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Abstract

IMPORTANCE Traumatic brain injury (TBI) is known to cause widespread neural disruption in the
cerebrum. However, less is known about the association of TBI with cerebellar structure and how
such changes may alter executive functioning.

OBJECTIVE To investigate alterations in subregional cerebellum volume and cerebral white matter
microstructure after pediatric TBI and examine subsequent changes in executive function.

DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study combined 12 data sets
(collected between 2006 and 2020) from 9 sites in the Enhancing Neuroimaging Genetics Through
Meta-Analysis Consortium Pediatric TBI working group in a mega-analysis of cerebellar structure.
Participants with TBI or healthy controls (some with orthopedic injury) were recruited from trauma
centers, clinics, and institutional trauma registries, some of which were followed longitudinally over a
period of 0.7 to 1.9 years. Healthy controls were recruited from the surrounding community. Data
analysis occurred from October to December 2022.

EXPOSURE Accidental mild complicated-severe TBI (msTBI) for those in the TBI group. Some
controls received a diagnosis of orthopedic injury.

MAIN OUTCOMES AND MEASURES Volume of 18 cerebellar lobules and vermal regions were
estimated from 3-dimensional T1-weighted magnetic resonance imaging (MRI) scans. White matter
organization in 28 regions of interest was assessed with diffusion tensor MRI. Executive function was
measured by parent-reported scores from the Behavior Rating Inventory of Executive Functioning.

RESULTS A total of 598 children and adolescents (mean [SD] age, 14.05 [3.06] years; range, 5.45-
19.70 years; 386 male participants [64.5%]; 212 female participants [35.5%]) were included in the
study, with 314 participants in the msTBI group, and 284 participants in the non-TBI group (133
healthy individuals and 151 orthopedically injured individuals). Significantly smaller total cerebellum
volume (d = −0.37; 95% CI, −0.52 to −0.22; P < .001) and subregional cerebellum volumes (eg,
corpus medullare; d = −0.43; 95% CI, −0.58 to −0.28; P < .001) were observed in the msTBI group.
These alterations were primarily seen in participants in the chronic phase (ie, >6 months postinjury)
of injury (total cerebellar volume, d = −0.55; 95% CI, −0.75 to −0.35; P < .001). Smaller cerebellum
volumes were associated with higher scores on the Behavior Rating Inventory of Executive
Functioning Global Executive Composite score (β = −208.9 mm3; 95% CI, −319.0 to −98.0 mm3;
P = .008) and Metacognition Index score (β = −202.5 mm3; 95% CI, −319.0 to −85.0 mm3; P = .02).
In a subset of 185 participants with longitudinal data, younger msTBI participants exhibited

(continued)

Key Points
Question Are there substantial

alterations in cerebellar structure after

traumatic brain injury (TBI) in children,

and are they associated with changes in

executive functioning?

Findings In this longitudinal cohort

study of 598 children and adolescents,

TBI was associated with widespread

decreases in cerebellum volume,

particularly in the posterior lobe, which

were also associated with poorer

executive function. Deficits in white

matter organization, measured with

diffusion tensor magnetic resonance

imaging, were found to be associated

with cerebellar disruption beyond

general atrophy and injury severity.

Meaning These findings suggest that

brain structural disruptions from TBI can

evolve over time in regions associated

with executive function that were not

directly injured.

+ Supplemental content

Author affiliations and article information are
listed at the end of this article.

Open Access. This is an open access article distributed under the terms of the CC-BY License.

JAMA Network Open. 2023;6(11):e2343410. doi:10.1001/jamanetworkopen.2023.43410 (Reprinted) November 15, 2023 1/15

Downloaded from jamanetwork.com by guest on 01/16/2024

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2023.43410&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2023.43410


Abstract (continued)

cerebellum volume reductions (β = 0.0052 mm3; 95% CI, 0.0013 to 0.0090 mm3; P = .01), and
older participants slower growth rates. Poorer white matter organization in the first months
postinjury was associated with decreases in cerebellum volume over time (β=0.52 mm3; 95% CI, 0.19
to 0.84 mm3; P = .005).

CONCLUSIONS AND RELEVANCE In this cohort study of pediatric msTBI, our results demonstrated
robust cerebellar volume alterations associated with pediatric TBI, localized to the posterior lobe.
Furthermore, longitudinal cerebellum changes were associated with baseline diffusion tensor MRI
metrics, suggesting secondary cerebellar atrophy. These results provide further understanding of
secondary injury mechanisms and may point to new opportunities for intervention.
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Introduction

Traumatic brain injury (TBI) is a leading cause of death and disability in children in the US1 and is
associated with distinct characteristics due to age-related, developmental, anatomical, and
physiological differences.2 Most pediatric TBI studies have ignored the cerebellum, exclusively
targeting supratentorial brain areas that are assumed to be later-developing and/or more vulnerable
to direct injury.3 Novel image processing tools allow for more fine-grained atlases and parcellation
of the cerebellum, enabling charting of regional volume change over the life span.4 Developmental
trajectories for cerebellar subregions are complex, with maturation peaking in the vermis and
flocculonodular lobe at 5 years, the anterior lobe between 12 and 16 years (lobules I-V), and the
posterior lobe in late adolescence and early adulthood (lobules VI-IX).5 Thus, many subregions of the
cerebellum are in critical periods of development during adolescence, potentially making them
especially vulnerable to TBI.

Motor functions of the cerebellum, including balance, coordination, motor learning, and body
awareness, are well-established,6 but frontocerebellar brain systems also support executive
functions,7 including multitasking,8 inhibition,9 working memory,10 social cognition,11 and emotional
processing.12 Investigations of cerebellar injury in adult TBI,13 brain tumor,14 or stroke15 support these
associations, but no prior studies have examined potential associations after pediatric TBI.
Understanding cerebellum disruption may help address morbidity in pediatric TBI.

Although the cerebellum is less vulnerable than other areas of the brain to direct injury,16

decreases in white matter (WM) volume,17 reductions in fractional anisotropy (FA),18 functional
dissociation,19 and hypoperfusion have been observed after TBI.20 One potential mechanism is
connectomal diaschisis,21 whereby direct injury to the cerebrum propagates to the cerebellum via
cerebellar structural and functional networks.22,23 Animal research supports this concept, with
studies24-26 showing indirect alterations associated with disruption of corticocerebellar fibers. If this
is also the case in humans, structural alterations would not be expected immediately postinjury but
could develop over months.

We investigated volumetric cross-sectional differences and longitudinal changes in the
cerebellum following pediatric complicated mild complicated-severe TBI (msTBI), further examining
associations with WM microstructural organization and executive functioning. Enhancing
Neuroimaging Genetics Through Meta-Analysis (ENIGMA) is a global research consortium achieving
greater statistical power through coordinated processing of legacy data. Combining 12 cohorts from
the ENIGMA Pediatric msTBI working group,27-39 we measured regional cerebellar volume in children
and adolescents. A priori hypotheses were as follows: (1) cerebellar volume would be lower in
individuals with msTBI vs non-TBI, (2) these disruptions would be most prominent furthest from the
time of injury, and (3) smaller cerebellar volume would be associated with poorer executive
functioning.
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Methods

Study Design
The ENIGMA Pediatric msTBI working group28,40,41 brings together data from different sources to
identify reliable neuroimaging biomarkers of injury and recovery. Initial hypotheses focused on
cerebellar volumes, but these results motivated us to include available diffusion tensor imaging (DTI)
data, hypothesizing that alterations in DTI would predate and be associated with changes in
cerebellar volumes.

Standard Protocol Approvals and Consent
Original studies were approved by the individual institutional review boards for each respective
institution. All participants provided written or verbal informed assent, and parents provided written
informed consent. All procedures in the current report followed the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) reporting guidelines for cohort studies.42

Study Samples
We included 12 existing cohorts from 9 sites and included participants with TBI ranging between
complicated mild (referred to as mild) to complicated severe TBI (Glasgow Coma Scale [GCS] score
>12) with injury-related imaging abnormalities and participants without TBI. The non-TBI group
included healthy children and children with orthopedic injury (recruitment and imaging details are
shown in eTables 1 and 2 in Supplement 1). In line with prior publications,27 we divided msTBI
participants into 3 postinjury windows: (1) acute and subacute (magnetic resonance imaging [MRI]
within 7 weeks postinjury), when pathology such as intracerebral hemorrhage and edema are
prominent; (2) postacute (MRI 8 weeks to 6 months postinjury), where secondary injuries such as
regional atrophy and microstructural alterations become apparent; and (3) chronic (MRI more than 6
months postinjury), when some recovery and/or atrophy continues, but the brain is more
neurologically stable.27 Exact boundaries were based on published data and natural break points
within data sets.

Image Acquisition, Processing, and Quality Control
Methods are reviewed here with additional detail in eMethods in Supplement 1. Raw 3-dimensional
T1-weighted MR images were processed using the ENIGMA Cerebellum Pipeline, based on Automatic
Cerebellum Anatomical Parcellation using U-Net with Locally Constrained Optimization (ACAPULCO
version 0.2.1; Johns Hopkins University).4,43,44 Image processing, segmentation, and quality review
occurred at the University of Utah. The cerebellum was segmented into 28 subregions (eFigure 1 in
Supplement 1). Segmentations were visually quality-checked and statistical outliers (>3 SDs) for each
region of interest (ROI) were excluded (eTable 3 in Supplement 1). Scans were checked for cerebellar
lesions (visible on T1-weighted scans [44 scans]). We examined volume of the total cerebellum,
corpus medullare, 5 vermal regions, and 11 lateralized lobules (left-right averaged), for a total of 18
cerebellar ROIs. We also conducted analyses for the subset of participants with longitudinal data (2
time points) through ACAPULCO version 0.3.0, further optimized for longitudinal analysis.4,45

DTI data for 28 ROIs were processed as detailed in our previous publication.27 Briefly, we used
the ENIGMA-DTI pipeline46, a modified tract-based spatial statistics approach47 resulting in FA and
other metrics averaged within ROIs from the Johns Hopkins University atlas. Of the 12 cohorts, 10
collected DTI data (parameters in eTable 4 in Supplement 1).

Neurobehavioral Measures
As a retrospective analysis of multiple cohorts, there was variability in the neurobehavioral scales
administered. We limited our analyses to inventories most common across cohorts. Work is ongoing
in the ENIGMA Brain Injury working group to harmonize scales within the same domain.48
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The Behavior Rating Inventory of Executive Function (BRIEF) is a widely used parent and
informant questionnaire measuring executive functioning in children.49 Parents respond to
questions about their child’s behaviors, resulting in 3 age-adjusted scores. The Behavioral Regulation
Index (BRI) measures cognitive abilities, such as inhibition, task shifting, emotional control, and self-
monitoring, and the Metacognition Index (MCI) measures initiation, working memory, planning and
organizing, and task monitoring. The Global Executive Composite (GEC) is an overarching summary
score of executive functioning. For each of these scores, higher scores indicate greater executive
dysfunction. Details on scores in our sample are in eMethods in Supplement 1.

Statistical Analysis
Linear mixed-effects models were conducted in R statistical software version 3.1.3 (R Project for
Statistical Computing) with nlme.50 Random effects (intercept) controlled for site and participant. All
analyses covaried for age, sex, and intracranial volume (ICV). We computed Cohen d effect sizes with
95% CIs and unstandardized β values for continuous variables, using a modified Bonferroni
correction for multiple comparisons (eMethods and eAppendix in Supplement 1).51 This method
accounts for the associations between regions tested, calculating an effective number of variables
(Veff) and scaling appropriately: P = .05/Veff. All P values reported were adjusted for multiple
comparisons unless otherwise specified, with a 2-sided P < .0045 indicating statistical significance.51

A flowchart of analyses is in eFigure 2 in Supplement 1. Data analysis occurred from October to
December 2022.

Group Comparisons
Primary analyses compared msTBI with non-TBI including all postinjury windows. One cohort lacked
a non-TBI group and was omitted from group analyses. Further, we examined differences in total
cerebellum volume change in a subset of participants (75 participants), covarying for scan interval
and time since injury (TSI) at first scan.

Secondary sensitivity analyses were conducted covarying for TSI and excluding acute patients
given that acute pathology could influence neuroimaging metrics. We also separated cohorts on the
basis of non-TBI population (healthy vs orthopedic injury), by severity, and by injury phase (acute,
postacute, and chronic). We repeated analyses excluding scans with cerebellar lesions visible on
T1-weighted images (73 excluded participants).

Supplemental Analyses
We examined potential interactions with group, including age and sex. Within msTBI, we examined
potential interactions between age at injury and TSI, age at injury and GCS, and GCS and TSI. Within
msTBI, we investigated associations with age at injury, TSI, and GCS, covarying for age, sex, and ICV.
Within msTBI, we investigated associations of cerebellum volumes with BRIEF scores.

Exploratory Multimodal Analyses
Based on the primary group comparison results, we conducted exploratory multimodal analyses
including DTI metrics. We examined associations of FA with cerebellar volumes in the msTBI group
collected concurrently (252 volumes) covarying for age, sex, ICV, and GCS. Furthermore, we explored
the estimation value of FA, examining associations of FA with total cerebellum volume change.
Because the multimodal analyses were exploratory, we used an uncorrected threshold of P < .05 and
reported uncorrected P values.

Results

The 12 cohorts resulted in a study pool of 598 participants (mean [SD] age, 14.05 [3.06] years; range,
5.45-19.70 years; 386 male participants [64.5%]; 212 female participants [35.5%]) including 314
participants in the msTBI group, and 284 participants in the non-TBI group (133 healthy individuals
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and 151 orthopedically injured individuals) (Table 1). Within the msTBI group (mean [SD] age at injury,
13.0 [3.6] years), we had 67 acute scans, 122 postacute scans, and 224 chronic scans. Of the 12
cohorts, 7 were from longitudinal studies, and 5 were from cross-sectional studies, generating 783
scans (185 with longitudinal data). The mean (SD) interval between scans was 1.1 (0.3) years (range,
0.7-1.9 years). Main results are summarized below, with additional results in eResults in Supplement 1.

Group Comparisons
Cross-Sectional Comparisons
Including data from all time points, the msTBI group had significantly smaller volumes for total
cerebellum (d = −0.37; 95% CI, −0.52 to −0.22; P < .001), corpus medullare (d = −0.43; 95% CI,
−0.58 to −0.28; P < .001), Crus II, lobules VIIB and VIIIB, and vermis VII and IX, compared with the
non-TBI group. Results are summarized in Figure 1 and Table 2. Removing participants with visible
cerebellar lesions yielded similar results, although the vermal effect sizes were no longer significant.

Separating participants on the basis of TSI, group differences were predominantly associated
with participants in the chronic phase (total cerebellar volume, d = −0.55; 95% CI, −0.75 to −0.35;
P < .001) with no postacute difference surviving multiple comparisons correction and a significantly
smaller vermis VII in the acute phase (eTable 5 in Supplement 1). Separated by severity, we found
group differences primarily in moderate and severe TBI (eTable 6 in Supplement 1). There were no
significant differences between complicated mild TBI and non-TBI. The above severity and chronicity
analyses were run separately for 6 different comparisons (3 for each group). To visualize effect sizes,
we also ran these analyses combined, for 9 different comparisons. These results are tiled by severity
and chronicity in Figure 2. Residuals of the model fit were assessed to test model assumptions. No
evidence of residual bias or correlation with covariates was found. However, the residuals were found
to be nonnormally distributed, owing to a small number of symmetric residual outliers (35 of 697
residuals [5%]) above or below the 1.5 IQR Tukey rule limits. Excluding these outliers above and
below 1.5 IQR, the remaining 95% of residuals were found to be normally distributed.

Table 1. Cohort Demographics

Characteristic,
No.

Cohort

TotalRAPBI
Pilot-
RAPBI NCH KKI LLU DU 1 DU 2 BCM 1a BCM 2a BCM 3a MCRI

UT
Houstonb

Participants

Total 109 22 53 42 52 44 49 99 32 31 22 43 598

msTBI group 53 13 29 29 21 18 22 50 15 22 22 20 314

Comparison
group

56 9 24 13 31 26 27 49 17 9 0 23 284

Sex

Male 72 14 37 27 34 20 23 71 21 21 17 29 386

Female 37 8 16 15 18 24 26 28 11 10 5 14 212

Age, y

Mean (SD) 15.61
(2.79)

16.14
(1.86)

11.80
(2.38)

14.57
(2.43)

12.89
(3.45)

14.34
(2.80)

14.60
(2.73)

13.53
(2.83)

14.56
(2.62)

15.48
(2.34)

11.13
(2.86)

12.70
(2.41)

14.05
(3.06)

Range 8.40 to
19.70

12.10 to
18.57

8.16 to
16.52

8.12 to
18.98

5.45 to
17.78

8.52 to
19.00

8.52 to
18.97

7.44 to
18.70

10.67 to
19.40

10.61 to
18.51

5.83 to
16.83

8.16 to
16.91

5.45 to
19.70

TSI range, wkc

Period 1 3.9-36.3 11.7-36.2 58.7-42.4 4.1-14.6 1.0-2.6 15.6-56.2 NA 11.7-28.8 0.14-15.4 2.4-60.0 4.5-37.6 4.1-18.3 NA

Period 2 49.2-82.7 59.1-68.6 NA 51.9-76.0 48.1-62.1 NA NA 49.6-117.8 NA NA 99.8-124.0 55.8-63.0 NA

Scans

Total 158 24 53 55 100 44 49 134 32 31 43 60 783

Longitudinal 49 2 NA 13 48 NA NA 35 NA NA 21 17 185

Abbreviations: BCM, Baylor College of Medicine; DU; Deakin University; KKI, Kennedy-
Krieger Institute; LLU, Loma Linda University; MCRI, Murdoch Children’s Research
Institute; msTBI, mild complicated-severe traumatic brain injury; NA, not applicable;
NCH, Nationwide Children’s Hospital; RAPBI, Recovery After Pediatric Injury; TSI, time
since injury; UT, University of Texas.

a Indicates sites with comparison groups consisting of individuals with orthopedic injury.
b UT Houston had both orthopedic individuals and healthy controls in the

comparison group.
c Studies with 2 time periods are longitudinal studies.
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Longitudinal Comparisons
Total cerebellum volume growth was significantly smaller in the msTBI group vs the non-TBI group
(75 participants; d = −0.55; 95% CI, −1.02 to -0.09; P = .02) (eFigure 3 in Supplement 1). This
outcome persisted when excluding msTBI participants with cerebellar lesions (73 participants;
d = −0.55; 95% CI, −1.02 to −0.07; P = .02), and when covarying for changes in total brain volume
(d = −0.62; 95% CI, −1.10 to −0.15; P = .01). In the msTBI group, total cerebellum volume decreased
in 20 participants and increased in 25 participants. Within the msTBI group, changes in total
cerebellum volume were associated with age at injury, with more volume decreases in patients who
were injured at a younger age (β = 0.0052 mm3; 95% CI, 0.0013 to 0.0090 mm3; P = .01) whereas
older participants experienced slower growth rates (eFigure 4 in Supplement 1).

Figure 1. Primary Group Comparison
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X
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Atlas-based effect size (Cohen d) maps and Montreal
Neurological Institute-based coronal slices (top,
y-axis = −72; bottom, y = −54) of the significant
between-group differences for children with mild
complicated severe traumatic brain injury vs controls.
CM indicates corpus medullare; L, lobule.

Table 2. Primary Group Comparison

Region and subregion Cohen d value (95% CI) P valuea Adjusted P value
Total volume −0.37 (−0.52 to −0.22) <.001 <.001

Corpus medullare −0.43 (−0.58 to −0.28) <.001 <.001

Anterior lobe

Lobule I-III −0.08 (−0.23 to 0.07) .32 .98

Lobule IV 0.02 (−0.13 to 0.17) .75 >.99

Lobule V −0.18 (−0.33 to −0.03) .02 .17

Posterior lobe

Lobule VI −0.18 (−0.34 to −0.02) .03 .26

Crus I −0.23 (−0.41 to −0.05) .01 .12

Crus II −0.32 (−0.49 to −0.16) <.001 .001

Lobule VIIB −0.25 (−0.41 to −0.10) .002 .02

Lobule VIIIA −0.06 (−0.22 to 0.11) .50 >.99

Lobule VIIIB −0.39 (−0.56 to-0.22) <.001 <.001

Lobule IX −0.17 (−0.33 to −0.01) .03 .31

Flocculonodular lobe, lobule X 0.00 (−0.15 to 0.15) .98 >.99

Vermis

VI 0.06 (−0.09 to 0.21) .41 >.99

VII −0.23 (−0.38 to −0.08) .003 .03

VIII −0.12 (−0.27 to 0.03) .12 .76

IX −0.22 (−0.37 to −0.07) .004 .047

X −0.19 (−0.34 to −0.04) .01 .13
a The threshold for significance for the raw P values is

P < .0045.
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Figure 2. Severity and Chronicity Analyses
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number of traumatic brain injury (TBI) and non-TBI participants for each comparison are
as follows: 12 participants with acute complicated mild TBI, 7 participants with acute

moderate TBI, and 25 patients with acute severe TBI, who were each compared with 82
non-TBI participants; 26 patients with postacute complicated mild TBI, 12 patients with
postacute moderate TBI, and 43 patients with postacute severe TBI, who each compared
with 143 non-TBI participants; and 32 patients with chronic complicated mild TBI, 18
patients with chronic moderate TBI, and 71 patients with chronic severe, who were each
compared with 209 non-TBI participants. No TBI participant was included twice in any
of the 9 subanalyses, but non-TBI participants were included across multiple
comparisons. Only negative effect sizes are shown; positive effect sizes were not
significant and are not included.
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Post hoc tests examined potential confounders such as acute-phase pathology, comparison
group type, and attention-deficit/hyperactivity disorder (ADHD). Results were consistent with our
primary models. These are summarized in eResults and eTables 7 and 8 in Supplement 1.

Supplemental Analyses
There was a significant interaction between TSI and GCS for total cerebellum, whereby participants
with higher GCS scores showed increased volume with further TSI (eResults, eTable 9, and eFigure 5
in Supplement 1). Within msTBI, there were no significant associations of TSI with GCS, or age at
injury (controlling for age at scan). Total cerebellum volume was negatively associated with the BRIEF
MCI (β = −202.5 mm3; 95% CI, −319.0 to −85.0 mm3; P = .02) and GEC (β = −208.9 mm3; 95% CI,
−319.0 to −98.0 mm3; P = .008) scores in msTBI, such that smaller cerebellar volumes were
associated with greater executive dysfunction (Table 3).

Exploratory Multimodal MRI Analyses
In the exploratory multimodal analysis, there were 32 participants from the msTBI group with high-
quality DTI data at time point 1, high-quality cerebellar segmentations at both time points, and data
for all necessary covariates. Among participants with msTBI, there were significant cross-sectional
associations of total cerebellum volume with FA in central WM ROIs (eTable 10 and eFigure 6 in
Supplement 1). This finding was significant when covarying for GCS, suggesting that the association
of cerebellar volume with FA in the cerebrum is not dependent on TBI severity. FA at baseline was
also significantly associated with longitudinal changes in total cerebellum volume (β=0.52 mm3; 95%
CI, 0.19 to 0.84 mm3; P = .005) (further regional details in eResults in Supplement 1). We covaried
for interval, TSI, GCS, and percentage change in ICV, indicating that the association of baseline FA
with secondary cerebellar changes again were associated with injury severity or overall atrophy. The

Table 3. BRIEF Score Associations

Region and subregion

BRIEF Behavioral Regulation Index BRIEF Metacognition Index BRIEF Global Executive Composite

P valuea
Adjusted
P value β-Value (95% CI) P valuea

Adjusted
P value β-Value (95% CI) P valuea

Adjusted
P value β-Value (95% CI)

Total volume .005 .06 −152.9 (−253.7 to −52.0) .002 .02 −202.5 (−319.5 to −85.5) <.001 .008 −208.9 (−319.4to −98.5)

Corpus medullare .31 .98 −11 (−32.0 to 10.1) .08 .60 −23.4 (−49.1 to 2.4) .08 .60 −22.1 (−46.5 to 2.3)

Anterior lobe

Lobule I-III .23 .94 −1.5 (−3.8 to 0.9) .02 .20 −3.0 (−5.4 to −0.6) .08 .60 −2.2 (−4.6 to 0.2)

Lobule IV .05 .41 −5.6 (−11.0 to −0.2) .005 .05 −8.7 (−14.4 to −3.0) .007 .07 −8.2 (−13.8 to −2.6)

Lobule V .03 .27 −6.1 (−11.4 to −0.8) .02 .16 −7.1 (−12.7 to −1.6) .02 .16 −7.1 (−12.5 to −1.6)

Posterior lobe

Lobule VI .34 .99 −5.9 (−18.2 to 6.3) .06 .48 −13.7 (−27.2 to −0.2) .16 .85 −9.6 (−23.0 to 3.7)

Crus I .02 .22 −27.9 (−50.2 to −5.6) .09 .66 −21.1 (−45.0 to 2.7) .03 .26 −28.0 (−51.2 to −4.8)

Crus II .54 >.99 −4.5 (−19.0 to 10.0) .08 .58 −14.7 (−30.4 to 1.1) .19 .90 −10.7 (−26.6 to 5.2)

Lobule VII B .76 >.99 2.0 (−10.5 to 14.4) .12 .76 −10.7 (−24.0 to 2.5) .19 .90 −9.0 (−22.5 to 4.4)

Lobule VIIIA .31 .98 −6.4 (−18.7 to 6.0) .81 >.99 1.6 (-11.4 to 14.6) .95 >.99 −0.4 (−13.4 to 12.6)

Lobule VIIIB .62 >.99 −1.6 (−7.9 to 4.7) .58 >.99 −2.1 (−9.6 to 5.4) .41 >.99 −3.0 (−10.3 to 4.2)

Lobule IX .13 .78 −4.3 (−9.9 to 1.2) .16 .85 −5.0 (−11.8 to 1.8) .32 .99 −3.4 (−10.0 to 3.3)

Flocculonodular lobe,
lobule X

.19 .90 0.7 (−0.3 to 1.7) .32 >.99 0.6 (−0.5 to 1.7) .53 >.99 0.3 (−0.7 to 1.4)

Vermis

VI .12 .76 1.7 (−1.3 to 4.7) .96 >.99 0.5 (−2.6 to 3.7) .85 >.99 1.1 (−2.0 to 4.2)

VII .86 >.99 −1.5 (−3.3 to 0.3) .81 >.99 0.0 (−2.1 to 2.0) .50 >.99 −0.2 (−2.2 to 1.8)

VIII .78 >.99 0.3 (−3.0 to 3.6) .86 >.99 0.4 (−3.2to 4.1) .73 >.99 1.2 (−2.3 to 4.7)

IX .37 .99 −0.2 (−1.8 to 1.4) .95 >.99 0.2 (−1.6 to 1.9) .84 >.99 0.3 (−1.4 to 2.0)

X .27 .97 0.3 (−0.3 to 0.9) .75 >.99 0.0 (−0.7 to 0.7) .47 >.99 0.1 (−0.6 to 0.7)

Abbreviations: BRIEF, Behavior Rating Inventory of Executive Functioning.
a The threshold for significance for the raw P values is P < .0045.
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only significant cross-sectional or longitudinal associations of FA with total cerebellum volume in the
non-TBI group were the cerebellar peduncles.

Discussion

In what is, to our knowledge, the largest MRI cohort study of pediatric msTBI, we found smaller total
cerebellum volume which was associated with changes in the posterior lobe. Volume reductions
were most prominent in patients with more severe injuries and those at least 6 months postinjury
and were independent from general injury severity and global atrophy, suggesting that volumetric
changes in the cerebellum may be due to a secondary injury process. This secondary injury
hypothesis was substantiated with longitudinal analyses incorporating multimodal MRI. Our results
indicate that regions not directly impacted by injury cannot be assumed to be spared, and that these
late-developing disruptions are associated with executive function. Finally, longitudinal analyses
showed cerebellar atrophy in the youngest participants, which may partially explain generally worse
outcomes; however, we were unable to consider other factors confounded with age such as
mechanism of injury, which may also be associated outcomes.

Cerebellum Development
Developmental trajectories of the cerebellum are complex, with peak maturation ranging between
age 5 years to early adulthood, generally with the vermis and anterior lobe maturing earliest;
therefore, posterior lobular cerebellar regions were likely immature in our sample (mean [SD] age at
injury, 13.0 [3.6] years), possibly increasing their vulnerability. Plasticity during development may
lead to faster recovery but also increased susceptibility to disruption.52 However, the posterior
cerebellum may simply be particularly susceptible to disruption, perhaps due to connectivity with
the prefrontal cortex.53-55 Two recent examinations in ENIGMA working groups have shown volume
deficits among adults with posttraumatic stress disorder and epilepsy, primarily in the posterior
lobe.44,56 Future analyses with expanded age ranges and multimodal MRI data may further
disentangle potential sources of susceptibility.

Potential Sources of Cerebellar Vulnerability
The frontocerebellar networks supporting the cerebellum’s role in cognitive function may be a source
of indirect injury. The posterior lobe, where the greatest volumetric deficits in msTBI were found, is
of particular interest given that it is larger in primates compared with other mammals57 and has been
shown during phylogenetic expansion to mirror the frontal cortex.54,55 In the absence of direct injury,
atrophy in the cerebellum may be associated with secondary injury processes such as connectomal
diaschisis. Effect sizes were largest in the corpus medullare, where the deep cerebellar nuclei (the
terminus for many cortical projections) are located. Higher resolution data may determine whether
the structural connectivity of the cerebellum is associated with increased vulnerability. We found
significant differences in the chronic phase of injury, with few differences in the acute or postacute
phases, suggesting that atrophy occurs months after the initial injury. We substantiated these
findings with a secondary longitudinal analysis and found greater total cerebellum volume decreases
in msTBI. Additionally, lower FA of multiple central WM regions was associated with slower growth
in the cerebellum, even when controlling for injury severity and change in total brain volume,
indicating that they are not simply associated with general neuropathology postinjury. In the non-TBI
group, only FA of the cerebellar peduncles was associated with cerebellum volume, suggesting that
these are unique to the context of injury. The contribution of other acute pathology, such as lesions,
is not clear, and further work on the interconnected structural and functional networks of the
cerebellum is necessary.
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Potential Confounders
One important confounding variable is the occurrence of preexisting psychiatric disorders within our
sample. In particular, ADHD is associated with increased risk of TBI58 and is also associated with
smaller cerebellum volume.59 We, thus, conducted a secondary analysis only using data from sites
that excluded participants with ADHD and found consistent results.

Limitations
This study has limitations. Despite our large sample size, differences among recruitment criteria, scan
parameters, and behavioral measures between sites limit the power of some analyses. Variability
across sites at the time of testing and scanning postinjury may have limited our results because the
first year after injury is particularly dynamic.27 We established postinjury intervals and conducted
analyses within each interval to better understand this phenomenon. However, physiologic changes
occur along a continuum, and not in discrete periods. There were differences in sample size within
the postinjury intervals, and only a subset had longitudinal data. Although the multisite design led to
variability, it also resulted in what is, to our knowledge, the largest pediatric msTBI MRI sample to
date, demonstrating the utility of ENIGMA to support analyses that might otherwise be
underpowered. Additionally, tract-based spatial statistics is an ROI-based approach limiting our
ability to fully attribute our results to specific tracts. Further mapping of the structural connectome
using tractography may provide more detail.

Conclusion

In this cohort study, cerebellum volume was significantly smaller in patients with msTBI, and was
most pronounced in the later-developing posterior lobe. Furthermore, these volumetric alterations
were associated with poorer executive functioning. Longitudinal and multimodal results indicated
that indirect cerebellar injury may be associated with early injury-related disruptions in cerebral WM
microstructure, beyond general injury and atrophy. These results suggest ongoing neural processes
postinjury that result in cerebellar changes, which in turn contribute to executive function deficits,
and highlight the importance of continuing to monitor patients long term as new clinical complaints
emerge. Future research incorporating lesion mapping and structural connectivity will help
understand the mechanisms of spreading disruption and potentially identify additional opportunities
for intervention that may leverage developmental neuroplasticity.
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