian fibration 𝑝, being cocartesian over the first type of triangle
is equivalent to 𝑝𝑟 being a cocartesian fibration by Corollary 2.1.11. Using Proposition 2.1.10,
being cocartesian over the second and third types of triangles is equivalent to 𝑝 being a locally
cocartesian fibration such that for any two locally cocartesian arrows 𝑥⟶ 𝑥′ and 𝑥′ ⟶ 𝑥′′

covering (𝛼, id) and (𝛼′, 𝛽), respectively, their composition is locally cocartesian as well. By
Proposition 2.1.10, this means precisely that 𝑝 admits cocartesian lifts over 𝐴 × 𝜄𝐵. □

We see that the difference between Gray and cocartesian fibrations lies in the fact that in a Gray
fibration, the locally cocartesian lifts of the three edges in a diagram of the form
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 909

need not form a commutative diagram. We now analyse the relationship between Gray fibrations
and cocartesian fibrations over a product more closely.

Construction 2.4.7. Let 𝑝∶ 𝑋 → 𝐴 × 𝐵 be a Gray fibration. Consider an edge (𝛼, 𝛽)∶ (𝑎, 𝑏) →
(𝑎′, 𝑏′) in 𝐴 × 𝐵 as above. Given a lift 𝑥 of the source of this edge, we can choose 𝑝𝑟- and 𝑝-
cocartesian lifts as in the solid part of

(id, 𝛽)!(𝛼, id)!𝑥

(𝛼, id)!𝑥 (𝛼, id)!(id, 𝛽)!𝑥

𝑥 (id, 𝛽)!𝑥.

◦

◦

(Recall that tailed arrows denote 𝑝-cocartesian edges and tailed arrows marked by a circle denote
𝑝𝑟-cocartesian edges.)NowbyProposition 2.1.10, the composition𝑥 → (𝛼, id)!𝑥 → (id, 𝛽)!(𝛼, id)!𝑥

along the top is still locally 𝑝-cocartesian, whence there exists an essentially unique dashed
arrow as indicatedmaking the diagram commute.More formally, consider the functor 𝜌∶ [1]⟶
Cocartlax([1]) from Construction 2.3.5. Then the cocartesian unstraightening of 𝜌 over [1] can be
identified with the Gray fibration 𝑄′ ⟶ [1] × [1], where 𝑄′ is the poset

11′

10 11.

00 01

◦

◦

and the projection is the evident one, sending 11′ → 11 to the identity. Then just as in Construc-
tion 2.3.5, evaluation at 00 induces an equivalence between the ∞-groupoid of maps of Gray
fibrations

and 𝜄𝑋(𝑎,𝑏).

Definition 2.4.8. If 𝑝∶ 𝑋⟶ 𝐴× 𝐵 is a Gray fibration, then a morphism 𝑄′ ⟶ 𝑋 of Gray
fibrations is said to be a 𝑝-interpolating diagram. A morphism in 𝑋 is said to be 𝑝-interpolating if
it arises as the restriction of a 𝑝-interpolating diagram to 11′ ⟶ 11.

Note that we do not include in the notationwhether an edge in𝑋 is regarded as an interpolating
edge for a Gray or curved orthofibration, assuming that 𝑝 is both (a situation we will have to
explicitly consider later). We will be more explicit when the need arises.
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910 HAUGSENG et al.

Proposition 2.4.9. Let 𝑝∶ 𝑋 → 𝐴 × 𝐵 be a Gray fibration. Then the following are equivalent:

(1) 𝑝 is a cocartesian fibration,
(2) 𝑝 restricts to a cocartesian fibration over each triangle 𝜎∶ [2] → 𝐴 × 𝐵 of the form

(3) Every 𝑝-interpolating edge in 𝑋 is an equivalence.
(4) For every morphism 𝛼∶ 𝑎 → 𝑎′ in𝐴, the cocartesian transport functor 𝛼! ∶ 𝑋𝑎 → 𝑋𝑎′ preserves

cocartesian morphisms over 𝐵.
(5) The functor 𝐴 → Cocartlax(𝐵) obtained by straightening 𝑝 over 𝐴 factors through the wide

subcategory Cocart(𝐵).

Proof. Condition (1) immediately implies (2). Conversely, since𝑝 is aGray fibration, it follows from
(2) that locally 𝑝-cocartesian morphisms in 𝑋 are closed under composition: Given morphisms
(𝛼, 𝛽)∶ (𝑎, 𝑏) → (𝑎′, 𝑏′) and (𝛼′, 𝛽′)∶ (𝑎′, 𝑏′) → (𝑎′′, 𝑏′′) in 𝐴 × 𝐵, we must show that for 𝑥00 ∈
𝐸(𝑎,𝑏) the composite

𝑥00 → 𝑥11 → 𝑥22

of locally 𝑝-cocartesian morphisms over (𝛼, 𝛽) and (𝛼′, 𝛽′) is again locally 𝑝-cocartesian over
(𝛼′𝛼, 𝛽′𝛽). We can expand this to a composite

𝑥00 → 𝑥10 → 𝑥11 → 𝑥12 → 𝑥22

of locally 𝑝-cocartesian morphisms over (𝛼, id), (id, 𝛽), (id, 𝛽′) and (𝛼′, id). Then the composite
𝑥10 → 𝑥12 is locally 𝑝-cocartesian over (id, 𝛽′𝛽), and so the composite morphism 𝑥00 → 𝑥12 can
alternatively be factored as 𝑥00 → 𝑥02 → 𝑥12 where these morphisms are locally 𝑝-cocartesian
over (id, 𝛽′𝛽) and (𝛼, id). Then 𝑥02 → 𝑥12 → 𝑥22 is locally 𝑝-cocartesian over (𝛼′𝛼, id), and so
finally 𝑥00 → 𝑥02 → 𝑥22 is locally cocartesian over (𝛼′𝛼, 𝛽′𝛽) as required. Hence 𝑝 is a cocartesian
fibration by Corollary 2.1.11.
From Construction 2.4.7, we see that (2) implies (3), since the 𝑝-interpolating morphisms are

now obtained by factoring a morphism that is already locally 𝑝-cocartesian. Moreover, if all
𝑝-interpolating morphisms are invertible, we can also conclude that the composite of locally
𝑝-cocartesian morphisms over a triangle as in (2) factors as a locally 𝑝-cocartesian morphism
followed by an equivalence, and hence is again locally 𝑝-cocartesian.
Since the cocartesian edges in 𝑋𝑎 over 𝐵 are precisely the locally 𝑝-cocartesian edges in 𝑋 that

lie over id𝑎, the equivalence of (3) and (4) is immediate from the definition of 𝑝-interpolating
edges, while (5) is just a rephrasing of (4). □

The interpolating edges of a Gray fibration 𝑝 ∶ 𝑋 → 𝐴 × 𝐵 map to 𝜄(𝐴 × 𝐵) by construction.
From the analogous assertion for cocartesian fibrations, we therefore immediately obtain the
following.
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 911

Corollary 2.4.10. AGray fibration 𝑝 ∶ 𝑋 → 𝐴 × 𝐵 is a left fibration if and only if it is conservative,
or equivalently if its fibres are∞-groupoids.

2.5 Dualisation of curved orthofibrations and Gray fibrations

In the present section, we put together the pieces and analyse the dualisation equivalence
promised in Theorem D.

Theorem 2.5.1. Cocartesian straightening followed by cartesian unstraightening over𝐴 provides a
natural equivalence

(2.5.2)

betweenGray fibrations over𝐴 × 𝐵 and curved orthofibrations over𝐴op × 𝐵. It restricts to the identity
if 𝐴 =∗ and is the usual dualisation equivalence between cartesian and cocartesian fibrations if
𝐵 =∗. In particular, for all (𝑎, 𝑏) ∈ 𝐴 × 𝐵, there are canonical equivalences

Dct(𝑝)(𝑎,𝑏) ≃ 𝑋(𝑎,𝑏) and Dcc(𝑞)(𝑎,𝑏) ≃ 𝑌(𝑎,𝑏) (2.5.3)

for every Gray fibration 𝑝∶ 𝑋 → 𝐴 × 𝐵 and curved orthofibration 𝑞∶ 𝑌 → 𝐴op × 𝐵.
Dually, there is an equivalence

(2.5.4)

with the analogous properties.

Proof. Combine the straightening equivalence of Corollary 2.4.3 with the first equivalence of
Corollary 2.3.4 to obtain

Gray(𝐴, 𝐵) ≃ Fun(𝐴, Cocartlax(𝐵))cc ≃ CrvOrtho(𝐴op, 𝐵).

The addenda are all immediate from the construction, and the dual case is obtained by using the
equivalence from Corollary 2.3.4 combined with the dual of Corollary 2.4.3. □

Proposition 2.5.5. Let 𝑝∶ 𝑋⟶ 𝐴× 𝐵 be a Gray fibration and let 𝑞∶ 𝑌⟶ 𝐴op × 𝐵 be the dual
curved orthofibration. For each 𝛼∶ 𝑎⟶ 𝑎′, 𝛽∶ 𝑏⟶ 𝑏′ and 𝑥 ∈ 𝑋𝑎′,𝑏 ≃ 𝑌𝑎′,𝑏, the canonical
equivalence 𝑋𝑎,𝑏′ ≃ 𝑌𝑎,𝑏′ identifies the associated 𝑝-interpolating morphism from Definition 2.4.8
with the associated 𝑞-interpolating morphism from Definition 2.3.8.

Proof. The statement immediately reduces to the case where 𝐴 = 𝐵 = [1]. Now by construction,
the Gray fibration𝑄′ ⟶ [1] × [1] fromDefinition 2.4.8 is dual to the curved orthofibration𝑄⟶
[1]op × [1] from Construction 2.3.5, so it follows that the ∞-groupoid of interpolating diagrams
𝑄′ ⟶ 𝑋 and 𝑄⟶ 𝑌 are equivalent. Since dualisation identifies the morphism 11′ ⟶ 11 in 𝑄
with 11′ ⟶ 11 in 𝑄′, dualisation preserves interpolating morphisms as well. □
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912 HAUGSENG et al.

Corollary 2.5.6. The equivalences from Theorem 2.5.1 restrict to equivalences

and dually

Proof. The left-hand equivalences follow by replacing the use of Corollary 2.3.4 andCorollary 2.4.3
in Theorem 2.5.1 with Corollary 2.3.12 and straightening for (co)cartesian fibrations. Alternatively,
using the previous proposition, they follow from characterisation (3) of Proposition 2.4.9. The
statement about left and bifibrations follows by inspecting fibres. □

Remark 2.5.7.

(1) Equivalences as on the right were first constructed by Stevenson, by comparing both
Bif ib(𝐴, 𝐵) and LFib(𝐴op × 𝐵) to an∞-category of correspondences [27, Theorems C&D]. In
the companion paper [14], we will prove a uniqueness result for the equivalences above that
in particular shows that our equivalences restrict to those of Stevenson.

(2) From Corollary 2.5.6, we obtain a diagram of equivalences

where the lower maps are given by dualisation in a single variable (i.e. over𝐴op × 𝐵). It is not
a priori clear that this diagram commutes, but this will also be a consequence of the results
in [14]. Combined with the usual straightening equivalences for (co)cartesian fibrations, we
similarly obtain two a priori different equivalences

Ortho(𝐴, 𝐵) ≃ Fun(𝐴op × 𝐵, Cat),

given by straightening first over𝐴 and then over𝐵, or vice versa. Both restrict to equivalences

Bif ib(𝐴, 𝐵) ≃ Fun(𝐴op × 𝐵,Gpd)

and their agreement seems to be new even in this latter case.
(3) By restricting to one of the two legs in the previous point, the dualisation of bifibrations is also

discussed in detail in [16, Section 5], [15, Section A.1] and [5, Section 7.1].
(4) In [14], we also supply a more explicit description of the equivalences in Theorem 2.5.1 based

on span ∞-categories, generalising the work of Barwick, Glasman and Nardin [3] in the
single-variable case.

As a typical example of the dualisation procedure above, consider the bifibration
(𝑠, 𝑡)∶ Ar(𝐶) → 𝐶 × 𝐶. Its duals are the twisted arrow categories of 𝐶; let us briefly recall these to
fix conventions.
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 913

Notation 2.5.8. For an∞-category 𝐶, we write Tw𝓁(𝐶) and Tw𝑟(𝐶) for the left and right twisted
arrow∞-category of 𝐶. These are characterised by the natural equivalences

Map([𝑛], Tw𝑟(𝐶)) ≃ Map([𝑛] ⋆ [𝑛]op, 𝐶), Map
(
[𝑛], Tw𝓁(𝐶)

)
≃ Map([𝑛]op ⋆ [𝑛], 𝐶),

so that Tw𝑟(𝐶) = Tw𝓁(𝐶)op. The natural inclusions of [𝑛] and [𝑛]op correspond to functors

(𝑠, 𝑡)∶ Tw𝓁(𝐶)⟶ 𝐶op × 𝐶, (𝑠, 𝑡)∶ Tw𝑟(𝐶)⟶ 𝐶 × 𝐶op,

which are a left fibration and a right fibration, respectively, both straightening to the mapping
functor

Map𝐶 ∶ 𝐶
op × 𝐶 → Gpd.

Remark 2.5.9. Informally, the objects of Tw𝑟(𝐶) are the morphisms in 𝐶. For morphisms 𝑓∶ 𝑥 →
𝑦, 𝑓′ ∶ 𝑥′ → 𝑦′ in 𝐶, a morphism from 𝑓 to 𝑓′ in Tw𝑟(𝐶) is a commutative diagram

Example 2.5.10. There are canonical equivalences

Dcc(Ar(𝐶) → 𝐶 × 𝐶) ≃ Tw𝓁(𝐶) → 𝐶op × 𝐶

and

Dct(Ar(𝐶) → 𝐶 × 𝐶) ≃ Tw𝑟(𝐶) → 𝐶 × 𝐶op.

This is proved, for example, in [15, Corollary A.2.5], based on Lurie’s recognition criterion for
twisted arrow categories [21, Corollary 5.2.1.2]. We supply another proof in [14] and also extend
the statement to the (op)lax arrow and twisted arrow categories of an (∞, 2)-category.

3 PARAMETRISED ANDMONOIDAL ADJUNCTIONS

In the present section, we will use the results of Section 2 to study the operation of taking adjoint
functors in families. The statements we prove in §3.1 boil down to the fact that for any lax natu-
ral transformation g∶ 𝐹 ⇒ 𝐺 between two diagrams of∞-categories, such that each component
of g is a right adjoint, the pointwise left adjoints assemble into an oplax natural transformation
𝑓∶ 𝐺 ⇒ 𝐹. For the moment, we shall, however, stay in the fibrational picture and instead con-
sidermaps between the associated (co)cartesian fibrations. In particular, wewill prove TheoremB
from the introduction. The translation of this statement into the mate correspondence for (op)lax
transformations will be delayed till §5.3. In §3.2 and §3.3, we carry out two consistency checks:
In the former, we show that for each morphism, our functorial passage to fibrewise adjoints is
given by the Beck–Chevalley construction on morphisms, and in the latter, we prove that the
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914 HAUGSENG et al.

fibrewise adjoints we produce in the fibrational picture are characterised by the expected relation
on morphism∞-groupoids from the left to the right adjoint.
In §3.4, we then finally specialise the discussion to maps of ∞-operads and produce the

correspondence between lax 𝑂-monoidal structures on a right adjoint functor and oplax 𝑂-
monoidal structures on its left adjoint. In particular, we will prove Proposition A and Corollary
C here.

3.1 Parametrised adjunctions

We start by considering adjunctions in families over a base∞-category 𝐵:

Definition 3.1.1. A map g∶ 𝐶⟶ 𝐷 in Cocartlax(𝐵) is said to be a 𝐵-parametrised right adjoint
if it induces right adjoint functors between the fibres over each 𝑏 ∈ 𝐵. Dually, a map 𝑓∶ 𝐷⟶ 𝐶

in Cartopl(𝐵) is said to be a 𝐵-parametrised left adjoint if it induces left adjoint functors between
the fibres.
Let us write Cocartlax,R(𝐵) and Cartopl,L(𝐵) for the wide subcategories of Cocartlax(𝐵) and

Cartopl(𝐵) whose maps are 𝐵-parametrised right and left adjoints, respectively.

As defined the categories Cocartlax,R(𝐵) and Cartopl,L(𝐵) are oblivious to the fact that there
are non-invertible transformations between 𝐵-parametrised adjoints. As it is often important
not to forget these when passing to adjoints (in the specialisation to symmetric monoidal cat-
egories in §3.4, they correspond to symmetric monoidal natural transformations, for example),
we first enhance the∞-categories from Definition 3.1.1 to (∞, 2)-categories that encode natural
transformations as their 2-morphisms.
For this, we will use the description of (∞, 2)-categories as complete 2-fold Segal∞-groupoids.

Definition 3.1.2. A complete 2-fold Segal ∞-groupoid is a functor 𝑋∶ Δop × Δop → Gpd such
that

(1) the simplicial∞-groupoids 𝑋𝑛,∙ and 𝑋∙,𝑚 satisfy the Segal condition for all 𝑛,𝑚,
(2) the simplicial∞-groupoid 𝑋0,∙ is constant,
(3) the Segal∞-groupoids 𝑋∙,0 and 𝑋1,∙ (and hence 𝑋𝑛,∙ for all 𝑛) are complete.

Note that by [20, Lemma 2.8], these conditions imply that 𝑋∙,𝑚 is also complete for all𝑚.

We use the following general construction to enhance our∞-categories to (∞, 2)-categories.

Proposition 3.1.3. Suppose 𝐹∶ Catop → Cat is a limit-preserving functor such that for every
∞-category 𝐵, the functor 𝐹(|𝐵|) → 𝐹(𝐵) arising from the canonical map 𝐵 → |𝐵| induces a
monomorphism 𝜄𝐹(|𝐵|) → 𝜄𝐹(𝐵) on underlying∞-groupoids. If we define 𝐹lc(𝐵) ⊆ 𝐹(𝐵) to be the
full subcategory spanned by the image of 𝐹(|𝐵|) under this functor, then 𝐹lc is also a limit-preserving
functor Catop → Cat, and the bisimplicial∞-groupoid

([𝑛], [𝑚]) ↦ MapCat([𝑛], 𝐹lc([𝑚]))

is a complete 2-fold Segal space.
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 915

Proof. Since themap 𝐵 → |𝐵| is a natural transformation in 𝐵, we see that 𝐹lc is a subfunctor of 𝐹.
Note that the condition that 𝜄𝐹(|𝐵|) → 𝜄𝐹(𝐵) is a monomorphism implies that 𝜄𝐹(|𝐵|) → 𝜄𝐹lc(𝐵)

is an equivalence. For any colimit of ∞-categories 𝐵 ≃ colim𝑖𝐵𝑖 , we then have a commutative
diagram

where the top and bottom horizontal maps are equivalences since 𝐹 preserves limits (and| − |∶ Cat → Gpd ↪ Cat preserves colimits), and the bottom right vertical map is fully faithful
since fully faithful maps are closed under limits. Hence, the middle horizontal functor is also
fully faithful, by the 2-of-3 property for equivalences applied to mapping∞-groupoids. In the top
square, the vertical morphisms are both given by equivalences on underlying∞-groupoids, since
this condition is also closed under limits. By the 2-of-3 property, it follows that the middle hori-
zontal functor is also an equivalence on underlying∞-groupoids, and hence, it is an equivalence.
Thus, 𝐹lc preserves limits.
It follows that the functor

([𝑛], [𝑚]) ↦ MapCat([𝑛], 𝐹lc([𝑚]))

satisfies the Segal and completeness conditions levelwise in each variable, since these can be
expressed as taking certain colimits in Cat to limits. It remains only to observe that for 𝑛 = 0,
the simplicial space 𝜄𝐹lc([𝑚]) is indeed constant: the unique map [𝑚] → [0] is the localisation
[𝑚] → |[𝑚]| ≃∗ and so we know that the map 𝜄𝐹lc([0]) → 𝜄𝐹lc([𝑚]) is an equivalence; since [0]
is terminal in Δ, the diagram is then necessarily constant. □

Remark 3.1.4. If we regard a simplicial∞-category 𝑋∶ Δop → Cat that satisfies the Segal condi-
tion as a double ∞-category whose objects are the objects of 𝑋0, horizontal morphisms are the
morphisms in𝑋0, vertical morphisms are the objects of𝑋1, and squares are the morphisms in𝑋1,
then the construction of Proposition 3.1.3 can be interpreted as extracting an (∞, 2)-category from
the double∞-category [𝑛] ↦ 𝐹([𝑛]) by forgetting the non-invertible vertical morphisms. Such a
construction can be performed more generally, but the conditions in Lemma 3.1.3 seem required
to ensure the resulting 2-fold Segal space is complete.

Returning to our specific situation, for any∞-category 𝐴, we have natural equivalences

MapCat
(
𝐴,Cocartlax(𝐵 × 𝑆)

)
≃ 𝜄CrvOrtho(𝐴op, 𝐵 × 𝑆) ≃ MapCat

(
𝐵 × 𝑆, Cartopl(𝐴)

)
by Corollary 2.3.4. By the Yoneda lemma, this implies that for all 𝐵, the functor

Catop → Cat, 𝑆 ↦ Cocartlax (𝐵 × 𝑆)
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916 HAUGSENG et al.

preserves limits. Moreover, on underlying∞-groupoids, we have equivalences

𝜄 Cocartlax (𝐵 × 𝑆) ≃ 𝜄 Cocart (𝐵 × 𝑆) ≃ Map(𝐵 × 𝑆, Cat) ≃ Map(𝑆, Fun(𝐵, Cat)),

so that the functor 𝜄 Cocartlax(𝐵 × |𝑆|) → 𝜄 Cocartlax(𝐵 × 𝑆) corresponds to the functor

Map(|𝑆|, Fun(𝐵, Cat)) → Map(𝑆, Fun(𝐵, Cat))

given by composition with 𝑆 → |𝑆|; this is therefore a monomorphism by the universal property
of the localisation |𝑆|, which says that Fun(|𝑆|, 𝑋) → Fun(𝑆, 𝑋) is fully faithful with image those
functors that take all morphisms in 𝑆 to equivalences.
Let us denote by

Cocartlax𝑆 (𝐵 × 𝑆) ⊆ Cocartlax (𝐵 × 𝑆)

the full subcategory of cocartesian fibrations which are locally constant on 𝑆, that is, those
obtained by pulling back a cocartesian fibration over 𝐵 × |𝑆|, or equivalently those whose
straightening to a functor 𝐵 × 𝑆 → Cat factors through the localisation to 𝐵 × |𝑆|. Applying
Proposition 3.1.3, we then have the following.

Corollary 3.1.5. The functor

preserves limits, and the bisimplicial space

(3.1.6)

is a complete 2-fold Segal∞-groupoid. □

The same assertion holds if we instead take Cocartlax,R
𝑆

(𝐵 × 𝑆), Cartopl
𝑆
(𝐵 × 𝑆) or Cartopl,L

𝑆
(𝐵 ×

𝑆), which are all defined analogously.

Definition 3.1.7. Let 𝐵 be a small ∞-category. We define 𝐂𝐨𝐜𝐚𝐫𝐭lax(𝐵) to be the (∞, 2)-
category associated to the complete 2-fold Segal ∞-groupoid (3.1.6). Likewise, we define the
(∞, 2)-category 𝐂𝐚𝐫𝐭opl(𝐵) to be the (∞, 2)-category associated to the 2-fold complete Segal
∞-groupoid

(3.1.8)

We define the (∞, 2)-categories 𝐂𝐨𝐜𝐚𝐫𝐭lax,R(𝐵) and 𝐂𝐚𝐫𝐭opl,L(𝐵) similarly.

In the special case where 𝐵 =∗, the equivalent 2-fold complete Segal spaces

𝐂𝐨𝐜𝐚𝐫𝐭lax(∗) ≃ 𝐂𝐚𝐫𝐭opl(∗)
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 917

provide a model for the (∞, 2)-category 𝐂𝐚𝐭 of ∞-categories (this is proved more precisely in
Section 5.3). Consequently, we can identify

𝐂𝐨𝐜𝐚𝐫𝐭lax,R(∗) ≃ 𝐂𝐚𝐭R and 𝐂𝐚𝐫𝐭opl,L(∗) ≃ 𝐂𝐚𝐭L.

Observation 3.1.9. If the∞-category 𝑆 has contractible realisation (i.e. |𝑆| ≃∗), then the objects of
Cocartlax

𝑆
(𝐵 × 𝑆) are by definition the cocartesian fibrations over 𝐵 × 𝑆 that are pulled back along

the projection 𝐵 × 𝑆 → 𝐵, that is, those of the form 𝐸 × 𝑆 → 𝐵 × 𝑆 for a cocartesian fibration 𝐸 →
𝐵. A morphism between two such objects can then be identified with a commutative triangle

for cocartesian fibrations 𝐸, 𝐸′ → 𝐵. Note that this applies in particular for 𝑆 = [𝑛]. In particular,
a 2-morphism in 𝐂𝐨𝐜𝐚𝐫𝐭lax(𝐵) is simply a natural transformation 𝜇 over 𝐵 of maps g, g′ between
cocartesian fibrations 𝑋 → 𝐵 and 𝑌 → 𝐵.
This we can view as a family of natural transformations 𝜇𝑏 ∶ g𝑏 ⟶ g′

𝑏
that commutes with the

lax structure maps, in the sense that for each 𝑏⟶ 𝑏′, there is a commuting diagram

Depicting this diagram cubically, it can also be viewed as a lax natural transformation between
two functors 𝐵 × [1]⟶ Cat that are constant along the interval. Note that 𝐂𝐨𝐜𝐚𝐫𝐭lax,R(𝐵) ⊆
𝐂𝐨𝐜𝐚𝐫𝐭lax(𝐵) is the 1-full sub-2-category whose morphisms are lax natural transformations
consisting of right adjoints.

Remark 3.1.10. Note that for any two∞-categories 𝐵 and 𝑆, taking opposite∞-categories defines
an equivalence

(−)op ∶ Cocartlax𝑆 (𝐵 × 𝑆)
∼
⟶ Cart

opl
𝑆op (𝐵

op × 𝑆op).

Using this, one deduces that taking opposite ∞-categories defines an equivalence of (∞, 2)-
categories, where in the target, the 2-morphisms are reversed

(−)op ∶ 𝐂𝐨𝐜𝐚𝐫𝐭lax(𝐵)
∼
⟶ 𝐂𝐚𝐫𝐭opl(𝐵op)2−op.

We now come to our main technical result, Theorem B.
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918 HAUGSENG et al.

Theorem 3.1.11. Let 𝐵 be an∞-category. Then there is a natural equivalence of (∞, 2)-categories

Adj∶ 𝐂𝐨𝐜𝐚𝐫𝐭lax,R(𝐵)
∼
⟶ 𝐂𝐚𝐫𝐭opl,L(𝐵op)(1,2)−op (3.1.12)

sending each cocartesian fibration to the cartesian fibration classifying the same functor 𝐵⟶ Cat.
Here in the target, the directions of 1- and 2-morphisms are changed, as indicated.

In particular, for 𝐵 =∗, this produces an equivalence

𝐂𝐚𝐭R ≃ (𝐂𝐚𝐭L)(1,2)−op.

For the proof, recall first that a functor g∶ 𝐶⟶ 𝐷 between ∞-categories is a right adjoint
if the corresponding cartesian fibration 𝑝∶ 𝑋⟶ [1] is a cocartesian fibration as well, see [21,
Section 5.2.2]. Dually, a functor 𝑓∶ 𝐷⟶ 𝐶 is a left adjoint if the corresponding cocartesian
fibration is a cartesian fibration as well. In other words, one can encode adjunctions by func-
tors 𝑝∶ 𝑋⟶ [1] that are simultaneously cartesian and cocartesian fibrations; the two adjoint
functors can be extracted from this by (co)cartesian straightening.
We now extend this statement by showing that a functor between two 𝐵-parametrised cate-

gories (in the form of cocartesian fibrations over 𝐵) is a parametrised right adjoint if and only if
the corresponding curved orthofibration over [1] × 𝐵 is also a Gray fibration, when considered
over 𝐵 × [1], and similarly in the dual situation. More generally:

Lemma 3.1.13. Let 𝑝 = (𝑝1, 𝑝2)∶ 𝑋⟶ 𝐴× 𝐵 be a functor. Then the following conditions are
equivalent:

(1) 𝑝 is a curved orthofibration and the functor 𝐴op ⟶ Cocartlax(𝐵) classifying 𝑝 via Corol-
lary 2.3.4 takes values in the wide subcategory Cocartlax,R(𝐵),

(2) 𝑝 is a curved orthofibration whose restriction 𝑝𝑙 to 𝐴 × 𝜄(𝐵) is a cocartesian fibration as well,
(3) 𝑝 = (𝑝2, 𝑝1)∶ 𝑋⟶ 𝐵 × 𝐴 is a Gray fibration and the functor 𝐵 → Cocartlax(𝐴) classifying 𝐵

takes values in the full subcategory Bicart(op)lax(𝐴),
(4) 𝑝 = (𝑝2, 𝑝1)∶ 𝑋⟶ 𝐵 × 𝐴 is a Gray fibration whose restriction to 𝜄(𝐵) × 𝐴 is a cartesian

fibration as well.

Dually, a curved orthofibration 𝑞 = (𝑞1, 𝑞2)∶ 𝑌⟶ 𝐵 × 𝐴 classifies a functor 𝐴⟶ Cartopl,L(𝐵)

via Corollary 2.3.4 if and only if 𝑞𝑟 is a cartesian fibration as well, or equivalently if and only if
(𝑞2, 𝑞1)∶ 𝑌⟶ 𝐴× 𝐵 is an op-Gray fibration, which is then automatically classified by a functor
𝐴op → Bicart(op)lax(𝐵).

Proof. For the equivalence between (1) and (2), we claim that one can check both conditions
fibrewise in 𝐵. Namely, for (1), this follows by the naturality of the straightening equivalence
(Corollary 2.3.4) in 𝐵, and for (2), this is an immediate consequence of Corollary 2.2.7. So, it suf-
fices to prove that the two conditions are equivalent for 𝐵 = {∗}, where the assertion becomes that
a cartesian fibration classifies a diagram of∞-categories and right adjoints if and only it is also
a cocartesian fibration, which is [23, Proposition 4.7.4.17]. The equivalence between (2) and (4)
follows from characterisation (3) of curved orthofibrations in Proposition 2.3.3, and finally, the
equivalence between (3) and (4) is part of Corollary 2.2.7. □
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 919

Let us writeM(𝐴, 𝐵) for the∞-groupoid of functors 𝑝∶ 𝑋⟶ 𝐴× 𝐵 satisfying the equivalent
conditions of Lemma 3.1.13, so that there are natural inclusions of path components

where the left inclusion sends 𝑝 = (𝑝1, 𝑝2) to (𝑝2, 𝑝1). Likewise, let us write 𝑁(𝐴, 𝐵) for
the ∞-groupoid of functors 𝑞∶ 𝑌⟶ 𝐵 ×𝐴 satisfying the equivalent opposite conditions of
Lemma 3.1.13, so that there are natural inclusions of path components

More generally, let us write𝑀𝑆(𝐴, 𝐵 × 𝑆) ⊆ 𝑀(𝐴, 𝐵 × 𝑆) and 𝑁𝑆(𝐴, 𝐵 × 𝑆) ⊆ 𝑁(𝐴, 𝐵 × 𝑆) for the
natural subspaces spanned by fibrations 𝑝∶ 𝑋⟶ 𝐴× (𝐵 × 𝑆) such that each 𝑋𝑎,𝑏 ⟶ 𝑆 is
locally constant, that is, the associated functor factors through |𝑆|.
Corollary 3.1.14. For any∞-category 𝐵, unstraightening over [𝑚] provides natural equivalence of
2-fold complete Segal spaces

Proof. Apply Lemma 3.1.13 and use that local constancy along [𝑛] can be checked when [𝑚] =∗,
in which case the unstraightening functors are equivalent to the identity. □

Lemma 3.1.15. The dualisation functor from Theorem 2.5.1 with respect to 𝐵 × 𝑆

Dct ∶ Gray(𝐵 × 𝑆,𝐴)
∼
⟶ CrvOrtho((𝐵 × 𝑆)op, 𝐴)

restricts to an equivalence of∞-groupoids

Dct ∶ M𝑆(𝐴, 𝐵 × 𝑆)
∼
⟶ N𝑆op(𝐴, (𝐵 × 𝑆)

op).

Proof. When𝐴 =∗, dualisation over 𝐵 × 𝑆 simply sends cocartesian fibrations to their dual carte-
sian fibrations. This preserves local constancy in 𝑆 and by naturality in𝐴, one sees that dualisation
preserves those objects that restrict to locally constant fibrations over {𝑏} × 𝑆 × 𝐴.
By the addenda of Theorem 2.5.1, for 𝐵 × 𝑆 =∗, the dualisation equivalence restricts to a nat-

ural self-equivalence of the∞-category of cocartesian fibrations over 𝐴 that is equivalent to the
identity. By naturality in 𝐵 × 𝑆, one therefore sees that the dualisation preserves those objects that
restrict for each 𝑥 ∈ 𝐵 × 𝑆 to a bicartesian fibration over {𝑥} × 𝐴, as required. □

Proof of Theorem 3.1.11. Corollary 3.1.14 and Lemma 3.1.15 yield a natural equivalence

(3.1.16)
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920 HAUGSENG et al.

Taking 𝐴 and 𝑆 to be simplices, one obtains the desired equivalence between 2-fold Segal spaces
𝐂𝐨𝐜𝐚𝐫𝐭lax,R(𝐵) ≃ 𝐂𝐚𝐫𝐭opl,L(𝐵op)(1,2)−op. □

Example 3.1.17. A two-variable adjunction consists of functors 𝐹∶ 𝐵 × 𝐶 → 𝐷 and 𝐺∶ 𝐵op ×
𝐷 → 𝐶, together with a natural equivalence

Map𝐷(𝐹(𝑏, 𝑐), 𝑑) ≃ Map𝐶(𝑐, 𝐺(𝑏, 𝑑));

the prototypical example is the tensor-hom adjunction in a (left-)closed monoidal ∞-category.
This is a special case of our parametrised adjunctions: It follows from the Yoneda lemma that
given 𝐹, the functor 𝐺 is uniquely determined and exists if and only if 𝐹(𝑏, −) is a left adjoint for
all 𝑏 ∈ 𝐵. We can then view 𝐹 as a parametrised left adjoint

Since the dual cocartesian fibration to pr1 ∶ 𝐵 × 𝐶 → 𝐵 is the projection 𝐵op × 𝐶 → 𝐵op,
Theorem 3.1.11 produces a parametrised right adjoint in the form

At the moment, we only know that 𝐺(𝑏, −) is right adjoint to 𝐹(𝑏, −) for each 𝑏, but we will verify
in Corollary 3.3.16 below that 𝐺 indeed gives the expected natural equivalence on mapping ∞-
groupoids. We will apply this fibrational description of two-variable adjunctions to analyse the
monoidal properties of the internal mapping functor in Corollary 3.4.10.

3.2 Identifying mates

Our goal in this subsection is to describe the effect on morphisms of the equivalence from
Theorem 3.1.11 in terms of mates or Beck–Chevalley transformations, see Proposition 3.2.7 below.
In order to do this, let us first recollect how one can obtain the unit and counit of the adjunction

from a bicartesian fibration 𝑝∶ 𝑋⟶ [1], using the following general construction:

Construction 3.2.1. Let 𝑝∶ 𝑋⟶ [1] be a cocartesian fibration and 𝐼 any∞-category. By [21,
Proposition 3.1.2.1], post-composition with 𝑝 determines a cocartesian fibration

𝑝𝐼 ∶ Fun(𝐼, 𝑋) → Fun(𝐼, [1]),

with cocartesian morphisms those natural transformations that are given by 𝑝-cocartesian mor-
phisms at each object of 𝐼. Given a functor 𝜙∶ 𝐼 → 𝑋, its cocartesian transport functor 𝜙cc ∶ 𝐼 ×
[1] → 𝑋 is the diagram corresponding to the essentially unique 𝑝𝐼-cocartesian morphism with
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 921

domain 𝜙 covering the map 𝑝𝜙 ⇒ const1 in Fun(𝐼, [1]). Alternatively, it is the unique diagram
whose restriction to 𝐼 × {0} is given by 𝜙 such that each 𝜙cc(𝑖)∶ [1]⟶ 𝑋 is 𝑝-cocartesian over
𝑝(𝜙(𝑖) ⩽ 1).
Dually, for a cartesian fibration 𝑝∶ 𝑋⟶ [1] and a functor 𝜓∶ 𝐼 ⟶ 𝑋, one can form the

cartesian transport functor 𝜓ct ∶ 𝐼 × [1] → 𝑋 of 𝜓.

Example 3.2.2. Let 𝑝∶ 𝑋⟶ [1] be a cocartesian fibration classifying a functor 𝑓∶ 𝐷⟶ 𝐶.
Taking 𝜙 to be the fibre inclusion 𝑖0 ∶ 𝐷 ≃ 𝑋0 ↪ 𝑋, one obtains a diagram 𝑖0,cc ∶ 𝐷 × [1] → 𝑋. The
restriction to 𝐷 × {1} gives a functor 𝐷⟶𝑋1 ≃ 𝐶 naturally equivalent to 𝑓 (as a consequence of
[21, Lemma 5.2.1.4]) and for each 𝑑 ∈ 𝐷, the arrow 𝑖0,cc(𝑑)∶ 𝑑 � 𝑓(𝑑) is 𝑝-cocartesian.

Construction 3.2.3. Let 𝑝∶ 𝑋⟶ [1] be a cartesian and cocartesian fibration classifying an
adjoint pair 𝑓∶ 𝐷 ⇆ 𝐶 ∶g. Applying Example 3.2.2 and taking the cartesian transport functor of
the resulting diagram 𝑖0,cc ∶ 𝐷 × [1] → 𝑋 yields a functor

(𝑖0,cc)ct ∶ 𝐷 × [1] × [1] → 𝑋,

which takes 𝑦 ∈ 𝐷 to the square

The functor (𝑖0,cc)ct(−, −, 0) factors through the fibre𝐷 ≃ 𝑋0, and encodes the unit transformation
𝜂∶ id𝐷 ⇒ g𝑓 of the adjunction classified by 𝑝. The above square shows that for a fixed object 𝑦,
the unit 𝜂𝑦 ∶ 𝑦⟶ g𝑓(𝑦) is obtained by taking a cocartesian arrow 𝑦⟶ 𝑓(𝑦) and factoring it as
a fibrewise map followed by a cartesian map.
Dually, starting with the cartesian transport of the fibre inclusion 𝐶 ↪ 𝑋 and then taking the

cocartesian transport gives (𝑖1,ct)cc ∶ 𝐶 × [1] × [1] → 𝑋 whose restriction to 𝐶 × [1] × {1} encodes
the counit transformation 𝜖∶ 𝑓g ⇒ id𝐶 of the adjunction.

To understand the behaviour of a 𝐵-parametrised right adjoint, let us start by showing that a
map in Cocartlax(𝐵) can roughly be viewed as a lax natural transformation; this picture will be
made more precise in Section 5.

Construction 3.2.4. Let g∶ 𝐶⟶ 𝐷 be a morphism in Cocartlax(𝐵) and 𝛽∶ 𝑏⟶ 𝑏′ one in 𝐵.
Then g determines a natural transformation of the form

(3.2.5)

We will refer to this as the 𝛽-component of g. To see this, note that for each object 𝑥 ∈ 𝐶(𝑏), the
image of the cocartesian lift 𝛽∶ 𝑥⟶ 𝛽!𝑥 under g factors uniquely as

 1460244x, 2023, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12548 by N

tnu N
orw

egian U
niversity O

f S, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



922 HAUGSENG et al.

Alternatively, Example 2.3.5 shows that 𝜌𝛽(𝑥) can also be obtained as the interpolating edge
associated to 𝑥 in the curved orthofibration 𝑝∶ 𝑋⟶ [1]op × 𝐵 classifying g.
To organise these interpolating morphisms 𝜌𝛽(𝑥) into a natural transformation, one can use a

similar manoeuvre as in Construction 3.2.1 and consider the diagram

whose vertical maps are cocartesian fibrations. Applying the previous construction to the map
𝛽∶ const𝑏 ⇒ const𝑏′ in the base and the fibre inclusion 𝐶(𝑏) ↪ 𝐶 covering its domain const𝑏, we
obtain the desired natural transformation 𝜌𝛽 ∶ 𝛽!g ⇒ g𝛽!. This restricts to the interpolating maps
𝜌𝛽(𝑥) defined above because g∗-cocartesian arrows are given pointwise by g-cocartesian arrows
(see [21, Proposition 3.1.2.1]).

When g∶ 𝐶⟶ 𝐷 is a 𝐵-parametrised right adjoint, the lax commuting square (3.2.5) gives rise
to a natural transformation between the fibrewise left adjoints and the change-of-fibre functors
𝛽!.

Definition 3.2.6. Consider a lax commuting square of the form (3.2.5) such that the horizontal
functors are part of adjunctions 𝑓∶ 𝐷(𝑏) ⇆ 𝐶(𝑏)∶ g and 𝑓∶ 𝐷(𝑏′) ⇆ 𝐶(𝑏′)∶ g. Then the Beck–
Chevalley transformation associated to 𝜌𝛽 is the composition

𝑓𝛽! 𝑓𝛽!𝑔𝑓 𝑓𝑔𝛽!𝑓 𝛽!𝑓.
𝑓𝛽!𝜂 𝑓𝜌𝛽𝑓 𝜖𝛽!𝑓

We are now ready to describe the effect of the equivalence Adj from Theorem 3.1.11 on mor-
phisms. To this end, let g∶ 𝐶⟶ 𝐷 be a morphism in Cocartlax,R(𝐵) and let 𝑓 = Adj(g) be
the induced morphism in Cartopl,L(𝐵op)op. Construction 3.2.4 and the dual analysis for maps in
Cartopl(𝐵) show that for each 𝛽∶ 𝑏⟶ 𝑏′ in 𝐵, the maps g and 𝑓 give rise to lax commuting
squares of the form

𝐶(𝑏) 𝐷(𝑏) 𝐶(𝑏) 𝐷(𝑏)

𝐶(𝑏′) 𝐷(𝑏′) 𝐶(𝑏′) 𝐷(𝑏′).

𝛽!

𝑔

𝛽!𝜌𝛽
(𝛽op)∗ (𝛽op)∗

𝑓

𝑔 𝑓

𝜆𝛽

Note that in these diagrams, the vertical change-of-fibre functors are equivalent. The transforma-
tion 𝜆𝛽 is given by the Beck–Chevalley transformation associated to 𝜌𝛽 , more precisely:

Proposition 3.2.7. Let g∶ 𝐶⟶ 𝐷 be a map in Cocartlax,𝑅(𝐵), and 𝛽∶ 𝑏 → 𝑏′ a morphism in
𝐵, so that the 𝛽-component of g is given by (3.2.5). Then regarding 𝛽 as a morphism in 𝐵op, the 𝛽-
component of 𝑓 = Adj(g) is given by the Beck–Chevalley transformation associated to 𝜌𝛽 , that is, 𝜆𝛽
is equivalent to the composition

𝑓𝛽! 𝑓𝛽!𝑔𝑓 𝑓𝑔𝛽!𝑓 𝛽!𝑓.
𝑓𝛽!𝜂 𝑓𝜌𝛽𝑓 𝜖𝛽!𝑓
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 923

Proof. The equivalence Adj∶ Cocartlax,R(𝐵)⟶ Cartopl,L(𝐵) is given at the level of morphisms
by (3.1.16) for𝐴 = [1]op. In other words, consider a map g∶ 𝐶⟶ 𝐷 in Cocartlax,R(𝐵) and let 𝑝 =
(𝑝1, 𝑝2)∶ 𝑋⟶ [1] × 𝐵 be the corresponding curved orthofibration, as in Lemma 3.1.13. Then the
map 𝑓 = Adj(g)∶ 𝐷⟶ 𝐶 in Cart(𝐵op) is the straightening of the curved orthofibration which is
dual (relative to 𝐵) to the Gray fibration 𝑝 = (𝑝2, 𝑝1)∶ 𝑋⟶ 𝐵 × [1].
Let us now fix 𝛽∶ 𝑏⟶ 𝑏′ in 𝐵. For 𝑥 ∈ 𝐶(𝑏) ≃ 𝑋1,𝑏, Construction 3.2.4 and Example 2.3.5

identify 𝜌𝛽(𝑥) with the corresponding 𝑝-interpolating morphism 𝛽!g(𝑥)⟶ g𝛽!(𝑥) in 𝑋, where
𝑝 is considered as a curved orthofibration. On the other hand, for 𝑦 ∈ 𝐷(𝑏) ≃ 𝑋0,𝑏, (the dual of)
Construction 3.2.4, Definition 2.4.8 and Proposition 2.5.5 show that 𝜆𝛽(𝑦)∶ 𝑓𝛽!𝑦 ⟶ 𝛽!𝑓𝑦 is given
by the associated 𝑝-interpolating morphism, where 𝑝 is considered as a Gray fibration.
To relate 𝜆𝛽 and 𝜌𝛽 , take 𝑦 ∈ 𝐷(𝑏) and consider the following diagram in 𝑋

(3.2.8)

whichwe build in steps as follows; first we obtain the outer square as the essentially unique one in
which the two vertical arrows are 𝑝-cocartesian (as always denoted as�) and themap 𝑦⟶ 𝑓(𝑦)

is locally𝑝-cocartesian.We then factor the twohorizontalmaps into a fibrewisemap, followed by a
𝑝-cartesianmorphism (denoted as�). Finally, we factor the inducedmap g𝑓(𝑦)⟶ g𝛽!𝑓(𝑦) into
a cocartesianmap followed by a fibrewise one. Note that the right rectangle is then precisely the𝑄-
diagram exhibiting 𝜌𝛽(𝑓(𝑦))∶ 𝛽!g𝑓(𝑦)⟶ g𝛽!𝑓(𝑦) as a 𝑝-interpolating edge (Construction 2.3.5).
The resulting morphism 𝑦⟶ g𝑓(𝑦) in the top row is the unit of the adjoint pair (𝑓, g) (at

the fibre over 𝑏) and the map 𝛽!𝜂 exists since the left vertical map is 𝑝-cocartesian. Now note
that the maps 𝛽!𝜂 and 𝜌𝛽𝑓 are both contained in the fibre 𝑋0,𝑏′ ≃ 𝐷(𝑏′), so that choosing locally
𝑝-cocartesian lifts over (0, 𝑏′) → (1, 𝑏′) yields a commuting diagram

𝛽!(𝑦) 𝛽!𝑔𝑓(𝑦) 𝑔𝛽!𝑓(𝑦)

𝑓𝛽!(𝑦) 𝑓𝛽!𝑔𝑓(𝑦) 𝑓𝑔𝛽!𝑓(𝑦) 𝛽!𝑓(𝑦).

𝛽!𝜂

◦

𝜌𝛽𝑓

◦ ◦

𝑓𝛽!𝜂 𝑓𝜌𝛽𝑓 𝜖

Here the top lives in𝑋0,𝑏′ and the bottom in𝑋1,𝑏′ . Pasting this diagram below (3.2.8), the resulting
outer diagram determines a𝑄′-diagram in𝑋 (Definition 2.4.8) that exhibits the bottom composite
𝑓𝛽!(𝑦)⟶ 𝛽!𝑓(𝑦) as the𝑝-interpolating arrowassociated to 𝑦. In particular, the bottomcomposite
is equivalent to 𝜆𝛽(𝑦).
To obtain the identification as natural transformations, we proceed as in Construction 3.2.4,

replacing g∶ 𝐶⟶ 𝐷 by g∶ Fun(𝐷(𝑏), 𝐶)⟶ Fun(𝐷(𝑏), 𝐷) and applying the above argument
to the case where 𝑦 is replaced by the fibre inclusion 𝜄 ∶ 𝐷(𝑏) ↪ 𝐷, viewed as an object of
Fun(𝐷(𝑏), 𝐷). Since the equivalences in Corollary 3.1.14 and Lemma 3.1.15 commute with tak-
ing functor categories (since by adjunction, they commute with products), it follows that 𝜆𝛽 is
naturally equivalent to the Beck–Chevalley transformation associated to 𝜌𝛽 , as asserted. □
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924 HAUGSENG et al.

3.3 Parametrised correspondences

Our goal in this section is to derive a characterisation of parametrised adjoints, which we defined
in terms of their associated fibrations in §3.1, by means of a natural equivalence analogous to the
usual equivalence

Map𝐶(𝑓(𝑑), 𝑐) ≃ Map𝐷(𝑑, g(𝑐))

on mapping∞-groupoids associated to an adjunction 𝑓 ⊣ g.
To motivate the form this will take, let us first observe that we can phrase the preceding

condition in terms of left fibrations: 𝑓 is left adjoint to g if there is an equivalence

(𝑓op × id𝐷)
∗ Tw𝓁(𝐷) ≃ (id𝐶 × g)∗ Tw𝓁(𝐶) (3.3.1)

of left fibrations over 𝐶op × 𝐷, since the twisted arrow∞-categories are the left fibrations for the
mapping∞-groupoid functors, and precomposition corresponds to pullback of left fibrations. We
will prove a parametrised analogue of Equation (3.3.1); to state this, we first need some notation:

Notation 3.3.2. To simplify a number of formulae, we use (−)∨ to denote the cocartesian fibration
dual to a cartesian fibration in this subsection.
Now suppose 𝑝∶ 𝐸 → 𝐵 is a cocartesian fibration, corresponding to a functor𝐹∶ 𝐵 → Cat. The

natural transformation

Tw𝓁(𝐹(−)) → 𝐹(−)op × 𝐹(−)

then corresponds to a commutative triangle

since (𝐸op)∨ → 𝐵 is the cocartesian fibration classified by 𝐹(−)op. Here Tw𝓁
𝐵
(𝐸) → (𝐸op)∨ ×𝐵 𝐸 is

a left fibration by the dual of [21, Proposition 2.4.2.11] and the observation that a locally cocartesian
fibration with∞-groupoid fibres is automatically a left fibration.

Theorem 3.3.3. If g∶ 𝐶 → 𝐷 is a 𝐵-parametrised right adjoint, with parametrised left adjoint
𝑓∶ 𝐷∨ → 𝐶∨, then there is an equivalence

(𝑓op ×𝐵 id)
∗ Tw𝓁

𝐵(𝐶) ≃ (id ×𝐵 g)
∗ Tw𝓁

𝐵(𝐷)

of left fibrations over (𝐷op)∨ ×𝐵 𝐶.

Before we embark upon the proof of Theorem 3.3.3, left us first observe that if 𝐸 → [1] is the
bicartesian fibration corresponding to an adjunction, then we can also phrase Equation (3.3.1) in
terms of the correspondence associated to this functor, in the following sense.
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 925

Definition 3.3.4. A correspondence is a left fibration 𝑋 → 𝐴op × 𝐵. We define the ∞-category
Corr of correspondences by the pullback

where here LFib denotes the full subcategory of Ar(Cat) spanned by the left fibrations.

We use the following result from [27], see also [1]:

Theorem 3.3.5 (Stevenson). There is an equivalence

corr∶ Cat∕[1]
∼
⟶ Corr,

over Cat × Cat, where the functor Cat∕[1] → Cat × Cat is given by taking fibres over 0 and 1. The
value of the functor corr on 𝑓∶ 𝐸 → [1] is defined by the natural pullback square

where 𝐸0 and 𝐸1 are the fibres of 𝑓 over 0 and 1, respectively.

It is easy to check that if 𝐸 → [1] is in fact a cocartesian fibration, corresponding to a functor
𝑓∶ 𝐸0 → 𝐸1, then there is a pullback square

while if it is a cartesian fibration, corresponding to g∶ 𝐸1 → 𝐸0, then we have a pullback

Combining these squares, we get the equivalence Equation (3.3.1) when 𝐸 → [1] corresponds to
an adjunction. We now want to develop a parametrised version of this story.

Definition 3.3.6. A 𝐵-parametrised correspondence is a left fibration 𝑋 → (𝐸
op
0
)∨ ×𝐵 𝐸1 for

cocartesian fibrations 𝐸0, 𝐸1 → 𝐵. We define the ∞-category Corr(𝐵) thereof by the pullback
square
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926 HAUGSENG et al.

Using [21, Proposition 2.4.2.11] once again, we find that a 𝐵-parametrised correspondence is
equivalently given by the data of two cocartesian fibrations 𝐸0 → 𝐵, 𝐸1 → 𝐵 and a commutative
triangle

between cocartesian fibrations, such that 𝑓 preserves cocartesian edges and 𝑓𝑎 is a left fibration
for every 𝑏 ∈ 𝐵. Straightening this data in the base 𝐵, we get that Corr(𝐵) is equivalently given by
the following pullback:

Because Fun(𝐵,−) preserves pullbacks, this implies that Corr(𝐵) is equivalent to Fun(𝐵, Corr).

Corollary 3.3.7. There is an equivalence

corr𝐵 ∶ RCocart([1], 𝐵)
∼
⟶ Corr(𝐵)

overCocart(𝐵) × Cocart(𝐵), where the functorRCocart([1], 𝐵) → Cocart(𝐵) × Cocart(𝐵) is given by
taking fibres over 0 and 1. Given 𝑓∶ 𝐸 → [1] × 𝐵 in RCocart([1], 𝐵), its value corr𝐵(𝐸) is defined by
the natural pullback square

where (𝐸op)∨ ∈ RCocart([1], 𝐵) is obtained by dualising in the second variable.

Proof. Unstraightening over 𝐵, we have the square
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 927

so the claim follows from Theorem 3.3.5. □

Proposition 3.3.8. Suppose 𝑝∶ 𝐸 → [1] × 𝐵 is a curved orthofibration, corresponding to a functor
g∶ 𝐸1 → 𝐸0 over 𝐵. Then there is a pullback square

In order to prove this, we first make some fibrational observations:

Proposition 3.3.9. Consider a commutative square of∞-categories

where𝑝 and 𝑞 are cocartesian fibrations and g takes𝑝-cocartesianmorphisms to 𝑞-cocartesian ones.
For 𝑥 ∈ 𝑋, let g𝑥 ∶ 𝐸𝑥 → 𝐹𝑓𝑥 be the restriction of g to the fibres over 𝑥. If a morphism 𝜙∶ 𝑒′ → 𝑒 in
𝐸𝑥 is g𝑥-cartesian, then 𝜙 is also g-cartesian.

Proof. For 𝑒′′ ∈ 𝐸 over 𝑥′′ ∈ 𝑋, we have the commutative diagram

where we want to show that the back square is cartesian. It suffices to check that we have a carte-
sian square on the fibres over any 𝜉 ∈ Map𝑋(𝑥′′, 𝑥), but since 𝑝 and 𝑞 are cocartesian fibrations
and g preserves cocartesian morphisms, we can identify this square as

which is cartesian by the assumption that 𝜙 is g𝑥-cartesian. □
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928 HAUGSENG et al.

Corollary 3.3.10. For any functor 𝑝∶ 𝐸 → 𝐵, a morphism from 𝑥′ → 𝑦′ to 𝑥 → 𝑦 in Tw𝓁(𝐸) of the
form

isTw𝓁(𝑝)-cartesian if 𝑥 → 𝑥′ is𝑝-cocartesian and 𝑦′ → 𝑦 is𝑝-cartesian. In particular, if𝑝∶ 𝐸 → 𝐵

is a cartesian fibration, then Tw𝓁(𝐸) → Tw𝓁(𝐵) has cartesian lifts of morphisms of the form

in Tw𝓁(𝐵).

Proof. To find that a morphism in Tw𝓁(𝐸), in which 𝑥 → 𝑥′ is an equivalence and 𝑦′ → 𝑦 is
𝑝-cartesian, is Tw𝓁(𝑝)-cartesian, apply Proposition 3.3.9 to the square

noting that on fibres over𝑥 ∈ 𝐸with 𝑏 = 𝑝(𝑥), we have the functor𝐸𝑥∕ → 𝐵𝑏∕, where amorphism
of the specified form is cartesian. Dually, applying Proposition 3.3.9 to the square

we find that a morphism in Tw𝓁(𝐸) with 𝑦′ → 𝑦 an equivalence and 𝑥 → 𝑥′ 𝑝-cocartesian is
Tw𝓁(𝑝)-cartesian. Since cartesian morphisms are closed under composition, the general case
follows. □

Let 𝑝∶ 𝐸 → 𝐴 × 𝐵 be a curved orthofibration; recall from Proposition 2.3.3 that 𝑝 can then be
interpreted as a map of cocartesian fibrations over 𝐵. Applying Tw𝓁

𝐵
(−) to it gives the diagram

where we use that Tw𝓁
𝐵
(𝐴 × 𝐵) ≃ Tw𝓁(𝐴) × 𝐵. Applying Corollary 3.3.10 fibrewise and appealing

to Proposition 3.3.9 again, we get the following.
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 929

Corollary 3.3.11. Suppose 𝑝∶ 𝐸 → 𝐴 × 𝐵 is a curved orthofibration. Then

Tw𝓁
𝐵(𝐸) → Tw𝓁(𝐴)

has cartesian lifts of morphisms in Tw𝓁(𝐴) of the form

given by the cartesian morphisms for Tw𝓁(𝐸𝑏) → Tw𝓁(𝐴) described above.

Observation 3.3.12. In particular, for any 𝑎 ∈ 𝐴, the projection

Tw𝓁
𝐵(𝐸) ×Tw𝓁(𝐴) 𝐴𝑎∕ → 𝐴𝑎∕

is a cartesian fibration, and Tw𝓁
𝐵
(𝐸) ×Tw𝓁(𝐴) 𝐴𝑎∕ → 𝐴𝑎∕ × 𝐵 is a curved orthofibration.

Notation 3.3.13. Given 𝐸 → [1] × 𝐵 in RCocart([1], 𝐵), we have pullback squares

Proof of Proposition 3.3.8. Applying Observation 3.3.12 to 𝐸 → [1] × 𝐵 and 0 ∈ [1], we see that
Tw𝓁

𝐵
(𝐸)|0 → [1]0∕ ≅ [1] is a cartesian fibration. Moreover, from the description of the cartesian

morphisms, we see that

Tw𝓁
𝐵(𝐸)|0 → (𝐸

op
0
)∨ ×𝐵 𝐸

is a morphism between cartesian fibrations to [1] that preserves cartesian morphisms.
Taking fibres for Tw𝓁

𝐵
(𝐸)|0 → (𝐸

op
0
)∨ ×𝐵 𝐸 over 0 and 1, we get the following diagram where

both squares are cartesian:

Taking the cartesian transport over [0] → [1], we therefore get a commutative square
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930 HAUGSENG et al.

It remains to show that this square is cartesian, which we can check on fibres since the vertical
maps are both left fibrations. To do this, we can first restrict to fibres over 𝑏 ∈ 𝐵, where we have
the square

which is cartesian because g𝑏 is a right adjoint. □

Observation 3.3.14. If 𝑝∶ 𝐸 → [1] × 𝐵 is in RCocart([1], 𝐵), then we also have (𝑝op)∨ ∶ (𝐸op)∨ →
[1]op × 𝐵 in RCocart([1]op, 𝐵). Since there is a natural equivalence Tw𝓁(𝐶) ≃ Tw𝓁(𝐶op) over the
permutation 𝐶op × 𝐶 ≃ 𝐶 × 𝐶op, we get for a cocartesian fibration 𝑋 → 𝐵 a natural equivalence

Tw𝓁
𝐵(𝑋) ≃ Tw

𝓁
𝐵((𝑋

op)∨)

over (𝑋op)∨ ×𝐵 𝑋 ≃ 𝑋 ×𝐵 (𝑋op)∨, and hence also

corr𝐵(𝐸) ≃ corr𝐵((𝐸
op)∨)

over (𝐸op
0
)∨ ×𝐵 𝐸1 ≃ 𝐸1 ×𝐵 (𝐸

op
0
)∨.

Combining this with Proposition 3.3.8, we get the following dual version thereof:

Corollary 3.3.15. Suppose 𝑝∶ 𝐸 → [1] × 𝐵 is in RCocart([1], 𝐵). If (𝑝op)∨ ∶ (𝐸op)∨ → [1]op × 𝐵 is
a curved orthofibration, corresponding to a functor 𝑓∶ 𝐸∨

0
→ 𝐸∨

1
over 𝐵op, then there is a pullback

square

Proof of Theorem 3.3.3. Suppose that g corresponds to the curved orthofibration 𝑝∶ 𝐸 → [1] × 𝐵.
Then 𝑝∨ ∶ 𝐸∨ → [1] × 𝐵op is a curved orthofibration over 𝐵op × [1]whose cocartesian unstraight-
ening over [1] gives 𝑓. Hence (𝑝op)∨ ∶ (𝐸op)∨ → [1]op × 𝐵 is the curved orthofibration for 𝑓op.
Combining Proposition 3.3.8 and Corollary 3.3.15, we thus get equivalences

of left fibrations over (𝐷op)∨ ×𝐵 𝐶. □

Specialising this to the case of projections, we get the following.
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 931

Corollary 3.3.16. Let 𝐹∶ 𝑋 × 𝐵 → 𝑌 be a functor such that 𝐹(−, 𝑏) is a left adjoint for all 𝑏 ∈ 𝐵,
and let 𝐺∶ 𝑌 × 𝐵op → 𝑋 be the functor corresponding to the 𝐵op-parametrised right adjoint of 𝐹,
regarded as a functor 𝑋 × 𝐵 → 𝑌 × 𝐵 over 𝐵. Then there is an equivalence

(id × 𝐺)∗ Tw𝓁(𝑋) ≃ (𝐹op × id)∗ Tw𝓁(𝑌)

of left fibrations over 𝑋op × 𝑌 × 𝐵, and hence a natural equivalence of mapping spaces

Map𝑋(𝑥, 𝐺(𝑦, 𝑏)) ≃ Map𝑌(𝐹(𝑥, 𝑏), 𝑦).

3.4 Lax monoidal adjunctions

Recall that an∞-operad 𝑂 is a map of∞-categories 𝑝∶ 𝑂⟶ Fin∗ to the 1-category of pointed
finite sets, satisfying the following conditions:

(1) 𝑂 has all 𝑝-cocartesian lifts for inert morphisms in Fin∗ (i.e. those maps which are bijections
away from the basepoint).

(2) Let 𝑥 ∈ 𝑂 be an object with 𝑝(𝑥) = ⟨𝑛⟩ and let 𝜌𝑖𝑥 ∶ 𝑥⟶ 𝑥𝑖 be a 𝑝-cocartesian lift of the
unique inertmap 𝜌𝑖 ∶ ⟨𝑛⟩⟶ ⟨1⟩which sends 𝑖 to 1. For every 𝑓∶ ⟨𝑚⟩⟶ ⟨𝑛⟩ and 𝑦 ∈ 𝑂⟨𝑚⟩,
post-composition with the 𝜌𝑖𝑥 induce an equivalence

(3) For every tuple (𝑥1, … , 𝑥𝑛) of objects in 𝑂⟨1⟩, there exists an 𝑥 ∈ 𝑂⟨𝑛⟩ together with
𝑝-cocartesian lifts 𝜌𝑖𝑥 ∶ 𝑥⟶ 𝑥𝑖 .

A morphism in 𝑂 is called inert if it is the cocartesian lift of an inert map in Fin∗.
If 𝑂 is an ∞-operad, then an 𝑂-monoid in an ∞-category 𝑋 with finite products is a functor

𝑀∶ 𝑂 → 𝑋 satisfying the Segal condition: for every 𝑥 ∈ 𝑂⟨𝑛⟩ with inert maps 𝜌𝑖𝑥 ∶ 𝑥⟶ 𝑥𝑖 , the
morphism𝑀(𝑥) →

∏
𝑖 𝑀(𝑥𝑖) is an equivalence. An𝑂-monoidal∞-category is a cocartesian fibra-

tion corresponding to an 𝑂-monoid in Cat (or equivalently an∞-operad with a map to 𝑂 that is a
cocartesian fibration).

Definition 3.4.1. The (∞, 2)-category 𝐌𝐨𝐧𝐂𝐚𝐭lax
𝑂

of 𝑂-monoidal ∞-categories and lax 𝑂-
monoidal functors between them is given by the 1-full sub-2-category of 𝐂𝐨𝐜𝐚𝐫𝐭lax(𝑂) whose:

(1) objects are 𝑂-monoidal∞-categories,
(2) morphisms are functors 𝐶⊗ ⟶ 𝐷⊗ over 𝑂 that preserve the cocartesian morphisms lying

over inert morphisms in 𝑂.

By definition, the underlying ∞-category of𝐌𝐨𝐧𝐂𝐚𝐭lax
𝑂

is the full subcategory of ∞-operads
over𝑂whose objects are the𝑂-monoidal∞-categories. A strong𝑂-monoidal functor corresponds
to a morphism 𝐶⊗ ⟶ 𝐷⊗ that preserves all cocartesian edges.

Example 3.4.2. Let us explicitly mention the special case 𝑂 = Fin∗, where 𝐌𝐨𝐧𝐂𝐚𝐭lax𝑂 has
objects symmetric monoidal∞-categories, 1-morphisms lax symmetric monoidal functors, and 2-
morphisms symmetricmonoidal transformations. In particular, TheoremA from the introduction
is a statement about morphism categories therein (and in the oplax analogue defined below).
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932 HAUGSENG et al.

Definition 3.4.3. The (∞, 2)-category 𝐌𝐨𝐧𝐂𝐚𝐭opl
𝑂

of 𝑂-monoidal ∞-categories and oplax
𝑂-monoidal functors between them is the sub-2-category of 𝐂𝐚𝐫𝐭opl(𝑂op) whose:

(1) objects are cartesian fibrations 𝐶⊗ → 𝑂op corresponding to 𝑂-monoids,
(2) morphisms are functors 𝐶⊗ ⟶ 𝐷⊗ that preserve cartesian morphisms lying over inert

morphisms in 𝑂op.

Note, in particular, that the objects in𝐌𝐨𝐧𝐂𝐚𝐭opl
𝑂

are a priori not 𝑂-monoidal ∞-categories:
one has to take the cocartesian fibration over 𝑂 dual to a cartesian fibration over 𝑂op to get an
𝑂-monoidal∞-category in the usual sense. The following lemma thus simply asserts that essen-
tially by definition, an oplax𝑂-monoidal functor is a lax𝑂-monoidal functor between the opposite
categories.

Lemma 3.4.4. Taking opposite categories defines an equivalence of (∞, 2)-categories

(−)op ∶ 𝐌𝐨𝐧𝐂𝐚𝐭
opl
𝑂
⟶

(
𝐌𝐨𝐧𝐂𝐚𝐭lax𝑂

)2−op
.

Proof. It suffices to verify that the equivalence of Remark 3.1.10 identifies the relevant sub-2-
categories. Given a cartesian fibration 𝐶⊗ ⟶ 𝑂op, let us write 𝐶op,⊗ ⟶ 𝑂 for the opposite
cocartesian fibration. The Segal map

(𝜌∗𝑖 )𝑖 ∶ 𝐶⊗(𝑥)⟶
∏
𝑖

𝐶⊗(𝑥𝑖)

is then the opposite of the Segal map (𝜌𝑖,!)𝑖 ∶ 𝐶op,⊗(𝑥)⟶
∏
𝑖 𝐶

op,⊗(𝑥𝑖), so that one is an equiva-
lence if and only if the other is. Finally, a functor preserving cartesian lifts of inert morphisms
is sent to the functor between opposite categories, which preserves cocartesian lifts of inert
morphisms. □

For example, for𝑂 = (Fin∗)inert, the trivial operad,𝐌𝐨𝐧𝐂𝐚𝐭
opl
𝑂

is a 2-fold Segal spacemodel for
the (∞, 2)-category𝐂𝐚𝐭 (by the discussion in Section 5.2). In this case,we find, unsurprisingly, that
taking opposite categories defines an equivalence 𝐂𝐚𝐭 ≃ 𝐂𝐚𝐭2−op.

Lemma 3.4.5. Let g∶ 𝐶⊗ ⟶ 𝐷⊗ be a lax𝑂-monoidal functor, that is, amorphism in𝐌𝐨𝐧𝐂𝐚𝐭lax
𝑂
.

Then the following two conditions are equivalent:

(1) For every 𝑥 ∈ 𝑂⟨1⟩, the induced map on fibres g∶ 𝐶⊗(𝑥)⟶ 𝐷⊗(𝑥) is a right adjoint.
(2) For every 𝑥 ∈ 𝑂, the induced map on fibres g∶ 𝐶⊗(𝑥)⟶ 𝐷⊗(𝑥) is a right adjoint.

Proof. This follows from the fact that for each 𝑥 ∈ 𝑂, there is a commuting square

where 𝜌𝑖 ∶ 𝑥⟶ 𝑥𝑖 are the canonical inert maps decomposing 𝑥 into its components 𝑥𝑖 ∈
𝑂⟨1⟩. □
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 933

Definition 3.4.6. A lax 𝑂-monoidal functor g∶ 𝐶⊗ ⟶ 𝐷⊗ is a lax 𝑂-monoidal right adjoint if
it satisfies the equivalent conditions of Lemma 3.4.5.
Likewise, an oplax 𝑂-monoidal functor 𝑓∶ 𝐶⊗ ⟶ 𝐷⊗ is called an oplax 𝑂-monoidal left

adjoint if it induces left adjoint functors between the fibres over each 𝑥 ∈ 𝑂op (equivalently, all
𝑥 ∈ 𝑂

op⟨1⟩).
Theorem 3.4.7. For each∞-operad 𝑂, there is a natural equivalence of (∞, 2)-categories

between the 1-full sub-2-categories whose morphisms are lax 𝑂-monoidal right adjoints and oplax
𝑂-monoidal left adjoints.

Proof. It suffices to show that the equivalence of Theorem 3.1.11 identifies the two relevant sub-2-
categories

At the level of objects, note that the functorAdj sends a cocartesian fibration over𝑂 to the cartesian
fibration over 𝑂op classifying the same functor 𝑂⟶ Cat. In particular, a cocartesian fibration
over 𝑂 satisfies the Segal conditions if and only if its image under Adj does.
It remains to verify that the functor Adj sends a map g∶ 𝐶⊗ ⟶ 𝐷⊗ that preserves cocarte-

sian lifts of inert maps to a functor 𝐹∶ 𝐷⊗ ⟶ 𝐶⊗ of cartesian fibrations over 𝑂op that preserves
cartesian lifts of inert maps (for the reverse implication, reverse the roles of 𝑓 and g in the next
argument). By Proposition 3.2.7, this comes down to the following assertion: for any inert map
𝛽∶ 𝑥⟶ 𝑥′ in 𝑂, the lax 𝑂-monoidal functor g defines the commuting left square

𝐶⊗(𝑥) 𝐷⊗(𝑥) 𝐶⊗(𝑥) 𝐷⊗(𝑥)

𝐶⊗(𝑥′) 𝐷⊗(𝑥′) 𝐶⊗(𝑥′) 𝐷⊗(𝑥′)

𝛽!

𝑔𝑥

𝛽! 𝛽! 𝛽!

𝑓𝑥

𝑔𝑥′ 𝑓𝑥′

and we have to verify that the associated Beck–Chevalley transformation on the right is an
equivalence. Using the Segal condition, these squares can be identified with

∏
𝑖∈𝐼
𝐶⊗(𝑥𝑖)

∏
𝑖∈𝐼
𝐷⊗(𝑥𝑖)

∏
𝑖∈𝐼
𝐶⊗(𝑥𝑖)

∏
𝑖∈𝐼
𝐷⊗(𝑥𝑖)

∏
𝑗∈𝐽
𝐶⊗(𝑥𝑗)

∏
𝑗∈𝐽
𝐷⊗(𝑥𝑗)

∏
𝑗∈𝐽
𝐶⊗(𝑥𝑗)

∏
𝑗∈𝐽
𝐷⊗(𝑥𝑗)

pr

(𝑔𝑥𝑖 )

pr pr pr

(𝑓𝑥𝑖 )

(𝑔𝑥𝑗 ) (𝑓𝑥𝑗 )
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934 HAUGSENG et al.

where the vertical functors are projections associated to an inclusion of finite sets 𝐽 ⊆ 𝐼. But for
such projections, the Beck–Chevalley transformation is always an equivalence (since the unit and
counit maps can be computed in each factor). □

By considering morphism categories in the statement of Theorem 3.4.7, we find the following.

Corollary 3.4.8. Given an∞-operad𝑂 and two𝑂-monoidal∞-categories𝐶 and𝐷, taking adjoints
gives a canonical equivalence between the∞-category of oplax𝑂-monoidal left adjoint functors𝐶 →
𝐷 and the opposite of the∞-category of lax 𝑂-monoidal right adjoint functors.

As another application of our machinery, we have the following result. Recall the ∞-operad
ℝ𝕄od, defined in [23, Section 4.2.1], which encodes the data of an 𝔼1-algebra equipped with a
right module.

Proposition 3.4.9. Let 𝑂 be an ∞-operad and let 𝐶 be an (𝔼1 ⊗ 𝑂)-monoidal ∞-category, and
𝐷 a right 𝑂-monoidal module over it, that is, the pair (𝐶, 𝐷) is equipped with the structure of an
ℝ𝕄od ⊗ 𝑂-algebra. Suppose further that the action of 𝐶 on𝐷 is colourwise closed, that is, the action
−⊗ 𝑐∶ 𝐷(𝑥) → 𝐷(𝑥) admits a right adjoint [𝑐, −]∶ 𝐷(𝑥) → 𝐷(𝑥) for every colour 𝑥 ∈ 𝑂⟨1⟩ and
𝑐 ∈ 𝐶(𝑥).
Then the mapping object functors [−,−]∶ 𝐷(𝑥)op × 𝐷(𝑥) → 𝐶(𝑥) admit a canonical lax

𝑂-monoidal refinement.

Observing that every 𝔼1 ⊗ 𝑂-monoidal ∞-category acts on itself 𝑂-monoidally (via the map
ℝ𝕄od → 𝔼1 from [23, Remark 4.2.1.5]) and that 𝔼1 ⊗ 𝔼𝑛 ≃ 𝔼𝑛+1 for 1 ⩽ 𝑛 ⩽ ∞, see [23, Theorem
5.1.2.2], we obtain the following.

Corollary 3.4.10. Let 𝑂 be an∞-operad and 𝐶 an (𝔼1 ⊗ 𝑂)-monoidal∞-category such that the
𝔼1-monoidal∞-categories 𝐶(𝑥) are right closed for every colour 𝑥 ∈ 𝑂⟨1⟩. Then the mapping object
functors [−,−]∶ 𝐶(𝑥)op × 𝐶(𝑥) → 𝐶(𝑥) admit a canonical lax 𝑂-monoidal refinement. In partic-
ular, if 𝐶 is a closed 𝔼𝑛+1-monoidal ∞-category for some 1 ⩽ 𝑛 ⩽ ∞, then [−,−]∶ 𝐶op × 𝐶 → 𝐶

carries a canonical lax 𝔼𝑛-monoidal refinement. □

For 𝑛 = ∞, such a lax symmetric monoidal refinement was first established by Hinich in [18,
Section A.5] using different means; his construction most certainly agrees with ours, but let us
refrain from attempting a formal comparison in this paper.

Proof of Proposition 3.4.9. Let 𝐶⊗,𝐷⊗, (𝐷op)⊗ → 𝑂 be the cocartesian fibrations of operads
witnessing the 𝑂-monoidal structures of 𝐶,𝐷 and 𝐷op, respectively.
We follow the same strategy as in Example 3.1.17, and so wish to construct the morphism

in𝐌𝐨𝐧𝐂𝐚𝐭lax,R
(𝐷op)⊗

from its counterpart in𝐌𝐨𝐧𝐂𝐚𝐭opl,L
𝐷⊗

using Theorem 3.4.7. By definition of the
tensor product of operads, we can regard (𝐶, 𝐷) as an ℝ𝕄od-algebra in 𝐌𝐨𝐧𝐂𝐚𝐭𝑂, that is, an
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 935

𝔼1-algebra in𝐌𝐨𝐧𝐂𝐚𝐭𝑂 equipped with a right module. So, in particular, the action

⊗∶ 𝐷 × 𝐶⟶ 𝐷

is itself a (strongly) 𝑂-monoidal functor. Applying cartesian unstraightening, we obtain a map

𝜇∶ 𝐷⊗ ×𝑂 𝐶⊗ ⟶ 𝐷⊗,

with which we form

By Lemma 3.4.5, this indeed defines a morphism in𝐌𝐨𝐧𝐂𝐚𝐭opl,L
𝐷⊗

, which dualises as desired by
Corollary 3.3.16. □

4 PARAMETRISED UNITS AND COUNITS

Consider two symmetric monoidal∞-categories 𝐶⊗ and 𝐷⊗ and a lax symmetric monoidal right
adjoint g∶ 𝐶⊗ → 𝐷⊗, with left adjoint 𝑓. Given any finite collection of objects {𝑦𝑖} in 𝐷, we have
a canonical comparison map

⨂
𝑦𝑖 → g(

⨂
𝑓(𝑦𝑖)) given by

where 𝜂 is the unit of the adjunction 𝑓 ⊣ g and 𝜇 is given by the oplax monoidal structure of
𝑓. This is the prototypical example of the parametrised unit morphism that we will consider in
this section.
The goal of §4.1 is to make explicit the functoriality of these maps, and in §4.2, we similarly

produce a functor extracting adjoint morphisms in a parametrised adjunction.

4.1 Parametrised (co)units

Let us consider a parametrised left adjoint 𝑓 over 𝐵 with parametrised right adjoint g from
Theorem 3.1.11

here and in the remainder of this section,wewill again use (−)∨ to denote the cocartesian fibration
dual to a cartesian fibration to ease notation.
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936 HAUGSENG et al.

Given any edge 𝛽∶ 𝑏 → 𝑏′ in 𝐵 and any 𝑦 ∈ 𝐷𝑏′ , the natural map 𝜆𝛽(𝑦)∶ 𝑓𝑏𝛽∗(𝑦)⟶ 𝛽∗𝑓𝑏′(𝑦)

(dual to Construction 3.2.4) is adjoint to a map

One can also obtain 𝜂𝛽(𝑦) from the Beck–Chevalley transformation (Definition 3.2.6) as

The goal of this section is to describe the functoriality of this unit morphism 𝜂𝛽(𝑦) in 𝛽 and 𝑦. To
motivate the functoriality in 𝛽, let us consider the following.

Example 4.1.1. Let 𝛽∶ 𝑏⟶ 𝑏′, 𝛾∶ 𝑏′ ⟶ 𝑏′′ and 𝑦 ∈ 𝐷𝑏′′ . Then we claim that

𝜂𝛾𝛽(𝑦) ≃ g𝑏𝛽
∗(𝜆𝛾(𝑦))◦𝜂𝛽(𝛾

∗(𝑦))

and dually that

𝜂𝛽𝛼(𝑧) ≃ 𝜌𝛼(𝛽
∗𝑓𝑏′′ (𝑧))◦𝛼

∗𝜂𝛽(𝑧)

for any 𝛼∶ 𝑎 → 𝑏 in 𝐵 and 𝑧 ∈ 𝐷𝑏′ . To see the first identification, consider the diagram

in 𝐶. The top row factors the image under 𝑓 of the cartesian arrow 𝛽∗𝛾∗(𝑦)⟶ 𝛾∗(𝑦) into
𝜆𝛽(𝛾

∗(𝑦)), followed by a cartesian morphism (cf. Construction 3.2.4). Notice that the total com-
posite along the top is the image under 𝑓 of the cartesian arrow 𝛽𝛾∗(𝑦)⟶ 𝑦, and that following
the bottom gives a factorisation of this into a fibrewise followed by a cartesian morphism. There-
fore, we conclude that 𝜆𝛾𝛽(𝑦) ≃ 𝛽∗𝜆𝛾(𝑦)◦𝜆𝛽(𝛾∗(𝑦)). Applying g𝑏 and precomposing with the unit
of the adjoint pair (𝑓𝑏, g𝑏) gives the claim.
The second identification arises from a dual analysis using the description of 𝜂𝛼 in terms of the

mate 𝜌𝛼.

Example 4.1.1 indicates how the arrow 𝜂𝛽 depends on 𝛽 via both pre- and postcomposition. Our
goal will now be to make this precise by proving the following:

Theorem 4.1.2. Let 𝑓∶ 𝐷⟶ 𝐶 be a parametrised left adjoint over 𝐵 with parametrised right
adjoint g. Then there are canonical diagrams
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 937

whose restrictions to 𝐷 ×𝐵 {id𝑏} and 𝐶∨ ×𝐵op {id𝑏} for some 𝑏 in 𝐵 are equivalent to the unit and
counit of the adjoint pair (𝑓𝑏, g𝑏) respectively.

After some preliminaries, we will produce the functors 𝜂 and 𝜖 in Construction 4.1.7 below. We
will refer to these functors as the parametrised unit and counit, respectively.
To prepare the construction, let us write

𝑝 = (𝑝1, 𝑝2)∶ 𝑋⟶ 𝐵 × [1], 𝑞 = (𝑞1, 𝑞2)∶ 𝑋
∨ ⟶ [1] × 𝐵op

for the curved orthofibrations classified by 𝑓∶ 𝐷⟶ 𝐶 and g∶ 𝐶∨ ⟶ 𝐷∨, respectively. Recall
from Theorem 3.1.11 that 𝑞 = (𝑞2, 𝑞1) is the Gray fibration dual to the curved orthofibration 𝑝. In
particular,

𝑋0 ≃ 𝐷, 𝑋1 ≃ 𝐶, 𝑋∨0 ≃ 𝐷
∨ and 𝑋∨1 ≃ 𝐶

∨.

Naively, one could try to imitate Construction 3.2.3 and construct the unitmap using a cocartesian
transport of the fibre inclusion 𝑋0 ↪ 𝑋, followed by a cartesian transport. More precisely, since
𝑝2 is a cocartesian fibration, we can form the cocartesian transport (Construction 3.2.1)

along 𝑝2 of the fibre inclusion 𝑖0 ∶ 𝑋0 ↪ 𝑋; this takes 𝑦 ∈ 𝑋0,𝑏 ≃ 𝐷𝑏 to the cocartesian morphism
𝑦⟶ 𝑓𝑏(𝑦). Dually, 𝑞1 is a cartesian fibration and we can form the cartesian transport

along 𝑞1 of the fibre inclusion 𝑗1 ∶ 𝑋∨1 ↪ 𝑋∨; this takes 𝑥 ∈ 𝑋∨
𝑏,1
≃ 𝐶∨

𝑏
to the cartesian morphism

g𝑏(𝑥)⟶ 𝑥.
To construct the unit as in Construction 3.2.3, we would now like take the cartesian transport

of 𝑖0,cc (and dually the cocartesian transport of 𝑗1,ct for the counit). This can be done fibrewise
over 𝑏 ∈ 𝐵, but for a global construction, we will need to replace 𝑝∶ 𝑋⟶ 𝐵 × [1] by its dual
𝑞∶ 𝑋∨ ⟶ [1] × 𝐵, which is a cartesian fibration over [1]. Here we run into a problem; how-
ever, 𝑖0,cc is a functor between curved orthofibrations which generally does not preserve cartesian
arrows in the 𝐵-direction and hence does not induce a map between the dual fibrations. Indeed,
for 𝛽∶ 𝑏⟶ 𝑏′ and a cartesian morphism 𝛽∶ 𝛽∗𝑦⟶ 𝑦 in 𝑋0, the image of the cartesian arrow
(𝛽, 1) in 𝑋0 × 1 under 𝑖0,cc is

𝑓𝑏(𝛽
∗𝑦)⟶ 𝑓𝑏′(𝑦).

This is cartesian for all 𝛽 and 𝑦 if and only if 𝑓∶ 𝐶⟶ 𝐷 preserves cartesian morphisms over 𝐵.
To deal with this issue (and the dual issue for the counit map), we will first extend the functor

𝑖0,cc to the free cartesian fibration on 𝑋0 × [1] and then dualise over 𝐵. Let us therefore briefly
recall the description of free fibrations from [8, Section 4].

Notation 4.1.3. Given a functor 𝜙∶ 𝐸 → 𝐵, we write
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938 HAUGSENG et al.

where the pullback is formed along evaluation at 0 and the map to 𝐵 is given by evaluation at 1.
Dually, define

where the pullback is formed along evaluation at 1 and the map to 𝐵 is given by evaluation at 0.

We will need the following result from [8, Theorem 4.5].

Theorem 4.1.4. The natural maps

over 𝐵 induced by the constant diagram functor 𝐵⟶ Ar(𝐵), exhibit 𝐹ct
𝐵
(𝐸) and 𝐹cc

𝐵
(𝐸) as the free

cartesian and cocartesian fibrations on 𝜙∶ 𝐸⟶ 𝐵, respectively. In other words, the functors

are left adjoint to the forgetful functors Cart(𝐵)⟶ Cat∕𝐵 and Cocart(𝐵)⟶ Cat∕𝐵 . □

Remark 4.1.5. Consider a commutative triangle

where 𝑝 is a cartesian fibration. We can extend this uniquely to a diagram

where 𝑓 preserves cartesian morphisms. Informally, the functor 𝑓 is given by(
𝑒, 𝑏

𝛽
⟶ 𝜙(𝑒)

)
⟼𝛽∗𝑓(𝑒),

where 𝛽∗𝑓(𝑒) → 𝑓(𝑒) is a cartesian morphism in 𝐸′ over 𝛽.

Viewing 𝑋0 × [1] as an∞-category over 𝐵 via the functor
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 939

we can then extend 𝑖0,cc to the free cartesian fibration over 𝐵 as in Remark 4.1.5. Similarly, we can
extend 𝑗1,ct to the free cocartesian fibration over 𝐵op, giving

These can also be viewed as functors into arrow∞-categories, informally given by

By construction, the functors 𝚤0,cc and 𝚥1,ct preserve cartesianmorphisms over𝐵 and cocartesian
morphisms over 𝐵op, respectively. Therefore, they induce functors between the dual (co)cartesian
fibrations, and we obtain functors

The first equivalence in the two lines follows from the fact that the dual of a constant cocarte-
sian fibration is a constant cartesian fibration. We now note that the domains of the functors
Dcc(𝚤0,cc) and Dct(𝚥1,ct) admit further simplification, by means of the following extension of the
duality between arrow and twisted arrow∞-categories from [13, Lemma 3.1.3].

Lemma 4.1.6. For 𝜙∶ 𝐸⟶ 𝐵, the duals of the free fibrations on 𝜙 can be identified as

Dcc
(
𝐹ct𝐵 (𝐸)

)
≃ 𝐸 ×𝐵 Tw

𝓁(𝐵) → 𝐵op,

Dct
(
𝐹cc𝐵 (𝐸)

)
≃ 𝐸 ×𝐵 Tw

𝑟(𝐵) → 𝐵op

naturally in 𝜙. □

We now have all the ingredients to construct the parametrised unit and counit from
Theorem 4.1.2.

Construction 4.1.7. As before, let 𝑝 = (𝑝1, 𝑝2)∶ 𝑋⟶ 𝐵 × [1] and 𝑞 = (𝑞1, 𝑞2)∶ 𝑋∨ ⟶ [1] ×

𝐵op be the orthofibrations classified by 𝑓 and g. Lemma 4.1.6 now implies that the functors 𝚤0,cc
and 𝚥1,ct have duals
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940 HAUGSENG et al.

which preserve cocartesian and cartesian morphisms over 𝐵, respectively. Now we can form the
cartesian transport ofDcc(𝚤0,cc) via 𝑞1 and the cocartesian transport ofDct(𝚥1,ct) via𝑝2, respectively.
This gives functors

We can informally describe these functors as follows: the value of (Dcc(𝚤0,cc))ct at an object
(𝑦 ∈ 𝑋𝑏′,0, 𝛽 ∶ 𝑏 → 𝑏′) is the square

in𝑋∨. Note that the top horizontal arrow takes values in𝑋∨
0
≃ 𝐷∨. Dually, the value of (Dct(𝚥1,ct))cc

at (𝑥 ∈ 𝑋∨
𝑏′,1
, 𝛽 ∶ 𝑏 → 𝑏′) is the square

whose bottom arrow is contained in 𝑋1 ≃ 𝐶. We then obtain the desired parametrised unit and
counit maps as the restrictions

Note that this construction is natural in 𝑋 (and hence in 𝑓∶ 𝐶⟶ 𝐷) and is compatible with
base change along 𝐵′ ⟶ 𝐵. In the case where 𝐵 =∗ is a point, the free fibration and dualisation
functors are naturally equivalent to the identity [3, 28] and the above construction reduces to the
construction of the (co)unit from Construction 3.2.3.

4.2 Passing to adjoint morphisms

Next, we consider the functoriality of passing to the adjoint of a morphism in the parametrised
setting. We first sketch a construction in the non-parametrised case, which will have the benefit
of generalising readily. Given an adjunction

𝑓∶ 𝐷 ⇄ 𝐶 ∶g,
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 941

the unit transformation 𝜂 fits in a commutative square

Here ev1 is a cocartesian fibration, so we can extend 𝜂 to the free cocartesian fibration on 𝑓, giving
a commuting square

Unwinding definitions, we find that 𝜂 takes (𝑑, 𝑓(𝑑)
𝜙
→ 𝑐) to the composite 𝑑 → g𝑓(𝑑)

g(𝜙)
⟶ g(𝑐),

that is, to the morphism adjoint to 𝜙. We now give a parametrised version of this construction.

Construction4.2.1. Wekeep thenotation of Theorem4.1.2 and let𝑓∶ 𝐷⟶ 𝐶 be a parametrised
left adjoint over𝐵, with right adjoint g∶ 𝐶∨ ⟶ 𝐷∨. The parametrised unit 𝜂 fits in a commutative
square

whereDcc(𝑓) is obtained by first extending 𝑓∶ 𝐷 → 𝐶 to 𝑓∶ 𝐹ct
𝐵
(𝐷) → 𝐶 and then dualising over

𝐵. At the level of objects, Dcc(𝑓) is therefore given by

(
𝑦 ∈ 𝐷𝑏′ , 𝛽 ∶ 𝑏 → 𝑏′

)
⟼𝛽∗𝑓𝑏′(𝑦).

Now we can extend 𝜂 over the free cocartesian fibration on Dcc(𝑓), giving a commutative square

(4.2.2)

Here 𝜂 is given by the assignment

(
𝑦 ∈ 𝐷𝑏′ , 𝑏

𝛽
⟶ 𝑏′, 𝛽∗𝑓𝑏′(𝑦)

𝜙
⟶ 𝑥

)
⟼

(
𝛽∗𝑦

𝜂𝛽(𝑦)
⟶ g𝑏𝛽∗𝑓𝑏′𝑦

g(𝜙)
⟶ g𝑏′′𝑥

)
,
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942 HAUGSENG et al.

where 𝑥 ∈ 𝐶∨
𝑏′′
. We can also pass to the dual cartesian fibrations, which gives a commutative

square

(4.2.3)

Construction 4.2.1 encodes the functoriality of passing to the adjoint morphism in the generic
case of a parametrised adjunction. However, if the parametrised adjunction has a particularly
simple form, then the functoriality can be improved significantly.

Example 4.2.4. Recall fromExample 3.1.17 that given a functor 𝑓 ∶ 𝐷 × 𝐵 → 𝐶 such that for each
𝑏 ∈ 𝐵, 𝑓(−, 𝑏)∶ 𝐷 → 𝐶 is a left adjoint, the diagram

is an example of a parametrised left adjoint. In this case, the parametrised unit fromTheorem 4.1.2
is a functor

𝜂∶ 𝐷 × Tw𝓁(𝐵) × [1] → 𝐷.

To an object (𝑦, 𝑏
𝛽
→ 𝑏′), this assigns the map 𝑦 → g(𝑓(𝑦, 𝑏′), 𝑏) adjoint to 𝑓(𝑦, 𝑏) → 𝑓(𝑦, 𝑏′). To a

morphism

it assigns the square

𝑦0 𝑦1

𝑔(𝑓(𝑦0, 𝑏
′
0), 𝑏0) 𝑔(𝑓(𝑦, 𝑏′1), 𝑏1).

Nowwe consider the commutative square (4.2.3) from Construction 4.2.1; in our special case, this
simplifies to
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 943

An object of (𝐷 × Tw𝓁(𝐵)) ×𝐶×𝐵op Tw
𝑟(𝐶 × 𝐵op) can be described as a list

(𝑦, 𝑏 → 𝑏′, 𝑓(𝑦, 𝑏′) → 𝑥, 𝑏′′ → 𝑏),

and the top horizontal functor takes this to the composite

𝑦 → g
(
𝑓(𝑦, 𝑏′), 𝑏

)
→ g(𝑥, 𝑏) → g(𝑥, 𝑏′′)

in Tw𝑟(𝐷). For a morphism,

we get in Tw𝑟(𝐷) a morphism

We note that this is an equivalence if the maps 𝑦0 → 𝑦1, 𝑥1 → 𝑥0 and 𝑏′′0 → 𝑏′′
1
are equivalences.

This means our functor factors through the localisation of the∞-category

(𝐷 × Tw𝓁(𝐵)) ×𝐶×𝐵op Tw
𝑟(𝐶 × 𝐵op)

at these morphisms. Our final goal in this section is to identify this localisation, for which we first
recall a result of Hinich.

Proposition 4.2.5 (Hinich). Let 𝑝∶ 𝐸 → 𝐵 be a cocartesian fibration. Suppose for all 𝑏 ∈ 𝐵, we
have a collection𝑊𝑏 of morphisms in 𝐸𝑏 such that for 𝛽∶ 𝑏 → 𝑏′ in 𝐵, the functor 𝛽! ∶ 𝐸𝑏 → 𝐸𝑏′
induced by 𝑝 takes𝑊𝑏 into𝑊𝑏′ . Then we can form the cocartesian fibration 𝐸′ → 𝐵 corresponding
to the functor 𝑏 ↦ E𝑏[𝑊

−1
𝑏
]. The canonical morphism of cocartesian fibrations 𝐸 → 𝐸′ exhibits 𝐸′

as the localisation of 𝐸 at the collection of morphisms 𝑥
𝜙
→ 𝑥′ such that 𝑝(𝜙) is an equivalence and

𝑝(𝜙)!𝑥 → 𝑥′ is in𝑊𝑝(𝑥′).

Proof. This is a special case of [19, Proposition 2.1.4] (or more precisely, of the stronger result that
is actually proved in [19, Section 2.2]). See also [25, Proposition A.14] for a generalisation, as well
as a more invariant proof. □

This allows us to prove the following.

Corollary 4.2.6. Suppose 𝑝∶ 𝐸 → 𝐵 is a cocartesian fibration; then the identity map of 𝐸 induces
(via the free cocartesian fibration) a morphism of cocartesian fibrations 𝐹cc

𝐵
(𝐸) = 𝐸 ×𝐵 Ar(𝐵) → 𝐸;
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944 HAUGSENG et al.

passing to the dual cartesian fibrations, we get a morphism of cartesian fibrations

𝐸 ×𝐵 Tw
𝑟(𝐵)

Φ
→ 𝐸∨

over 𝐵op. For any functor 𝐴 → 𝐵op, the induced morphism of cartesian fibrations

𝐸 ×𝐵 Tw
𝑟(𝐵) ×𝐵op 𝐴

Φ′

→ 𝐸∨ ×𝐵op 𝐴

exhibits 𝐸∨ ×𝐵op 𝐴 as a localisation.

Proof. Suppose first that 𝐴 → 𝐵 is the identity. At the fibre over 𝑏 ∈ 𝐵op, we get the functor

𝐸 ×𝐵 𝐵∕𝑏 → 𝐸𝑏

taking (𝑥 ∈ 𝐸𝑏′ , 𝑏′
𝛽
→ 𝑏) to 𝛽!𝑥. This has a fully faithful right adjoint (taking 𝑥 ∈ 𝐸𝑏 to (𝑥, id𝑏));

hence, it is the localisation at the class𝑊𝑏 of morphisms (𝑥
𝜙
→ 𝑦, 𝑏′

𝛾
→ 𝑏′′

𝛽
→ 𝑏) such that 𝛽!𝛾!𝑥 →

𝛽!𝑦 is an equivalence. For 𝛽∶ 𝑏 → 𝑏′ ∈ 𝐵, the functor induced by the cartesian fibration over 𝐵op,
𝐸 ×𝐵 𝐵∕𝑏 → 𝐸 ×𝐵 𝐵∕𝑏′ is given by composition with 𝛽, and hence takes 𝑊𝑏 to 𝑊𝑏′ . The result
then follows from (the dual of) Proposition 4.2.5. Finally, note that the conclusion of Proposi-
tion 4.2.5 is preserved under base change along any functor 𝐴 → 𝐵, and therefore, the general
result follows. □

Taking 𝑝 to be the identity of 𝐵, we obtain the following special case.

Corollary 4.2.7. For any∞-category 𝐵, the projection

Tw𝑟(𝐵) → 𝐵op

is a localisation, as is the functor

𝐴 ×𝐵op Tw
𝑟(𝐵) → 𝐴

for any functor 𝐴 → 𝐵op. □

Returning to the 𝐵-indexed family of left adjoints 𝑓∶ 𝐷 × 𝐵⟶ 𝐶 from Example 4.2.4, we see
that the functor

(𝐷 × Tw𝓁(𝐵)) ×𝐶×𝐵op Tw
𝑟(𝐶 × 𝐵op) → Tw𝑟(𝐷)

obtained from the parametrised unit factors through (𝐷 × 𝐵) ×𝐶 Tw𝑟(𝐶). We have thus proved the
following.

Corollary 4.2.8. Let 𝑓∶ 𝐷 × 𝐵⟶ 𝐶 be a functor such that each 𝑓𝑏 ∶ 𝐷⟶ 𝐶 is a left adjoint.
Then there is a functor

(𝐷 × 𝐵) ×𝐶 Tw
𝑟(𝐶) → Tw𝑟(𝐷),

which takes (𝑦, 𝑏, 𝑓(𝑦, 𝑏) → 𝑥) to the adjoint map 𝑦 → g(𝑥, 𝑏). □

Restricting to the fibre over 𝑥 ∈ 𝐶, we see in particular:
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 945

Corollary 4.2.9. In the situation of Corollary 4.2.8, for every 𝑥 ∈ 𝐶, there is a natural map

(𝐷 × 𝐵) ×𝐶 𝐶∕𝑥 → Tw𝑟(𝐷)

sending (𝑦, 𝑏, 𝑓(𝑦, 𝑏) → 𝑥) to the adjoint map 𝑦 → g(𝑏, 𝑥). □

Example 4.2.10. Let 𝐶 be a closed symmetric monoidal ∞-category, with the tensor product
viewed as a 𝐶-parametrised left adjoint as in Example 3.1.17. From Corollary 4.2.8, we obtain a
functor

(𝐶 × 𝐶) ×𝐶 Tw
𝑟(𝐶) → Tw𝑟(𝐶),

taking (𝑥, 𝑦, 𝑥 ⊗ 𝑦 → 𝑧) to the adjoint map 𝑥 → [𝑦, 𝑧]. Fixing 𝑧 ∈ 𝐶, this specialises as in
Corollary 4.2.9 to a natural functor

(𝐶 × 𝐶) ×𝐶 𝐶∕𝑧 → Tw𝑟(𝐶),

which sends (𝑥, 𝑦, 𝑥 ⊗ 𝑦 → 𝑧) to the adjoint morphism 𝑥 → [𝑦, 𝑧].

5 LAX NATURAL TRANSFORMATIONS AND THE CALCULUS OF
MATES

The goal of this final section is to prove TheoremE, that is, to produce straightening equivalences

𝐂𝐨𝐜𝐚𝐫𝐭lax(𝐵) ≃ 𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭) and 𝐂𝐚𝐫𝐭opl(𝐵) ≃ 𝐅𝐮𝐧opl(𝐵op, 𝐂𝐚𝐭),

where the right-hand (∞, 2)-categories consist of functors 𝐵 → 𝐂𝐚𝐭 as objects, (op)lax natu-
ral transformations as morphisms and modifications between these as 2-morphisms. Following
[11], we define these ∞-categories as right adjoints to the (oplax) Gray tensor product for
(∞, 2)-categories constructed by Gagna, Lanari and Harpaz in [7], so that there are equivalences

MapCat2(𝐀 ⊠ 𝐵,𝐂𝐚𝐭) ≃ MapCat2
(
𝐀,𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭)

)
,

MapCat2(𝐵 ⊠ 𝐀,𝐂𝐚𝐭) ≃ MapCat2
(
𝐀,𝐅𝐮𝐧opl(𝐵, 𝐂𝐚𝐭)

)
.

Their Gray tensor product is defined using Lurie’s scaled simplicial sets from [22] as a model for
(∞, 2)-categories, and so, we begin with a short review of these in §5.1. In §5.2, we then show that
Lurie’s straightening equivalence for locally cocartesian fibrations restricts to an equivalence

Fun(𝐴 ⊠ 𝐵,𝐂𝐚𝐭) ≃ Gray(𝐴, 𝐵),

from which we then deduce Theorem E and Corollary F in §5.3.

5.1 Scaled simplicial sets as a model for (∞, 𝟐)-categories

We start by recalling a few definitions.

Definition 5.1.1. A marked simplicial set is a pair (𝑋, 𝑇) with 𝑋 a simplicial set and 𝑇 ⊆ 𝑋1
a set of 1-simplices that contains the degenerate ones. Let sSet+ denote the category of marked
simplicial sets.
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946 HAUGSENG et al.

By [21, Theorem 3.1.5.1], the category sSet+ has a model structure Quillen equivalent to the
Joyalmodel structure on sSet, whose fibrant objects are precisely quasi-categoriesmarked by their
equivalences.We alsowriteCat+

Δ
for the category ofmarked simplicial categories, that is, categories

enriched in marked simplicial sets.

Definition 5.1.2. A scaled simplicial set is a pair (𝑋, 𝑆) with 𝑋 a simplicial set and 𝑆 ⊆ 𝑋2 a set
of 2-simplices that contains the degenerate ones. As usual, we will write 𝑋♯ = (𝑋,𝑋2) for 𝑋 with
the maximal scaling. Let sSetsc denote the category of scaled simplicial sets, with the morphisms
being maps of simplicial sets that preserve the scalings.
We write 𝑁sc ∶ Cat+

Δ
⟶ sSetsc for the scaled nerve, which takes a marked simplicial category

𝐂 to the coherent nerve 𝑁𝐂 of its underlying simplicial category, scaled by the set of 2-simplices
Δ2 ⟶ 𝑁𝐂 corresponding to functors of simplicial categories 𝐹∶ ℭ(Δ2)⟶ 𝐂 such that the
edge Δ1 = ℭ(Δ2)(0, 2)⟶ 𝐂(𝐹(0), 𝐹(2)) is marked; hereℭ denotes the path category functor, left
adjoint to the coherent nerve 𝑁. Its upgrade to a left adjoint of Nsc we denote by ℭsc.

The following is [22, Theorem 4.2.7]:

Theorem5.1.3 (Lurie).There is amodel structure on sSetscwhere the cofibrations are themonomor-
phisms and the weak equivalences are the maps 𝑓 such that ℭsc𝑓 is a Dwyer–Kan equivalence of
marked simplicial categories. Moreover, the adjunction ℭsc ⊢ 𝑁sc is a Quillen equivalence where
Cat+

Δ
carries the marked Bergner model structure. □

Remark 5.1.4. An explicit description of the fibrant objects in sSetsc in terms of lifting properties
has been obtained by Gagna, Harpaz and Lanari in [6].

It is then a consequence of the main results of [22] that the underlying∞-category of sSetsc is
equivalent to Cat2. Given this, a particularly simple description of the equivalence follows from
work of Barwick and Schommer-Pries [4]: Let uswriteΘ2 for the full subcategory of the (ordinary)
category of strict 2-categories spanned by the strict 2-categories

[𝑚]
(
[𝑛1], … , [𝑛𝑚]

)
= 0 1 ⋯ 𝑚.

𝑛1

0

𝑛2

0

𝑛𝑚

0

Since these have only identities as invertible 𝑘-morphisms, we obtain a full subcategory inclusion
Θ2 ↪ sSetsc by viewing these 2-categories as marked simplicial categories with only degenerate
edges marked and then applying the scaled nerve. Now consider the functor

(5.1.5)

It now follows from the main results of [4] that the derived mapping∞-groupoids

Mapℎ
sSetsc

(𝛿2(−,−), (𝑋, 𝑆))∶ Δ
op × Δop ⟶ Gpd.

form a complete 2-fold Segal ∞-groupoid, and that this assignment induces an equivalence
between the∞-category associated to the model structure on sSetsc from Theorem 5.1.3 and the
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 947

∞-category of complete 2-fold Segal spaces. In other words: scaled simplicial sets are a model for
(∞, 2)-categories.

Definition 5.1.6. We write 𝐂𝐚𝐭sc for the large scaled simplicial set 𝑁sc(sSet+,◦), where the cate-
gory sSet+,◦ of fibrant marked simplicial sets is regarded as enriched in itself via its internal Hom.

In this section, we will use the (∞, 2)-category associated to the scaled simplicial set 𝐂𝐚𝐭sc as
our preferred model for the (∞, 2)-category 𝐂𝐚𝐭 of∞-categories.
We now recall the definition of the (oplax) Gray tensor product in terms of scaled simplicial

sets, as given in [7].

Definition 5.1.7. If (𝑋, 𝑆) and (𝑌, 𝑇) are scaled simplicial sets, we define their oplax Gray tensor
product

(𝑋, 𝑆) ⊠ (𝑌, 𝑇) = (𝑋 × 𝑌, 𝑆 ⊠ 𝑇)

to be the scaled simplicial set with underlying simplicial set 𝑋 × 𝑌, with scaling 𝑆 ⊠ 𝑇 consisting
of the 2-simplices of the forms:

∙ (𝑠1𝛼, 𝜏) with 𝛼 ∈ 𝑋1, 𝜏 ∈ 𝑇,
∙ (𝜎, 𝑠0𝛽) with 𝜎 ∈ 𝑆, 𝛽 ∈ 𝑌1.

For simplicial sets 𝑋 and 𝑌, we will abbreviate 𝑋♯ ⊠ 𝑌♯ to just 𝑋 ⊠𝑌.

From [7, Theorem 2.14], we quote the following.

Theorem 5.1.8 (Gagna, Harpaz and Lanari). The oplax Gray tensor product

⊠∶ sSetsc × sSetsc ⟶ sSetsc

is a left Quillen bifunctor. □

It follows that the oplax Gray tensor product induces a functor on the level of∞-categories

−⊠−∶ Cat2 × Cat2 ⟶ Cat2,

which preserves colimits in each variable. As the name suggests, this is supposed to be thought
of as a homotopy-coherent refinement of the standard oplax Gray tensor product for strict
2-categories [10]. This is supported by the following.

Proposition 5.1.9. For any𝑚, 𝑛 ⩾ 0, there is a natural isomorphism between the oplax Gray tensor
product [𝑚] ⊠ [𝑛] from Theorem 5.1.8 and the standard oplax Gray tensor product [𝑚] ⊠st [𝑛] of
[𝑚] and [𝑛], computed in strict 2-categories and depicted informally as

(5.1.10)
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948 HAUGSENG et al.

Proof. Note that Δ[𝑛]♯ is a scaled simplicial set model for [𝑛], viewed as an (∞, 2)-category. The
oplax Gray tensor product from Theorem 5.1.8 can then be modelled by the marked simplicial
category ℭsc(Δ[𝑚]♯ ⊠ Δ[𝑚]♯). Forgetting the marking, this simplicial category is the Boardman–
Vogt resolution of [𝑚] × [𝑛] (cf. [24, Proposition 6.3.3]). Consequently, it can be identified with
the simplicial category whose objects are tuples 𝑥 = (𝑥0, 𝑥1)with 0 ⩽ 𝑥0 ⩽ 𝑚 and 0 ⩽ 𝑥1 ⩽ 𝑛, and
where

Mapℭsc(Δ[𝑚]♯⊠Δ[𝑛]♯)(𝑥, 𝑦) = N
(
Ch𝑥,𝑦

)
is the nerve of the poset Ch𝑥,𝑦 of nondegenerate chains 𝜎 = [𝑥 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑡 = 𝑦] in
[𝑚] × [𝑛] starting at 𝑥 and ending at 𝑦, ordered by subchain inclusions. Composition is given
by concatenation of chains. Furthermore, a subchain inclusion 𝜎′ ⊆ 𝜎 is marked if it is obtained
by removing one 𝑥𝑖 from 𝜎, such that either 𝑥0

𝑖
= 𝑥0

𝑖+1
or 𝑥1

𝑖−1
= 𝑥1

𝑖
.

On the other hand, [𝑚] ⊠st [𝑛] can be described as the following strict 2-category [11]: its objects
are tuples 𝑥 = (𝑥0, 𝑥1) with 0 ⩽ 𝑥0 ⩽ 𝑚 and 0 ⩽ 𝑥1 ⩽ 𝑛 and

Map[𝑚]⊠st[𝑛]
(𝑥, 𝑦) = MaxCh𝑥,𝑦

is the poset whose objects are maximal nondegenerate chains from 𝑥 to 𝑦, with order generated
by

in the picture (5.1.10). Composition is concatenation of such chains. For each tuple 𝑥 and 𝑦, we
will specify a map of posetsmax∶ Ch𝑥,𝑦 ⟶MaxCh𝑥,𝑦 as follows: for any chain 𝜎 from 𝑥 to 𝑦 in
the grid (5.1.10), let 𝜎 ⊆ max(𝜎) be the unique maximal chain extending 𝜎 that is maximal with
respect to the partial ordering onMaxCh: this means that every arrow in the chain 𝜎 going 𝑟 steps
right and 𝑑 steps down is replaced by the maximal chain first going 𝑟 steps right and then 𝑑 steps
down. One easily verifies thatmax is a map of posets, which sends every marked arrow in Ch𝑥,𝑦
to the identity. Furthermore, it is compatible with concatenation of chains. We therefore obtain a
natural map

wherewe view [𝑚] ⊠st [𝑛] as amarked simplicial category by taking nerves ofmapping categories
andmarking equivalences (which in this case are just identities). To see that this is an equivalence,
it remains to verify thatmax∶ Ch𝑥,𝑦 ⟶MaxCh𝑥,𝑦 exhibitsMaxCh𝑥,𝑦 as the localisation ofCh𝑥,𝑦
at themarked arrows. To see this, observe that the functormax is a cocartesian fibration. For each
maximal chain 𝜏, the inverse image of 𝜏 has a maximal element (𝜏 itself) and for every other 𝜎 in
the inverse image, the inclusion of chains 𝜎 ⊆ 𝜏 is a composite of marked arrows. It follows that
the fibres ofmax have contractible realisation, so 𝜙 is an equivalence as desired. □

We will need the following observation about the functor 𝛿2.

Lemma 5.1.11. For each [𝑚], [𝑛] ∈ Δ, there is a natural map of (∞, 2)-categories

[𝑚] ⊠ [𝑛]⟶ 𝛿2([𝑚], [𝑛]) = [𝑚]([𝑛], … , [𝑛]),

which exhibits the codomain as the localisation of [𝑚] ⊠ [𝑛] at all 1-morphisms contained in some
{𝑖} ⊠ [𝑛].
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 949

Proof. Since [𝑚] ⊠ [𝑛] and 𝛿2([𝑚], [𝑛]) = [𝑚]([𝑛], … , [𝑛]) are both gaunt 2-categories (i.e.
the only invertible 2-morphisms are the identities), the desired natural map [𝑛] ⊠ [𝑚]⟶

[𝑚]([𝑛], … , [𝑛]) is simply the evident map of strict 2-categories that collapses all {𝑖} ⊠ [𝑛] to the
𝑖th vertex in [𝑚]([𝑛], … , [𝑛]). For instance, for [𝑚] = [2] and [𝑛] = [1], it is given pictorially by the
map collapsing the vertical 1-morphisms

To see that this is a localisation, note that both the domain and codomain are functors Δ × Δ⟶
Cat2 satisfying the co-Segal conditions; it therefore suffices to show this when [𝑛] and [𝑚] are 0
or 1, where the result is easily verified. □

5.2 Scaled unstraightening of Gray fibrations

Let us now recall Lurie’s straightening theorem for locally cocartesian fibrations over scaled
simplicial sets.

Proposition 5.2.1. If 𝐂 is a marked simplicial category, then the marked simplicial category
Fun+(𝐂, sSet+)◦ of fibrant–cofibrant objects in the projective model structure on the enriched
functor category Fun+(𝐂, sSet+) is weakly equivalent to 𝐅𝐮𝐧sc(𝑁sc(𝐂), 𝐂𝐚𝐭sc), where 𝐅𝐮𝐧sc(−,−)
denotes the internal Hom in scaled simplicial sets. In other words, the projective model structure on
Fun+(𝐂, sSet+) describes the (∞, 2)-category of functors from 𝐂 to 𝐂𝐚𝐭.

Proof. This follows from [21, Proposition A.3.4.13] since sSet+ is an excellent model category by
[21, Example A.3.2.22]. □

Definition 5.2.2. If (𝑋, 𝑆) is a scaled simplicial set and 𝑝∶ 𝐸⟶ 𝑋 is a locally cocartesian inner
fibration, then we say that 𝑝 is cocartesian over 𝑆 if for every 𝜎∶ [2]⟶ 𝑋 in 𝑆, the base change
𝜎∗𝐸⟶ [2] is a cocartesian inner fibration.

Theorem5.2.3 (Lurie). Let (𝑋, 𝑆) be a scaled simplicial set. Then there is a left proper combinatorial
marked simplicial model structure on the slice category sSet+∕𝑋♯ (where 𝑋♯ denotes 𝑋 with all 1-
simplices marked) such that the cofibrations are the monomorphisms, and an object (𝐸, 𝑇)

𝑝
⟶ 𝑋♯

is fibrant if and only if

(1) the underlying map of simplicial sets 𝑝∶ 𝐸⟶ 𝑋 is a locally cocartesian inner fibration,
(2) 𝑇 is precisely the set of locally 𝑝-cocartesian edges in 𝐸,
(3) the locally cocartesian inner fibration 𝑝 is cocartesian over 𝑆.

We write sSet+
(𝑋,𝑆)

for sSet+∕𝑋♯ equipped with this model structure.

Proof. As a simplicial model category, this is a special case of [22, Theorem 3.2.6], applied to
the categorical pattern (𝑋, 𝑋1, 𝑆, ∅). The marked simplicial enrichment follows from [22, Remark
3.2.26]. □
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950 HAUGSENG et al.

Theorem 5.2.4 (Lurie). If (𝑋, 𝑆) is a scaled simplicial set, then there is a marked simplicial Quillen
equivalence

where Fun+(ℭsc(𝑋, 𝑆), sSet+) is equipped with the projective model structure.

Proof. As an (unenriched)Quillen equivalence, this follows from [22, Theorem 3.8.1]. The compat-
ibility with the simplicial enrichment is discussed in [22, Remark 3.8.2], and the same argument
clearly extends to show that this is a marked simplicial adjunction. □

This marked simplicial Quillen equivalence induces a weak equivalence between the underly-
ing (fibrant) marked simplicial categories of fibrant–cofibrant objects, that is, an equivalence of
(∞, 2)-categories. Combining this with Proposition 5.2.1, we get the following.

Corollary 5.2.5. Given any scaled simplicial set (𝑋, 𝑆), there is an equivalence of fibrant scaled
simplicial sets

𝐅𝐮𝐧sc((𝑋, 𝑆), 𝐂𝐚𝐭sc) ≃ Nsc
(
(sSet+

(𝑋,𝑆)
)◦
)
.

Remark 5.2.6. The categories sSet+
(𝑋,𝑆)

only depend pseudonaturally on (𝑋, 𝑆), and therefore, the
equivalence in Corollary 5.2.5 is not literally natural at the point-set level, but this can be dealt
with in the same way as in the proof of the analogous statement for the usual unstraightening
equivalence in [8, Corollary A.32].

Specialising to the case of a Gray tensor product of two scaled simplicial sets, we obtain the
following.

Proposition 5.2.7. Straightening for locally cocartesian fibrations gives an equivalence between
maps of scaled simplicial sets (𝑋, 𝑆) ⊠ (𝑌, 𝑇)⟶ 𝐂𝐚𝐭sc and locally cocartesian inner fibrations
𝐸⟶ 𝑋 × 𝑌 such that

(1) for 𝑥 ∈ 𝑋, the restriction 𝐸𝑥 ⟶ 𝑌 is cocartesian over 𝑇,
(2) for 𝑦 ∈ 𝑌, the restriction 𝐸𝑦 ⟶ 𝑋 is cocartesian over 𝑆,
(3) for 1-simplices𝛼∶ 𝑥⟶ 𝑥′ in𝑋,𝛽∶ 𝑦⟶ 𝑦′ in𝑌,𝑝 is cocartesian over the 2-simplex (𝑠1𝛼, 𝑠0𝛽).

Remark 5.2.8. Condition (3) can be rephrased as follows: for any 𝑒 ∈ 𝐸𝑥,𝑦 , if 𝑒⟶ (𝛼, id𝑦)!𝑒

is a locally cocartesian morphism over (𝛼, id𝑦), and (𝛽, id𝑦)!𝑒 ⟶ (id𝑥′ , 𝛽)!(𝛼, id𝑦)!𝑒 is a locally
cocartesian morphism over (id𝑥′ , 𝛽), then the composite 𝑒⟶ (id𝑥′ , 𝛽)!(𝛼, id𝑦)!𝑒 is locally
cocartesian over (𝛼, 𝛽).

Proof of Proposition 5.2.7. Corollary 5.2.5 implies that there is a natural equivalence of
∞-categories

𝐅𝐮𝐧sc((𝑋, 𝑆) ⊠ (𝑌, 𝑇), 𝐂𝐚𝐭sc) ≃ Nsc
(
(sSet+)◦

(𝑋,𝑆)⊠(𝑌,𝑇)

)
.
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 951

Next, one can apply the equivalence 𝑋 ⊠𝑌 ≃ (𝑋 × 𝑌, 𝑇−) of [7, Proposition 2.10] to obtain an
equivalence (sSet+)◦

(𝑋,𝑆)⊠(𝑌,𝑇)
≃ (sSet+)◦

(𝑋×𝑌,𝑇−)
. The objects of the right-hand side are exactly

those of the proposition. However, one can also show directly that the fibrant objects of
(sSet+)(𝑋,𝑆)⊠(𝑌,𝑇) are precisely the locally cocartesian fibrations satisfying conditions (1)–(3)
above. We will do this to keep the treatment self-contained. By definition, the fibrant objects
are locally cocartesian fibrations 𝑝∶ 𝐸⟶ 𝑋 × 𝑌 such that for (𝜎, 𝜏) ∈ (𝑆 × 𝑇)opl, the pullback
(𝜎, 𝜏)∗𝐸 ⟶ [2] is a cocartesian fibration. On the other hand, conditions (1)–(3) assert that 𝐸 is
cocartesian over the subset of 2-simplices (𝑆 × 𝑇)′ ⊆ (𝑆 × 𝑇)opl given as follows:

∙ (𝑠2
0
𝑥, 𝜏) with 𝑥 ∈ 𝑋0 and 𝜏 ∈ 𝑇.

∙ (𝜎, 𝑠2
0
𝑦) with 𝜎 ∈ 𝑆 and 𝑦 ∈ 𝑌0.

∙ (𝑠1𝛼, 𝑠0𝛽) with 𝛼 ∈ 𝑋1, 𝛽 ∈ 𝑌1.

We claim that this already implies that 𝑝 is cocartesian over every 2-simplex in (𝑆 × 𝑇)opl. Indeed,
let us show that 𝑝 is cocartesian over (𝜎, 𝑠0𝛽), for 𝜎 ∈ 𝑆 of the form

and 𝛽∶ 𝑦⟶ 𝑦′ in 𝑌1; the case of a 2-simplex (𝑠1𝛼, 𝜏) will follow from a similar argument.
Consider the 3-simplex 𝜉 = (𝑠2𝜎, 𝑠20𝛽), which may be depicted as:

Note that 𝑑2𝜉 = (𝜎, 𝑠0𝛽), while the faces 𝑑0𝜉 = (𝑠1𝜆, 𝑠0𝛽), 𝑑1𝜉 = (𝑠1𝜇, 𝑠0𝛽) and 𝑑3𝜉 = (𝜎, 𝑠20𝑦) are
all in (𝑆 × 𝑇)′. If 𝑝∶ 𝐸⟶ 𝑋 × 𝑌 is cocartesian over (𝑆 × 𝑇)′, a locally cocartesian arrow 𝑒⟶
(𝜇, 𝛽)!𝑒 can therefore be identified, in turn, with the following composites of locally cocartesian
arrows:

∙ 𝑒 → (𝜇, id𝑦)!𝑒 → (id𝑥′′ , 𝛽)!(𝜇, id𝑦)!𝑒, since 𝑝 is cocartesian over 𝑑1𝜉,
∙ 𝑒 → (𝜅, id𝑦)!𝑒 → (𝜆, id𝑦)!(𝜅, id𝑦)!𝑒 → (id𝑥′′ , 𝛽)!(𝑐, id𝑦)!𝑒, since 𝑝 is cocartesian over 𝑑3𝜉,
∙ 𝑒 → (𝜅, id𝑦)!𝑒 → (𝜆, 𝛽)!(𝜅, id𝑦)!𝑒, since 𝑝 is cocartesian over 𝑑0𝜉.

The last assertion means precisely that 𝑝 is cocartesian over 𝑑2𝜉 = (𝜎, 𝑠0𝛽), as desired. □

Remark 5.2.9. The previous result also follows by combining [7, Proposition 2.10] with Lurie’s
scaled unstraightening (Theorem 5.2.4).

Specialising to Gray tensor products of∞-categories, we obtain the following.
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952 HAUGSENG et al.

Corollary 5.2.10. Let𝐴 and𝐵 be∞-categories. Then there is a natural equivalence of∞-categories

Fun(𝐴 ⊠ 𝐵,𝐂𝐚𝐭) ≃ Gray(𝐴, 𝐵).

Proof. Combine Lemma 2.4.6 and Proposition 5.2.7. □

Remark 5.2.11. Similarly to (2) of Remark 2.5.7, it is not a priori clear to us that the equivalence
constructed in Corollary 5.2.10 restricts to the usual straightening equivalence

Fun(𝐴 × 𝐵, Cat) ≃ Cocart(𝐴 × 𝐵) ∶

Besides this direct equivalence, one can use the two inclusions

Cocart(𝐴 × 𝐵) ⊆ RCocart(𝐴, 𝐵), LCocart(𝐴, 𝐵)

and apply straightening in one factor after the other to obtain two more equivalences

Cocart(𝐴 × 𝐵) ≃ Fun(𝐵, Cocart(𝐴)) ≃ Fun(𝐴 × 𝐵, Cat)

and

Cocart(𝐴 × 𝐵) ≃ Fun(𝐴, Cocart(𝐵)) ≃ Fun(𝐴 × 𝐵, Cat),

and by construction, the equivalence from Corollary 5.2.10 restricts to the latter of these. Again, it
will follow from the uniqueness results of [14] that these three equivalences agree.

5.3 Unstraightening of lax natural transformations and the calculus
of mates

As an application of the scaled unstraightening for Gray fibrations provided by Corollary 5.2.10,
we will now prove the main theorem of this section.

Theorem 5.3.1. There are equivalences of (∞, 2)-categories

𝐂𝐨𝐜𝐚𝐫𝐭lax(𝐵) ≃ 𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭) and 𝐂𝐚𝐫𝐭opl(𝐵) ≃ 𝐅𝐮𝐧opl(𝐵op, 𝐂𝐚𝐭),

which are natural in 𝐵.

In particular, this implies that the (∞, 2)-categories 𝐂𝐨𝐜𝐚𝐫𝐭lax(∗) and 𝐂𝐚𝐫𝐭opl(∗) are both
equivalent to 𝐂𝐚𝐭, as mentioned already after Definition 3.1.7.

Remark 5.3.2. In fact, it follows from [14] that the natural equivalence of Theorem 5.3.1 is
essentially unique.

Proof. Let us start with the lax case, the oplax case being similar.
Lax case. Let 𝐵 be an∞-category and consider the (∞, 2)-category 𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭) determined

by the natural equivalence of∞-groupoids

MapCat2
(
𝐀,𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭)

)
≃ MapCat2(𝐀 ⊠ 𝐵,𝐂𝐚𝐭).
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 953

In terms of Segal∞-groupoids, 𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭) is then described by the bisimplicial∞-groupoid

where 𝛿2 is the functor (5.1.5). On the other hand, the (∞, 2)-category 𝐂𝐨𝐜𝐚𝐫𝐭lax(𝐵) was defined
as the complete Segal∞-groupoid whose value on ([𝑚], [𝑛]) is given by the∞-groupoid of func-
tors (of∞-categories) [𝑚]⟶ Cocartlax

[𝑛]
(𝐵 × [𝑛]). Our goal will be to prove that there is a natural

equivalence between these two bisimplicial∞-groupoids.
To see this, let us first consider the following two natural subgroupoid inclusions:

The first inclusion uses the localisation [𝑚] ⊠ [𝑛]⟶ 𝛿2([𝑚], [𝑛]) from Lemma 5.1.11. It suffices
to verify that upon reversing the factors of 𝐵 and [𝑛], both of these inclusions determine the same
subgroupoid of functors𝑝∶ 𝐸⟶ 𝐵 × [𝑚] × [𝑛]. Unraveling the definitions, the image of the first
map is the subgroupoid of functors 𝑝 with the following properties:

(a) for each 𝑗 ∈ [𝑛], 𝑏 ∈ 𝐵, the restriction 𝐸𝑗,𝑏 ⟶ [𝑚] is a cocartesian fibration,
(b) for each 𝑖 ∈ [𝑚], 𝑏 ∈ 𝐵, the restriction 𝐸𝑖,𝑏 ⟶ [𝑛] is a cocartesian fibration,
(c) for each 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛], the restriction 𝐸𝑖,𝑗 ⟶ 𝐵 is a cocartesian fibration,
(d) for arrows 𝜅∶ 𝑖 ⟶ 𝑖′, 𝜙∶ 𝑗⟶ 𝑗′, 𝛽∶ 𝑏⟶ 𝑏′ in [𝑚], [𝑛] and 𝐵, respectively, 𝑝 is

cocartesian over the 2-simplices (𝑠1𝜅, 𝑠1𝜙, 𝑠0𝛽) and (𝑠1𝜅, 𝑠0𝜙, 𝑠20𝛽),
(e) for any 𝑖 ∈ [𝑚], the restriction 𝐸𝑖 ⟶ [𝑛] × 𝐵 arises as the base change of a Gray fibration

over [0] × 𝐵; in particular, it is a cocartesian fibration, so this already implies (b) and (c).

The first four conditions describe the image of Unsc, by a 2-fold application of Proposition 5.2.7.
The fifth condition follows from Corollary 5.2.10 and Lemma 5.1.11, together with the fact that the
Gray tensor product preserves colimits in each variable, so that

𝛿2([𝑚], [𝑛]) ⊠ 𝐴 ≃

(
[𝑚] ⊠ [𝑛]

∐
𝜄[𝑚]⊠[𝑛]

𝜄[𝑚] ⊠ [0]

)
⊠𝐴

≃ ([𝑚] ⊠ [𝑛]) ⊠ 𝐴
∐

(𝜄[𝑚]⊠[𝑛])⊠𝐴

(𝜄[𝑚] ⊠ [0]) ⊠ 𝐴.

On the other hand, unraveling Definition 3.1.7 shows that the image of the second map consists,
after permuting 𝐵 and [𝑛], of functors 𝑝 with the following properties:

(a’) for each 𝑗 ∈ [𝑛] and 𝑏 ∈ 𝐵, the restriction 𝐸𝑗,𝑏 ⟶ [𝑚] is a cocartesian fibration,
(b’) for each 𝑖 ∈ [𝑚], the restriction 𝐸𝑖 ⟶ [𝑛] × 𝐵 is a cocartesian fibration,
(c’) for each 𝜅∶ 𝑖 ⟶ 𝑖′, 𝜙∶ 𝑗⟶ 𝑗′ and 𝛽∶ 𝑏⟶ 𝑏′ in [𝑚], [𝑛] and 𝐵, respectively, 𝑝 is

cocartesian over (𝑠1𝜅, 𝑠0𝜙, 𝑠0𝛽),
(d’) for each 𝑖 ∈ [𝑚], the restriction 𝐸𝑖 ⟶ [𝑛] × 𝐵 is a cocartesian fibration which arises as the

base change of a cocartesian fibration over [0] × 𝐵 (in particular, this implies (b’)).
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954 HAUGSENG et al.

Indeed, by Lemma 2.4.6, the first three conditions are equivalent to 𝑝 being an object of
Gray([𝑚], 𝐵 × [𝑛]). Condition (d’) is then equivalent to the straightening of this Gray fibration
over [𝑚] taking values in the full subcategory Cocartlax

[𝑛]
(𝐵 × [𝑛]) ⊆ Cocartlax(𝐵 × [𝑛]).

Evidently, condition (e) is equivalent to (d’) and conditions (a) and (a’) coincide. It therefore
remains to show that (d) and (c’) are equivalent. Let us fix 𝜅∶ 𝑖 ⟶ 𝑖′, 𝜙∶ 𝑗⟶ 𝑗′ and 𝛽∶ 𝑏⟶
𝑏′ as above and consider the 3-simplex 𝜉 = (𝑠2𝑠1(𝜅), 𝑠1𝑠0(𝜙), 𝑠20(𝛽)) given by

Note that 𝑝 is cocartesian over 𝑑0𝜉 by condition (e) (or (d’)). Assuming condition (d), we further-
more have that 𝑝 is cocartesian over 𝑑3𝜉 and 𝑑1𝜉. The argument from Proposition 5.2.7 shows that
𝑝 is cocartesian over 𝑑2𝜉, which is precisely condition (c’). Conversely, condition (c’) implies that
𝑝 is cocartesian over 𝑑2𝜉 and 𝑑3𝜉. An argument similar to that of Proposition 5.2.7 then shows
that 𝑝 is cocartesian over 𝑑1𝜉 as well, so that (d) follows.
Oplax case. Likewise, the (∞, 2)-category 𝐅𝐮𝐧opl(𝐵op, 𝐂𝐚𝐭) corresponds to the 2-fold Segal∞-

groupoid

Lemma 5.1.11 identifies this mapping ∞-groupoid with the ∞-groupoid of maps 𝐵op ⊠ [𝑚] ⊠

[𝑛]⟶ 𝐂𝐚𝐭 whose restriction to each 𝐵op ⊠ {𝑖} ⊠ [𝑛] arises from 𝐵op ⟶ 𝐂𝐚𝐭.
Under scaled unstraightening, this mapping ∞-groupoid is identified with a certain ∞-

groupoid of locally cocartesian fibrations 𝑝∶ 𝐸⟶ 𝐵op × [𝑚] × [𝑛]. Unraveling the definitions
as in the lax case, one sees that this is the∞-groupoid of those functors 𝑝 such that:

∙ denoting by pr𝐵 the projection onto 𝐵op, we have that 𝑝 defines a map pr𝐵◦𝑝⟶ pr𝐵 in
Cocart(𝐵op),

∙ for each 𝑏 ∈ 𝐵op, the map 𝐸𝑏 ⟶ [𝑚] × [𝑛] is a Gray fibration,
∙ for each 𝑖 ∈ [𝑚], the Gray fibration 𝐸𝑖 ⟶ 𝐵op × [𝑛] arises as the base change of a cocartesian
fibration over 𝐵op × [0].

Dualising over 𝐵op, that is, applying cocartesian unstraightening and cartesian straightening
over 𝐵, this is identified with the∞-groupoid of maps 𝑞∶ 𝐹⟶ 𝐵 × [𝑚] × [𝑛] such that

∙ 𝑞 defines a map pr𝐵◦𝑞⟶ pr𝐵 in Cart(𝐵),
∙ for each 𝑏 ∈ 𝐵, the restriction 𝐹𝑏 ⟶ [𝑚] × [𝑛] is a Gray fibration,
∙ for each 𝑖 ∈ [𝑚], the curved orthofibration 𝐹𝑖 ⟶ 𝐵 × [𝑛] arises as the base change of a
cartesian fibration over 𝐵 × [0].

Permuting [𝑚] and [𝑛], this is equivalent to 𝑞 defining an element in 𝜄CrvOrtho(𝐵 × [𝑛], [𝑚])
such that for all 𝑖 ∈ [𝑚], the map 𝐹𝑖 ⟶ 𝐵 × [𝑛] arises as the base change of a cartesian fibration
over 𝐵 × [0]. Under straightening over [𝑚], this is precisely the∞-groupoid of (𝑚, 𝑛)-simplices of
𝐂𝐚𝐫𝐭opl(𝐵) (see Definition 3.1.7). □
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LAX MONOIDAL ADJUNCTIONS, TWO-VARIABLE FIBRATIONS AND THE CALCULUS OF MATES 955

Observation 5.3.3. Since the equivalence

𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭)
∼
⟶ 𝐂𝐨𝐜𝐚𝐫𝐭lax(𝐵)

of Theorem 5.3.1 is by construction given on objects by the unstraightening functor, for functors
𝐹,𝐺∶ 𝐵 → 𝐂𝐚𝐭, we obtain an equivalence

Natlax(𝐹, 𝐺) ≃ Fun∕𝐵(Un
cc(𝐹), Uncc(𝐺)),

depending 2-functorially on𝐹,𝐺 ∈ 𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭), where the left-hand side denotes themapping
∞-category in 𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭). Taking 𝐺 to be the constant functor with value𝑋 ∈ 𝐂𝐚𝐭, we get an
equivalence

Natlax(𝐹, const𝑋) ≃ Fun(Un
cc(𝐹), 𝑋),

depending 1-functorially on 𝑋 ∈ Cat, since we have a natural equivalence Uncc(const𝑋) ≃ 𝑋 ×
𝐵. Let 𝜃∶ 𝐹 → constUncc(𝐹) be the lax natural transformation corresponding to the identity map
under the above natural equivalence and observe that this induces a natural transformation

between functors of (∞, 2)-categories 𝐂𝐚𝐭 ⟶ 𝐂𝐚𝐭. This natural transformation is a natural
equivalence, since the underlying natural transformation between functors of (∞, 1)-categories
Cat⟶ Cat is an equivalence by definition of 𝜃.
In other words, Uncc(𝐹) has the universal property of the lax colimit of 𝐹: it corepresents the

functor

Natlax(𝐹, const(−))∶ 𝐂𝐚𝐭 → 𝐂𝐚𝐭.

Similarly, the cartesian unstraightening of 𝐹∶ 𝐵 → Cat is the oplax colimit: it satisfies

Natopl(𝐹, const𝑋) ≃ Fun(Un
ct(𝐹), 𝑋).

Such a characterisation of the unstraightening was first established in [8], where the authors
defined lax (co)limits for functors 𝐹∶ 𝐵 → Cat as certain weighted (co)limits. As an application
of Theorem 5.3.1, we can therefore deduce that their lax colimits really have the desired universal
property expressed above.

Definition 5.3.4. For an∞-category 𝐵, let us write 𝐅𝐮𝐧lax,R(𝐵, 𝐂𝐚𝐭) ⊆ 𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭) for the 1-
full sub-2-category spanned by those lax natural transformations sending each object in𝐵 to a right
adjoint. Likewise, let 𝐅𝐮𝐧opl,L(𝐵, 𝐂𝐚𝐭) ⊆ 𝐅𝐮𝐧opl(𝐵, 𝐂𝐚𝐭) for the 1-full sub-2-category spanned by
those oplax natural transformations with values in left adjoints.

Combining Theorems 3.1.11 and 5.3.1, we obtain the following.

Theorem 5.3.5. Let 𝐵 be an∞-category. Then there is an equivalence

Adj ∶ 𝐅𝐮𝐧lax,R(𝐵, 𝐂𝐚𝐭)⟶̃
(
𝐅𝐮𝐧opl,L(𝐵, 𝐂𝐚𝐭)

)(1,2)−op
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956 HAUGSENG et al.

sending each lax natural transformation 𝐹 ⇒ 𝐺 with values in right adjoints to the corresponding
oplax natural transformation 𝐺 ⇒ 𝐹 with values in left adjoints.

Proof. Unravelling the proof of Theorem 5.3.1, one sees that the equivalence 𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭) ≃
𝐂𝐨𝐜𝐚𝐫𝐭lax(𝐵) is given at the level of objects by the usual unstraightening from [21] (which in this
special agrees with the locally cocartesian unstraightening from [22]). In particular, this equiva-
lence identifies the 1-full sub-2-category 𝐅𝐮𝐧lax,R(𝐵, 𝐂𝐚𝐭) with 𝐂𝐨𝐜𝐚𝐫𝐭lax,R(𝐵), and similarly for
the oplax case. The result then follows from Theorem 5.3.1. □

Denoting by 𝐋𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭) the full sub-2-category of 𝐅𝐮𝐧lax(𝐵, 𝐂𝐚𝐭) spanned by all functors
taking values in left adjoints and similarly for 𝐑𝐅𝐮𝐧opl(𝐵, 𝐂𝐚𝐭) we also find the following.

Theorem 5.3.6. Let 𝐵 be an∞-category. Then there is an equivalence

𝐑𝐅𝐮𝐧opl(𝐵, 𝐂𝐚𝐭)
∼
²→ 𝐋𝐅𝐮𝐧lax(𝐵op, 𝐂𝐚𝐭)

sending each diagram 𝐵 → Cat with values in right adjoints to the corresponding diagram 𝐵op →

Cat of left adjoints.

Proof. Simply observe that both sides are equivalent to 𝐁𝐢𝐜𝐚𝐫𝐭(op)lax(𝐵) via the unstraightening
equivalence from Theorem 5.3.6. □
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