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Abstract
We show that finitely generated cohomology is invariant under separable equivalences for
all algebras. As a result, we obtain a proof of the finite generation of cohomology for finite
symmetric tensor categories in characteristic zero, as conjectured by Etingof and Ostrik.
Moreover, for such categories we also determine the representation dimension and the
Rouquier dimension of the stable category. Finally, we recover a number of results on the
cohomology of stably equivalent and singularly equivalent algebras.
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1 Introduction

Given an algebra over a commutative ring, the Hochschild cohomology ring acts on the
cohomology of any pair of modules. As a result, one can define support varieties for modules
in terms of the spectrum of the cohomology ring, introduced in [44]. As shown in [16], when
the cohomology ring is Noetherian, and the cohomology of the modules is finitely generated,
then these support varieties encode important homological information. In this situation, the
theory is very similar to the classical ones for finite groups, cocommutative Hopf algebras
and commutative complete intersections. For example, the varieties detect the modules of
finite projective dimension; these are precisely the modules with trivial varieties.

In [28], the notion of separably equivalent algebras was introduced. Several years later,
it was shown in [30] that finitely generated cohomology is invariant under separable equiv-
alences, provided the algebras involved are symmetric. This was then used to study the
cohomology of certain Hecke algebras of classical type.

In this paper, we prove that finitely generated cohomology is invariant under separable
equivalences for all algebras. We apply this first to skew group algebras, a class of algebras
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which by Deligne’s theorem from [15] is closely linked to finite tensor categories. Namely,
over an algebraically closed field of characteristic zero, every symmetric such category is
equivalent to the representation category of a certain finite dimensional Hopf algebra which
can be realized as the skew group algebra of an exterior algebra. As a result, we obtain a
proof of the finite generation of cohomology for symmetric tensor categories in characteristic
zero, as conjectured by Etingof and Ostrik in [22]. For such a category C , we also determine
the representation dimension, and the Rouquier dimension of the stable category; both these
invariants are linked to the Krull dimension of the category, that is, the Krull dimension of
the cohomology ring. Namely, we show that there are equalities

KdimC = dim stabC + 1 = repdimC − 1 < ∞
where KdimC denotes the Krull dimension, stabC denotes the stable category of C , and
repdimC denotes the representation dimension. The latter was introduced for module cate-
gories by Auslander, and provides a measure of how far the category C is from having finite
representation type. The Rouquier dimension of stabC measures how many steps, or cones,
one needs in order to generate the triangulated category from a single object.

In the final section, we explore some further applications of the result on finitely generated
cohomology and separable equivalences. In particular, we recover a number of results on the
cohomology of stably equivalent and singularly equivalent algebras.

2 A generalized Eckmann–Shapiro lemma

The classical Eckmann–Shapiro lemma (cf. [4, Corollary 2.8.4]) provides isomorphisms of
extension groups over different rings, via restriction and extension of scalars. Explicitly, if
R → S is a homomorphism of rings, with S projective as a right R-module, then for every
R-module M , S-module N , and integer n ≥ 0, there is an isomorphism

ExtnR (M, N ) � ExtnS (S ⊗R M, N )

of abelian groups. The proof applies the Hom-tensor adjunction, and the fact that the functors
S ⊗R − and HomS(S,−) are exact (note that HomS(S, N ) is precisely the restriction of N
to R).

In this section, we record a generalized version of the Eckmann–Shapiro lemma, for
abelian categories. The result is basically the first two parts of [20, Proposition 9.1], but
we include a proof because of mildly different assumptions and notation. Given an abelian
category A , two objects M, N ∈ A , and an integer n ≥ 0, we define ExtnA (M, N ) as the
abelian group of equivalence classes of n-fold extensions of M by N . When A has enough
projective objects, this can be defined in terms of projective resolutions of M , like for mod-
ules over a ring. We denote the graded abelian group

⊕∞
n=0 Ext

n
A (M, N ) by Ext∗A (M, N );

using Yoneda products (that is, splicing of exact sequences), the graded group Ext∗A (M, M)

becomes a graded ring, and Ext∗A (M, N ) becomes a graded Ext∗A (N , N )-Ext∗A (M, M)-
bimodule. We shall use the symbol ◦ to denote both the Yoneda product and composition of
morphisms. Finally, an exact functor F : A → B, from A to another abelian category B,
induces a homomorphism

Ext∗A (M, M) Ext∗B (F(M), F(M))
ϕF

M

of graded rings, in the obvious way.
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Theorem 2.1 Suppose that A and B are abelian categories with enough projective objects,
and that F : A → B and G : B → A are exact functors forming an adjoint pair (F, G).
Then for all objects X ∈ A and Y ∈ B, a choice of adjoint isomorphisms induces an
isomorphism

Ext∗A (X , G(Y )) Ext∗B (F(X), Y )
τ

of graded abelian groups. Furthermore, when we view Ext∗A (X , G(Y )) and Ext∗B (F(X), Y )

as graded right Ext∗A (X , X)-modules—the latter via the ring homomorphism

Ext∗A (X , X) Ext∗B (F(X), F(X))
ϕF

X

induced by F—then τ becomes an isomorphism of such. That is, if η ∈ Ext∗A (X , G(Y )) and
θ ∈ Ext∗A (X , X) are homogeneous elements, then τ(η ◦ θ) = τ(η) ◦ ϕF

X (θ).

Proof Let us start by fixing a natural bijection

HomA (X , G(Y )) HomB (F(X), Y )
σX ,Y

for each object X ∈ A and Y ∈ B; by [32, Theorem IV.1.3], these bijections are iso-
morphisms of abelian groups. Note that in addition to being exact, the functor F preserves
projective objects, since it is left adjoint to an exact functor. Namely, if P is a projec-
tive object in A , then the functor HomB (F(P),−), which is naturally isomorphic to
HomA (P, G(−)), is exact, since the latter functor is the composition of the two exact
functors G and HomA (P,−). Hence F(P) is a projective object in B.

Now fix objects X ∈ A and Y ∈ B. Furthermore, fix a projective resolution (P∗, d∗) of
X in A ; by the above, the sequence (F(P∗), F(d∗)) is then a projective resolution of F(X)

inB. Applying HomA (−, G(Y )) to the former, and HomB (−, Y ) to the latter, we obtain a
diagram

· · · A (Pn−1, G(Y )) A (Pn, G(Y )) A (Pn+1, G(Y )) · · ·

· · · B (F(Pn−1), Y ) B (F(Pn), Y ) B (F(Pn+1), Y ) · · ·

d∗
n d∗

n+1

F(dn )∗ F(dn+1)
∗

σPn−1,Y σPn ,Y σPn+1,Y

which is commutative since the vertical adjoint isomorphisms are natural (in the diagram,
we have abbreviated HomA (Pi , G(Y )) to A (Pi , G(Y )) in the upper row, and similarly in
the lower row). The isomorphism of complexes now gives

ExtnA (X , G(Y )) = Hn (HomA (P∗, G(Y )))

� Hn (HomB (F(P∗), Y ))

= ExtnB (F(X), Y )

for each n, with the isomorphism induced by σPn ,Y . We thus obtain an isomorphism

Ext∗A (X , G(Y )) Ext∗B (F(X), Y )
τ

of graded abelian groups. Explicitly, a homogeneous element η ∈ Ext∗A (X , G(Y )) of
degree n, represented by a map fη : Pn → G(Y ), is mapped to the degree n element of
Ext∗B (F(X), Y ) represented by the map σPn ,Y ( fη) : F(Pn) → Y .
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It remains to show that τ is an isomorphism of graded right Ext∗A (X , X)-modules. Take
the element η ∈ ExtnA (X , G(Y )) above, and an element θ ∈ ExtmA (X , X) for some m ≥ 0.
Furthermore, represent the latter by amap gθ : Pm → X . Lifting gθ along (P∗, d∗), we obtain
maps gi : Pm+i → Pi , and a commutative diagram

· · · Pm+n+1 Pm+n Pm+n−1 · · ·

· · · Pn+1 Pn Pn−1 · · ·

G(Y )

dm+n+1

gn+1

dm+n

gn gn−1

dn+1 dn

fη

The map fη ◦ gn represents the element η ◦ θ , and so σPm+n ,Y ( fη ◦ gn) represents τ(η ◦ θ).
Now F(gθ ) represents the element ϕF

X (θ), and we obtain a lifting of this map along the
projective resolution (F(P∗), F(d∗)) by applying F to the gi . Hence the map σPn ,Y ( fη) ◦
F(gn) represents the element τ(η) ◦ ϕF

X (θ). But the naturality of σPn ,Y , applied to the map
gn : Pm+n → Pn , gives a commutative diagram

HomA (Pn, G(Y )) HomB (F(Pn), Y )

HomA (Pm+n, G(Y )) HomB (F(Pm+n), Y )

σPn ,Y

σPm+n ,Y

g∗
n F(gn )∗

Tracing fη, we see that σPm+n ,Y ( fη◦gn) = σPn ,Y ( fη)◦F(gn), hence τ(η◦θ) = τ(η)◦ϕF
X (θ).

This shows that τ is an isomorphism of graded right Ext∗A (X , X)-modules. 
�

3 Separably equivalent algebras

In this section, we apply Theorem 2.1 to bimodules over algebras, and show that finite
generation of cohomology transfers between algebras that are linked in a certain way. Let
us fix a commutative Noetherian ring k, together with two Noetherian k-algebras A and B;
thus there exist ring homomorphisms from k to the centers of A and B, through which these
rings are finitely generated as k-modules. We make the further assumption that both A and
B are projective as k-modules. Finally, all modules are assumed to be finitely generated left
modules, unless otherwise specified. We denote by modA the category of finitely generated
left A-modules.

Definition [6, 28, 30] The algebra B separably divides the algebra A if there exist bimodules
AUB and B VA—projective on both sides—with the property that B is a direct summand of
V ⊗A U as a B-bimodule. If there exists such a pair of bimodules such that in addition A is
a direct summand of U ⊗B V as an A-bimodule, then A and B are separably equivalent.

Remark 3.1 Of course, if A and B are separably equivalent, then in particular B separably
divides A, and A separably divides B. But the converse is also true. For suppose that B
separably divides A through bimodules AUB and B VA, and that A separably divides B
through bimodules AU ′

B and B V ′
A. Then by taking X = U ⊕ U ′ and Y = V ⊕ V ′, we see

that B is a direct summand of Y ⊗A X as a B-bimodule, and that A is a direct summand of
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X ⊗B Y as an A-bimodule. This simple fact escaped the present author in [6]; see the top of
page 2507.

Denote the enveloping algebra A ⊗k Aop of A by Ae; left modules over this algebra are
the same as bimodules over A. Furthermore, denote by HH∗(A) the Hochschild cohomology
ring Ext∗Ae (A, A); since A is projective as a k-module, this definition of the Hochschild
cohomology ring agrees with the original definition of Hochschild, up to isomorphism. By a
classical result of Gerstenhaber, this is a graded-commutative ring. Now for every A-module
M , the tensor product − ⊗A M induces a homomorphism

HH∗(A) Ext∗A(M, M)
ϕM

of graded k-algebras. Thus if N is another A-module, then Ext∗A(M, N ) becomes a left
HH∗(A)-module via ϕN and the Yoneda product, and a right HH∗(A)-module via ϕM and the
Yoneda product. However, by [44, Corollary 1.3], the left and the right module actions coin-
cide up to a sign, for homogeneous elements. That is, if η ∈ HHm(A) and θ ∈ ExtnA(M, N ),
then

ϕN (η) ◦ θ = (−1)nmθ ◦ ϕM (η)

as an element of Extm+n
A (M, N ).

Definition (1) The algebra A satisfies Fg if the following hold: the Hochschild cohomology
ring HH∗(A) is Noetherian, and Ext∗A(M, M) is a finitely generated HH∗(A)-module for
every A-module M .

(2) The algebra A satisfies Fgb if the following hold: the Hochschild cohomology ring
HH∗(A) is Noetherian, and Ext∗Ae (A, X) is a finitely generated right HH∗(A)-module
for every A-bimodule X (where the module structure is defined via the Yoneda product).

Note that for the assumption Fg, the requirement that Ext∗A(M, M) is a finitely generated
HH∗(A)-module for every A-module M is equivalent to requiring that Ext∗A(M, N ) is finitely
generated over HH∗(A) for all pairs of A-modules M, N . This follows from the simple fact
thatExt∗A(M, N ) is a direct summandofExt∗A(M⊕N , M⊕N ) as amodule overHH∗(A). This
finite generation assumption was central in [16], where it was used to explore homological
properties for the support varieties that one can attach to A-modules, using the maximal
ideal spectrum of the Hochschild cohomology ring. For the assumption Fgb, the letter “b”
indicates that we are looking at bimodules. In general, there does not seem to be a connection
between the two finiteness assumptions, unless we impose some restrictions on the ground
ring k.

Lemma 3.2 Let k be a commutative Noetherian ring, and A a Noetherian k-algebra which
is projective as a k-module.

(1) If k is semisimple and A satisfies Fgb, then it also satisfies Fg.
(2) Suppose that k is a field and that A/r⊗k A/r is semisimple, where r is the radical of A.

Then A satisfies Fgb if and only if it satisfies Fg.

Proof When the ring k is semisimple, then by [13, Corollary IX.4.4] there is an isomorphism
Ext∗Ae (A,Homk(M, N )) � Ext∗A(M, N ) for all A-modules M and N . Thus if Fgb holds,
then so does Fg. For the second part, note that by [36, Lemma 7.6], the assumption implies
that all the simple A-bimodules appear as summands of A/r⊗k A/r. It follows from this that
every simple A-bimodule is of the form Homk(S, T ), where S and T are simple A-modules.
The argument from the proof of [16, Proposition 2.4] now carries over. 
�
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Remark 3.3 (1) When k is an algebraically closed field, then A/r ⊗k A/r is automatically
semisimple, by the classical theorem of Wedderburn–Artin. The same conclusion holds
when k is a perfect field, by [51, Lemma 5.3.8 and Corollary 5.3.10]. However, there are
many other settings in which the same holds, as pointed out in [36, paragraph following
Example 7.7]. For example, it holds when A is the quotient of a path algebra by an
admissible ideal, regardless of the ground field k. It also holds when A/r is a separable
k-algebra.

(2) Since the ring HH∗(A) is graded-commutative, it is Noetherian if and only if it is right
Noetherian. Hence the assumption Fgb is equivalent to the following: the right HH∗(A)-
module Ext∗Ae (A, X) is Noetherian for every A-bimodule X .

(3) Whendiscussing the assumptionFgb, then given an A-bimodule X ,wehavebeenviewing
Ext∗Ae (A, X) as a right HH∗(A)-module, using the Yoneda product. However, as for one-
sided modules, it is also a left HH∗(A)-module, by using the tensor product − ⊗A X
followed by the Yoneda product. By [44, Theorem 1.1], the left and the right actions
coincide up to a sign, for homogeneous elements.

We shall prove that if the algebra A satisfies Fgb, and the algebra B separably divides A,
then B also satisfies Fgb. In particular, if A and B are separably equivalent, then A satisfies
Fgb if and only if B does. This was proved in [30] for symmetric separably equivalent
algebras, but, as we shall see, it holds in full generality. The proof is modelled on that of [30],
but with appropriate modifications throughout.

We start with an elementary lemma on isomorphisms of certain bimodules involvingHoms
and tensor products. Note first that if AUB and AWB are bimodules, then HomBop(U , B) is a
B-A-bimodule, and HomBop(U , W ) is an A-bimodule; the former by (b ·h ·a)(u) = bh(au),
and the latter by (a · g · a′)(u) = ag(a′u). Similarly, if B VA and BYB are bimodules, then
HomB(V , Y ) is an A-B-bimodule by (a · f · b)(v) = f (va)b. Finally, we denote the B-A-
bimodule HomBop(U , B) by U∗, and the A-B-bimodule HomB(V , B) by ∗V .

Lemma 3.4 If AUB and B VA are bimodules, both projective as B-modules, then the following
hold.

(1) For every bimodule AWB, there is an isomorphism

W ⊗B U∗ HomBop(U , W )
ψ

of A-bimodules given by the linear extension of w ⊗ h �→ mw,h for w ∈ W and h ∈ U∗,
with mw,h(u) = w · h(u) for u ∈ U. Furthermore, this isomorphism is natural in W .

(2) For every bimodule BYB, there is an isomorphism

∗V ⊗B Y HomB(V , Y )
ρ

of A-B-bimodules given by the linear extension of α ⊗ y �→ wα,y for α ∈ ∗V and y ∈ Y ,
with wα,y(v) = α(v) · y for v ∈ V . Furthermore, this isomorphism is natural in Y .

Proof We only prove (1); the proof of (2) is similar. Note first that given w and h as in the
statement, the map mw,h really is a homomorphism of Bop-modules, since h is. Furthermore,
the map ψ is well defined; given b ∈ B, it is straightforward to check that mw·b,h = mw,b·h ,
hence the map

W × U∗ HomBop(U , W )
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given by (w, h) �→ mw,h is B-balanced.
To show that ψ is an isomorphism of abelian groups, we disregard the left A-module

structure of U (and W ). Replacing U with the right B-module BB , we obtain a commutative
diagram

W ⊗B HomBop(BB , B) HomBop(BB , W )

W ⊗B B W

ψ

in which the vertical maps and the bottom map are the canonical isomorphisms. Thus ψ is
an isomorphism in this case, and the argument extends by first replacing BB with a free right
B-module, and finally with a projective right B-module. This shows thatψ is an isomorphism
of abelian groups.

Now take any w ∈ W , h ∈ U∗ and a, a′ ∈ A. By definition, for every u ∈ U we obtain

ma·w,h·a′(u) = (aw) · (
(h · a′)(u)

)

= (aw) · h(a′u)

= a
(
w · h(a′u)

)

= amw,h(a′u)

= (
a · mw,h · a′) (u)

hence ma·w,h·a′ = a · mw,h · a′. Consequently, the isomorphism ψ is one of A-bimodules.
Finally, a straightforward verification shows that it is also natural in W ; for a homomorphism
W → W ′ of A-B-bimodules, one uses its B-linearity to see this. 
�

The next result establishes an adjoint pair of functors between A-bimodules and B-
bimodules.

Proposition 3.5 Suppose that AUB and B VA are bimodules which are projective as B-
modules, and consider the functors

modAe modBe

V ⊗A − ⊗A U

∗V ⊗B − ⊗B U∗

Then (V ⊗A − ⊗A U , ∗V ⊗B − ⊗B U∗) is an adjoint pair; given bimodules A X A and BYB,
there is an isomorphism

HomAe (X , ∗V ⊗B Y ⊗B U∗) HomBe (V ⊗A X ⊗A U , Y )
σX ,Y

of abelian groups, natural in both X and Y .

Proof We divide the proof into four steps, in each of these producing a natural isomorphism.
The composition of these isomorphisms is then the map we seek.

(1) With the A-B-bimodule ∗V ⊗B Y as W in Lemma 3.4(1), we obtain an isomorphism

∗V ⊗B Y ⊗B U∗ HomBop(U , ∗V ⊗B Y )
ψ
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of A-bimodules, natural in Y . Applying HomAe (X ,−) to this isomorphism, we obtain the
isomorphism

HomAe (X , ∗V ⊗B Y ⊗B U∗) HomAe (X ,HomBop(U , ∗V ⊗B Y ))
ψ∗

Since ψ is natural in Y , so is ψ∗. Moreover, the latter is trivially natural in X .
(2) Let AWB be a bimodule, and consider HomAe (X ,HomBop(U , W )). The bimodule

version of the Hom-tensor adjunction (cf. [31, Corollary V.3.2]) gives a natural isomorphism

HomAe (X ,HomBop(U , W )) HomA⊗k Bop (X ⊗A U , W )

In particular, with W = ∗V ⊗B Y , we obtain an isomorphism

HomAe (X ,HomBop(U , ∗V ⊗B Y )) HomA⊗k Bop (X ⊗A U , ∗V ⊗B Y )
λ

which is natural in X and Y .
(3) This step is similar to (1). By Lemma 3.4(2), there is an isomorphism

∗V ⊗B Y HomB(V , Y )
ρ

of A-B-bimodules, natural in Y . Applying HomA⊗k Bop (X ⊗A U ,−) to ρ, we obtain the
isomorphism

HomA⊗k Bop (X ⊗A U , ∗V ⊗B Y ) HomA⊗k Bop (X ⊗A U ,HomB(V , Y ))
ρ∗

which is also natural in Y . This isomorphism is trivially natural in X .
(4) This last step is similar to (2). Let AWB be a bimodule, and consider HomA⊗k Bop

(W ,HomB(V , Y )). Again, the (appropriate version of the) bimodule version of the Hom-
tensor adjunction gives a natural isomorphism

HomA⊗k Bop (W ,HomB(V , Y )) HomBe (V ⊗A W , Y )

Then with W = X ⊗A U we obtain an isomorphism

HomA⊗k Bop (X ⊗A U ,HomB(V , Y )) HomBe (V ⊗A X ⊗A U , Y )
μ

which is natural in X and Y .
Finally, the composition μ ◦ ρ∗ ◦ λ ◦ ψ∗ of the isomorphisms from the above four steps

gives an isomorphism

HomAe (X , ∗V ⊗B Y ⊗B U∗) HomBe (V ⊗A X ⊗A U , Y )

which is also natural in X and Y . 
�
When the bimodules U and V from the previous result are also projective as A-modules,

then the two functors in the adjoint pair are exact. We can then apply Theorem 2.1, and obtain
the following.

Corollary 3.6 If AUB , B VA, A X A and BYB are bimodules, with U and V projective as one-
sided modules, then the following hold.
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(1) The functor V ⊗A − ⊗A U, induces a homomorphism

Ext∗Ae (X , X) Ext∗Be (V ⊗A X ⊗A U , V ⊗A X ⊗A U )
ϕ

V ,U
X

of graded k-algebras.
(2) There is an isomorphism

Ext∗Ae (X , ∗V ⊗B Y ⊗B U∗) Ext∗Be (V ⊗A X ⊗A U , Y )
τ

of graded k-modules. Furthermore, when we view Ext∗Ae (X , ∗V ⊗B Y ⊗B U∗) and
Ext∗Be (V ⊗A X ⊗A U , Y ) as right Ext∗Ae (X , X)-modules—the latter via the ring homo-

morphism ϕ
V ,U
X from (1)—then τ becomes an isomorphism of such.

Proof The proof of (1) just follows from the fact that the bimodulesU and V are projective as
A-modules, so that the functor V ⊗A −⊗A U is exact. The proof of (2) is a direct application
of Theorem 2.1 and Proposition 3.5, and the fact that the functor ∗V ⊗B −⊗B U∗ is also exact.
Namely, by [31, Theorem V.4.1], the bimodules ∗V and U∗ are projective as B-modules. 
�

We can now prove the main result in this section.

Theorem 3.7 Let k be a commutative Noetherian ring, and A and B two Noetherian k-
algebras which are projective as k-modules. Furthermore, suppose that the algebra B
separably divides the algebra A, and that A satisfies Fgb. Then B also satisfies Fgb. In
particular, if A and B are separably equivalent, then A satisfies Fgb if and only if B does.

Proof If B separably divides A, then by definition there exist bimodules AUB and B VA

which are projective on both sides, and such that B is a direct summand of V ⊗A U as a
B-bimodule. Take any B-bimodule Y , and set X = A in Corollary 3.6. We then obtain a ring
homomorphism

HH∗(A) Ext∗Be (V ⊗A U , V ⊗A U )
ϕ

V ,U
A

of graded k-algebras, and an isomorphism

Ext∗Ae (A, ∗V ⊗B Y ⊗B U∗) Ext∗Be (V ⊗A U , Y )
τ

of graded right HH∗(A)-modules, where the HH∗(A)-module structure on
Ext∗Be (V ⊗A U , Y ) is via ϕ

V ,U
A .

By assumption and Remark 3.3(2), given any A-bimodule X , the right HH∗(A)-
module Ext∗Ae (A, X) is Noetherian. In particular, this holds for the HH∗(A)-module
Ext∗Ae (A, ∗V ⊗B Y ⊗B U∗). But then the same must hold for Ext∗Be (V ⊗A U , Y ), since
the isomorphism τ is one of right HH∗(A)-modules. However, since Ext∗Be (V ⊗A U , Y ) is

an HH∗(A)-module via the ring homomorphism ϕ
V ,U
A , we conclude that Ext∗Be (V ⊗A U , Y )

is a Noetherian right module over Ext∗Be (V ⊗A U , V ⊗A U ), for every B-bimodule Y .
Then since B is a direct summand of V ⊗A U as a B-bimodule, the right HH∗(B)-module
Ext∗Be (B, Y ) is Noetherian for every B-bimodule Y (cf. [30, Lemma 4.3]). Consequently, by
Remark 3.3(2) again, the algebra B satisfies Fgb. 
�

Using Lemma 3.2 and Remark 3.3, we immediately obtain the following.
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Corollary 3.8 Let k be a field, and A and B two finite dimensional k-algebras with A/rA ⊗k

A/rA and B/rB ⊗k B/rB semisimple, where rA is the radical of A, and rB is the radical of
B (as happens for example when k is algebraically closed or perfect). Furthermore, suppose
that B separably divides A, and that A satisfies Fg. Then B also satisfies Fg. In particular,
if A and B are separably equivalent, then A satisfies Fg if and only if B does.

4 Skew group algebras and finite tensor categories

An important class of algebras for which Theorem 3.7 applies is formed by the skew group
algebras. These algebras are particularly ubiquitous in the theory of Hopf algebras, and they
are intimately linked to finite symmetric tensor categories in characteristic zero, via Deligne’s
famous theorem.

As in the previous section, let k be a commutative Noetherian ring, and A a Noetherian
k-algebra which is projective as a k-module. All modules are assumed to be finitely generated
left modules, unless otherwise specified. Furthermore, suppose that G is a finite group acting
on A, in terms of a homomorphism from G to the multiplicative group of k-algebra automor-
phisms of A. The associated skew group algebra A � G is the k-algebra whose underlying
k-module is the tensor product A ⊗k kG, and with multiplication defined by

(a ⊗ g)(b ⊗ h) = a(gb) ⊗ gh

for a, b ∈ A and g, h ∈ G. This algebra is also called the smash product of A and kG, and
then often denoted by A#kG.

As a left A-module, the skew group algebra decomposes into a direct sum

A � G =
⊕

g∈G

A ⊗ g

This is in particular a decomposition of k-modules, and then with each summand isomorphic
to A. Therefore, since the group G is finite, the skew group algebra is again a Noetherian
k-algebra, and it is projective as a k-module since A is.

Theorem 4.1 Let k be a commutative Noetherian ring, and A a Noetherian k-algebra which
is projective as a k-module. Furthermore, let G be a finite group acting on A. Then the
following hold.

(1) If the skew group algebra A � G satisfies Fgb, then so does the algebra A.
(2) Suppose that the order of G is an invertible element of k. Then A satisfies Fgb if and

only if A � G does.

The second part of the theorem has recently been proved independently in [42], for k an
algebraically closed field.

Proof The skew group algebra becomes an A-bimodule by defining

a1 · (a ⊗ g) · a2 = a1a(ga2) ⊗ g

This is the same as the bimodule structure we obtain by viewing A as a subalgebra of A � G
via the injective k-algebra homomorphism A → A � G given by a �→ a ⊗ e, where e is the
identity element of G. The decomposition

A � G =
⊕

g∈G

A ⊗ g
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is then one of A-bimodules, and A is isomorphic to the summand A ⊗ e. Note also that each
summand, and hence also A � G itself, is projective both as a left and as a right A-module.
Namely, as a left A-module, the summand A⊗g is isomorphic to A, and as a right A-module
it is isomorphic to the twisted regular module Ag .

Denote the skewgroup algebra by B, and consider the bimodules AUB = B and B VA = B.
By the above, they are projective as one-sidedmodules, and A is a direct summand ofU ⊗B V
as A-bimodules. Thus A separably divides B. If the order of G is an invertible element of k,
then it follows from [37, Theorem 1.1, part (A)] that B is a direct summand of V ⊗A U as
B-bimodules (the proof does not require k to be a field, or A to be an Artin algebra), hence
A and B are separably equivalent in this case. The result now follows from Theorem 3.7. 
�

As mentioned at the beginning of this section, a theorem of Deligne provides a link
between certain skew group algebras and finite symmetric tensor categories over fields of
characteristic zero. We shall now use this, together with Theorem 4.1, to establish finite
generation of cohomology for such categories. Moreover, we shall also see that the so-called
representation dimension of such a category is one more than the Krull dimension of its
cohomology ring.

Let us now upgrade k to a field (not necessarily algebraically closed), and suppose that
(C ,⊗, 1) is a finite tensor category over k, in the sense of [21]. Thus C is a locally finite
k-linear abelian category, with finitely many isomorphism classes of simple objects, all of
which admit projective covers. Furthermore, there is a bifunctor ⊗: C ×C → C , the tensor
product, which is associative up to functorial isomorphisms, and compatible with the abelian
structure of C . Specifically, the tensor product is bilinear on morphisms, and satisfies the
so-called pentagon axiom. Moreover, there is a two-sided unit object 1 ∈ C with respect to
the tensor product, and this object is simple. Finally, every object of C admits both a left and
a right dual object, that is, the category is rigid. By [21, Proposition 4.2.1 and Remark 6.1.4],
the latter implies that the tensor product is biexact, and that C is a quasi-Frobenius category,
that is, the projective objects and the injective objects coincide.

The cohomology ring of (C ,⊗, 1) is the graded k-algebra H∗(C ) = Ext∗C (1, 1), with the
Yoneda product as multiplication. By [45, Theorem 1.7], this is a graded-commutative ring.
If M is an object of C , then the tensor product − ⊗ M induces a homomorphism

H∗(C ) Ext∗C (M, M)
ψM

of graded k-algebras. Thus if M and N are objects of C , then Ext∗C (M, N ) becomes a
right H∗(C )-module via ψM (and the Yoneda product), and a left H∗(C )-module via ψN .
However, by adapting the proof of [44, Theorem 1.1], one can show that the cohomology
ring acts graded-commutatively. More precisely, if η ∈ H∗(C ) and θ ∈ Ext∗C (M, N ) are
homogeneous elements, then

ψN (η) ◦ θ = (−1)|η||θ |θ ◦ ψM (η)

Consequently, the cohomology ring acts on the cohomology of C basically in one way. The
following was conjectured by Etingof and Ostrik in [22].

Conjecture The cohomology ring H∗(C ) is Noetherian, and Ext∗C (M, M) is a finitely gen-
erated H∗(C )-module for all objects M ∈ C .

Note that if the conjecture holds, then for all objects M, N ∈ C , the H∗(C )-module
Ext∗C (M, N ) is finitely generated, and not just Ext∗C (M, M) and Ext∗C (N , N ). This follows
from the fact that Ext∗C (M, N ) is a direct summand of Ext∗C (M ⊕ N , M ⊕ N ).
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The conjecture is open in general, but it is known to be true for several important classes
of tensor categories. For example, by the classical results of Evens and Venkov (cf. [23, 46]),
it holds for the category of finitely generated modules over a group algebra of a finite group.
More generally, it was shown in [24] that is holds over finite dimensional cocommutative
Hopf algebras. When it holds for a finite tensor category, then as shown in [10], there is a rich
theory of support varieties, just as in the classical case of group algebras and cocommutative
Hopf algebras.

Definition The finite tensor category (C ,⊗, 1) satisfies Fgt if the following hold: the coho-
mology ring H∗(C ) is Noetherian, and Ext∗C (M, M) is a finitely generated H∗(C )-module
for all objects M ∈ C .

We have used the letter “t” to indicate that we are looking at tensor categories, and in
order to distinguish this assumption from the finiteness conditions Fg and Fgb, which we
have reserved for algebras and their Hochschild cohomology rings. However, for a finite
dimensional Hopf algebra, all the three conditions make sense. Namely, given such a k-
algebra A, we may ask if Fg (or Fgb) holds, that is, is it true that its Hochschild cohomology
ring HH∗(A) is Noetherian, and that Ext∗A(M, M) is a finitely generated HH∗(A)-module
for every A-module M (or Ext∗Ae (A, X) for every A-bimodule X )? On the other hand, the
Hopf algebra structure on A turns the module category modA into a finite tensor category,
with k as the unit object, and then with Ext∗A(k, k) as the cohomology ring, usually denoted
just by H∗(A) (it does not matter whether we use the cup product or the Yoneda product
as multiplication in this ring; by [48, Theorem 9.3.4] they are equal). Thus we may also
ask if Fgt holds for modA: is it true that H∗(A) is Noetherian, and that Ext∗A(M, M) is a
finitely generated H∗(A)-module for every A-module M? The following lemma, which is a
strengthening of [34, Proposition 2.9 and Proposition 3.4(1) and (2)], shows that these two
finiteness conditions are equivalent. For simplicity, we shall just say that “A satisfies Fgt” if
the finiteness condition Fgt holds for the finite tensor category modA.

Lemma 4.2 A finite dimensional Hopf algebra satisfies Fgt if and only if it satisfies Fg.

Proof Let A be a finite dimensional Hopf algebra over the field k. If A satisfies Fgt, then by
[34, Proposition 2.9] it also satisfies Fg. Suppose therefore that it satisfies the latter finiteness
condition: the Hochschild cohomology ring HH∗(A) is Noetherian, and Ext∗A(M, M) is a
finitely generated HH∗(A)-module for every A-module M .

If M is an A-module, then since Ext∗A(M, M) is finitely generated as a module over the
Noetherian ring HH∗(A), it is a Noetherian ring itself. In particular, the cohomology ring
H∗(A) = Ext∗A(k, k) is Noetherian. Now consider Ext∗A(M, M) as a module over H∗(A),
via the ring homomorphism − ⊗k M ; we must show that it is finitely generated as such.
However, by [48, Theorem 9.3.9], this is the case if and only if Ext∗A(k, M ⊗k D(M)) is a
finitely generated rightH∗(A)-module via theYoneda product, where D(M) = Homk(M, k).
The latter holds because A satisfies Fg. Namely, Ext∗A(k, M ⊗k D(M)) is finitely generated
over HH∗(A), via the ring homomorphism −⊗A k : HH∗(A) → H∗(A) followed by Yoneda
product. Thus Ext∗A(k, M ⊗k D(M)) must be a finitely generated right H∗(A)-module via
the Yoneda product. This shows that A satisfies Fgt. 
�

A finite tensor category (C ,⊗, 1) is called braided if there exist functorial isomorphisms

M ⊗ N
bM,N−−−→ N ⊗ M for all M, N ∈ C , and these satisfy the hexagonal identities from

[21, Definition 8.1.1]. If moreover bN ,M ◦ bM,N equals the identity on M ⊗ N for all M and
N , then the tensor category is called symmetric. The following result shows that every finite
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symmetric tensor category over a field of characteristic zero satisfies Fgt. The proof relies
on Deligne’s famous characterization from [15] of such categories over algebraically closed
ground fields.

Theorem 4.3 Every finite symmetric tensor category over a field of characteristic zero satis-
fies Fgt.

Proof Let k be a field of characteristic zero, and (C ,⊗, 1) a finite symmetric tensor category
over k. As explained in [33, Section 5.1], for every field extension k ⊆ K , there is a finite
tensor category (CK ,⊗K , 1K ) obtained as a base change of a certain weak Hopf algebroid.
Since (C ,⊗, 1) is symmetric, so is (CK ,⊗K , 1K ), and by [33, Lemma 5.2] the category
(C ,⊗, 1) satisfies Fgt if and only if (CK ,⊗K , 1K ) does. Hence we may assume that the
field k is algebraically closed.

By [21, Lemma 9.11.3], every finite tensor category—in particular our category
(C ,⊗, 1)—trivially has subexponential growth. In other words, for every object M ∈ C ,
there exists a natural number n(M)with the property that for every integer t ≥ 0, the length of
the object M⊗t is at most n(M)t . We may therefore apply Deligne’s characterization result
[15, Théorème 0.6]: as a finite tensor category, (C ,⊗, 1) is equivalent to the category of
super-representations of a certain super-group sG. As explained in [33, Section 7.1], using
[1, Corollary 2.3.5], this implies that (C ,⊗, 1) is actually equivalent to the module cate-
gory of a finite dimensional triangular Hopf k-algebra in the form of a skew group algebra
∧V � G, where G is a certain finite group, V is a certain finite dimensional k-vector space
(and a kG-module), and ∧V is the exterior algebra on V . We are therefore done if we can
show that the Hopf algebra ∧V � G satisfies Fgt.

By [9, Theorem 5.5] and [19, Proposition 9.1], every finite dimensional exterior algebra—
in particular ∧V—satisfies Fg; this can also be deduced from [12, Theorem 4.1]. Now since
k has characteristic zero, the order of the group G is trivially invertible in k, and hence from
Lemma 3.2(2), Remark 3.3(1) and Theorem 4.1 we see that the skew group algebra ∧V � G
also satisfies Fg. Then by Lemma 4.2 it also satisfies Fgt, and we are done. 
�

When a finite tensor category (C ,⊗, 1) satisfies Fgt, then the Krull dimension of its
cohomology ring H∗(C ), defined as its rate of growth γ (H∗(C )) as a graded k-vector space,
is finite. Now define H

�

(C ) to be just H∗(C ) when the ground field has characteristic two,
and the even part H2∗(C ) if not; thus H

�

(C ) is graded and commutative in the ordinary sense.
It follows from [5, Sections 5.3 and 5.4] that the Krull dimension of H∗(C ) equals that of
H

�

(C ), and that the latter can be defined either as the rate of growth or in terms of chains of
prime ideals. We shall denote this number by KdimC , and speak of “the Krull dimension of
C .” By [10, Theorem 4.1 and Remark 4.2], it is equal to the complexity of the unit object 1,
or, equivalently, the maximal complexity obtained by the objects of C . We end this section
with some results showing that when Fgt holds, then the Krull dimension is linked to at
least two important invariants of the finite tensor category in question: the representation
dimension, and the dimension of the stable category.

Let A be an abelian category, and M and N two objects of A . We then define the left
M-resolution dimension of N , denoted l-resdimM (N ), to be the infimum of integers t ≥ 2
with the property that there exists an exact sequence

0 Mt−2 Mt−3 · · · M0 N 0

in which each Mi belongs to addA (M), and which remains exact when we apply
HomA (M,−). Similarly, we define the right M-resolution dimension of N , denoted
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r-resdimM (N ), to be the infimum of integers s ≥ 2 with the property that there exists
an exact sequence

0 N M0 · · · Ms−3 Ms−2 0

in which each Mi belongs to addA (M), and which remains exact when we apply
HomA (−, M).

Definition For an abelian category A , we define the representation dimension, denoted
repdimA , as follows. If A is semisimple, we set repdimA = 0, and if not, we define it to
be the infimum of all integers d ≥ 2 with the property that there exists an object M ∈ A for
which l-resdimM (N ) ≤ d and r-resdimM (N ) ≤ d for all objects N ∈ A .

The representation dimensionwas introduced for (themodule categories of)Artin algebras
byAuslander in [2], using a slightly different definition.He defined it to be one for semisimple
algebras, and used the global dimensions of certain attached algebras if not. The motivation
was to measure how far an algebra is from having finite representation type. Namely, an
algebra is of finite representation type if and only if its representation dimension is at most
two.

By [17, Lemma 2.1], when the abelian category A is Krull–Schmidt and has enough
projective and injective objects, then

repdimA = inf {gldimHomA (M, M) | M generates and cogenerates A }
In particular, this is the case for finite tensor categories (cf. [21, Section 1.8]). From the
definition, we see directly that such a category has finite representation type if and only if
its representation dimension is either zero (in which case the category is semisimple, i.e. a
fusion category), or two. Therefore, as for algebras, the representation dimension of a finite
tensor category should in some sense measure how far it is from having finite representation
type.

Remark 4.4 The representation dimension of a finite tensor category is always finite. Namely,
as explained in [21, Section 1.8], the underlying abelian category is equivalent to the category
of finitely generated modules over some finite dimensional algebra. By [27, Corollary 1.2],
every such algebra has finite representation dimension.

By [26], since a finite tensor category (C ,⊗, 1) is quasi-Frobenius, its stable category
stabC is triangulated—in fact tensor triangulated. Recall that stabC has the same objects as
C , but themorphism spaces are obtained as the quotients of theC -morphisms by the ones that
factor through projective objects. The distinguished triangles correspond to the short exact
sequences in C . Now recall the notion of the dimension of a triangulated category (T , �)

from [41]. Given subcategoriesX ,Y ⊆ T , we defineX ∗Y as the full subcategory of T
formed by the objects Z for which there exists a distinguished triangle

X Z Y �X

with X ∈ X and Y ∈ Y . Now for an object X ∈ T , we define thick1T (X) =
addT

({�t X}t∈Z
)
, and then for n ≥ 2

thickn
T (X) = thick1T

(
thickn−1

T (X) ∗ thick1T (X)
)

Informally, this is the full subcategory of T containing the objects that can be generated by
X in n steps.
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Definition The dimension of a triangulated category T , denoted dimT , is the infimum of
all integers d ≥ 0 for which there exists an object X ∈ T with thickd+1

T (X) = T .

The dimension of the stable category stabC provides a lower bound for the representation
dimension. More precisely, by adapting the first part of the proof of [40, Proposition 3.7], we
see that

dim stabC + 2 ≤ repdimC

When the tensor category satisfies Fgt, then the following result, which follows directly from
[8, Theorem 1.1], Remark 4.4 and the above inequality, links these two invariants to the Krull
dimension, and shows that all these invariants are finite.

Theorem 4.5 If (C ,⊗, 1) is a finite tensor category satisfying Fgt, then

KdimC ≤ dim stabC + 1 ≤ repdimC − 1 < ∞
Finally, we combine this result with Theorem 4.3, to obtain bounds for all finite sym-

metric tensor categories over fields of characteristic zero. In fact, when the ground field is
algebraically closed, then we obtain exact values, once again thanks to Deligne’s character-
ization.

Theorem 4.6 If (C ,⊗, 1) is a finite symmetric tensor category over a field of characteristic
zero, then

KdimC ≤ dim stabC + 1 ≤ repdimC − 1 < ∞
Moreover, when the field is algebraically closed, then equalities hold among the finite inte-
gers:

KdimC = dim stabC + 1 = repdimC − 1 < ∞
Proof The first part is the result of combining Theorems 4.3 and 4.5. For the second part,
suppose that the ground field k is algebraically closed. Recall from the proof of Theorem 4.3
that our tensor category is equivalent to themodule category of a finite dimensional triangular
Hopf k-algebra in the form of a skew group algebra ∧V � G, where G is a certain finite
group, V is a certain finite dimensional k-vector space (and a kG-module), and ∧V is the
exterior algebra on V . Recall also that ∧V and ∧V � G are separably equivalent, and that
they satisfy Fg.

As pointed out after the proof of Theorem 4.3, “the Krull dimension of C ” equals the
maximal complexity obtained by its objects. This equals the maximal complexity obtained
by the finitely generated left (∧V � G)-modules, and by [35, Theorem 1] the latter integer
equals the maximal complexity obtained over ∧V . However, the exterior algebra is local,
with k as its simple module. The maximal complexity therefore equals that of k, and it is
well known that this is the same as the dimension of V as a k-vector space. This again equals
 (∧V ) − 1, where (A) denotes the Loewy length of a finite dimensional algebra A. By
[37, Theorem 1.1 and Theorem 1.3(e)(ii)], the Loewy lengths of ∧V and ∧V � G are the
same, hence

(∧V � G) − 1 = KdimC

Finally, by [37, Theorem 1.1 and Theorem 1.3(c)(iii)], the algebra ∧V � G is selfinjective,
since the exterior algebra ∧V is. It then follows from [2, Section III.5] that

repdimC = repdim(∧V � G) ≤ (∧V � G)
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and so by combining what we have shown we obtain

(∧V � G) − 1 = KdimC ≤ dim stabC + 1 ≤ repdimC − 1 ≤ (∧V � G) − 1

This concludes the proof. 
�

5 Some further applications

In this final section, we explore some further applications of Theorem 3.7. As before, let
k be a commutative Noetherian ring, and A and B two Noetherian k-algebras which are
projective as k-modules. Again, unless otherwise specified, all modules are assumed to be
finitely generated left modules.We state all the results in this section in terms of the finiteness
assumption Fgb; by combining the results with Lemma 3.2 and Remark 3.3, one obtains
versions with the assumption Fg, for example when k is an algebraically closed or a perfect
field.

To any algebra, we can associate a number of triangulated categories usingmodules.When
the corresponding triangulated categories are equivalent for two algebras, onemay ask if Fgb
is an invariance under the particular equivalence in question. For example, if A and B are
derived equivalent, meaning that their bounded derived categories Db(modA) andDb(modB)

are equivalent as triangulated categories, then is it true that A satisfies Fgb if and only if B
does? This is indeed true, and it follows more or less immediately from Rickard’s famous
description of derived equivalences (see also [29]). Namely, by [38, Theorem 6.4(b) and (e)],
any equivalence Db(modA) → Db(modB) is induced by a tilting complex. Then since both
A and B are projective as k-modules, it follows from [39, Corollary 2.3 and Proposition 2.5]
that A satisfies Fgb if and only if B does. Here we are using the fact that we can determine
finite generation of cohomology by looking at the stalk complexes, since every object can be
filtered by such, using finitely many distinguished triangles. Thus, for example, Ext∗Ae (A, X)

is a Noetherian right HH∗(A)-module for every A-bimodule X if and only if Ext∗Ae (A, X∗)
is a Noetherian right HH∗(A)-module for every object X∗ ∈ Db(modA).

What about singular equivalences? Recall that the singularity category Dsg(A) of A is
the Verdier quotient Db(modA)/perfA, where perfA is the thick subcategory of Db(modA)

formed by the perfect complexes. It is not known whether Fgb is invariant under singular
equivalences. That is, if the singularity categories Dsg(A) and Dsg(B) are equivalent as
triangulated categories, and A satisfies Fgb, then it is unknown whether B must also satisfy
Fgb. However, it is known to hold for some special kinds of singular equivalences, and as
we shall see, these results can be directly recovered from Theorem 3.7.

Following [11], the algebras A and B are called stably equivalent of Morita type if there
exist bimodules AUB and B VA—projective on both sides—with the property that U ⊗B V �
A ⊕ P and V ⊗A U � B ⊕ Q for some projective bimodules A PA and B Q B . If we relax
the requirements on P and B, and just assume that they have finite projective dimension as
bimodules, then A and B are called singularly equivalent of Morita type (this latter concept
seems to originate from the unpublished manuscript [14]). When this holds, then the tensor
product V ⊗A − induces a singular equivalence Dsg(A) → Dsg(B) (cf. [50, Proposition
2.3]). In particular, when A and B are selfinjective, then a stable equivalence of Morita type
induces an equivalence between the stable module categories. Since the equivalences just
defined are special kinds of separable equivalences, we can use Theorem 3.7 directly and
obtain the following result.
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Theorem 5.1 Let k be a commutative Noetherian ring and A and B two Noetherian k-
algebras which are projective as k-modules. Furthermore, suppose that A and B are
singularly equivalent of Morita type (as happens for example when they are stably equivalent
of Morita type). Then A satisfies Fgb if and only if B does.

We shall now generalize this result, and also recover the main result from [43]. We start
by introducing a generalized notion of separable equivalence for algebras. Recall first that a
syzygy of a module over a ring is a kernel in some projective resolution of the module.

Definition The algebra B separably quasi-divides the algebra A if the following hold: there
exist bimodules AUB and B VA—projective on both sides—with the property that some B-
bimodule syzygy of B is a direct summand of V ⊗A U . If there exists such a pair of bimodules
such that in addition some A-bimodule syzygy of A is a direct summand of U ⊗B V , then A
and B are separably quasi-equivalent.

Thus B separably quasi-divides A if there exists an exact sequence

0 K Pn−1 · · · P0 B 0

of B-bimodules, with each Pi projective, and such that K is a direct summand of V ⊗A U .
The K is then a syzygy of B of degree n, or an nth syzygy of B.

Remark 5.2 (1) Since B is a syzygy of itself, of degree zero, the notion of separable quasi-
division/quasi-equivalence generalizes that of separable division/equivalence.

(2) Suppose that A and B are Artin k-algebras (for example when k is a field). Then so are
the enveloping algebras Ae and Be. Over such algebras, every (finitely generated left)
module admits a minimal projective resolution, which is unique up to isomorphism. This
resolution is a summand in every other projective resolution of the module. We denote
by �n

Ae (A) (and similarly for B) the nth kernel in the minimal projective A-bimodule
resolution of A; this bimodule is then a summand of every nth syzygy of A. Now if B
separably quasi-divides A, with U , V and K as above, then �n

Be (B) is a direct summand
of K , and therefore also of V ⊗A U . Thus B separably quasi-divides A if and only if
there exist bimodules AUB and B VA—projective on both sides—with the property that
�n

Be (B) is a direct summand of V ⊗A U for some n ≥ 0. Similarly, A and B are separably
quasi-equivalent if and only if there exist such bimodules U and V for which �m

Ae (A)

is a direct summand of U ⊗B V for some m ≥ 0, and �n
Be (B) is a direct summand of

V ⊗A U for some n ≥ 0.
(3) In the definition of separable quasi-equivalence, we do not require that the syzygies of A

and B involved are of the same degree. That is, there is supposed to exist an mth syzygy
of A as a summand ofU ⊗B V , and an nth syzygy of B as a summand of V ⊗A U , but we
do not require that m = n. Thus the notion of separable quasi-equivalence generalizes
that of singular equivalence of Morita type with level, introduced in [47].

Recall that a k-algebra is Gorenstein if its injective dimensions as a left and as a right
module over itself are both finite; by [49, Lemma A], these numbers are then the same.
The following result shows that the condition Fgb is an invariant under separable quasi-
equivalence, provided the enveloping algebras are Gorenstein.

Theorem 5.3 Let k be a commutative Noetherian ring and A and B two Noetherian k-
algebras which are projective as k-modules. Suppose that A satisfies Fgb, that B separably
quasi-divides A, and that the enveloping algebra Be is Gorenstein. Then B also satisfiesFgb.
In particular, if A and B are separably quasi-equivalent, and Ae and Be are Gorenstein,
then A satisfies Fgb if and only if B does.
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Proof By definition, there exist bimodules AUB and B VA—projective on both sides—with
the property that some B-bimodule syzygy K of B is a direct summand of V ⊗A U . The
main part of the proof of Theorem 3.7 only uses the fact that U and V are projective as
one-sided modules, to conclude that Ext∗Be (V ⊗A U , Y ) is a Noetherian right module over
Ext∗Be (V ⊗A U , V ⊗A U ), for every B-bimodule Y . Now since K is a direct summand of
V ⊗A U , it follows from [30, Lemma 4.3] that Ext∗Be (K , Y ) is a Noetherian right module
over Ext∗Be (K , K ), for every B-bimodule Y .

Since K is a syzygy of B, there exists a projective B-bimodule resolution

· · · P2 P1 P0 B 0
d2 d1 d0

of B in which K is a kernel; say K = Ker ds , or K = B. Now take a homogeneous element
η ∈ HH∗(B) of degree t ≥ s + 1, represented by a map Ker dt−1 → B. Lifting this map
along the projective resolution, we obtain a map Ker dt+s → K , representing an element
in ExttBe (K , K ). The resulting map HHt (B) → ExttBe (K , K ) respects the Yoneda product,
and since Be is Gorenstein, it is an isomorphism of k-modules for t � 0. Then for every
B-bimodule Y , since Ext∗Be (K , Y ) is a Noetherian right module over Ext∗Be (K , K ), we see
that ⊕∞

n=nY
ExtnBe (B, Y ) is a Noetherian right module over HH∗(B) for some nY , depending

on Y . But ExtnBe (B, Y ) is a finitely generated k-module for all n, hence Ext∗Be (B, Y ) is a
Noetherian right module over HH∗(B). This shows that B satisfies Fgb, by Remark 3.3(2).


�
Remark 5.4 (1) By [7, Lemma2.1], the enveloping algebra of a finite dimensionalGorenstein

algebra over a field is again Gorenstein. Hence when k is a field, then in Theorem 5.3 we
can assume that A and B are Gorenstein.

(2) Suppose that k is a field and that A/rA ⊗k A/rA and B/rB ⊗k B/rB are semisimple,
where rA is the radical of A, and rB is the radical of B; this happens for example when k
is algebraically closed or perfect, cf. Remark 3.3. Then by combining the above remark
with Lemma 3.2 and Theorem 5.3, we recover [43, Theorem 7.4].

We end this paper with an application of Theorem 3.7 to generalized trivial extension
algebras. Let X be an A-bimodule, and consider the k-algebra A � X . As a k-module, this is
the direct sum A ⊕ X , with multiplication

(a, x)(b, y) = (ab, ay + xb)

When X = D(A) = Homk(A, k), this is the trivial extension of A. The following result
shows that when the bimodule X is projective as a one-sided module, then A satisfies Fgb
whenever A � X does.

Theorem 5.5 Let k be a commutative Noetherian ring and A a Noetherian k-algebra which
is projective as a k-module. Furthermore, let A X A be a bimodule which is projective as a left
and as a right A-module. Then if the algebra A � X satisfies Fgb, so does A.

Proof The natural k-algebra inclusion A → A � X turns A � X into an A-bimodule, and as
such it is equal to A ⊕ X . Now let U and V be A � X , considered as an A-B-bimodule and a
B-A-bimodule, respectively. These are both projective as one-sided modules, and U ⊗B V
is isomorphic to A � X as an A-bimodule. Since A is a direct summand of A � X as an A-
bimodule, we see that A separably divides A � X . The result now follows from Theorem 3.7.


�
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We can apply this result to certain path algebras. Suppose that k is a field, Q a finite quiver,
and A an algebra of the form k Q/a for some admissible ideal a ⊆ k Q. Given an arrow α in
Q, we may form the arrow removal algebra A/(α).

Corollary 5.6 Let k be a field and A a k-algebra of the form k Q/a, where Q is a finite quiver
and a an admissible ideal in k Q. Furthermore, let α be an arrow in Q not belonging to any
minimal generating set of a. Then if the algebra A satisfies Fgb, so does the arrow removal
algebra A/(α).

Proof Denote the arrow removal algebra A/(α) by B, and the starting and ending vertices
of α by vs and vt , respectively. By [25, Theorem A], the algebra A is isomorphic to B � X ,
where X is the B-bimodule Bes ⊗k et B, and es and et are the trivial paths corresponding
to vs and vt , respectively. Since X is projective as a left and as a right B-module, the result
follows from Theorem 5.5. 
�
Remark 5.7 (1) Note that in the corollary, both A and the arrow removal algebra A/(α) are

quotients of path algebras by certain admissible ideals. Therefore, from Lemma 3.2 and
Remark 3.3, we see that the result can be stated in terms of the finiteness condition Fg.

(2) As shown in [18, Main Theorem], the converse of the corollary actually holds as well.
In other words, A satisfies Fg if and only if the arrow removal algebra A/(α) does. This
is proved by using the fact that the category of A-modules is a cleft extension of the
category of modules over A/(α).
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