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Abstract—Classification of remote scenes in satellite imagery
has many applications, such as surveillance, earth observation,
etc. Classifying high-resolution remote sensing images in machine
learning is a big challenge nowadays. Several automated techniques
based on machine learning and deep learning have been introduced
in the literature; however, these techniques fail to perform for
complex texture images, complex backgrounds, and small objects.
In this work, we proposed a new automated technique based on the
inner fusion of two deep learning models and feature selection. A
new network is designed at the initial phase based on the inner-level
fusion of two networks and combined weights. After that, hyperpa-
rameters have been initialized based on the Bayesian optimization
(BO). Usually, the hyperparameters have been initialized through a
manual approach, but that is not an efficient way of selection. After
that, the designed model is trained and extracted deep features from
the deeper layer. In the last step, a poor–rich controlled entropy-
based feature selection technique is developed for the best feature
selection. The selected features are finally classified using machine
learning classifiers. We performed the experimental process of
the proposed architecture on three publically available datasets:
Aerial image dataset (AID), UC-Merceds, and WHU-RS19. On
these datasets, we obtained the accuracy of 96.3%, 95.6%, and
97.8%, respectively. Comparison is conducted with state-of-the-art
techniques and shows improved accuracy.
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I. INTRODUCTION

IN THE widest definition, remote sensing is a data-gathering
technique that does not require the investigator to have direct

physical contact with the object, substance, or phenomenon
being studied. The whole procedure starts with the detection
of radiation using sensor technologies, which is followed by the
measuring of radiation at different wavelengths. This radiation is
released or reflected by distant objects and materials [1]. Because
remote sensing can provide observations on a local, regional, and
even global scale, it is useful for a variety of applications, in-
cluding monitoring land cover and use for agricultural purposes
[2], supervising forest management [3], conducting geomor-
phological surveys [4], and determining the dynamics of water
quality [5], among others. The availability of aerial images,
which allows for a more in-depth analysis of the planet’s surface,
has led to a significant surge in interest in earth observation [6].
In the classification of aerial scenes [7], [8], each aerial image is
evaluated using semantic labeling, a core component of the field
of remote sensing, to assign it a meaningful label [9]. Aerial
sceneries are often quite intricate, and there aren’t many visual
variations across groups [10]. For instance, common land-cover
types are seen throughout several different scene classes. The
classification of aerial images may be challenging since several
diverse spatial and structural patterns are present [11].

It is required to create a scene representation for aerial
imagery before attempting to ascertain the semantic labels
used in aerial scene classification. Creating a reliable scene
representation has received much attention recently, and sev-
eral different aerial scene classification methods have been
proposed [12]. These methods may be generally divided into
two groups: those that address low-level scene features and
those that address medium-level scene features. The common
low-level approaches include the Invariant Feature Transform,
the Local Binary Pattern, the color histogram, and the GIST
[13], [14], [15], [16]. The scene representation that midlevel
processes create includes the low-level local feature descriptors.
The methods for midlevel coding include Bag of Visual Words,
Spatial Pyramid Matching, Locality-Constrained Linear Cod-
ing, Probabilistic Latent Semantic Analysis, Latent Dirichlet
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Allocation, Improved Fisher Kernel, and Vector of Locally Ag-
gregated Descriptors [17], [18], [19]. Deep convolutional neural
networks (DCNNs) [20], currently dominate the classification
of most aerial images. The compelling depiction of the trait
served as the inspiration for these CNNs. Because CNNs can
provide strong feature representations to characterize the aerial
image, classification performance, particularly for high-level
approaches, has greatly improved. This is especially true for
sophisticated operations. High-level methodologies extract im-
pressive representations from aerial landscapes, unlike standard
low-level methods, which depend on manually created features.
High-level approaches may be contrasted with traditional low-
level ones [21].

A researcher has recently presented several computer vision-
based methods for classifying an object using satellite images.
Some worked on nonhistorical buildings using airborne and
satellite imagery [22]. The researcher used and worked on de-
veloping an automatic ship detection approach and a DL method
for using satellite images [23]. For example, Duarte et al. [24]
suggested an approach for satellite images using a deep learn-
ing approach. In this presented method, they implemented the
DCNN technique for image classification of building damages.
By this method, they gained 94% accuracy. The main drawback
of this presented framework was only one multiresolution net-
work did not improve the classification accuracy compared to
the used benchmark. Pritt et al. [25] presented a method for satel-
lite image classification using deep learning. In this presented
methodology, they performed object and facility recognition
using high-resolution and multispectral satellite images. From
this technique, they obtained 95% accuracy. The dark side of
this method was the state-of-the-art object detection method,
which is not well for satellite images. Gao et al. [26] a region-
based deep learning approach is suggested to segment satellite
images. In this presented method, they used rooftop detection
by using the segmentation approach. From this method, they
obtained 92% accuracy. This presented method could not avoid
the speckle-like error sometimes found in the segmentation
model. Rostami et al. [27] demonstrated using deep learning
techniques for fire detection with Landsat-8 satellite imagery. In
this presented method, they used CNN multiscale detection for
AFD in the Landsat-8 dataset. Consequently, they succeeded
with 95% accuracy. This presented method’s limitation was
detecting fires of varying sizes and shapes over challenges test
shape. Yosmaoglu et al. [28] presented a road network gener-
ation using satellite images. The presented method evaluates
and compares the Resnet and U-net generation models. As a
result, they achieved 99% accuracy. Lim et al. [29] presented
a dead pine tree detection using a deep learning method. In
this presented method, they used aerial vehicle and object de-
tection deep learning to solve the problem. As a result, they
achieved 99% accuracy. Ch et al. [30] presented a method for
ECDSA-based water bodies using satellite images. They em-
ployed the U-Net model to achieve data integrity by using the
security feature elliptic curve electronic signature algorithm.
Therefore, they obtained 94% accuracy. This technique’s main
flaw was extending this model into video input. Najar et al. [31]
demonstrated an approach for coastal bathymetry using deep
learning approaches. From this presented method, they used

Sentinel-2 satellite imagery and multiple bathymetry to train the
deep learning model. As a result, they achieved and predicted
50% accuracy. One limitation of this approach was the selection
of data based on certain dates and the need to train on applica-
tion sites. Kaur et al. [32] introduced a transfer learning-based
approach for automatically detecting and tracking hurricanes
using satellite imagery. In this presented method, they utilized a
transfer learning-based model. Thus, they gained 95% accuracy.
The limitation of this method was made more generalizable by
including images and another hurricane. Zhuang et al. [33] pre-
sented a method for semantic guidance transfer-based method by
using satellite images. In this presented method, the UAV-based
geo localization dataset. As a result, they achieved 8% more
improvement in accuracy. The limitation of this method was
a lot of information would be lost when using this model.
Zhang et al. [34] presented a building height extraction using
satellite images. In this presented method, the researchers used a
stereo-matching technique coupled with a DSM-based approach
for predicting bottom elevation. As a result, they improved the
accuracy as compared to other method. Ul Ain Tahir et al. [35]
presented a method for wildfire detection using deep learning.
In the presented method, they utilized YOLOVv5-based deep
learning based model. As a result, they achieved 94% F1-score.

Hasan et al. [36] presented a novel-based resource allocation
technique for 5G heterogeneous networks. In this presented
work, the authors designed a new biogeography-based dy-
namic subcarrier allocation algorithm for minimizing the cross-
tire subcarrier snooping problems in MeNB and HeND. They
achieved 88.1% outage and 83.6% spectral efficiency. It was
higher than the existing techniques. Ariffin et al. [37] demon-
strated a modeling approach based on frequently modulated
continuous radar waves for detecting landslides in Malaysia. The
authors designed a radar for detecting slow-moving landslide
movements in this work. They successfully achieved 20 m/s
speed radar performance to detect landslide occurrences. El Asri
et al. [38] presented a method for modular system based U-Net
using satellite images. In this presented method, they utilized
CNN based deep learning model. Therefore, they obtained 70%
accuracy. The presented framework’s main flaw was the use of
the data augmentation method, which will improve the result.

In summary, the authors in the related works used deep
learning and U-net generation models for the classification of
land scenes using satellite images. Few of the authors focused on
the detection of multiple objects from satellite images. Remotely
sensed images play a critical role in several applications such
as environmental monitoring, disaster assistance, and geological
surveys. The increasing need for satellite-derived imagery has
led to a substantial flow of data being acquired on a daily basis.
Consequently, the database has been expanded to include a much
larger quantity of remote-sensing images. However, the task of
accurately and efficiently acquiring and classifying images from
an unstructured database is a significant challenge. Cloud cover
and atmospheric conditions may conceal certain areas of the
image. Therefore, getting clear and consistent data for classi-
fication might be challenging. Landscape features are complex
and there is a chance of spatial heterogeneity within a single
image. Therefore, correct classification is another challenge in
landscape classification using satellite images.
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Fig. 1. Proposed methodology for the classification of land scene using satellite images.

In this work, we designed a deep learning-based internally
fused models approach for classifying land scenes using satellite
images.

The major contributions of the proposed framework are as
follows.

1) Substitution-based approach is employed for the contrast
enhancement of the satellite images.

2) Proposed a novel fused model technique based on Ef-
ficientb0 and MobileNetV2 architecture. The proposed
model’s hyperparameters were optimized using Bayesian
optimization (BO) and trained using deep transfer
learning.

3) Proposed an improved poor and rich controlled entropy
optimization for best feature selection and conducted t-test
analysis to measure the significance of different classifiers.

The rest of this article is organized as follows. The method-
ology section describes the dataset and normalization tech-
niques, the proposed fused architecture, and the improved
controlled poor and rich optimization (PRO) approach for
best feature selection. The findings are explained under
Section III, while Section IV presents the proposed method’s
conclusion.

II. PROPOSED WORK

This section explains the proposed landscape classification
framework using a novel fused model. The proposed model
was trained using BO and employed improved poor and rich
controlled-entropy optimization for best feature selection, as
shown in Fig. 1. This figure illustrates that the publically avail-
able datasets of satellite images were used for classification of
landscape classification. In the initial step, contrast enhancement
is performed by using a substitution-based approach. Following
that, the two pretrained models named EfficientB0 and Mo-
bileNetv2 are internally fused for training proposes. In addition,
the proposed model is fine-tuned by using deep transfer learning.
Then, BO was utilized to select the optimized hyperparameters
for the proposed model. The features were extracted from the
trained model using newly added depth-wise activation.

Furthermore, improved poor and rich controlled-entropy
optimization was employed to select the best features. The
optimized features are fed to neural network classifiers for the
final classification. In the last phase, t-test analysis is conducted
for statistical comparison of the performance of neural network
classifiers.

A. Dataset and Contrast Enhancement

In this article, we used three publically available land-use
datasets for the experimental process. The selected datasets are
aerial image dataset (AID) (https://captain-whu.github.io/
BED4RS/), UC-Merced land use (https://captain-whu.
github.io/BED4RS/), and WHU-RS19 (http://weegee.vision.
ucmerced.edu/datasets/landuse.html). AID dataset is one of
the largest aerial scenes datasets containing 30 aerial scene
classes: forest, airport, farmland, bridge, beach, mountain,
river, church, desert, dense residential, baseball field, industrial
area, playground, pond, park, meadow, and to name a few. The
total number of samples in this dataset is 10 000. Each aerial
image has a predetermined resolution of 600 × 600 pixels to
offer as much information as possible about a location. The
UC-Merced land-use dataset consists of 21 land-use classes,
each with 100 samples. The size of each image is 256 × 256
and manually acquired from the USGS National Map Urban
Area Imagery collection for urban sites around the United
States. In the WHU-RS19 dataset, 19 classes exist airport,
beach, bridge, commercial area, desert, farmland, football field,
forest, industrial area, meadow, mountain, park, parking lot,
pond, port, railway station, residential area, river, and viaduct.
This dataset’s images have dimensions of 600 × 600 pixels and
nearly 50 images per class. Fig. 2 presents a few images of each
class of this dataset.

The images of these datasets were in low contrast and dark.
These problems may lead us to misclassification. Therefore, we
created a substitution-based approach for contrast enhancement
by utilizing different filters. First, an adjusted filter with stretch
limits is employed, and the resultant images are substituted
in a sharpened filter. By sharpen filter, the intensity values of

https://captain-whu.github.io/penalty -@M BED4RS/
https://captain-whu.github.io/penalty -@M BED4RS/
https://captain-whu.github.io/BED4RS/
https://captain-whu.github.io/BED4RS/
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
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Fig. 2. Classes in the WHU-RS19 dataset.

Fig. 3. Some samples of contrast enhanced of satellite datasets.

the images at the edges where different colors converge are
heightened. Mathematical formula is defined as follows.

Consider that the satellite database has k images S ∈ Rk,
where each image is represented by fk(v0, h0) and(v0, h0) ∈ R.
Assume that SL and SU are the specified lower and upper-
restrictions on the image’s intensity values before being normal-
ized and EL and EH are the current lowest and maximum pixel
values. Each pixel is measured by using the following equation:

gkadj (v0, h0) = (P − EL)

(
SU − SL

EH − EL

)
+ SL (1)

where gadj(v0, h0) is the resultant image, this image is further
substituted in sharper filter using un-sharp masking approach.
This filter is utilized to upgrade the polarity along the edges,
sharpen using un-sharp mask is mathematically represented as

Sk (v0, h0) = gkadj (v0, h0)− ψk
smooth (v0, h0) (2)

Sk
sharp (v0, h0) = βk (v0, h0) + α× Sk (v0, h0) (3)

where α is the scaling coefficient that determines the degree
of sharpness and ψk

smooth(v0, h0) is the smoothed variant of
βk(v0, h0). S

k
sharp(v0, h0) is a sharpen using the un-sharp mask

filtered image. Therefore, the resultant image is mathematically
defines as

Iout (v0, h0) = f (v0, h0) + gkadj (v0, h0) + Sk
sharp (v0, h0) (4)

where Iout(v0, h0) denotes the final contrast-enhanced image,
which is presented in Fig. 3.

B. Proposed Fused CNN Model

DCNN architectures EfficientNet-B0 and MobileNet V2 are
both utilized for image classification tasks. EfficientNet-B0 is a
version of the EfficientNet architecture, which was introduced
by Google in 2019 [39]. EfficientNet-B0 is a variant of the
EfficientNet architecture, which is known for its efficient use
of computation and network capacity. EfficientNet-B0 is the
smallest and most efficient version of the EfficientNet frame-
work, differing from its larger predecessors by requiring less
computing capacity and having fewer parameters. To obtain the
highest accuracy in image classification tasks, the architecture
of the network is based on a compound scaling technique that
effectively increases the network’s dimensions (depth, breadth,
and resolution) [40]. Moreover, MobileNetV2 is an architecture
for a network of CNN that was designed specifically to meet the
needs of mobile and embedded devices [41]. In MobileNetV2,
the expressive potential of the model is increased by integrating
inverted residuals into its conceptual framework. Due to the
design’s primary focus on memory and computational efficiency,
it is optimally adapted for deployment on devices with limited
computing capacity, such as smartphones and tablets [42]. Effi-
cientNetB0 and MobileNetV2 have gained recognition for their
significant computational efficiency and reduced model size,
while maintaining a satisfactory level of performance. In this
research, the selection of both models was based on their ability
to achieve an appropriate balance between computational effi-
ciency and accuracy. The Efficient-b0 and mobileNetv2 archi-
tectures are fused into a single network to leverage both models’
strengths. Efficient-b0 is utilized as a backbone network and
mobileNet-v2 is added as a light -weight feature extractor. This
process increased the accuracy and reduced the computation
and memory usage. The fused model accepts input images up
to 224× 224× 3 pixels in size. Fully connected, SoftMax and
classification layers were removed from the Efficient-b0 and
MobileNetv2 in order to add a new depth-wise layer to combine
the features of global average pooling layers of both models.
Following that, new fully connected layer, new softmax, and
classification layers are added. The new FC layer is modified
according to selected datasets. We trained the fused model by
utilizing the BO in order to achieve the optimized hyperparam-
eters. The brief explanation of BO is provided in Section III-D.
After training, deep features are extracted from the depth-wise
concatenation activation. The dimensions of extracted features
are N × 2560. The MobileNetV2 has 3.5 M parameters and
EfficienetNetB0 has 3.5 M parameters. After depth-wise fusion
process, resultant architecture has 6.3 M parameters instead
of 8.8 M parameters. The fusion process of Efficient-b0 and
MobileNetv2 architectures is presented in Fig. 4.

C. Bayesian Optimization

Hyperparameters tuning is a crucial step in the training of
DCNNs to achieve optimal performance. However, the search
space of hyperparameters is often large, complex, and the
evaluation of different hyperparameter configurations can be
computationally expensive. Traditional methods, such as grid
search and random search, are not well suited for this task due
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Fig. 4. Proposed fused model using depth concatenation of the classification using satellite images.

to their inefficiency and lack of ability to handle constraints and
noise. BO is a powerful technique that can be used to solve
this problem. It models the unknown performance of the DCNN
as a function of the hyperparameters with a surrogate model,
typically a Gaussian process (GP). The GP is used to model the
distribution of the performance over the hyperparameters space,
and the optimization algorithm is based on this distribution [43].
In each iteration, the BO algorithm chooses the next set of
hyperparameters to evaluate based on the current state of the
GP and an acquisition function that balances exploration and
exploitation [44], [45].

GP is a type of stochastic process where the distribution of
any subset of its random variables is multivariate Gaussian.
This process operates under the assumption that inputs that are
similar will produce similar outputs, and therefore, it uses a
statistical model to represent the function. Similar to a Gaussian
distribution, which is distributed by its mean and covariance,
GP is defined by its mean function μ : d→ R and covariance
function cov : d× d′ → R. Which is mathematically formu-
lated as

f (d) ∼ GP (μ (d) , cov (d, d′)) . (5)

The function f(d) for any given d is instead of being a
scalar, the new distribution represents f(d). For simplicity, the
mean function of the GP can be assumed as μ (d) = 0. For
covariance function cov, the exponential function is selected
which is mathematically defined as

cov (di, dj) = exp

(
1

2
||di − dj ||2

)
(6)

where di and dj denote the ith, jth samples, respectively. The
closer di and dj are to each other, the more likely the value of
some parameter will approach 1. Conversely, as the separation
between di and dj increases, the value of the parameter tends
to approach 0. This relationship highlights the correlation and
mutual influence between the samples, which intensifies, as the
samples are closer together, and weakens as they move further
apart.

The procedure for ascertaining the posterior distribution of
f(d) is as follows.

Initially, sample s observations as training set T1:s =
{dn, fn}sn=1 , fn = f(dn). Assume that the values fare derived
according to multivariate normal distribution f ∼ N(0, τ ),
where

τ =

⎡⎢⎢⎢⎣
cov (d1, d1) cov (d1, d2) · · · · · · cov (d1, ds)
cov (d2, d1) cov (d2, d2) · · · · · · cov (d2, ds)

...
...

...
cov (ds, d1) cov (ds, d2) · · · · · · cov (ds, ds)

⎤⎥⎥⎥⎦ .
(7)

Every value of vector τ is determined by using (6). The
degree of approximation between the two samples is calculated
by function f and without taking the noise effect the diagonal
values of cov (di, di) = 1.

Based on function f, calculate the function value of new
sample point ds+1 using fs+1 = f(xs+1). Based on the GP
assumption, it can be stated that the combination of the function
values of f1:s in the training set and the value of fs+1 follows a
normal distribution with s+ 1 dimensions described as[

f1:s
fs+1

]
∼ N

(
0,

[
τ cov

covT cov (ds+1, ds+1)

])
(8)

where
f1:s=[f1, f2, f3 . . . fs]

T , cov=[cov(dt+1, d1)cov(dt+1, d2)
. . . cov(ds+1, ds)] In addition, fs+1 adheres to a normal
distribution with a single dimension, meaning that according to
the characteristics of a joint Gaussian distribution

μs+1 (dt+1) = covT τ inv f1:s (9a)

σ2
s+1 (dt+1) = − covT τ−1covT + cov (ds+1, ds+1) . (9b)

Once the posterior distribution of the objective function is
established, BO employs an acquisition function (ϕ) to find
the maximum of the function f . Typically, a high value of the
acquisition function is assumed to correspond to a high value of
the objective function f . As a result, maximizing the acquisition
function is considered the same as maximizing the function f .
Hence, the objective function is defined as

d+ = argmax
d∈A

ϕ (d|D) . (10)



HAMZA et al.: INTEGRATED PARALLEL INNER DEEP LEARNING MODELS INFORMATION FUSION WITH BO 9893

The employed acquisition function is expected improvement
(EI). The EI method calculates the expected level of improve-
ment that can be achieved while investigating the area around
the current suitable value. The current ideal value could be a
local optimum, and the algorithm will need to look for the best
value in other regions of the domain if the actual improvement
of the function value is less than the predicted value after the
process has run. The difference between the function value
at the sample point and the present optimal value is used to
compute improvement (I). The improvement is regarded as 0 if
the function value at the sample point is less than the existing
optimum value

I (d) = max {0, fs+1 (d)− f (d)} . (11)

In accordance with the EI optimization strategy, the objective
is to maximize EI with respect to the current optimum value (f)

argmax E [I (d)] = argmax E(max
{
0, fs+1 (d)− f

(
d+
)}

(12)
When fs+1(d)− f(d+) ≥ 0, the distribution fs+1(d) of fol-

lows a normal distribution with the mean μ(d), and the stan-
dard deviation, σ2(d). Consequently, the distribution of the
random variable I is also a normal distribution, with the mean
μ(d)− f(d+) and standard deviation both being equal to σ2(d).
The probability density function of I is

f (I) =
1√

2πσ (d)
exp

(
− (μ (d)− f (d+)− I)

2

2σ2 (d)

)
, I ≥ 0.

(13)
The function EI is used to compute the expected value of

the degree of improvement that can be derived by analyzing
the neighborhood surrounding the current optimal value. If the
increase in function value during algorithm execution is less
than the expected value, then the current optimal value point
may represent a local optimal solution. In such situations, the
algorithm will continue to seek for the optimal value point in
other domain locations. The definition of EI is as follows:

E (I)

∫ ∞

∞
If (I) dI =

∫ I=∞

I=0

I
1√

2πσ (d)

exp

(
− (μ (d)− f (d+)− I)

2

2σ2 (d)

)
dI

= σ (d) [ω∅ (ω) + ∅ (ω)] (14)

where

ω =
μ (d)− f (d+)

σ (d)
. (15)

The expectation of improvement (I) is represented by (14),
which is the definition of the EI function. In the final step, the
employed stopping condition of BO has two factors; MaxTime is
the first in which the BO optimization procedure will have a time
limit of 50 400 s, which is equivalent to 14 h. The optimization
process will end upon reaching the allotted time limit, regardless
of whether it has converged to the optimal solution or not and
the second stopping condition was when it completed its initial
30 function evaluations. In this research, we employed the BO to

TABLE I
SELECTED HYPERPARAMETERS AND ITS RANGES FOR OPTIMIZATION USING

BAYESIAN OPTIMIZATION

fine-tune the proposed model hyperparameters. The considered
hyperparameters for tuning are listed in Table I.

D. Improved Feature Selection Technique

Feature selection in deep learning is a challenging task that re-
quires specific techniques to handle the high dimensionality and
nonlinearity of deep neural networks. The use of regularization,
auto-encoder-based methods, and metaheuristic optimization
methods are effective strategies that can improve the accuracy
and effectiveness of deep learning algorithms. Selecting the
most suitable feature selection approach is crucial in order to
get optimum results, since it should be based on the distinctive
attributes of the given situation. In feature selection, the aim is
to identify a subset of relevant features from a large number of
input features that can contribute to the prediction accuracy of
the model [46]. The achieved feature vector from the proposed
model was high in dimension, which can lead to increased
computational cost and longer training time. Therefore, we
employed PRO controlled entropy for feature selection. The pro-
posed technique can reduce the computational cost and improve
the training efficiency, while still maintaining high accuracy.
The original PRO algorithm is based on a real-world social
phenomenon that can provide a viable solution for complex
optimization problems [47]. Wealth is a widely used concept
in various fields, particularly in economics. Its definition varies
based on the attitude and implementation of the context. It
is a measure of the economic status of individuals, and its
quality and quantity are defined within the economic categories.
The aspiration to become wealthy is a universal human desire,
and people are naturally driven by financial pursuits to satisfy
their needs and desires. Although there are numerous ways
to acquire wealth, seeking insights from the experience and
knowledge of the wealthiest individuals globally seems to be
the most effective approach. Sociologically, people in a society
are classified into two financial classes: the rich, whose wealth
level exceeds the average, and the poor, whose wealth level is
below the average. Members of both classes strive to improve
their economic conditions through diverse means. However, they
share a common tendency to observe each other’s behavior and
attempt to enhance their position by emulating or influencing
the other. Therefore, the PRO algorithm’s fundamental concept
is to apply two strategies.

1) The poor population endeavors to improve their status and
reduce the class gap by learning from the rich.

2) The rich population aims to widen the class gap by ob-
serving and gaining wealth from the poor.
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The PRO algorithm involves the generation of an initial
population by a random process using a uniform distribution
technique. This technique selects values within specified upper
and lower boundaries for each parameter. The original popula-
tion is thereafter assessed according to the objective function
and afterward arranged in ascending order depending on the
outcomes. The PRO algorithm primarily consists of two distinct
subpopulations, that represent the rich and the poor, respectively.
The main population is mathematically defined as

P f
main = P f

rich + P f
poor (16)

where P f
main , P

f
rich, and P

f
poor denoted the main population, rich

population, and poor population size of features f, respectively.
Following that, the main population is sorted in ascending order.
The better-position population is considered as rich population
and the remaining are considered as poor population of feature.
The equation is defined as

f1 < f2 < f3 < f4 . . . fr < fr+1 < fr+2 . . . fN (17)

where f1, f2, f3, f4, and fr represented the rich population and
fr+1, fr+2, and fN denoted the poor population. The primary
population comprises two subpopulations: the poor and the rich.
At each iteration of the algorithm, a defined mechanism must
be employed to alter the position of every member of both
subpopulations

The change in position of each feature of rich population by
using the following equation:

−−→
V new
r,k =

−−→
V old
r,k + ∝

[−−→
V old
r,k −

−−−→
V old
p,best

]
(18)

where
−−→
V new
r,k denotes new kth position value of rich population,

−−→
V old
r,k represents the present kth position value of rich population,

∝ is the parameter that represents the class gap, and
−−−→
V old
p,best

denotes the present position of best member of the poor pop-
ulation. The value of V considered as a vector of all variables.
Actually, each member of rich population widens the gap with

every member of the poor population. Therefore,
−−−→
V old
p,best is the

best member of poor population. When the distance of rich

population member increases from the
−−−→
V old
p,best, its distance in-

creases from all the members of poor population. Actually, the
poor population gets poorer when the distance between poor
and rich gets higher. The distance that each member of the
rich population should maintain from the poor population is
determined by a random value, ∝ which falls between 0 and 1.
The arbitrary nature of ∝ creates an internal competition within
the rich population.

In every alteration of PRO, change in position of each feature
of poor population by using the following equation:

−−→
V new
p,k =

−−→
V old
p,k +

[
∝ (pattern)−

−−→
V old
p,k

]
(19)

where
−−→
V new
p,k represents the new kth position of poor

population,
−−→
V old
p,k denotes the current value of kth position of

poor population, ∝ is a random parameter, which presents the
pattern improvement and pattern of getting rich. The pattern

value mathematically formulated as

Pattern =

−−−→
V old
r,best +

−−−→
V old
r,avg ++

−−−−→
V old
r,worst

3
(20)

where
−−−→
V old
r,best represents the best member positions of the rich

population,
−−−→
V old
r,avg represents the average position member of the

rich population while
−−−−→
V old
r,worst denotes the worst position member

of the rich population.
In the realm of economics, certain factors have the potential to

positively or negatively affect the overall economic climate. Ex-
amples of these factors include sudden fluctuations in the price
of gold, oil, or petrochemicals, as well as significant changes in
exchange rates, stock interest rates, or banking interests. Such
factors can lead to abrupt alterations in the situation of certain
individuals within a given society. Due to the inherent difficulty
and sometimes impossibility of predicting these factors, they are
utilized as a form of mutation in the algorithm. In this algorithm,
we employed Gaussian mutation process. In Gaussian mutation,
a small random value is added to each variable in an individual’s
solution vector, drawn from a Gaussian (normal) distribution
with mean zero. The Gaussian distribution is a probability
distribution that is symmetric around the mean, with most values
close to the mean and progressively fewer values further away
from the mean and the scale and shrink parameters determine
the standard deviation of the distribution. At the first generation,
the standard deviation is determined by the scale parameter. The
initial population range is defined as a vector V with rows and
columns, the standard deviation for each coordinate i of the
parent vector is determined by scale × (V (i, 2)− V (i, 1)), and
the reduction in standard deviation as generation’s progress is
determined by the shrink parameter. The standard deviation for
coordinate i of the parent vector at the kth generation, repre-
sented as σi,k, is determined by utilizing a recursive formula

σi,k = σi,k−1

(
1− Sh

k

generations

)
(21)

where Sh denotes the shrink, the default value of shrink and
scale is set. For generating new population after every iteration.
After each iteration of the PRO algorithm, fitness is calculated
by employing KNN. This function returns the cost value and
cost is measured by using the following equation:

Error = 1− Accuracy. (22)

The cost function of KNN is mathematically formulated in
the following equation:

cost = α× Error + β ×
(
No of selected features

Max of features

)
(23)

where the default values of α 0.99 and β are 0.01. There exist
four distinct populations. These include the original populations
of both the rich and the poor, as well as the updated populations
of poor and rich. An objective function is used to assess each of
these four populations, which are then merged into a composite
population based on their ascending order of values. Prior to the
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creation of this composite population, the poor and rich sub-
populations are separated by a predefined number. The purpose
of merging the poor and rich populations at the end of each
iteration is to account for the possibility that a member of the
poor population may have gained enough wealth to replace a
member of the rich population, and vice versa. It is worth noting
that the top-performing member is always the first one in the rich
population. Based on this, the original PRO selected features of
dimension ×Ŝi where i ∈ {N × 1267, N × 773, N × 1220}.
These feature vectors are obtained for three selected satellite
datasets. After that, an improved version is designed based on
the entropy calculation after each iteration.

Entropy-controlled Selection: Consider (21); the Entropy is
computed after each iteration, removing the uncertainty among
them. Entropy is computed as follows:

Entr (k) = −
∑
i

hilog2hi. (24)

Based on the entropy value, the (21) is updated as follows:

σi,k = σi,k−1

(
1− Sh

Entr
generations

)
. (25)

This equation’s values (features) are returned and passed to
the fitness function that checks the fitness after each iteration.
In addition, the cost of each iteration is computed after each
iteration. In the end, the final feature vectors are obtained of
dimensions N × 1060, N × 642, N × 1004, respectively, for
all three datasets. The selected features are fed into neural
network classifiers for the final classification.

III. RESULTS AND ANALYSIS

In this section, detailed experimental results of the proposed
framework are described. The experiments are conducted on
three datasets, and a complete description of each dataset is
given under the Dataset and Contrast Enhancement section. Each
dataset is divided into a 50:50 ratio. This indicates that 50%
of images are utilized to train the proposed model and other
50% images are opted for testing. All the experiments were
conducted using the 10-fold cross-validation because 10-fold
cross-validation is widely favored due to its ability to achieve
an appropriate balance between variance, which pertains to
the generalization of the performance estimate, and computa-
tional cost. In our case, we had N×2560 features the smaller
value of k was not performed well and after 10 values of k,
the performance of models was consistent. The utilized static
hyperparameters during training of the proposed model are
epochs, minibatch size and optimizer having values are 300,
18, and stochastic gradient decent with momentum, respectively.
Furthermore, the initial learning rate, section depth, momentum,
L2Regularization, dropout, and activation type are defined with
their ranges and optimized by using BO. Multiple neural network
classifiers and KNN are employed for the classification task,
including narrow neural network, medium neural network, wide
neural network, bi-layered neural network, and weighted KNN.
The performance evaluation parameters are precision, recall,
accuracy, error, false negative rate, f1-score, and time. All the
experiments were conducted on MATLAB R2023a executing on

MSI’s leopard series with Intel core i7 processor, 16 GB RAM,
512 SSD with 1TB HDD integrated disk, and 4 GB NVIDIA
RTX graphics card.

A. AID Dataset Results

In this section, the AID dataset’s results are provided. The
deep features of the proposed fused architecture model are
extracted in the first step. The enhanced data set was used to
train this model using BO and deep transfer learning. Table II
shows the classification accuracy of this model, which obtained
a 95.7% score from the wide neural network classifier. The
precision, recall, error, FNR, and F1-score are 95.58%, 95.53%,
4.3%, 4.47%, and 95.55%. The medium neural network has the
shortest execution time of 32.21 (s) and the longest execution
time of 106.23 (s) in this phase experiment, which records the
classification computational time for each classifier. The best
features were selected in the next phase utilizing PRO. Accord-
ing to Table III, selected features are passed to the classifiers.
Wide neural network classifier achieved a maximum accuracy
of 95.6%. The wide neural network recall rate is 95.37%, the
accuracy rate is 95.45%, the error rate is 4.4%, the FNR is 4.63,
and the F1-score is 95.54%. Each classifier’s processing times
are further recorded.

The results of the third step, which involves controlled En-
tropy are performed, are shown in Table IV. The wide neural
network classifier has an accuracy of 96.3%, higher than the
previous two steps (see Tables II and III). Furthermore, recall and
precision has 96.13 and 96.0%, respectively. A confusion matrix
is shown in Fig. 5 and may be used to verify the performance of
a wide neural network. The controlled entropy approach signif-
icantly improves accuracy in comparison to the previous two
experiments performed on this dataset. It is also noticed that
time decreases after the entropy phase.

B. UC-Merced Land-Use Results

In the initial phase, UC-Merced Land-use dataset results are
described. Deep features are extracted from the proposed fused
architecture model and trained using BO and deep transfer learn-
ing on enhanced datasets. Table V presents the classification
results of the UC-Merced Land-use dataset. The wide neural
network achieved a higher accuracy of 96.4% in this table. The
precision, recall, error, FNR, and f1-score having values are
96.4%, 96.3%, 3.6%, 3.7%, and 96.3%, respectively. The wide
neural network classifier has achieved higher accuracy than all
the listed classifiers in Table V. Furthermore, the computation is
also recorded for all the classifiers. The shortest execution time
is 15.96 (s), and the longest execution time has been recorded
for the bi-layered neural network classifier, which is 23.09 (s).

In the next phase, the best features are selected by opting for
PRO. The optimized features are passed to a neural network
classifier for classification. Table VI illustrates the improved
PRO results on the UC-Merced Land-use dataset. The wide
neural network achieved a higher accuracy of 96.5% from this
experiment. Wide neural networks outperformed the rest of the
classifiers. The precision rate is 96.5%, the recall rate is 96.4%,
the error rate is 3.5%, FNR is 3.6%, and the f1-score is 96.4%.
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TABLE II
PROPOSED FUSED ARCHITECTURE OF EFFICIENTB0 AND MOBILENETV2 MODEL FUSION RESULTS ON THE AID DATASET

Bold entities presents the highest values in the tables.

TABLE III
PROPOSED IMPROVED POOR AND RICH OPTIMIZATION RESULTS ON AID DATASET

Bold entities presents the highest values in the tables.

TABLE IV
PROPOSED CONTROLLED ENTROPY RESULTS ON AID DATASET

Bold entities presents the highest values in the tables.

TABLE V
PROPOSED FUSED ARCHITECTURE MODEL RESULTS ON UC-MERCED LANDUSE DATASET

Bold entities presents the highest values in the tables.
TABLE VI

PROPOSED IMPROVED POOR AND RICH OPTIMIZATION RESULTS ON UC-MERCED LAND-USE DATASET

Bold entities presents the highest values in the tables.
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Fig. 5. Confusion matrix of a wide neural network of controlled entropy process on AID dataset.

TABLE VII
PROPOSED CONTROLLED ENTROPY BASED RESULTS ON UC-MERCED LAND-USE DATASET

Bold entities presents the highest values in the tables.

TABLE VIII
PROPOSED FUSED ARCHITECTURE MODEL RESULTS ON WHU-RS19 DATASET

Bold entities presents the highest values in the tables.

These values are also calculated from the other classifiers. The
computation time is noted for all the classifiers, and it is observed
that the medium neural network classifier required a lesser time
of 9.37 (s).

In contrast, weighted KNN takes the longest time, which is
17.35 (s). The final step employs a controlled entropy approach
on best features. Table VII shows the controlled entropy results
on the UC-Merced Land-use dataset. In this table, wide neural
network gained the highest accuracy of 95.6%. The precision,
recall, error, FNR, and f1-score values are 90.9%, 95.6%, 4.4%,
4.4%, and 93.7%. A confusion matrix presented in Fig. 6, can

be utilized to verify the performance of a wide neural network
classifier. This experiment shows that the computation time is
reduced from the 1 and 2, described in Tables V and VI.

C. WHU-RS19 Results

In this experiment, the result of the WHU-RS19 has been
presented. Deep features were extracted from the proposed fused
architecture of the efficientnetb0 and mobilenetv2 model in the
first step. The proposed model was trained through BO and deep
transfer learning. Table VIII illustrates the classification results
of this model. The wide neural network classifier gained the
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Fig. 6. Confusion, matrix of controlled entropy technique on medium neural network classifier, using UC-Merced land-use dataset.

TABLE IX
PROPOSED IMPROVED POOR AND RICH OPTIMIZATION RESULTS ON WHU-RS19 DATASET

Bold entities presents the highest values in the tables.

highest accuracy from all the other classifiers in this table. The
highest accuracy is 92.8%. The precision, recall, error, FNR, and
f1-score values are 93.2%, 93.5%, 7.2, 6.5%, and 93.3%. These
statistics are calculated for all the other classifiers. It is observed
that the medium neural network classifier executes faster than
the listed classifiers. The executing time of this classifier is 12.7
(s), although the longest execution time is 17.5 (s). The extracted
features are optimized in the next step by employing improved
PRO. Following that, the optimized features are passed to the
neural network classifier. The results of improved poor and rich
feature selection on selected features are presented in Table IX.
This table shows that the wide neural network outperformed all
the other neural network classifiers. It achieved an accuracy of
93.0%. The precision rate is 93.2%, the recall rate is 92.9%,
the error rate is 7.0%, the FNR rate is 7.1%, and the f1-score
is 93.0%. The computation time is recorded for all the listed
classifiers; it is noted that the medium neural network takes less
time, which is 11.57 (s).

Table X shows controlled entropy-based results on the
WHU-RS19 dataset in the final step. In this table, the

maximum 97.8% accuracy has been noted from the medium
neural network classifier, and it takes 2.80 (s) for execution,
which is the shortest time from all the listed classifier’s com-
putation time and maximum execution time of 127.7 (s) has
been recorded from bi-layered neural network classifier. The
precision, recall, error, FNR, and f1-score have 97.7%, 97.8%,
2.2%, 2.2%, and 97.7% values. This numerical Analysis is
also conducted for all the other neural kernels. After applying
Entropy, it was observed that the accuracy was significantly
improved. Moreover, it was clearly observed that computation
is reduced from the previous experiments, shown in Tables VIII
and IX. Fig. 7 presents the confusion matrix of the medium neu-
ral network classifier, which further verifies computed values.

D. Discussion

1) T-Test-Based Analysis: The t-test is a statistical test that
helps determine whether the means of two groups or samples
differ significantly. The performance of the two classifiers can
be compared using a t-test analysis. In this work, we performed
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TABLE X
PROPOSED CONTROLLED ENTROPY BASED RESULTS ON WHU-RS19 DATASET

Bold entities presents the highest values in the tables.

Fig. 7. Confusion matrix of controlled entropy technique on medium neural network classifier using WHU-RS19 dataset.

a t-test for the selected datasets. Two classifiers from all the
selected datasets have been selected based on the highest and
second-highest accuracies, as shown in Table XI. Initially, we
selected two hypotheses named the null hypothesis (H0) and
alternative hypothesis (H1), the H0 supposed that there is no
significant difference in the classifier’s performance, whereas
H1 assumed that there is a significant difference. In the first
step, we calculate the difference among the classifier accuracies
for each process using (26). The value ofN = 3, which denotes
the process of the proposed framework. After that, we computed
the mean (μ) value of differences (∂) for all the selected datasets
by using (27)

∂ = (C1 − C2) (26)

mean (μ) =
1

N

N∑
i=1

(∂) (27)

whereC1, C2 presented the wide neural network classifier (high-
est value classifier) and medium neural network classifier (sec-
ond highest classifier), respectively,N denotes the total number

of processes in the framework. The values of μ for selected
datasets are 0.86, 1.26, and 0.6. In the next phase, we calculate
the standard deviation using the following equation:

σ =

√∑N
i=1 (∂ − μ)2

N − 1
. (28)

Standard deviation σ having values are 0.351, 0.92, and 0.52,
respectively; the t-test values are calculated by using the t-
selection formula. The t-selection is mathematically formulated
as

Tsel =

√
N × μ

σ
(29)

where values of Tsel are 4.26, 2.36, and 1.96. The degree of
freedom is computed as N − 1. We set the significance level to
95% on 0.05. The t-distribution table range is [−4.303, +4.303]
based on significance level and degree of freedom. The values of
Tsel Lies between a critical range of t-distribution range. Hence,
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TABLE XI
COMPREHENSIVE COMPARISON WITH EXISTING TECHNIQUES

Fig. 8. Error rate graph measured on satellite datasets.

H0 is accepted, it indicates no significant difference between the
classifiers performance.

2) Graphical Results: Fig. 8 illustrates the error rate of se-
lected datasets corresponding to their methods. The graphs show
that the WHV dataset has a lower % error rate of 2.2% when
controlled Entropy is applied and 7.2% and 7.0% when proposed
fused architecture and PRO is employed. The AID dataset shows
that the smallest error rate is achieved by employing Entropy,
which is 3.7%. In addition, the maximum error rate is noted when
improved PRO (IRPO) is applied. In the UC-Merced dataset, a
3.6% error rate has been noted when improved PRO is utilized,
which is the lowest error rate from the other methods. The
entire graph shows that the error is gradually reduced when a

Fig. 9. Computational time-based graph measured on satellite datasets.

TABLE XII
SELECTED CLASSIFIERS FROM ALL THE DATASETS FOR T-TEST ANALYSIS

controlled entropy process is employed, which is a strength of
this experiment.

3) Comparison With SOTA: A Comprehensive comparison
with existing techniques has been presented in Table XII. It
can be observed that the proposed method outclasses the rest of
the listed advanced methods. The highest accuracy achieved on
the AID dataset is 89.58% by Vinaykumar et al. [48], whereas
the proposed methodology achieved 96.3%. Similarly, on UC
Merced and WHU-RS19 datasets, the achieved higher accura-
cies using the proposed methodology are 95.6% and 97.8%,
compared to [49], [50], [51], and [52] by different methods.

IV. CONCLUSION

This article proposes new deep learning models, inner infor-
mation fusion, and optimal feature selection-based architecture
to classify land scene images. The proposed architecture in-
cludes contrast enhancement, model creation, hyperparameter
optimizations, feature selection, and classification. Contrast en-
hancement is performed initially, and a deep learning model is
designed. The purpose of enhancement is to increase the quality
of low-contrast images and then better learning of a designed
model. After that, the hyperparameters have been initialized
based on BO instead of manual assignment. The manual as-
signment is inefficient, and sometimes, this process reduces the
learning performance. After that, features are selected based on
the poor-rich controlled entropy technique and classified using
machine learning classifiers. Three publically available datasets
have been employed for the experimental process and obtained
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the accuracy of 96.3%, 95.6%, and 97.8%, respectively. Compar-
ison with the recent techniques shows an overall improvement
in accuracy and less computational time. Overall, we conclude
with the following points.

1) Fusion of inner layers based on deep learning models
improved accuracy and lessened overall parameters.

2) Initialization of hyperparameters using BO improved the
accuracy and learning performance.

3) Selection of best features using the poor-rich controlled
entropy technique reduced the computational time and
maintained the accuracy.

The limitation of this work was the training time increased
after the internal fusion of EfficientNet B0 and MobileNetV2
architecture. Moreover, the designed architecture has a large
amount of pooling activations due to the fusion of both models,
which reduces the useful information from the data. These
limitations will be considered as future work.

Data Availability: The selected datasets are AID (https://
captain-whu.github.io/BED4RS/), UC-Merced land use (https:
//captain-whu.github.io/BED4RS/), and WHU-RS19 (http://
weegee.vision.ucmerced.edu/datasets/landuse.html).
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