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ABSTRACT. In this paper we give a purely categorical construction of d-fold matrix fac-
torizations of a natural transformation, for any even integer d . This recovers the classi-
cal definition of those for regular elements in commutative rings due to Eisenbud. We
explore some natural functors between associated triangulated categories, and show
that when d = 2 these are full and faithful, and in some cases equivalences.

1. INTRODUCTION

In 1980, Eisenbud introduced matrix factorizations in [Eis] for elements in commu-
tative rings. The motivation was to study free resolutions over the corresponding factor
rings, in particular hypersurface rings. It was shown that over such a ring, every mini-
mal free resolution corresponds to a matrix factorization over the ambient regular ring.
The homotopy category of matrix factorizations is triangulated, and it was remarked by
Buchweitz in [Buc] that Eisenbud’s result implies that this homotopy category is equiv-
alent to the singularity category of the corresponding hypersurface ring. In [Orl], Orlov
gave an explicit proof of this fact.

In this paper, for any even integer d ≥ 2 we give a categorical construction of d-fold
matrix factorizations for any suspended category and natural transformation commut-
ing with suspension. Our construction recovers the classical notion of matrix factoriza-
tion due to Eisenbud referenced above. It also recovers other notions in recent literature,
in particular the 2-fold factorizations in abelian categories defined in [BDFIK].

The paper is organized as follows. In Section 2 we give our construction of d-fold
matrix factorizations, and show that the collection of such objects naturally forms an
algebraic triangulated category. We also show that specific restrictions yield the previ-
ously studied triangulated categories of matrix factorizations.

In Section 3 we study natural triangle functors between our triangulated category of
matrix factorizations and other well-known triangulated categories. We show that when
d = 2, these functors are full and faithful, and in some contexts, equivalences. We end
with some examples, which illustrate new sources of concrete matrix factorizations.
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organizers of the Representation Theory program for inviting us to spend time at that
wonderful place. We would also like to thank the referee for helpful comments and sug-
gestions.

2. FACTORIZATIONS

Fix an even integer d ≥ 2, and let (C ,S) be a suspended additive category, that is, an
additive category C together with an additive automorphism S : C →C . Furthermore,
fix a natural transformation η : 1C → S with the property that

ηS(M) = S(ηM )
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for every object M of C (we shall usually drop parentheses when we apply S to objects
and morphisms).

A d-fold (C ,S)-factorization (Mi , fi ) of η is a sequence

M1 M2 · · · Md SM1
f1 f2 fd−1 fd

of d morphisms in C , in which every d-fold composition equals η:

fd ◦ fd−1 ◦ · · · ◦ f1 = ηM1

S f1 ◦ fd ◦ · · · ◦ f2 = ηM2

...

S fd−1 ◦ · · · ◦S f1 ◦ fd = ηMd

A morphism ϕ : (Mi , fi ) → (Ni , gi ), between two such (C ,S)-factorizations of η, is a se-
quence (ϕ1, . . . ,ϕd ) of morphisms in C such that the diagram

M1 M2 · · · Md SM1

N1 N2 · · · Nd SN1

f1 f2 fd−1 fd

g1 g2 gd−1 gd

ϕ1 ϕ2 ϕd Sϕ1

commutes. It is an isomorphism if all the ϕi , and hence also Sϕ1, are isomorphisms.
The composition of two morphisms is a new morphism, thus we obtain the category
Factd (C ,S,η) of d-fold (C ,S)-factorizations of η. Since the original category C and its
automorphism S are additive, so is the category Factd (C ,S,η), in a natural way. Addition
of morphisms is induced from C , and the zero object is the trivial (C ,S)-factorization
(0,0) of η. The coproduct of two (C ,S)-factorizations of η is performed pointwise, with
the result being a new (C ,S)-factorization since

ηM⊕N =
[
ηM 0

0 ηN

]
for all objects M , N ∈C .

Let ϕ= (ϕi ) and ϕ′ = (ϕ′
i ) be two parallell morphisms in Factd (C ,S,η), from (Mi , fi )

to (Ni , gi ). Then ϕ is homotopic to ϕ′ if there exist diagonal morphisms

M1 M2 · · · Md−1 Md SM1

N1 N2 · · · Nd−1 Nd SN1

f1 f2 fd−2 fd−1 fd

g1 g2 gd−2 gd−1 gd

ϕ1 ϕ′
1

ϕ2 ϕ′
2

ϕd−1 ϕ′
d−1

ϕd ϕ′
d Sϕ1 Sϕ′

1

s1 sd−1 sd

satisfying

ϕ1 −ϕ′
1 = s1 ◦ f1 +S−1gd ◦S−1sd

ϕ2 −ϕ′
2 = s2 ◦ f2 + g1 ◦ s1

...

ϕd −ϕ′
d = sd ◦ fd + gd−1 ◦ sd−1

We write ϕ ∼ ϕ′; this is an equivalence relation on the set of morphisms between the
objects (Mi , fi ) and (Ni , gi ). The equivalence class of ϕ is denoted by [ϕ]. Note that if
ϕ,ϕ′,θ,θ′ are four morphisms in Factd (C ,S,η) from (Mi , fi ) to (Ni , gi ), with ϕ∼ϕ′ and
θ ∼ θ′, then (ϕ+θ) ∼ (ϕ′+θ′). Consequently, homotopies are compatible with addition
of morphisms, and addition [ϕ]+ [θ] = [ϕ+θ] of equivalence classes is therefore well
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defined. Moreover, homotopies are also compatible with composition of morphisms in
Factd (C ,S,η): if

(Mi , fi ) (Ni , gi ) (Li ,hi )

ϕ

ϕ′

ψ

ψ′

are four morphisms with ϕ ∼ ϕ′ and ψ ∼ ψ′, then (ψ ◦ϕ) ∼ (ψ′ ◦ϕ′). Thus composi-
tion [ψ]◦ [ϕ] = [ψ◦ϕ] of equivalence classes is well defined, too. Now form the homo-
topy category HFactd (C ,S,η) of Factd (C ,S,η). Its objects are the same as the objects of
Factd (C ,S,η), but the morphisms are the homotopy equivalence classes of morphisms
from Factd (C ,S,η). We have just seen that this is indeed a category, whose morphism
sets are abelian groups. The zero object (which is unique only up to homotopy) and co-
products are inherited from Factd (C ,S,η), giving HFactd (C ,S,η) the natural structure
of an additive category.

Remark 2.1. Homotopies do not in general commute with the maps in the correspond-
ing (C ,S)-factorizations. Thus, for the homotopy s above, it need not be the case that
gi ◦ si = si+1 ◦ fi+1. However, as in the case of ordinary complexes, homotopies do com-
mute with the square of the maps in the factorizations: gi+1 ◦ gi ◦ si = si+2 ◦ fi+2 ◦ fi+1.
This follows from the defining equations combined with the fact that ϕ and ϕ′ are mor-
phisms.

We shall now equip the homotopy category HFactd (C ,S,η) with the structure of a tri-
angulated category, in terms of standard triangles defined in much the same way as for
the homotopy category of complexes. The suspension Σ(Mi , fi ) of a (C ,S)-factorization
(Mi , fi ) of η is the sequence

M2 M3 · · · Md SM1 SM2
− f2 − f3 − fd−1 − fd −S f1

of morphisms in C . This is again a d-fold (C ,S)-factorization of η. Namely, since d
is even, the signs cancel when d morphisms are composed. Moreover, the equality
ηSM = SηM guarantees that when d consecutive (possibly suspended) morphisms are
composed, the result is a component map of η. Next, let ϕ be a morphism

M1 M2 · · · Md SM1

N1 N2 · · · Nd SN1

f1 f2 fd−1 fd

g1 g2 gd−1 gd

ϕ1 ϕ2 ϕd Sϕ1

in Factd (C ,S,η). From the suspensions of the two (C ,S)-factorizations of η involved,
we obtain the commutative diagram

M2 M3 · · · Md SM1 SM2

N2 N3 · · · Nd SN1 SN2

− f2 − f3 − fd−1 − fd −S f1

−g2 −g3 −gd−1 −gd −Sg1

ϕ2 ϕ3 ϕd Sϕ1 Sϕ2

displaying a morphism in Factd (C ,S,η) from Σ(Mi , fi ) to Σ(Ni , gi ). This assignment is
easily seen to respect homotopies: two homotopic morphisms from (Mi , fi ) to (Ni , gi )
give two homotopic morphisms from Σ(Mi , fi ) to Σ(Ni , gi ). Moreover, the suspension
respects coproducts, addition and composition of morphisms. We therefore obtain an
additive functor

HFactd
(
C ,S,η

)
HFactd

(
C ,S,η

)Σ



4 PETTER ANDREAS BERGH AND DAVID A. JORGENSEN

which is clearly an automorphism; its inverse Σ−1 is given by right rotation.
Having defined the suspension Σ on HFactd (C ,S,η), we next define mapping cones

as in the classical case. Let ϕ be the morphism above. Its mapping cone, denoted Cϕ, is
the sequence

M2 ⊕N1 M3 ⊕N2 · · · SM1 ⊕Nd SM2 ⊕SN1

[− f2 0
ϕ2 g1

] [− f3 0
ϕ3 g2

] [− fd 0
ϕd gd−1

] [−S f1 0
Sϕ1 gd

]

in C . This is again a d-fold (C ,S)-factorization of η; the commuting squares in the mor-
phism diagram ensure that the product of d consecutive (possibly suspended) matrices
is always a component map of η.

Remark 2.2. The construction of mapping cones is the main reason why the integer d
must be even. Consider the composition of the d maps. For the cone to be a (C ,S)-

factorization of η, this composition must equal ηM2⊕N1 , or
[
ηM2 0

0 ηN1

]
in matrix nota-

tion. The even number of commuting squares in the morphism diagram guarantees
that the lower left entry of this matrix is zero. If d were odd, the composition would

equal
[
ηM2 0

h ηN1

]
, with h = Sϕ1◦ fd ◦· · ·◦ f2. Thus, in this case, the composition would not

equal ηM2⊕N1 , in general.

Given a morphism ϕ : (Mi , fi ) → (Ni , gi ) as above, there is a natural morphism

(Ni , gi ) Cϕ

iϕ

in Factd (C ,S,η), displayed in the diagram

N1 N2 · · · Nd SN1

M2 ⊕N1 M3 ⊕N2 · · · SM1 ⊕Nd SM2 ⊕SN1

g1 g2 gd−1 gd

[− f2 0
ϕ2 g1

] [− f3 0
ϕ3 g2

] [− fd 0
ϕd gd−1

] [−S f1 0
Sϕ1 gd

][0
1
] [0

1
] [0

1
] [0

1
]

Similarly, there is a natural morphism

Cϕ Σ(Mi , fi )
πϕ

displayed in the diagram

M2 ⊕N1 M3 ⊕N2 · · · SM1 ⊕Nd SM2 ⊕SN1

M2 M3 · · · SM1 SM2

[− f2 0
ϕ2 g1

] [− f3 0
ϕ3 g2

] [− fd 0
ϕd gd−1

] [−S f1 0
Sϕ1 gd

]

− f2 − f3 − fd −Sg1

[ 1 0 ] [ 1 0 ] [ 1 0 ] [ 1 0 ]

We now follow normal procedure. Define a triangle in the homotopy category
HFactd (C ,S,η) to be a sequence

X Y Z ΣX
u v w

of objects and morphisms. A morphism between two such triangles is a commutative
diagram

X1 Y1 Z1 ΣX1

X2 Y2 Z2 ΣX2

u1 v1 w1

u2 v2 w2

α β γ Σα



CATEGORICAL MATRIX FACTORIZATIONS 5

in HFactd (C ,S,η), and it is an isomorphism of triangles if all the vertical mor-
phisms are isomorphisms in HFactd (C ,S,η). For a morphism ϕ : (Mi , fi ) → (Ni , gi ) in
Factd (C ,S,η), we call the corresponding triangle

(Mi , fi ) (Ni , gi ) Cϕ Σ(Mi , fi )
[ϕ] [iϕ] [πϕ]

in HFactd (C ,S,η) a standard triangle.

Remark 2.3. Suppose that ϕ and ϕ′ are homotopic morphisms, with a homotopy
(s1, . . . , sd ) as earlier in this section. Then the mapping cones Cϕ and Cϕ′ are iso-
morphic in HFactd (C ,S,η), with an isomorphism λ : Cϕ → Cϕ′ being given by λ =([ 1 0

s1 1

]
, . . . ,

[ 1 0
sd 1

])
. Its inverse is obtained by replacing the si in the matrices by −si .

Moreover, the diagram

(Mi , fi ) (Ni , gi ) Cϕ Σ(Mi , fi )

(Mi , fi ) (Ni , gi ) Cϕ′ Σ(Mi , fi )

[ϕ] [iϕ] [πϕ]

[ϕ′] [iϕ′ ] [πϕ′ ]

1 1 [λ] 1

commutes in HFactd (C ,S,η); in fact, the equalities iϕ′ = λ◦ iϕ and πϕ′ ◦λ=πϕ hold al-
ready in Factd (C ,S,η). Thus, up to isomorphism of triangles in HFactd (C ,S,η), a stan-
dard triangle is independent of the representative chosen for its base morphism [ϕ].

The following result shows that the homotopy category HFactd (C ,S,η), together with
its suspension Σ and the collection of triangles that are isomorphic to standard trian-
gles, is a triangulated category. For the proof, one could adapt the classical proof for the
homotopy category of complexes over an additive category, with some modifications.
However, we shall instead prove that HFactd (C ,S,η) is an algebraic triangulated cate-
gory. Recall that a triangulated category is algebraic if it can be characterized – up to
equivalence of triangulated categories – in one of the following equivalent ways:

(1) as the stable category of some Frobenius exact category;
(2) as a full triangulated subcategory of the homotopy category of some additive

category;
(3) as the (zeroth) cohomology category of some pretriangulated differential

graded category.

For the equivalence of these three characterizations of a triangulated category, we refer
to [BoK, Kel, Kra, Sch]. We shall use the approach via differential graded (DG) categories,
by constructing a DG enhancement of HFactd (C ,S,η).

Theorem 2.4. Let (C ,S) be a suspended additive category, and η : 1C → S a natural
transformation with the property that ηSM = SηM for every object M of C . Further-
more, let d ≥ 2 be an even integer, HFactd (C ,S,η) the homotopy category of d-fold (C ,S)-
factorizations of η, and Σ : HFactd (C ,S,η) → HFactd (C ,S,η) the suspension constructed
above. Finally, let ∆ be the collection of all triangles in HFactd (C ,S,η) isomorphic to a
standard triangle. Then (

HFactd
(
C ,S,η

)
,Σ,∆

)
is an algebraic triangulated category.

Proof. We construct a DG category D as follows. The objects are the same as in
Factd (C ,S,η), that is, all the d-fold (C ,S)-factorizations of η. For two objects M =
(Mi , fi ) and N = (Ni , gi ), and an integer n ∈ Z, we define Homn

D
(M , N ) as the set of

all d-tuples ϕ = (ϕ1, . . . ,ϕd ) of morphisms ϕi : Mi → Ni+n , with the property that each
double square in the diagram
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M1 M2 M3 · · · Md SM1

N1+n N2+n N3+n · · · Nd+n SN1+n

f1 f2 f3 fd−1 fd

g1+n g2+n g3+n gd−1+n gd+n

ϕ1 ϕ2 ϕ3 ϕd Sϕ1

commutes:

ϕi+2 ◦ fi+1 ◦ fi = gi+1+n ◦ gi+n ◦ϕi

The indices are here taken modulo d , in the sense that if m = qd +r with 1 ≤ r ≤ d , then
Nm = Sq Nr and gm = Sq gr .

We now turn the graded Z-module

Hom∗
D (M , N ) = ⊕

n∈Z
Homn

D (M , N )

into a DGZ-module in the usual way: for the elementϕ ∈ Homn
D

(M , N ) above we define

∂(ϕ) = g ◦ϕ+ (−1)n+1ϕ◦ f

Thus ∂(ϕ) is the element in Homn+1
D

(M , N ) displayed in the diagram

M1 M2 M3 · · · Md SM1

N2+n N3+n N4+n · · · SN1+n SN2+n

f1 f2 f3 fd−1 fd

g2+n g3+n g4+n gd+n Sg1+n

∂(ϕ1) ∂(ϕ2) ∂(ϕ3) ∂(ϕd ) ∂(Sϕ1)

with ∂(ϕi ) = gi+n ◦ϕi +(−1)n+1ϕi+1◦ fi . The requirement that each double square in the
ϕ-diagram commutes now gives

∂2(ϕ) = ∂
(
g ◦ϕ+ (−1)n+1ϕ◦ f

)
= g ◦ (

g ◦ϕ+ (−1)n+1ϕ◦ f
)+ (−1)n+2 (

g ◦ϕ+ (−1)n+1ϕ◦ f
)◦ f

= g ◦ g ◦ϕ−ϕ◦ f ◦ f

= 0

showing that
(
Hom∗

D (M , N ),∂
)

is a cochain complex, that is, a DG Z-module.

Compositions of morphisms in D are morphisms

Hom∗
D (N ,L)⊗ZHom∗

D (M , N ) Hom∗
D (M ,L)

of complexes. Furthermore, for each object M ∈ D , the identity morphism 1M ∈
Hom0

D
(M , M) satisfies ∂(1M ) = 0. Thus D is a DG category; we must show that it is

pretriangulated.
As above, consider two objects M = (Mi , fi ) and N = (Ni , gi ) in D . For an

integer t ∈ Z, the shifted DG Z-module Hom∗
D (M , N )[t ] is the cochain complex

with Homn+t
D

(M , N ) in degree n, and with differential (−1)t∂. The right D-module
Hom∗

D (−, N )[t ] – that is, the contravariant DG functor

M Hom∗
D (M , N )[t ]

from D to the category of DGZ-modules – is representable: one checks that it is isomor-
phic to the right D-module Hom∗

D (−,Σt N ), where Σ is the suspension in Factd (C ,S,η).

Next, let ϕ ∈ Z 0
(
Hom∗

D (M , N ),∂
)
, that is, ϕ ∈ Hom0

D
(M , N ) and 0 = ∂(ϕ) = g ◦ϕ−ϕ◦ f .

Then each square in the diagram
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M1 M2 M3 · · · Md SM1

N1 N2 N3 · · · Nd SN1

f1 f2 f3 fd−1 fd

g1 g2 g3 gd−1 gd+n

ϕ1 ϕ2 ϕ3 ϕd Sϕ1

commutes, so that ϕ is a morphism in Factd (C ,S,η). It induces a morphism

Hom∗
D (−, M) Hom∗

D (−, N )
ϕ̂

of right D-modules, and the mapping cone C (ϕ̂) of the latter is the right D-module
defined as follows. For an object L ∈D , the graded Z-module C (ϕ̂)∗(L) has

Homn+1
D (L, M)⊕Homn

D (L, N )

in degree n, with differential C (ϕ̂)n(L) →C (ϕ̂)n+1(L) given by

(θ,ψ)
(−∂(θ),ϕ◦θ+∂(ψ)

)
This turns C (ϕ̂)∗(L) into a cochain complex, and one now checks that C (ϕ̂) is repre-
sentable: it is isomorphic to the right D-module Hom∗

D (−,Cϕ), where Cϕ is the map-
ping cone of ϕ in Factd (C ,S,η). Consequently, the DG category D is pretriangulated.

Since D is pretriangulated, its zeroth cohomology H0(D) is triangulated. More-
over, as for the homotopy category of complexes over an additive category, it now
follows from the definition of H0(D) that it is equivalent, as a triangulated category,
to

(
HFactd (C ,S,η),Σ,∆

)
; for details, we refer to [Sch, Section 2], keeping in mind

that we use cohomological notation. Namely, for all objects M , N ∈ D and mor-

phisms ϕ ∈ Z 0
(
Hom∗

D (M , N ),∂
)

– in other words, morphisms in Factd (C ,S,η) – the

above representability properties in D of the mapping cone Cϕ provide universal mor-

phisms iϕ : N → Cϕ and πϕ : Cϕ → ΣM in Z 0
(
Hom∗

D (M , N ),∂
)
, and these are precisely

the morphisms in Factd (C ,S,η) we denoted the same way. The distinguished trian-
gles in H0(D) are now the ones that are isomorphic to the images of the triangles in

Z 0
(
Hom∗

D (M , N ),∂
)

of the form

M N Cϕ ΣM
ϕ iϕ πϕ

However, the morphisms in H0(D) are precisely the homotopy equivalence classes of

morphisms in Factd (C ,S,η): a morphism θ : M → N in Z 0
(
Hom∗

D (M , N ),∂
)

is null-

homotopic if and only if it is the image under the differential ∂ on Hom∗
D (M , N ) of an

element s ∈ Hom−1
D (M , N ). This follows from the definition of Hom−1

D (M , N ), together

with Remark 2.1. Consequently, the distinguished triangles in H0(D) are those that are
isomorphic to triangles of the form

M N Cϕ ΣM
[ϕ] [iϕ] [πϕ]

This shows that the category D is a DG enhancement of HFactd (C ,S,η). �

Let us now look at a few examples.

Example 2.5. When the natural transformation η : 1C → S is the zero transformation,
then we obtain the homotopy category HFactd (C ,S,0). The objects are sequences
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M1 M2 · · · Md SM1
f1 f2 fd−1 fd

in C , in which all the d-fold compositions

fd ◦ fd−1 ◦ · · · ◦ f1, S f1 ◦ fd ◦ · · · ◦ f2, . . . , S fd−1 ◦ · · · ◦S f1 ◦ fd

are zero.
The triangulated category (HFactd (C ,S,0),Σ,∆) is equivalent to the homotopy cate-

gory of S-periodic d-complexes. The objects of the latter are all sequences

· · · S−1Md M1 M2 · · · Md SM1 · · ·S−1 fd−1 S−1 fd f1 f2 fd−1 fd S f1

in which the composition of d consecutive maps is zero, and where also the homotopies
are d-S-periodic. The suspension is the (left) shift with a sign change on the maps, and
the distinguished triangles are defined in terms of mapping cones. In particular, when
d = 2, we obtain the homotopy category of complexes of the form

· · · S−1M2 M1 M2 SM1 · · ·S−1 f1 S−1 f2 f1 f2 S f1

with 2-S-periodic homotopies. Specializing further, by taking S = 1C , we obtain the
homotopy category of 2-periodic complexes

· · · M1 M2 M1 · · ·f2 f1 f2 f1

and 2-periodic homotopies; it is equivalent to
(
HFact2(C ,1C ,0),Σ,∆

)
.

Generalized complexes as above were introduced by Kapranov in [Kap], using the
terminology N -complexes. Homotopy categories of such complexes were then studied
in [GiH] and [IKM], using a modified version of homotopies.

Example 2.6. The origin of the topic of this paper is the theory of matrix factorizations
for commutative rings, introduced by Eisenbud in [Eis]. Thus let R be a commutative
ring, and x an element of R. Take as C the category P(R) of finitely generated projective
R-modules, and as suspension S the identity automorphism 1P(R). Finally, as the natu-
ral transformation 1P(R) → 1P(R) we take the multiplication transformation ηx induced
by x, and set d = 2. Then the objects of the homotopy category HFact2(P(R),1P(R),ηx )
are diagrams

P Q P
f1 f2

in which P and Q are finitely generated projective R-modules, and where the maps sat-
isfy the equalities f2◦ f1 = x ·1P and f1◦ f2 = x ·1Q . If we specialize further by taking C to
be the category F (R) of finitely generated free R-modules, then by choosing bases for
the modules the maps are given in terms of square matrices which factorize the diagonal
matrix for x.

Suppose that the element x is a non-zerodivisor in R, and denote the quotient
R/(x) by Q. When we reduce a matrix factorization modulo x and extend in both
directions, we obtain a 2-periodic acyclic complex of finitely generated projective Q-
modules. As shown in [BeJ], this assignment induces a fully faithful triangle functor
from

(
HFact2(P(R),1P(R),ηx ),Σ,∆

)
to the homotopy category of totally acyclic com-

plexes of finitely generated projective Q-modules. When R is a regular local ring, then
the latter is equivalent to the singularity category of the hypersurface ring Q, that is,
the Verdier quotient of the bounded derived category of Q-modules by the perfect
complexes (and also equivalent to the stable category of maximal Cohen-Macaulay Q-
modules). In this case, reduction modulo x actually induces an equivalence between(
HFact2(P(R),1P(R),ηx ),Σ,∆

)
and the singularity category of Q; this was observed by

Buchweitz in [Buc], and proved explicitly by Orlov in [Orl]. In recent years, there have
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been numerous generalizations of this result, in many different directions. Also, matrix
factorizations with more factors were recently introduced in [Tri], including homotopy
categories of such, using the modified version of homotopies mentioned at the end of
Example 2.5.

Example 2.7. Let now B be a possibly noncommutative ring, w ∈ B a central element,
and denote the quotient B/(w) by A. Furthermore, suppose that ν : B → B is an auto-
morphism satisfying ν(wr ) = wr for all r ∈ B . In [BeE], certain twisted matrix factoriza-
tions over B were introduced (see also [CCKM] for a related graded concept), and these
give rise to complexes of free modules over A, as in the classical case.

Namely, denote the category of finitely generated free left B-modules by F (B). Given
such a module F , its twist νF is again free, and the assignment F 7→ νF induces an addi-
tive automorphism Sν on F (B). Furthermore, as explained in [BeE, Section 3], the map
ηF : F → SνF given by m 7→ wm is B-linear, and the collection ηw = {

ηF | F ∈F (B)
}

forms a natural transformation 1F (B) → Sν with ηSνF = SνηF for all F . We may therefore
form the homotopy category HFact2(F (B),Sν,ηw ), whose objects are diagrams

F G SνF
f1 f2

of free B-modules, and where the maps satisfy the equalities f2 ◦ f1 = ηF and f1 ◦ f2 = ηG

(in the latter equality, the map f1 should strictly speaking be Sν f1, but the automor-
phism Sν is the identity on maps). By [BeE, Proposition 3.2], reduction modulo w in-
duces a triangle functor from

(
HFact2(F (B),Sν,ηw ),Σ,∆

)
to the homotopy category of

complexes of finitely generated free left A-modules. The image of the factorization dis-
played above is the complex

· · · νn−1 (G/wG) νn (F /wF ) νn (G/wG) νn+1 (F /wF ) · · ·f2 f1 f2

with the free A-module F /wF in degree zero. Note that since the automorphism ν sat-
isfies ν(wr ) = wr for all r ∈ B , it induces an automorphism on the quotient ring A; we
have denoted this by ν as well.

A specific example was studied in detail in [BeE, Section 4]. Let k be a field, B the
k-algebra

k〈x, y〉/(x2, y2, x y x, y x y)

and take w = x y − q y x for some nonzero q ∈ k. Furthermore, consider the automor-
phism ν on B defined by x 7→ −q−1x and y 7→ −q y ; it trivially satisfies ν(wr ) = wr for all
r ∈ B . Then by [BeE, Theorem 4.2], reduction modulo w induces a triangle functor from(
HFact2(F (B),Sν,ηw ),Σ,∆

)
to the homotopy category of acyclic complexes of finitely

generated free A-modules. Consequently, even though the element w is far from being
a regular element in B , this result is analogous to the classical case in Example 2.6.

The algebra A is the four-dimensional quantum complete intersection

k〈x, y〉/(x2, x y −q y x, y2)

It is local and selfinjective, and so the homotopy category of acyclic complexes of finitely
generated free left A-modules is therefore equivalent to the stable module category
mod A of finitely generated left A-modules. Thus reduction modulo w induces a tri-
angle functor (

HFact2
(
F (B),Sν,ηw

)
,Σ,∆

)
mod A

From the construction of the functor, we see that the image is contained in the thick
subcategory

(
mod A

)
cx≤1, formed by the A-modules of complexity at most one, that is,

the modules for which there are bounds on the dimensions of the terms in the minimal
projective resolutions. As shown in [BeE, Theorem 4.6], when the field k is algebraically
closed, then the triangle functor
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(
HFact2

(
F (B),Sν,ηw

)
,Σ,∆

) (
mod A

)
cx≤1

is almost essentially surjective (i.e. dense); namely, all the indecomposable modules of(
mod A

)
cx≤1 (and there are infinitely many of them) except two special ones lie in the

image of the functor.

Example 2.8. When the category C is abelian and d = 2, then the homotopy category
HFact2(C ,S,η) coincides with the homotopy factorization category introduced by Bal-
lard et al. in [BDFIK]. They introduce resolutions of such factorizations, and use these
to obtain a number of interesting results. For example, given a smooth projective hy-
persurface, they establish a derived equivalence to the homotopy category of matrix
factorizations over a certain noncommutative algebra.

3. TOTALLY ACYCLIC COMPLEXES

In this section we explore some triangulated functors from the homotopy category
of factorizations to homotopy categories over rings. We keep the same notation as in
Section 2: let (C ,S) be a suspended additive category, and η : 1C → S a natural transfor-
mation commuting with S, in the sense that ηSM = SηM for every object M of C .

Fix an object M ∈C . From every object (Mi , fi ) ∈ Factd (C ,S,η), that is, every d-fold
(C ,S)-factorization

M1 M2 · · · Md SM1
f1 f2 fd−1 fd

of η, we obtain a (doubly infinite) sequence

· · · HomC (M , M1) · · · HomC (M , Md ) · · ·(S−1 fd )∗ ( f1)∗ ( fd−1)∗ ( fd )∗

of abelian groups. This is a sequence of right HomC (M , M)-modules.
Now let A be any additive category, and consider the homotopy category HSeqA of

all sequences over A . Thus the objects are sequences

· · · An+1 An An−1 · · ·dn+1 dn

of objects and morphisms in A , and the morphisms are equivalence classes of chain
maps. Similarly, given a positive even integer t ≥ 2, we denote by Kt A the homotopy
category of all t-complexes, that is, sequences in which each t-fold composition is zero.
These are both triangulated categories with the usual shift functor as suspension, and
distinguished triangles defined in terms of mapping cones and standard triangles (the
reason why we need t to be even is to ensure that Kt A is closed under the taking of
mapping cones in HSeqA ; see Remark 2.2). The standard proof showing that the ho-
motopy category of complexes is triangulated carries over verbatim; one can also re-
place HFactd (C ,S,η) with HSeqA or Kt A in the proof of Theorem 2.4, and so the lat-
ter are algebraic triangulated categories. Of course, the category K2 A is just the usual
homotopy category KA of ordinary complexes. For a ring R, we denote by HSeqR and
Kt R the homotopy categories of sequences and t-complexes of right R-modules.

Proposition 3.1. Let (C ,S) be a suspended additive category, and η : 1C → S a natural
transformation with ηSM = SηM for every object M of C . Furthermore, let d ≥ 2 be an
even integer, and

(
HFactd (C ,S,η),Σ,∆

)
the triangulated homotopy category of factoriza-

tions from Theorem 2.4. Finally, fix an object M ∈C , and denote the endomorphism ring
HomC (M , M) by ΓM .

(1) The functor HomC (M ,−) induces a triangle functor(
HFactd

(
C ,S,η

)
,Σ,∆

)
HSeqΓM

It maps a d-fold factorization (Mi , fi ) ∈ HFactd (C ,S,η) to the sequence
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· · · HomC (M , M1) · · · HomC (M , Md ) · · ·(S−1 fd )∗ ( f1)∗ ( fd−1)∗ ( fd )∗

of right ΓM -modules, and a homotopy equivalence class of morphisms of d-fold factor-
izations to the corresponding homotopy equivalence class of morphisms of sequences.

(2) Suppose that f is a central element of ΓM , and that ηM factors through f as ηM =
h ◦ f for a morphism h ∈ HomC (M ,SM). Then the functor HomC (M ,−) ⊗ΓM ΓM /( f )
induces a triangle functor(

HFactd
(
C ,S,η

)
,Σ,∆

)
Kd ΓM /( f )

It maps a d-fold factorization (Mi , fi ) ∈ HFactd (C ,S,η) to the d-complex

· · · HomC (M ,M1)
HomC (M ,M1)· f · · · HomC (M ,Md )

HomC (M ,Md )· f · · ·(S−1 fd )∗ ( f1)∗ ( fd−1)∗ ( fd )∗

of right ΓM /( f )-modules, and morphisms as in (1).

Proof. For (1), note that a homotopy between morphisms in Factd (C ,S,η) induces a ho-
motopy between chain maps of sequences of right ΓM -modules, in a natural way. Thus
we obtain an additive functor HFactd (C ,S,η) → HSeqΓM . It commutes with the sus-
pension in both categories, since this is just given by left shift of sequences. Finally, the
functor preserves distinguished triangles, since these are defined in terms of mapping
cones and standard triangles in both triangulated categories.

For (2), note first that the tensor product −⊗ΓM ΓM /( f ) induces a triangle functor

HSeqΓM HSeqΓM /( f )

Composing this with the functor from (1) therefore gives a triangle functor(
HFactd

(
C ,S,η

)
,Σ,∆

)
HSeqΓM /( f )

as in the statement. We must show that the image of this functor consists of d-
complexes. By assumpotion, the morphism ηM factors through f as ηM = h ◦ f for a
morphism h ∈ HomC (M ,SM)

Let us prove that the composition ( fd )∗ ◦ ( fd−1)∗ ◦ · · · ◦ ( f1)∗ is zero; the vanish-
ing of the other d-fold compositions is proved in the same way. For an element g ∈
HomC (M , M1), the composition maps the image g in HomC (M , M1)/HomC (M , M1)· f
to the element fd ◦ · · · ◦ f1 ◦ g in HomC (M ,SM1)/HomC (M ,SM1) · f . Now note that
fd ◦ · · · ◦ f1 = ηM1 , and that η being a natural transformation gives a commutative di-
agram

M M1

SM SM1

g

Sg

ηM ηM1

in C . This gives
fd ◦ · · · ◦ f1 ◦ g = ηM1 ◦ g = Sg ◦ηM = Sg ◦h ◦ f

which is an element of the right ΓM -module HomC (M ,SM1) · f . This shows that the
composition ( fd )∗ ◦ ( fd−1)∗ ◦ · · · ◦ ( f1)∗ is zero. �

We shall now turn our attention to categories C of the form add M for an object
M ∈ C , where add M denotes the additive closure of M . Recall that this is the additive
category whose objects are all the possible retracts of the finite direct sums of copies of
M , i.e. every object X ∈C for which there exist a positive integer n and morphisms
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X M⊕n X
i p

with p◦i = 1X . When C is of this form for an object M ∈C , then HomC (M , N ) is a finitely
generated projective right ΓM -module for every N ∈C , where ΓM = HomC (M , M). The
result therefore takes the following form.

Corollary 3.2. With the same assumptions as in Proposition 3.1, suppose in addition
that C = add M. Furthermore, denote by P(ΓM ) and P(ΓM /( f )) the categories of finitely
generated projective right ΓM -modules and ΓM /( f )-modules, respectively. Then the func-
tor HomC (M ,−) induces a triangle functor(

HFactd
(
C ,S,η

)
,Σ,∆

)
HSeqP (ΓM )

and the functor HomC (M ,−)⊗ΓM ΓM /( f ) induces a triangle functor(
HFactd

(
C ,S,η

)
,Σ,∆

)
Kd P

(
ΓM /( f )

)
Before we specialize further, we include two elementary lemmas. The first one is well

known in the case of modules over rings, but we were unable to find a reference for the
general case.

Lemma 3.3. Let C be an additive category, M ∈C and object, and denote HomC (M , M)
by ΓM . Then the functor HomC (M ,−), from C to the category of right ΓM -modules, is
fully faithful on add M.

Proof. Given objects X ,Y ∈C , the group homomorphism

HomC (X ,Y ) HomΓM

(
HomC (M , X ),HomC (M ,Y )

)
maps a morphism f to f∗, with f∗(g ) = f ◦ g . It is bijective when X = M : in this case the
right hand side is just HomΓM (ΓM ,HomC (M ,Y )), and so when we compose with the
natural evaluation isomorphism

HomΓM

(
ΓM ,HomC (M ,Y )

)
HomC (M ,Y )

the result is the identity on HomC (M ,Y ). By direct sum arguments, the homomorphism
is also bijective when X = M⊕n for n ≥ 1, and finally also when X is a retract of such an
object. �

The second lemma is also most likely known, but again we were unable to find a
reference.

Lemma 3.4. Let Γ be a ring and x ∈ Γ a central element. Then for every finitely generated
projective right Γ-module P, there is an isomorphism

HomΓ (P,Γ)/HomΓ (P,Γ) x ' HomΓ/(x) (P/P x,Γ/(x))

of abelian groups, natural in P.

Proof. Note first that since x is a central element of Γ, we obtain for each f ∈ HomΓ (P,Γ)
a well defined homomorphism f x ∈ HomΓ (P,Γ) given by ( f x)(p) = f (px) for p ∈ P .
Thus HomΓ(P,Γ)x is a subgroup of HomΓ(P,Γ).

Consider the natural group homomorphism

HomΓ (P, A) HomΓ/(x) (P/P x,Γ/(x))
τ

given by reduction modulo x. Since HomΓ(P,Γ)x is contained in the kernel of τ, we
obtain an induced homomorphism
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HomΓ (P, A)/HomΓ (P,Γ) x HomΓ/(x) (P/P x,Γ/(x))
τ

One checks that this is an isomorphism when P = Γ, hence also when P is finitely gen-
erated free, and finally also when P is a direct summand of a finitely generated free
module. Finally, one checks that the isomorphism is natural in P . �

We now restrict the homotopy category HFactd
(
C ,S,η

)
to the case when d = 2

and S = 1C . By definition, η is then a natural transformation 1C → 1C , in particu-
lar ηM is a central element in HomC (M , M) for every object M ∈ C . The objects of
HFact2

(
C ,1C ,η

)
are diagrams

X Y X
f g

in C , with g ◦ f = ηX and f ◦ g = ηY .
The following result shows that when C = add M for some M ∈ C , and ηM is a reg-

ular element of HomC (M , M), then the second functor in Corollary 3.2 is actually fully
faithful. Moreover, its image consists of totally acyclic complexes of finitely generated
projective right ΓM /(ηM )-modules. Recall that a complex C (of, say, right modules) over
a ringΓ is totally acyclic if both C and HomΓ(C ,Γ) are acyclic, that is, exact. We denote by
Ktac P(Γ) the homotopy category of such totally acyclic complexes of finitely generated
projective right modules; the triangulated structure is the same as for the homotopy
category of complexes. Thus the following result shows that under the above assump-
tions, the category (HFact2(C ,1C ,η),Σ,∆) embeds as a triangulated subcategory into
the category of totally acyclic complexes of finitely generated projective right ΓM /(ηM )-
modules, where ΓM = HomC (M , M).

Theorem 3.5. Let C be an additive category, and η : 1C → 1C a natural transformation.
Furthermore, suppose that C = add M for some object M ∈ C , and that ηM is a regular
element of HomC (M , M). Then the functor HomC (M ,−)⊗ΓM ΓM /(ηM ) induces a fully
faithful triangle functor(

HFact2
(
C ,1C ,η

)
,Σ,∆

)
Ktac P

(
ΓM /(ηM )

)
where ΓM = HomC (M , M), and P(ΓM /(ηM )) denotes the category of finitely generated
projective right ΓM /(ηM )-modules.

Proof. For simplicity, let us denote the ring ΓM by just Γ. Moreover, given an object
X ∈ C , let us denote the projective right Γ-module HomC (M , X ) by e(X ). Finally, we
denote the quotient ring Γ/(ηM ) by Γ, and the projective right Γ-module e(X )/e(X ) ·ηM

by e(X ).
The image of a factorization

X Y X
f g

is the sequence

(†)
· · · e(X ) e(Y ) e(X ) e(Y ) · · ·f∗ g∗ f∗

of finitely generated projective right Γ-modules. By Corollary 3.2 the sequence is a com-
plex; we show first that it is totally acyclic.

Let w be an element in e(Y ), represented by a morphism w ∈ e(Y ) = HomC (M ,Y ),
and suppose that 0 = g∗(w) = g ◦w . Then g ◦w ∈ e(X ) ·ηM , and so g ◦w = u ◦ηM for
some u ∈ HomC (M , X ). This gives

w ◦ηM = ηY ◦w = f ◦ g ◦w = f ◦u ◦ηM
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where the first equality follows from the fact that η is a natural transformation. Now
since ηM is a regular element of Γ, it is also regular on every projective right Γ-module,
in particular on e(Y ). Therefore w = f ◦u, giving w = f ◦u = f∗(u). This shows that
Ker g∗ = Im f∗, and similarly Ker f∗ = Im g∗. Consequently, the complex (†) is acyclic.

To show that the complex is totally acyclic, we must show that it is acyclic after we
have applied HomΓ(−,Γ) to it. However, by Lemma 3.4, this is equivalent to showing
that the complex

· · · HomΓ(e(X ),Γ)
HomΓ(e(X ),Γ)·ηM

HomΓ(e(Y ),Γ)
HomΓ(e(Y ),Γ)·ηM

HomΓ(e(X ),Γ)
HomΓ(e(X ),Γ)·ηM

· · ·(g∗)∗ ( f∗)∗

is acyclic. For the maps displayed in this complex, the lower star denotes the functor
HomC (M ,−), while the upper star denotes the (contravariant) functor HomΓ(−,Γ). Now
take an element u ∈ HomΓ(e(Y ),Γ), and suppose that ( f∗)∗ maps u to zero (where u
denotes the element represented by u in the quotient group displayed in the middle
above). Then u ◦ f∗ is an element of HomΓ(e(X ),Γ) ·ηM , and we can write u ◦ f∗ = v ·ηM

for some v ∈ HomΓ(e(X ),Γ). This gives

u ◦ (
ηY

)
∗ = u ◦ (

f ◦ g
)
∗ = u ◦ f∗ ◦ g∗ = (

v ·ηM
)◦ g∗

as elements of HomΓ(e(Y ),Γ). Now take an element w ∈ e(Y ) = HomC (M ,Y ), and apply
u ◦ (ηY )∗ to it:

u ◦ (
ηY

)
∗ (w) = u

(
ηY ◦w

)= u
(
w ◦ηM

)= u (w)◦ηM

Here, the second equality follows from the fact that η is a linear transformation, and the
third follows from the fact that u is a homomorphism of right Γ-modules. Next, apply
(v ·ηM )◦ g∗ to w instead:(

v ·ηM
)◦ g∗ (w) = (

v ·ηM
)(

g ◦w
)= v

(
g ◦w ◦ηM

)= v
(
g ◦w

)◦ηM

Here, the second equality follows from the way v · ηM is defined as an element of
HomΓ(e(X ),Γ), and the third equality from the fact that v , like u above, is right Γ-linear.
Now since u ◦ (ηY )∗ = (v ·ηM )◦ g∗, and ηM is regular on Γ, we see that u(w) = v(g ◦w)
for every element w ∈ e(Y ). This implies that u = v ◦ g∗ as elements of HomΓ(e(Y ),Γ),
giving

u = v ◦ g∗ = (
g∗

)∗ (
v
)

We have now proved that Ker( f∗)∗ = Im(g∗)∗, and similarly Ker(g∗)∗ = Im( f∗)∗. Con-
sequently, the the complex (†) is totally acyclic.

We have now proved that the image of a factorization in (HFact2(C ,1C ,η),Σ,∆) is a
totally acyclic complex of projective right Γ-modules. Since the triangulated structure
of Ktac P(Γ) is the same as in the homotopy category KP(Γ), we see from Corollary 3.2
that we now have a functor(

HFact2
(
C ,1C ,η

)
,Σ,∆

)
Ktac P(Γ)

of triangulated categories. Let us call this functor F ; we must now show that it is both
full and faithful.

To show that F is full, we start with two factorizations

X Y X

U V U

f g

p q

in (HFact2(C ,1C ,η),Σ,∆), and a morphism ϕ in Ktac P(Γ) represented by a chain map
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· · · e(X ) e(Y ) e(X ) e(Y ) · · ·

· · · e(U ) e(V ) e(U ) e(V ) · · ·

f∗ g∗ f∗

p∗ q∗ p∗

ϕ2 ϕ1 ϕ0 ϕ−1

Now adapt the proof of [BeJ, Proposition 3.4]; this is possible since ηM is central and
regular in Γ. We then obtain a commutative diagram

(††)

e(X ) e(Y ) e(X )

e(U ) e(V ) e(U )

f∗ g∗

p∗ q∗

a b a

of projective right Γ-modules, in such a way that when we reduce modulo ηM there are
two diagonal homomorphisms

· · · e(X ) e(Y ) e(X ) e(Y ) · · ·

· · · e(U ) e(V ) e(U ) e(V ) · · ·

f∗ g∗ f∗

p∗ q∗ p∗

a −ϕ2 b −ϕ1 a −ϕ0 b −ϕ−1

s−1s0

satisfying a −ϕ0 = s−1 ◦ f∗ + q∗ ◦ s0. As explained in the last part of the proof of [BeJ,
Proposition 3.4], these diagonal homomorphisms can be extended in both directions to
a nullhomotopy; this uses only the fact that we are dealing with totally acyclic complexes
of finitely generated projective (right) Γ-modules. Therefore the periodic chain map
(. . . , a,b, a, . . . ) also represents the morphism ϕ in Ktac P(Γ).

Now consider the commutative diagram (††) of projective rightΓ-modules, and recall
from Lemma 3.3 that the functor e(−) is fully faithful on C . Since it is full, we can write
the vertical homomorphisms as a =α∗ and b = β∗, where α : X →U and β : Y → V are
morphisms in C . Moreover, since the functor is faithful, the diagram

X Y X

U V U

f g

p q

α β α

commutes in C , and therefore represents a morphism θ in (HFact2(C ,1C ,η),Σ,∆).
From the above we see that F (θ) =ϕ, and this proves that the functor F is full.

To show that F is faithful, we start with a morphism θ as above, and suppose that
F (θ) = 0 in Ktac P(Γ). In other words, there exists a nullhomotopy

· · · e(X ) e(Y ) e(X ) e(Y ) · · ·

· · · e(U ) e(V ) e(U ) e(V ) · · ·

f∗ g∗ f∗

p∗ q∗ p∗

α∗ β∗ α∗ β∗
s1 s0 s−1

This time we adapt the proof of [BeJ, Proposition 3.3]; we can do this for the same reason
as before. As a result, we obtain two diagonal homomorphisms
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e(X ) e(Y ) e(X )

e(U ) e(V ) e(U )

f∗ g∗

p∗ q∗

α∗ β∗ α∗
y x

of right Γ-modules, with α∗ = y ◦ f∗ + q∗ ◦ x and β∗ = x ◦ g∗ + p∗ ◦ y . As above, since
the functor e(−) is fully faithful by Lemma 3.3, we can write y = s∗ and x = t∗ for some
morphisms s : Y → U and t : X → V in C , with α = s ◦ f + q ◦ t and β = t ◦ g + p ◦ s.
Therefore, the diagram

X Y X

U V U

f g

p q

α β α
s t

displays a nullhomotopy for the morphism representing θ, showing that θ = 0 in
(HFact2(C ,1C ,η),Σ,∆). This proves that the functor F is faithful. �

Here is an example.

Example 3.6. Let R be a commutative ring, M an R-module, and x ∈ R fixed ele-
ment. Then multiplication by x induces a natural transformation ηx : 1ModR → 1ModR ,
where ModR is the category of R-modules. The transformation restricts to a nat-
ural transformation ηx : 1add M → 1add M , and we can form the homotopy category
(HFact2(add M ,1addM ,ηx ),Σ,∆). If x is M-regular, then (ηx )M , which is just multipli-
cation by x, is a regular element of HomR (M , M). Then from Theorem 3.5 we obtain a
fully faithful triangle functor(

HFact2
(
add M ,1addM ,ηx

)
,Σ,∆

)
Ktac P (ΓM /(x))

where ΓM = HomR (M , M). For example, when M = R, then add M = projR, and we
recover the classical fully faithful triangle functor(

HFact2
(
P(R),1P(R),ηx

)
,Σ,∆

)
Ktac P (R/(x))

from the homotopy category of matrix factorizations of x to the homotopy category of
totally acyclic complexes of finitely generated projective modules over R/(x); see Exam-
ple 2.6. This is an equivalence when R is a regular local ring.

The previous example treats the trivial case when R is a commutative ring and M = R;
in this case, HomR (M , M) is just R itself, so that Theorem 3.5 is just a reformulation of
[BeJ, Theorem 3.5]. As mentioned, when R is a regular local ring, then the functor is an
equivalence, by [Buc] and [Orl]. However, the following result shows that the functor in
Theorem 3.5 is always an equivalence whenever HomC (M , M) is a commutative regular
local ring, and not just in the trivial case above.

Theorem 3.7. With the same assumptions as in Theorem 3.5, suppose that ΓM is a com-
mutative regular local ring, and that ηM is an element in the square of its maximal ideal.
Then the triangle functor(

HFact2
(
C ,1C ,η

)
,Σ,∆

)
Ktac P

(
ΓM /(ηM )

)
is an equivalence.
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Proof. By Theorem 3.5, we only need to show that the functor is dense. Since ΓM

is a commutative regular local ring, reduction modulo ηM induces a triangle equiv-
alence from the homotopy category of matrix factorizations of ηM (over ΓM ) to
Ktac P(ΓM /(ηM )); this is essentially proved in [Eis]. Since our functor(

HFact2
(
C ,1C ,η

)
,Σ,∆

)
Ktac P

(
ΓM /(ηM )

)
is HomC (M ,−) followed by reduction modulo ηM , we are done if we can show that every
matrix factorization of ηM over ΓM is in the image of the functor HomC (M ,−). However,
this is a direct consequence of Lemma 3.3, together with the fact that since ΓM is local,
every projective module is free and therefore of the form HomC (M , M n) for some inte-
ger n ≥ 1. �

We end with an example.

Example 3.8. Let k be a field, k�x, y� the power series ring in two variables, and R the
hypersurface k�x, y�/(x y). Furthermore, let I be the ideal if R generated by x, and put
C = add I . A homomorphism f ∈ HomR (I , I ) is uniquely determined by its action on
x: since x y = 0 in R, there is a power series p f (x) ∈ k�x� with f (x) = p f (x)x. The as-
signment f 7→ p f is easily seen to be an isomorphism HomR (I , I ) → k�x� of rings, hence
HomR (I , I ) is a commutative regular local ring. For any n ≥ 2, the element xn is regular
on the ideal I , hence from Theorem 3.7 we obtain a triangle equivalence(

HFact2
(
C ,1C , xn

)
,Σ,∆

)
Ktac P (ΓI /(xn))

We may of course replace Ktac P(ΓI /(xn)) with Ktac P(k�x�/(xn)).
Next, let k�x, y, z� be the power series ring in three variables, and S the quotient ring

k�x, y, z�/(xz, y z). Let J be the ideal of S generated by x, and put C = add J . Given a
homomorphism g ∈ HomS (J , J ), there is a unique power series qg (x, y) ∈ k�x, y� with
g (x) = qg (x, y)x, and the assignment g 7→ qg is an isomorphism HomS (J , J ) → k�x, y� of
rings. Therefore HomS (J , J ) is commutative regular local, and so since x y is regular on
J we obtain a triangle equivalence(

HFact2
(
C ,1C , x y

)
,Σ,∆

)
Ktac P

(
ΓJ /(x y)

)
where we may replace Ktac P(ΓJ /(x y)) with Ktac P(k�x, y�/(x y)).
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