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PH-shape: an adaptive persistent homology-based approach for building 
outline extraction from ALS point cloud data
Gefei Kong and Hongchao Fan

Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway

ABSTRACT
Building outline extraction from segmented point clouds is a critical step of building footprint 
generation. Existing methods for this task are often based on the convex hull and α-shape 
algorithm. There are also some methods using grids and Delaunay triangulation. The common 
challenge of these methods is the determination of proper parameters. While deep learning- 
based methods have shown promise in reducing the impact and dependence on parameter 
selection, their reliance on datasets with ground truth information limits the generalization of 
these methods. In this study, a novel unsupervised approach, called PH-shape, is proposed to 
address the aforementioned challenge. The methods of Persistence Homology (PH) and Fourier 
descriptor are introduced into the task of building outline extraction. The PH from the theory of 
topological data analysis supports the automatic and adaptive determination of proper buffer 
radius, thus enabling the parameter-adaptive extraction of building outlines through buffering 
and “inverse” buffering. The quantitative and qualitative experiment results on two datasets 
with different point densities demonstrate the effectiveness of the proposed approach in the 
face of various building types, interior boundaries, and the density variation in the point cloud 
data of one building. The PH-supported parameter adaptivity helps the proposed approach 
overcome the challenge of parameter determination and data variations and achieve reliable 
extraction of building outlines.
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1. Introduction

The extraction of 2D building boundaries plays a crucial 
role in generating building footprint data, which is 
widely applied in various fields, from mapping and 
navigation to 3D modeling, urban planning, and public 
strategy (Boo et al. 2022; Hu et al. 2022; Robinson et al.  
2022; Zhou et al. 2022). There have been many 
approaches proposed for automatic building boundary 
extraction from point cloud data (Awrangjeb 2016; Li 
et al. 2022). However, the automation of this task 
remains a challenge because of the complexity of the 
buildings – which usually include both concave and 
convex segments and even inner boundaries of holes 
(dos Santos, Galo, and Carrilho 2019).

The most common algorithms applied to the task of 
tracing building boundaries are the modified convex 
hull algorithm (Jarvis 1977) and the α-shape algorithm 
(Edelsbrunner and Mücke 1994). However, they are 
sensitive to parameter selection, such as neighbor 
radius and the α-value, and perform unstably when 
facing the variation of point density. In addition, the 
former also lacks the ability of tracing inner bound-
aries. Other approaches, such as deep learning-based 
and grid-based approaches, are in the face of the 

problem of relying on datasets and the same problem 
of parameter sensitivity.

To address these issues of existing unsupervised 
methods for boundary extraction from point cloud 
data, it is beneficial to consider a new strategy that is 
more robust to noise and parameter choice and can 
adapt to the point density variation. As an emerging 
method for point cloud data analysis (Akai, Hirayama, 
and Murase 2021), Topological Data Analysis (TDA) 
can capture the topological features of point cloud 
data, thus facilitating insight into the structure of 
data (Surrel et al. 2022). Persistent Homology (PH) is 
a common method of TDA (Wasserman 2018). It can 
extract the topological features and their birth–death 
times in data (e.g. connective components and holes) 
at different scales (resolutions). This ability of PH has 
helped shape matching (Poulenard, Skraba, and 
Ovsjanikov 2018), surface reconstruction (Dong, 
Chen, and Lin 2022), loop closure detection (Akai, 
Hirayama, and Murase 2021), and a lot of other 
research. Furthermore, PH has shown its feasibility 
and robustness in the face of data with noise or imbal-
anced distributions (Turkes, Montufar, and Otter  
2022). Thus, employing PH for the analysis and 
extraction of boundary information can enable the 
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establishment of a less-sensitive and parameter- 
adaptive approach with great generalization.

Hence, in this study, an adaptive approach for 
building outline extraction based on the theory of 
TDA, PH-shape, is proposed. The new approach 
achieves stable building boundary tracing with adap-
tive parameters by using PH and Fourier Descriptor 
(FD) for the point cloud data. The former is for pre-
liminary extraction of building outlines, and the latter 
is for reducing the zig-zag phenomenon and obtaining 
a smoother outline result. The main contributions of 
this study are as follows:

(1) The incorporation of topology technique, PH, 
into the work of building outline extraction 
overcomes the challenge of empirical para-
meter determination in existing approaches. 
In addition, the application of PH also provides 
the adaptive ability of the proposed method in 
the face of point cloud data with different point 
densities and density variation.

(2) The new proposed utilization method of FD 
enables the preliminary simplification of 
extracted building outlines in an unsupervised 
and non-parameter manner. The smoother 
extraction result of building outlines reduces 
the difficulty of the following outline regular-
ization step for building footprint generation.

This paper is organized as follows: Section 2 reviews 
the related work and background of this study. 
Section 3 outlines the workflow of the proposed PH- 
shape. Section 4 describes the data and design of 
experiments and presents the experiment results of 
PH-shape. Section 5 discusses the conclusion and the 
further work of the study.

2. Related work and background

2.1. Building outline extraction (from point cloud 
data)

In the context of automatic extraction of building 
outlines from point cloud data, convex hull algorithms 
and modifications are widely used. Sampath and Shan 
(2007) proposed a modified version of the convex hull 
algorithm to achieve the extraction of concave outlines 
by limiting the search space to a local rectangular 
neighborhood. This method was also applied to 
other related research (Dai et al. 2017; Herve 2008). 
Wang and Shan (2009) further improved this algo-
rithm by iteratively classifying and removing non- 
boundary points, and Cao et al. (2017) improved it 
by introducing the minimum number of neighbors 
(minPts) for a border point and changing the para-
meter setting of point spacing. However, the convex 
hull algorithm-based methods are sensitive to 

parameter selection (Wang and Shan 2009) and can-
not achieve the tracing of inner boundaries. Li et al. 
(2022) used the multiple-return attribute of point 
cloud data and neighborhood analysis to extract build-
ing boundary points and then proposed a new recur-
sive convex hull algorithm to achieve the outline 
extraction. However, the recursive convex hull algo-
rithm still requires the empirical threshold to deter-
mine “spurious lines”.

The α-shape-based algorithms are also common in 
this context and can extract inner holes. However, the 
determination of a proper α-value remains a problem 
and is usually empirical and varies from case to case. 
Many researchers linked the α-value selection with 
point spacing of the data. Dorninger and Pfeifer 
(2008) and Shahzad and Zhu (2015) used twice the 
mean point spacing as the α-value, while He, Zhang, 
and Fraser (2014) used 1.5 times the mean point spa-
cing. dos Santos, Galo, and Carrilho (2019) proposed 
an adaptive algorithm to automatically estimate the α- 
value for each point, but a new parameter neighbor-
hood radius was required.

Many other methods not based on convex hull and 
α-shape algorithms were also proposed. Awrangjeb 
(2016) applied Delaunay triangulation to achieve the 
building outline extraction with more reasonable 
parameters, but the setting of point neighborhood 
threshold for removing long triangulation edges was 
still based on experience and undiscussed. Other 
researchers (Awrangjeb and Fraser 2014; Mahphood 
and Arefi 2017; Zhou and Neumann 2009) generated 
2D grids from point cloud data to achieve a higher- 
efficiency extraction of building outlines. However, 
the parameter determination of sampling resolution 
significantly affects the accuracy of extraction results 
and the information loss caused by the sampling can-
not be avoided. Mahphood and Arefi (2022) and 
Kong, Fan, and Lobaccaro (2022) reduced the effect 
of parameter determination, but the former still 
requires a proper resolution parameter and the latter 
is a deep learning-based method that relies on the 
training dataset. The generalization of these methods 
is questionable.

2.2. Persistent homology

PH has been applied in many fields, such as topologi-
cal space classification and shape matching (Carlsson  
2020; Otter et al. 2017). The research for analyzing 
point cloud data by using PH is also increasing, such 
as topological pattern recognition (Carlsson 2014), 
object detection (Syzdykbayev and Karimi 2020), 
point cloud description (Beksi and Papanikolopoulos  
2018), and shape segmentation (Wong and Vong  
2021).

As mentioned in Section 1, PH can capture the 
birth and death times of topological structures in 
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data. As the foundation of PH, the homology associ-
ates a series of vector spaces Hk Xð Þjk 2 Nf g (i.e. 
homology groups) to a topological space X, where 
the k dimensional homology group Hk Xð Þ corre-
sponds to the k dimensional holes (features) in 
X (Feng and Porter 2021). Consequently, we can 
know that the H0 Xð Þ describes the path-connected 
components in X and the H1 Xð Þ captures the holes 
(i.e. cycles) present in X.

To find the PH of a point cloud data, the data 
should be first turned into a sequence of simplicial 
complexes (subcomplexes) at different scales, where 
a simplicial complex is a collection of simplices, and 
0-simplex denotes vertex, 1-simplex denotes edge, 
2-simplex denotes triangle, and so on. This turning is 
achieved by providing a distance function (e.g. an 
increasing sequence of circle buffer radius {r} around 
the points) for filtration, and an example of filtration is 
shown in Figure 1(a). Then, because each subcomplex 
has recorded the topological features at their corre-
sponding scales, the PH of this data can be obtained by 
computing the homology of each subcomplex (Feng 
and Porter 2021). When computing the PH, as the 
distance value increases, new topological features 
appear and then disappear. For example, as shown in 
Figure 1(a), when 2 r increases from 0.60 to 0.91, 
a hole appears and then disappears. The two distance 
values corresponding to the appearance and disap-
pearance of a topological feature represent the 
<birth, death> of this feature (Malott, Sens, and 
Wilsey 2020), which also marks the persistence time 
of this feature. For k-dimensional homology group Hk, 
the <birth, death> pairs extracted from all subcom-
plexes at this dimension reveal the evolution of the 
point cloud data at this specific dimension, which 
helps to identify and track the information and change 
of significant structures at this dimension. These pairs 
can be represented on a two-dimensional surface, 

which is referred to as Persistence Diagram (PD) 
(Akai, Hirayama, and Murase 2021), and an example 
of PD is shown in Figure 1(b). In a PD, its x- and 
y-axes represent birth and death distances, respec-
tively, and all <birth, death> pairs appear at the 
upper side of the diagonal because the death value is 
always larger than its corresponding birth value. 
Hence, we can visualize when points are connected 
with each other by plotting H0 PD and when holes 
(cycles) appear and disappear in the point cloud data 
by plotting H1 PD.

3. Methodology

Aiming to extract the building outlines, the proposed 
PH-shape determines the adaptive parameter based on 
the analysis of PH results. The adaptive parameter is 
then applied to extract building outlines. Afterward, 
the extracted building outlines are smoothed and sim-
plified based on FD, resulting in the final output.

3.1. The overview of PH-shape

As described earlier and shown in Figure 2, the pro-
posed PH-shape consists of two major modules: (1) 
the adaptive extraction of preliminary building out-
lines by using PH and (2) the adaptive simplification 
of the preliminary building outlines by using FD.

In PH-shape, the 2D coordinates of the segmen-
ted point cloud data for a single building are used 
as input (Figure 2(a)). In the first module, the 0- 
and 1-dimensional (d) PHs of the input point cloud 
data are computed at first (Figure 2(b)), and an 
adaptive buffer radius for the input points is deter-
mined based on the 0d and 1d PHs (Figure 2(c)). 
By using the adaptive buffer radius, the union 
buffer of the input points is computed and then 
shrunk (Figure 2(d)). With the assistance of the 

Figure 1. The example of PH.
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union operation of each point’s buffer, this process 
achieves the conversion of the point set to 
a polygon, and the exterior and interior boundaries 
of the polygon are regarded as the preliminary 
building outline result of the input data. After 
that, the polygon is input into the second module 
and its FD is computed. Then, the simplified poly-
gon is extracted based on the FD and is ultimately 
output as the final extracted building outline 
(Figure 2(e)).

3.2. The extraction of preliminary building 
outlines

An example of the detailed process of module 1 is 
shown in Figure 3. The crucial step of this module is 
determining the adaptive buffer radius of the point 
cloud data. To obtain this adaptive radius, both the 
0d PH and 1d PH of the point cloud data are com-
puted at first, as shown in Figure 3(b). In this study, 
the Vietoris–Rips (VR) complex (Otter et al. 2017) is 

Figure 2. The overview of PH-shape.

Figure 3. The detailed workflow of module 1: extracting preliminary building outlines.
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chosen to build the simplicial complex for PH’s filtra-
tion. By computing 0d PH, the distance when each 
point connected with its neighbors can be tracked, 
which is the “death” time of each <birth, death> pair 
in 0d. The half of the maximum (max) death value in 
0d, mr0d, corresponds to the buffer radius that the 
component covering all points generates, as shown in 
Figure 3(b.1). By computing 1d PH, the distances 
when inner holes disappear can be tracked, which 
also correspond to the “death” times in 1d. The half 
of the max death value in 1d, mr1d, corresponds to the 
buffer radius that all inner holes disappear, as shown 
in Figure 3(b.2).

In general, the mr1d can be regarded as the proper 
buffer radius to generate the union buffer of the input 
point data, and the shrunk exterior boundary of this 
union buffer can be output as the preliminary building 
outlines. However, the inner holes could not be traced 
in this situation as shown in Figure 3(b.2). Hence, the 
further analysis of the buffer radius is necessary, to 
choose a proper radius that can save the complete 
building outline with the significant inner holes. In 
this study, all holes can be identified by analyzing the 
persistence and death time of <birth, death> pairs in 
the 1d PH result. The longer persistence time with 
a larger death time represents a more significant fea-
ture disappearing slowly, meaning that this pair cor-
responds to the appearance and disappearance of 
a significant inner hole, as shown by the red dots in 
Figure 3(c). Correspondingly, the shorter persistence 
time and the smaller death time mean that the points 
related to these pairs have close neighbors and do not 
fill the inner holes, as shown by the blue dots in 
Figure 3(c). Based on this principle, the significant 
holes can be found by separating the <birth, death> 
pairs in 1d PH into several clusters based on the 
persistence and death times, and the detailed workflow 
for finding the adaptive radius is as follows:

(1) Compute the complex of the whole input point 
cloud data, and subsequently compute the 
0d PH and 1d PH of the input point cloud 
data, and further extract mr0d and mr1d from 
them, as mentioned in the first paragraph of 
this subsection and shown in Figure 3(b). In 
this step, 0d PH and 1d PH consist of the 
<birth, death> pairs in their corresponding 
dimensions, which are denoted by Dk in this 
study. The detailed description of Dk is shown 
in Equation (1), where k denotes the dimension 
of PH and Nk denotes the number of pairs at 
k dimension. 

Dk ¼ birth; deathh ik;iji 2 1;Nk½ � 2 Zþ; k 2 0; 1f g
n o

(1) 

(2) Compute all persistence times 
T1 ¼ t1;i ¼ death1;i � birth1;iji 2 1;N1½ �

� �
of 

D1 at first. Then, cluster T1 and death times in 
D1 by using the algorithm Density-Based 
Spatial Clustering of Applications with Noise 
(DBSCAN), where two DBSCANs’ epsilons are 
adaptively set as mr0d. The cluster with both 
minimum means of the persistence and death 
times is selected, which covers all topological 
features that are not inner holes. An example of 
this step is shown in Figure 3(c).

(3) The half of the max death value of the selected 
cluster in step (2) is computed and used as the 
final adaptive buffer radius result, which is 
denoted by ra as shown in Figure 3(c.1).

After obtaining the adaptive buffer radius ra of this 
roof ’s point cloud data, the union buffer polygon 
Polybþ of these points in 2D is computed by using 
a buffer radius of rbþ and union operation. The calcu-
lation of rbþ is shown in Equation (2): 

rbþ ¼ ra þ Δrbþ;where Δrbþ ¼ 10� PSdtd e=10 (2) 

where Δrbþ is a tolerance for rbþ, which is equal to PSdt 
denoting the point spacing of the dataset, and the 
operation of 10� PSdtd e=10 is used to round it up to 
one decimal place. The reason for adding the tolerance 
Δrbþ is that, due to the definition of VR complex, the 
filtration of complex will end when the balls of two 
neighbored points touch each other, so the ra may be 
a few smaller than the radius required to fill all small 
gaps between neighbored points, especially when there 
is no inner hole that needs to be considered, and the 
size of these small gaps varies depending on the point 
density of the data. According to the simple example 
shown in Figure 4, we can note that after the buffering 
by using ra, there would still be some small gaps 
(holes) in the union buffer, as shown by the red box 
area in Figure 4. Following the explanation of Δrbþ, as 
mentioned before, it can be adaptively set as the point 
spacing of the dataset PSdt . In addition, it is rounded 
up to one decimal place to avoid the appearance of 
small gaps as much as possible and enhance the gen-
eralization of PH-shape by ignoring the slight varia-
tions in point densities across datasets.

Ultimately, in this module, Polyb� can be obtained 
by performing the inverse-buffering operation on 
Polybþ using the buffer radius rb� . The “inverse- 
buffering operation” is defined as the buffering opera-
tion with a buffer radius smaller than 0 in this study. 
An example result of this step is shown in Figure 3(d). 
The exterior boundary and boundaries of inner holes 
of Polyb� are output as the preliminary building out-
line result. The calculation of rb� is shown in 
Equation (3): 

GEO-SPATIAL INFORMATION SCIENCE 5



rb� ¼ � rbþ � Δrb�ð Þ;where Δrb� ¼ 10�
PSdt

3

� ��

10

(3) 

where Δrb� denotes the tolerance distance of inverse 
buffer. This tolerance is added to consider the error 
in footprint labeling caused by the point spacing: 
the actual footprint boundary usually lies between 
the tightest boundary of the segmented point cloud 
data and a slightly larger buffer boundary of the 
tightest boundary, with a larger buffer radius of 
PSdt . The setting of Δrb� is based on PSdt

3 , because 
the distribution of actual footprint can be regarded 
as a normal distribution when its mean is at the 
tightest boundary and PSdt

3 is its one standard 
deviation.

3.3. The simplification of building outlines

The simplification and smoothing of the preliminary 
building outlines are essential due to the inwardly 
sunken circle edges introduced by buffering. In this 
module, first, for the preliminary outline of each 
building, the FD of each exterior or interior bound-
ary in the outline is computed to support the sim-
plification and smoothing. Subsequently, the 
simplification result is obtained by extracting the 
boundary shape formed by the top-m coordinates 
in each FD. This extraction is performed when the 
similarity between the top-m FD coordinates and the 
FD’s corresponding boundary arrives at a specific 
adaptive threshold. The detail of this module is 
described as follows:

(1) For the preliminary outline of each building 
including exterior and interior boundaries, 
define its each boundary as op and extract the 
coordinate set xm; ymð Þjm 2 1;M½ �f gp of op. In 
the mathematical representation, p denotes this 

boundary’s index and M is the number of (x, y) 
coordinates in a boundary op.

(2) For each boundary op, compute the FD FDp of 
the coordinate set xm; ymð Þf gp. To achieve the 
computation, first, the coordinate set is reorga-
nized to a sequence of complex numbers 
Sp ¼ sm ¼ xm þ jymjm 2 1;M½ �f gp, where 
j denotes the imaginary unit of sm. FDp can be 
subsequently obtained by computing the 
1d discrete Fourier transform (DFT) of Sp. 
The low-frequency components in FDp present 
the global shape features of op, and the high- 
frequency components describe the details of 
the shape.

(3) Iteratively truncate and reconstruct top- 
m low-frequency FDp from m = 1 to 
M until m=M or the similarity (sim) between 
the boundary op and its simplified result os

p;m 

formed by the m coordinates reconstructed 
from the top-m low-frequency FDp achieving 
the specific threshold thsim. The os

p;m achieving 
the requirement of similarity, os

p;m�, is output 
as the simplification result of op. The trunca-
tion process is achieved by extracting top- 
m low-frequency components, and the recon-
struction process is achieved by computing the 
1d inverse DFT and separating real and ima-
ginary parts and scaling of the top- 
m truncated complex components. The sim is 
defined by the Hausdorff Distance (HD) 
(Huttenlocher, Klanderman, and Rucklidge  
1993). The smaller HD represents the higher 
sim, hence the iteration stops when 

HD os
p;m; op

� �
� thsim. The thsim is adaptive 

for each building and is calculated by 
Equation (4). 

thsim ¼ � 1 � cos 30�ð Þ rb� ¼ 1 � cos 30�ð Þ ra þ Δrbþ � Δrb�ð Þ

(4) 

This threshold value corresponds to the straight- 
boundary situation that the distance between the 
neighbored points at the actual boundary (e.g. the 
segment between cm and cmþ1) is equal to the buffering 
radius rb� , as illustrated in Figure 5.

(4) Obtain the simplification result of the prelimin-
ary outline for one building by repeating steps (2) 
and (3) for its each boundary.

Ultimately, by repeating the above steps for the out-
lines of all buildings, the simplification results of 
building outlines can be obtained. These simplified 
building outlines are output as the final result of the 
building outline extraction.

Figure 4. The example of the small gaps after buffering based 
on VR complex.
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4. Experiments

4.1. Experiment details

In this study, two datasets with different point densi-
ties are applied for the experiments. The first dataset is 
a custom dataset in Trondheim with a standard point 
density of 12–20 points/m2. This dataset is named as 
“Trondheim” dataset in the following sections. As 
described in Kong, Fan, and Lobaccaro (2022), the 
original Airborne Laser Scanning (ALS) point cloud 
data of this dataset is provided by the mapping author-
ity of Trondheim Municipality, and its corresponding 
ground truth footprints are from the national open 
geographical data provided by the Norwegian 
Mapping Authority (FKB-Buildings Dataset 2021). 
The second dataset is the International Society for 
Photogrammetry and Remote Sensing (ISPRS) bench-
mark dataset (Vaihingen) (Cramer 2010) with a lower 
point density of 4–6.7 points/m2 (Cao et al. 2017). This 
dataset has contained both the point cloud data and 
the ground truth footprint information.

To compare with our previous work (Kong, Fan, 
and Lobaccaro 2022), the test data including 93 roofs 
from the Trondheim dataset and 34 roofs from the 
ISPRS dataset were used. General building footprint 
types with various shapes are covered by this test data, 
including rectangle-shape, L-shape, T-shape, more 
complex combined-shape, and so on. Buildings of 
various sizes are also covered in it.

There are many metrics for quantitatively evaluat-
ing the accuracy of extracted building outlines, such as 
mean intersection over union (mIoU), root-mean- 
square error, HD (Huttenlocher, Klanderman, and 
Rucklidge 1993), PoLiS (Avbelj, Müller, and Bamler  
2015), and robust corner correspondence (Dey and 
Awrangjeb 2020). In this study, three metrics, mIoU, 
HD, and PoLiS, are applied for the quantitative eva-
luation. The mIoU is applied to evaluate the area 
similarity between the extracted building outlines 

and the ground truth data. The HD and PoLiS are 
applied to evaluate the shape similarity between 
them by calculating the distance error between the 
corresponding two polygons. The calculation method 
of mIoU refers to the study of Kong, Fan, and 
Lobaccaro (2022), and the calculation methods of 
HD and PoLiS can refer to the corresponding cited 
papers.

The experiment on the two datasets is performed to 
evaluate PH-shape quantitatively and qualitatively on 
the two datasets, and its result is shown in Section 4.2. 
Furthermore, to evaluate the PH-shape more compre-
hensively, the quantitative comparative experiment on 
the two datasets is conducted to compare the perfor-
mance of PH-shape with that of α-shape and genera-
tive adversarial network (GAN) -based methods 
(Kong, Fan, and Lobaccaro 2022). PH-shape and all 
the comparative strategies are implemented in Python. 
The Python version of Gudhi (Maria et al. 2014) is 
used to support the PH computation.

4.2. Experiment result of PH-shape

The quantitative and qualitative evaluation results of 
PH-shape on two datasets are shown in Table 1 and 
Figure 6, respectively. As shown in Table 1, on two 
datasets with different point densities, PH-shape 
achieves reliable performance. On the Trondheim 
dataset with relatively high point density (i.e. smaller 
point spacing), PH-shape achieves over than 90% of 
mIoU and lower than 1 m of HD. For the strict shape 
parameter, PoLiS, a quite good result of 0.17 m is 
achieved. On the ISPRS benchmark dataset with 

Figure 5. The geometrical meaning of thsim.

Table 1. Quantitative evaluation result of PH-shape on data-
sets with different point densities.

Dataset mIoU (%) HD (m) PoLiS (m)

Trondheim 93.66 0.60 0.17
ISPRS 85.36 1.57 0.38

GEO-SPATIAL INFORMATION SCIENCE 7



a lower point density, although the performance of 
PH-shape reduces compared with that on the 
Trondheim dataset, it still achieves over than 80% of 
mIoU, 1.57 m of HD, and 0.38 m of PoLiS. The com-
parative quantitative result on the two datasets implies 
that PH-shape can achieve better performance on the 
dataset with higher point density. ”The quantitative 
analysis of PH-shape will be discussed more in Section 
4.3 based on the comparative experiment.

Through the qualitative evaluation result as shown 
in Figure 6, the performance of PH-shape is intuitively 
described. In Figure 6, (a) shows the input point cloud 
data with the highlighting of the density variation 
parts, (b.1) and (b.2) with different-colored lines 
show the results of building outlines extracted at the 
different steps (i.e. modules) of PH-shape. In addition, 
the black points in Figure 6 correspond to the seg-
mented point cloud data of buildings and the gray 
polygons in Figure 6 correspond to the ground truth 
footprint data of buildings. Different building shapes 
are included in Figure 6. B1 and B6 are rectangle- 
shape; B2 and B7 are L-shape; B3 and B8 are 

T-shape; and B4 and B5 and B9 and B10 correspond 
to the more complex combined shapes. As shown in 
Figure 6, the extraction result shown in B2–B5 and 
B7–B10 demonstrates that the concave parts of the 
point cloud data can be traced well and stably by PH- 
shape, even though these concave parts have different 
scales. B1–B4, B7, B9, and B10 exist the density varia-
tion in one building’s point cloud data, as shown in 
Figure 6(a), where the purple boxes highlight the den-
sity variation part of these point clouds. The results of 
these buildings with density variation indicate that the 
PH-shape can address this issue successfully. In the 
case of B10, PH-shape further demonstrates its ability 
to trace the interior boundaries of building outlines. 
However, it is important to note that the actual build-
ing footprint of B10 is without inner holes. Despite 
this, when just considering the extraction of building 
outlines from the point cloud data, PH-shape actually 
performs the correct extraction and achieves 
a satisfactory result. The orange and blue lines 
shown in Figure 6(b.1-b.2) show the comparison 
between the preliminary building outlines and the 

Figure 6. Qualitative evaluation result of PH-shape on datasets with different point densities (B1–B5: on the Trondheim dataset, 
B6–B10: on the ISPRS dataset).
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final building outlines, which are the results of module 
1 and module 2 of PH-shape, respectively. The quali-
tative comparison result indicates that the simplifica-
tion module (module 2) can effectively simplify and 
smooth the “zig-zag” parts of the preliminary building 
outlines, as shown by the exampled red circles and 
their “zoom-in” views in Figure 6. Overall, the quali-
tative evaluation result further demonstrates that PH- 
shape can achieve the accurate building outline extrac-
tion in the face of point cloud data with different 
densities and the density variation in one building’s 
point clouds.

4.3. Comparative experiment result

The quantitative comparative result of two existing meth-
ods, α-shape and GAN, and our PH-shape is shown in 
Table 2. As shown in Table 2, on both datasets, PH-shape 
achieves better performance than the other two compara-
tive methods. On the Trondheim dataset, compared with 
α-shape, the mIoU, HD, and PoLiS in PH-shape improve 
by 0.86%, 0.26 m, and 0.02 m, respectively; when com-
pared with GAN, PH-shape also exhibits the improve-
ment of mIoU and HD by 0.14% and 0.04 m, respectively. 
PH-shape achieves comparable and improved results for 
three metrics on the Trondheim dataset. In particular, the 
significant improvement of HD indicates that when 
extracting building outlines, PH-shape can more effec-
tively preserve shape details and reduce the presence of 
significant undesirable burring segments.

On the ISPRS dataset, compared with α-shape, PH- 
shape improves mIoU, HD, and PoLiS by 2.26%, 0.26 m, 
and 0.03 m, respectively; and compared with GAN, PH- 
shape also improves these three metrics by 0.18%, 0.23 m, 
and 0.05 m, respectively. Compared with the results on 
the Trondheim dataset, besides the still significant 
improvement of HD, the increase of mIoU and decrease 
of PoLiS are also more significant than those on the 
Trondheim dataset. The more significant improvement 
on the ISPRS dataset is because that the Trondheim 
dataset has better data quality and higher point density. 
It also indicates that PH-shape can better adapt to the 
dataset with low point density than the comparative 
methods.

Furthermore, comparing the performance differences 
of the three methods on two datasets, the performance 
differences of PH-shape in mIoU, HD, and PoLiS are 
8.30%, 0.97 m, and 0.21 m, respectively. By contrast, α- 

shape shows the differences of 9.70%, 0.97m, and 0.22 m 
in these metrics and GAN shows the differences of 8.34%, 
1.16 m, and 0.26 m, respectively. PH-shape performs 
smaller overall performance difference than the other 
two methods in the face of datasets with different point 
densities, which implies its better stability and 
generalization.

Overall, PH-shape can effectively and stably extract 
building outlines in the face of different point cloud data. 
Moreover, the comparative results also show the general-
ization capability of PH-shape, making it a robust and 
reliable method for the task of building outline extraction.

5. Conclusion and future work

In this study, PH-shape, an adaptive approach for 
extracting building outlines is proposed. The novel 
method PH for TDA is introduced into the task of 
extracting building outlines, to automatically and 
adaptively find a proper buffer radius for 
a segmented roof point cloud data. Based on this 
radius, the building outlines can be preliminarily 
extracted by buffering and “inverse” buffering. The 
final building outlines are ultimately obtained by 
smoothing and simplifying the preliminary building 
outlines based on FD and an adaptive HD-based 
threshold. The experiment results demonstrate that 
PH-shape can effectively and stably extract building 
outlines from the segmented point cloud data, no 
matter in the face of convex and concave building 
shapes, buildings with exterior and interior bound-
aries, and point cloud data with different point den-
sities. Given the generalization and effectiveness of 
PH-shape shown in the experiments, it has the poten-
tial to extend beyond the task of building outline 
extraction to the broader task of boundary tracing. 
However, while PH-shape performs well on both 
low- and high-point-density datasets and shows better 
balance and generalization, the difference in perfor-
mance between PH-shape and other strategies is not as 
significant on the higher-quality dataset (with higher 
point density) compared to the low-quality dataset. 
This suggests that for the dataset with high quality 
and density, PH-shape is just an alternative rather 
than the first choice compared to other methods. In 
the future, the study of a better simplification strategy 
is suggested to further improve the accuracy of 
extracted building outlines by PH-shape. 

Table 2. Comparative result of existing strategies and PH-shape on two datasets 
with different point densities.

Dataset Method mIoU (%) HD (m) PoLiS (m)

Trondheim α-shape 92.80 0.86 0.19
GAN 93.52 0.64 0.17
PH-shape 93.66 0.60 0.17

ISPRS α-shape 83.10 1.83 0.41
GAN 85.18 1.80 0.43
PH-shape 85.36 1.57 0.38

The bold entries signify the best comparison results achieved in each dataset. 
The italic entries present that the method mentioned in this row is the proposed method in this 

study.
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Furthermore, experiments on point clouds with more 
various point densities and from different sources will 
be considered with the development of open-source 
datasets to further validate the practicality of PH- 
shape.

Disclosure statement

No potential conflict of interest was reported by the 
author(s).

Funding

The work in this paper is supported by NTNU Digital 
project [grant number 81771593].

Notes on contributors

Gefei Kong received her master’s degree in Cartography and 
Geography Information System at Wuhan University in 
China and is currently pursuing her PhD at Norwegian 
University of Science and Technology (NTNU). Her 
research interests include 3D city modelling, LiDAR data 
processing, and computer vision.

Hongchao Fan is professor for 3D Geoinformatics in the 
Department of Civil and Environmental Engineering at the 
Norwegian University of Science and Technology (NTNU). 
He received his master’s degree in Geodesy and 
Geoinformatics at the University of Stuttgart and obtained 
his PhD at the Technical University of Munich in Germany. 
After that he worked as Group Leader for 3D Data 
Infrastructure at the Heidelberg University for six years. In 
2018, he started his work as professor at NTNU in 
Trondheim, Norway. His research interests include 3D city 
modelling, spatial data mining from VGI data, and laser 
scanning.

ORCID

Hongchao Fan http://orcid.org/0000-0002-0051-7451

Data availability statement

The authors confirm that the data and source codes used in 
this paper can be available upon individual request.

References

Akai, N., T. Hirayama, and H. Murase. 2021. “Persistent 
Homology in LiDAR-Based Ego-Vehicle Localization.” 
In 2021 IEEE Intelligent Vehicles Symposium (IV), 
889–896. https://doi.org/10.1109/IV48863.2021.9575312.

Avbelj, J., R. Müller, and R. Bamler. 2015. “A Metric for 
Polygon Comparison and Building Extraction 
Evaluation.” IEEE Geoscience & Remote Sensing Letters 
12 (1): 170–174, January. https://doi.org/10.1109/LGRS. 
2014.2330695.

Awrangjeb, M. 2016. “Using Point Cloud Data to Identify, 
Trace, and Regularize the Outlines of Buildings.” 
International Journal of Remote Sensing 37 (3): 551–579, 
February. https://doi.org/10.1080/01431161.2015.1131868.

Awrangjeb, M., and C. S. Fraser. 2014. “An Automatic and 
Threshold-Free Performance Evaluation System for 
Building Extraction Techniques from Airborne LIDAR 
Data.” IEEE Journal of Selected Topics in Applied Earth 
Observations & Remote Sensing 7 (10): 4184–4198, 
October. https://doi.org/10.1109/JSTARS.2014.2318694.

Beksi, W. J., and N. Papanikolopoulos. 2018. “Signature of 
Topologically Persistent Points for 3D Point Cloud 
Description.” In 2018 IEEE International Conference on 
Robotics and Automation (ICRA), 3229–3234. https://doi. 
org/10.1109/ICRA.2018.8460605.

Boo, G., E. Darin, D. R. Leasure, C. A. Dooley, 
H. R. Chamberlain, A. N. Lázár, K. Tschirhart, et al. 
2022. “High-Resolution Population Estimation Using 
Household Survey Data and Building Footprints”. 
Nature Communications 13 (1). March. Nature 
Publishing Group: 1330. https://doi.org/10.1038/s41467- 
022-29094-x.

Cao, R., Y. Zhang, X. Liu, and Z. Zhao. 2017. “3D Building 
Roof Reconstruction from Airborne LiDar Point Clouds: 
A Framework Based on a Spatial Database.” International 
Journal of Geographical Information Science 31 (7): 
1359–1380. Taylor & Francis. https://doi.org/10.1080/ 
13658816.2017.1301456.

Carlsson, G. 2014. “Topological Pattern Recognition for 
Point Cloud Data.” Acta numerica 23: 289–368, May.  
https://doi.org/10.1017/S0962492914000051.

Carlsson, G. 2020. “Topological Methods for Data 
Modelling.” Nature Reviews Physics 2 (12): 697–708, 
December. Nature Publishing Group. https://doi.org/10. 
1038/s42254-020-00249-3.

Cramer, M. 2010. “The DGPF-Test on Digital Airborne 
Camera Evaluation Overview and Test Design.” 
Photogrammetrie - Fernerkundung - Geoinformation 
2010 (2): 73–82, May. https://doi.org/10.1127/1432- 
8364/2010/0041.

Dai, Y., J. Gong, Y. Li, and Q. Feng. 2017. “Building 
Segmentation and Outline Extraction from UAV 
Image-Derived Point Clouds by a Line Growing 
Algorithm.” International Journal of Digital Earth 
10 (11): 1077–1097, November. Taylor & Francis.  
https://doi.org/10.1080/17538947.2016.1269841.

Dey, E. K., and M. Awrangjeb. 2020. “A Robust 
Performance Evaluation Metric for Extracted Building 
Boundaries from Remote Sensing Data.” IEEE Journal of 
Selected Topics in Applied Earth Observations and Remote 
Sensing 13:4030–4043. https://doi.org/10.1109/JSTARS. 
2020.3006258.

Dong, Z., J. Chen, and H. Lin. 2022. “Topology-Controllable 
Implicit Surface Reconstruction Based on Persistent 
Homology.” Computer-Aided Design 150:103308, 
September. https://doi.org/10.1016/j.cad.2022.103308.

Dorninger, P., and N. Pfeifer. 2008. “A Comprehensive 
Automated 3D Approach for Building Extraction, 
Reconstruction, and Regularization from Airborne Laser 
Scanning Point Clouds.” Sensors 8 (11): 7323–7343, 
November. Molecular Diversity Preservation 
International. https://doi.org/10.3390/s8117323.

dos Santos, R. C., M. Galo, and A. C. Carrilho. 2019. 
“Extraction of Building Roof Boundaries from LiDar 
Data Using an Adaptive Alpha-Shape Algorithm.” IEEE 
Geoscience & Remote Sensing Letters 16 (8): 1289–1293, 
August. https://doi.org/10.1109/LGRS.2019.2894098.

Edelsbrunner, H., and E. P. Mücke. 1994. “Three- 
Dimensional Alpha Shapes.” ACM Transactions on 
Graphics 13 (1): 43–72, January. https://doi.org/10.1145/ 
174462.156635.

10 G. KONG AND H. FAN

https://doi.org/10.1109/IV48863.2021.9575312
https://doi.org/10.1109/LGRS.2014.2330695
https://doi.org/10.1109/LGRS.2014.2330695
https://doi.org/10.1080/01431161.2015.1131868
https://doi.org/10.1109/JSTARS.2014.2318694
https://doi.org/10.1109/ICRA.2018.8460605
https://doi.org/10.1109/ICRA.2018.8460605
https://doi.org/10.1038/s41467-022-29094-x
https://doi.org/10.1038/s41467-022-29094-x
https://doi.org/10.1080/13658816.2017.1301456
https://doi.org/10.1080/13658816.2017.1301456
https://doi.org/10.1017/S0962492914000051
https://doi.org/10.1017/S0962492914000051
https://doi.org/10.1038/s42254-020-00249-3
https://doi.org/10.1038/s42254-020-00249-3
https://doi.org/10.1127/1432-8364/2010/0041
https://doi.org/10.1127/1432-8364/2010/0041
https://doi.org/10.1080/17538947.2016.1269841
https://doi.org/10.1080/17538947.2016.1269841
https://doi.org/10.1109/JSTARS.2020.3006258
https://doi.org/10.1109/JSTARS.2020.3006258
https://doi.org/10.1016/j.cad.2022.103308
https://doi.org/10.3390/s8117323
https://doi.org/10.1109/LGRS.2019.2894098
https://doi.org/10.1145/174462.156635
https://doi.org/10.1145/174462.156635


Feng, M., and M. A. Porter. 2021. “Persistent Homology of 
Geospatial Data: A Case Study with Voting.” SIAM Review 
63 (1): 67–99, January. Society for Industrial and Applied 
Mathematics. https://doi.org/10.1137/19M1241519.

FKB-Buildings Dataset. 2021. Accessed March 5, 2022. 
https://kartkatalog.geonorge.no/metadata/fkb-bygning 
/8b4304ea-4fb0-479c-a24d-fa225e2c6e97 .

He, Y., C. Zhang, and C. S. Fraser. 2014. “An Energy 
Minimization Approach to Automated Extraction of 
Regular Building Footprints from Airborne LiDAR 
Data.” ISPRS Annals of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, II–3: 65–72. 
Copernicus GmbH. https://doi.org/10.5194/isprsannals- 
II-3-65-2014.

Herve, L. 2008. Outlining Buildings Using Airborne Laser 
Scanner Data. Netherlands: Master Theis.

Hu, Y., C. Liu, Z. Li, J. Xu, Z. Han, and J. Guo. 2022. “Few- 
Shot Building Footprint Shape Classification with Relation 
Network.” ISPRS International Journal of Geo-Information 
11 (5): 311, May. Multidisciplinary Digital Publishing 
Institute. https://doi.org/10.3390/ijgi11050311.

Huttenlocher, D. P., G. A. Klanderman, and W. J. Rucklidge. 
1993. “Comparing Images Using the Hausdorff 
Distance.” IEEE Transactions on Pattern Analysis & 
Machine Intelligence 15 (9): 850–863, September.  
https://doi.org/10.1109/34.232073.

Jarvis, R. 1977. “Computing the Shape Hull of Points in the 
Plane.” In Proceedings of the IEEE Computing Society 
Conference on Pattern Recognition and Image Processing, 
231–241. Troy, NY.

Kong, G., H. Fan, and G. Lobaccaro. 2022. “Automatic 
Building Outline Extraction from ALS Point Cloud Data 
Using Generative Adversarial Network.” Geocarto 
International 37 (27): 15964–15981, December. Taylor & 
Francis. https://doi.org/10.1080/10106049.2022.2102246.

Li, X., F. Qiu, F. Shi, and Y. Tang. 2022. “A Recursive Hull 
and Signal-Based Building Footprint Generation from 
Airborne LiDar Data.” Remote Sensing 14 (22): 5892, 
January. Multidisciplinary Digital Publishing Institute.  
https://doi.org/10.3390/rs14225892.

Mahphood, A., and H. Arefi. 2017. “A Data Driven Method 
for Flat Roof Building Reconstruction from Lidar Point 
Clouds.” The International Archives of the 
Photogrammetry, Remote Sensing and Spatial 
Information Sciences XLII-4/W4:167–172, September.  
https://doi.org/10.5194/isprs-archives-XLII-4-W4-167- 
2017.

Mahphood, A., and H. Arefi. 2022. “Grid-Based Building 
Outline Extraction from Ready-Made Building Points.” 
Automation in Construction 139:104321, July. https://doi. 
org/10.1016/j.autcon.2022.104321.

Malott, N. O., A. M. Sens, and P. A. Wilsey. 2020. “Topology 
Preserving Data Reduction for Computing Persistent 
Homology.” In 2020 IEEE International Conference on 
Big Data (Big Data), 2681–2690. https://doi.org/10.1109/ 
BigData50022.2020.9378216.

Maria, C., J.-D. Boissonnat, M. Glisse, and M. Yvinec. 2014. 
“The Gudhi Library: Simplicial Complexes and Persistent 
Homology.” In Mathematical Software – ICMS 2014, 
edited by H. Hong and C. Yap, 167–174. Lecture Notes 
in Computer Science. Berlin, Heidelberg: Springer.  
https://doi.org/10.1007/978-3-662-44199-2_28.

Otter, N., M. A. Porter, U. Tillmann, P. Grindrod, and 
H. A. Harrington. 2017. “A Roadmap for the 
Computation of Persistent Homology.” EPJ Data 

Science 6 (1): 1–38, December. SpringerOpen. https:// 
doi.org/10.1140/epjds/s13688-017-0109-5.

Poulenard, A., P. Skraba, and M. Ovsjanikov. 2018. 
“Topological Function Optimization for Continuous 
Shape Matching.” Computer Graphics Forum 37 (5): 
13–25. https://doi.org/10.1111/cgf.13487.

Robinson, C., A. Ortiz, H. Park, N. L. Gracia, J. K. Kaw, 
T. Sederholm, R. Dodhia, and J. M. L. Ferres. 2022. “Fast 
Building Segmentation from Satellite Imagery and Few 
Local Labels.” In 2022 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition Workshops 
(CVPRW), 1462–1470. New Orleans, LA: IEEE. https:// 
doi.org/10.1109/CVPRW56347.2022.00152.

Sampath, A., and J. Shan. 2007. “Building Boundary Tracing 
and Regularization from Airborne LIDAR Point Clouds.” 
Photogrammetric Engineering & Remote Sensing 73 (7): 
805–812, July. https://doi.org/10.14358/PERS.73.7.805.

Shahzad, M., and X. X. Zhu. 2015. “Reconstruction of 
Building Footprints Using Spaceborne Tomosar Point 
Clouds.” ISPRS Annals of the Photogrammetry, Remote 
Sensing & Spatial Information Sciences II-3/W5:385–392, 
August. https://doi.org/10.5194/isprsannals-II-3-W5- 
385-2015.

Surrel, T. D., F. Hensel, M. Carrière, T. Lacombe, Y. Ike, 
H. Kurihara, M. Glisse, and F. Chazal. 2022. “RipsNet: 
A General Architecture for Fast and Robust Estimation of 
the Persistent Homology of Point Clouds.” In Proceedings 
of Topological, Algebraic, and Geometric Learning 
Workshops 2022, 96–106. PMLR.

Syzdykbayev, M., and H. A. Karimi. 2020. “Persistent 
Homology for Detection of Objects from Mobile LiDar 
Point Cloud Data in Autonomous Vehicles.” In Advances 
in Computer Vision, edited by K. Arai and S. Kapoor, 
458–472. Advances in Intelligent Systems and 
Computing. Cham: Springer International Publishing.  
https://doi.org/10.1007/978-3-030-17798-0_37.

Turkes, R., G. F. Montufar, and N. Otter. 2022. “On the 
Effectiveness of Persistent Homology.” Advances in 
Neural Information Processing Systems 35:35432–35448, 
December. New Orleans, LA.

Wang, J., and J. Shan. 2009. “Segmentation of Lidar Point 
Clouds for Building Extraction.” In American Society for 
Photogramm. Remote Sens. Annual Conference, 1–13. 
Baltimore, MD.

Wasserman, L. 2018. “Topological Data Analysis.” Annual 
Review of Statistics and Its Application 5 (1): 501–532.  
https://doi.org/10.1146/annurev-statistics-031017- 
100045.

Wong, C.-C., and C.-M. Vong. 2021. “Persistent Homology 
Based Graph Convolution Network for Fine-Grained 3D 
Shape Segmentation.” In 2021 IEEE/CVF International 
Conference on Computer Vision (ICCV), 7078–7087. 
Montreal, QC: IEEE. https://doi.org/10.1109/ 
ICCV48922.2021.00701.

Zhou, Q.-Y., and U. Neumann. 2009. “A Streaming 
Framework for Seamless Building Reconstruction from 
Large-Scale Aerial LiDar Data.” In 2009 IEEE Conference 
on Computer Vision and Pattern Recognition, 2759–2766.  
https://doi.org/10.1109/CVPR.2009.5206760.

Zhou, Y., M. Verkou, M. Zeman, H. Ziar, and O. Isabella. 
2022. “A Comprehensive Workflow for High Resolution 
3D Solar Photovoltaic Potential Mapping in Dense Urban 
Environment: A Case Study on Campus of Delft 
University of Technology.” Solar RRL 6 (5): 2100478.  
https://doi.org/10.1002/solr.202100478.

GEO-SPATIAL INFORMATION SCIENCE 11

https://doi.org/10.1137/19M1241519
https://kartkatalog.geonorge.no/metadata/fkb-bygning/8b4304ea-4fb0-479c-a24d-fa225e2c6e97
https://kartkatalog.geonorge.no/metadata/fkb-bygning/8b4304ea-4fb0-479c-a24d-fa225e2c6e97
https://doi.org/10.5194/isprsannals-II-3-65-2014
https://doi.org/10.5194/isprsannals-II-3-65-2014
https://doi.org/10.3390/ijgi11050311
https://doi.org/10.1109/34.232073
https://doi.org/10.1109/34.232073
https://doi.org/10.1080/10106049.2022.2102246
https://doi.org/10.3390/rs14225892
https://doi.org/10.3390/rs14225892
https://doi.org/10.5194/isprs-archives-XLII-4-W4-167-2017
https://doi.org/10.5194/isprs-archives-XLII-4-W4-167-2017
https://doi.org/10.5194/isprs-archives-XLII-4-W4-167-2017
https://doi.org/10.1016/j.autcon.2022.104321
https://doi.org/10.1016/j.autcon.2022.104321
https://doi.org/10.1109/BigData50022.2020.9378216
https://doi.org/10.1109/BigData50022.2020.9378216
https://doi.org/10.1007/978-3-662-44199-2_28
https://doi.org/10.1007/978-3-662-44199-2_28
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1111/cgf.13487
https://doi.org/10.1109/CVPRW56347.2022.00152
https://doi.org/10.1109/CVPRW56347.2022.00152
https://doi.org/10.14358/PERS.73.7.805
https://doi.org/10.5194/isprsannals-II-3-W5-385-2015
https://doi.org/10.5194/isprsannals-II-3-W5-385-2015
https://doi.org/10.1007/978-3-030-17798-0_37
https://doi.org/10.1007/978-3-030-17798-0_37
https://doi.org/10.1146/annurev-statistics-031017-100045
https://doi.org/10.1146/annurev-statistics-031017-100045
https://doi.org/10.1146/annurev-statistics-031017-100045
https://doi.org/10.1109/ICCV48922.2021.00701
https://doi.org/10.1109/ICCV48922.2021.00701
https://doi.org/10.1109/CVPR.2009.5206760
https://doi.org/10.1109/CVPR.2009.5206760
https://doi.org/10.1002/solr.202100478
https://doi.org/10.1002/solr.202100478

	Abstract
	1. Introduction
	2. Related work and background
	2.1. Building outline extraction (from point cloud data)
	2.2. Persistent homology

	3. Methodology
	3.1. The overview of PH-shape
	3.2. The extraction of preliminary building outlines
	3.3. The simplification of building outlines

	4. Experiments
	4.1. Experiment details
	4.2. Experiment result of PH-shape
	4.3. Comparative experiment result

	5. Conclusion and future work
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	Data availability statement
	References

