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ABSTRACT

Metamodels accurately reproduce the output of physics-based hydraulic models with a significant reduction in simulation times. They are

widely employed in water distribution system (WDS) analysis since they enable computationally expensive applications in the design, control,

and optimisation of water networks. Recent machine-learning-based metamodels grant improved fidelity and speed; however, they are only

applicable to the water network they were trained on. To address this issue, we investigate graph neural networks (GNNs) as metamodels for

WDSs. GNNs leverage the networked structure of WDS by learning shared coefficients and thus offering the potential of transferability. This

work evaluates the suitability of GNNs as metamodels for estimating nodal pressures in steady-state EPANET simulations. We first compare

the effectiveness of GNN metamodels against multi-layer perceptrons (MLPs) on several benchmark WDSs. Then, we explore the transfer-

ability of GNNs by training them concurrently on multiple WDSs. For each configuration, we calculate model accuracy and speedups with

respect to the original numerical model. GNNs perform similarly to MLPs in terms of accuracy and take longer to execute but may still provide

substantial speedup. Our preliminary results indicate that GNNs can learn shared representations across networks, although assessing the

feasibility of truly general metamodels requires further work.
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HIGHLIGHTS

• The accuracy of GNN-based and MLP-based metamodels is comparable on most of the studied water networks.

• The proposed model can be trained on several water networks at once and can learn shared representation between them.

• By learning shared representations, the model achieves comparable performance while requiring fewer training examples.

• GNNs show promising results from transferability, although further study is required.

INTRODUCTION

Water utilities rely on hydrodynamic models to design and control water distribution systems. These physics-based models,
such as EPANET (Rossman 2000), compute the state of the system, i.e., the flow rates and pressures at all the pipes and junc-

tions, by solving the underlying equations of mass and energy conservation. The inputs for these computer programs include
the layout of the network and the characteristics and settings of components such as pipes, pumps, valves, and reservoirs,
among others. Hydrodynamic models provide valuable insight into the functioning of the system. However, the speed of

these models is often insufficient for applications such as optimisation (e.g., Bi & Dandy 2014) or criticality assessment
(e.g., Meijer et al. 2021), especially in large search space problems (Maier et al. 2014). One alternative to address this
issue is developing surrogate models, also referred to as metamodels.
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Metamodels are models that aim to significantly reduce simulation times while still obtaining comparable results to the

hydrodynamic model. A main family of metamodels is response surface models (Razavi et al. 2012). These surrogate
models mimic the input–output relation, i.e., the response surface, of the original physics-based model to obtain results in
a fraction of the time while retaining sufficient accuracy. Among the multiple algorithms that can be used for creating

these metamodels, artificial neural networks (ANNs) have been increasingly popular due to their high performance and
execution speed; previous studies using mainly ANNs have shown remarkable gains in computational time (Broad et al.
2005; Martínez et al. 2007; Salomons et al. 2007; Behzadian et al. 2009; Broad et al. 2010).

ANNs are models obtained by stacking parametric functions that take an input x and produce an estimated output ŷ from a

target representation y. The parameters in an ANN are learned, i.e., calibrated, by minimising the difference between the
expected and real targets, measured with a loss function. This calibration process is usually performed via backpropagation,
i.e., the parameters change based on the value of the loss function. The process of learning these parameters is referred to as

training and the data employed during training are called training sets. The model performances are then evaluated on a sep-
arate dataset known as a validation dataset, before being employed for testing on unseen data.

Fully connected ANNs, also known as multi-layer perceptrons (MLPs), are arguably the most used metamodels for water

distribution systems (WDS). Even though MLPs can approximate any function (Hornik et al. 1989), their number of par-
ameters increases exponentially with the size of the input, making them unsuitable for high-dimensional data. This issue is
known as the ‘curse of dimensionality’ and implies the amount of training data required by an MLP increases exponentially

with the input’s dimensions (Lecun et al. 2015). Furthermore, MLPs require a fixed-size input, and consequently, a newmodel
needs to be created when the size of the inputs changes, e.g., by adding new pipes or junctions to a WDS. Thus, they do not
overcome a major limitation of traditional metamodels: they are only applicable to the water network they were trained on.
As noted by Garzon et al. (2022), this implies that new metamodels must be trained with new sets of simulations to account

for multiple networks or structural changes in the original system. This characteristic could discourage the use of metamodels
or even make them impractical.

Components of metamodels can resemble the underlying structure of the problem at hand by including inductive bias,

i.e., assumptions or knowledge about the data-generating process, underlying physical processes, or the space of solutions
(Battaglia et al. 2018). This similitude aids the effectiveness of model transfer by exploiting the connectivity of the nodes
and the physical information of the components. For metamodels in WDSs, this information includes connectivity and

data such as node elevation, pipe roughness, and length.
Graph neural networks (GNN) are a recent variant of ANN which can perform operations on data that lie on graphs –

mathematical objects that describe how entities are connected to each other via nodes and edges. WDSs can be represented
by graphs, considering junctions, reservoirs, or storage tanks as nodes and pipes, pumps, or valves as edges. GNNs can then

take the information embedded in WDS and apply the same linear and non-linear operations used in MLPs. The main differ-
ence is that GNNs can have permutation invariant and equivariant properties, which allows them to consider arbitrarily sized
graphs. This inductive bias preserves the additional information embedded in the graph structure which helps in decreasing

the number of trainable parameters in the metamodel.
Recently, GNNs found successful applications in water networks. Hajgató et al. (2021) and Xing & Sela (2022) used a

GNN model to estimate the pressure state of a WDS, based on a few sensors in the network. Bonilla et al. (2022) employed

a GNN model to predict the pump speed from pressure and flow measurements in the networks. However, no works yet
explored the transferability of GNNs for WDSs, i.e., their ability to learn representations and perform predictions across mul-
tiple case studies. Furthermore, to the best of our knowledge, no studies on WDSs have compared the performance of GNNs

against that of traditional data-driven alternatives, such as MLPs. In this paper, we move the first steps in these directions by
developing GNN-based metamodels for estimating nodal pressures on six benchmark WDSs and comparing them against
several MLP baselines.

The remainder of the paper is organised as follows. In the methodology, we firstly describe the data generation pro-

cedure and the six case studies used in this work. Next, we present the employed metamodels based on MLP and
GNN and describe the metrics used for assessing their performances. The section additionally includes the description
of the conducted experiments and the adopted setup. The result section presents the comparison between MLP- and

GNN-based metamodels for the benchmark WDSs and discusses the results on GNN transferability. The last section
concludes the paper.
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METHODS

Case studies and data generation

To assess the performances and transferability of GNN-based metamodels, we consider the problem of reconstructing nodal

pressures as computed by EPANET steady-state simulations. Table 1 reports the six benchmark datasets employed in this
study along with their bibliographic reference, and the number of nodes, pipes, and reservoirs in the system. While the
chosen WDSs do not feature hydraulic elements such as pumps and valves, they form a sufficiently diverse ensemble, as

shown in the network layouts displayed in Figure 1.
For each of these networks, we employed the WNTR Python package (Klise et al. 2018) to generate a dataset of 10,000

samples, divided into training (8,000), validation (1,000), and test (1,000) subsets. Each sample is created by altering all (i)

nodal base demands, (ii) pipe diameters, and (iii) pipe roughness coefficients. The altered values are selected from different
distributions that reflect commercial ranges for pipe diameters (0–1.5 m at 2.5 cm increments) and Hazen–Williams rough-
ness coefficients (50–150 at 1 unit increments), as well as reasonable base demands with respect to the selected case

studies (0–100 L/s with 0.1 increments). To avoid unrealistic configurations leading to very low or very high pressures, the
distributions were sampled within a range centred on each original node or pipe characteristics. While the distribution of
pipe roughness and nodal-based demands are uniform within these ranges, the selection of pipe diameters is biased towards
larger values to reduce the possibility of unfeasible setups (e.g., yielding failed simulation).

The described alterations ensured sufficient variability in the nodal pressures obtained via WNTR pressure-driven simu-
lations. When running the simulations, we kept all other network characteristics constant, including network connectivity,
geographical coordinates, elevation, pipe lengths, and boundary conditions (i.e., total head of the reservoirs).

Table 1 | Water distribution systems featured in this study

Name ID Reference # nodes # pipes # reservoirs

Fossolo FOS Bragalli et al. (2012) 37 58 1

BakRyan BAK Lee & Lee (2001) 36 58 1

Pescara PES Bragalli et al. (2012) 71 99 3

Modena MOD Bragalli et al. (2012) 272 317 4

Marchi Rural RUR Marchi et al. (2014) 381 476 2

KL KL Kang & Lansey (2012) 936 1,274 1

Figure 1 | Layout of selected case studies. (a) FOS, (b) BAK, (c) PES, (d) MOD, (e) RUR, and (f) KL.
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ANN-based metamodels

MLPs are formed by sequences of linear operations between the input data and a parameter matrix, followed by non-linear
activation functions (e.g., ReLU, sigmoid, tanh). The propagation rule for a generic MLP layer is

ylþ1 ¼ s(Wlyl þ bl) (1)

where ylþ1 is the layer output, s( � ) is an activation function, Wl is a trainable weight matrix, yl is the layer input, and bl is the
bias term. Equation (1) is repeated for a certain number of layers, resulting in a fully connected network (see Figure 2). The
number of inputs is given by the problem’s variables, i.e., node demand, pipe diameters, and pipe roughness coefficient, while
the outputs are the pressure estimate at each network’s junction. Considering a generic WDS with N nodes and E pipes, the

input X and output Y have thus dimensions X [ RNþ2E and Y [ RN , respectively.
Contrary to GNNs that can learn shared representations within the same WDS and across WDSs by exploiting topological

and ‘static’ features, adding constant inputs to the MLP (e.g., elevations, pipe lengths) hinders its training process. This is car-

ried out by means of gradient descent algorithms minimising a loss function; for the nodal regression problem entailed in our
metamodelling approach, the loss is chosen as the mean squared error (MSE) between the pressure values of WNTR simu-
lations and those predicted by the MLP averaged for the entire training dataset.

GNN-based metamodels

A WDS can be represented as an undirected graph G ¼ (V, E), where V ¼ {1, . . . , N} is the set of nodes (e.g., junctions) and

E # V � V is the set of edges (e.g., pipes). For each node i [ V, we can define its neighbourhood as N i ¼ { j if (i, j) [ E} as a
set of nodes that are directly connected to a given node with an edge. Variables defined on the nodes, such as node demands,
can be encoded as node signals and multiple variables can be represented by the node matrix X [ RN�F , where F represents

the number of node features. A GNNworks by propagating those node features from one node to another via its neighbouring
nodes. This propagation can be repeated, for a single layer, for as many K-hop neighbourhoods, as shown in Figure 3. The
bigger this value, the wider the reach of information sharing throughout the graph. For mathematical convenience, we

define the graph shift operator as a matrix S [ RN�N , where Sij ¼ Sij if (i, j) [ E and Sij ¼ 0 otherwise. Thus, the expression
for a graph convolutional layer is given by

Ylþ1 ¼ s
XK
k

SYlHk
l

 !
(2)

where Ylþ1 is the layer output node matrix, s is an activation function, Yl is the layer input node matrix, Hk
l is a shared train-

able matrix, and K is the K-hop neighbourhood (Gama et al. 2020).

Figure 2 | A multi-layer perceptron (MLP) with two hidden layers. Every layer is connected to the following one by weights, represented by
directed arrows.
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Nodes and edges can be automatically inferred by the WDS connectivity. Each node has features defined by its elevation
and base demand or base head, depending on whether the node is a junction or a reservoir. We included the edge attributes,
i.e., diameter, length, and roughness of the pipes, via a preprocessing MLP layer shared by every edge. The obtained output is

then aggregated for every node to create a new node embedding Y0 [ RN�G, where G is the embedding dimension, as illus-
trated in Figure 4. As for the GNN layer, we employed the ChebNet graph convolutional model (Defferrard et al. 2016),
which has been extensively studied in previous works, including some in water networks (Hajgató et al. 2021). This considers
as graph shift operator S in Equation (2) the Laplacian matrix, defined as L ¼ I �D�1=2AD1=2obtained from the adjacency
matrix A. Finally, we use an MLP shared on the nodes to convert the final node embeddings into a single pressure prediction
for each node. Similarly to the MLP-based metamodel described in the previous section, the GNN is trained by minimising

the MSE for the training dataset using stochastic gradient descent.

Metamodel performance

We consider the coefficient of determination R2 and the root mean squared error (RMSE) as goodness-of-fit metrics. The
former is defined by

R2 ¼ 1�

PN
i
(yi � ŷi)

2

PN
i
(yi � �y)2

(3)

where yi is the target pressure at node i computed by WNTR, ŷi is the predicted value of the metamodel, and �y is the mean of

the target pressure data for a given dataset of size N. A value of 1.0 indicates a perfect fit, while values of R2 below 0 indicate
that the model is performing worse than simply assuming the dataset mean for each point (i.e., R2 ¼ 0).

Figure 3 | A graph neural network (GNN) layer with a 2-hop neighbourhood. The figures from left to right indicate how the node signal in the
black node propagates throughout the network. The same reasoning is applied to every other node in the graph.

Figure 4 | Procedure to determine the node embeddings Y0. (a) The edge attributes Eij and node attributes of the incident nodes Xi and Xj

are concatenated and then fed to an MLP shared across all edges, to determine an edge embedding E0
ij. (b) For every node, the embeddings of

incidental edges E0
ij are aggregated to determine the final node embedding Y0. (c) Node embeddings for every node are finally fed to the

model.
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On the other hand, the RMSE measures the average error in the pressure prediction defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i

(yi � ŷi)
2

vuut (4)

Since metamodels are built to overcome the computational costs of physics-based simulators, we evaluate the speedup pro-
vided by each metamodel as

speedup ¼
�T s
�Tmm

(5)

where �T s is the average computational time for the numerical simulation, and �Tmm is the average computational time for the
metamodel execution.

Experimental setup

We run two main sets of experiments aimed at (i) assessing the performances of GNN metamodels trained on individual
WDSs, and (ii) exploring the advantages of a transferable GNN metamodel trained on datasets featuring samples of all

WDSs. We compare the results against that of MLP-based metamodels trained on each WDS separately.
The comparison of MLP- vs GNN-based metamodels on individual WDSs is carried out by training the models on the

entire 8,000 samples available for each water network. To facilitate the training process, all variables are scaled using log
transformations (elevation, pressure, and pipe length) or min–max scaling (all other features). The scaling parameters derived

from the training dataset are applied to the validation and test datasets. We decided to substitute the reservoirs’ elevation (set
to 0 by default in EPANET solvers) with their base hydraulic head and replace this latter feature with a Boolean flag to dis-
criminate reservoirs from junctions. All GNN datasets thus have three features per node (elevationþ base head, base

demand, node Boolean flag) and three per edge (pipe diameter, pipe length, pipe roughness).
The study on GNN transferability entails three separate training datasets built using samples from all WDSs as shown in

Table 2. The first dataset contains 1,024 samples for each WDS, for a total of 6,144 data points. Since the GNN loss function

is calculated per node, this dataset is unbalanced, as it overrepresents larger networks. To balance the dataset, we undersam-
ple the larger WDSs by including a number of data points that is inversely proportional to the number of nodes in the WDS
with respect to the smallest systems (FOS, BAK). Using this strategy, we create two extra datasets named balanced and
balanced extended with 5,722 and 22,350 data points, respectively. All training datasets in Table 2 are normalised using

the same procedure described before for the individual WDS datasets, but with extreme values computed across all
WDSs. Similarly, the derived scaling parameters are then applied to normalize the validation and test datasets, now consist-
ing of data from all WDSs.

Hyperparameter search

We test MLP architectures of different complexity by changing the number of hidden layers, as well as the number of units in

each layer. In general, a larger network performs better but requires additional data and computational power. We also
employ dropout layers (Srivastava et al. 2014) after each fully-connected layer to improve model generalisation. All activation
functions are rectified linear units (ReLU). Table 3 shows the hyperparameters’ range selected for MLPs, yielding 36 potential
combinations. The upper limits of the hyperparameters are selected based on similar works in the water distribution system

domain (Martínez et al. 2007; Hajgató et al. 2021).

Table 2 | Training datasets used for the study on transferability

Name FOS BAK PES MOD RUR KL Total

Unbalanced 1,024 1,024 1,024 1,024 1,024 1,024 6,144

Balanced 2,048 2,048 1,067 279 199 81 5,722

Balanced extended 8,000 8,000 4,169 1,088 777 316 22,350
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Table 4 shows the values chosen for the optimisation of the GNN hyperparameters, yielding 24 possible combinations. The
hyperparameters include the embedding dimensions of the shared preprocessing MLP, the number of graph convolutional (Cheb-

Net) layers after the preprocessing MLP, the number of output channels of the graph convolutional layers (e.g., number of hidden
units), and the max K-hop neighbourhood considered by the GNN. As for the MLP metamodel described before, all activation
functions in the GNN are ReLU. No hyperparameter tuning is performed for the transferability experiments, where we use the

largest possible GNN with 64 embedding dimensions, 3 ChebNet layers, 128 hidden output channels, and K¼ 6.
We run all the experiments using the Pytorch library (Paszke et al. 2019) for MLP models and Pytorch Geometric (Fey &

Lenssen 2019) for the GNN models. We used default library weight initialisation methods (Glorot & Bengio 2010) and fixed

the random seeds. Each metamodel was trained using the Adam optimisation algorithm with a constant learning rate of
0.001, no weight decay, and default selection of parameters. The training was carried out for 30 epochs with no early stopping
and a batch size of 128. In terms of hardware, we employed a Xeon W-10855M @2.8 GHz CPU and a Nvidia Quadro RTX

5000, 16Gb RAM GPU.

RESULTS AND DISCUSSION

In this section, we first compare the MLP and the GNN in terms of performance and execution time one WDS at a time.

Then, we assess the transferability of GNNs trained on the combined datasets of Table 2.

Table 3 | Range of hyperparameters for the MLP models

Hyperparameter Range

Number of hidden layers 1, 2, 3, 4

Hidden layers dimension 64, 128, 256

Dropout rate 0, 0.1, 0.25

Table 4 | Range of hyperparameters for the GNN models

Hyperparameter Range

Embedding dimension 32, 64

Number of convolutional layers 1, 2, 3

Hidden layers dimension 64, 128

K-hop neighbourhood 3, 6

Table 5 | Hyperparameters and R2scores for the best metamodels

Model FOS PES PES MOD RUR KL

MLP # hidden units 256 128 256 256 256 64
# hidden layers 4 3 3 2 2 2
Dropout 0 0.25 0.25 0 0 0.25

R2 validation 0.364 0.991 0.570 0.859 0.944 0.472
R2 test 0.360 0.993 0.561 0.868 0.929 0.482

GNN Embedding dimension 32 32 64 32 32 64
# conv. layers 3 2 3 3 3 3
# hidden units 64 128 128 128 128 128
K-hop neigh. 6 3 6 6 6 6

R2 validation 0.748 0.991 0.496 0.759 0.924 0.463
R2 test 0.815 0.993 0.445 0.763 0.906 0.468
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MLP vs GNN

Table 5 reports the best configurations of the metamodels based on the validation R2 for each WDS, and after considering all
hyperparameter combinations described in the previous section. From the comparison of the test R2, it emerges that MLPs
outperform GNNs in all benchmark datasets apart from BAK, where the performances are almost identical, and FOS, where

the GNN largely outperforms the MLP.
Table 6 presents the comparison also in terms of RMSE and computational speedups, along with the total number of par-

ameters of the best metamodels. While the RMSE follows the same trends described for R2, it better indicates the average

error in meters for nodal pressure estimation. As expected, the best GNNs are usually smaller than the MLPs in terms of par-
ameters, especially for the FOS and the RUR case studies where the GNN achieves better or similar performances.
Nevertheless, MLPs are faster, granting execution speedups of three orders of magnitude with respect to WNTR simulations.

Similarly, their training time is between one to two orders of magnitude smaller than that of GNNs. That said, the GNNs
provide substantial speedups of up to 70� that may justify their utilisation. Furthermore, this gap in optimised GPU
implementation will likely get smaller as these relatively novel techniques become mainstream.

Table 6 | Goodness-of-fit metrics on the test dataset, execution speedups, and number of parameters of the best metamodels

MLP GNN

R2 RMSE Speedup #parameters, 103 R2 RMSE Speedup #parameters, 103

FOS 0.379 3.38 879 200 0.815 1.84 71 60

BAK 0.993 0.65 1,393 50 0.993 0.65 56 60

PES 0.561 6.76 1,241 200 0.445 7.60 43 200

MOD 0.868 1.22 2,223 300 0.763 1.63 24 200

Rural 0.929 1.27 2,029 500 0.906 1.47 27 200

KL 0.482 6.11 4,001 300 0.468 6.19 22 200

Figure 5 | Scatter plot of MLPs (blue) and GNNs (orange) validation and testing R2 for the FOS case study.
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While further GNN hyperparameters tuning may narrow the gap in performances for all WDS where MLPs perform best,

Figure 5 suggests that MLPs may never reach performances similar to those of the GNNs for the FOS benchmark. Indeed,
regardless of the model size and dropout used, the MLPs reach a performance ceiling at around R2 ¼ 0:35 and then ‘overfit’
the validation dataset, despite the consistency in the distribution of input and output variables across the different splits. This

behaviour does not occur for the remaining WDS, indicating that, for some case studies, GNNs may discover hidden rep-
resentations hardly accessible to MLPs. This initial finding requires further analysis linking model performances to
topological and hydraulic features of the WDS.

The better fit of GNNs for the FOS case study is clearly visible in Figure 6(a) that shows the test dataset scatterplot of simu-

lated vs predicted pressures across all nodes for the best-performing models. Figure 6 also shows that, regardless of the case
study, the developed metamodels tend to overestimate the simulated pressures. The isolated clusters in each panel (e.g., see
the top left corner of Figure 6(a)) usually correspond to individual simulation runs which are more difficult to surrogate.

These challenges could be rooted in the sensitivity of the pressure response of WDS to input pipe parameters, such as
pipe diameter. Employing a data generation process with systematically smaller pipe diameters could potentially be helpful
in the training. In that case, the dataset will exhibit a broader distribution of pressure values. Consequently, the metamodel’s

sensitivity to the input might increase and may require more parameters to capture more complex relationships.

Transferability of GNNs

Figure 7 reports the R2 scores of the transferable GNNs trained on the combined datasets (see Table 2) for all WDS test data-
sets, along with the distribution of R2 for the MLPs (blue cross) and GNNs (orange cross) trained with 8,000 simulations on
the individual benchmark WDS. The comparison between the GNN trained on the unbalanced (cyan circle) and balanced
dataset (green square) seems to confirm that training on the former favours larger networks, such as MOD, RUR, and KL.

Figure 6 | Scatter plots of MLPs (blue) and GNNs (orange) predictions vs simulated pressures on the test datasets of FOS (a), BAK (b), PES
(c), MOD (d), RUR(e), and KL (f) datasets.
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While the general GNN seems to retain comparable performances to the individual ones for BAK, MOD, RUR, and KL, the

performances drop drastically for PES, and especially, FOS. The problem persists even when considering the GNN trained on
the balanced extended dataset (red triangle), which features 8,000 simulations for FOS and over 4,000 for PES. Further analy-
sis is thus necessary to understand why the GNN seems to learn transferable features across a subset of the available WDSs,

failing to perform on others.
On the other hand, these results also indicate that GNNs may exploit information learned in some case studies for predic-

tions elsewhere. This particularly emerges when considering the performances of the transferable GNN trained on the

balanced extended dataset on RUR and KL. This GNN shows equal performances to those trained on the unbalanced dataset
despite having only around 75 and 30% of the training samples for these two WDSs, respectively (see Table 2), and it slightly
underperforms the best individual MLPs and GNNs trained individually on 8,000 samples. While the training times of the

transferable GNNs grow longer with larger training datasets, the model retains execution speedups in the order of those
reported in Table 6 for the individual case studies.

CONCLUSION

In this work, we assessed the performances and transferability properties of GNNs used for metamodelling the pressure
response surface of six benchmark WDSs. After generating a large sample of steady-state (snapshot) simulations with
WNTR, we first compared the performances of multiple configurations of GNNs trained on individual WDSs against
MLPs. The results indicate that, while MLPs tend to slightly outperform GNNs in most case studies, there is partial evidence

that GNNs may be inherently better architectures for some WDSs. Despite requiring less trainable parameters to achieve
comparable goodness-of-fit, GNNs are substantially slower than MLPs. At the current stage, the direct applicability of
both GNNs and MLPs in downstream tasks might be limited for some WDSs. For the other cases, however, they still provide

consistent speedups that could justify their use.
We assessed the transferability property of GNNs by training a single model on datasets with samples from all WDSs. Test-

ing results for the larger WDSs suggest that a general GNNmay perform comparably to the best MLP and GNNmodels while

requiring substantially less training data for these case studies. These initial findings may indicate that GNNs can indeed learn
shared representations across different water networks. However, the performance drop witnessed for two of the six net-
works implies that substantial efforts are required to design adequate datasets and test the general validity of this approach.

This exploratory study only considered a limited combination of GNN architectures consisting of ChebNet layers with a
shared MLP for embedding nodal and edge features. Future studies should assess the effects of other graph layers and
GNN paradigms on individual WDS performances (Wu et al. 2021) and transferability (Ruiz et al. 2020). Additionally, the
effect of each hyperparameter could be investigated in more detail. Furthermore, we aim to investigate whether we can

achieve better transferability by including more variability in the data generation process for example by resorting to a
large number of randomly generated WDSs (Sitzenfrei 2016). This can include more complex techniques of sampling the
pipe parameters that will result in broader pressure distribution in the dataset. New research could consider the equivalences

that occur across different settings, such as when different pipe parameters in consecutive pipes result in the same headloss.
These equivalences can be used in a self-supervised setting (Xie et al. 2022). Similarly, we aim to extend this work by con-
sidering surrogates of extended-period hydraulic analyses, rather than steady-state simulations.
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Figure 7 | Test R2 scores of transferable GNNs for all benchmark WDSs.
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