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Abstract—This paper proposes a proximal variant of the alter-
nating direction method of multipliers (ADMM) for distributed
optimization. Although the current versions of ADMM algorithm
provide promising numerical results in producing solutions that
are close to optimal for many convex and non-convex opti-
mization problems, it remains unclear if they can converge to
a stationary point for weakly convex and locally non-smooth
functions. Through our analysis using the Moreau envelope
function, we demonstrate that MADM can indeed converge to a
stationary point under mild conditions. Our analysis also includes
computing the bounds on the amount of change in the dual
variable update step by relating the gradient of the Moreau
envelope function to the proximal function. Furthermore, the
results of our numerical experiments indicate that our method
is faster and more robust than widely-used approaches.

Index Terms—Distributed optimization, non-convex and non-
smooth optimization, weakly convex functions, ADMM, Moreau
envelope.

I. INTRODUCTION

Many systems, like the internet-of-things (IoT) and cyber-

physical systems, comprise distributed devices and sensors

that gather data for inference and decision-making. Building

distributed models in such systems without data transfer to a

central hub calls for distributed optimization methods involv-

ing peer-to-peer interactions. In addition, these methods allow

for coping with resource constraints, e.g., computational re-

sources, battery power, communication bandwidth, and privacy

protection [1]–[3].

There is a large body of work on distributed optimization

methods from different perspectives. The most direct approach

to the design of distribution optimization methods is via

message-passing implementations of subgradient computation

within subgradient descent methods [4]–[6]. Gradient methods

are generalized to solve structured optimization problems

using proximal methods [7], [8]. Additionally, variational

methods for probabilistic models lend themselves naturally

to optimization algorithms, such as variants of belief prop-

agation [9]. The subgradient method is well-known for its

ease of implementation, wherein a subgradient is taken at

each step, followed by an average with neighbors. On the

downside, subgradient descent has a sublinear convergence

rate and requires tuning of the step size. Meanwhile, ADMM
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performs fast and accurately in many practical convex and non-

convex optimization problems. For convex objective functions,

subgradient methods and ADMM are guaranteed to converge

to a global optimum under suitable parameter choices [6], [10],

[11]. However, the analysis of these methods for non-convex

problems is challenging due to the potential ill-behavior of

the objective function. The convergence analysis for ADMM

in non-convex problems is particularly more challenging as it

requires analyzing the convergence of multiple sub-problems

with different structures and assumptions.

One important family of non-convex optimization prob-

lems is weakly convex problems. Several such problems

arise in machine learning, including robust phase retrieval

[12], blind deconvolution [13], biconvex compressive sens-

ing [14], and dictionary learning [15]. Smooth functions, or

functions with Lipschitz continuous gradients, are weakly

convex functions. Several non-convex optimization algorithms

are proposed based on the smoothness assumption (e.g., [16],

[17]); however, weakly convex functions are not restricted

to smooth functions, and non-smooth functions can also be

weakly convex [18]. Existing work on distributed optimization

of weakly convex functions includes [19]. However, in the

subgradient-based algorithm in [19], the local functions must

satisfy the sharpness assumption, and the accuracy of the

estimation depends on the step size. Although ADMM is a

powerful algorithm applicable to many problems, it is not

currently used to solve weakly convex problems. As seen

in [20]–[23], several ADMM-based works study non-convex

optimization; however, these works require a smooth objective

function. It is still necessary to provide a distributed ADMM-

based algorithm that could work in the weakly convex setting

without having any Lipschitz differentiability condition.

We propose a Moreau envelope-based ADMM (MADM),

suitable for distributed optimization where local objectives

are weakly convex and not necessarily smooth. We chose the

Moreau envelope-based ADMM approach because it allows us

to guarantee a decrease in each primal update step and bound

the amount of change in the dual update step by primary

variables. This is achieved by incorporating the relationship

between the Moreau envelope function and proximal func-

tion. Therefore, by selecting appropriate penalty parameters

under mild conditions, including weakly convexity of each



local function, a connected network, and the boundness of

augmented Lagrangian function, we can ensure that the algo-

rithm converges to a stationary point. The Moreau envelope-

based ADMM approach stands out from other penalty-based

ADMM algorithms due to its superior theoretical convergence

properties. We conduct illustrative numerical experiments to

verify the convergence properties of the proposed method. The

experiments demonstrate the robustness of the proposed algo-

rithm when we fix the penalty parameters and step size, and

the problem structure remains the same. Unlike subgradient-

based methods, the MADM approach ensures faster and more

reliable convergence in this setting.

Mathematical Notations: Scalars, column vectors, and ma-

trices are respectively denoted by lowercase, bold lowercase,

and bold uppercase letters. The operator (·)T denotes transpose

of a matrix, and the jth column of matrix A is denoted by

Aj . The set {1, · · · , L} is denoted by [L]. For a function

h : R
n → R and penalty parameter γ > 0, Mh(w; γ) =

minx
{

h(x)+ 1
2γ ‖x−w‖22

}

is the Moreau envelope function

[24], and Proxh(w; γ) = argmin
x

{

h(x) + 1
2γ ‖x −w‖2

}

is

its associated proximal operator.

II. PROBLEM FORMULATION

Suppose L agents solve the following problem:

min
x

L
∑

i=1

fi(x), (1)

where fi(·) : R
N → R represents the local objective function

that is only known to agent i. Additionally, each agent may ex-

change information with its neighbors through the underlying

undirected communication network, which can be modeled as

a graph G = (V, E), where V = [L] represents the set of agents

and E ⊂ V × V represents the set of edges. In other words,

the existence of ei,j ∈ E indicates that i and j can exchange

information. Due to the fact that both ei,j and ej,i denote the

same edge, we merely use the expressions ei,j (if i < j) or

ej,i (if j < i) to avoid repetition. Additionally, E = |E| is the

total number of edges, and |Ni| is the number of neighbors for

node i in which Ni is its set of neighbors. In order to apply

ADMM, one can rewrite (1) in the form of an edge consensus

problem as follows:

min
{x1,··· ,xL,Z}

L
∑

i=1

fi(xi) + g(Z) (2)

subject to xi = zi,j ,xj = zi,j , ∀ei,j ∈ E

where each Z = {{zi,j}j∈Ni,j>i}
L
i=1 are auxiliary variables,

and g(·) = 0. The augmented Lagrangian of (2) is:

Lρλ
(X,Z,λ) =

L
∑

i=1

fi(xi) +
∑

ei,j∈E

(

(λi
i,j)

T(xi − zi,j)

+ (λj
i,j)

T(xj − zi,j) +
ρλ

2
‖xj − zi,j‖

2 +
ρλ

2
‖xi − zi,j‖

2
)

,

(3)

where X = [x1, · · · ,xL], λ = {{λi
i,j ,λ

j
i,j}j∈Ni,j>i}

L
i=1 are

dual variables, and ρλ is a penalty parameter. Distributed

ADMMs are iterative procedures that involve three steps at

each iteration. The first step is to minimize Lρλ
with respect

to X. Afterward, Lρλ
is minimized based on Z. In the last

step, a dual gradient-ascent iteration is used to update λ.

Definition 1. A function f(x) is ρ−weakly convex (ρ > 0) if

there exists a convex function h(x) such that h(x) = f(x) +
ρ‖x‖2.

Weakly convex local functions pose a challenge to dis-

tributed ADMM convergence because it can both be non-

convex and non-smooth. In the absence of Lipschitz differ-

entiability, which is coming from smoothness, and convexity

of the objective function, existing distributed ADMM-based

approaches cannot guarantee convergence. In the following

section, we present an ADMM-based algorithm can deal

with weakly convex functions, regardless of whether they are

smooth.

III. MOREAU ENVELOPE ADMM

The proximal augmented Lagrangian of (2) can be derived

as:

Ψρλ,ρβ
(X,Z,β,λ) = Lρλ

(X,Z,λ) +
ρβ

2
‖Z− β‖2F , (4)

where β = {{βi,j}j∈Ni,j>i}
L
i=1 are auxiliary variables, and

ρβ is a penalty parameter. In (4), The proximal term plays a

crucial role in obtaining convergent results. It regulates the be-

havior of the algorithm in both the Z-update step and indirectly

in the λ-update step by incorporating the Moreau envelope

function, resulting in provable convergence. According to our

proposed proximal ADMM algorithm, the (k + 1)th iteration

is as follows:

X
(k+1) = argmin

x

Ψρλ,ρβ

(

X,Z(k),β(k),λ(k)
)

, (5a)

Z
(k+1) = argmin

Z

Ψρλ,ρβ

(

X
(k+1),Z,β(k),λ(k)

)

, (5b)

β(k+1) = β(k) − η
(

β(k) −Z(k+1)
)

, (5c)

λ
i,(k+1)
i,j = λ

i,(k)
i,j + ρλ

(

x
(k+1)
i − z

(k+1)
i,j

)

, ∀ei,j ∈ E (5d)

λ
j,(k+1)
i,j = λ

j,(k)
i,j + ρλ

(

x
(k+1)
j − z

(k+1)
i,j

)

, ∀ei,j ∈ E (5e)

where η ∈ (0, 2).
More precisely, each xi can be updated individually in

update-step X, which after several simplifications, can be

stated as follows:

x
(k+1)
i = Proxfi

(

∑

j∈Ni,j>i z
(k)
i,j −

λ
i,(k)
i,j

ρλ

|Ni|

+

∑

j∈Ni,j<i z
(k)
j,i −

λ
i,(k)
j,i

ρλ

|Ni|
;

1

ρλ|Ni|

)

(6)



Algorithm 1: Moreau envelope ADMM for distributed

optimization (MADM)

Initialize X
(0), Z(0), β(0), λ(0), ρβ , ρλ and η ∈ (0, 2);

repeat

for i ∈ [L] do
Update xi as:

x
k+1
i = Proxfi





∑

j∈Ni

z
(k)
i,j −

λ
i,(k)
i,j
ρλ

|Ni| ; 1
ρλ|Ni|



;

end

Each agent sends its local vector xk+1
i to

neighboring agents;

for i ∈ [L] do

for j ∈ Ni do

Update zi,j as: z
(k+1)
i,j =

ρλ

(

x
(k+1)
j +x

(k+1)
i

)

+ρββ
(k)
i,j +λ

i,(k)
i,j +λ

j,(k)
i,j

2ρλ+ρβ
;

Update βi,j as: β
(k)
i,j − η

(

β
(k)
i,j − z

(k+1)
i,j

)

;

Update λi
i,j as:

λ
i,(k+1)
i,j = λ

i,(k)
i,j + ρλ

(

x
(k+1)
i − z

(k+1)
i,j

)

;

Update λ
j
i,j as:

λ
j,(k+1)
i,j = λ

j,(k)
i,j + ρλ

(

x
(k+1)
j − z

(k+1)
i,j

)

;

end

end

until the convergence criterion is met;

Also, in the Z-update step, zi,j can be updated separately as:

z
(k+1)
i,j = argmin

zi,j

(

(λ
i,(k)
i,j )T(x

(k+1)
i − zi,j)

+ (λ
j,(k)
i,j )T(x

(k+1)
j − zi,j) +

ρλ

2
‖x

(k+1)
j − zi,j‖

2

+
ρλ

2
‖x

(k+1)
i − zi,j‖

2 +
ρβ

2
‖zi,j − β

(k)
i,j ‖

2

)

, (7)

which can be simplified as follows:

z
(k+1)
i,j =

ρλ

(

x
(k+1)
j + x

(k+1)
i

)

+ ρββ
(k)
i,j + λ

i,(k)
i,j + λ

j,(k)
i,j

2ρλ + ρβ
.

(8)

Moreover, for each βi,j we have:

β
(k+1)
i,j = β

(k)
i,j − η

(

β
(k)
i,j − z

(k+1)
i,j

)

. (9)

By introducing λi
i,j , λ

j
i,j , zi,j , and βi,j to represent λi

j,i,

λ
j
j,i, zj,i, and βj,i, respectively in each agent i, the proposed

method is simplified and summarized in Algorithm 1.

IV. CONVERGENCE PROOF

This section presents the convergence analysis for Algo-

rithm 1. Several conventional assumptions are made to build

our convergence proof.

Assumption 1. The undirected graph G is connected.

Assumption 2. Ψρλ,ρβ

(

X
(k),Z(k),β(k),λ(k)

)

is lower

bounded, and
(

X
(k),Z(k),β(k),λ(k)

)

are bounded, in each

iteration k.

Remark. It can be shown that for coercive functions1 As-

sumption 2 holds true.

Assumption 3. Local objectives fi(·), ∀i ∈ [L], are continu-

ous, and weakly convex by parameter ρf .

The proof of convergence relies on a canonical methodology

as described in [25, Theorem 2.9]. Each algorithm iteration

has only one increasing step, which is the λ-update step.

As the gradient of the Moreau envelope is related to the

proximal function, the amount of increase in the λ-update

step (ρ−1
λ ‖λ(k+1) − λ

(k)‖2), is bounded based on the primal

and auxiliary variables. Thus, tuning the parameters lets us

guarantee the sufficient decrease condition of [25, Theorem

2.9]. In addition, the subgradient of the proximal augmented

Lagrangian based on each of its inputs can easily be shown

to be bound in each iteration, which is sufficient to validate

the bounded subgradient condition of the [25, Theorem 2.9].

Finally, by having the boundedness assumption and knowing

that the proximal augmented Lagrangian is continuous based

on each of its inputs, it can be shown that the continuity

condition of [25, Theorem 2.9] holds.

Lemma 1. Function g(·), ∀u,v ∈ R
n, satisfies condition:

‖∇Mg(·)(u, γ)−∇Mg(·)(v, γ)‖ = 0. (10)

Lemma 2. If Assumption 1 is held, for any m ≥ 1, the

following inequality is held:

‖λ(k+1) − λ(k)‖2F ≤

ρ2β

(

‖Z(k+1) − Z
(k)‖2F + ‖β(k) − β(k−1)‖2F

)

(11)

Proof. The lemma is proved by combining Lemma 1 with [26,

Lemma 4].

Lemma 3. Assuming Assumptions 1, 2, and 3 and ρλ|Ni| >
ρf , ∀i ∈ [L], the following inequality holds:

Ψρλ,ρβ

(

X
(k),Z(k),β(k),λ(k)

)

−

Ψρλ,ρβ

(

X
(k+1),Z(k+1),β(k+1),λ(k+1)

)

≥ (12a)

C(ρλ)‖X
(k+1) −X

(k)‖2F +
(ρλ

2
+

ρβ

2

)

‖Z(k+1) − Z
(k)‖2F

(12b)

+
ρβ

2

(

2

η
− 1

)

‖β(k+1) − β
(k)‖2F (12c)

−ρ−1
λ ρ2β

(

‖Z(k+1) − Z
(k)‖2F + ‖β(k) − β(k−1)‖2F

)

, (12d)

where C(·) is a function with positive value for ρλ.

Proof. Equation (12b) is derived based on the weak convexity

of local functions, and g(·), while (12c) is the result of

1A function f(·) is coercive if f(x)x → ∞ as ‖x‖ → ∞
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expanding the amount of change from the β-update step.

Further, (12d) derives from multiplying the bound obtained

from Lemma 2 with −ρ−1
λ , which gives an upper bound for

the amount of change in the λ-update step.

Theorem 1. By having ρλ|Ni| > ρf , ∀i ∈ [L], 1
η

≥ 1
2 +

ρ−1
λ ρβ , and ρλ ≥ (2

√
2−1)
2 ρβ , if Assumptions 1,2, and 3 hold,

the algorithm 1 converges to a stationary point.

Proof. The sufficient decrease condition of [25, Theorem 2.9]

holds when ρλ, ρβ , and ρβ satisfy the condition of Theorem

1, by Lemma 3. The same results are obtained for the

bounded subgradient condition of [25, Theorem 2.9] when

it depends on the norm of the successive difference of the

variables. Finally, employing Assumption 2 and knowing that

the proximal augmented Lagrangian is continuous for each

of its inputs, we can prove the continuity condition of [25,

Theorem 2.9], which completes the proof.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the MADM

by conducting simulations of distributed robust phase retrieval

with the objective function:

x̂ = min
x

1

m

L
∑

i=1

|〈ai,x〉
2 − b2i |, (13)

where x is the target signal, ai is the measurement and bi is

the observation in node i. We assume that each node i has one

measurement and observation, ai ∈ R
N i.i.d

∼ N (0,1), ∀i ∈ [L],
and x ∈ R

N ∼ N (0,1). For simplicity, we assume a noiseless

setting with bi = 〈ai,x〉, ∀i ∈ [L]. All simulations are

performed by averaging over 50 trials, and in each case, an

Erdös-Rényi graph consisting of L = 50 nodes was generated

as the communication network. To evaluate the performance

of this method, we also simulated the distributed projected

subgradient method (DPSM) proposed in [19]. The mean

square error (MSE) :=
∑L

i=1 ||x̂i−x||22
L

was utilized as the

performance measure. Moreover, z
(0)
i,j , ∀ei,j ∈ E in MADM

0 5 10 15 20
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and x
(0)
i , ∀i ∈ V in DPSM were initialized based on the

procedure proposed in [27, Sec. 4.2].

We first compare the convergence rate and efficiency of the

two algorithms. The dimension of the target signal was N =
10, and for the DPSM, µ0 was 0.04, while γ was chosen

through a grid search to achieve a minimum and stable error

with fast convergence. Fig. 1 illustrates the results of the grid

search. We see that the DPSM highly depends on the choice

of γ. In our algorithm we set ρλ = 20, ρβ = 1, and η = 1.1.

These values satisfy the conditions in Theorem 1. Fig. 2 shows

that MADM can achieve a faster convergence rate than DPSM

while maintaining a similar MSE.

Next, we study the robustness of the algorithms as a function

of the dimension of the target signal for fixed parameters; N

ranged from 1 to 20. A comparison of MADM and DPSM

behavior under different dimensions is illustrated in Fig. 3. We

see that MADM is more stable than DPSM when parameters

are fixed. Although Fig. 1 indicates γ = 0.99 is in the safe

zone for N = 10, it fails for N = 8 and N > 10.



VI. CONCLUSIONS

This paper presented a new proximal variant of the ADMM

algorithm, named MADM, for solving distributed optimization

problems. Our analysis demonstrated that the proposed method

could be applied to weakly convex functions under mild

conditions. In particular, we derived a bound on the change

in the dual variable update step by leveraging the relationship

between the gradient of the Moreau envelope function and

the proximal function. This allowed us to ensure convergence

to a stationary point. The simulation results showed that

MADM outperforms subgradient methods in terms of speed

and robustness. These findings suggest that MADM can be

a promising tool for solving a wide range of distributed

optimization problems in practice.

REFERENCES

[1] V. C. Gogineni, S. Werner, Y.-F. Huang, and A. Kuh, “Communication-
efficient online federated learning framework for nonlinear regression,”
in Proc. - ICASSP IEEE Int. Conf. Acoust. Speech Signal Process., 2022,
pp. 5228–5232.

[2] N. K. Venkategowda and S. Werner, “Privacy-preserving distributed
maximum consensus,” IEEE Signal Process. Lett., vol. 27, pp. 1839–
1843, Oct. 2020.

[3] Y. Wang, “Privacy-preserving average consensus via state decomposi-
tion,” IEEE Trans. Automat. Contr., vol. 64, no. 11, pp. 4711–4716, Mar.
2019.

[4] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Automat. Contr., vol. 54, no. 1, pp.
48–61, Jan. 2009.

[5] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence
for distributed optimization over time-varying graphs,” SIAM J. Optim.,
vol. 27, no. 4, pp. 2597–2633, Dec. 2017.

[6] A. Makhdoumi and A. Ozdaglar, “Convergence rate of distributed
ADMM over networks,” IEEE Trans. Automat. Contr., vol. 62, no. 10,
pp. 5082–5095, Oct. 2017.

[7] N. Parikh and S. Boyd, Proximal algorithms. Now Publishers, Inc.,
2014, vol. 1, no. 3.

[8] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical

learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011.

[9] M. J. Wainwright and M. I. Jordan, Graphical models, exponential

families, and variational inference. Now Publishers, Inc., 2008, vol. 1,
no. 1–2.

[10] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex
optimization over random networks,” IEEE Trans. Automat. Contr.,
vol. 56, no. 6, pp. 1291–1306, Nov. 2010.

[11] R. Xin, S. Kar, and U. A. Khan, “Decentralized stochastic optimization
and machine learning: A unified variance-reduction framework for robust
performance and fast convergence,” IEEE Signal Process. Mag., vol. 37,
no. 3, pp. 102–113, May 2020.

[12] C. Qian, X. Fu, N. D. Sidiropoulos, L. Huang, and J. Xie, “Inexact
alternating optimization for phase retrieval in the presence of outliers,”
IEEE Trans.Signal Process., vol. 65, no. 22, pp. 6069–6082, Nov. 2017.

[13] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind
deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 12, pp. 2354–2367, Dec. 2011.

[14] S. Ling and T. Strohmer, “Self-calibration and biconvex compressive
sensing,” Inverse Problems, vol. 31, no. 11, p. 115002, Sep. 2015.

[15] D. Davis and D. Drusvyatskiy, “Stochastic model-based minimization of
weakly convex functions,” SIAM J. Optim., vol. 29, no. 1, pp. 207–239,
Jan. 2019.

[16] X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Sublinear
and linear convergence of modified ADMM for distributed nonconvex
optimization,” IEEE Trans. Automat. Contr., June 2022.

[17] M. Hong, D. Hajinezhad, and M.-M. Zhao, “Prox-pda: The proximal
primal-dual algorithm for fast distributed nonconvex optimization and
learning over networks,” in Proc. Mach. Learn. Res., 2017, pp. 1529–
1538.

[18] J. C. Duchi and F. Ruan, “Solving (most) of a set of quadratic equalities:
Composite optimization for robust phase retrieval,” Information and

Inference: A Journal of the IMA, vol. 8, no. 3, pp. 471–529, Sep. 2019.
[19] S. Chen, A. Garcia, and S. Shahrampour, “On distributed nonconvex

optimization: Projected subgradient method for weakly convex problems
in networks,” IEEE Trans. Automat. Contr., vol. 67, no. 2, pp. 662–675,
Feb. 2021.

[20] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in
nonconvex nonsmooth optimization,” J Sci. Comput., vol. 78, no. 1,
pp. 29–63, Jan. 2019.

[21] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,” SIAM J. Optim., vol. 26, no. 1, pp. 337–364, Jan. 2016.

[22] M. Yashtini, “Convergence and rate analysis of a proximal linearized
ADMM for nonconvex nonsmooth optimization,” J. Glob. Optim., pp.
1–27, May 2022.

[23] A. Themelis and P. Patrinos, “Douglas–rachford splitting and ADMM
for nonconvex optimization: Tight convergence results,” SIAM J. Optim.,
vol. 30, no. 1, pp. 149–181, Jan. 2020.
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de la Société mathématique de France, vol. 93, pp. 273–299, 1965.
[25] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent methods

for semi-algebraic and tame problems: proximal algorithms, forward–
backward splitting, and regularized gauss–seidel methods,” Mathemati-

cal Programming, vol. 137, no. 1-2, pp. 91–129, Feb. 2013.
[26] J. Zeng, W. Yin, and D.-X. Zhou, “Moreau envelope augmented la-

grangian method for nonconvex optimization with linear constraints,” J.

Sci. Comput., vol. 91, no. 2, pp. 1–36, Apr. 2022.
[27] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval via Wirtinger

flow: Theory and algorithms,” IEEE Trans. Inf. Theory, vol. 61, no. 4,
pp. 1985–2007, Apr. 2015.


