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Local equilibrium in liquid phase shock waves
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We have assessed the assumption of local thermodynamic equilibrium in a shock wave by comparing local
thermodynamic data generated with nonequilibrium molecular dynamics (NEMD) simulations with results
from corresponding equilibrium simulations. The shock had a Mach number approximately equal to 2 in a
Lennard-Jones spline liquid. We found that the local equilibrium assumption holds perfectly well behind the
wave front, and is a very good approximation in the front itself. This was supported by calculations of the excess
entropy production in the shock front with four different methods that use the local equilibrium assumption
in different ways. Two of the methods assume local equilibrium between excess thermodynamic variables by
treating the shock as an interface in Gibbs’s sense. The other two methods are based on the local equilibrium
assumption in a continuous description of the shock front. We show for the shock studied in this work that all four
methods give excess entropy productions that are in excellent agreement, with an average variance of 3.5% for
the nonequilibrium molecular dynamics (NEMD) simulations. In addition, we solved the Navier-Stokes (N-S)
equations numerically for the same shock wave using an equilibrium equation of state (EoS) based on a recently
developed perturbation theory. The results for the density, pressure, and temperature profiles agree well with the
profiles from the NEMD simulations. For instance, the shock waves generated in the two simulations travel with
almost the same speed; the average absolute Mach-number deviation of the N-S simulations relative to NEMD
is 2.6% in the investigated time interval.
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I. INTRODUCTION

A shock wave appears as a sudden, almost discontinuous
change in temperature, pressure, and density traveling at su-
personic speed [1]. Shock waves are highly irreversible and
the amount of energy they carry can be substantial. They are
often generated in explosions, lightning, or by objects moving
faster than the speed of sound, such as supersonic aircrafts
or bullets. The phenomenon has been of interest in several
fields due to its applications and destructive properties. Shock
waves have been utilized in medicine, where they can disinte-
grate kidney stones [2], and in industry, where they are used
in processes such as explosive welding and sandalwood oil
extraction [3]. They are also highly relevant in aerodynamics,
where studies of shock-wave phenomena have increased the
understanding of supersonic flows [1]. Thus, a better under-
standing of the behavior and properties of shock waves will
benefit a vast array of scientific fields.

A shock wave is a hydrodynamic phenomenon and vari-
ations of the Navier-Stokes (N-S) equations are normally
used in modeling and analysis of shock-wave data. The N-S
equations require an equation of state (EoS) to represent the
thermodynamic properties, and local equilibrium is thus im-
plicitly built into the equations. A key question is then, despite
the fact that the shock wave is in global nonequilibrium, can
one still assume local equilibrium? If local equilibrium can
be assumed, we can use analytic tools from nonequilibrium
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thermodynamics (NET) and the entropy balance equation to
map the coupled transport processes and find new constitutive
flux-force relations.

Most numerical analyses of shock waves rely on solving
conservation equations for mass, momentum, and energy [4].
The applicability of the N-S equations, which include vis-
cous and conductive contributions [5], first implemented by
Becker in 1921 [6], has been discussed extensively. It has been
found that the shock front computed with the N-S equations is
thinner than experimental values [7]. Questions regarding the
consistency between the entropy profile and the second law
of thermodynamics have also been raised [8]. With the de-
velopment of computational fluid dynamics (CFD), transient
shocks are frequently modeled using the N-S equations [5,9].
Numerous methods have been developed to accomplish this in
a robust way numerically, e.g., stable centered numerical dif-
ference methods such as the FORCE (first order centred) flux
and WENO (weighted essentially nonoscillatory) schemes
[9,10]. CFD has been applied to complex phenomena such as
the modeling of bubble collapse and multiphase flows in the
presence of shock waves [11,12] and has thereby given new
insight into these phenomena.

In the second half of the 20th century, molecular dy-
namics (MD) simulations emerged as a useful tool to study
shock waves. Simulations were first performed in one di-
mension in 1966 by Tsai and Beckett [13]. In 1967, Bird
published results using the direct simulation Monte Carlo
(DSMC) method with focus on the velocity distribution in a
shock wave and the density and temperature profiles in the
shock front [7]. At the start of the 1970s, simulations were
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expanded to a three-dimensional Lennard-Jones solid and sub-
sequently to a Lennard-Jones liquid in the late 1970s and
early 1980s [14,15]. MD simulations, together with DSMC
methods, provided a connection between experimental and
theoretical methods [7]. The exact thickness of the shock
front was determined by Hoover [15] in 1979. Subsequent
work compared NEMD simulations with solutions of the N-
S equations. It was found that the N-S equations described
shock waves at the atomistic scale reasonably well, although
they gave thinner shock fronts than NEMD simulations [16].
DSMC simulations have been in good agreement with NEMD
simulations [14].

Whether the same relationships between thermodynamic
variables apply at a shock front as in a bulk system at equilib-
rium, referred to as local equilibrium, is a debated topic in the
literature [17–19]. It has been shown that the kinetic energy
is equipartitioned in stagnant bulk liquids, even with extreme
gradients in thermodynamic properties [20], but this is not the
case in a shock front where the kinetic temperature computed
from the velocity component in the direction of the shock
propagation differs from the other temperature components
[17]. The anisotropy of the kinetic energy at the shock front
and the rapid processes involved challenge the validity of the
local equilibrium assumption. In Section IV A we consider
the shock as a wave with continuously varying properties
across the front and evaluate the local equilibrium assumption
by comparing the internal energy computed in small volume
elements in the shock with values for equilibrium states at the
same temperatures and densities as in the shock.

A key element in this work is the combined use of NEMD
and the N-S simulations. We implicitly impose local equi-
librium when solving the N-S equations by using a bulk
equation of state. This gives us an alternative route to the
shock-wave properties. Comparing results from NEMD and
solutions of the N-S equations then allows us to discuss the
impact of deviations from local equilibrium in the continuous
description of the shock front in Sec. IV B.

The entropy production in the shock wave is a useful probe
to examine the assumption of local equilibrium. In this work,
we present new analyses for the liquid-phase regime. A shock
in a liquid phase at a given Mach number propagates sig-
nificantly faster and is expected to have a smaller thickness
than a shock in the gas phase [21]. Local equilibrium is a
prerequisite for the use of NET [17–19]. NET is based on an
entropy balance in addition to mass, momentum, and energy
balances, and provides consistent transport laws for heat and
mass transfer and how they couple [22]. Due to the large
gradients across the shock front, coupling between heat and
mass transfer is arguably likely to be more significant than
in homogeneous systems. Our long-term motivation for the
present work is to find a more detailed description of energy
conversions and coupling between transport processes; we
believe that this approach can add significant information to
the understanding of shock waves.

In Sec. IV C, we discuss the entropy production in the
shock front using four different methods. Two of the meth-
ods assume local equilibrium between excess thermodynamic
variables by treating the shock as an interface in Gibbs’s
sense. The two other methods apply the local equilibrium
assumption as if the shock were a bulk system. These

FIG. 1. Visualization of the trace of the pressure tensor of a
planar shock propagating in the x direction through a liquid. The
three plots represent three times, t1 < t2 < t3.

methods were previously evaluated with NEMD simulations
of a gaseous Lennard-Jones spline (LJs) fluid [18], where we
found that the methods agreed within the combined uncertain-
ties, and the method that treats the shock as an autonomous
surface was deemed to be most robust.

II. THE ENTROPY PRODUCTION IN ONE-DIMENSIONAL
SHOCKS

We consider a planar shock wave propagating in the x
direction through a single-component fluid. The shock was
generated by a rapid hot source at time t = 0 and position
x = 0. The system is open and with mirror symmetry around
x = 0 such that a property at position x and time t has the same
value at position −x at time t . An illustration of a propagating
pressure profile for x > 0 is shown in Fig. 1. As the shock
wave propagates, the total entropy of the system increases,
mainly due to the entropy production at the shock front, which
can be defined as [18]

σs(t ) =
∫ xu(t )

xd(t )
σs(x, t )dx, (1)

where σs(x, t ) is the local entropy production per unit length.
The integration limits xd(t ) and xu(t ) are positions behind
(downstream) and in front (upstream) of the shock, respec-
tively, chosen such that they encompass the shock front.
From here on, we will not explicitly show the time depen-
dency with the understanding that all properties may depend
on time.

We now introduce four methods to compute the entropy
production. These methods provide the basis for the discus-
sions in Sec. IV C. In two of the methods (BBM and LIT),
we consider the fluid as a bulk system with local equilibrium
properties. In the other two methods (SBM and GEM), we
take a different approach, namely to consider the shock front
as a surface and use NET for surfaces [22].
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A. The bulk balance method (BBM)

The local entropy production can be calculated from the
entropy balance,

σs = ∂

∂t
ρs + ∂

∂x
Js, (2)

where ρs is the entropy density and Js is the entropy flux,

Js = J ′
q

T
+ ρsv. (3)

Here, J ′
q is the measurable heat flux in the x direction, T is the

temperature, and v is the x component of the fluid streaming
velocity. For simplicity, we shall treat v and the x components
of other vectors as scalars unless stated otherwise. In this
work, we shall use values for ρs given by the EoS at the local
density and temperature.

We will refer to this method as the “bulk balance method”
(BBM) and denote the result σ BBM

s . Using Eq. (2) in Eq. (1)
gives

σ BBM
s =

∫ xu(t )

xd(t )

(
∂

∂t
ρs + ∂

∂x
Js

)
dx. (4)

We set xu to be a fixed value at the edge of the system, xu = Lx

(independent of time), use Leibniz’s integration rule for the
integration of ∂

∂t ρs, and observe that Js(Lx ) = 0, which gives

σ BBM
s = d

dt

(∫ Lx

xd(t )
ρsdx

)
+ ρs(x

d)
dxd

dt
− Js(x

d). (5)

For simplicity, we set xd = � − �, where � is the position of
the surface (see Sec. II C) and � is a constant (10 molecular
diameters in the present case), so that

dxd

dt
= d�

dt
= vs, (6)

where vs is the shock-wave velocity.
If we set xd = 0 in Eq. (5), we get the total entropy pro-

duction in the system. Since Js(x = 0) = Js(x = Lx ) = 0, the
total entropy production is

σs = ∂

∂t

(∫ Lx

0
ρsdx

)
. (7)

Most of the entropy is produced at the shock front, but near
x = 0 the bulk phase has gradients due to heat diffusion re-
sulting from the shock generation. Comparing σ BBM

s with the
total entropy production gives an estimate for the fractional
amount of entropy produced in the shock front.

B. The linear irreversible thermodynamic (LIT) method

By combining the Gibbs relation with mass, energy, mo-
mentum, and entropy balances, the local entropy production
can be formulated as

σs = J ′
q

∂

∂x

(
1

T

)
− 1

T
�xx

∂v

∂x
, (8)

where �xx is the xx component of the viscous pressure tensor,
�xx = −( 4

3ηS + ηB) ∂v
∂x [23–26]. The first term on the right-

hand side of Eq. (8) is the entropy production from heat
conduction and the second term is the entropy production

from viscous flow. The entropy production in the shock front,
σ LIT

s , is found by using Eq. (8) in Eq. (1).
The derivation of Eq. (8) relies on the Gibbs relation;

i.e., that the same relationship between key thermodynamic
variables applies locally across the shock front as in equi-
librium bulk systems. A result of this method is a set of
flux-force relations; see Ref. [18]. This is the only method
that will be evaluated in this work where neither the entropy
nor the entropy density are used explicitly in the equations.
All the properties in Eq. (8) can be computed directly in MD
simulations.

C. Determining excess densities and surface properties

We now introduce a different approach where we consider
the shock front as a surface. This gives two more methods that
will be used to compute the surface entropy production. They
rely on the framework of surface excess variables. Before dis-
cussing these methods in detail, we will give an introduction
to excess variables.

The shock front, similarly to the interface between two
phases, has sharp gradients between its adjacent bulk phases,
and is relatively thin. Using the assumption that thermody-
namic relations between surface excess variables remain valid
even when the overall system is out of equilibrium, it is possi-
ble to treat the shock front as an autonomous thermodynamic
system [27,28]. Note that this is a fundamentally different as-
sumption than that of local equilibrium for bulk systems. For
instance, for evaporation and condensation, the assumption of
local equilibrium between the excess variables has been found
to hold at the vapor-liquid surface, while the assumption of
local equilibrium between bulk variables does not [29].

Excess densities can be defined following Gibbs [30]. Con-
sider the integral of the difference between the actual local
density of some property “a”, ρa(x), and its extrapolated val-
ues from both sides of the surface:

ρs
a =

∫ xu

xd

[
ρa(x) − ρd

a (x)	(� − x) − ρu
a (x)	(x − �)

]
dx.

(9)
Here xd and xu are positions in the bulk phases adjacent to
the surface, 	 is the Heaviside function, and the superscripts
“d” and “u” denote linear fits to the bulk densities downstream
and upstream of the surface. The parameter � is the position of
the surface. This position is somewhat arbitrary, but we shall
in this work use the Gibbs dividing surface to define �. This
value of � is found by requiring that the excess molar or mass
density ρs is zero:

ρs =
∫ xu

xd
[ρ(x) − ρd(x)	(� − x) − ρu(x)	(x − �)]dx = 0.

(10)
This construction is illustrated in Fig. 2.

Knowing the location of the surface enables us to deter-
mine the shock wave velocity vs and, if the speed of sound
is known, the Mach number at a given time. The Gibbs sur-
face also enables us to calculate excess densities of other
properties, such as the excess enthalpy density ρs

h, internal
energy density ρs

u, and entropy density ρs
s . The internal energy

and enthalpy densities can be calculated directly in NEMD
simulations while the entropy has to be computed using an
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FIG. 2. Illustration of how the Gibbs dividing surface is deter-
mined. The black dashed line is the extrapolated upstream bulk
density and the red dotted line is the extrapolated downstream bulk
density. The blue dash-dot vertical lines show the positions of xd and
xu and the solid vertical line is the position � of the surface. The
etched gray areas represent the integrand in Eq. (10).

equation of state. These properties are then used to compute
the corresponding excess properties with Eq. (9).

With the excess internal energy and entropy densitites,
we can determine the temperature of the surface T s. Using
the integrated form of the Gibbs equation for a surface [22]
combined with the Gibbs-Duhem equation yields

dρs
u = T sdρs

s + μsdρs, (11)

where μs is the excess specific Gibbs energy while ρs
u and ρs

s
are the excess internal energy and entropy densities, respec-
tively. The surface temperature can be determined as (ρs = 0
by construction of the Gibbs surface)

T s =
(

∂ρs
u

∂ρs
s

)
ρs

. (12)

The surface entropy production discussed in Secs. II A–
II B is not the excess property in the sense we introduced
in Sec. II C. However, comparing the entropy production
determined with the different methods is possible because
the extrapolated values of the bulk entropy production are
approximately zero both from above and below, i.e., σ d

s ≈
σ u

s ≈ 0 (see Fig. 9 in Sec. IV). Substituting the density with
the entropy production in Eq. (9) gives Eq. (1) to a good
approximation.

D. The surface balance method (SBM)

In the “surface balance method” (SBM) [18], the results
from Sec. II C are combined with the entropy balance, Eq. (2).
This gives the following expression for the excess surface
entropy production:

σ s
s = dρs

s

dt
+ [Js − vsρs]−. (13)

We have used the notation [Js − vsρs]− = (Ju
s − vsρu

s ) −
(Jd

s − vsρd
s ), which means that the properties in the square

brackets are extrapolated to x = � as illustrated in Fig. 2. The
SBM relies on properties outside the shock front where local
equilibrium holds for the bulk phases. The time derivative
of ρs

s , which involves the entropy density in the shock front
through Eq. (9), is small compared with the other term in
Eq. (13). Hence, the SBM is not much affected by any lack
of local equilibrium inside the shock front [18].

E. The Gibbs excess method (GEM)

The “Gibbs excess method” (GEM) takes the SBM method
a step further by using the Gibbs equation for the surface
[18,27]. The excess surface entropy production is then given
by

σ s
s = [σq]− + [σ j]−, (14)

i.e., a sum of the extrapolated local entropy production of
the heat flux contribution [σq]− = σ u

q − σ d
q and mass flux

contribution [σ j]− = σ u
j − σ d

j . The heat term is

σq = J ′
q

(
1

T
− 1

T s

)
(15)

and the mass term is

σ j = j

(
s − 1

T s

[
h + �xx

ρ
+ 1

2
(v − vs)2

])
, (16)

where j = ρ(v − vs) is the mass flux in the shock wave frame
of reference, and s and h are the specific entropy and enthalpy,
respectively. The GEM method gives detailed information
about the energy dissipation in the shock front. It also provides
the flux equations; see Ref. [18].

In the GEM method, we utilize properties extrapolated
from the bulk phases with the notable exception of the surface
temperature, which is computed using excess densities in the
shock front. In a previous work, we found that the sum of
the properties in the square brackets in Eq. (16) is small [18].
Thus, we have an option to approximate the excess entropy
production by changing the mass term to σ j ≈ js. Since j is
continuous across the shock wave, Eq. (16) leads to

[σ j]− ≈ j[s]−, (17)

which is the Rankine-Hugoniot (R-H) condition [31,32]. This
turns out to be a simple, useful, and accurate approximation,
as illustrated in Sec. IV, Fig. 8.

III. SHOCK WAVE SIMULATIONS

A. NEMD simulations

This subsection gives a brief description of how the NEMD
simulations were carried out, using an in-house Fortran code.
We have employed the Lennard-Jones spline (LJs) potential
[33] to represent the intermolecular interactions. Details about
the potential and the method can be found in the Supplemental
Material (SM) [34] and Ref. [18].

We used an orthogonal box with with Lx/Ly = Lx/Lz = 16.
A figure showing the system layout is given in the SM. The
volume was divided into layers with cross-sectional area LyLz

and thickness �x = Lx/256 so that the volume of each layer
was �xLyLz. In Lennard-Jones units, �x∗ = 1.176 in this
work. The local values of mass and heat fluxes, temperature,
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pressure, and other thermodynamic variables were computed
in each layer according to the expressions provided in the
SM [34] and Ref. [18]. The simulation results are based on
40 parallel runs. Each run had N = 64 000 particles and an
overall density ρ∗ = 0.6, which is a liquid-state density. Thus,
each layer contained on average 256 particles.

A simulation run consisted of three steps: (1) an equilib-
rium simulation to set up the system’s state prior to the shock,
(2) shock generation, and (3) NV E simulations of the shock
wave traveling through the box. In Step 1, each parallel was
randomized with different numbers of Monte Carlo steps to
make the subsequent MD runs statistically independent. At
the end of Step 1, the system had a uniform density and
temperature T ∗ = 2. In Step 2, a shock wave was created by
velocity rescaling the particles in the extreme layers at the
left- and right-hand sides of the simulation box (see the SM
[34] for an illustration). A certain amount of kinetic energy,
5 × 104 in LJ units, was added to these layers in order to
generate a supersonic shock. This was equivalent to heating
the layers instantaneously to T ∗

boundary = 135. The trajectory
of the unhindered shock is uniquely determined by the energy
of the blast [35]. In Step 3, each of the 40 parallels ran for 105

time steps of length δt∗ = 0.0002, with t∗ = 0 at the start of
Step 3.

B. N-S simulations

For the N-S simulations, we solved the balance equa-
tions of mass, momentum, and energy:

∂

∂t

⎡
⎣ ρ

ρv

ρe

⎤
⎦ + ∂

∂x

⎡
⎣ ρv

ρv2 + p
v(ρe + p)

⎤
⎦= ∂

∂x

⎡
⎣ 0(

4
3ηS + ηB

)
ε̇(

4
3ηS + ηB

)
vε̇ + λ∇T

⎤
⎦

(18)

where the left-hand side is a vector of the conserved variables,
mass density ρ, momentum density ρv, total energy density
ρe [9], and pressure p. The total energy density is ρe = ρ(u +
v2

2 ) where u is the specific internal energy. The right-hand
side of Eq. (18) has viscous and conductive contributions,
where ηS is the shear viscosity, ηB is the bulk viscosity,
ε̇ = ∂v

∂x is the volumetric strain rate, and λ is the thermal
conductivity.

To solve this set of partial differential equations, we have
applied a finite volume method and integrated in time using
an ordinary differential equation integrator. The equations are
discretized spatially with the FORCE flux [36]. The formula-
tion is extended with a source term that is discretized with a
finite difference method [37].

Equation (18) was evolved in time using an explicit fifth-
order Runge Kutta (RK5) integrator [38,39]. The EoS for
the LJs fluid used in this work was the uv theory of van
Westen and Gross [40,41], accessed through the open-source
thermodynamic software THERMOPACK [42]. The EoS was
validated with equilibrium MD simulations; see the SM [34].
In the present context, THERMOPACK was used to compute
thermodynamic properties for the shock wave using u and
ρ from the integration of the N-S equations as input (except
for the initial condition, see below). By using the EoS, we
implicitly impose local equilibrium when solving Eq. (18).

In order to compare the results from the N-S simulation to
those from the NEMD simulation, the N-S initial conditions
were taken from the NEMD output from Step 2 discussed in
Sec. III A.

Similar to the NEMD simulations, we heated an area with
a total thickness of 2�x∗ = 2.352 so that the wave could
be followed at comparable times. Also the N-S system was
symmetric around x = 0. The initial conditions were

T ∗(t = 0, x � �x) = 135,

T ∗(t = 0, x > �x) = 2.0,

ρ∗(t = 0,∀x) = 0.6,

v∗(t = 0,∀x) = 0,

u∗(t = 0, x � �x) = 223.

The internal energy u∗(x = 0) was computed with the EoS
using ρ∗ = 0.6 and T ∗ = 135 as input. The N-S simulations
ran for a duration of t∗ = 13.5 consisting of 4096 equidis-
tantly spaced points and a set of K = 2161 temporal points
ranging from t∗

0 = 0 to t∗
K = 13.5. The N-S simulations were

conducted using real mass-based units and the initial con-
ditions given above were converted to real units using the
Lennard-Jones parameters of argon. Once the equations were
solved, the results were converted back to dimensionless units.
The thermal conductivity and shear and bulk viscosities were
determined from independent MD simulations and the shock-
wave data as described in the SM [34].

IV. RESULTS AND DISCUSSION

In the following, properties will be reported in dimen-
sionless Lennard-Jones units. A table showing the conversion
between SI units and LJ units is given in the SM [34].
Section IV has three main subsections. We first address the
question of how well the local thermodynamic properties
generated by the NEMD simulations are represented by the
corresponding equilibrium values. In the second subsection,
we compare the NEMD and N-S results. In the third subsec-
tion, we address the entropy production in the shock front and
to what extent it can clarify the question of local equilibrium.

Figure 3 shows the NEMD and N-S results for the shock-
wave speed as function of time. The wave speed falls about
15% during the time considered in this work.

The potential parameters for argon, ε/kB = 124 K and σ =
3.42 × 10−10 m, can serve as an illustration of the conditions
used in this work. The equilibrium state ahead of the shock is
T ≈ 250 K and P ≈ 1000 bar. The blast temperature is T ≈
17 000 K. The shock-front gradients are dT/dx ≈ −5 × 109

K/m and dP/dx ≈ −2 × 1012 bar/m.

A. Local equilibrium

To address the question of local equilibrium in the con-
tinuous description of the wave, we have used the method
discussed by Tenenbaum et al. [43], viz., checking if the equi-
librium EoS is satisfied locally in the nonequilibrium state. By
“locally” we mean a control volume with enough particles to
make computation of thermodynamic properties meaningful
and small enough to minimize the effect of gradients in the
volume. Hafskjold and Ratkje discussed this for a system with
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FIG. 3. Mach numbers for the N-S and NEMD data as a function
of time. Uncertainties corresponding to three standard deviations
were computed by using data from the 40 NEMD parallels.

coupled transport of heat and mass [20]. They found that the
condition used by Tenenbaum et al. was practical, and we shall
use this condition here with �x as the characteristic thickness
of the local volume. Equilibrium data were computed as de-
scribed in the SM [34].

Figure 4 shows comparisons of the nonequilibrium and
equilibrium results for the pressure and specific internal en-
ergy at t∗ = 5.75 and 53 < x∗ < 75. The residual quantities
are defined as Pres = P − Pideal and ures = u − uideal. The total
pressure and internal energy are measurable quantities which
characterize the shock wave. The ideal contribution to the
pressure is P∗

ideal = T ∗ρ∗ and to the specific internal energy it
is u∗

ideal = 3T ∗/2, where T ∗ is the trace of the temperature ten-
sor. The ideal contributions satisfy equilibrium by definition.
The residual properties are more sensitive to deviations from
the EoS. Note that the pressure computed by NEMD includes
the viscous pressure, which accounts for most of the (small)
difference between equilibrium and nonequilibrium. Viscous
effects do not affect the internal energy.

The key features of u∗
res are (1) it deviates slightly (but more

than the combined uncertainties) from the equilibrium values
in the shock front (maximum deviation is 0.08 in LJ units),
and (2) it matches the equilibrium data immediately behind
the front. The second feature means that the surface methods
discussed in Secs. II D (SMB) and II E (GEM) are not affected
by the lack of equilibrium in the front. It is also worth noting
that the EoS deviates slightly from the equilibrium MD results
behind the front. Although the deviation is small, it may have
an impact on the comparison between NEMD and N-S results.

Another indication of the lack of local equilibrium in the
shock front is the nonisotropic kinetic temperature (not shown
here). This feature is well known from earlier MD studies
[14–17].

The deviations in the shock front show that the “bulk
methods” (BBM and LIT) will be affected by this lack of
equilibrium, and it remains to be seen how much this changes
the entropy production (Sec. IV C).

B. Comparing NEMD and N-S simulations

Figure 5 compares key variables from NEMD and N-S
simulations at time t∗ = 5.75. We remind the reader that local

FIG. 4. Examination of the local equilibrium assumption for the
pressure and specific internal energy at t∗ = 5.75. Panel (a) shows
the total pressure (upper plots) and the residual pressure (lower
plots). Panel (b) shows the specific internal energy (lower plots
referring to the left axis) and the residual values (upper plots referring
to the right axis). The results labeled “NEMD” are the nonequi-
librium values generated in the shock-wave simulation. Results
labeled “Equilibrium” are from equilibrium MD simulations and
those labeled “EoS” are from the EoS used in the N-S simulations.
Uncertainties in the NEMD and MD data shown as error bars are
hidden by the size of the symbols in most cases.

equilibrium is not required for the NEMD results, while the N-
S results have local equilibrium inherent in the EoS. Profiles
for later times are qualitatively similar. Overall, the agreement
between N-S and NEMD is very good.

The shock front from the N-S simulations is thinner than
from NEMD, as is known from the early MD simulations
of shock waves [15]. At time t∗ = 5.75, the thickness of the
NEMD shock was 5.34 in LJ units as computed with the
method introduced by Becker [6], whereas the N-S profile had
a thickness of 3.62. The difference in shock-wave thickness
has been subject to many discussions; see e.g., Velasco and
Uribe [26] and references therein. The NEMD temperature
is the trace of the temperature tensor, which has different
components in longitudinal and transverse directions and con-
sequently a wider front.

The density and pressure decline rapidly behind the shock
front and leave a low-pressure and low-density region at the
location of the blast. We did not observe that the pressure
falls below the equilibrium pressure ahead of the front. At the
time shown in Fig. 5, the temperature at x = 0 had fallen from

035108-6



LOCAL EQUILIBRIUM IN LIQUID PHASE SHOCK WAVES PHYSICAL REVIEW E 107, 035108 (2023)

FIG. 5. A comparison of profiles from the NEMD and N-S simulations at t∗ = 5.75 for (a) density, (b) temperature, (c) pressure,
and (d) the entropy density. Panels (b) and (c) show the trace of the temperature- and pressure tensors, respectively. Panel (d) includes
the entropy density computed with the equation of state. Uncertainties corresponding to three standard errors were computed using
data from the 40 NEMD parallels and are shown as vertical bars on the NEMD results (equal to or smaller that the plot symbols in
most cases).

T ∗ = 135 to T ∗ ≈ 17 due to expansion and heat diffusion.
Note the positive temperature gradient behind the front, lead-
ing to a heat flux away from the shock peak (see also Fig. 6).

FIG. 6. A comparison of the heat flux from the NEMD and N-S
simulations at t∗ = 5.75. The heat flux computed from Fourier’s law
is based on the NEMD temperature data; see text. Uncertainties
corresponding to three standard errors were computed using data
from the 40 NEMD parallels and are shown as vertical bars on the
NEMD results.

Figure 5(b) is interesting as it shows a peak in the entropy
density at the peak pressure. This peak is centered nearly
at the Gibbs surface (with a difference of �x∗ = 0.11) and
contributes heavily to the excess entropy in the shock front.
The entropy density was computed from the EoS since we
at the moment have no way to compute the non-equilibrium
entropy. Based on the information shown in Fig. 4, we believe
the error by so doing to be small. The zero entropy reference
state was chosen to be the equilibrium entropy in front of the
shock.

Using the density profiles at different times, we determined
the shock position by using the definition of the Gibbs surface
as described in Sec. II C. The time-dependent positions of the
shock from the two simulation methods were nearly identical.
The time derivative of these positions was used to calculate the
shock velocity. The EoS gave a speed of sound of v∗

sound = 4.7
for the equilibrium system in front of the shock. Normalizing
the shock velocities with the speed of sound gave the Mach
number, M, of approximately 2 (see Fig. 3), which character-
izes it as a “weak shock” [19]. The average absolute deviation
of the Mach number from the N-S simulations relative to the
NEMD simulations for t∗ > 6 is 2.6%.

The measurable heat flux is shown in Fig. 6. The NEMD
data were computed directly as described in the SM [34].
The two other plots involve Fourier’s law: one with N-S as

035108-7



TAGE W. MALTBY et al. PHYSICAL REVIEW E 107, 035108 (2023)

inherent in the solution method, and the other by using the
temperature gradient from NEMD. In both these cases, we
used the thermal conductivities determined independently as
described in the SM . It seems that Fourier’s law does a good
job, except in the shock front. The deviations in the front may
be due to heat being transported by other mechanisms, e.g.,
as described by the Cattaneo-Vernotte model [44,45] or the
fact that the thermal conductivities we have used are the static
values. The reason for the better match between N-S and the
direct NEMD can be found in the sharper gradient in the N-S
temperatures. Note also the negative heat flux behind the front,
which is due to a positive gradient in the temperature profile,
Fig. 5(a).

C. Entropy production in the shock-wave front

In two of the methods (BBM, LIT), we consider the fluid
as a bulk system. The LIT method is a bit different from the
BBM in that the local equilibrium assumption is inherent in
the use of the Gibbs equation. Moreover, the LIT method does
not use the EoS while the BBM does.

The SBM and GEM are based on a different approach,
namely to consider the shock front as a surface and use NET
for surfaces. As shown in Sec. IV A, equilibrium is well satis-
fied on both sides of the front. The only remaining question in
this context is the value of T s, which depends on the surface
excess values of the entropy and internal energy densities
(implying an integration through the surface). This will be
discussed in more detail in Sec. IV C 1.

1. The surface balance method (SBM) and the Gibbs
excess method (GEM)

The surface excess internal energy and entropy densities
were determined from Eq. (9) using � from the Gibbs dividing
surface. The entropy densities were determined using the EoS.

For the SBM, the temporal derivative of the excess entropy
density was determined with a linear fit to ρs

s (t ), using the
latter part (t∗ > 8) of its respective profile. For the NEMD and
N-S methods, the downstream properties (ρs, Js) were both
extrapolated with a linear function.

The GEM requires values for the surface temperature T s

[Eq. (12)], which was determined by linear regression as
illustrated in Fig. 7. The surface temperature for the NEMD
shock was determined to be T s∗

NEMD = 2.29 ± 0.14 and the N-
S equations yielded a surface temperature of T s∗

N-S = 2.20 [46].
The quantities σq and σ j were extrapolated to the dividing
surface to compute the excess entropy production. The domi-
nant term in Eq. (14) is [σ j]−. The downstream extrapolation
of σ j is particularly difficult because of nonlinearity in x. In
addition, the enthalpy and kinetic-energy terms in Eq. (16)
give a small difference between large numbers, which add
substantial noise to [σ j]−. It can be shown, however, that the
square-bracketed term in Eq. (16) is zero at steady state [18].
This is why the exact value of T s is not critical; a ±10%
change in T s changes the value of [σ j]− by about ±1%.

Figure 8 shows the excess entropy production calculated
with all four methods plus the R-H approximation. Times
t∗ > 5.25 were investigated since these profiles were in local
equilibrium downstream of the shock front, and the wave
was far enough from where the shock was generated to not

FIG. 7. The excess internal energy plotted against the excess
entropy. A linear regression is used to determine the surface tem-
perature T s∗ which was calculated to be T s∗

NEMD = 2.28 in the NEMD
simulations and T s∗

N-S = 2.20 in the N-S equations.

obfuscate extrapolations. For the SBM, the results from N-S
and NEMD simulations agree within the NEMD uncertainties.
The GEM data obtained by NEMD are much more scattered
due to noisy extrapolations of σ d

j .

FIG. 8. Excess entropy production plotted against time for the
NEMD (a) and N-S (b) simulations using different methods. For
clarity, we have used dashed lines for the surface methods and solid
lines for the bulk methods. Uncertainties are three standard errors and
were computed using data from 40 NEMD parallels with the SBM
method.
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FIG. 9. Local entropy production computed using NEMD- and
N-S simulation data with the LIT method as functions of spatial
position at time t∗ = 5.75.

If the shock moves with almost constant speed (cf. Fig. 3),
Eq. (17) (R-H) applies, which appears to be an excellent
approximation.

2. The linear irreversible thermodynamics (LIT) method
and the bulk balance method (BBM)

The local entropy production as determined from Eq. (8),
the LIT method, is shown in Fig. 9. Data for the thermal
conductivity and the shear and bulk viscosities were deter-
mined as described in the SM [34]. The LIT depends on the
local equilibrium assumption through the use of the Gibbs
equation for the bulk phase. In addition, it makes explicit
use of the viscosity. Note that the N-S results are based on a
much finer grid in both time and space than the NEMD results.
The local entropy production from the LIT method is strictly
positive, in accordance with the second law of thermodynam-
ics, and σs ≈ 0 outside the shock front. The NEMD and N-S
results also manifest the difference in shock-front thickness.
The surface entropy production was computed by integrating
the local entropy production across the shock front using the
composite 1/3 Simpson rule, and the results are shown in
Fig. 8.

For the BBM, the entropy density was first integrated in
space at different times. Next, a third-order polynomial was
regressed to represent the entropy as a function of time. This
function was differentiated with respect to time and added to
the entropy flux term to give the entropy production. The use
of equilibrium values from the EoS apparently has little effect
on the entropy production, which means that the BBM is an
acceptable route to the shock-wave entropy production. By
comparing results from Eqs. (5) and (7), we find that about
80% of the system’s total entropy production occurs in the
shock front when t∗ > 5.25.

For the N-S simulations, the excess entropy productions
calculated from the different methods are in very good agree-
ment, with an average absolute deviation with respect to the
mean value of 3.3% for t∗ > 6 (3.5% for the NEMD results)
[47]. With the accuracy of the simulations presented in this
work, we find only small differences between the excess
entropy production computed with the four methods. This
suggests that local equilibrium is a good approximation for

the continuous description of the shock front. These results
agree with recent work by Rauscher et al. [48] and with our
earlier work for the LJs gas [18].

V. CONCLUSIONS

The main topic for discussion in this work has been the
local equilibrium assumption, and whether it applies at the
shock front in a liquid. For this purpose, we have simu-
lated a shock wave using nonequilibrium molecular dynamics
(NEMD) simulations, and by solving the Navier-Stokes (N-S)
equations. The shock was generated by a thermal blast in a
one-component liquid consisting of particles interacting with
the Lennard-Jones spline (LJs) potential. This resulted in a
shock wave with a Mach number of approximately 2.

By comparing the NEMD results with results from equilib-
rium simulations and the EoS, we have found that equilibrium
is satisfied locally, except for small deviations in the shock
front (Fig. 4). The surface excess entropy production was
determined by use of four different methods for both the
NEMD and N-S simulations. Two of the methods, the sur-
face balance method (SBM) and the Gibbs excess method
(GEM), depend on the properties adjacent to the shock
front, and not explicitly on the front itself. They are there-
fore insensitive to lack of equilibrium in the shock front
and well suited for analyses of the surface excess entropy
production. The GEM requires high-quality data for the prop-
erties in Eq. (16) and the NEMD results are rather scattered
[Fig. 8(a)].

The two methods referred to as the linear irreversible
Thermodynamics (LIT) method and the bulk balance method
(BBM) both treat the shock front as a continuous profile in
intensive variables. We assume in these methods that local
equilibrium applies also at the shock front. The BBM gave
results in good agreement with with SBM and GEM. When
compared with the total entropy production in the whole
process, we found that about 80% of the shock’s entropy pro-
duction occurs in the shock front. Overall, the four methods
gave consistent excess entropy productions with an average
deviation of 3.3% in the time interval considered for the N-S
simulations and 3.5% for the NEMD simulations. These de-
viations are comparable to the uncertainty of the EoS used to
describe the properties of the LJs fluid. Our findings confirm
the results we found in the previous gas-phase analysis [18],
namely that local equilibrium is a good approximation in the
continuous description of the shock front also in the liquid
phase for a shock with M ≈ 2.

We implicitly impose local equilibrium when solving the
N-S equations. In comparing the NEMD and N-S results we
used the Gibbs equimolar surface in both cases. The aver-
age absolute deviation of the Mach number from the N-S
simulations relative to NEMD was 2.6% in the investigated
time interval. Despite their different inherent assumptions,
the NEMD and N-S simulations gave very similar density,
pressure, and temperature profiles. The N-S equations gave
a sharper shock front than the NEMD simulations, which is
a characteristic of the N-S equations already documented in
the literature. The two methods gave consistent results for the
entropy production, which is another indicator of the validity
of the local equilibrium assumption.
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