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1. Introduction

The classical Douglas formula [19] (see also Radó [40, (5.2)] and Chen and
Fukushima [11, (5.8.4), (5.8.3)]) relates the energy of the harmonic function u
on the unit disk B(0, 1) ⊂ R

2 to the energy of its boundary values g on the
boundary of the disk, identified with the torus [0, 2π):∫

B(0,1)

|∇u(x)|2 dx =
1
8π

∫ 2π

0

∫ 2π

0

(g(η) − g(ξ))2

sin2((ξ − η)/2)
dη dξ. (1)

The formula is important in the trace theory for Sobolev spaces, since the
left-hand side of (1) is the classical Dirichlet integral and the right-hand side
is equivalent to the Gagliardo form in H1/2(∂B(0, 1)), the trace space for
W 1,2(B(0, 1)). The identity inspired important developments in the theory
of Dirichlet forms; see [11,21,28]. Doob [18, Theorem 9.2] generalized (1) to
arbitrary Greenian open sets D ⊆ R

d with d ≥ 2. In this paper, we propose
another extension of (1):∫

B(0,1)

|∇u(x)|2|u(x)|p−2 dx

=
1

2(p − 1)

∫ 2π

0

∫ 2π

0

(g(η)〈p−1〉 − g(ξ)〈p−1〉)(g(η) − g(ξ))
4π sin2((ξ − η)/2)

dη dξ.

(2)

Here and below, p ∈ (1,∞) and a〈κ〉 = |a|κ sgn(a) for a, κ ∈ R, in fact, we
prove that for all open bounded C1,1 sets D ⊆ R

d with d ≥ 2, and harmonic
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functions u in D with boundary values g,∫

D

|∇u(x)|2|u(x)|p−2 dx

=
1

2(p − 1)

∫

∂D

∫

∂D

(g(z)〈p−1〉 − g(w)〈p−1〉)(g(z) − g(w)) γD(z, w) dz dw.

(3)

Here dz, dw refer to the surface measure on ∂D and

γD(z, w) := ∂z
�nPD(·, w), (4)

is the inward normal derivative of the Poisson kernel PD, see Sect. 2.2. A direct
calculation shows that the kernel in (2) is indeed the normal derivative of the
Poisson kernel of the unit ball; therefore, (3) is an extension of (2). We refer
to (3) as p-Douglas identity (Douglas identity for short) and to the sides of (3)
as p-forms. We remark that P. Stein [43, (4.3)] obtained an early version of the
p-Douglas identity for the unit disk (3) under the assumption that u ∈ C2(D),
but without the explicit form of the right-hand side, which Douglas only gave
for p = 2. A more general variant of Stein’s identity can be obtained by taking
p = 2, a power function h, and a harmonic function u in the work of Ka�lamajska
and Choczewski [12, (5.1)]. The non-explicit terms in [12,43] have the form∫

∂D
u〈p−1〉∂�nu, which usually appears in the Green’s formula. One of the main

features of the p-Douglas identity is that it presents this integral in a more
explicit form, seen on the right-hand side of (3). This contributes to a better
understanding of the boundary behavior of functions in Sobolev-type spaces.

The precise statement of identity (3) is given in Theorems 3 and 11. In
the first of these results, we assume that g on ∂D is given with the right-hand
side of (3) finite, we define u as its Poisson integral, and we establish that the
left-hand side of (3) is, in fact, equal to the right-hand side; in particular, it is
finite. Therefore, this result may be thought of as an extension-type theorem.
In Theorem 11 we start with a harmonic function u on D with the left-hand
side of (3) finite and we obtain the function g on ∂D, of which u is a Poisson
integral and for which (3) holds. Therefore, the result may be thought of as a
trace-type theorem.

It is worth noting that formally we have
∫

D

|∇u〈p/2〉(x)|2 dx =
p2

4

∫
D

|∇u(x)|2|u(x)|p−2 dx. (5)

The former integral is convenient for studying the trace of (not necessarily
harmonic) functions with this energy form finite; see Theorem 9. We stress
that equality (5) should not be taken for granted in the case 1 < p < 2; then
we only prove it under certain assumptions of regularity of u.

For nice non-harmonic functions v that vanish at the boundary, there is
another formula:∫

D

|∇v(x)|2|v(x)|p−2 dx =
1

1 − p

∫
D

Δv(x)|v(x)|p−2v(x) dx. (6)
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Here, again, the case 1 < p < 2 requires special attention; we refer to Metafune
and Spina [36] for details. In this connection, we mention the work of Seesanea
and Verbitsky [41, Theorem 3.1], who studied (6) in the context of Green
potentials of non-negative measures. A variant of the Douglas formula with a
remainder term, which we propose in Theorem 15 below, combines [36,41] and
our identity (3) for harmonic functions. However, we adopt the simplifying
assumption v ∈ C2(D), allowing for the use of Green’s identity, which is not
easily available in the setting of (3).

One of our main tools is the Hardy–Stein identity of Bogdan, Dyda, and
Luks [7], which states that for every harmonic function u : D → R and x ∈ D,

sup
U⊂⊂D

E
x|u(XτU )|p − |u(x)|p = p(p − 1)

∫
D

GD(x, y)|u(y)|p−2|∇u(y)|2 dy.

(7)

Here, GD is the Green function of D and τD is the first exit time from D of the
Brownian motion Xt (more detailed definitions can be found in Sect. 2). Note
that (7) characterizes harmonic functions u for which the Poisson integrals
of |u|p are uniformly bounded up to the boundary, i.e., the functions in the
Hardy class Hp(D), see Koosis [31, p. 68]. Our Douglas formula is a similar
characterization of harmonic functions in Sobolev-type spaces; see also Bogdan,
Grzywny, Pietruska-Pa�luba, and Rutkowski [8] for an analogous discussion of
nonlocal operators such as the fractional Laplacian.

On a general level, the present paper deals with the classical potential
theory in the Lp setting. This may indicate why the usual harmonic functions
have a distinguished role for the considered p-forms. Integral forms similar to
(3) have already proved useful for optimal Hardy identities and inequalities
in Lp and the contractivity of operator semigroups acting on Lp, see Bogdan,
Jakubowski, Lenczewska, and Pietruska-Pa�luba [9, Theorem 1–3] and the dis-
cussion in [9, Subsection 1.3]. Moreover, the nonlocal Douglas identity was
applied to show bounds for the nonlocal Dirichlet-to-Neumann operator in
certain weighted Lp spaces, see [8, Section 6]. We expect similar results for the
classical Dirichlet-to-Neumann operator. Recall that the classical Dirichlet-
to-Neumann operator is the integro-differential operator on ∂D with γD as
the kernel, see Hsu [26, Section 4], Guillen, Kitagawa, and Schwab [25, Theo-
rem 1.1], and Piiroinen and Simon [38, Theorem 4.6]. The operator is one of
the motivations for the present work; however, an extension of [8, Section 6]
seems delicate.

We note in passing that for d = 1, all harmonic functions on the interval
D = (a, b) are of the form u(x) = cx+ d, and then the following identity holds
for 1 < p < ∞ (and is left for the reader to check):

∫ b

a

c2|u(x)|p−2 dx =
1

2(p − 1)
(u(b)〈p−1〉 − u(a)〈p−1〉)(u(b) − u(a))

2
b − a

.

(8)
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Since the Green function of D = (a, b) for Δ is given by

G(a,b)(x, y) =

{
(b − a)−1(x − a)(b − y), if a < x < y < b,

(b − a)−1(b − x)(y − a), if a < y ≤ x < b,

(see [13, (29) in Section 2]), it can be verified that (8) is an analogue of (3).
Having discussed the case d = 1, for the remainder of this paper we assume
that d ≥ 2.

The article is organized as follows. In Sect. 2 we introduce the main no-
tions and properties. In Sect. 3 we prove the Douglas identity and extension
theorem when the function g on ∂D is given. In Sect. 4 we prove the Douglas
identity and trace theorem when the harmonic function u on D is given. In
Sect. 5 we study minimization properties for the p-forms and give a variant of
(3) for non-harmonic functions.

2. Preliminaries

All the sets, functions, and measures considered are assumed to be Borel. For
functions a, b ≥ 0, the inequality a � b means that there is a number c > 0,
i.e., constant, such that a ≥ cb. We write a ≈ b if a � b and b � a.

2.1. Geometry

In the remainder of the work we assume that p ∈ (1,∞) and D is a C1,1 domain
at scale q > 0, that is, for each z ∈ ∂D there exist balls B1 := B(cz, q) ⊂ D
and B2 := B(c′

z, q) ⊂ (D)c, mutually tangent at z (that is, B1 ∩ B2 = {z}).
For later convenience, we denote

r0 = r0(D) := sup{q > 0 : D is C1,1 at scale q}.

It is well-known (see Aikawa et al. [1, Lemma 2.2]) that this definition is
equivalent to the one in which the boundary is locally isometric to the graph
of a C1,1 function. The inward normal vector at w ∈ ∂D will be denoted by
	nw (we write 	nw = 	n if w is implied from the context). Note that w �→ 	nw

is a Lipschitz mapping, because in a local coordinate system there is a C1,1

function f such that 	n = (∇f,−1). If u : D∪{w} → R for some point w ∈ ∂D,
then the inward normal derivative of u at w is defined as

∂w
�n u = lim

h→0+

u(w + h	n) − u(w)
h

.

We also let δD(x) = d(x, ∂D) for x ∈ R
d.

2.2. Potential theory

Let GD be the Green function and PD be the Poisson kernel of Δ =
∑d

i=1
∂2

∂x2
i

for the C1,1 open set D. We have GD(x, y) = 0 if x ∈ Dc or y ∈ Dc and

PD(x, z) = ∂z
�nGD(x, ·), x ∈ D, z ∈ ∂D.
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We also let PD(w, z) = 0 if w ∈ ∂D and w �= z and PD(z, z) = ∞ for z ∈ ∂D.
The kernels satisfy the following sharp estimates:

GD(x, y) ≈
(

1 ∧ δD(x)δD(y)
|x − y|2

)
|x − y|2−d, x, y ∈ D, if d ≥ 3, (9)

GD(x, y) ≈ ln
(

1 +
δD(x)δD(y)

|x − y|2
)

, x, y ∈ D, if d = 2, (10)

and

PD(x, z) ≈ δD(x)
|z − x|d , x ∈ D, z ∈ ∂D, d ≥ 2. (11)

The formula (9) was given by Zhao [44], (10) comes from Chung and Zhao [13,
Theorem 6.23], and the estimate (11) can be found in the book by Krantz [32,
Chapter 8.1] or derived from (9) and (10), see also Bogdan [6, (22)].

We slightly abuse the notation by using dx or dy for the Lebesgue measure
on R

d and dz or dw for the surface measure on ∂D. By the result of Dahlberg
[14], ωx(dz), the harmonic measure of Δ for D, is absolutely continuous with
respect to the surface measure for all x ∈ D and

ωx(A) =
∫

A

PD(x, z) dz, x ∈ D, A ⊆ ∂D.

To prove (3) we employ probabilistic potential theory. Let Xt be the Brownian
motion in R

d and let

τD = inf{t > 0 : Xt /∈ D}.

By P
x and E

x we denote the probability and the expectation for the process Xt

started at x. It is well-known since Kakutani [30] that the harmonic measure
is the probability distribution of XτD : ωx(A) = P

x(XτD ∈ A).
As usual, u is harmonic in D if u is C2 in D and Δu(x) = 0 for every

x ∈ D. Harmonic functions are characterized by the mean value property or
with respect to the Brownian motion [30]. Namely, u is harmonic in D if and
only if for every U ⊂⊂ D and x ∈ U we have

u(x) = E
xu(XτU ).

Here and below we write U ⊂⊂ D if U is a relatively compact subset of D,
that is U is bounded and U ⊂ D. Conversely, the Poisson integral,

PD[g](x) =
∫

∂D

g(z)PD(x, z) dz, x ∈ D,

is harmonic in D if absolutely convergent at one (therefore every) point x ∈ D.

2.3. Feller kernel

Recall that the Feller kernel γD is defined in (4). The existence of γD was
studied before, see, e.g., Zhao [44, Lemma 1], or Hsu [26, Section 8], but we
give a short proof for completeness of the presentation.

Lemma 1. The kernel γD(z, w) exists for all z, w ∈ ∂D, z �= w and

γD(z, w) ≈ |z − w|−d, z �= w. (12)
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Proof. Let z, w ∈ ∂D, z �= w. Since PD(z, w) = 0, we only need to calculate

γD(z, w) = lim
h→0+

PD(z + h	n,w)
h

,

where 	n = 	nz. Let x0 ∈ D and h > 0 be small. We have

PD(z + h	n,w)
h

=
PD(z + h	n,w)
GD(x0, z + h	n)

· GD(x0, z + h	n)
h

,

and

lim
h→0+

GD(x0, z + h	n)
h

= PD(x0, z).

The existence of the limit

lim
h→0+

PD(z + h	n,w)
GD(x0, z + h	n)

, (13)

follows from the boundary Harnack principle [29, Theorem 7.9].
The estimates (12) follow directly from (11) and the fact that δD(z +

h	n) = h for small h. �

2.4. Bregman divergence and its properties

The expression on the right-hand side of the Douglas identity (3) comes from
the symmetrization of the so-called Bregman divergence [2]. Namely, for p > 1
and a, b ∈ R we define

Fp(a, b) = |b|p − |a|p − pa〈p−1〉(b − a).

Recall that a〈k〉 = |a|k sgn a, so Fp is the second-order Taylor remainder of the
convex function b �→ |b|p. Therefore, it is an instance of Bregman divergence
[2] and, indeed, we have

1
2 (Fp(a, b) + Fp(b, a)) = Hp(a, b) := p

2 (a〈p−1〉 − b〈p−1〉)(a − b).

The following approximations hold true:

Hp(a, b) ≈ Fp(a, b) ≈ (a − b)2(|b| ∨ |a|)p−2 ≈ (a〈p/2〉 − b〈p/2〉)2, a, b ∈ R.

(14)

The second comparison was proved in [39, (2.19)] in a multidimensional setting.
The one-dimensional case was rediscovered, e.g., in [7, Lemma 6]. Optimal
constants are known for some arguments (in the lower bound for Fp with
p ∈ (1, 2) and the upper bound for p ∈ (2,∞)), see [10] and [42, Lemma
7.4]. The first comparison in (14) follows from the second one. A historical
discussion of the third comparison in (14) is given [9, Subsection 1.3]. Many
special cases of (14) can be found in the earlier works [5,15,34]; we refer to [8,
Section 2.2] for a full proof.
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3. The Douglas identity

Recall that p ∈ (1,∞). We define the following forms:

E
p
D[u] = p(p − 1)

∫
D

|u(x)|p−2|∇u(x)|2 dx,

H
p
∂D[g] =

∫
∂D

∫
∂D

Fp(g(z), g(w))γD(z, w) dz dw.

By symmetrization we get

H
p
∂D[g] =

p

2

∫
∂D

∫
∂D

(g(z)〈p−1〉 − g(w)〈p−1〉)(g(z) − g(w))γD(z, w) dz dw.

Since Fp ≥ 0, Hp
∂D[g] is well-defined (possibly infinite) for all Borel g : ∂D → R.

Lemma 2. If H
p
∂D[g] < ∞, then g ∈ Lp(∂D) and PD[g](x) is finite for all

x ∈ D.

Proof. Assume that H
p
∂D[g] < ∞, so that∫

∂D

∫
∂D

Fp(g(z), g(w))γD(z, w) dz dw < ∞.

We fix w ∈ ∂D, such that∫
∂D

Fp(g(z), g(w))γD(z, w) dz < ∞.

From Lemma 1 it follows that inf
z∈∂D, z �=w

γD(z, w) > 0, so

∫
∂D

Fp(g(z), g(w)) dz < ∞.

From (14), for |a| ≥ 2|b| we get

Fp(a, b) � (|a| − 1
2 |a|)2(|b| ∨ |a|)p−2 = 1

4 |a|p.
It follows that∫

∂D∩{z: |g(z)|≥2|g(w)|}
|g(z)|p dz �

∫
∂D

Fp(g(z), g(w)) dz < ∞,

therefore,∫
∂D

|g(z)|p dz

=
∫

∂D∩{z: |g(z)|<2|g(w)|}
|g(z)|p dz +

∫
∂D∩{z: |g(z)|≥2|g(w)|}

|g(z)|p dz

≤ 2p|g(w)|p|∂D| +
∫

∂D∩{z: |g(z)|≥2|g(w)|}
|g(z)|p dz < ∞,

so g ∈ Lp(∂D). By Jensen’s inequality and (11), PD[|g|](x) < ∞ for every
x ∈ D. �
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We note that the proof of Theorem 3 is mostly self-contained and avoids
abstract potential theory, in contrast to the approaches in [18] and [11, Chap-
ter 5.8] for p = 2.

Theorem 3. Assume that H
p
∂D[g] < ∞. Then the Douglas identity (3) holds

true:

H
p
∂D[g] = E

p
D[PD[g]].

Proof. Let u = PD[g]. The martingale convergence argument from the proof
of [8, Proposition 3.4] applies, and we get

sup
U⊂⊂D

E
x|u(XτU )|p = E

x|g(XτD )|p.

Therefore, by using the Hardy–Stein identity (7) we find that

E
x|g(XτD )|p − |u(x)|p = p(p − 1)

∫
D

GD(x, y)|u(y)|p−2|∇u(y)|2 dy. (15)

By the proof of Lemma 2,∫
∂D

Fp(g(w), g(z))γD(z, w) dz < ∞ (16)

for almost every w ∈ ∂D. For such w, we shall compute the corresponding
normal derivative of the left-hand side of (15). Recall that the inward normal
vector at w ∈ ∂D is denoted by 	n = 	nw. By the “p-variance” formulas [8,
Lemma 2.1] (see also [18, (9.4)]) we have

E
x|g(XτD )|p − |u(x)|p =

∫
∂D

Fp(u(x), g(z))PD(x, z) dz (17)

=
∫

∂D

Fp(g(w), g(z))PD(x, z) dz − Fp(g(w), u(x)).

(18)

Taking x = w + h	n with small h > 0 and using (12), we get

Fp(g(w), g(z))
PD(x, z)

h
= Fp(g(w), g(z))

PD(x, z)
δD(x)

� Fp(g(w), g(z))γD(z, w).

We let h → 0+, in particular, x → w. By the Lebesgue Dominated Convergence
Theorem and (16),

∂w
�n

∫
∂D

Fp(g(w), g(z))PD(·, z) dz =
∫

∂D

Fp(g(w), g(z))γD(w, z) dz.

By (18) and the fact that Fp ≥ 0, we get (for z �= w)

lim sup
h→0+

1
h

∫
∂D

Fp(u(w + h	n), g(z))PD(w + h	n, z) dz

≤
∫

∂D

Fp(g(w), g(z))γD(w, z) dz.
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On the other hand, [29, Theorem 5.8] states that u(w +h	n) converges to g(w)
as h → 0+ for almost every w ∈ ∂D. For such w, by Fatou’s lemma and Lemma
1, we find that

lim inf
h→0+

1
h

∫
∂D

Fp(u(w + h	n), g(z))PD(w + h	n, z) dz

≥
∫

∂D

Fp(g(w), g(z))γD(w, z) dz.

Therefore,

∂w
�n (E ·|g(XτD )|p − |u(·)|p) =

∫
∂D

Fp(g(w), g(z))γD(w, z) dz.

From (15) it follows that for almost every w ∈ ∂D,∫
∂D

Fp(g(w), g(z))γD(z, w) dz

= p(p − 1)∂w
�n

∫
D

GD(·, y)|u(y)|p−2|∇u(y)|2 dy.

(19)

By Fatou’s lemma, for w ∈ ∂D,

∂w
�n

∫
D

GD(·, y)|u(y)|p−2|∇u(y)|2 dy ≥
∫

D

PD(y, w)|u(y)|p−2|∇u(y)|2 dy.

It follows that∫
∂D

∫
∂D

Fp(g(w), g(z))γD(z, w) dz dw

= p(p − 1)
∫

∂D

∂w
�n

∫
D

GD(·, y)|u(y)|p−2|∇u(y)|2 dy dw

≥ p(p − 1)
∫

∂D

∫
D

PD(y, w)|u(y)|p−2|∇u(y)|2 dy dw

= p(p − 1)
∫

D

|u(y)|p−2|∇u(y)|2 dy.

In particular, the last expression is finite. We next show that the inequality
above is actually an equality, that is, the reverse inequality holds. By Fatou’s
lemma and Fubini–Tonelli,∫

∂D

∂w
�n

∫
D

GD(·, y)|u(y)|p−2|∇u(y)|2 dy dw

≤ lim inf
h→0+

∫
∂D

∫
D

GD(w + h	n, y)
h

|u(y)|p−2|∇u(y)|2 dy dw

= lim inf
h→0+

∫
D

|u(y)|p−2|∇u(y)|2
∫

∂D

GD(w + h	n, y)
h

dw dy. (20)

With the intent of using the Lebesgue Dominated Convergence Theorem in
(20), we next show that

lim
h→0+

∫
∂D

GD(w + h	n, y)
h

dw =
∫

∂D

PD(y, w) dw = 1, y ∈ D, (21)



   55 Page 10 of 22 K. Bogdan et al. NoDEA

and that there exists C > 0 such that for small h > 0,∫
∂D

GD(w + h	n, y)
h

dw ≤ C, y ∈ D. (22)

For the remainder of the proof, we assume that h < (r0/2) ∧ (1/2L), where
L is the Lipschitz constant of the mapping w �→ 	nw. For y ∈ D, w ∈ ∂D and
h ≤ δD(y)/2,

|w − y| ≤ |w + h	n − y| + h ≤ |w + h	n − y| +
δD(y)

2
≤ |w + h	n − y| +

|w − y|
2

,

hence |w − y| ≤ 2|w + h	n − y|. Thus, by (9), (10), and (11), the inequalities
GD(w + h	n, y)

h
� δD(y)

|w + h	n − y|d � δD(y)
|w − y|d � PD(y, w)

hold with constants independent of y and h. Hence, the Lebesgue Dominated
Convergence Theorem gives (21) for every y ∈ D.

From the above, we also get (22) in the case δD(y) ≥ 2h. It remains to
prove (22) for δD(y) < 2h. Assume first that d ≥ 3. Then, by (9),∫

∂D

GD(w + h	n, y)
h

dw �
∫

∂D

1
h

(
1 ∧ h2

|w + h	n − y|2
)

|w + h	n − y|2−d dw.

(23)

Since h < r0/2 and δD(y) < 2h, there is a unique point wy ∈ ∂D for which
δD(y) = |y − wy|. If we let y∗ = wy + h	nwy

, then δD(y∗) = h. We claim that

|w + h	n − y| � |w + h	n − y∗|. (24)

In order to prove this we first define

Dh := {x ∈ D : δD(x) > h}.

Note that

∂Dh = {x = w + 	nh : w ∈ ∂D}
and the correspondence between x = w + 	nh and w is one to one (this is true
because D is C1,1 and the interior ball with radius smaller than r0 is unique
and tangent to exactly one point of the boundary). Therefore, since y lies on
the line segment connecting wy and wy + 2hnwy, we have

B(y, |y − y∗|) ∩ ∂Dh = {y∗},

because if any other point was in the intersection, then it would mean that
δD(y) is attained at two points of ∂D. Consequently, for every x ∈ ∂Dh,

|y∗ − x| ≤ |y∗ − y| + |y − x| ≤ 2|y − x|,
which proves (24). As a consequence, we see that∫

∂D

1
h

(
1 ∧ h2

|w + h	n − y|2
)

|w + h	n − y|2−d dw

�
∫

∂D

1
h

(
1 ∧ h2

|w + h	n − y∗|2
)

|w + h	n − y∗|2−d dw.
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By the C1,1 geometry of D, we find that

|w − wy| ≤ |w + h	n − y∗| + h|	nw − 	nwy
| ≤ |w + h	n − y∗| + hL|w − wy|.

Therefore, since h < 1/2L, we get

|w − wy| ≤ 2|w + h	n − y∗|, (25)

so that
∫

∂D

1
h

(
1 ∧ h2

|w + h	n − y∗|2
)

|w + h	n − y∗|2−d dw

�
∫

∂D

1
h

(
1 ∧ h2

|w − wy|2
)

|w − wy|2−d dw

=
∫

|w−wy|>h

+
∫

|w−wy|≤h

=: I1 + I2.

By using polar coordinates,

I1 � h

∫
{w∈∂D:|w−wy|>h}

|w − wy|−d dw

≈ h

∫
{ξ∈Rd−1:h<|ξ|≤1}

|ξ|−d dξ ≈ h

∫ 1

h

r−2 dr ≈ 1

and

I2 � 1
h

∫
{w∈∂D:|w−wy|≤h}

|w − wy|2−d dw

≈ 1
h

∫
{ξ∈Rd−1:0<|ξ|≤h}

|ξ|2−d dξ ≈ 1
h

∫ h

0

dr = 1,

thus the case δD(y) < 2h is completed, and so (22) is proven for d ≥ 3. For
d = 2, (22) is obtained by similar arguments using (10). Indeed, the proofs of
(24) and (25) remain valid, so the only difference is that for d = 2 we want to
estimate the integral

∫
∂D

1
h

ln
(

1 +
h2

|w − wy|2
)

dw.

To this end we use the following computation:
∫ 1

0

1
h

ln
(

1 +
h2

t2

)
dt =

∫ ∞

h

ln(1 + u2)
u2

du ≤
∫ ∞

0

ln(1 + u2)
u2

du < ∞.

Having proven (21) and (22), we may use the Lebesgue Dominated Con-
vergence Theorem to interchange the limit and the integral in (20), ending the
proof.

Note that the case d = 1 is summarized in (8). �
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4. Trace-type results

In the previous section the starting point for our considerations was the func-
tion g on the boundary; our results could be thought of as an extension-type
theorem. In this section we focus on a complementary trace-type theorem for
Sobolev-type functions on D. In particular, we prove the Douglas identity for
harmonic functions u in this class and exhibit the boundary function g for
such u, see Theorem 11.

Definition 4. We define a Sobolev-type space

V1,p(D) = {u ∈ Lp(D) :
∫

D

|∇u〈p/2〉(x)|2 dx < ∞}.

To clarify, the above gradient of u〈p/2〉 is understood in the distributional
sense and is assumed to be a square integrable function. Since D is C1,1,
by Maz’ya [35, p. 21, Corollary], the assumption u ∈ Lp(D) is redundant,
because the finiteness of

∫
D

|∇u〈p/2〉(x)|2 dx implies u〈p/2〉 ∈ L2(D). We note
that V1,p(D) is not a linear space for p �= 2. For example, if D = (0, 1), u = 1,
and v(x) = x1/(p∧2), then for 1 < p < 2 we have u, u + v ∈ V1,p(D), but
v /∈ V1,p(D), and for p > 2 we have u, v ∈ V1,p(D), but u + v /∈ V1,p(D).

The equality (26) in the following result demonstrates the relation of
V1,p(D) to the forms studied previously.

Lemma 5. Assume that p ∈ (1, 2), u ∈ C2(D) and let x ∈ D. If either
• u(x) �= 0, or
• u(x) = 0 and ∇u(x) = 0,

then ∇u〈p/2〉(x) exists in the classical sense and

∇u〈p/2〉(x) =
p

2
∇u(x)|u(x)|p/2−1. (26)

If p ∈ [2,∞), then (26) holds for every x ∈ D.

Proof. The case p ∈ [2,∞) is trivial, so in the sequel we let p ∈ (1, 2). If u(x) �=
0, then the statement follows immediately from the chain rule. If u(x) = 0 and
∇u(x) = 0, then for y close to x we have |u(y)| = |u(y) − u(x)| � |y − x|2,
hence

|u(y)〈p/2〉 − u(x)〈p/2〉| = |u(y)〈p/2〉| � |y − x|p.
Since p > 1, we find that ∇u〈p/2〉(x) = 0, which ends the proof. �

Lemma 6. Assume that u ∈ V1,p(D)∩C2(D). Then the gradient ∇u〈p/2〉 exists
in the classical sense almost everywhere in D, coincides with the weak gradient,
and (26) holds for a.e. x ∈ D.

Proof. Since u ∈ V1,p(D), we have u〈p/2〉 ∈ W 1,2(D). By [35, 1.1.3, Theorem
1] we get that ∇u〈p/2〉 exists in the classical sense almost everywhere and
coincides with the weak gradient. Formula (26) in case p ≥ 2 now follows
from the chain rule, thus in the sequel we assume that p ∈ (1, 2). Note that if
∇u〈p/2〉(x) exists in the classical sense, then either u(x) �= 0 or u(x) = 0 and



NoDEA The Douglas formula in Lp Page 13 of 22    55 

∇u(x) = 0. Indeed, let ei be the unit vector in the i-th coordinate direction
and assume that u(x) = 0 and ∂iu(x) �= 0. Then∣∣∣∣u

〈p/2〉(x + hei) − u〈p/2〉(x)
h

∣∣∣∣ =
∣∣∣∣u

〈p/2〉(x + hei)
h

∣∣∣∣ � |h|p/2−1 −→
h→0

∞,

which contradicts the existence of ∇u〈p/2〉(x). Thus by Lemma 5 we get that
(26) holds for a.e. x ∈ D. �

The setting of V1,p(D) is convenient for formulating trace-type results,
owing to the connection with the classical Sobolev spaces. The functions u

in W 1,2(D) have a well-defined trace T̃r u which belongs to L2(∂D), see, e.g.,
Evans [20, p. 272]. The trace T̃r is constructed as a continuous extension of
the restriction map from C∞(D) to W 1,2(D). Note that C∞(D) is dense in
W 1,2(D), because D is C1,1, see [35, 1.1.6, Theorem 2]. Here and below, the
reference measure for Lp(∂D) is the surface measure on ∂D.

Definition 7. Let u ∈ V1,p(D). We define the trace of u as

Tr u = (T̃r u〈p/2〉)〈2/p〉.

The above expression makes sense, because u〈p/2〉 ∈ W 1,2(D). In consequence,
Tr u ∈ Lp(∂D).

The next result gives a more explicit description of the trace, but we will
not use it in the sequel.

Lemma 8. If u ∈ V1,p(D), then for almost every z ∈ ∂D,

Tr u(z) = lim
r→0+

(
1

|B(z, r) ∩ D|
∫

B(z,r)∩D

u(y)〈p/2〉 dy

)〈2/p〉
.

Proof. Let v ∈ W 1,2(D). Then, for almost every z ∈ ∂D we have

T̃r v(z) = lim
r→0+

1
|B(z, r) ∩ D|

∫
B(z,r)∩D

v(y) dy. (27)

Indeed, this is true for v ∈ C∞(D). For general v ∈ W 1,2(D), the result follows
from Anzellotti and Giaquinta [3]: Since W 1.2(D) ↪→ W 1,1(D) ↪→ BV (D) for
bounded D, by [3, Proposition 4], the right-hand side of (27) exists z-almost
everywhere. Furthermore, if vn → v in W 1,2(D), then vn → v in BV (D), so by
[3, Theorem 4] we get (27), from which the lemma follows immediately. �

Theorem 9. Assume that u ∈ Lp(D) satisfies∫
D

|∇u〈p/2〉(x)|2 dx < ∞.

Then the trace g = Tr u satisfies∫
∂D

∫
∂D

Fp(g(z), g(w))γD(z, w) dz dw �
∫

D

|∇u〈p/2〉(x)|2 dx < ∞.
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Proof. If u ∈ Lp, then u〈p/2〉 ∈ L2(D). By the trace theorem for W 1,2(D) (see,
e.g., Kufner, John, and Fuč́ık [33, Theorems 6.8.13, 6.9.2]), we therefore get
that the trace g〈p/2〉 of u〈p/2〉 exists, belongs to W 1/2,2(∂D) and satisfies∫

∂D

∫
∂D

(g〈p/2〉(z) − g〈p/2〉(w))2 |z − w|−d dz dw �
∫

D

|∇u〈p/2〉(x)|2 dx.

Recall that by (14) we have (a〈p/2〉 − b〈p/2〉)2 ≈ Fp(a, b). It follows that∫
∂D

∫
∂D

Fp(g(z), g(w))γD(z, w) dz dw �
∫

D

|∇u〈p/2〉(x)|2 dx < ∞.

�

Here is a variant of Theorem 3 adapted to V1,p(D) spaces.

Proposition 10. Assume that g : ∂D → R satisfies∫
∂D

∫
∂D

Fp(g(z), g(w))γD(z, w) dz dw < ∞.

Let u = PD[g]. Then ∇u〈p/2〉(x) exists in the classical sense for a.e. x ∈ D
and ∫

∂D

∫
∂D

Fp(g(z), g(w))γD(z, w) dz dw =
4p − 4

p

∫
D

|∇u〈p/2〉(x)|2 dx.

Proof. By virtue of Theorem 3, it suffices to prove that

p(p − 1)
∫

D

|∇u(x)|2|u(x)|p−2 dx =
4p − 4

p

∫
D

|∇u〈p/2〉(x)|2 dx. (28)

Since u is harmonic, it is also smooth, so according to Lemma 5, (28) obviously
holds for p ∈ [2,∞). For p ∈ (1, 2) we will show that under present assumptions
on u, the set

A = {x ∈ D : u(x) = 0, ∇u(x) �= 0}
has Lebesgue measure zero. Since the left-hand side of (28) is finite we find
that |∇u(x)|2|u(x)|p−2 is finite for almost all x ∈ D, but on the other hand
this expression is infinite for any x ∈ A, hence |A| = 0 and by Lemma 5 we
get (28) for p ∈ (1, 2). �

Theorem 11. Assume that nontrivial harmonic function u belongs to V1,p(D).
Then, for g = Tr[u] we have u = PD[g] and the p-Douglas identity holds:∫

∂D

∫
∂D

Fp(g(z), g(w))γD(z, w) dz dw = p(p − 1)
∫

D

|∇u(x)|2|u(x)|p−2 dx

=
4p − 4

p

∫
D

|∇u〈p/2〉(x)|2 dx.

Proof of Theorem 11. Since u ∈ V1,p(D), Theorem 9 gives the existence of the
trace g = Tr u, which satisfies∫

∂D

∫
∂D

Fp(g(z), g(w))γD(z, w) dz dw < ∞.



NoDEA The Douglas formula in Lp Page 15 of 22    55 

Therefore, by Theorem 3 and Proposition 10, the statement of Theorem 11
holds for u and g, provided that u = PD[g]. In order to show that u = PD[g],
we will use another notion of trace, the so-called fine boundary function f of
u, for which it is known that u = PD[f ]. Then we will prove that f = g. Here
are the details. By Lemma 6 we have

∫
D

|∇u(x)|2|u(x)|p−2 dx < ∞.

Fix x0 ∈ D. Since u is locally bounded in D and GD(x, x0) is integrable and
bounded outside any neighborhood of x0, it follows that

∞ >

∫
D

GD(x, x0)|∇u(x)|2|u(x)|p−2 dx

≥ sup
U⊂⊂D

∫
U

GU (x, x0)|∇u(x)|2|u(x)|p−2 dx.

By the Hardy–Stein identity (7) we therefore obtain that

sup
U⊂⊂D

E
x|u(XτU )|p < ∞.

According to Doob [16, Lemma 4.1] the above condition puts us in a position
to apply [17, Theorems 9.3 and 5.2] in order to get that u has a fine boundary
function f such that

u(x) = PD[f ](x), x ∈ D.

In order to finish the proof it suffices to show that f = g, which we do below.
Recall that the trace in W 1,2(D) is defined first for functions v ∈ C∞(D) as
the restriction v|∂D and for the rest of the functions via a density argument.
Consider a sequence of functions vn ∈ C∞(D) which converges to u〈p/2〉 in
W 1,2(D) and almost everywhere, and let fn be the fine boundary function of
vn for n = 1, 2, . . .. By the result of Hunt and Wheeden [27, Theorem 5.7], the
trace and the fine boundary function agree almost everywhere for vn. Using
this and the definition of the trace operator in W 1,2(D) we get

‖fn − g〈p/2〉‖L2(∂D) = ‖fn − Tr u〈p/2〉‖L2(∂D)

= ‖Tr vn − Tr u〈p/2〉‖L2(∂D)
n→∞−→ 0.

(29)

On the other hand, since u〈p/2〉 is continuous and vn → u〈p/2〉 in W 1,2(D) (so
in the BLD sense [18, pp. 573–574]), by [18, Theorem 4.3] the fine boundary
functions of vn converge in L2 to the fine boundary function h of u〈p/2〉, that
is,

‖fn − h‖L2(∂D)
n→∞−→ 0. (30)

Since the function t �→ t〈p/2〉 is continuous, we have h = f 〈p/2〉. Therefore, by
(29) and (30) we conclude that f = g a.e. on ∂D, which ends the proof. �
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5. Minimization and an identity with a remainder term

We define

Ẽ
p
D[u] =

4(p − 1)
p

∫
D

|∇u〈p/2〉(x)|2 dx.

Note that formally Ẽ
p
D[u] = E

p
D[u]. It is well-known that the harmonic function

PD[g] minimizes the Dirichlet energy Ẽ2
D[u] in D among functions satisfying

u = g on ∂D. This allows us to easily identify the minimizer of Ẽ
p
D under

boundary condition g, as we do in the following proposition.

Proposition 12. Let g ∈ V1,p(D). Then u =
(
PD[g〈p/2〉]

)〈2/p〉 is the unique
minimizer of Ẽp

D with the boundary condition g in the following sense: u〈p/2〉 −
g〈p/2〉 ∈ W 1,2

0 (D) and for every v ∈ V1,p(D) such that v〈p/2〉 − g〈p/2〉 ∈
W 1,2

0 (D), we have Ẽ
p
D[u] ≤ Ẽ

p
D[v].

Due to the uniqueness, the harmonic function u = PD[g] cannot be a
minimizer of Ẽp

D with the boundary condition g (except for p = 2 or constant
g). It is, however, a quasi-minimizer.

Definition 13. We say that u is a quasiminimizer of Ẽp
D if there exists K ≥ 1

such that for every open C1,1 set U ⊂⊂ D and v which agrees with u on ∂U

we have Ẽ
p
U [u] ≤ KẼ

p
U [v].

Quasiminimizers were introduced by Giaquinta and Giusti [22]. To keep
the discussion below simple, in Definition 13 we require the sets U to be C1,1,
but we should also remark that restricting the test sets may occasionally affect
the notion of the quasiminimizer, see Giusti [23, Example 6.5].

Proposition 14. If Hp
∂D[g] < ∞, then u = PD[g] is a quasiminimizer of Ẽp

D.

Proof. Let U ⊂⊂ D be C1,1 and let v : U → R
d be equal to u on ∂U . We may

assume that Ẽ
p
U [v] < ∞. By the trace theorem for W 1,2(U) (or Theorem 9

above) and (14),

Ẽ
p
U [v] � H2

U [u〈p/2〉] ≈ H
p
U [u].

Note that since u is harmonic, we have u = PU [u] in U , therefore by the
Douglas identity in Theorem 11 we get

H
p
U [u] = Ẽ

p
U [u],

which ends the proof. �
We will now give a variant of the Douglas identity for functions which

need not be harmonic.

Theorem 15. Assume that p ∈ [2,∞) and let u ∈ C2(D). Then

E
p
D[u] = E

p
D[PD[u]] − p

∫
D

Δu(x)u〈p−1〉(x) dx +
p

2

∫
D

Δu(x)PD[u〈p−1〉](x) dx

= H
p
∂D[u] − p

∫
D

Δu(x)u〈p−1〉(x) dx +
p

2

∫
D

Δu(x)PD[u〈p−1〉](x) dx.
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Proof. Let u ∈ C2(D). Then, since p ∈ [2,∞) we get that u〈p−1〉 ∈ C1(D)
and

∇u〈p−1〉(x) = (p − 1)∇u(x)|u(x)|p−2, x ∈ D.

This puts us in a position to use Green’s identity in the following way:
∫

D

u〈p−1〉(x)Δu(x) dx + (p − 1)
∫

D

|∇u(x)|2|u(x)|p−2 dx

= −
∫

∂D

u〈p−1〉(w)∂w
�n u dw,

or equivalently,

E
p
D[u] = −p

∫
D

u〈p−1〉(x)Δu(x) dx − p

∫
∂D

u〈p−1〉(w)∂w
�n u dw. (31)

Let v = PD[u], φ = u − v, and note that Δφ = Δu and φ = 0 (and so, u = v)
on ∂D. Furthermore,

∂w
�n u = ∂w

�n v + ∂w
�n φ. (32)

Since u is C2(D), by, e.g., Øksendal [37, Theorem 7.4.1] and [13, page 37] we
have Δφ = Δu = f ∈ C(D) and φ(x) = − 1

2

∫
D

GD(x, y)f(y) dy. Therefore, by
using an argument similar to the one in [4, Lemma 3.2.1], we get that

∂w
�n φ = −1

2
lim

h→0+

∫
D

GD(y, w + h	n)
h

f(y) dy = −1
2

∫
D

PD(y, w)f(y) dy.

Note that this means that both derivatives on the right-hand side of (32) exist.
By Fubini’s theorem,

∫
∂D

u〈p−1〉(w)∂w
�n φ dw = −1

2

∫
∂D

u〈p−1〉(w)
∫

D

PD(y, w)f(y) dy dw

= −1
2

∫
D

f(y)
∫

∂D

u〈p−1〉(w)PD(y, w) dw dy

= −1
2

∫
D

Δu(y)PD[u〈p−1〉](y)dy. (33)

By Grisvard [24, Theorem 2.2.2.3], we have φ ∈ W 2,2(D), and so v ∈ W 2,2(D)
as well. Since v is smooth in D, this further yields v〈p−1〉 ∈ W 1,2(D). By
Green’s identity [24, Theorem 1.5.3.1] and the Douglas identity of Theorem 11,

∫
∂D

u〈p−1〉(w)∂w
�n v dw =

∫
∂D

v〈p−1〉(w)∂w
�n v dw

= −(p − 1)
∫

D

|∇v(x)|2|v(x)|p−2 dx

= −1
p
H

p
∂D[u].
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Putting this together with (33) and (32) we get

− p

∫
∂D

u〈p−1〉(w)∂w
�n u dw

= −p

∫
∂D

u〈p−1〉(w)∂w
�n v dw − p

∫
∂D

u〈p−1〉(w)∂w
�n φ dw

= H
p
∂D[u] +

p

2

∫
D

Δu(y)PD[u〈p−1〉](y)dy

= E
p
D[PD[u]] +

p

2

∫
D

Δu(y)PD[u〈p−1〉](y)dy,

where in the last equality we used the Douglas identity of Theorem 3. By this
and (31) we obtain the desired identities. �
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