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Abstract 

Background  Prostate segmentation is an essential step in computer-aided detection and diagnosis systems for pros-
tate cancer. Deep learning (DL)-based methods provide good performance for prostate gland and zones segmenta-
tion, but little is known about the impact of manual segmentation (that is, label) selection on their performance. In 
this work, we investigated these effects by obtaining two different expert label-sets for the PROSTATEx I challenge 
training dataset (n = 198) and using them, in addition to an in-house dataset (n = 233), to assess the effect on segmen-
tation performance. The automatic segmentation method we used was nnU-Net.

Results  The selection of training/testing label-set had a significant (p < 0.001) impact on model performance. 
Furthermore, it was found that model performance was significantly (p < 0.001) higher when the model was trained 
and tested with the same label-set. Moreover, the results showed that agreement between automatic segmentations 
was significantly (p < 0.0001) higher than agreement between manual segmentations and that the models were able 
to outperform the human label-sets used to train them.

Conclusions  We investigated the impact of label-set selection on the performance of a DL-based prostate segmen-
tation model. We found that the use of different sets of manual prostate gland and zone segmentations has a measur-
able impact on model performance. Nevertheless, DL-based segmentation appeared to have a greater inter-reader 
agreement than manual segmentation. More thought should be given to the label-set, with a focus on multicenter 
manual segmentation and agreement on common procedures.

Critical relevance statement  Label-set selection significantly impacts the performance of a deep learning-
based prostate segmentation model. Models using different label-set showed higher agreement than manual 
segmentations.

Key points   
• Label-set selection has a significant impact on the performance of automatic segmentation models.

• Deep learning-based models demonstrated true learning rather than simply mimicking the label-set.

• Automatic segmentation appears to have a greater inter-reader agreement than manual segmentation.
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Introduction
Prostate cancer (PCa) is a major health concern, ranking as 
the fifth leading cause of cancer-related deaths in men, and 
the second most common cancer among men worldwide [1]. 
Accurate diagnosis and early detection of PCa is essential for 
effective treatment of this disease [2]. Multiparametric mag-
netic resonance imaging (mpMRI) has been internationally 
established as a valuable diagnostic tool for PCa [3]. Currently, 
radiologists manually interpret mpMRI images. However, this 
approach has a number of limitations, including inter-reader 
variability. Automated computer-aided detection and diagno-
sis systems (CAD), can help overcome these limitations [4–6].

Region-of-interest (ROI) segmentation is a crucial step 
in CAD systems for PCa [4]. Deep learning (DL)-based 
methods have shown promising results in terms of per-
formance. In several studies, convolutional neural net-
work (CNN)-based methods have been shown to achieve 
high accuracy, with some achieving segmentation perfor-
mance that is comparable to expert radiologists [7].

In recent years, several CAD systems have been developed 
for PCa, and promising results have been reported in the lit-
erature [8, 9]. In addition, several commercial prostate gland 

and zone segmentation products are currently available [6]. 
In clinical practice, these segmentations are used to estimate 
the gland volume for calculation of the prostate-specific 
antigen (PSA) density, and for real-time fusion during tar-
geted ultrasound-guided prostate biopsies [6]. However, 
most of these models have been trained with low variability 
in datasets, mainly images and manual, ground-truth, seg-
mentations (that is, labels) from a single institution.

Manual segmentation of the prostate gland is a time-
consuming and difficult task that is subject to inter-reader 
variability [10]. This variability can arise from differences 
in the training and experience of the radiologists, as well 
as variations in the imaging equipment and protocols 
used. Despite this, manual segmentation is still consid-
ered as the gold standard in prostate gland segmenta-
tion. Nevertheless, many of the published segmentation 
methods refer to the need for a larger, multi-institutional 
image dataset to improve segmentation performance [8, 
9]. However, the impact of label-set selection on the per-
formance of these models has not been investigated.

It can be considered common knowledge that the accu-
racy and reliability of DL-based segmentation models rely 
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on the quality of labels. Therefore, it is crucial to consider 
— and quantify — the impact of label selection on the 
performance of DL-based prostate segmentation models. 
This will help to improve the accuracy and reliability of 
CAD systems for PCa and ultimately lead to better diag-
nosis and treatment of this disease.

In this study, we aimed to investigate and quantify the 
impact of label selection for training and evaluation on the 
performance of DL-based prostate segmentation models.

Methods
Datasets
In this study, we used transverse T2-weighted (T2W) MR 
images from two datasets: the publicly available PROS-
TATEx I training dataset (n = 204; 6 cases were excluded 
due to segmentations mismatching) [11], and an in-house 
collected multiparametric 3 T MRI dataset (n = 233).

The in-house collected dataset was obtained from St. 
Olavs Hospital, Trondheim University Hospital, Trond-
heim, Norway between March 2015 and December 2017 
as part of a previous prospective study [12]. It consists 
of mpMR images from 233 patients (median age = 65; 
range: 44–76  years) who were examined due to suspi-
cion of prostate cancer, via the Norwegian standardized 
care pathway, in which patients with elevated PSA and/
or abnormal digital rectal exam results are referred for 
an initial mpMRI scan to identify suspicious cancerous 
tissue. T2W imaging was performed on a Magnetom 
Skyra 3 T MRI system (Siemens Healthineers, Erlangen, 
Germany) with a turbo spin-echo sequence (repetition 
time/echo time = 4450–9520/101–108  ms, 320 × 320–
384 × 384 matrix size, 26–64 slices, 3–3.5 mm slice thick-
ness and 0.5 × 0.5–0.6 × 0.6 mm2 in-plane resolution).

Manual segmentation
Manual segmentation of the peripheral zone (PZ) and 
transition zone (TZ) of the prostate for the in-house col-
lected dataset was performed using ITK-SNAP (version 
3.6.0) [13] by a radiology resident at St. Olavs Hospital, 
Trondheim University Hospital, Trondheim, Norway, 
who was trained by a radiologist with more than 10 years 
of experience in prostate imaging. Segmentation of the 
whole prostate (WP) resulted from the union of PZ and 
TZ. Lesion segmentation was beyond the scope of this 
study and was therefore not considered.

For the PROSTATEx dataset, there were two sets of 
expert manual segmentations (label-set):

•	 Set A: where segmentation was performed by two 
radiology residents and reviewed by two expert 
radiologists. Each pair of resident and radiologist 
reviewed half of the cases. This label-set was made 
publicly available by Cucolo, et al. [14].

•	 Set B: where segmentation was performed by imag-
ing experts with a combined experience of more than 
25 years in prostate imaging and reviewed by radiation 
oncologists at Miller School of Medicine, Miami, USA.

The labels of set A and set B were checked for errors 
(that is, floating, mis-segmented pixels) and corrected 
accordingly. For this purpose, a customized method 
(https://​github.​com/​megla​ficus/​Prost​ateSeg_​QC) was 
used to look for the most common manual segmenta-
tion errors and highlight the erroneous masks.

Automatic segmentation
Automatic segmentation of PZ and TZ was performed 
using a full-resolution 3D nnU-Net model [15] with a 
fivefold averaging strategy in which the training set is 
divided into 5-folds, with each fold used to train and 
validate a submodel. To ensure model comparability, 
these folds were kept equal for each model used in the 
same experiment. Each of the 5 submodels is then used 
to predict case segmentation during testing, and the five 
predictions are then averaged to create a mask. nnU-Net 
(version 1.7.0) was trained for 300 epochs and imple-
mented with PyTorch (version 1.11.0) [16] using Python 
(version 3.9.12; Python Software Foundation, Wilming-
ton, DE, USA) on a single NVIDIA GeForce RTX 2070 
Super GPU with 8 GB VRAM. nnU-Net is a self-config-
uring framework that automatically optimizes preproc-
essing, model configuration, and training, and thus we 
did not specify specific training parameters.

In this study, 5 models were developed:

•	 Model 1: trained with PROSTATEx images, along 
with their corresponding labels from set A.

•	 Model 2: trained with PROSTATEx images, along 
with their corresponding labels from set B.

•	 Model 3: trained with the in-house images, along 
with their corresponding labels.

•	 Model 4: trained with subset of 148 randomly 
selected patients (to create a 75%/25% training/test 
split) from PROSTATEx images, along with their 
corresponding labels from set A.

•	 Model 5: trained with subset of 148 randomly 
selected patients from PROSTATEx images, along 
with their corresponding labels from Set B. Here 
the same training cases were used as for Model 4.

The masks derived by these models were post-pro-
cessed by keeping only the central dominant largest 
3D connected component, using a pixel connectivity 
of 26. WP segmentations resulted from the union of 
PZ and TZ.

https://github.com/meglaficus/ProstateSeg_QC
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Experiments

1.	 Agreement between manually-derived label-sets

	 The first step was to measure the agreement between 
labels of set A and set B to establish a baseline for 
comparing DL-based models’ performance and 
assess agreement between radiologists.

2.	 The impact of training label-set selection
	 We compared the masks generated by model 1 

(trained on set A) and model 2 (trained on set B), 
using the in-house dataset as a test set to evaluate the 
impact of training label-set selection on DL-based 
model performance.

3.	 The impact of testing label-set selection
	 To complement the previous experiment, we com-

pared the masks generated by model 3 (trained on 
the in-house dataset) for PROSTATEx images with 
labels from set A and set B, separately, to evaluate the 
impact of the testing label-set selection on DL-based 
model apparent performance.

4.	 Agreement between algorithm and human segmenta-
tions

	 In this experiment, the PROSTATEx dataset was par-
titioned into a training subset (148 cases; 75%) and 
a testing subset (50 cases; 25%). Using models 4 and 
5, and test label-sets A and B, we evaluated several 
factors. Firstly, we evaluated the impact of using 
labels from the same label-set for training and test-
ing, as opposed to using labels from different label-
sets for training and testing. Secondly, we compared 
the performance of Models 4 and 5 with the agree-
ment between both test label-sets (that is, human 
performance). Thirdly, we compared the agreement 
between the masks generated by Model 4 and model 
5 to the agreement between the two test label-sets.

Statistical analysis
The Dice similarity coefficient (DSC) [17] and the 95th 
percentile of the Hausdorff distance (HD95) [18] between 
two masks were calculated as metrics for segmentation 
performance and mask agreement. In addition, the rela-
tive volume difference (RVD) was calculated as a quan-
titative measure to analyze and compare the volumes of 
the segmentations [19]. RVD was the only metric that 
was applied solely on WP as this is most relevant in a 
clinical setting.

The Shapiro–Wilk test was used to test the normality 
of the data sets, and because of the non-Gaussian distri-
bution found, the Wilcoxon signed-rank test, followed by 
the Bonferroni correction for multiple testing, was used 
to assess differences in DSC, DH95 and RVD. Corrected 

p values of less than 0.05 were considered statistically 
significant.

All statistical analysis was performed in Python (ver-
sion 3.9.12).

Results
Training of all models had converged after 300 epochs. 
The loss function plots are provided as supplemen-
tary material, shown in Fig. S1. Examples of human and 
model segmentations for one case are shown in Fig. 1.

Agreement between manually derived label‑sets
Comparison of the agreement between the manually 
derived set A and set B yielded a median DSC of 0.891, 
0.703, and 0.847, and a median HD95 of 7.41, 10.55, and 
9.00 mm for WP, PZ, and TZ, respectively. The median 
RVD was 9.27% for WP, using set B as reference.

The impact of training label‑set selection
The comparison of model 1 and model 2 performance is 
illustrated in Fig. 2. The results indicated that the selec-
tion of the training label-set had a significant impact 
on model performance in an independent test set, with 
model 1 (set A) scoring higher on DSC and HD95 than 
model 2 (set B) for whole-prostate segmentation in the 
in-house collected dataset. In addition, there was a sig-
nificant difference in RDV between the models. Model 
1 demonstrates a tendency to over-segment the pros-
tate (with a median RVD of 6.66%), while model 2 tends 
to under-segment the prostate (with a median RVD 
of − 3.73%).

The impact of testing label‑set selection
The comparison of generated masks by model 3 with 
set A and set B as a reference is illustrated in Fig. 3. The 
results indicated that the selection of the independent 
testing label-set had a significant impact on apparent 
model performance for WP and PZ with DSC, and PZ 
and TZ with HD95. In addition, there was a significant 
difference in RDV between the label-sets. The results 
resemble those of the prior experiment, indicating a clear 
inclination towards over-segmentation when evaluating 
against set A (with a median RVD of 8.52%), as well as an 
inclination towards under-segmenting the prostate when 
evaluating against Set B (with a median RVD of − 3.19%).

Agreement between algorithm and human segmentations
The comparison of generated masks by model 4 and 
model 5 with labels from set A and set B is shown in 
Fig.  4 and Table  1. As expected, the results indicated 
that when the masks are compared to the same label-
set used for model training, the agreement (for DSC 
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and HD95) was significantly higher than when a differ-
ent label-set was used for training. Similarly, the median 
RVD was closer to 0 when the training set and testing 
set came from the same label-set. However, interest-
ingly, the agreement between the human segmentations 
of set A and set B for the test subset was significantly 
lower (for DSC and most of 95HD) than the agreement 
between the masks generated by a model trained with 
one label-set and tested on another. Furthermore, the 
variability in RVD of the models was smaller than that 
of the human segmentations.

The comparison of agreement between generated masks 
by model 4 and model 5 and agreement between labels 
from set A and set B in the test subset is shown in Fig. 5. 
The results showed that the agreement between the auto-
matic segmentations was significantly higher than that of 
the human experts who segmented their training sets. In 
addition, it was evident that there was wider variability in 
RVD between human annotators than between the model-
derived segmentation. These results indicated that DL-
based segmentation models truly learned to segment the 
images rather than simply mimicking the training label-set.

Fig. 1  Examples of manual and automatic segmentation. The figure shows segmentations of the transition zone (TZ) and peripheral zone (PZ) 
of a case from PROSTATEx that is part of the test set for models 4 and 5. Axial images of the prostate base, mid, and apex sections are shown in rows 
1, 2, and 3, respectively. A coronal image of the prostate is shown in row 4. a–d T2-weighted images, the rest are segmentations from set A (e–h), 
set B (i–l), model 4 (m–p), and model 5 (q–t)
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Discussion
Prostate segmentations are utilized in clinical settings 
to estimate the gland volume, which is necessary for 
calculating the prostate-specific antigen (PSA) density, 
and to facilitate real-time fusion during targeted ultra-
sound-guided prostate biopsies [6]. In addition, ROI 
segmentation is an essential step in CAD systems for 
PCa detection [4], and DL-based models have shown to 
be promising for prostate segmentation [7]. However, 
the impact of using different label-sets on these models’ 
performance has not been widely studied. Therefore, this 

study investigated the impact of label-set selection on the 
performance of DL-based prostate gland and zone seg-
mentation models. Two different label-sets for the PROS-
TATEx I challenge dataset were obtained and used, along 
with an in-house dataset, to train and test the 3D nnU-
Net model in five different scenarios. The change in per-
formance as a result of label-set selection was observed 
and quantified.

The agreement between the two manually derived 
label-sets found in our experiments was consistent 
with the inter-observer agreement reported in previous 

Fig. 2  Performance of model 1 and model 2. Boxplots displaying the Dice similarity coefficient (DSC) (a), the 95th percentile of the Hausdorff 
distance (HD95; log applied to improve visualization) (b), and the relative volume difference for whole prostate (RVD (WP)) (c) comparing 
the performance of model 1, which is trained with set A and model 2, which is trained with set B on the same test set (in-house). The median 
DSC and HD95 for whole prostate (WP), peripheral zone (PZ), and transition zone (TZ) were 0.933, 0.769, and 0.877 and 5.97, 9.41, and 9.50 mm, 
respectively, for model 1. The median DSC and HD95 for WP, PZ, and TZ were 0.916, 0.754, and 0.878 and 6.18, 8.88, and 7.44 mm, respectively, 
for model 2. The median RVD (WP) were 6.66% and − 3.73% for model 1 and model 2, respectively. ns: p ≥ 0.05, **** p < 0.0001

Fig. 3  Performance of model 3 on set A and set B. Boxplots displaying the Dice similarity coefficient (DSC) (a), the 95th percentile of the Hausdorff 
distance (HD95; log applied to improve visualization) (b), and the relative volume difference for whole prostate (RVD (WP)) (c) comparing 
agreement between the masks of the PROSTATEx dataset generated by model 3 with set A and set B, separately. The median DSC and HD95 
for whole prostate (WP), peripheral zone (PZ), and transition zone (TZ) were 0.922, 0.755, and 0.878 and 6.34, 10.16, and 8.86 mm, respectively, 
compared with set A. The medians DSC and HD95 for WP, PZ, and TZ were 0.908, 0.726, and 0.879 and 6.40, 9.80, and 7.78 mm, respectively, 
compared with Set B. The median RVD (WP) were 8.52% and − 3.19% for model 1 and model 2, respectively. ns: p ≥ 0.05, *** p < 0.001, **** p < 0.0001
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Fig. 4  Performance of model 4, model 5 and manual segmentations on set A and set B. Boxplots displaying the Dice similarity coefficient (DSC) 
(a and d), the 95th percentile of the Hausdorff distance (HD95; log applied to improve visualization) (b and e), and relative volume difference 
for whole prostate (RVD (WP)) (c and f) comparing agreement between the masks of the test subset of the PROSTATEx dataset generated by model 
4 and model 5 with set A (a–c), and set B (d–f) as reference, in addition to the similarity between set A and set B (human). ns: p ≥ 0.05, * p < 0.05, ** 
p < 0.01, *** p < 0.001, **** p < 0.0001

Table 1  Performance of model 4, model 5, and similarity between manual segmentations

Median Dice similarity coefficient (DSC), the 95.th percentile of the Hausdorff distance (HD95; in mm), and relative volume difference (RVD) displaying the performance 
of model 4 and model 5 with set A and set B as reference, in addition to the similarity between set A and set B (human)
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studies [10, 20]. Using these values as a benchmark, the 
nnU-Net models in the study performed better than the 
manually derived label-sets, except for HD95 score of TZ 
in model 1, which was slightly higher, but comparable 
to that of the manual label-sets. The performance of the 
nnU-Net models was also comparable to other similar 
models trained with different training and/or testing sets 
[21, 22].

Our experiments showed that the selection of both 
training and testing label-sets has a significant impact 
on model performance. This implies that model perfor-
mance should always be evaluated in the context of the 
ground truth for training and testing and that models 
trained and/or tested with different label-sets cannot be 
directly compared. However, one possible solution to 
overcome the evaluation issue is to benchmark against a 
public dataset or to participate in open challenges, where 
all models use the same dataset and label-set to compare 
their performance [6].

Additionally, methods such as the simultaneous truth 
and performance level estimation (STAPLE) algorithm 
have been developed to address the challenges associated 
with characterizing the performance of image segmenta-
tion approaches [23]. It provides a means to estimate the 
true segmentation from multiple annotators and account 
for the performance levels of each segmentation. This 
might be of use for compiling a robust segmentation 
label-set, when segmentations from three or more anno-
tators are available.

We conducted a comparison of segmented prostate 
volumes using RVD to assess the impact of label-set 
choice on gland volumes derived by models trained on 

those label-sets, revealing significant differences. These 
findings highlight that the influence of the label-set 
extends beyond commonly utilized research metrics and 
has tangible consequences in real-world clinical applica-
tions where prostate segmentations are employed for the 
calculation of the gland volume.

Based on our results, it cannot be stated that a single 
label-set had superior performance. The results of the 
second and third experiments indicate that set A gener-
ally yields higher DSC scores, but also higher HD95 scores 
compared to set B. However, this variation in label-sets 
may not be detrimental and could actually be beneficial in 
training more generalized segmentation models with mul-
tiple label-sets so they can adapt to different variations.

Our analysis of agreement between algorithm and 
human segmentations supports the conclusion that label 
selection has a significant effect on model performance. 
As expected, the results showed that when the segmenta-
tion masks are tested with the same label-set used in their 
model training, the performance is better than when it is 
tested with labels from different annotators [24, 25]. This 
is a clear indication that the models are able to learn and 
adapt to the specific characteristics of the label-set used 
during training.

At the same time, an interesting finding is that the 
agreement between the two manually derived label-sets 
(set A and set B) for the PROSTATEx test subset was sig-
nificantly lower than the agreement between the masks 
generated by a model trained with one label-set and 
tested on another. In addition, we observed wider varia-
tion in RVD for manually derived label-sets in compari-
son with model derived label-sets. This suggests that the 

Fig. 5  Agreement between generated segmentations and manual segmentations. Boxplots displaying the Dice similarity coefficient (DSC) (a), 
the 95th percentile of the Hausdorff distance (HD95; log applied to improve visualization) (b), and relative volume difference for whole prostate 
(RVD (WP)) (c). Panels a and b compare scores that measured agreement between generated masks derived from model 4 and model 5 and scores 
that measured the agreement between the manual masks in the test subset of the PROSTATEx dataset. Panel c illustrates RVD scores for the same 
comparisons. ns: p ≥ 0.05, **** p < 0.0001
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models are able to generalize and learn from the images 
and are relatively robust to variations in label-set. It is 
indicative of true learning as opposed to simply mimick-
ing the training label-set, which is a significant advance-
ment in the field of medical image segmentation. This 
finding highlights the potential for these models to be 
used in real-world scenarios where variations in label-
sets are likely to occur. It also opens up opportunities for 
future research to explore the factors that contribute to 
the generalization capability of DL-based segmentation 
models and how this can be further improved.

This study has some limitations that should be con-
sidered when interpreting its results. The use of a single 
DL-based segmentation model architecture (nnU-Net) 
means that the conclusions may not be applicable to 
other architectures. However, since nnU-Net is based 
on the commonly used U-Net architecture, it is likely 
that similar results would be obtained with other U-Net 
models [26–28]. Additionally, only two evaluation met-
rics (DSC and HD95) were used, which may not provide 
a comprehensive understanding of the segmentation 
performance of the model. However, these metrics are 
widely used for prostate cancer segmentation and pro-
vide different perspectives on the results, and their 
findings were confirmed by whole gland volume analy-
sis. Additionally, the study did not analyze the prostate 
regions (apex, mid, and base) separately, which could 
have added complexity to the analysis. Despite these lim-
itations, the study provides important insights into the 
performance of DL-based segmentation models when 
trained and tested on different label-sets and empha-
sizes the importance of considering generalization in the 
development of these models.

Conclusions
In this study, we investigated the impact of label-set 
selection on the performance of a DL-based prostate 
segmentation model. We found that the use of differ-
ent label-sets of prostate gland and zone segmentations 
has a measurable impact on model performance. More 
thought should be given to the label-set, with a focus 
on multicenter manual segmentation and agreement on 
common procedures. Furthermore, we found that the 
predictions made by automatic segmentation models 
were more consistent than the manually derived seg-
mentations they were trained on. Moreover, DL-based 
models demonstrated the ability to truly learn from the 
images, rather than simply mimic the training label-set. 
This sheds light on their future potential to improve 
prostate segmentation and standardize decision-making 
in clinical practice.
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