
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

co
no

m
ic

s
an

d
M

an
ag

em
en

t
D

ep
t.

of
 In

du
st

ria
l E

co
no

m
ic

s
an

d
Te

ch
no

lo
gy

 M
an

ag
em

en
t

M
as

te
r’s

 th
es

is

Christian Håkon Torsten Inngjerdingen
Simen Aksland Møller

Incorporating Neighborhood
Interactions and Vehicle
Coordination in Bike Sharing
Rebalancing with the X-PILOT
Method

Master’s thesis in Industrial Economics and Technology
Management
Supervisor: Steffen J.S. Bakker
Co-supervisor: Henrik Andersson
June 2023

Christian Håkon Torsten Inngjerdingen
Simen Aksland Møller

Incorporating Neighborhood
Interactions and Vehicle Coordination
in Bike Sharing Rebalancing with the X-
PILOT Method

Master’s thesis in Industrial Economics and Technology Management
Supervisor: Steffen J.S. Bakker
Co-supervisor: Henrik Andersson
June 2023

Norwegian University of Science and Technology
Faculty of Economics and Management
Dept. of Industrial Economics and Technology Management

Department of Industrial Economics and
Technology Management

TIØ4905 - Managerial Economics and Operations
Research, Master’s Thesis

Incorporating Neighborhood Interactions
and Vehicle Coordination in Bike Sharing
Rebalancing with the X-PILOT Method

Authors:
Christian H̊akon Torsten Inngjerdingen

Simen Aksland Møller

Supervisor:
Steffen J.S. Bakker

Co-supervisor:
Henrik Andersson

8th June 2023

Preface

This thesis concludes our Master of Science at the Department of Industrial Economy
and Technology Management at the Norwegian University of Science and Technology. It
is written during the spring semester of 2023 and is a continuation of our specialization
project in TIØ4500 Managerial Economics and Operations Research, from the fall 2022.

A special gratitude to our supervisors Associate Professor Steffen J.S. Bakker and Professor
Henrik Andersson for valuable guidance and support throughout the project. We would
also like to thank Urban Sharing and Urban Infrastructure Partners for providing helpful
insights and access to necessary data.

Christian H̊akon Torsten Inngjerdingen
Simen Aksland Møller

Trondheim, 8th June 2023

i

Abstract

This thesis examines the dynamics of neighborhood interactions and coordination of service
vehicles within bike sharing systems (BSSs). Due to uneven distribution of demand across
stations in BSSs, keeping the systems in balance is a significant challenge for operators.
As stations become fully starved or congested, users may either abandon their attempts
to pick up a bike or opt for neighboring stations, causing a spillover of demand. To ensure
an efficient BSS, service vehicles are utilized to redistribute bikes between imbalanced
stations. These rebalancing operations normally take place within a dynamic environ-
ment throughout the day, with uncertainty in customer demand causing stochasticity. To
address the complexities of rebalancing under such conditions, this thesis formulates the
Dynamic Stochastic Bicycle Rebalancing Problem with Neighborhood Interactions (DS-
BRPNI). A gap in existing research is identified, wherein the interactions between stations
are frequently overlooked. Therefore, the main purpose of this thesis is to investigate the
impacts of neighborhood interactions and to develop a solution method that incorporates
such effects.

To solve this computationally challenging problem, we develop a metaheuristic called the
Explorative Preferred Iterative LOokahead Technique (X-PILOT), which builds on the
PILOT method by Voß et al. (2005). When applied to the DSBRPNI, our method can ef-
ficiently solve the problem while incorporating essential real-life considerations. X-PILOT
seeks to avoid myopia by assessing the future implications of rebalancing decisions using
lookahead techniques. Furthermore, the method features a novel construction algorithm
that facilitates improved resource utilization and exploitation of synergies within a multi-
vehicle system.

To evaluate the quality of our solution method accurately, it is implemented in a discrete-
event simulator that emulates real BSSs. Historical data from Trondheim City Bike,
Bergen City Bike, Oslo City Bike and Citi Bike New York is used to generate realistic
test instances of varying sizes and demand patterns. We enhance the accuracy of the
simulator by introducing a roaming module that determines whether users roam to neigh-
boring stations when starved stations are encountered. Additionally, we propose a novel
evaluation metric aimed at providing precise assessments of system performance by incor-
porating roaming. Results indicate that the new metric can provide significantly different
interpretations compared to traditional metrics.

The computational study shows that the choice of branching width in X-PILOT signific-
antly impacts solution quality. Furthermore, the study shows that longer time horizons
lead to fewer failed events, highlighting the value of X-PILOT’s lookahead feature. The
solution method is proven to exhibit high computational performance, solving the New
York instance consisting of over 900 stations and five service vehicles within few seconds.

Lastly, our solution method is compared to other benchmark policies. For all tested in-

ii

stances, X-PILOT outperforms the alternatives in terms of service rates. Specifically,
X-PILOT excels in coordination of vehicles. We demonstrate that the marginal benefit of
additional vehicles is greater for X-PILOT, indicating that a more coordinated approach
is achieved. The effect of incorporating neighborhood interactions into decision making is
also evaluated. In small systems with a high degree of unassisted balance, the effect is neg-
ligible. However, in larger and more imbalanced systems, we show that the incorporation
of neighborhood interactions results in fewer failed events.

iii

Sammendrag

Denne oppgaven undersøker effekten av nabolagsinteraksjoner og koordinering av service-
biler i bysykkelsystemer (BSS). P̊a grunn av ujevn fordeling av etterspørselen mellom
stasjonene i BSS, er det en betydelig utfordring for operatører å opprettholde balanse i
systemene. N̊ar stasjonene blir helt tomme eller fulle, kan brukerne enten gi opp forsøket
p̊a å hente ut en sykkel eller dra til nabostasjoner, noe som overfører etterspørselen. For
å sikre et effektivt BSS, brukes servicebiler til å reallokere sykler mellom ubalanserte
stasjoner. Disse operasjonene gjøres vanligvis i løpet av dagen i et dynamisk miljø, der
usikkerhet i kundens etterspørsel skaper stokastisitet. For å h̊andtere kompleksitetene
ved rebalansering under slike forhold, formulerer vi det dynamiske stokastiske bysykkelre-
balanseringsproblemet med nabolagsinteraksjoner (DSBRPNI). En mangel i eksisterende
forskning er identifisert, der interaksjoner mellom stasjoner ofte blir oversett. Derfor er
hovedform̊alet med denne oppgaven å undersøke konsekvensene av nabolagsinteraksjoner,
og å utvikle en løsningsmetode som hensyntar slike effekter.

For å løse dette beregningstunge problemet utvikler vi en metaheuristisk metode kalt Ex-
plorative Preferred Iterative LOokahead Technique (X-PILOT), som bygger p̊a PILOT-
metoden av Voß et al. (2005). Anvendt p̊a DSBRPNI kan v̊ar metode effektivt løse prob-
lemet samtidig som viktige hensyn fra virkeligheten blir ivaretatt. X-PILOT unng̊ar kort-
siktighet ved å vurdere fremtidige implikasjoner av beslutninger ved bruk av lookahead-
teknikker. Videre introduserer metoden en ny konstruksjonsalgoritme som muliggjør for-
bedret ressursbruk og utnyttelse av synergier i et system med flere servicebiler.

For å f̊a en presis evaluering av kvaliteten p̊a v̊ar løsningsmetode, implementeres den i en
diskret hendelsessimulator som etterligner virkelige BSS. Historiske data fra Trondheim
Bysykkel, Bergen Bysykkel, Oslo Bysykkel og Citi Bike New York brukes til å generere
realistiske testinstanser med varierende størrelser og etterspørselsmønstre. Vi forbedrer
nøyaktigheten i simulatoren ved å introdusere en roaming-modul som avgjør om brukere
drar til nabostasjoner n̊ar de ankommer tomme stasjoner. I tillegg foresl̊ar vi en ny
evalueringsmetode med m̊al om å gi presise vurderinger av systemets ytelse ved å hensynta
roaming. Resultatene indikerer at den nye metoden kan gi betydelig ulike tolkninger
sammenlignet med tradisjonelle metoder.

Beregningsstudien viser at valget av bredde-parameter i X-PILOT har betydelig innvirkning
p̊a løsningens kvalitet. Videre viser studien at lengre tidshorisonter fører til færre mislykk-
ede hendelser, hvilket fremhever verdien av X-PILOT sine lookahead-funksjoner. Vi
demonstrerer at løsningsmetoden har høy ytelse, og løser New York-instansen best̊aende
av over 900 stasjoner og fem servicebiler p̊a f̊a sekunder.

Til slutt sammenlignes v̊ar løsningsmetode med andre benchmark-metoder. X-PILOT
presterer bedre enn de alternative metodene for alle instanser. Spesielt utmerker X-PILOT
seg p̊a koordinering av kjøretøy. Vi viser at marginalnytten med ekstra servicebiler er

iv

større for X-PILOT, noe som indikerer en mer koordinert tilnærming. Effekten av å
hensynta nabolagsinteraksjoner i beslutningstakingen blir ogs̊a evaluert. I sm̊a systemer
med en høy grad av balanse er effekten ubetydelig. Imidlertid viser vi at inkludering
av nabolagsinteraksjoner fører til færre mislykkede hendelser i større og mer ubalanserte
systemer, som i Oslo og New York.

v

Table of Contents

Preface i

Abstract ii

Sammendrag iv

List of Figures x

List of Tables xii

Abbreviations xiv

1 Introduction 1

2 Background 3

2.1 Bike Sharing Concept . 3

2.2 Historic Development . 4

2.3 New Kinds of Systems . 6

2.4 Urban Sharing . 7

2.5 Challenges in Bike Sharing Systems . 8

2.6 The Spillover Effect . 8

3 Literature Review 10

3.1 Planning Levels in Bike Sharing Systems . 10

3.1.1 Strategic Level . 11

3.1.2 Tactical Level . 12

3.1.3 Operational Level . 13

3.2 Neighborhood Interactions . 13

vi

3.3 The Dynamic Bicycle Rebalancing Problem as an Inventory Routing Problem 14

3.4 Heuristic Solution Methods . 15

3.4.1 Heuristics for the Bicycle Rebalancing Problem 16

3.4.2 PILOT Method . 16

3.5 Studies on the Dynamic Bicycle Rebalancing Problem 17

3.5.1 Objective Function . 17

3.5.2 Demand . 18

3.5.3 Coordination of Service Vehicles . 18

3.5.4 Modeling Characteristics . 18

3.5.5 Solution Method . 19

3.6 Conclusion and Motivation of the Thesis . 21

3.6.1 Considering Neighborhood Interactions 21

3.6.2 Improving the Solution Method . 21

4 The Dynamic Stochastic Bicycle Rebalancing Problem with Neighbor-
hood Interactions 23

4.1 Problem Description . 23

4.1.1 Decisions to Be Made . 23

4.1.2 Available Information and Problem Assumptions 24

4.1.3 Objective . 25

4.2 Example Problem . 25

5 Solution Method 27

5.1 Rolling Horizon and the Subproblem . 27

5.2 Overview of Algorithm . 28

5.3 Loading Decision . 30

5.4 Routing Decision . 31

5.4.1 Identifying Potential Stations . 31

5.4.2 Criticality Score . 31

5.5 X-PILOT . 35

5.5.1 Construction Algorithm . 35

5.5.2 Evaluation Function . 40

vii

6 Simulation Framework 44

6.1 Overview of Simulator . 44

6.2 Roaming Module . 45

6.3 Evaluation of Policies . 46

7 Case Study 47

7.1 Input Data and Parameters . 47

7.1.1 Stations and Driving Time . 47

7.1.2 Roaming and Neighboring Stations 47

7.1.3 Service Vehicles and Handling Time 48

7.1.4 User Demand . 48

7.1.5 Initial State . 49

7.1.6 Target Inventory Level . 49

7.1.7 Length of Time Horizon . 49

7.1.8 Weights for Criticality Score and Evaluation Function 50

7.2 Test Instances . 50

7.3 Example Solution to a Selected Test Instance 51

8 Computational Study 53

8.1 Evaluation Metrics . 53

8.2 Parameter Tuning . 55

8.2.1 Evaluation Function Weights . 56

8.2.2 Discounting Factors . 57

8.2.3 Criticality Weights . 57

8.3 X-PILOT Parameter Analysis . 58

8.3.1 Branching Width & Depth . 58

8.3.2 Time Horizon Length . 62

8.3.3 Number of Scenarios . 63

8.3.4 Selection Criteria . 66

8.4 Computational Performance . 66

9 Heuristic Performance and Managerial Insights 69

9.1 Comparison with Other Policies . 69

viii

9.1.1 Description of Policies . 69

9.1.2 Simulation Results . 70

9.2 Coordination of Service Vehicles . 73

9.3 Effects of Neighborhood Interactions . 74

9.4 Improved System Performance Metric . 77

10 Concluding Remarks 79

11 Future Research 81

11.1 Demand Censoring . 81

11.2 Neighborhood Interactions . 81

11.3 Other Real-Life Aspects . 82

Appendix 83

A Results from Parameter Tuning . 83

A.1 Evaluation Function Weights . 83

A.2 Discounting Factors . 83

A.3 Criticality Weights . 83

B Results from X-PILOT Parameter analysis 87

B.1 X-PILOT Width and Depth . 87

B.2 Number of Scenarios . 87

C Two-Sample t-test . 89

D Results from Heuristic Performance and Managerial Insights 90

D.1 Effect of Neighborhood Interactions 90

D.2 Comparison with Other Policies . 90

Bibliography 92

ix

List of Figures

2.1 Operational costs of a BSS, based on Büttner et al. (2011). 4

2.2 BSS operations software from Urban Sharing. Source: (Urban Sharing, 2023) 7

2.3 Snapshot of Oslo City bike, highlighting a zone with many empty stations.
Two possible rebalancing moves are illustrated. Map adapted from Oslo
City Bike (2023) . 9

3.1 The different planning levels of a BSS . 11

4.1 Illustration of an example problem with vehicle operations, customer de-
mand and roaming. Adapted from Inngjerdingen & Møller (2022) 25

5.1 Illustration of decision points and planning horizons in the rolling horizon
approach. 28

5.2 Flow chart with an overview of the solution algorithm. The X-PILOT
method is applied in the routing decision. 29

5.3 Time to violation, tVi , and deviation from target inventory level, di for
pickup station i . 32

5.4 Illustration of the components included in the calculation of neighborhood
criticality. Station 1 is the station in focus, and stations 2, 3 and 4 are
neighbors. Filled and empty dots represent bikes and locks, respectively . . 34

5.5 Example of a PILOT tree constructed for one vehicle with the X-PILOT
solution method. In the example, α = 2, β1 = 3 and β2 = 2. The plan with
the highest objective value is chosen. Evaluation and selection of plans is
discussed in Section 5.5.2. 36

5.6 A rebalancing plan consists of a route for each service vehicle in the sys-
tem, including loading decisions. In this plan, loading and unloading is
performed every second operation. A shared tabu list is updated through-
out the construction of the plan. 37

5.7 First stage of a PILOT tree constructed for 2 vehicles with the X-PILOT
approach. Vehicle 1 arrives first, and a decision must be made for its next
move. Black nodes and arrows denote station visits and routes for Vehicle
1, while operations of Vehicle 2 are illustrated by orange color. Dashed lines
represent pruned branches. 38

x

5.8 Second stage of tree construction. Branching occurs for the vehicle that is
expected to arrive its designated station first. Some branches have been cut
off to simplify the figure, illustrated by three dots. 39

5.9 Final stage of tree construction. The rest of the routes are created greedily
until the end of the time horizon T , illustrated by green nodes and dotted
lines. 39

5.10 Station inventory curve with and without rebalancing. With rebalancing,
∆vk violations can be avoided. 41

5.11 The curves illustrate station inventory levels with and without rebalancing
at time t1. Deviation from target inventory level is reduced by ∆dk due to
the rebalancing operation. 42

6.1 Overview of how the simulator pulls events from event queue and performs
actions . 45

6.2 The acceptance-rejection method used in the simulator for determining
whether a roaming event occurs when a station is starved 46

7.1 Share of users roaming to neighboring stations in search of a bike dependent
on walking distance . 48

7.2 Station maps for BSS’s in Trondheim, Bergen, Oslo and New York 51

7.3 Example solution for a given subproblem . 52

8.1 Roaming for locks that surpass a given limit are considered failed events
due to the considerable inconvenience for the user. 54

8.2 Number of failed events for different combinations of α and β1 59

8.3 Number of times each branch yields the best ranked plan 60

8.4 Solution time in seconds for different combinations of α and β1 61

8.5 Box plot comparing how the number of failed events are dispersed for 40
different simulation runs, across various scenario configurations. Full lines
represent the median values, while dashed lines show the means. 65

9.1 Development of failed events for different rebalancing policies for the Oslo
instance with two vehicles, plotted for a single simulation 71

9.2 Number of starvations and long roaming for locks for different rebalancing
policies. Three different instances are tested. 72

9.3 How the inclusion of neighborhood interactions in the solution method im-
pacts the performance of different BSS instances. 76

xi

List of Tables

2.1 Characteristics of BSS generations . 6

3.1 How the DBRP can be classified as an IRP. Based on the framework from
Andersson et al. (2010) . 15

3.2 Classification of heuristics that are used for rebalancing problems. The
overview is non-exhaustive . 15

3.3 Comparison of DBRP literature, including this thesis 20

7.1 Characteristics of test instances . 50

7.2 Examples of notation used for test instances 51

8.1 Specifications of hardware and software used for computational study . . . 53

8.2 Classification of different types of customer events 54

8.3 Initial parameter configuration used in parameter tuning 56

8.4 Results from computational study on evaluation function weights for avoided
violations, ωv, enabled roaming, ωr and reduced deviation, ωd. A lower rank
means a better score. The best configuration is highlighted with green color.
Detailed results are found in Appendix A 56

8.5 Final configurations of weight sets used in the criticality function 58

8.6 Number of failed events and solution time in seconds, for different time
horizons, T . Solution times over 10 seconds are marked in grey. 62

8.7 Number of failed events and solution times in seconds for different numbers
of scenarios, and when using expected net demand. Solution times over 10
seconds are marked in grey. 64

8.8 Results from Two-Factor t-test on two different selection criteria 66

8.9 Solution time in seconds for various BSS instances, when α = 2 and β1 = 5 67

8.10 Solution time in seconds for various BSS instances, when α = 3 and β1 = 7 67

9.1 Service rate, number of failed events and relative improvement of failed
events when employing more vehicles for different policies. 74

xii

9.2 Simulation results showing the effect of incorporating neighborhood inter-
actions into the solution method for different instances 75

9.3 Comparison of Performance Metrics for an Example Simulation 78

A.1 Results from the computational study on evaluation function weights (ωv,
ωr, ωd). The green field highlights the configuration with the best score. . . 84

A.2 Results from the computational study on discounting factor γKr . The green
field highlights the best configuration. 85

A.3 Results from the computational study on criticality weights for the para-
meters (tvi , di, ni, Di, T

D
ji). The green fields indicate the best scores. 86

B.1 Number of failed events and solution time in seconds for various combina-
tions of α and β1. Combinations marked in grey are not tested because of
too long solution times. 87

B.2 Number of failed events for different scenario configurations 88

C.1 Results and parameter values for two-sample t-test 90

D.1 How the incorporation of neighborhood interactions in the X-PILOT solu-
tion method impacts solution quality for six different BSS instances. In four
of the instances, the incorporation yields significantly lower mean values of
failed events. 90

D.2 Results of comparison between policies for the BG W35 1V instance 91

D.3 Results of comparison between policies for the OS W31 2V instance 91

D.4 Results of comparison between policies for the NY W31 3V instance. Data
for Kloimüllner PILOT is not . 91

xiii

Abbreviations

Bike Sharing

BSS Bike Sharing System

Operations Research

CGH Column Generation Heuristic

DBRP Dynamic Bicycle Rebalancing Problem

DSBRPNI Dynamic Stochastic Bicycle Rebalancing Problem with Neighborhood Interactions

GP Greedy Policy

GPNI Greedy Policy with Neighborhood Interactions

IRP Inventory Routing Problem

MDP Markov Decision Process

MILP Mixed-Integer Linear Programming

PILOT Preferred Iterative LOok ahead Technique

SBRP Static Bicycle Rebalancing Problem

X-PILOT Explorative Preferred Iterative LOokahead Technique

xiv

Chapter 1

Introduction

As the world faces a high rate of urbanization and population growth, cities are exper-
iencing rising levels of private motorized traffic. This creates issues like environmental
pollution and traffic congestion, fueling the need for sustainable and efficient transport-
ation methods. Bike sharing systems (BSSs) have become a central component of many
cities’ public transportation systems, and are expected to play an increasing role in fu-
ture urban mobility (Shui & Szeto, 2020). The European Parliament recently passed a
resolution calling for a doubling of kilometres cycled in Europe by 2030, highlighting the
importance of including cycling in the mobility ecosystem (Delli, 2023). Presently, there
are almost 2,000 BSSs worldwide, with most having emerged within the last decade, and
plans underway for hundreds of new systems (Russell Meddin, 2022).

The concept of a BSS involves a service provider making bicycles available for public use
across a city. In a conventional station-based BSS, users retrieve a bike from a station, cycle
to their desired destination, and secure the bike at a nearby station with an available lock.
A BSS allows a pool of bicycles to be shared among many users, providing an adaptable
and eco-friendly mobility solution for individual transport.

Although the flexibility of starting and ending a trip at different locations benefits the
user, it poses significant challenges for operators. Uneven distribution of demand across
stations leads to an imbalance in the system, resulting in stations eventually being either
empty (starved) or completely full (congested), commonly referred to as violations. If no
bikes are available, users are unable to start a trip, and if a station is full, bicycles cannot
be returned. As a result, operators need to rebalance the system by moving bicycles
between stations to meet customer demand. The task of deciding how to rebalance the
system is referred to as the Bicycle Rebalancing Problem, which is addressed in this thesis.

Rebalancing accounts for the largest part of the operational expenses for BSSs and other
micromobility operators (Büttner et al., 2011; Heineke et al., 2020), and is undoubtedly
decisive for customer satisfaction. Thus, ensuring efficient rebalancing operations is of
great economical value to BSS operators. Combined with the evolution and rapid expan-
sion of BSSs in recent decades, this has lead to an increased focus on the rebalancing
problem in Operations Research. As BSSs have become more complex, with an increasing
number of stations and bikes, larger fleets of service vehicles are utilized to redistribute
bikes between stations. This calls for an advanced decision support system to efficiently
coordinate rebalancing efforts. With other micromobility alternatives entering the market,
such as e-scooters, it is essential for BSS operators to maintain high availability to stay
competitive.

1

Despite an increasing amount of research conducted on the rebalancing problem, it remains
a significant challenge for operators, and there is considerable room for improvement (Shui
& Szeto, 2020). One aspect that has yet to be thoroughly examined is the possibility for
users to roam to a neighboring station in case of a congestion or starvation. This type
of neighborhood interaction is known as the spillover effect. It is reasonable to assume
that an empty station without any nearby alternatives is more problematic compared to a
situation where users can walk a short distance to a nearby station and pick up a bicycle
there. The same logic applies to users wanting to park at a congested station. Hence,
focusing on stations independently during rebalancing can lead to suboptimal solutions in
terms of total user satisfaction and utility in the system. Despite the potentially important
role of roaming, this topic has received limited attention in scientific literature (Datner
et al., 2019).

The purpose of this thesis is to take a holistic approach to the Dynamic Bicycle Rebal-
ancing Problem, including the spillover effect between stations. The underlying rationale
is that it is preferable to maximize the number of users whose demand is met within
reasonable travel distance, rather than minimizing violations by examining stations inde-
pendently. The first main contribution of this thesis is a solution method that incorporates
demand interactions between neighboring stations. Our previous work (Inngjerdingen &
Møller, 2022) showed that exact methods are too slow when solving this problem for larger
BSS instances. Therefore, we propose a metaheuristic called Explorative Preferred Iter-
ative LOokahead Technique (X-PILOT), which builds on the PILOT method developed
by Voß et al. (2005). The heuristic is applied in an efficient solution method for the
Dynamic Stochastic Bicycle Rebalancing Problem with Neighborhood Interactions (DS-
BRPNI). Second, we introduce a novel way of simulating and evaluating BSSs, incorpor-
ating the spillover effect to enable more realistic results and thereby facilitating better
decision making. Moreover, with the significant costs of rebalancing operations, efficient
resource utilization is decisive. While coordination of service vehicles is commonly over-
looked in existing methods, we propose an integrated approach that considers all vehicles
simultaneously, enabling exploitation of synergies in a multi-vehicle setting.

The company Urban Sharing, who is currently providing BSS services in several European
cities, has supplied real-world data from the BSSs Oslo City Bike, Trondheim City Bike,
and Bergen City Bike. Data from Citi Bike New York is also used to test the X-PILOT
implementation on large BSS instances.

This thesis begins with a brief study of the history and technical development of BSSs
in Chapter 2, including a discussion of challenges faced by modern BSSs. In Chapter 3,
a literature review is presented with a main focus on the Dynamic Bicycle Rebalancing
Problem (DBRP). Chapter 4 provides insights to the main characteristics of the DS-
BRPNI, before an example problem is presented and illustrated to provide further clarity.
In Chapter 5, the X-PILOT solution method is presented. Further, Chapter 6 explains
how a discrete event simulator is used to imitate BSS operations and evaluate different
rebalancing policies. Chapter 7 details on how real-world data from Urban Sharing is util-
ized in the simulator. A computational study is presented in Chapter 8. The study begins
with tuning and analysis of critical parameters before the computational performance of
the solution method is investigated. The effects of considering vehicle coordination and
neighborhood interactions are examined in Chapter 9. This chapter also includes a com-
parison between our solution method and other benchmark polices. Finally, Chapter 10
provides concluding remarks before Chapter 11 discusses possibilities for future research.

2

Chapter 2

Background

In 2006, there were merely 30 bike sharing systems (BSSs) worldwide. Since then, there
has been a tremendous growth leading to almost 2,000 active systems today, with just
short of 9 million bikes in operation (DeMaio et al., 2021; Russell Meddin, 2022). BSSs
have evolved from early stages where bikes were painted and made available on the streets
to be used for free, into a large commercial industry. Technological advancements have
enabled new solutions such as electric bikes, geofencing technology for virtual stations and
GPS-tracking of bike movements. While these rapid developments over the past decades
have led to new opportunities, they also bring new challenges for operators to handle.

In Section 2.1, the bike sharing concept is described in general terms. Section 2.2 details
the historical development of BSSs, while Section 2.3 examines emerging technologies and
the future of BSSs. In Section 2.4, the BSS technology company Urban Sharing is briefly
introduced. Important challenges related to BSSs are addressed in Section 2.5. Finally,
Section 2.6 discusses the importance of considering the spillover effect. All sections in this
chapter are based on previous work by the authors (Inngjerdingen & Møller, 2022).

2.1 Bike Sharing Concept

Although there can be variations in size, equipment, and operation, most BSSs consist
of four main components: bicycles, stations, users, and operators. In these systems,
users begin by picking up an available bicycle at a given station. After traveling to their
destination, they lock the bicycle at a vacant lock at a nearby station. Typically, BSS
operators offer a smartphone app that allows users to locate stations, check availability
and unlock bikes.

As discussed in Chapter 1, imbalances within the system can result in stations becom-
ing either completely full or empty, leaving users unable to start or complete their trips.
These issues are known as starvations and congestions, collectively referred to as viola-
tions. Operators utilize light trucks, known as service vehicles, to move bicycles around
and maintain a balanced system, reducing the occurrence of these violations. However,
predicting future demand can be challenging for operators, who must determine which
stations to visit and how many bikes to load and unload. Rebalancing efforts can be
performed throughout the day, referred to as dynamic rebalancing, or at night time when
there is no customer demand, referred to as static rebalancing.

3

The payment methods for bike sharing systems can differ depending on the operators and
system. While some systems are free of charge, others have a periodic subscription fee, a
deposit payment or a pay-per-use based on rental period. In modern systems, payment and
subscriptions management is most commonly handled through apps. Alternatively, credit
cards and smart cards can be used for payment (Vallez et al., 2021). Bike sharing is often
used to bridge gaps in traditional public transportation, and is generally an affordable
option compared to public transport and driving private cars.

Bike sharing services are provided by various types of actors, including local governments,
transport agencies, advertising companies, for-profit and nonprofit groups (Shaheen et al.,
2010). However, not all bike sharing systems are self-sufficient and they often require fund-
ing through methods such as advertising and public-private partnerships. A prominent
funding source is a partnership between municipalities and advertising companies, such as
JCDecaux and Clear Channel. Under this model, the advertising company provides the
bike sharing service, and in return get the right to advertise on city street furniture and
billboards (Shaheen et al., 2010).

Several cost drivers impact the operating firm of a BSS, such as capital costs, maintenance
fees, and credit-card fees. However, relocating bikes is generally considered the most
significant cost driver, accounting for up to 30% of operating costs in European systems,
as shown in Figure 2.1 (Büttner et al., 2011). In a slightly different context, Heineke
et al. (2020) calculate the costs per ride for a shared, free-floating e-scooter system. They
estimate that relocation accounts for 40-50% of total costs. Despite the lack of physical
stations, free-floating e-scooter systems share many of the same characteristics as station-
based BSSs, including the need for rebalancing. Therefore, it is reasonable to assume that
these figures provide a somewhat accurate breakdown of costs for a BSS.

Figure 2.1: Operational costs of a BSS, based on Büttner et al. (2011).

2.2 Historic Development

Bike sharing systems have undergone significant evolution over time, not only in terms of
the increasing number of bicycles and systems, but also in their design and the technologies
used. The origins of bike sharing date back to Amsterdam in 1965 when Dutch inventor
Luud Schimmelpennink encouraged people to paint their old bicycles white and leave

4

them anywhere in the city for others to use (Chandler, 2020). However, the initiative was
primarily symbolic and a reaction from Schimmelpennink and his group of activists who
aimed to unsettle the establishment. Predictably, the scheme failed due to the lack of a
payment system and dedicated locks, making the bikes vulnerable to vandalism and theft.
Furthermore, many of the bikes were confiscated by the police. Despite the ”White bicycle
plan” failing, it set the foundation for the BSSs that would follow.

Thirty years after the failure in Amsterdam, Schimmelpennink got a new opportunity
when he was asked to help two designers in Copenhagen who set out to develop a new
and better type of system. Copenhagen City Bike became the first large-scale bike sharing
scheme in what has later been referred to as the second-generation systems. Initially, the
system consisted of 1,100 bikes and 110 stations throughout the city center (Shaheen et al.,
2010). To combat theft, the system used specially designed bicycles with parts that could
not be installed on other bicycles. In addition, the bikes were locked to fixed docks. Users
had to enter a coin deposit to unlock the bike, which was returned upon delivery, making
the system free to use. The BSS was funded by commercial sponsors who used the bikes
and racks for advertising. Copenhagen City Bike was a great success and was in operation
until 2012, when it was replaced by a more modern system.

Despite its success, the Copenhagen bike sharing system still faced issues with theft and
vandalism, which was likely caused by the anonymity of borrowing bikes. To address
this challenge, Vélo à la Carte introduced a third-generation, IT-based system in Rennes
in 1998 that required users to unlock bikes using personal smart cards (Shaheen et al.,
2010). The system was still free to use, and also included other improvements, such as
strategically placing bike stations near bus stations and park-and-ride facilities. With this
approach, they aimed to integrate bike sharing into the community and provide seamless
first and last-mile transport. Another example of a third-generation bike sharing system
is Vélib’ in Paris, which opened in 2007 and consisted of over 1,200 fixed stations and
around 18,000 bicycles at its peak. Unlike the previously mentioned systems, Vélib’ was
not free to use and instead operated on a fee-based system, with additional costs after 30
minutes. Users could also buy 1-day pass, 1-week pass or 1-year subscription. It is one of
the most successful large-scale BSSs in history, but was terminated and replaced in 2017.

Vélib’ briefly held the title of the world’s largest bike sharing system in terms of number of
bicycles. However, as bike sharing became popular and established in Europe, countries
in Asia also recognized its potential. Hangzhou was among the first Chinese cities to
implement a bike sharing system with the launch of the Hangzhou Public Bicycle Service
in 2008. Today, it is one of the oldest systems still in operation and one of the largest,
consisting of more than 100,000 bicycles. China is now home to several of the largest bike
sharing systems in the world, with 36% of all systems, according to DeMaio et al. (2021).
The majority of these systems are based on docked third-generation systems, but new
types, such as free-floating systems are growing rapidly.

Table 2.1 provides a rough summary of the development of bike sharing systems, cat-
egorized into different generations. While many current systems can be considered third-
generation, new fourth-generation systems are constantly emerging. However, according
to Chen et al. (2018), the recent rise of free-floating systems represents a transition to a
new generation of bike sharing systems: fifth-generation systems featuring dockless bikes
and advanced big data management capabilities.

5

Table 2.1: Characteristics of BSS generations

1st generation 2nd generation 3rd generation 4th generation

No payment Coin deposit
Membership, free

and fee-based
Membership,

fee-based

Free-floating Station based Station based
Station based and

free-floating

Painted bicycles
Specially designed

bicycles
Specially designed

bicycles
Electric and

non-electric bicycles

Anonymous users Anonymous users Smart card Mobile application

No tracking No tracking
Pickup and drop-off

tracking
Real time tracking

of bicycles

2.3 New Kinds of Systems

Today, a wide range of different bike sharing systems are available, and new solutions
continue to emerge in line with technological advancements. One system that has gained
popularity is the free-floating system, where bicycles can be parked anywhere instead
of at designated locks. The bikes are traced using GPS, and located by users through
mobile applications. Despite their convenience for users, free-floating systems have been
known to cause problems such as bikes being parked in inappropriate locations, disturbing
pedestrians and other cyclists. In addition, the bicycles can have an unfortunate tendency
to pile up in certain areas, and the early generations’ problems of theft and vandalism have
re-emerged (Chandler, 2020). However, solutions to these problems have been developed.
After a massive influx of free-floating systems in China in 2017, local governments imposed
regulations on the free-floating market in 2021, which reduced the number of available
bikes. Additionally, improvements in geofencing technology have allowed for more precise
management of bicycles in virtual parking hubs and no-parking zones, thus reducing the
severity of previous problems (DeMaio et al., 2021).

Geofencing technology uses virtual boundaries and GPS or RFID to identify when a bicycle
enters a specific geographic location. This technology is not limited to free-floating systems
and can be used in station-based systems as well. The introduction of virtual stations has
enabled the use of a higher number of stations - and hence, stations in closer proximity to
one another. This reduces the inconvenience for users when roaming to a different station,
and the severity of a starvation or congestion is largely determined by the state of nearby
stations. Geofencing is also being used to increase the capacity of physical stations, by
adding confined parking areas next to the docks. This has shown to reduce the problem of
congestions and decrease the need for bike redistribution (Jiang & Jamba, 2019). These
effects are changing the dynamics of BSSs and should presumably be taken into account
in rebalancing decisions.

As previously mentioned, mobile applications are often used for payment and unlocking
bicycles in modern BSSs. In systems equipped with ”smart” stations, these apps can
also contain real-time information on available bikes and locks. This allows users to
easily check availability before travelling to a station, and consequently facilitating a more
efficient transfer of demand between nearby stations.

6

2.4 Urban Sharing

Urban Sharing is a BSS software company, which develops and provides a technology
platform used in several European BSSs. Among these are Oslo City Bike, the largest
BSS in Norway with more than 2,800 mechanical bicycles. The system is dock-based,
with over 250 physical stations (Russell Meddin, 2022). It opens at 05:00 in the morning,
and is available until 01:00 at night. The BSS is a cooperation between the municipality
of Oslo and the advertising company Clear Channel, in which the municipality offers
advertising space in exchange for the system. Financing is based on user subscriptions,
commercial revenue from advertising and sponsorship. Urban Sharing’s solutions are also
used for Trondheim City Bike and Bergen City Bike, which share similar characteristics
to the BSS in Oslo. However, the systems are smaller in size with 66 and 100 stations
respectively. Data provided by Urban Sharing for these three systems serve as a basis for
the most of the example cases used in this thesis.

Urban Infrastructure Partner (UIP) is responsible for daily operations of the BSSs, in-
cluding rebalancing, user support, and bike maintenance (Oslo City Bike, 2023). UIP is a
sister company of Urban Sharing, and utilizes their software to support these operations.
Urban Sharing’s services include software for fleet management, rebalancing tools, demand
predictions, maintenance reporting and logging, as well as bicycle and dock management.
UIP use light trucks to perform dynamic rebalancing, i.e., rebalancing throughout the day.
The operators responsible for rebalancing make use of data from Urban Sharing’s platform
to decide which stations to visit and how many bicycles to move. Such data can include a
map with an overview of bike inventory for each station, demand predictions and details
on bikes in need of maintenance. This operations software is illustrated in Figure 2.2.

Figure 2.2: BSS operations software from Urban Sharing. Source: (Urban Sharing, 2023)

7

2.5 Challenges in Bike Sharing Systems

When implementing and operating a BSS, service providers must address multiple issues
and make important decisions. These decisions include determining station density and
location, station capacity, the number of bicycles per resident, and coverage area (Shui &
Szeto, 2020). Additionally, to ensure smooth functioning of the system, there must be an
adequate balance between the number of parking spaces and number of bicycles available
in the system.

Moreover, the easy availability of bikes in public spaces presents several challenges. Among
the most prominent are the problems of theft, vandalism and misplacement (Shaheen
et al., 2010). This means that operators must replace lost bikes, as well as gather and
repair broken ones. Early generations of BSS were especially prone to these issues, lacking
technology to track and monitor bikes, and several systems were discontinued as a res-
ult (Shaheen et al., 2010). However, modern systems use GPS-tracking to monitor bike
locations, and users can report issues directly to the operator through an app.

One of the most significant challenges still faced by BSS operators is keeping the system in
balance. As shown in Figure 2.1, the rebalancing operations account for a significant part
of the costs, and the availability of bikes and locks is naturally decisive for user satisfaction.
In recent years, operations researchers have applied mathematical models in order to make
rebalancing operations more efficient (Shui & Szeto, 2020). Such models provide decision
support for operators, which can lead to better utilization of service vehicles and personnel.
Even though mathematical models can aid in the daily operations, it is difficult to include
all relevant real-life aspects in these models. Furthermore, the complexity of such models
increases with the growth of BSSs, and with larger fleets of service vehicles needing to be
coordinated across big cities.

2.6 The Spillover Effect

One real-life aspect that has yet received limited attention is neighborhood interactions,
known as the spillover effect. When users looking for a bicycle arrive at an empty station,
or observe this status in a mobile application, they have two options; either search for a
bicycle at a neighboring station (referred to as roaming for bikes) or abandon the system in
favor for other means of transportation (Datner et al., 2019). Therefore, an empty station
can create a spillover of demand for bicycles to neighboring stations. Among other things,
the willingness of individuals to walk to a neighboring station depends on the distance
(Costa Affonso et al., 2021). Furthermore, when users want to return a bike at the end of
a trip, they may find a full station. In docked systems, where bicycles must be placed in
physical locks, this creates a challenge for the user who must locate an available lock at
another station (referred to as roaming for locks). Therefore, a full station always transfers
demand for locks to other stations.

Currently, most mathematical models only consider individual stations and disregard the
fact that users can roam between stations to meet their demand. Neglecting these neigh-
borhood interactions can lead to suboptimal decision-making, as noted by Datner et al.
(2019). Similarly, Kloimüllner et al. (2014) argue that spillover of demand should be
considered to make models more precise. Moreover, Hagen & Gleditsch (2018) argue
that imbalanced stations are not necessarily problematic if nearby stations can handle
the demand. They highlight the need for research investigating such interactions between

8

Figure 2.3: Snapshot of Oslo City bike, highlighting a zone with many empty stations.
Two possible rebalancing moves are illustrated. Map adapted from Oslo City Bike (2023)

stations.

Consider the imbalanced system showed in Figure 2.3, which is a real snapshot from the
Oslo BSS. The zone marked with a yellow oval suffers from many stations being completely
empty. Suppose the operator wants to address this imbalance by redistributing a batch
of bicycles from station A to a station in this zone. Most mathematical models consider
the empty stations in isolation and choose to drop off the bikes at the station where
the most violations can be avoided. When many models in addition punish the driving
time between stations, bicycles are often being redistributed to the nearest empty station.
Figure 2.3 demonstrates this approach with a rebalancing move from A to B. While this
is beneficial for the users at B, it offers little value to the users at the other side of the
zone. Furthermore, since B is situated on the border of the starved zone, it has several
neighboring stations with available bicycles. Thus, rebalancing B does not appear to be
the most advantageous move.

If spillover effects are taken into account by the model, the decision on where to redistribute
the bicycles would be based on minimizing the total number of violations, including those
from nearby stations. In Figure 2.3, this could result in the rebalancing move from A to C.
The neighboring stations of C gain a benefit from the move since users looking for bicycles
at these stations, now can roam to C. Since C has more empty neighbors compared to
B, more stations benefit from the move to C. Users are likely to be more satisfied if they
can walk a short distance to pick up bicycles at a nearby station, rather than having
no bicycles available at all. Thus, taking spillover effects into account when deciding on
the best rebalancing moves could lead to fewer severe violations and increased customer
satisfaction.

9

Chapter 3

Literature Review

With the rapid growth and development of BSSs worldwide over the past few decades, the
operations research community has shown increasing interest in addressing the challenges
that arise. The topic includes complex decisions on several levels; from major strategic
issues when designing a system, to everyday operations and maintenance. This literat-
ure review aims at giving an overview of the existing research literature, as well as an
understanding of relevant modeling and solution approaches. Google Scholar has been
used in search of relevant articles, applying keywords such as BSS rebalancing problem,
BSS neighboring stations rebalancing and BSS rebalancing zones. Selection criteria have
mainly been number of citations and publications in major operations research journals.
Further, snowballing has been utilized to discover more relevant articles on selected topics.

In Section 3.1, the different planning levels of BSS problems are introduced, together with
a brief discussion of their most common research topics. Section 3.2 discusses topics related
to interactions between stations in the same geographical area. Section 3.3 looks at how
the Dynamic Bicycle Rebalancing Problem can be categorized as an Inventory Routing
Problem. Next, Section 3.4 considers applicable heuristic solution methods. Finally,
relevant studies are compared in Section 3.5 before a conclusion and motivation of the
thesis is presented in 3.6. Sections 3.1-3.3 and 3.5-3.6 are extensions of the literature
review in Inngjerdingen & Møller (2022).

3.1 Planning Levels in Bike Sharing Systems

BSS decision problems can be categorized into three planning levels as shown in Figure
3.1 (Vogel, 2016). The strategic level focuses on high-level planning, including location
and capacity of stations, number of bicycles and overall system design. The tactical level
includes decisions regarding inventory levels at stations, as well as detection of broken
bicycles and locks. Strategic level decisions serve as input to the tactical level decision
making. Finally, the operational level relates to the daily operations. Based on input
from the strategic and tactical levels, the daily operations aim to optimally redistribute
bicycles between stations. They can also include pickup and repair of broken bicycles, as
well as battery swaps for electrical BSSs. Higher levels serve as input for the lower levels,
and the total performance of the system depends on all levels (Vogel, 2016). For instance,
the placement of stations on a strategic level serve as foundation for the optimal number
of bicycles chosen on a tactical level. This again affects the need for rebalancing efforts
on an operational level.

10

Figure 3.1: The different planning levels of a BSS

3.1.1 Strategic Level

The overall system design is decided within the strategic level, where the decisions have
a longer time horizon and typically involve capital investments. Business model and
infrastructure investments are to be decided, which tend to have long-term impacts on
the system performance. Such decisions are normally made prior to market entrance, and
even when decisions can be changed later on, this usually involves costs (Vogel, 2016).
According to Shui & Szeto (2020) there are three planning activities within the strategic
level; bikeway design network, bicycle station design and fleet sizing design. The strategic
level is not the main scope of this thesis, but a few relevant articles and decisions are
presented to provide a context.

A central decision to be made on the strategic level is the location of stations, for which
there are several different approaches in the literature. Using a Geographical Information
Systems (GIS) approach, Garćıa-Palomares et al. (2012) suggest a model which takes
into account statistical information regarding buildings, street networks, transport zones
and public transportation networks. Methods of maximizing coverage and minimizing
impedance are used to calculate an assumed distribution of demand. A set of obligatory
and candidate stations are proposed, as well as the number of stations to employ. GIS can
also be used to identify hot spots with insufficient bikes or bike racks (Wang et al., 2016).
Lin & Yang (2011) propose a model for determining the number and locations of bicycle
stations, taking into account perspectives of both users and investors. The model suggests
a network structure of bike lanes connecting the stations and travel paths between each
pair of origin and destination station.

External factors can be taken into account on a strategic level. Garcia-Gutierrez et al.
(2014) account for the influence of co-existing transportation systems in station location.
Romero et al. (2012) optimize the location of docking stations, using a model of private
car and public transport modes as well as their interactions.

New technological developments are also influencing the strategic decision making. New
bicycle types (e.g., electric, cargo and two-seated), free-floating systems and mobile bicycle
docks each have their corresponding requirements for bicycle parking (Shui & Szeto, 2020).
New research topics arise with this development, such as charging infrastructure for e-bikes,
locations of virtual parking zones for free-floating bikes, or design of hybrid systems with
different parking solutions and bicycle types.

11

3.1.2 Tactical Level

The goal of the problems at the tactical level is to optimize the utilization of the resources
and the infrastructure of BSSs (Shui & Szeto, 2020). Thus, the results from the strategic
problem, e.g., the number and locations of stations, can be seen as input for the tactical
level. The problems on the tactical level have a relatively short time horizon, often a day
at the time, but as the decisions are insensible to the real-time changes in the BSS, they
are not considered operational. According to Shui & Szeto (2020), there are two main
tactical problems in bicycle sharing service planning.

The first is known as the Static Bicycle Rebalancing Problem (SBRP). This problem is
concerned with regulating the inventory levels of stations during the night, when the
BSS is closed or demand is negligible. Relocation of bicycles is performed using one or
several service vehicles and planning the vehicles’ routes is an important aspect of these
problems, in addition to determining the amount of bicycles to pick up and drop off. The
SBRP is well-studied and many different techniques are being used to determine optimal
rebalancing plans. Forma et al. (2015) utilize a three-stage mathematical programming
based heuristic, where the first stage is a specialized heuristic that clusters stations based
on geographic location and bicycle inventory. The second stage routes the repositioning
vehicles and makes tentative inventory decisions. Finally, the last stage solves the original
rebalancing problem with additional constraints. The last two stages are modeled as
Mixed-Integer Linear Programs (MILPs) and solved by a commercial solver.

As the demand throughout the day is uncertain, it is important with thorough demand
analysis and accurate forecast models. To include the future behaviour and demand
patterns of a system, many researchers focus on determining the optimal initial inventory
level of a station, i.e., how many bicycles and locks should be available at the beginning of
the day. This is often the first part of the broader Inventory Level Management Problem,
which is discussed further in Section 3.1.3. Espegren & Kristianslund (2016) use both
expected demand and the variance to calculate a station’s optimal initial inventory level.
They suggest that the optimal level can be found when setting the probability of violation
due to congestion equal to the probability of violation due to starvation. They argue that
this makes the system well prepared for future demand. Similarly, Datner et al. (2019)
also determine optimal initial inventory levels. However, this is done while considering
spillover effects from nearby stations. In their model, users are allowed to roam between
stations to rent and return bikes. Thus, an empty or full station can create a spillover of
demand to nearby stations. Their objective function minimizes the sum of excess time,
i.e., the difference between the total travel time and the ideal time, for all users. They
show that the optimal inventory levels obtained by their method can save 7%-9% of excess
user time in the system compared to models that do not consider the spillover effect.

The other main problem at the tactical level is the Static Demand Management Problem.
Here, the aim is to increase cycling demand or motivate users to relocate bicycles. This can
be achieved using incentives, such as different pricing for pairs of origins and destinations
as studied in Haider et al. (2018). Another approach is for the operator to use parking
reservation policies in order to regulate the demand over a given area or set of stations.
Kaspi et al. (2016) explore the effect of allowing the operator to accept/deny a reservation
of a bicycle lock, when the customer attempts to rent a bike.

12

3.1.3 Operational Level

The operational level focuses on short-term decisions taken throughout the day in response
to real-time changes from daily activities. According to Shui & Szeto (2020), this includes
Inventory Level Management Problems, Dynamic Bicycle Rebalancing Problems (DBRPs)
and Dynamic Demand Management Problems. The DBRP is especially relevant for this
thesis, and is further presented in sections 3.3 and 3.5.

Inventory Level Management Problems aim to determine the optimal target inventory
level of usable bikes at each station during the opening hours of the BSS (Shui & Szeto,
2020). This differs from the optimal initial inventory levels discussed in Section 3.1.3,
which serve as input for static overnight rebalancing. Often, the optimal inventory level is
time dependent, meaning that a station should have different amounts of bicycles and locks
available at different times throughout the day. Raviv & Kolka (2013) and Schuijbroek
et al. (2017) model the Inventory Level Management Problem in a single station context,
where inventory levels are determined independently and interactions with inventory levels
of other stations are not considered. However, very often, interactions between inventory
levels of different stations are not negligible, especially considering how spillover of demand
from an empty station creates increased demand at nearby stations (Rudloff & Lackner,
2014).

Dynamic Demand Management Problems focus on incentivising users to create better
resource utilization. They differ from Static Demand Management Problems by being
performed throughout the day. Such demand management can be achieved either by
introducing motivating incentives or by implementing regulations, in order to make users
pick up and return bikes on certain stations (Shui & Szeto, 2020). The aim is to encourage,
or require, pickups at stations with excess supply and deliveries at stations with low bike
inventory levels. According to Shui & Szeto (2020), two of the most studied approaches
in the literature are dynamic pricing incentives and parking space reservation.

Dynamic pricing is the most common demand management tool, and is a way of motivating
user-based relocation in response to rapidly changing station inventory levels. Chemla
et al. (2013) propose setting a price on return stations for each time interval, taking into
account the extra walking and cycling effort required from a user selecting a non-preferred
station. Ruch et al. (2014) use an agent-based model to show that dynamic price control
can improve service rates, without the need to resort to redistribution staff. An integrated
approach is suggested by Pfrommer et al. (2014), where dynamically varying rewards
are offered to users based on current and predicted system state, combined with routing
directions for redistribution staff. It is shown that a trade-off between user reward payouts
and redistribution costs is possible to achieve, in order to minimize operating costs.

Two studies from Kaspi et al. (2014, 2016) analyze the performance of several different
parking reservation policies. With such policies, the users must state their destination
station upon bike rental, and a parking space is then reserved in the system. The studies
conclude that policies with parking reservation outperform no-reservation policies in terms
of total excess time of users in the system.

3.2 Neighborhood Interactions

As mentioned in Chapter 1, limited attention is given to the interactions between neigh-
boring stations in the scientific literature. Still, some researchers attempt to quantify the

13

spillover effect and incorporate it into mathematical models. Rudloff & Lackner (2014)
study the influence of weather conditions and full and empty neighboring stations when
predicting the demand for bikes and locks. This new forecasting model is measured against
historic demand, and the results show an improvement in predictions. Faghih-Imani &
Eluru (2016) look at the spatial and temporal interactions between stations’ departure
and arrival rates. They show that part of the demand for bicycles/locks from a given
empty/full station can be distributed to neighboring stations that are not empty/full. Ac-
cording to the authors, neglecting the presence of such effects, can result in biased model
estimates.

There are few examples of models that include the spillover effect when determining static
rebalancing plans. However, both Datner et al. (2019) and Costa Affonso et al. (2021)
present algorithms that calculate the optimal initial inventory level on each station, consid-
ering spillover effects. Their objectives are respectively to minimize journey dissatisfaction
(excess travel time for the users) and lost customer demand (users looking for bikes at
empty stations). In addition to calculating the optimal initial inventory levels, Costa Af-
fonso et al. (2021) use these results to determine the optimal route and loading/unloading
decisions for the operator. It is worth noting that the authors make several significant
simplifications, such as ignoring the demand for docking bicycles and using a predefined
list of supplier stations. Still, both articles display the importance of including the in-
teractions between stations. This is especially important when considering the trade-off
between setting up many small stations or fewer stations with greater capacity, as the
effects are larger in the former (Datner et al., 2019).

Finally, Regue & Recker (2014) propose a framework where they attempt to solve the
Dynamic Bicycle Rebalancing Problem. One of the four core models in the framework
is a vehicle-routing model that takes into account the state of the neighboring stations
when evaluating the utility of visiting a station. The model maximizes the combination
of utility gained by visiting a station with large inefficiency and the utility gained by
visiting a station with a neighborhood of stations that is expected to have inefficiencies in
future time steps. The authors define the neighborhood of a station as all stations that
are located within 800 metres from the current station, but do not otherwise including
roaming distances. The aim is to route the service vehicle to an area that is expected to
have inefficiencies in future time steps. However, the model does not distinguish between
starved and congested stations.

3.3 The Dynamic Bicycle Rebalancing Problem as an In-
ventory Routing Problem

The DBRP aims to redistribute bicycles between stations throughout the day, in order to
maintain balanced inventory at stations. In general, the objective is to minimize unmet
demand, in terms of bicycle rentals and returns. Due to bicycle inventory decisions, the
DBRP can be considered as a variant of the Inventory Routing Problem (IRP).

In an IRP, inventory management decisions are integrated into the vehicle routing de-
cisions. Usually, a supplier has to deliver products to a number of geographically dispersed
customers in order to meet their demand (Coelho et al., 2014). In the DBRP, the operator
can be seen as the supplier, while the stations correspond to the customers. The operator
is responsible for transporting bicycles between stations and manage their inventory in
order to meet customer demand. An extensive review of the literature regarding the IRP,

14

can be found in Coelho et al. (2014).

Table 3.1 presents the characteristics of the DBRP as an IRP using the classification
framework described by Andersson et al. (2010). In the DBRP, a finite time horizon is
considered, in which the state after the time horizon is dependent on the decisions made.
Demand for bikes and locks experienced by the stations is stochastic. The topology of the
DBRP can be described as many-to-many as there is no central facility, instead, bikes can
be loaded and unloaded at any station. Routing is performed in a pickup and delivery
setting, which is defined as continuous (Andersson et al., 2010). When demand is unmet,
this is considered as lost sales as users can utilize other modes of transportation. Finally,
both a single vehicle and multiple, homogeneous or heterogeneous vehicles, can be used in
the DBRP.

Table 3.1: How the DBRP can be classified as an IRP. Based on the framework from
Andersson et al. (2010)

Characteristic Alternatives

Time Instant Finite Infinite
Demand Stochastic Deterministic
Topology One-to-one One-to-many Many-to-many
Routing Direct Multiple Continuous
Inventory Fixed Stock-out Lost sales Back-order
Fleet composition Homogeneous Heterogeneous
Fleet size Single Multiple Unconstrained

3.4 Heuristic Solution Methods

The DBRP is a complex problem to solve, and operational use for rebalancing requires
rather short solution times. For real-life instances, exact methods are often not applicable
due to long solution times. A common approach to improve solution times for optimization
problems, while still maintaining satisfactory solution quality, is to use heuristics. Sev-
eral heuristic approaches to solving the DBRP, and problems with similar characteristics
such as IRP and VRP, have been suggested in scientific literature. Table 3.2 provides a
classification of some heuristic solution methods that are used for rebalancing problems,
and use cases from scientific literature are briefly described in Section 3.4.1. An adapted
Preferred Iterative LOok ahead Technique (PILOT) heuristic is used to solve the DBRP
in this thesis. Literature on this method is presented in Section 3.4.2.

Table 3.2: Classification of heuristics that are used for rebalancing problems. The overview
is non-exhaustive

Type Local Search Evolutionary Algorithms

Description
Iteratively improves an initial solu-
tion by searching nearby feasible
solutions

Inspired by the process of natural
selection. Iteratively evolves can-
didate solutions (population) by ap-
plying genetic operators

Examples

Simulated Annealing
Variable Neighborhood Search
Variable Neighborhood Descent
Large Neighborhood Search

Genetic Algorithms
Artificial Bee Colony
Ant Colony Optimization
Particle Swarm Optimization

15

3.4.1 Heuristics for the Bicycle Rebalancing Problem

Several heuristic solution methods have been applied to the Bicycle Rebalancing Problem
(BRP). Di Gaspero et al. (2013a) use the local search approach Large Neighborhood
Search (LNS) in order to obtain good solutions in a reasonable time. The LNS is coupled
with constraint-based propagation to handle complex routing tasks. However, they are
not able to outperform other benchmark models. Rainer-Harbach et al. (2013) apply two
local search methods to solve a static rebalancing problem, namely Variable Neighborhood
Search (VNS) and Variable Neighborhood Descent (VND). The VNS uses an embedded
VND that exploits various specifically designed neighborhood structures. Experiments on
benchmark istances indicate that high quality solutions can be found with this approach.
The work is extended in Rainer-Harbach et al. (2015), by including a more sophisticated
construction heuristic based on the PILOT method. A description of this method is
found in Section 3.4.2. In addition, randomization is applied using Greedy Randomized
Adaptive Search Procedure (GRASP). Results show that VNS performs particularly well
on medium-sized instances, while a PILOT/GRASP-combination is best-performing on
larger instances.

Ant Colony Optimization (ACO) is utilized as a search engine in Constraint Program-
ming (CP) by Di Gaspero et al. (2013b). The routing variables are handled by the ACO,
while the loading decisions are made by the CP. This approach is shown to outperform
the pure CP formulation. Ma et al. (2021) propose eight genetic algorithms with various
combinations of evolutionary mechanisms to solve the stochastic Static Bicycle Rebalan-
cing Problem. Presented results demonstrate that the algorithms can effectively solve
the Static Bicycle Rebalancing Problem across various areas, and with a higher solution
efficiency than previous genetic algorithms. In order to reduce computation time, Szeto
& Shui (2018) examine a novel set of loading strategies. The strategies are embedded into
an Artificial Bee Colony algorithm to solve the SBRP. Szeto et al. (2016) apply Chemical
Reaction Optimization (CRO) to solve a SBRP. The CRO handles vehicle routes, while a
subroutine decides loading quantities. An enhanced CRO is used to improve the solution
quality, and results show that the enhanced CRO provides high quality solutions within
short computing times.

3.4.2 PILOT Method

The metaheuristic PILOT, as presented by Voß et al. (2005), is a tempered greedy method,
which aims to create better solutions by avoiding the greedy trap. This is achieved by
lookahead features, where possible future outcomes are evaluated for each greedy choice.
Instead of measuring immediate gain, the PILOT method seeks to incorporate intelligent
mechanisms to evaluate decisions based on the outcome after several iterations.

The PILOT method performs a known algorithm, such as a greedy construction heuristic,
in a repetitive manner (Voß et al., 2005). A master solution is created by recursive calls of
the algorithm. In each iteration, all possible successors from an incomplete master solution
are evaluated. For each possible successor, a temporary complete solution is created.
When these solutions are compared, combinations of moves are evaluated, rather than
single moves. The best temporary solution is selected, and the corresponding successor is
added to the master solution. This procedure is then repeated iteratively, until the master
solution is completed. The mechanism aims to ensure that the solution which provides the
highest immediate gain is not necessarily selected, but rather the solution that provides
the most gain in total.

16

Rainer-Harbach et al. (2015) introduce the PILOT method as a construction heuristic for
the Static Bicycle Rebalancing Problem. With a greedy heuristic as a basis, each candidate
solution is extended by looking at potential successors. Rainer-Harbach et al. (2015) claim
that the main issue with the greedy heuristic is that it always chooses a single, locally
best successor. Consequently, a dense cluster of stations, which is further away than an
isolated single station, may not be selected, even though it would yield a higher total
benefit. The simple greedy algorithm does not recognize the cluster’s overall value, and
selects the single station. Rainer-Harbach et al. (2015) state that the PILOT method
also incorporates future gains by visiting further stations in corresponding recursive calls.
Hence, the PILOT method should be well fitted to a more complex rebalancing setting
where neighborhood interactions are considered. Finally, Kloimüllner et al. (2014) adapt
the PILOT method to the Dynamic Bicycle Rebalancing Problem. This approach is
further discussed in 3.5.

3.5 Studies on the Dynamic Bicycle Rebalancing Problem

This section gives an overview and comparison of literature that studies the DBRP. Table
3.3 gives a summary of key findings from the examined literature. Through this section,
research gaps in the literature are addressed, and used as foundation to motivate the topic
of this thesis.

3.5.1 Objective Function

Most DBRP studies utilize similar objectives, namely minimizing unrealized demand and
minimizing the corresponding cost. However, the exact specifications often differ and the
problem is tackled with a variety of different objective functions.

Gleditsch et al. (2022) and Kloimüllner et al. (2014) minimize a weighted sum of violations
and deviations from target inventory levels in the system. Deviations are punished in
order to make the models less myopic. In addition, Gleditsch et al. (2022) reward vehicles
starting on a trip that ends after the current planning horizon. This is done to reduce the
idle time of vehicles. With a similar idea, Brinkmann et al. (2020) minimize the expected
amount of unsatisfied demand. Transportation costs are neglected, based on a reasoning
that vehicles and drivers are paid for either way from an operational view. Contardo et al.
(2012) also minimize unmet demand, i.e., violations.

With a somewhat different approach, Ghosh et al. (2017) consider the objective a trade-
off between minimizing lost demand (or maximizing profit) and minimizing travel cost
incurred by vehicles. A dollar value is employed to both quantities, which are then com-
bined into the overall profit. Similarly, Chiariotti et al. (2018) and Zhang et al. (2017)
minimize user dissatisfaction related to respectively the probability of service failures and
expected failures, while maintaining rebalancing costs as low as possible.

Regue & Recker (2014) is the only article among these to incorporate the status of neigh-
borhood stations. The objective function maximizes utility from three elements; visiting
a station with large inefficiency, visiting a station with a neighborhood that is expected to
have large inefficiencies in future time steps, and minimizing travel time to intermediate
pickup/delivery stations. The inefficiency of a station is measured in how many bikes that
need to be added or removed in order to avoid violations.

17

3.5.2 Demand

Demand predictions in studies are primarily based on historical data. Brinkmann et al.
(2020), Gleditsch et al. (2022) and Ghosh et al. (2017) all use historical data to simulate
future demand over a predefined horizon. Kloimüllner et al. (2014) also use historical
data. However, based on an hourly discretization of data, they construct piecewise lin-
ear demand functions which are later used to define time segments with similar demand
behaviour. Chiariotti et al. (2018) model demand as Poisson variables, where birth and
death rates are independent of current state. Further, Regue & Recker (2014) present a
demand forecasting model based on a prediction method called Gradient Boosting Ma-
chines (GBM), which utilizes supervised regression-based machine learning. Contardo
et al. (2012) introduce a stochastic demand function, only dependent on time.

3.5.3 Coordination of Service Vehicles

Solution methods can either be restricted to single-vehicle usage, or support multi-vehicle
decision making. Even though several solution methods support multi-vehicle usage, the
descriptions of vehicle coordination are often rather vague and ambiguous. Some solution
methods implement simple handling of multi-vehicle instances with very limited coordin-
ation. Zhang et al. (2017) iteratively assign routes to one vehicle at a time, and lock
the decisions. Similarly, Kloimüllner et al. (2014) present a greedy method and a PILOT
method which both iteratively creates a tour for each service vehicle. However, some co-
ordination is utilized here; after a vehicle tour is locked, the station inventory levels are
updated based on the vehicle’s actions, before creating the remaining vehicle tours. An
alternative approach, using linear programming is also presented. Here, the order of the
vehicles’ station visits is taken into account, although this is only used to calculate loading
quantities. There is limited coordination between the vehicles when constructing routes,
which means that the model risks creating suboptimal routes for instances with multiple
vehicles.

A common way to handle multiple vehicles is to divide the BSS into smaller zones, where
each vehicle is responsible for one zone. A similar approach is utilized by Chiariotti et al.
(2018). They do not coordinate vehicles, but rather assume that vehicles visit disjoint
subsets of stations. Regue & Recker (2014) make a separation into two subproblems.
The first subproblem identifies future loading and unloading quantities, while the second
subproblem deals with assigning jobs to service vehicles through a vehicle routing problem.
In Contardo et al. (2012), multiple vehicles are integrated into a space-time network, but
coordination efforts are not discussed.

To the extent of our knowledge, only Gleditsch et al. (2022) and Brinkmann et al. (2020)
provide coordinated approaches for multiple vehicles. Gleditsch et al. (2022) explicitly
model the future routing and rebalancing decisions of all vehicles by means of mixed in-
teger linear program. Brinkmann et al. (2020) utilize methods from approximate dynamic
programming, however only considering operations at the current station and where to go
next.

3.5.4 Modeling Characteristics

The literature in focus present several different approaches to modelling the DBRP. Gled-
itsch et al. (2022), Ghosh et al. (2017) and Brinkmann et al. (2020) model the problem as

18

a Markov Decision Process (MDP). An MDP is a mathematical model, used to represent
a sequential decision-making process in situations where the outcomes of an action may
be uncertain. Rewards and transition functions between states in the system are based
solely on the current state and the current action (Puterman, 1990). The main objective
of the decision maker is to determine a sequence of actions, that can optimize the system’s
performance over the decision making horizon. Zhang et al. (2017) and Contardo et al.
(2012) model the problem as a space-time network. In Chiariotti et al. (2018), the state
of each station is modeled as a Birth-Death Process.

The time aspect can either be handled in a continuous manner (Gleditsch et al., 2022;
Kloimüllner et al., 2014), or using a discrete-time model in which a time horizon is discret-
ized into shorter time periods (Contardo et al., 2012; Zhang et al., 2017). The discrete-time
model of Contardo et al. (2012) considers states composed of initial position of vehicles,
nodes for stations at different time periods, and a dummy node representing the end of a
route in the planned schedule. A space-time network is presented, in which arcs represent
trips between stations and time periods, or waiting at a station.

Most of the models consider starvations and congestions, which are typically included
in station balance constraints. The congestion or starvation variables compensate for
the unfulfilled demand, and there is no further handling of the events (Contardo et al.,
2012; Gleditsch et al., 2022). This means that the bikes that arrive at a full station
simply ”disappear” from the system, instead of being transferred to a nearby station with
available capacity. In addition, all demand at an empty station is lost, even if there are
available bikes at nearby stations.

3.5.5 Solution Method

As discussed in Section 3.4, heuristic solution methods are commonly used to solve DBRPs
due to computational complexity. Chiariotti et al. (2018) solve the problem using a greedy
heuristic. Kloimüllner et al. (2014) examine several different approaches, including greedy
and PILOT construction heuristics and VNS and GRASP for further improvement of
constructed solutions. One way to solve the DBRP is by simplifying it, so it can be solved
using a general solver. Regue & Recker (2014) propose reducing the size of the problem
by solving it for one vehicle at a time, and only consider empty or full stations within a
given distance of the current station. Zhang et al. (2017) reformulate a complex nonlinear
optimization problem into an easier solvable MILP.

Gleditsch et al. (2022) break down the DBRP into subproblems considering shorter plan-
ning horizons. Further, they introduce a Column Generation Heuristic (CGH) to solve
the subproblems in a rolling horizon fashion. Rolling horizon is an approach that involves
dividing a large planning problem, into smaller, more manageable problems with shorter
time frames. The plan is updated and revised as new information becomes available, al-
lowing for increased flexibility and adaptability. This makes rolling horizon well suited
for dynamic and stochastic problems. Contardo et al. (2012) first utilize Dantzig-Wolfe
decomposition and solve the linear relaxation of the resulting problem using column gen-
eration, resulting in a lower bound. Secondly, Benders decomposition is applied to another
formulation of the problem using information provided by the first solution, which provides
an upper bound.

Table 3.3 summarizes the most important characteristics of the DBRP literature that has
been reviewed in this section.

19

T
ab

le
3.

3:
C

om
p

ar
is

on
of

D
B

R
P

li
te

ra
tu

re
,

in
cl

u
d

in
g

th
is

th
es

is

1
-
R
e
g
u
e
&

R
e
c
k
e
r

(2
0
1
4
)

2
-
G
h
o
sh

e
t
a
l.

(2
0
1
7
)

3
-
Z
h
a
n
g

e
t
a
l.

(2
0
1
7
)

4
-
C
h
ia
r
io
tt
i

e
t
a
l.

(2
0
1
8
)

5
-
C
o
n
ta

r
d
o

e
t
a
l.

(2
0
1
2
)

6
-

B
r
in

k
m

a
n
n

e
t
a
l.

(2
0
2
0
)

7
-

K
lo
im

ü
ll
n
e
r

e
t
a
l.

(2
0
1
4
)

8
-
G
le
d
it
sc
h

e
t
a
l.

(2
0
2
2
)

9
-
T
h
is

th
e
si
s

P
r
o
b
le
m

fo
c
u
s

D
em

a
n
d

fo
re
ca

st
in
g
,

st
a
ti
o
n

in
v
en

to
ry

m
o
d
el
,

re
d
is
tr
ib
u
ti
o
n

n
ee
d
s
a
n
d

v
eh

ic
le

ro
u
ti
n
g

R
eb

a
la
n
ci
n
g

co
n
si
d
er
in
g

lo
st

d
em

a
n
d

a
n
d
co

st
o
f

u
si
n
g
v
eh

ic
le
s

D
is
sa
ti
sf
a
ct
io
n

fo
re
ca

st
in
g
,

b
ic
y
cl
e

re
p
o
si
ti
o
n
in
g

a
n
d
v
eh

ic
le

ro
u
ti
n
g

W
h
en

to
re
d
is
tr
ib
u
te

b
ik
es
,
o
p
ti
m
a
l

ro
u
te

D
y
n
a
m
ic

re
b
a
la
n
ci
n
g

D
y
n
a
m
ic

a
n
d

st
o
ch

a
st
ic

re
b
a
la
n
ci
n
g

D
y
n
a
m
ic

re
b
a
la
n
ci
n
g
,

co
n
si
d
er
in
g

ta
rg
et

fi
ll
le
v
el
s

a
n
d
u
n
sa
ti
sfi

ed
cu

st
o
m
er
s

S
o
lv
in
g

d
y
n
a
m
ic

re
b
a
la
n
ci
n
g

su
b
-p
ro
b
le
m
s,

a
d
d
re
ss
in
g
th

e
p
ro
b
le
m

o
f

m
y
o
p
ia

S
o
lv
in
g

d
y
n
a
m
ic

re
b
a
la
n
ci
n
g

su
b
-p
ro
b
le
m
s,

w
h
il
e

co
n
si
d
er
in
g
th

e
sp

il
lo
v
er

eff
ec
t

O
b
je
c
ti
v
e

fu
n
c
ti
o
n

M
a
x
.
u
ti
li
ty

o
f

v
is
it
in
g

st
a
ti
o
n
s

M
a
x
.
p
ro
fi
t

M
in
.
v
eh

ic
le

tr
a
v
el

co
st

a
n
d

ex
p
ec
te
d
u
se
r

d
is
sa
ti
sf
a
ct
io
n

M
in
.
u
se
r

d
is
sa
ti
sf
a
ct
io
n

a
n
d

re
b
a
la
n
ci
n
g

co
st

M
in
.
u
n
m
et

d
em

a
n
d

M
in
.
ex

p
ec
te
d

u
n
sa
ti
sfi

ed
d
em

a
n
d

M
in
.
w
ei
g
h
te
d

su
m

o
f

v
io
la
ti
o
n
s
a
n
d

d
ev

ia
ti
o
n
s

M
in
.
w
ei
g
h
te
d

su
m

o
f

v
io
la
ti
o
n
s
a
n
d

d
ev

ia
ti
o
n
s.

R
ew

a
rd

fo
r

st
a
rt
in
g
tr
ip

M
a
x
.
u
ti
li
ty

M
o
d
e
li
n
g

c
h
a
r
a
c
te

r
is
t-

ic
s

M
L
,
q
u
eu

in
g

th
eo

ry
,

st
o
ch

a
st
ic

in
te
g
er

li
n
ea

r
p
ro
g
ra
m

M
a
rk
o
v

d
ec
is
io
n

p
ro
ce
ss

N
o
n
li
n
ea

r
m
o
d
el

o
f
a

sp
a
ce
-t
im

e
n
et
w
o
rk

fl
o
w

O
cc
u
p
a
n
cy

o
f

st
a
ti
o
n

m
o
d
el
ed

a
s

b
ir
th

-d
ea

th
p
ro
ce
ss

A
rc
-fl
o
w

fo
rm

u
la
ti
o
n
o
n

a
sp

a
ce
-t
im

e
n
et
w
o
rk

M
a
rk
o
v

d
ec
is
io
n

p
ro
ce
ss

C
o
m
p
le
te

d
ir
ec
te
d
g
ra
p
h
.

S
eg

m
en

ts
w
it
h

m
o
n
o
to
n
ic
a
ll
y

in
cr
ea

s-
in
g
/
d
ec
re
a
si
n
g

d
em

a
n
d

M
a
rk
o
v

d
ec
is
io
n

p
ro
ce
ss

M
a
rk
o
v

d
ec
is
io
n

p
ro
ce
ss

S
o
lu

ti
o
n

m
e
th

o
d

P
ro
b
le
m

re
d
u
ct
io
n
a
n
d

tr
a
d
it
io
n
a
l

so
lv
er

L
a
g
ra
n
g
ia
n

d
u
a
l

d
ec
o
m
p
o
si
ti
o
n

a
n
d
st
a
ti
o
n

a
b
st
ra
ct
io
n

M
a
th

eu
ri
st
ic

G
re
ed

y
h
eu

ri
st
ic

H
eu

ri
st
ic

p
ro
ce
d
u
re

b
a
se
d
o
n

D
a
n
tz
ig
-W

o
lf
e

a
n
d
B
en

d
er
s

d
ec
o
m
p
o
si
ti
o
n

C
o
o
rd

in
a
te
d

lo
o
k
a
h
ea

d
p
o
li
cy

a
n
d

v
a
lu
e
fu
n
ct
io
n

a
p
p
ro
x
im

a
ti
o
n

G
re
ed

y
a
n
d

P
IL

O
T

co
n
st
ru

ct
io
n

h
eu

ri
st
ic
s,

V
N
S
a
n
d

G
R
A
S
P

D
ec
o
m
p
o
se
d

in
to

su
b
p
ro
b
le
m
s

u
si
n
g
ro
ll
in
g

h
o
ri
zo

n
.

C
o
lu
m
n

g
en

er
a
ti
n
g

h
eu

ri
st
ic

R
o
ll
in
g

h
o
ri
zo

n
.

R
o
u
te
s

co
n
st
ru

ct
ed

u
si
n
g

X
-P

IL
O
T

m
et
a
h
eu

ri
st
ic

M
u
lt
ip

le
v
e
h
ic
le
s

Y
es
,
b
u
t

li
m
it
ed

co
o
rd

in
a
ti
o
n

Y
es
,
b
u
t

li
m
it
ed

co
o
rd

in
a
ti
o
n

Y
es
,
it
er
a
ti
v
el
y

a
ss
ig
n
s
a
ro
u
te

to
ea

ch
v
eh

ic
le

A
ss
u
m
e

v
eh

ic
le
s
v
is
it

d
iff
er
en

t
su

b
se
ts

o
f

st
a
ti
o
n
s

Y
es
,
b
u
t

li
m
it
ed

co
o
rd

in
a
ti
o
n

Y
es
,

co
o
rd

in
a
te
d

a
p
p
ro
a
ch

Y
es
,
b
u
t

li
m
it
ed

co
o
rd

in
a
ti
o
n

Y
es
,

co
o
rd

in
a
te
d

a
p
p
ro
a
ch

Y
es
,

co
o
rd

in
a
te
d

a
p
p
ro
a
ch

D
e
m

a
n
d

D
em

a
n
d

fo
re
ca

st
in
g

u
si
n
g
g
ra
d
ie
n
t

b
o
o
st
in
g

m
a
ch

in
es

B
a
se
d
o
n

h
is
to
ri
ca

l
d
a
ta
,

fo
r
ea

ch
st
a
ti
o
n
a
n
d

ti
m
e
st
ep

N
o
n
-

h
o
m
o
g
en

o
u
s

P
o
is
so
n

p
ro
ce
ss

P
o
is
so
n

p
ro
ce
ss
,
ti
m
e

v
a
ry
in
g
ra
te
s

b
a
se
d
o
n

h
is
to
ri
ca

l
d
em

a
n
d

S
to
ch

a
st
ic

d
em

a
n
d

fu
n
ct
io
n

B
a
se
d
o
n

h
is
to
ri
ca

l
d
a
ta

D
er
iv
ed

fr
o
m

h
is
to
ri
ca

l
d
a
ta
,

b
a
se
d
o
n
a
n

h
o
u
rl
y

d
is
cr
et
iz
a
ti
o
n

B
a
se
d
o
n

h
is
to
ri
ca

l
d
a
ta

B
a
se
d
o
n

h
is
to
ri
ca

l
d
a
ta
.

R
o
u
te
s
a
re

ev
a
lu
a
te
d
o
v
er

ra
n
d
o
m

sc
en

a
ri
o
s.

S
p
il
lo
v
e
r

e
ff
e
c
ts

C
o
n
si
d
er

u
ti
li
ty

g
a
in
ed

b
y
n
ei
g
h
b
o
ri
n
g

st
a
ti
o
n
s

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

20

3.6 Conclusion and Motivation of the Thesis

Over the past decade, bike sharing systems have seen increased political focus as well
as increasing attention from the academic community. Despite recent interest, the BSS
literature is still limited, and not all relevant real-life aspects have been taken into account.
There has been limited focus on the interactions between stations, which is the main area
of focus in this thesis. Moreover, taking additional factors into consideration further raises
the complexity of the rebalancing problem. This emphasizes the need for efficient heuristic
solution methods that provide high quality results.

3.6.1 Considering Neighborhood Interactions

In existing literature, stations are predominantly considered separately with minimal fo-
cus to the interplay between them. Even though it has been pointed out that spillover
effects and synergies between neighboring stations should not be neglected (Faghih-Imani
& Eluru, 2016), this topic still represents a gap in the research literature.

As described in Section 3.2, there has been conducted some work that includes spillover
effects in BSS problems. Rudloff & Lackner (2014) study the influence of full and empty
neighboring stations when predicting demand for bikes and locks. Datner et al. (2019) and
Costa Affonso et al. (2021) consider spillover effects when calculating a station’s optimal
state. Nonetheless, these studies are restricted to static systems, and only examine specific
parts of the problem. They do not directly address the DBRP, which is the main problem
of interest in this thesis.

Regue & Recker (2014) propose a way to include utility gained by imbalanced neighbors
of a visited station, in order to take spillover-effects partly into account. However, the
model defines all stations within 800 metres as neighbors, which are all treated equally.
This means that the model neglects the difference between the utility gained by a station
within a few metres distance, and a station 800 metres away. Furthermore, the model does
not consider the actual roaming events, meaning the transfer of users between stations. In
addition, there is no differentiation between starved and congested neighboring stations.

To the best of the authors’ knowledge, the roaming effects in a DBRP have never been
explicitly modeled and accounted for. In order to fill this gap, we develop a model that
distinguishes between the severity of violations, depending on whether or not the user
demand can be satisfied at a neighboring station. In addition, the severity is scaled based
on how far the user actually has to move. Furthermore, congestions and starvations
do not lead to bikes and demand simply ”disappearing” from the system. Instead, in
our approach demand is redistributed more realistically to other stations. The presented
solution method aims to maximize user satisfaction on a more detailed level, distinguishing
between dissatisfaction related to not having demand fulfilled at all, and dissatisfaction
related to roaming to a nearby station.

3.6.2 Improving the Solution Method

In order to solve the Dynamic Bicycle Rebalancing Problem within a reasonable time,
heuristic methods are commonly applied. Despite being susceptible to the issue of the
greedy trap, the current literature frequently employs greedy methods. In this thesis,
we design and implement a PILOT-inspired approach aiming at overcoming myopia by

21

looking ahead beyond the first step of rebalancing. Rather than evaluating solutions based
on immediate gain, we estimate the total gain over a given future. The solution method
utilizes computationally efficient greedy techniques that are iteratively called, enabling
quick solution times.

Furthermore, we introduce a novel way of coordinating a fleet of vehicles. Most existing
methods route vehicles independently, or assume that different subsets of stations are
visited. The method presented in this thesis creates rebalancing plans in which all vehicles
are included, rather than individual rebalancing routes for each vehicle. Rebalancing plans
are constructed taken into account the location and state of other vehicles, as well as their
possible future moves. This approach can enable utilization of synergies and help to
prevent suboptimization.

Kloimüllner et al. (2014) and Rainer-Harbach et al. (2015) first introduced the PILOT
method for bike rebalancing, however, there are some important differences in our ap-
proach. First, we incorporate spillover effects between stations, which is lacking in exist-
ing methods. Further, existing construction algorithms consider reduction in violations,
deviation from target inventory levels and an urgency factor. We introduce a criticality
score, which also incorporates the criticality of the neighborhood, time to violation and
magnitude of demand.

Evaluation of solutions also differ from existing approaches. While current solutions only
consider expected demand, we handle stochasticity by using scenarios. Each solution is
evaluated over a range of possible future outcomes, allowing for more robust solutions to
be selected. In addition, we introduce a discounting factor in the evaluation function that
prioritizes station visits that are closer in time, and hence subject to less uncertainty.

Compared to existing PILOT methods, our approach, presented in Chapter 5, offers in-
creased diversification. In current methods, branching to different solutions is only per-
mitted in the initial step of the algorithm, before each solution is completed in a greedy
fashion. Our version of the PILOT algorithm allows for branching in multiple steps,
enabling a more extensive exploration of the solution space.

22

Chapter 4

The Dynamic Stochastic Bicycle
Rebalancing Problem with
Neighborhood Interactions

This chapter introduces the main characteristics of the Dynamic Stochastic Bicycle Re-
balancing Problem with Neighborhood Interactions (DSBRPNI), which is the problem we
aim to solve in this thesis. This is a variant of the more general Dynamic Bicycle Re-
balancing Problem (DBRP) discussed in Chapter 3. First, a description of the real-world
problem is provided in Section 4.1, before the problem is illustrated through an example
in Section 4.2.

4.1 Problem Description

We consider a bike sharing system (BSS) consisting of a fixed number of physical stations
spread across the city and a homogeneous fleet of bicycles. Each station has a fixed number
of locks, limiting the number of bicycles that can be stored simultaneously. The system
is accessible to users throughout the day, allowing them to pick up and drop off bicycles
at different stations to meet their transportation needs. If a user arrives with a bicycle at
a congested station, the user is unable to end the ride. This means that he must travel
further and search for a station with available locks. However, in the case of a starvation,
the user can either look for a bike at a nearby station or decide to use other means of
travel.

4.1.1 Decisions to Be Made

To make the system available for as many users as possible, the service operators use service
vehicles to continuously relocate bikes from stations with excess inventory to stations with
an insufficient number of bikes. For this rebalancing operation, two main decisions must
be made:

1. Which stations to visit

2. The number of bikes to load or unload at each station

23

Based on the taxonomy from Pillac et al. (2013), the real-world problem is both dynamic
and stochastic. It is dynamic as the distribution of bicycles between stations is not known
beforehand, but is continuously changing during the day. The problem is stochastic as
future demands for bicycles and locks at stations are unknown, but assumed to follow a
known distribution. Operators observe the state of the system as customer demand is
realized throughout the day and perform actions based on this.

As the development of the system is both dependent on rebalancing decisions and the
stochastic customer demand, the problem can be considered a Markov Decision Process
(MDP). In MDPs, decisions can be made at discrete time points or when a specific con-
dition is satisfied. In the DSBRPNI, a natural decision point for the operator is when a
vehicle arrives a station. The problem can thus be considered an online optimization prob-
lem in which decisions are made in a sequential manner based on incomplete information.
The problem can also be solved as an offline problem, in which a complete rebalancing
plan is created beforehand. However, this would not allow operators to respond to actual
realizations of demand. The offline problem is not further discussed in this thesis.

4.1.2 Available Information and Problem Assumptions

Labor and vehicle costs are naturally dependent on the number of vehicles utilized, but
these are tactical and strategic decisions and are not part of the scope of this thesis. We
assume that service vehicles and personnel are working continuously during their scheduled
working hours. Under these assumptions, the related costs are not significantly impacted
by the routing and loading decisions. Therefore, the costs of fuel and labor are neglected.

The problem can be solved for traditional stations with physical locks, virtual stations,
or a combination of the two. However, the station capacity cannot change. Furthermore,
only mechanical bikes are considered, meaning that there are no calculations of battery
swaps or bike charging. Handling and repair of broken bikes is not included in the problem
formulation.

When solving a rebalancing problem, the characteristics of the BSS are known. The BSS
utilizes a certain number of service vehicles, with a given carrying capacity. The ser-
vice vehicles can coordinate their routing and rebalancing decisions. In addition, service
vehicles may be heterogeneous with different capacities. The vehicles drive between sta-
tions, and we assume driving times to be known and deterministic. Similarly, we assume
that the time it takes for users to travel between stations, either by foot or on bike, is
known. There is a handling time associated with loading and unloading of bikes, which is
dependent on the number of bikes to be handled.

Each station has a certain number of locks, i.e., a given capacity. Furthermore, we assume
that each station has defined an inventory level at any given time that is optimal for
avoiding future violations. The calculation of this target inventory level is not discussed
in this thesis. BSS operators can monitor the state of the system, which means that the
number of bikes and locks available at each station is known at all times. This information
can therefore be utilized when rebalancing decisions are made.

Future demand for bikes at stations is not known. However, historical arrive and leave
intensities are known for all stations throughout the day, using an hourly discretization.
This data can be used to generate expected values of the demand and stochastic scenarios.

24

4.1.3 Objective

Using the available information, the operator makes decisions to maximize the utility of
the system, or in other terms, minimize the customer dissatisfaction. We assume the total
customer dissatisfaction to be affected by two types of events. First, and most severe, is a
starvation where the user is unable to pick up a bike, and is assumed to leave the system
and use other modes of transportation. The second is related to a situation where the
user is unable to pick up or deliver a bike at a given station, but roams to a neighboring
station to do so. We assume dissatisfaction to increase with the distance of the roaming.
Further, operators should avoid being too myopic. This can be achieved by performing
rebalancing operations that minimize the stations’ deviations from target inventory levels.

The DBRP is NP-hard (Zhang et al., 2017; Ghosh et al., 2017), and being a rich version
of this that incorporates more real-life aspects, the DSBRPNI is at least as hard. Thus,
finding the optimal decisions, considering the endless possibilities of future scenarios, is
complex and in most practical applications, near impossible.

4.2 Example Problem

Figure 4.1 illustrates an example of the problem over a short time horizon with a single
vehicle. The figure provides a step by step overview of the system development, with
vehicle operations, user demand and roaming. The numbered circles represent stations,
where Station 1 and Station 2 are in close enough proximity to be considered neighbors.
Users can therefore roam between these two stations. Each station has an inventory
capacity of five, represented by the small circles. A filled circle means that there is a
bike, while an empty circle illustrates an available lock. The service vehicle has a similar
representation of inventory, and the arrow indicates the vehicle’s next move. A walking
person indicates demand for a bike, while a biker indicates demand for a lock. A time
stamp is included in the top right corner.

(a) (b)

(c) (d)

Figure 4.1: Illustration of an example problem with vehicle operations, customer demand
and roaming. Adapted from Inngjerdingen & Møller (2022)

In Figure 4.1a the empty service vehicle arrives at Station 1. At 08:00 it begins loading
two bicycles from the station. At the same time, a user arrives at Station 2, looking for

25

a bicycle. Station 2 is empty, but as Station 1 is nearby, the user begins to walk to this
station to pick up a bicycle. In Figure 4.1b the vehicle has finished its loading operation.
It begins driving to Station 3 at 08:03. It prioritizes Station 3 because this station can
not rely on the spillover effect from neighboring stations, as opposed to Station 2. The
user, originating from Station 2 picks up a bicycle and leaves Station 1. In Figure 4.1c
the vehicle arrives at Station 3 and begins unloading 2 bicycles. At the same time, a user
on bicycle arrives at Station 2 and drops of the bicycle here. Finally, in Figure 4.1d, the
vehicle is done unloading bikes at Station 3 and is ready for new tasks.

In contrast, if the rebalancing decision did not consider roaming, the service vehicle would
likely drive to Station 2 instead of Station 3. This station is located closer to Station 1
and have no bikes available when the decision is made. While it is difficult to say that
one solution is better than the other, this option would make the area around stations 1
and 2 well-balanced, while the area around Station 3 would experience a shortage of bikes.
With the rebalancing described in Figure 4.1, both of these areas are well-balanced at the
end of the time horizon.

26

Chapter 5

Solution Method

The DSBRPNI is an operational problem that needs to be solved in real time with short
computational times. The complexity of this problem makes it difficult to solve, so a
common approach is to decompose it into to smaller subproblems. These subproblems are
solved sequentially over shorter time horizons using a rolling horizon approach. In this
chapter, we introduce a heuristic solution method for the subproblem, applying a novel me-
taheuristic called Explorative Preferred Iterative LOokahead Technique (X-PILOT). The
metaheuristic is a modified version of the PILOT framework described in Section 3.4.2, in
which deeper branching is conducted to allow for wider exploration of the solution space.
In addition, a new integrated approach for multi-vehicle systems is introduced, aiming for
more coordinated solutions with better utilization of synergies.

First, the rolling horizon approach and the subproblem are presented in Section 5.1.
Second, an overview of the solution method is provided in Section 5.2. Next, sections
5.3 and 5.4 elaborate on how loading decisions and routing decisions are made, respect-
ively. Section 5.5 explains how these decisions are utilized in a construction algorithm as
a part of the X-PILOT framework, before presenting a method for evaluating solutions.

5.1 Rolling Horizon and the Subproblem

A common approach to make complex problems more manageable is by consolidating
the solutions from a series of subproblems, which are solved using a rolling horizon ap-
proach. Each subproblem solves the rebalancing problem over a relatively short time
horizon, thereby greatly reducing the complexity. Recall that we solve an online optimiz-
ation problem, in which new information about demand and station inventory levels are
continuously made available during the day. To utilize as much information as possible,
decisions should be made at the latest possible time. For the DSBRPNI, this means mak-
ing loading and routing decisions when arriving at a station. After the loading operations
are complete and the vehicle has driven to the next station, new demand has been re-
vealed. Thus, loading and routing decisions can be revisited and solved based on updated
information each time a vehicle arrives at a new station. This means that each time a
vehicle arrives at a station, we only decide loading quantities, and which station to visit
next, referred to as the first-move. Due to the operational nature of the problem, these
decisions should be made within seconds.

The rolling horizon approach is illustrated in Figure 5.1. Each station visit marks a new

27

decision point, in which a limited time horizon is considered. Upon arrival at the next
station, the problem is re-solved with a new time horizon starting from the time of arrival
at the station.

Figure 5.1: Illustration of decision points and planning horizons in the rolling horizon
approach.

5.2 Overview of Algorithm

An outline of the solution method is presented in Figure 5.2. After a vehicle arrives
a station, the first step is to decide how many bikes to load or unload. After that, a
rebalancing plan is initialized, along with a tabu list containing the current destinations of
all service vehicles. The rebalancing plans are used to look ahead, and create temporary
routes and loading operations for all vehicles in the system. Furthermore, rebalancing
plans are used to estimate the value of each possible first-move, taking into account future
implications.

The next step is to decide a first-move, i.e., which station to visit next. As long as a
plan has not reached a defined time horizon or branching depth, the plan is extended by
adding new station visits, according to the X-PILOT method described in Section 5.5.
First, possible successor stations are identified. Then, a criticality score is calculated for
each station, and the most critical stations are selected. New plans are then created by
copying the current plan and adding the new stations, and the tabu list is updated for
each plan. This process continues in a recursive manner for each plan, until either the
branching depth or time horizon is reached. If the time horizon is reached, the plan is
added to a list of completed plans. If the maximum branching depth is reached, the plan
is completed in a greedy fashion until the end of the time horizon, and then added to the
list of completed plans.

Scenarios are now created based on historical data, and all completed plans are evaluated
over all scenarios. The evaluation function is described in Section 5.5.2. Based on the
evaluation of the plans, a selection criteria is applied and the next station to visit is
identified. Note that even though entire plans are evaluated, we are only interested in the
first-move.

28

Figure 5.2: Flow chart with an overview of the solution algorithm. The X-PILOT method
is applied in the routing decision.

29

5.3 Loading Decision

The first decision to be made when arriving at a station i is how many bikes to load to
(qLiv) or unload from (qUiv), the service vehicle v. Upon arrival, the station has an inventory
of bikes, L0

i . In addition, each station has a defined, time specific, target inventory level,
LT
i , which is the optimal number of bikes on the station at the end of the time horizon.

Stations with fewer bikes than the target inventory level are defined as delivery stations
where bikes are unloaded. Stations with more bikes than the target inventory level are
defined as pickup stations and bikes are loaded from these stations. Our approach operates
greedily and aims to get the station’s inventory as close to the target inventory level as
possible.

Algorithm 1: Calculate Loading Quantities

Input: vehicle inventory Q0
v, vehicle capacity QV

v , station inventory L0
i , station

capacity LS
i , target inventory level LT

i

Result: loading quantity qLiv, unloading quantity qUiv
for each neighbor in neighborhood do

if neighbor inventory < 0.1·neighbor capacity then
δsta ← δsta + 1

else if neighbor inventory > 0.9·neighbor capacity then
δcon ← δcon + 1

end

end
if station inventory L0

i < target inventory level LT
i then

qUiv = min(LT
i − L0

i + δsta, Q0
v, L

S
i − L0

i ,)
else if station inventory L0

i > target inventory level LT
i then

qLiv = min(L0
i − LT

i + δcon, L0
i , Q

V
v −Q0

v)
end

To take user roaming into consideration, the loading and unloading quantities are adjusted
according to the number of congested or starved neighboring stations. For a pickup station,
the loading quantity is increased in line with the number of congested neighbors, δcon. This
means that more vacant locks are made available compared to if roaming had not been
taken into account. Neighbors are considered congested if their inventory levels are higher
than 90% of station capacity, LS

i . Likewise, if a delivery station has starved neighbors,
the unloading quantity is increased in line with the number of starved neighbors, δsta.
Neighbors are considered starved if their inventory levels are beneath 10% of capacity.
Only neighbors that have a similar type of imbalance as the station in focus affects the
loading or unloading quantities. Note that δcon and δsta may be multiplied by an integer
number in order to adjust how many extra bikes to pick-up or deliver per imbalanced
neighbor.

Furthermore, there are certain logical bounds on loading and unloading quantities. Load-
ing quantities can never exceed the number of bikes at the station, L0

i . In addition, they
are bounded by the number of available slots on the vehicle, i.e., the difference between
vehicle capacity, QV

v , and the number of bikes already on it, Q0
v. Unloading quantities

can never exceed the vehicle inventory, Q0
v and are bounded by the number of available

locks at the station, LS
i −L0

i . Algorithm 1 summarizes the entire approach for calculating
loading quantities.

30

5.4 Routing Decision

After loading or unloading, the next task is deciding which station to visit next. For
simplicity, this task can be divided into two main steps. First, a set of potential stations,
which is a subset of all the stations in the system, is identified. Second, a criticality score is
calculated for each potential station and the stations with the highest scores are returned.

5.4.1 Identifying Potential Stations

Using a tabu list and domain knowledge, stations that are not relevant to visit are filtered
out. This is done to reduce the size and complexity of the problem, as we only consider a
subset of stations in future calculations. Two empty sets of relevant stations are initialized,
one for pickup stations, NP , and one for delivery stations, ND. Then, iterating through
all the stations in the system, we add stations to NP or ND. Several criteria must be
fulfilled in order for a station to be added to one of the sets. First of all, it cannot be in
the tabu list. The tabu list is comprised of stations that are either already included on
the current route of the vehicle or are scheduled to be visited by other vehicles. Further,
a station is defined as a pickup station and placed in NP if

L0
i + Di > (1 + ρS)LT

i . (5.1)

L0
i is the actual inventory of bikes at station i and Di is the net demand for bikes for

the next 60 minutes, where a positive net demand indicates demand for locks. ρS is a
predetermined station cutoff constant and LT

i is the target inventory for station i. On the
other hand, if

L0
i + Di < (1− ρS)LT

i , (5.2)

the station is defined as a delivery station and placed in ND. If a station is self balanced,
meaning

(1− ρS)LT
i ≤ L0

i + Di ≤ (1 + ρS)LT
i , (5.3)

the station is omitted from further calculations.

The inventory level at the service vehicle, together with a vehicle cutoff constant, ρV ,
determines which stations we consider as potential stations. If the number of bikes on
the vehicle, Q0

v is less than ρV QV
v , where QV

v is the capacity of the vehicle, the vehicle
is nearly empty and potential stations are defined as NP . This means that the vehicle
has to go to a pickup station next. If the number of bikes on the vehicle is greater than
(1− ρV)QV

v , the vehicle is assumed full and potential stations are defined as ND. Finally,
if the number of bikes lies in the interval [ρV QV

v , (1−ρV)QV
v], the vehicle is neither empty

nor full and the potential stations are defined as NP ∪ND.

5.4.2 Criticality Score

Once the potential stations have been identified, a criticality score is computed for each
station. This score indicates the significance of visiting the station and is composed of five
components. The importance of each component can be adjusted based on the decision
maker’s preferences. The five components for station i are:

31

• tVi : Time to violation

• di: Deviation from target inventory level

• ni: Neighborhood criticality

• Di: Net demand

• TD
ji : Driving time

Time to Violation

Time to violation, tVi , is the first component and is found by calculating the expected
time until the next violation occurs at a station. Depending on whether the net demand
is positive or negative, the time to violation is calculated in the following way:

tVi =

min(

LS
i −L0

i
Di

, T ∗) if Di > 0

min(
−L0

i
Di

, T ∗) if Di < 0

T ∗ otherwise.

(5.4)

An upper limit of T ∗ hours is imposed on time to violation in order for normalization of
the times to return reasonable values. Normalization of variables is discussed towards the
end of this section. However, this means that the model does not differentiate between
stations when there is more than T ∗ hours to violation. Furthermore, time to violation is
fixed to T ∗ hours when net demand is zero. Figure 5.3 illustrates how time to violation is
calculated for a pickup station.

Figure 5.3: Time to violation, tVi , and deviation from target inventory level, di for pickup
station i

Deviation from Target Inventory Level

Deviation from target inventory level, di, is the second component of the criticality score.
Ensuring that the station’s inventory is in line with its target level is crucial for the

32

model to account for demand beyond its short time horizon, instead of being excessively
shortsighted. Historical demand is used to calculate the optimal target level. Note that
the calculation of this target level is not in focus in this thesis. Furthermore, the expected
net demand, Di, is included in the calculations to estimate the deviation at the end of the
time horizon. Because of this, estimated inventory levels can go beyond station capacity
or become negative. To manage this and prevent unreasonably high deviations from
occurring, constraints are imposed when stations become full and empty. Equation 5.5
and 5.6 show how the deviation is calculated when the net demand is positive and negative,
respectively. In Figure 5.3, the deviation from target inventory level is illustrated for a
pickup station.

di =

{
|LT

i − L0
i −Di| if L0

i + Di ≤ LS
i

LS
i − LT

i otherwise
, Di ≥ 0. (5.5)

di =

{
|LT

i − L0
i −Di| if L0

i + Di ≥ 0

LT
i otherwise

, Di < 0. (5.6)

Neighborhood Criticality

The Neighborhood criticality component, ni, is the third part of the overall criticality
score. Rather than considering a single station in isolation, this component looks at an
entire area and takes into account interactions between neighboring stations. For each
neighbor to the station in focus, a neighbor score is calculated based on four different
aspects of neighborhood interactions, before it is added to the neighborhood criticality
score. The four components are:

• Neighbor with a similar type of imbalance

• Neighbor which can absorb demand

• Demand at neighbor

• Distance to neighbor

A similarly imbalanced station increases the neighbor score. This means that if the station
in focus is a delivery station, the neighbor score increases if the neighbor also is a delivery
station. In contrast, a neighbor which can absorb demand reduces the neighbor score. A
neighbor can absorb demand in two cases: if it has available locks and the station in focus
is a pickup station or if it has available bikes and the station in focus is a delivery station.
In addition, if a neighbor station has already been visited in a plan, this reduces the
neighbor score. The net demand at the neighbors also affect the neighborhood criticality.
For each neighbor, given that the neighbor is the same station type as the station in focus,
a demand criticality is calculated using the same logic as in the net demand component,
presented in the next section. This score is added to the neighbor score. Finally, all
neighbor scores are scaled, based on the distance to the station in focus. Closer stations
are more heavily valued than stations further away. The neighborhood interactions are
assumed to be stronger when the distances are shorter. This also means that in a cluster
with neighboring stations, the station in the center receives the highest criticality score,

33

when all else is equal, as it has the shortest distance to all the neighbors. The neighbor
scores are added together and makes up the neighborhood criticality component.

Figure 5.4 provides an illustration of the components involved in calculating neighborhood
criticality for Station 1. With Station 1 being starved, the criticality increases as both
Station 2 and Station 3 also exhibit a similar imbalance. Conversely, Station 4 has available
bikes and is thereby able to absorb demand, thus reducing the criticality score. Stations
2 and 3 have a negative expected demand, indicating a need for bikes, which further
amplifies their contribution to the neighborhood criticality. Since Station 4 does not have
a similar imbalance, its demand is not taken into account. Finally, Station 3 is closest to
the station in focus, and the criticality contribution from this station is scaled accordingly.
Station 4 is furthest away, so the criticality contribution from this station is scaled down
compared to the others.

Figure 5.4: Illustration of the components included in the calculation of neighborhood
criticality. Station 1 is the station in focus, and stations 2, 3 and 4 are neighbors. Filled
and empty dots represent bikes and locks, respectively

Net Demand

In addition to time to violation, deviation from target inventory level and neighborhood
criticality, net demand, Di, is an important measure of the criticality of a station. As an
example, consider two potential stations, A and B. Both stations are currently empty and
have a target inventory of 12 bikes. However, Station A has an expected net demand of −4
bikes per hour, compared to −1 at Station B. At both stations, time to violation equals 0
and deviation from target inventory is 12 bikes. However, as more violations are expected
to occur at Station A in the next hour, it should be prioritized over Station B. For pickup
stations, a positive net demand results in a positive contribution to the criticality score,
while a negative net demand results in a negative contribution. The opposite is the case
for delivery stations.

Driving Time

The driving time, TD
ji from the current station, j, to the potential station, i, is the last

aspect that is considered. With this component a bias towards shorter driving times can
be created. Favoring shorter trips, when all else is equal, can result in more bikes being
moved throughout the day and better rebalancing.

34

After the five components are calculated for all potential stations, they are normalized,
meaning their original values are converted to numbers between 0 and 1. For tVi and TD

ji ,
shorter times increase the criticality of a station. However, for the remaining components,
higher values increase the criticality. This difference is handled through the normalization
process. Finally, the normalized components are multiplied with their respective criticality
weights and added together to make up the final criticality scores. The weights of the
different components are predetermined and always add up to 1. The final expression of
the criticality score is thus a convex combination of the five components, and is presented
in Equation 5.7. ωcrit represents the vector of criticality weights, corresponding to the
different components.

Criticality score = ωcrit · (tVi , di, ni, Di, T
D
ji) (5.7)

After criticality scores are calculated for all potential stations, the scores are sorted in
descending order. The station with the highest score is chosen and added to the vehicle’s
route. If multiple routes are created for the vehicle, the algorithm returns a set of stations
as per requirement. The stations with the highest scores are then chosen.

5.5 X-PILOT

To avoid making myopic decisions, loading and routing operations are implemented into an
adapted PILOT framework, based on the method of Rainer-Harbach et al. (2015) which
is presented in Section 3.4.2. The new framework explores more of the solution space
around potential routes, resulting in the name Explorative Preferred Iterative LOokahead
Technique (X-PILOT). Instead of considering single rebalancing moves, rebalancing plans
consisting of a sequence of moves are created. When a vehicle arrives at a station, several
potential first-moves are identified. Each first-move is then extended into rebalancing
plans. Next, these plans are evaluated and compared, and the first-move with the best
corresponding plans is selected. The selected first-move is the operation which is actually
performed by the vehicle. By comparing plans with several subsequent operations, the
best sequence of operations over a time horizon is chosen. This means that not only the
effects of the very first rebalancing operation is considered, but also how this operation
impacts future rebalancing. In this section, a construction algorithm for rebalancing plans
is described, before an evaluation function is presented.

5.5.1 Construction Algorithm

An outline of a X-PILOT tree constructed for a single vehicle is presented in Figure 5.5.
The first node represents Station 1 at which the vehicle arrives and performs the first
loading operation. From here, a branching into three possible first-moves is performed,
stations 2, 3 and 4. Instead of selecting the best first-move greedily, each first-move is
extended by adding two subsequent moves. As branching is performed twice, we define the
tree to have a depth, α, of two. When the maximum depth is reached, the rest of the plan
is constructed greedily until the end of the time horizon, T . Each path through the tree
now represents a rebalancing plan over the given time horizon. There are several different
ways of evaluating and selecting the best plan, this is discussed in Section 5.5.2. After

35

selecting the best branch, the corresponding first-move is selected as the next station visit
for the vehicle.

Figure 5.5: Example of a PILOT tree constructed for one vehicle with the X-PILOT
solution method. In the example, α = 2, β1 = 3 and β2 = 2. The plan with the highest
objective value is chosen. Evaluation and selection of plans is discussed in Section 5.5.2.

Branching

Two key parameters in the X-PILOT construction algorithm are the branching width
parameter, β, and the branching depth parameter, α. The former decides how many
successors to be added in each branching and is specific for the depth, while the latter
decides how many times branching should be performed. After depth α, the rest of the
plans are constructed in a greedy manner until the time horizon is reached. Ensuring
that plans are created over an equal length of time is essential for obtaining accurate plan
comparisons. This approach allows for a direct assessment of the benefits attained by the
plans within the same time frame.

Theoretically, any station could be a possible successor at any time during the construction
of the plans. However, a complete enumeration would quickly become impossible due to
the computational complexity. Therefore, the width parameter β is used to limit the
number of successors. Note that β can take different values for different depths. β1 is
the width at the first depth and determines how many potential first-moves we evaluate.
Generally, we would prefer a higher number of successors in the beginning, in order to
achieve exploration of many different first-moves. Deeper into the tree, more time has
passed and more uncertainty is present. Recall that we are eventually only interested
in the first-move, so a wide exploration further into the tree is rather meaningless. The
example shown in Figure 5.5 uses β1 = 3 and β2 = 2. Our general approach is to halve the
branching width to the nearest integer after depth one and two. In addition, the width is
halved when we consider other vehicles than the one in focus. By making smart selections
of successors, as discussed in Section 5.4, we further limit the necessity of high β-values,
only looking at the most relevant successors at all times.

To facilitate better diversification in the tree, different criticality weight sets are used in

36

different main branches. By doing so, a greater variety of solutions can be created, each
with different focus areas. For example, some solutions may prioritize time to violation
and magnitude of demand, thus focusing on short term gain, while other solutions can
take a longer perspective with a main focus on deviation from target inventory levels.
Depending on the state of the system and varying demand, the importance of the different
rebalancing aspects may vary. By using different sets of criticality weights, the chance of
creating solutions that are suitable for any given system state increases.

For each visit in a plan, estimated loading quantities are calculated before the successor
stations are chosen. In addition, accumulated customer demand at each station is estim-
ated. This enables a smart selection of successor stations, based on the estimated number
of bikes in the vehicle inventory and the estimated number of bikes at each station. Section
5.4 discusses how to select stations based on a known vehicle and station inventory, and
the same logic can be applied for the estimated numbers. This also ensures that instead of
simply choosing the most critical stations, plans are created taken into account what kind
of operations are to be performed. For example, visiting three delivery-stations in a row
would limit the number of bikes that can be delivered at each station. Visiting stations in
a sequence of e.g., [delivery, pickup, delivery], can often enable a larger number of bikes
to be rebalanced per visit. The first delivery creates available space on the vehicle for the
upcoming pickup, which again makes bikes available for the following delivery. Note that
the estimated loading quantities are only used temporarily to create sensible sequences
of visits and to compare the utility gains from the rebalancing plans. The actual loading
decisions for all stations are made at time of arrival, i.e., after customer demand has been
revealed and more accurate information about the system state is known.

Multiple Vehicles

As discussed in Chapter 3, lack of coordination between service vehicles may lead to
suboptimal decision making. Consequently, creating plans for individual vehicles may
not provide satisfactory results. Instead, we introduce a method for integrating multiple
vehicles into each plan with the aim of exploiting synergies. A rebalancing plan consists of
a route for every vehicle in the system, including loading/unloading decisions. The routes
are created while taking other vehicles’ operations into account. Each plan has a tabu
list which is updated for each iteration. The tabu list contains all visited stations for this
plan, and the current destinations of all vehicles. This ensures that vehicles do not head
to the same stations. An illustration of a rebalancing plan is presented in Figure 5.6.

Figure 5.6: A rebalancing plan consists of a route for each service vehicle in the system,
including loading decisions. In this plan, loading and unloading is performed every second
operation. A shared tabu list is updated throughout the construction of the plan.

37

The figures 5.7-5.9 illustrate how the X-PILOT method handles a multi-vehicle setting,
here illustrated for two vehicles. In Figure 5.7, Vehicle 1 is arriving at Station 1 at time
t0, and we want to decide where it should go next. At the same time, Vehicle 2 is expected
to arrive at Station 4 at time t2.

Figure 5.7: First stage of a PILOT tree constructed for 2 vehicles with the X-PILOT
approach. Vehicle 1 arrives first, and a decision must be made for its next move. Black
nodes and arrows denote station visits and routes for Vehicle 1, while operations of Vehicle
2 are illustrated by orange color. Dashed lines represent pruned branches.

• First, we identify two potential first-moves for Vehicle 1; Station 2 and Station 3.
Depending on the driving distance, expected arrival times differ for these stations,
which is indicated by their placement on the time-axis. The idea now is to identify
the next upcoming event for each branch.

• The top branch involves a rather short trip, and Vehicle 1 is expected to arrive at
Station 2 at time t1, before the arrival time of Vehicle 2. Therefore, this branch is
extended in a normal fashion and Station 3 and Station 5 are added.

• The lower branch however, involves a longer trip, meaning that Vehicle 2 is expected
to arrive at Station 4 before Vehicle 1 arrives at Station 3. This means that the
routing decision of Vehicle 2 must be made before the next routing decision of Vehicle
1. Therefore, we add the vehicle arrival of Vehicle 2 to the branch at time t2. We
now perform a branching for Vehicle 2, while keeping in mind that Vehicle 1 is on
route to Station 3. Two possible successors are selected for Vehicle 2; Station 2
and Station 5. Due to the arrival of Vehicle 2, the original black branch is pruned
(illustrated by a dashed line), and we continue the construction of the tree from the
orange branches of Vehicle 2. Even though the branch is pruned, the station visit is
still included in the plan.

In Figure 5.8 we continue building the solution tree with the same logic as before.

• On the top two branches, Vehicle 2 is expected to arrive at Station 4, before Vehicle
1 arrives Station 3 or Station 5. Again, we need to make routing decisions for Vehicle
2 before we continue with Vehicle 1. The arrival of Vehicle 2 is therefore added to the
branches originating from Station 2, and branching for Vehicle 2 is performed from
there. We prune the black branches, but make note of the destinations of Vehicle 1.

38

Figure 5.8: Second stage of tree construction. Branching occurs for the vehicle that is
expected to arrive its designated station first. Some branches have been cut off to simplify
the figure, illustrated by three dots.

To simplify the figure, some branches have been cut of. This is illustrated by three
dots.

• In the lower two branches, the visit at Station 3 reappears as Vehicle 1 is expected
to arrive at this station before Vehicle 2 is expected to arrive Station 2 or 5. The
orange branches are pruned and branching continues from Station 3.

After the given depth is reached and branching is complete, the rest of the routes are
created greedily until the end of the time horizon, T . This is illustrated with green nodes
and dotted lines in Figure 5.9.

Figure 5.9: Final stage of tree construction. The rest of the routes are created greedily
until the end of the time horizon T , illustrated by green nodes and dotted lines.

Each path through the PILOT tree corresponds to a plan, which includes routes for all

39

the vehicles in the system. The concept can easily be extended for more vehicles, using
the same logic.

5.5.2 Evaluation Function

The construction algorithm creates a set P of different plans for rebalancing. Each plan,
p, consists of a set of routes Rp for different vehicles, and each route is made up of a
set of station visits Kpr. Ideally, we would like to return the first-move with the best
corresponding plans. To identify these, the evaluation function evaluates the quality of
each plan, p ∈ P by calculating the utility gain from the vehicles’ station visits and
rebalancing operations. Plans are evaluated over multiple demand scenarios, s ∈ S, and
finally the best plan is determined by a specific selection criterion.

Stochasticity and Scenarios

As discussed in Chapter 4, uncertainty in demand makes the rebalancing problem stochastic.
Rather than simply using expected demand in the evaluation function, we therefore intro-
duce scenarios. A scenario is a realization of customer demand for bikes and locks and is
generated using sampling. For each station in the system, we know the expected arrival
and leave intensity for bicycles, for the considered time horizon. These rates are based
on historical data. With these expected values, we create realizations of net demand, by
sampling arrivals and departures from Poisson distributions. One scenario is comprised of
one realization of net demand, during the time horizon, for every station in the system.
Changes in demand naturally impact the effect of rebalancing operations, so each plan is
evaluated for all scenarios to see how the plan performs for different realizations of de-
mand. When a plan is evaluated for a given scenario, calculations are made as if demand
is deterministic. Using scenarios enables a more realistic and flexible solution method that
can capture the variability of the BSS. This can lead to robust rebalancing plans, where
the corresponding decisions perform well across a wide range of scenarios, rather than
being optimized for a single realization of demand.

Evaluation of Rebalancing Plans

After both the rebalancing plans and demand scenarios are generated, the evaluation is
performed. The entire procedure can be summarized by Algorithm 2.

Essentially, the function estimates the difference between the utility that would occur
with and without the rebalancing operations for each demand scenario. This difference in
utility is for each plan and scenario denoted Ups. The evaluation considers three aspects
of utility from each station visit k ∈ Kpr in route r of plan p. This is avoided violations,
∆vk, enabled roaming, ∆rk, and reduced deviation from target inventory levels, ∆dk. Note
that only stations which are impacted by rebalancing are considered, as all other stations
are assumed to be indifferent. This means that calculations are only made for a limited
number of stations, restricting computational complexity.

Avoided violations imply that there are violations that are expected to occur within the
time horizon, but that can be avoided by the rebalancing operations in a plan. This is
illustrated by the curves in Figure 5.10. The blue curve shows the development of station
inventory level given that no rebalancing is performed. The station experiences demand

40

Algorithm 2: Evaluation Function

Input: plans p ∈ P, scenarios s ∈ S
Result: plan utility, Ups

for each plan p ∈ P do
for each scenario s ∈ S do

for each route r ∈ Rp do
for visit k ∈ Kpr do

∆vk ← violations without visit - violations with visit
∆dk ← deviation without visit - deviation with visit
for each neighboring station n ∈ N do

∆rkn ← roaming without visit - roaming with visit
Scale ∆rkn depending on distance to neighbor, n

end
∆rk ←

∑
n∈N ∆rkn

end
Usr ←

∑
k∈Kr

γk(ωv∆vk + ωr∆rk + ωd∆dk)

end
Ups ←

∑
r∈Rp

Usr

end

end

for bikes, and the inventory is empty by time t2. All demand for bikes occurring after t2,
indicated by the dashed line, leads to violations. The orange curve, however, shows station
inventory level when a rebalancing operation is performed at time t1. Bikes are delivered
to the station, so that the station inventory is increased. Now, there are no violations
occurring within the given time period. In other words, the violations are avoided. Note
that only violations occurring after the station visit can be avoided. If the station was
visited some time after t2, the violations that had already happened could naturally not
have been avoided.

Figure 5.10: Station inventory curve with and without rebalancing. With rebalancing,
∆vk violations can be avoided.

Even if a station is not visited during rebalancing, it may benefit from the rebalancing
of its neighbors through roaming. Consider an area with several empty stations. If bikes
are made available for at least one station in this area, then users from the neighboring

41

stations may roam to the rebalanced station to pick up a bike. Without rebalancing, all
demand would lead to lost trips due to starvation. However, after rebalancing, demand
at the other stations can be handled through roaming. The benefit from the roaming is
scaled by distance, so that a short roaming implies a comparatively larger benefit than a
long distance roaming. Roaming can occur not only in a starved area where bikes have
been delivered, but also in a congested area where locks have been made available. Note
that roaming is only possible after the neighboring station has been rebalanced. Demand
happening before the time of the rebalancing operation cannot be handled by roaming.

Figure 5.11: The curves illustrate station inventory levels with and without rebalancing
at time t1. Deviation from target inventory level is reduced by ∆dk due to the rebalancing
operation.

The last element of the evaluation function is related to target inventory levels. If a
rebalancing operation takes bike inventory at a station closer to the target inventory level,
then this is considered a benefit. The closer the station gets to its target inventory level,
the greater the utility gain. This concept is illustrated in Figure 5.11. The deviation from
target inventory level, LT

i , at the end of the time period is relatively large if no rebalancing
is performed. However, a smaller deviation can be obtained by a rebalancing operation.
The gain in utility is equal to the reduction in deviation, ∆dk.

When a plan is evaluated, all station visits in all vehicle routes are considered. However,
these visits naturally occur at different times. The first visits in a route are considered
most important, as these are close in time and hence subject to limited uncertainty. As the
future becomes more distant, uncertainty related to station inventory and user demand
increases. Therefore, a discounting factor, γk, is implemented in the evaluation function.
The formula for calculating γk is presented in Equation 5.8, where i denote the discount
rate.

γk =
1

(1 + i)k
(5.8)

There is no general answer as to what an optimal solution is. Opinions on the relative
importance of violations, roaming and target inventory levels may differ between decision
makers. Weights for each factor, ωv, ωr and ωd, are introduced in the evaluation function
so that the relative importance between them can be altered.

42

Selection Criteria

After all plans have been evaluated for all scenarios, the task of deciding the best first-move
remains. This decision process is an important component of scenario based approaches
according to Pillac et al. (2013). Recall that the first-move is the first trip for the vehicle
that has just arrived at a station. Normally, each first-move is part of several different
plans. Selecting the best first-move is not a trivial task, and different selection criteria
can be applied. Some possible approaches include:

1. Evaluate each plan over all scenarios. Identify the plan that performs best on av-
erage, and select the corresponding first-move. Inspired by the definitions of Pillac
et al. (2013), we call this approach Expectation.

2. Evaluate each plan over all scenarios. Find the best plan and corresponding first-
move for each scenario. Select the first-move that is returned most often, i.e., the
first-move that is best in most scenarios. This approach is defined as Consensus.

3. Evaluate each plan over all scenarios. For each first-move, save the lowest value
across all scenarios. Select the first-move that has the highest minimum value. This
is the Maximin approach.

There are various advantages and disadvantages to consider for the different approaches.
Expectation (alternative 1), use averages that can provide consistent results of high quality.
However, averages may be influenced by outliers, meaning that a good first-move can be
excluded if it performs badly in only a few scenarios. By selecting the solution that
performs best in most scenarios, such as Consensus (alternative 2), there should be a high
likelihood of achieving high quality rebalancing moves that are well suited for a broad
range of demand realizations. The Maximin approach (alternative 3), is likely robust, but
may not provide solutions of the highest quality. Keeping in mind that bicycle rebalancing
is an operational task that is performed many times every day, being risk averse makes
little sense. Therefore, only Expectation and Consensus are utilized in this thesis.

43

Chapter 6

Simulation Framework

When solving the subproblem, the solution provides decisions on loading quantities and
which station to visit next. However, assessing the quality of this solution in isolation
is challenging. To evaluate the long term solution quality and the performance of our
solution method in a realistic setting, we therefore employ a simulation framework that
utilizes discrete-event simulation (Bakker et al., 2022) and imitates real-world BSSs. This
allows us to test and tune our solution method as a rebalancing policy and compare it to
other policies. First, in Section 6.1, a general overview of the simulator is given. Section
6.2 describes a module that is added to the simulator in order for it to handle roaming.
Finally, in Section 6.3, we propose a method to evaluate policies used in the simulator.

6.1 Overview of Simulator

By keeping track of bike trips and rebalancing actions the simulator imitates a real-world
BSS with stations, bicycles, users and service vehicles. Each step of the simulation process
is triggered by a discrete event. There are three types of events in the simulator, bike
departures, bike arrivals and vehicle arrivals. First, the simulator draws a customer arrival
scenario for each station using a Poisson process with a rate based on historical demand.
A scenario consists of a list of bike departure events, which includes times of departure.
All departure events are added to an event queue, which is sorted based on the respective
departure times. A vehicle arrival event at time zero is also added to the queue for each
vehicle. The simulator works by pulling events from the queue in chronological order and
performing a set of actions depending on the event and the state of the system. Figure
6.1 visualizes this iterative process.

If a vehicle arrival event is pulled, the rebalancing policy, which solves the DSBRPNI sub-
problem, is called. The policy solves the problem using snapshot data from the simulator
as parameters as well as historical data. The output from the policy includes how many
bikes to pick up or drop off at the current station, and which station to visit next. This
information is taken into the simulator, which performs vehicle operations accordingly. If
a bike departure is pulled from the queue and accepted, a bike is removed from the station
and a bike arrival event is created. These two events together constitute one bike trip.
The arrival station is drawn from a stochastic distribution, based on the probability of a
trip between the given stations. These move probabilities between stations are based on
historical customer trips. The duration of the trip is also calculated and the bike arrival
event is added to the queue. Finally, when a bike arrival is pulled and accepted, the bike

44

is parked and the trip is finished.

Figure 6.1: Overview of how the simulator pulls events from event queue and performs
actions

6.2 Roaming Module

The spillover effect is a central part of this thesis and the solution method presented
in Chapter 5. However, previous models have commonly ignored this effect and only
looked at starvations and congestions at stations. In the case of a congestion, the bike
has disappeared from the system, instead of being relocated to another station. In the
simulator however, a more correct logic is incorporated. Here, a new bike arrival event is
created at the nearest station with an available lock. This is important as bikes cannot
simply vanish from the system, when users arrive at congested stations. Since the user
has to deposit the bike at a station, the roaming distance can be high if all the nearby
stations are full.

In the case of a starvation, the potential customer has been assumed to leave the system
in previous models. Since we consider the possibility for a user to roam to a neighboring
station if the preferred station is starved, and since we consider this to be less severe than
abandoning the system, it is important to incorporate this effect into the simulator. Only

45

then can we accurately measure the quality of our solutions and the value of considering
neighborhood interactions. Therefore, a roaming module is added to the simulator. With
a probability depending on the distance, this module sends users to the nearest neighbor-
ing station with bikes in case of a starvation. A function, p(x), describing the relationship
between the distance to the nearest station, x, and the probability of acceptance, is used
in an acceptance-rejection method. In Figure 6.2, this method is illustrated. If a customer
arrives at a starved station, the distance x to the nearest neighbor with bicycles is calcu-
lated. Then a random number is drawn from a uniform distribution between 0 and 1. If
this number is less than or equal to the probability of acceptance for distance x, the user
walks to this neighbor. If not, the user leaves the system and a starvation is recorded.

Figure 6.2: The acceptance-rejection method used in the simulator for determining
whether a roaming event occurs when a station is starved

6.3 Evaluation of Policies

To evaluate a rebalancing policy, the simulator keeps track of the outcomes of all bicycle
arrival and departure events during a simulation. Most importantly, the simulator records
all starvations that occur, as well as roaming for bikes and locks. The distances of the
roaming actions are also recorded. After running the simulator over a predefined length,
the magnitude of starvations and roaming can be evaluated. Comparing results from
different parameter configurations gives a good foundation for tuning of parameters. In
addition, our algorithm can be compared to other benchmark policies which use different
solution methods. Based on these comparisons, the relative performance of our model can
be evaluated. Section 8.1 explains in detail which evaluation metric that is used and how
these comparisons are done.

46

Chapter 7

Case Study

To test the developed solution method, numerical values are needed for all parameters. In
addition, sets containing vehicles and stations must be initialized according to the specific
instance. The process of determining the various input parameters is presented in Section
7.1. Further, Section 7.2 presents key data on the selected test instances, while Section
7.3 describes an example solution to a subproblem for one of these instances.

7.1 Input Data and Parameters

Several types of input parameters and data influence the model. These are related to
infrastructure, such as service vehicles and stations, as well as user demand, initial states,
target inventory levels and weights for the criticality and evaluation functions. In this
section, the values for these parameters are discussed. Real-world data and parameters
from Urban Sharing are utilized when applicable.

7.1.1 Stations and Driving Time

Information regarding geographical locations and station capacities are collected from
Urban Sharing’s databases for the Trondheim, Bergen and Oslo instances. Similar inform-
ation for the New York instance is gathered from open source data. Travel times between
stations are calculated based on the distance between stations and a given speed. Most of
the rebalancing operations are performed in city centers where traffic runs relatively slow,
so the service vehicle speed is set to 15 km/h and a parking time of 1 minute is added to
the driving time. The speed of bikes is set to 7 km/h and walking speed is 4 km/h.

7.1.2 Roaming and Neighboring Stations

As discussed in Section 6.2, it is assumed that the willingness of users to walk in order to
find an available bike is dependent on the walking distance. Costa Affonso et al. (2021)
conducted a survey on how far people are willing to walk from an empty station in order
to find a bike. The results are shown in Figure 7.1. As seen in the figure, there are few
people who are willing to walk further than 500 metres, and most are not willing to walk
more than approximately 350 metres. Based on these data, a distance limit of 350 metres
is set for which stations that are considered neighbors during rebalancing calculations.

47

Figure 7.1: Share of users roaming to neighboring stations in search of a bike dependent
on walking distance

In the simulator, however, whether a customer chooses to roam or not is subject to uncer-
tainty and not determined by a fixed distance limit. Section 6.2 explains the acceptance-
rejection method used to generate these roaming events. Based on the survey results from
Costa Affonso et al. (2021), a quadratic function, p(x), is constructed using regression.
The following function is used, which returns the probability of a roaming event when x
is the distance to the neighbor in kilometres:

p(x) = −1.65x2 − 0.70x + 1. (7.1)

7.1.3 Service Vehicles and Handling Time

The solution method can be used with both a single service vehicle and in a multi-vehicle
system. Both homogeneous and heterogeneous fleets are supported, but the study is
conducted with identical service vehicles with a capacity of 20 bikes, as this is used in Urban
Sharing’s BSSs. Gleditsch et al. (2022) study the handling time for loading and unloading
bikes, and conclude that this varies depending on individual workers and the proximity of
parking. Furthermore, it is not necessarily linear with number of bikes handled. However,
in order to simplify the model they assume a linear relationship between handling time
and number of bikes handled. The same strategy is utilized here, with a unit handling
time set to 0.5 minutes.

7.1.4 User Demand

User demand data is based on real-life historical data provided by Urban Sharing and open
source data. The data sets are based on historical hourly demand for Oslo, Trondheim,
Bergen and New York for weeks 31, 34, 35 and 31 respectively. Demand data is given
as arrive and leave intensities of bicycles per hour for each station. Customer events
are generated with these intensities used as the mean number of events in a Poisson

48

distribution. The scenario generation described in Section 5.5.2 is also based on these
data.

Each station i in the BSS has a probability distribution that specifies the likelihood of a
trip initiated from that station ending at any other station j. This probability is denoted
as Pij . Since every trip must have an end station, the sum of probabilities for all possible
end stations j must equal one for each station i in the set of all stations, N . This is shown
in Equation 7.2. These probabilities are also provided by Urban Sharing, and based on
real-life data.

∑
j∈N

Pij = 1 i ∈ N (7.2)

7.1.5 Initial State

The initial load of bicycles at the stations and service vehicles are updated each time
a vehicle arrives at a station, i.e., before each run of the rebalancing model. It is also
necessary to know the location of each vehicle, and the time left until arrival at the next
station. In practice, these data are set to the updated real-world values. When the problem
is simulated and solved in a rolling horizon fashion, initial state is given by the current
state of the simulator. The upcoming station visit for a service vehicle is locked, and the
remaining time until arrival is calculated based on the completed driving time from the
previous station visit.

7.1.6 Target Inventory Level

There are several possible approaches for setting a target inventory level for a station in a
given time horizon. As this is not the focus of this thesis, a method from Urban Sharing is
used to calculate the target inventory levels. This method sets the target inventory level
of a station in a time period in such a way that the probability of a starvation equals the
probability of a congestion. The formulation is provided in Equation 7.3.

LT
it =

σB
it (L

S
i −µL

it)+σL
itµ

B
it

σB
it+σL

it
, when σB

it , σ
L
it > 0,

LS
i /2, otherwise,

i ∈ N , t ∈ T (7.3)

Here, µB
it , σ

B
it , µL

it and σL
it are the estimated demand and standard deviation for bikes and

locks, respectively. LS
i is the capacity at station i.

7.1.7 Length of Time Horizon

When solving the subproblem, the length of the considered time horizon is a modeling
choice. If a short time horizon is used, only user demand occurring in the near future is
considered. With a longer time horizon, the model looks further ahead. In Chapter 8,
subproblems with various time horizons, from 10 to 60 minutes, are studied. A discounting
factor is also applied in order to prioritize events that are closer in time, as described in
Section 5.5.2. Different discount rates are also tested in the computational study.

49

7.1.8 Weights for Criticality Score and Evaluation Function

There are five weights in the calculation of the criticality score presented in Section 5.4.2.
The values of these weights impact which stations that are prioritized for rebalancing
operations. Deciding the values of these weights is not a trivial task, but they have a
significant impact on the quality of the rebalancing. Therefore, it makes sense to perform
a study where different values are analyzed through simulation. This study is performed
in Section 8.2.3.

Similarly, three weights are used in the function that evaluates solutions, as described in
Section 5.5.2. Different weights can lead to different rebalancing operations being chosen,
and thereby directly impact the solution quality. The choice of weights is to some degree
dependent on the preferences of decision makers, and how they rate the importance of
different types of violations. A study on different weight sets for the evaluation function
is performed in Section 8.2.1.

7.2 Test Instances

Real data from the BSSs in Trondheim, Bergen and Oslo provided by Urban Sharing, as
well as open source data from Citi Bike NYC, are used for the computational study in
Chapter 8. Table 7.1 describes the main characteristics of these instances, and the city
maps are shown in Figure 7.2.

Table 7.1: Characteristics of test instances

City # stations # bikes Week

Trondheim 66 768 34
Bergen 100 1,000 35
Oslo 253 2,885 31

New York 931 14,421 31

The BSS in Trondheim is the smallest instance, and is a relatively well balanced system by
itself. If the system is run for five days without rebalancing operations, there is an average
rate of 95.1% successful events, according to our simulations. A definition of successful
events is provided in Section 8.1. The system’s ability to self-balance is supported by
the fact that most of its stations are situated at roughly the same elevation. However,
some stations are outliers located far from the city center and at a significantly higher
altitude above sea level. These stations tend to experience starvation if no rebalancing is
performed.

Bergen BSS is somewhat larger than Trondheim BSS, with 100 stations and 1,000 bikes.
Most stations are located in the city center, with rather short distances between them.
This means that each station in the city center has many neighbors. When Bergen is
simulated for five days without rebalancing operations, there is a rate of 97.2% successful
events. This means that also Bergen BSS has a high degree of self-balance.

Compared to Trondheim and Bergen, the BSS in Oslo is considerably larger, with over
250 stations and close to 2,900 bikes. Travel patterns in Oslo make the system far less
self-balanced than in the other cities. The city center is situated at sea level, and contains
a lot of businesses. This leads to a high rate of incoming bikes, especially during the
morning rush hours. In contrast, the areas outside of the city center consist mainly of

50

Figure 7.2: Station maps for BSS’s in Trondheim, Bergen, Oslo and New York

residential areas that are located at higher elevations. Since users are more inclined to
cycle downhill, these areas tend to suffer from a shortage of bikes. As a result, five days
of simulation in Oslo without rebalancing leads to only 75.5% successful events.

Finally, Citi Bike NYC is the largest BSS in the United States, and by far the largest
instance utilized in the computational study. The system consists of 953 stations and more
than 14,000 bikes which are spread across a wide geographical area including Manhattan,
Brooklyn, Queens, the Bronx, Jersey City, and Hoboken (Citi Bike NYC, 2023). Five
days of simulation on this instance, without rebalancing, results in a service rate of 94.9%
successful events.

Each of the different BSS’s can be used with different configurations. Notation for test
instances is therefore introduced in Table 7.2. The notation includes city abbreviation,
week number and the number of service vehicles. For example, TD_W34_1V, indicates
Trondheim BSS in week 34 with one service vehicle.

Table 7.2: Examples of notation used for test instances

Instance City Week # vehicles

TD_W34_1V Trondheim 34 1
BG_W35_1V Bergen 35 1
OS_W31_2V Oslo 31 2
NY_W31_5V New York 31 5

7.3 Example Solution to a Selected Test Instance

Figure 7.3 illustrates a rebalancing plan created as a solution to a given subproblem for the
test instance TD_W34_1V. The time horizon is 25 minutes and the empty service vehicle has
just arrived Station 35 when the subproblem is solved. The solution can be summarized
with the following actions:

• Load 4 bicycles from Station 35

• Drive to Station 54

• Load 8 bicycles from Station 54

• Drive to Station 40

• Unload 3 bicycles onto Station 40

• Drive to Station 27

51

• Unload 9 bicycles onto Station 27

Recall that we are only interested in the initial loading quantity and the first-move, so the
decisions made from this plan would be to load four bicycles at Station 35, and then drive
to Station 54. Later, upon arrival at Station 54, a new, similar, subproblem is solved, but
now with updated information about the state of the system.

Figure 7.3: Example solution for a given subproblem

52

Chapter 8

Computational Study

In this chapter, a computational study is performed on the solution method described
in Chapter 5. First, in Section 8.1, the evaluation metrics used for the computational
study are presented. In Section 8.2, input parameters are tested in order to identify values
for evaluation function weights, discounting factors and criticality weights that perform
well over all the studied instances. Then, an analysis is performed in Section 8.3 to
study how the different X-PILOT modelling parameters affect the solutions in terms of
solution quality and computational time. Finally, the computational performance is more
thoroughly examined in Section 8.4 using larger test instances and more service vehicles.

The solution method is implemented in Python using Visual Studio Code IDE. Specifica-
tions of the computer hardware and software are presented in Table 8.1.

Table 8.1: Specifications of hardware and software used for computational study

CPU 2x 2.4GHz Intel Xeon Gold 5115 CPU – 10 core
RAM 96GB
Operating System CentOS 7.9.2009
Python version Python 3.9.6

The complete code is available on Github: https://github.com/EECS-NTNU/fomo.
Please contact the authors to receive access to the Github repository.

8.1 Evaluation Metrics

As explained in the introduction to Chapter 6, the use of simulation is crucial to accurately
assess the effect of the heuristic. However, because we solve a multi-criteria optimization
problem, it can be difficult to directly compare the quality of different solutions. In general,
we want to achieve a high degree of customer satisfaction, meaning a high availability
of bikes and locks. Yet, this is affected by both starvations, congestions, roaming and
successful bicycle pick-ups and deliveries.

To achieve an efficient and reasonable comparison of policies, we would like an evaluation
metric that is simple, yet encompasses all the important aspects. For this purpose, we
introduce the concepts of successful events and failed events to replace the commonly used
notion of ”trips” in previous research. As failures may occur at both bicycle pick-ups and

53

returns, we use events to achieve a more nuanced picture.

If users are able to pick up or deliver a bike at their preferred station, it is naturally
considered successful events. Starvations, when user demand is lost, are clearly considered
failed events. Roaming, on the other hand, can be somewhat more complicated to cat-
egorize. The inconvenience of roaming is certainly higher than having demand fulfilled
at the desired station, but lower than not having demand met at all. Furthermore, a
short roaming distance is better for the user than a long roaming. When a user roams
for a bike, the user has already ”decided” that the distance is acceptable. Thus, roaming
for bikes are considered successful events. This decision making is simulated through the
acceptance-rejection method described in Section 6.2.

In contrast, roaming for locks are imposed on users, and should therefor be treated dif-
ferently. We want to preserve the concept of neighborhood interactions, where nearby
stations can absorb demand. However, there is no limit on how far a user may have to
roam for a lock, and a long roaming can impose significant user disutility. Therefore, we
define a maximum limit for successful roaming for locks. In Chapter 7, we defined a limit
of 350 metres for which stations are considered neighbors. The same limit is utilized to
differentiate between roaming for locks. This logic is illustrated in Figure 8.1. If a roam-
ing for lock occurs from Station 1, roaming to Stations 2 and 3 are considered successful
events, while roaming to Station 4 is not.

Figure 8.1: Roaming for locks that surpass a given limit are considered failed events due
to the considerable inconvenience for the user.

A classification of successful events and failed events is provided in Table 8.2.

Table 8.2: Classification of different types of customer events

Successful events Failed events

Normal bike pick-up Starvations
Normal bike delivery Roaming for locks > 350 m
Roaming for bikes
Roaming for locks ≤ 350 m

When initializing a run in the simulator, the bikes are evenly spread across all stations.
The first hours of a simulation are therefore affected by this ”perfect” distribution of bikes

54

and failed events are less likely to occur. To mitigate this weakness, we choose to simulate
over at least five consecutive days, every time a simulation is run. Rebalancing operations
are performed from 06:00 to 20:00 every day, unless stated otherwise, and the system is
open for users between 05:00 and 00:00. This means that the state of the BSS evolves
throughout the days and weeks, and the results are less affected by the artificial system
balance at the beginning of the simulation.

Even though we simulate several days every time we run a simulation, the results can be
vulnerable to randomness, as customer arrivals are generated through Poisson processes.
Therefore, when we test a parameter configuration or policy, the simulation is run multiple
times on the same instance, with different seeds. However, the same seeds are used for
all configurations in order to reduce variability and get more precise results. Our default
configuration utilizes 10 seeds, and when necessary, more seeds are added. Finally, the
number of failed events is recorded for every simulation run and the final evaluation metric
is the average number of failed events over all the runs.

Using this evaluation metric, we achieve a simple comparison between simulation runs
that incorporates all the important aspects of the solution quality. However, it should be
noted that the solution evaluation may be somewhat dependent on the hard limit of 350
metres that is defined. In addition, there is no differentiation between customer demand
being met at the preferred station, and customer demand met through a ”successful”
roaming. In reality, users are likely to prefer not to roam at all. However, we still believe
this to be an adequate evaluation metric for this computational study. It is also worth
noting that using the absolute number of failed events as evaluation metric can potentially
lead to a bias towards simulation runs with relatively few total events. However, as each
simulation is run 10 times, the average number of total events is very similar across different
configurations. Preliminary tests in the parameter tuning indicate that using the share
of failed events as evaluation metric results in the exact same conclusions as using the
absolute number of failed events. Finally, in some situations, it is useful to discuss service
rates when evaluating the performance of a BSS instance. The service rate is determined
by simply dividing the number of successful events by the total number of events.

8.2 Parameter Tuning

As discussed in Chapter 5 and 7, there are several input parameters that affect the per-
formance of the rebalancing algorithm. In this section, a parameter tuning is performed
using simulation and the evaluation metrics outlined in Section 8.1. Rather than find-
ing optimal values that are tuned to each test instance, we aim to identify parameter
values that are robust and consistently deliver high-quality solutions across multiple test
instances. This is done to avoid over-fitting and to ensure a flexible model that is able
to adapt to new demand patterns, changes in system characteristics, and new systems.
Furthermore, given that simulator data may not perfectly represent real-world data, a
more robust and adaptable model is desirable.

When different parameter configurations are compared, they are each run for three differ-
ent instances. For each instance, we rate the configurations from best to worst according
to the evaluation metric from Section 8.1. The best configuration receives a score of one,
the second best a score of two, and so on. Then, the scores from the different configura-
tions are summed over all three instances. The configuration with the lowest total score is
considered the best, and is therefore selected. By applying this operation, we ensure that

55

a parameter configuration which performs well for all instances is selected.

The initial parameter configurations are presented in Table 8.3. Parameter values are
updated as they are tested during the parameter tuning.

Table 8.3: Initial parameter configuration used in parameter tuning

Initial Parameter Values

Simulation duration 5 days
Number of seeds 10
Branching depth, α 3
Branching width, β1 10
Target state, LT

i Urban Sharing
Discounting factor, γKr 0.8

Criticality weights, ωcrit
{(0.4, 0.1, 0.2, 0.2, 0.1),
(0.2, 0.4, 0.2, 0.1, 0.1),
(0.2, 0.2, 0.1, 0.1, 0.4)}

Time horizon, T 40 minutes
Number of scenarios 100
Selection criterion Consensus

8.2.1 Evaluation Function Weights

The evaluation function evaluates each plan generated by the construction algorithm. The
function looks at three aspects of the plan, avoided violations, enabled roaming, and reduced
deviation. These components are described in detail in Section 5.5. Each component is
multiplied with a corresponding weight to control their relative importance, as seen in
Algorithm 2. These weights always sum to one. Since the returned plan is chosen based on
the score it receives from the evaluation, the tuning of these weights can have a significant
impact on the performance of the model. In this study, 12 initial weight sets, a to l,
are tested over several test instances using simulation. The aim is to find a configuration
of weights that performs well over all instances. A detailed overview of the results is
presented in Appendix A.

The results presented in Table 8.4 indicate that multiple weight configurations perform
well, but those that prioritize avoided violations yield somewhat lower quantities of failed
events. Building on the results of the initial 12 sets, four new weight configurations, m to
p, are created that favor avoided violations. Finally, one of these new configurations is
chosen as the default weight set, and is used for the rest of the study. This configuration
is marked with green color in Table 8.4.

Table 8.4: Results from computational study on evaluation function weights for avoided
violations, ωv, enabled roaming, ωr and reduced deviation, ωd. A lower rank means a
better score. The best configuration is highlighted with green color. Detailed results are
found in Appendix A

.
a b c d e f g h i j k l m n o p

ωv 0.4 0.8 0.1 0.1 0.6 0.3 0.3 0.6 1.0 0.45 0.45 0.33 0.9 0.95 0.85 0.9
ωr 0.3 0.1 0.8 0.1 0.1 0.6 0.1 0.3 0.0 0.45 0.1 0.33 0.05 0.04 0.1 0.09
ωd 0.3 0.1 0.1 0.8 0.3 0.1 0.6 0.1 0.0 0.1 0.45 0.33 0.05 0.01 0.05 0.01∑
Rank 27 13 33 48 23 25 44 21 18 25 39 36 12 16 11 17

56

It should be noted that the the different factors may differ in magnitude. The filtering
process described in Section 5.4.1 ensures that all stations visited in a plan deviate from
the target inventory level. Consequently, reduced deviation is always a positive value and
is typically the largest variable in the evaluation function. In contrast, avoided violations
and enabled roaming only take a value when the visited station or some of its neighboring
stations are predicted to experience violations. Furthermore, as these values are dependent
on the demand during the time horizon, they are typically rather low compared to reduced
deviation.

When avoided violations or enabled roaming take a positive value, it indicates that a
rebalancing move is likely to have a direct impact on violations. Conversely, reduced
deviation, is included in the function to minimize the probability of future violations.
Given the higher level of uncertainty associated with future violations, it seems sensible
to put a higher emphasis on violations that can be immediately avoided.

8.2.2 Discounting Factors

As explained in Section 5.5, discounting factors are used to capture the relative importance
of station visits at different stages in a route. However, it is not trivial to determine what
the difference in valuation should be throughout a route, and hence, which discount rate
to use. To test different rates, we define γKr as the discounting factor for the last visit
in a route, r. This means that if γKr is set to 0.5, the value of the last visit in a route
is scaled down with a factor of 0.5. Based on the number of station visits in route r and
γKr , an appropriate discount rate can be calculated. Low values of γKr translate to high
discounting rates, and γKr = 1 gives no discounting.

To find the most appropriate rate, multiple instances are simulated using different values
of γKr . Values for γKr ranging from 0.1 to 1.0 are tested, and the results are presented in
Table A.2 in Appendix A.

Simulation results indicate that using γKr equal to 0.1 yields the best solution quality,
meaning that a high discounting rate is favorable. This is supported by the finding that
all γKr -values between 0.1 and 0.5 perform better than those between 0.6 and 1. However,
despite this trend, there is limited variation in solution quality across the different values of
γKr , suggesting that the discounting factor has only a modest impact on the final outcome.

8.2.3 Criticality Weights

The rebalancing plans are generated by iteratively adding station visits to the vehicles’
routes. Which station to add is determined by the criticality score, which is calculated
based on real time information about the system and expected future behavior. Each
score consists of five normalized components, each associated with a weight parameter.
The components are Time to violation (tVi), Deviation from target inventory level (di),
Neighborhood criticality (ni), Net demand (Di) and Driving time (TD

ji). The calculation
of each component is explained in detail in Section 5.4.2.

In order to determine the weight parameter for each component, we follow the procedure
outlined in Section 8.2.1. Specifically, we conduct simulations using 12 initial weight sets
across various instances. These weight sets are designed to fall under one of three categor-
ies: Balanced, Long-term focus, and Short-term focus. Time to violation and deviation
from target inventory level have in preliminary tests shown to be important components

57

for the creation of sensible criticality scores that in turn lead to effective rebalancing. At
the same time, these components inherently possess different time scopes. Consequently,
within the long-term focus category, the weight assigned to deviation from target invent-
ory level is set at 50% or higher. Similarly, time to violation is weighted with 50% or more
when we have a short-term focus. Lastly, in the balanced category, no component is given
a weight exceeding 40%.

The goal is to identify the top-performing weight set from each category, and employ
them for the remainder of the computational study. Our hypothesis is that incorporating
multiple weight sets with different focuses into our model enhances diversification in the
planning process. This, in turn, could lead to more robust solution generation, appropriate
for different demand patterns throughout the day and various BSS instances. All the
weight sets and corresponding results from the simulations are presented in Appendix A.

The results show that the weight sets with short-term focus perform relatively well, with
low quantities of failed events across all instances. The best set with a short-term focus is
(0.6, 0.1, 0.05, 0.2, 0.05). Conversely, the long-term category, which prioritizes deviation
from target inventory level, yields comparatively inferior results. However, one of the
weight sets within this category, (0.3, 0.5, 0, 0, 0.2), still performs relatively well across all
instances and receives the same rank as the second best set in the short-term category. The
weight set that yields the best performance across all instances is located in the balanced
category. It consists of the values, (0.3, 0.15, 0.25, 0.2, 0.1), indicating that relatively high
weights on time to violation and neighborhood criticality can yield high quality solutions.
This set, along with the best sets from the other categories are utilized for the remaining
part of this study. The three final weight configurations are presented in Table 8.5.

Table 8.5: Final configurations of weight sets used in the criticality function

Balanced Long-term Short-term

Time to violation 0.3 0.3 0.6
Deviation from target inventory level 0.15 0.5 0.1
Neighborhood criticality 0.25 0 0.05
Net demand 0.2 0 0.2
Driving time 0.1 0.2 0.05

8.3 X-PILOT Parameter Analysis

In this section we examine the key parameters related to the X-PILOT solution method
in terms of solution quality and tractability. These parameters are primarily related to
branching and solution selection. While a wider and deeper branching enables a greater
exploration of the solution space, it is accompanied by an increase in computational time
as a trade-off. As discussed in Chapter 4, the DSBRPNI is an operational problem that
must be solved within reasonable time to be practical for real-life operations. To ensure
that rebalancing operations are not delayed, we define a limit for reasonable solution time
to be 10 seconds.

8.3.1 Branching Width & Depth

The branching width β1 determines the number of potential first-moves that are evaluated.
Furthermore, it decides how many successors that are added in each iteration of the X-

58

PILOT algorithm. Thus, a higher β1 leads to the generation of more potential solutions.
The branching depth α specifies the number of times branching should be performed, and
thereby also has a great influence on the size of the X-PILOT tree. An increase in either
α or β1 can enable a greater exploration of the solution space, and possibly solutions
of higher quality. However, computational time is expected to increase drastically as
more calculations are required. Different combinations of these parameters are tested
to examine the trade-off between computational time and solution quality. Only the α
and β1 parameters are changed, while all other parameters are kept constant. Due to
the rapid increase in complexity for increasing branching depths when β1 is high, not all
combinations are tested.

The analysis is conducted on the instance OS_W31_2V using the parameter values identified
in the parameter tuning in Section 8.2. As all service vehicles are integrated into the same
X-PILOT trees, the creation of the tree can be influenced by a multi-vehicle set-up. To
account for these effects, a two-vehicle instance is used. The time horizon is set to 60
minutes. A full overview of the results are presented in Table B.1 in Appendix B. Figure
8.2 shows how the solution quality varies for different combinations of α and β1.

Figure 8.2: Number of failed events for different combinations of α and β1

Firstly, it is evident from the results that using β1 = 1 leads to relatively high numbers of
failed events. Across all values of α, the number of failed events for β1 = 1 is approximately
2,900 per week. When β1 = 1, the algorithm only evaluates the very best station returned
from the criticality calculations. Thus, this station is always chosen for the next visit
and the algorithm works in a completely greedy manner. It is worth noting that while
the figures of approximately 2,900 failed events are the highest recorded in this study, it
still accounts for less than 5% of the total events during five days of simulation on the
OS_W31_2V instance. Recall from Section 7.2 that for this same instance, five days without
any rebalancing results in 75.5% successful events. This shows that the greedy approach,
which only utilizes the criticality function, performs relatively well. However, it is still
possible to improve the solution quality as seen in Figure 8.2. A minor adjustment in the
value of β1, up to three, results in substantially better results. This gives approximately
2,600 failed events, which is a 10% improvement compared to using β1 equal to one.

59

Increasing the width further, up to seven, appears to have a negligible impact on the
quality as the results are rather similar. Variability in the results makes it difficult to
conclude whether it is actually better or not.

An interesting observation, however, is that when β1 increases even more, the number of
failed events tend to increase again. This is somewhat unexpected. When increasing the
width of the construction tree, the model should always generate the same plans as for
narrower trees, in addition to new plans. The plans in a tree with β1 = 7 can be considered
a subset of the plans generated with β1 equal to 10 or 15. Therefore, it is reasonable to
expect that the solution quality should be at least as good when increasing β1. However,
this is under the assumption that the evaluation function is perfect and always returns the
plan that generates the most utility. When β1 is increased, stations with lower criticality
scores are included in the plans. It is possible that the evaluation algorithm is unable to
capture all aspects of a plan, and that it in some cases may return non-optimal first-moves.
Increasing the number of possible first-moves beyond a certain point may therefore have
a negative impact, as the probability of choosing the most critical stations decreases.

To further investigate this hypothesis, the configuration with α = 1 and β1 = 20 is
run again. Every time rebalancing plans are evaluated for a scenario, we record from
which branch the highest evaluated plan originates. Recall that the first branch contains
all plans that have the most critical station as their first-move. The second branch, the
second most critical station and so forth. Since α = 1, there is only generated one plan per
branch. Figure 8.3 illustrates the results from these recordings after 5 days of simulation
on OS_W31_2V.

Figure 8.3: Number of times each branch yields the best ranked plan

Unsurprisingly, branch 1, which contains the first-move considered most critical, also re-
turns the rebalancing plan which is evaluated highest across most scenarios. This observa-
tion provides reassurance that the evaluation function and criticality function effectively
capture many of the same aspects regarding the impact of a station visit. However, we
observe that the numbers stabilize after a gradual decrease until branch 5. Despite a small
decline, there is not a significant difference in the number of times, for example, branch 6
returns the best plan compared to branch 20. This finding supports the theory that as β1
becomes excessively large, the evaluation function struggles to differentiate between plans.
This can explain why the solution quality deteriorates beyond a certain threshold of β1.

60

While this observation holds true, it is evident that the evaluation function makes a
positive contribution for lower values of β1. Decision making based solely on the criticality
score yields relatively poor results. However, with just a low number of successors and
utilization of the evaluation function, we quickly obtain better results. It is clear that in the
construction of the solution tree, a balance between diversification and intensification in
the most critical stations must be struck. Opting for a relatively low number of successors
and building upon them, appears to yield the best outcomes.

Returning to Figure 8.2, we observe that for different values of α, the trend in solution
quality is not equally clear. One observation is that for β1 equal to one and three, the
number of failed events are very similar for most values of α. There is a natural explanation
to this. When β1 is one, the algorithm always constructs plans in a greedy way, and the
number of depths does not have any influence on the solution method. A similar argument
applies when β1 is equal to three and five. Recall from Section 5.5 that after the first
branching, the β-value is halved for the second and third depth to narrow down the tree
in the construction phase. Thus, for β1 = 3 and β1 = 5, the width is reduced to β3 = 1
for the third depth. This means that the configurations with α between two and seven
are, in all practical applications, identical. The differences in solution quality stem from
uncertainty in the acceptance rejection method.

Figure 8.4 illustrates the increase in solution time as the number of potential first-moves,
β1, increases for different branching depths, α. As expected, the solution time of the
algorithm is heavily influenced by the value of these parameters. For fixed α-values,
the solution times grow consistently with increasing β1, although the growth rate varies
extensively. For β1 <= 5, solution times are below two seconds for all values of α. However,
as β1 is increased from five to seven, solution times begin to grow rapidly, showing the
highest growth rate in this study. The growth continues as β1 is increased to 10, although
at a somewhat lower rate.

Figure 8.4: Solution time in seconds for different combinations of α and β1

If we study fixed β1-values and look at how the solution times changes for varying α, there
are some interesting findings. For β1 lower than five, the solution times are only to a small

61

extent affected by increasing α. The reason for this is likely also related to the reduction
in number of successors. When β1 is low, the number of successors is quickly reduced to
one, meaning that the rest of the construction is done greedily. If this happens before
the maximum depth is reached, an even higher depth would not add any benefit as the
construction on the last depths is performed greedily either way. Hence, the calculations
would be the same, and thereby equally time consuming.

For higher β1-values on the other hand, the solution time seems to be more sensitive to
an increasing α. As we can see from Figure 8.4, the problem cannot be solved within the
time limit of 10 seconds when β1 = 10 and α is larger than two.

Finally, an interesting observation is that for α-values larger than five, the solution times
seem to experience a diminishing increase for high β1-values. When β1 is 10, the solution
times are all between 30 and 40 seconds for α between five and seven. An explanation
can be that, when α is high, the end of the time horizon has already been reached for
the plans, before the algorithm utilizes the last depths. When this happens, increasing α
does not change anything, as plans are already fully constructed. This is an important
observation because it means that the interaction between α, β1 and the time horizon
length has a significant effect on solution times. This should be considered when deciding
on parameter values for the model.

8.3.2 Time Horizon Length

The length of the time horizon is a key parameter for the lookahead future of the X-
PILOT method. If a longer time horizon is used, more information about the future
development of the system is included. This may reduce the probability of myopic decision
making. We recall that after the last branching is performed, each plan is completed in
a greedy manner until the end of the time horizon. As the greedy construction is rather
computationally efficient, the length of the time horizon is only expected to have a minor
impact on computational time. However, it is not certain that a more farsighted solution
always provides higher solution quality. Therefore, the impact of time horizon length
on solution quality and computational time are both subject to analysis. In this study,
different time horizons, ranging from 10 to 60 minutes, are tested using simulation on the
OS_W31_2V instance. For each time horizon, we use three different α and β1 configurations
to capture their interactions with the time horizon. Table 8.6 summarizes the results from
the simulation runs.

Table 8.6: Number of failed events and solution time in seconds, for different time horizons,
T . Solution times over 10 seconds are marked in grey.

α=2, β1=5 α=3, β1=10 α=5, β1=7

T Failed events Sol. time Failed events Sol. time Failed events Sol. time
10 3,049 0.37 3,013 0.76 3,021 0.81
20 2,803 0.47 2,895 2.10 2,819 1.95
30 2,561 0.63 2,719 5.27 2,684 4.61
40 2,428 0.80 2,749 8.76 2,724 7.56
50 2,562 0.95 2,633 12.05 2,765 11.28
60 2,609 1.08 2,572 16.05 2,674 16.76

Naturally, as the time horizons lengthen, the solution times also increase. However, the
increase remains modest for the first configuration. When α is two and β1 is five, the
solution time rises from 0.37 seconds for a 10-minute time horizon to 1.08 seconds for a

62

60-minute time horizon. It is worth noting that when the depth is as low as two, most
of the construction for longer time horizons is performed greedily. This explains why the
solution times remain low even when the time horizon is increased.

However, as α and β1 increase, the solution times start to exhibit more significant vari-
ations. In the second and third configurations (as shown in Table 8.6), the solution times
increase from less than a second to over 16 seconds for the longest time horizon. In
these cases, the algorithm does not reach its full depth within the shorter time horizons.
However, it does when the time horizon is extended. This, coupled with a broader con-
struction tree, can account for the substantial differences in solution times. Finally, for
the last two configurations, utilizing time horizons of 50 and 60 minutes results in solution
times exceeding our predefined limit of a reasonable time of 10 seconds.

In terms of solution quality, we observe an improvement for longer time horizons. Specific-
ally, the model exhibits its poorest performance when using a time horizon of 10 minutes,
with an average of over 3,000 failed events across the three configurations. In contrast, the
60-minute time horizon demonstrates the best average performance, with just over 2,600
failed events. Moreover, it performs best on the second and third configuration, while the
40-minute time horizon excels in the first configuration and has the second-highest average
score. Except for the shortest time horizons, the differences in solution quality are limited.
This may indicate that there is a significant value to the lookahead feature, but that the
value is diminishing for time horizons beyond a certain length.

Considering the desire for a balance between solution quality and time efficiency, a time
horizon of 40 minutes seems appropriate. This allows us to achieve satisfactory solution
quality while ensuring that the solution time remains relatively short, staying within our
defined limit for all the assessed branching configurations.

8.3.3 Number of Scenarios

The X-PILOT solution method employs evaluation of solutions across multiple scenarios
as a mean of addressing uncertainty. By testing a solution across multiple scenarios, we
can assess its robustness and ensure that it performs well under different circumstances,
including those that may be unexpected. However, using many scenarios means that more
computational efforts are needed for both scenario generation and for solution evaluation.

As explained in Chapter 5, demand realizations at stations are created by sampling from a
Poisson Distribution, using the expected arrival and leave intensities of customers as rates.
For comparison, we also examine how the model performs when it evaluates plans based
solely on the expected net demand. Through simulation, we examine how the number
of scenarios affect solution time and whether it has any impact on solution quality. A
time horizon of 40 minutes is used and the branching parameters are α = 2 and β1 =
7. The instance used is OS_W34_2V, which historically has experienced more demand
than OS_W31_2V. Five days of operation is simulated and rebalancing is only performed
between 06:00 and 14:00. These modifications are made to generate more failed events and
hopefully more prominent differences between scenario configurations. Finally, simulation
is performed 40 times with different seeds for each configuration and the mean values are
presented in Table 8.7.

As expected, the solution time increases with the number of scenarios employed. When
using a single scenario, the solution time is recorded at 0.97 seconds. With 10 scenarios,
the solution time only rises to 1.16 seconds. These results suggest that both scenario gener-

63

Table 8.7: Number of failed events and solution times in seconds for different numbers
of scenarios, and when using expected net demand. Solution times over 10 seconds are
marked in grey.

Scenarios Failed events Sol. time

Expected demand 10,609 0.90

1 10,792 0.97

10 10,673 1.16

100 10,630 3.43

500 10,578 13.99

1,000 10,573 27.11

2,000 10,530 53.32

ation and plan evaluation are relatively efficient. Scaling up to 100 scenarios, the solution
time extends to 3.43 seconds, comfortably within our predefined limit of a reasonable time
of 10 seconds.

Beyond 100 scenarios, the solution times appear to increase proportionally to the number
of scenarios employed. This can be explained by the fact that with a high scenario count,
the processes of scenario generation and route evaluation constitute the majority of the
total solution time. The time it takes to construct plans is not affected by an increase
in scenarios. An increase to 500 scenarios leads to a solution time of 13.99 seconds, and
hence a solution time that by our definition is not applicable for practical use. For 1,000
and 2,000 scenarios, the solution time doubles, further emphasizing the impracticality of
such high scenario counts.

It is important to remember that the solution times are dependent on several other para-
meters, in addition to the number of scenarios. Increasing the time horizon leads to longer
routes, and utilizing higher branching parameters leads to more rebalancing plans in the
PILOT tree. As a consequence, the time used to evaluate plans is increased. Thus, it is
difficult to decide a maximum number of scenarios that can be used for practical applica-
tions, without considering all parameters simultaneously.

With regards to solution quality, the number of scenarios used seems to be relatively im-
portant. When the plan is evaluated over only one scenario, the results are comparatively
poor with an average of 10,792 failed events across the 40 simulations. Using only one
scenario, it is random whether the predicted demand in the scenario is close to or far
from the later realized demand. Therefore, it is not surprising that this configuration per-
forms poorly. As the number of scenarios increases, there is a noticeable decrease in the
occurrence of failed events, although not very large. Specifically, when considering 2,000
scenarios, the number of failed events is reduced to 10,530. This is an improvement of 262
events or 2.4% compared to using one scenario. Still, the decrease seems to be diminishing
for higher scenario counts, and the largest improvement is from one to ten scenarios.

An interesting observation is that evaluating plans using only the expected demand yields
acceptable results with an average of 10,609 failed events. This approach is the fastest of
the alternatives and can be suitable if solution time is decisive. Nevertheless, our analysis
demonstrates that incorporating multiple scenarios for evaluation leads to a reduction in
failed events. This highlights the significance of addressing the problem’s stochastic nature
through demand scenario sampling.

In addition to examining the absolute values of failed events for different number of scen-

64

Figure 8.5: Box plot comparing how the number of failed events are dispersed for 40
different simulation runs, across various scenario configurations. Full lines represent the
median values, while dashed lines show the means.

arios, it is interesting to address the variability and distribution of the results across the 40
simulations. In Figure 8.5, this is illustrated using a box plot. The full lines represent the
median values, while dashed lines show the mean values of failed events. The boxes rep-
resent the interquartile ranges (IQR), from the lower to the upper quartiles. This means
that the middle 50% of observations are dispersed between these intervals. The end of the
whiskers show the extreme values, excluded outliers. Finally, if an observation lies outside
1.5 times the IQR, above the upper quartile or below the lower quartile, it is considered
an outlier and is marked with a circle.

Although the evaluation using expected demand yields a relatively good mean value, it
also results in the largest spread across the 40 simulations and the highest maximum value,
exceeding 12,000 failed events. By utilizing a higher number of scenarios, the variability
seems to be reduced to a certain extent. Notably, the configuration with 2,000 scenarios
has the shortest IQR, while the configuration with 1,000 scenarios demonstrates the lowest
maximum value.

Yet, there are some surprising observations when analyzing the plot. The results from the
configuration with 500 scenarios appear to be more dispersed than for 10 and 100 scen-
arios. In addition, there seems to be relatively high variability across all configurations,
with differences of over 2,000 failed events between the maximum and minimum values
for each configuration. However, this may be explained by general variations in the simu-
lation results. Table B.2 in Appendix B reveals a distinct pattern between seed numbers
and the number of failed events. Certain seeds consistently yield high numbers of failed
events across all scenario configurations, while others consistently produce low numbers
across all configurations. This indicates that a significant portion of the variability in the

65

results originates from variations in the simulation processes rather than the evaluation of
rebalancing plans.

8.3.4 Selection Criteria

After all plans have been generated and evaluated across multiple scenarios, only one
corresponding first-move is selected. However, since we solve a stochastic optimization
problem, it may not be possible to identify a single optimal solution. Three different
selection criteria are discussed in Section 5.5.2, each with different advantages and draw-
backs. To analyze how selection criteria impact the quality and characteristics of solutions,
we evaluate two of these approaches.

The first selection criterion we choose to analyze is consensus. This approach finds the
best plan and corresponding first-move for each scenario, before it selects the first-move
that is returned most often. Secondly, tests are performed with the criterion expectation.
This method identifies the plan with the highest average evaluation score over all scenarios
and returns the corresponding first-move. More detailed descriptions of the criteria are
found in Section 5.5.2.

A two-sample t-test is conducted to analyze whether there is a statistically significant
difference between the results achieved from the two criteria. A thorough description of
the t-test is provided in Appendix C. The test is conducted on the instances OS_W31_2V,
TD_W34_1V and BG_W35_1V using a significance level of α = 5% and degrees of freedom
df = 19. We perform a pairwise comparison of results from the two different criteria,
X (expectation) and Y (consensus), denoting the difference between them Z = X − Y .
Thus, a negative Z-value means that the expectation criterion results in fewer violations.
Our null hypothesis states that the two criteria perform equally well, Z = 0, whereas
the alternative hypothesis is that one criterion outperforms the other, Z ̸= 0. Different
instances are used to see whether the characteristics of the instances have an impact on
the performance of the selection criteria. Results are summarized in Table 8.8.

Table 8.8: Results from Two-Factor t-test on two different selection criteria

Results of Two-Sample t-test

Instance OS_W31_2V TD_W34_1V BG_W35_1V

Sample Mean Z -40.2 -8.2 -8.8
95% Confidence Interval (-122.9, 42.6) (-14.0, -2.3) (-22.7, 5.2)

The results reveal that there is in fact a statistically significant difference for the TD_W34_1V
instance. As zero is not a part of the confidence interval, we can say with a 95% probability
that the mean value for the expectation criterion is lower than the mean for consensus.
This indicates that expectation provides fewer failed events for the TD_W34_1V instance.
For the OS_W31_2V and BG_W35_1V instances, expectation also provides a lower mean value.
However, there is not statistical foundation to claim a significant difference. Hence, we
cannot conclude that there is a performance difference for these two instances.

8.4 Computational Performance

The purpose of this performance analysis is to asses whether the algorithm can solve large
instances within a reasonable time for real-world applications. Up until this point, BSSs in

66

Trondheim, Bergen, and Oslo have been tested with one to two service vehicles, all of which
are small to medium-sized instances. This study evaluates the scalability of the solution
approach to determine its suitability for solving the DSBRPNI for larger BSSs. Recall
that we define reasonable solution time as less than 10 seconds. Because tractability is the
focus of these test, we only consider solution time, and are not concerned with solution
quality.

In order to test our solution method on a larger instance, we here apply the method on the
Citi Bike NYC instance. In addition to this large-scale BSS, the study is also conducted
on the small-sized Bergen instance and the medium-sized Oslo instance. Each instance
is tested using one to five service vehicles. Evaluation is performed across 100 scenarios.
The time horizon is set to 40 minutes and in the first runs we use α = 2 and β1 = 5 as
branching parameters.

The results presented in Table 8.9 show that the solution method scales remarkably well
for larger instances. Even though the New York BSS is several times larger than Oslo
and Bergen BSS, the solution times exhibit great consistency. The NY_W35_1V instance is
solved in less than a second. Increasing to five vehicles, the solution time only extends to
2.25 seconds, which remains well below our threshold for a reasonable time.

Table 8.9: Solution time in seconds for various BSS instances, when α = 2 and β1 = 5

x = Number of vehicles
1V 2V 3V 4V 5V

BG_W35_xV 0.56 0.99 1.44 1.85 2.26
OS_W31_xV 0.51 0.78 1.02 1.26 1.57
NY_W31_xV 0.91 1.33 1.65 2.01 2.25

As expected, the New York instances require the longest computational time across most
vehicle configurations, although the differences are modest compared to the far smaller
Bergen instances. A notable finding, however, is that the medium-sized Oslo instances are
solved faster than the smaller Bergen instances for all vehicle setups. While it is difficult
to conclude on the exact reasons for this, it is a strong indication that instance sizes have
a limited impact on solution times.

Analysis in Section 8.3.1 reveals that the configuration with α = 2 and β1 = 5 is very
computationally efficient, whereas wider and deeper X-PILOT trees require far more time.
To explore the potential impact of higher values for α and β1 on the results, we re-run the
tests with α = 3 and β1 = 7. Solution times are expected to be significantly higher, which
can make differences in solution time between the instances more prominent. Results are
presented in Table 8.10.

Table 8.10: Solution time in seconds for various BSS instances, when α = 3 and β1 = 7

x = Number of vehicles
1V 2V 3V 4V 5V

BG_W35_xV 2.01 8.45 27.70 85.62 320.78
OS_W31_xV 1.10 3.42 10.64 32.61 100.81
NY_W31_xV 1.96 4.74 11.14 25.42 63.93

As anticipated, the solution times increase for all instances when the width and depth are
extended. We also observe a much steeper development in solution times for increasing
number of vehicles. For OS_W31_xV the solution time raises from one second for one vehicle,

67

to 100 seconds for five vehicles. This can be explained by the increase in α and β1. As we
recall from Section 5.5.1, branching also occurs for the vehicles that are not in main focus.
With larger depths and widths, the magnitude of branches rapidly grows as the number
of vehicles increases.

An interesting observation however is that the smaller Bergen instance requires longer
solution times than the instances in Oslo and New York. One explanation for this is that
the distances between stations are shorter in Bergen compared to the larger instances. It
may therefore be the case that the construction algorithm generates more complex solution
trees with larger rebalancing plans within the scope of the time horizon, compared to e.g.
New York. In New York, one move can easily make up the entire duration of the time
horizon, if the vehicle has to drive across the city. As soon as the time horizon has passed,
the algorithm does not add any more station visits to the route, even if it the maximum
depth is not reached. Despite this unexpected observation, it is clear that when α and
β1 take higher values, the growth in solution times stems from the increase in number of
vehicles and not the number of stations in the BSS.

Because of the way our solution method is implemented, it scales well when the number
of stations is increased. Furthermore, when using modest values of α and β1, which has
showed to yield good results, the DSBRPNI can be solved for BSSs with over 900 stations
and five service vehicles in less than three seconds.

68

Chapter 9

Heuristic Performance and
Managerial Insights

This chapter provides a comprehensive analysis on the Dynamic Stochastic Bicycle Rebal-
ancing Problem with Neighborhood Interactions (DSBRPNI), and evaluates the perform-
ance of the X-PILOT solution method. In Section 9.1, a comparative study is conducted
on X-PILOT and alternative solution methods to assess their performance. X-PILOT
features a novel way of coordinating a fleet of service vehicles, and the quality of this
coordination is evaluated in Section 9.2. Section 9.3 investigates the incorporation of
neighborhood interactions into the rebalancing decisions, exploring their effects and po-
tential benefits. Finally, Section 9.4 discusses the utilization of our performance metric
compared to traditional methods, and its implications for managerial decision-making.

9.1 Comparison with Other Policies

In this section we compare the performance of our X-PILOT solution method to alternative
approaches for solving the DSBRPNI. First, we simulate the BSSs with no rebalancing
operations to establish a baseline. Then, we apply different rebalancing policies and
compare how these impact the system performance in terms of successful and failed events.
By policy we here refer to the rules that are used to generate a rebalancing decision based
on the available information in a given system state.

9.1.1 Description of Policies

To begin with, we apply an approach which is presented as a benchmark policy by Bakker
et al. (2022), here referred to as Greedy Policy (GP). This is a semi-greedy approach,
in which loading decisions are made greedily in order to get as close as possible to a
given target inventory level. The target inventory level is calculated based on expected
future demand. Routing decisions are made using filtering and a criticality score. The
filtering first excludes stations which are visited by other service vehicles. In addition,
either delivery or pick-up stations may be excluded based on the vehicle inventory level.
The criticality score takes into account expected demand, driving time, expected time to
violation and deviation from target inventory level. The station with the highest criticality
score is simply selected.

69

Another greedy policy that is applied in this comparison is a Greedy Policy with Neighbor-
hood Interactions (GPNI). This policy shares several characteristics with the GP. However,
a prominent difference is that it takes into account spillover effects between stations. The
criticality function from our X-PILOT implementation, including neighborhood criticality,
is applied. After calculating the criticality, the station with the highest criticality score is
selected greedily. Essentially, this policy is similar to X-PILOT with α = 1, β1 = 1 and
T = 0, i.e., the X-PILOT policy with no lookahead features.

Further, Kloimüllner et al. (2014) present a PILOT method for the Dynamic Bicycle
Rebalancing Problem, here denoted Kloimüllner PILOT. The PILOT method presented by
Kloimüllner et al. (2014) is a special case of our X-PILOT method, in which the branching
depth α is limited to one, and the branching width β1 is unlimited. This means that the
first branching includes all possible stations, and that each branch is then completed in a
greedy manner. Note that the implementation of the criticality function and evaluation
function used in Kloimüllner et al. (2014) differs from ours. In addition, they create
complete routes, off-line, rather than re-solving the problem every time a service vehicle
arrives at a station. However, the PILOT-specific parts of their solution method can be
adapted to our solution method, even though the implementation is somewhat different.
Our implementation gives a best bound on the Kloimüllner PILOT performance.

Finally, our X-PILOT approach is applied, using the parameters identified in the para-
meter tuning. Branching parameters used are α = 2, β1 = 5 and T = 40, which were
shown to provide high solution quality within relatively short time in Section 8.3.

9.1.2 Simulation Results

The different rebalancing policies are first simulated on the OS_W31_2V instance. Two
service vehicles are utilized so that possible differences in coordination between vehicles
are accounted for. System operations are simulated for 10 days, with rebalancing being
performed from 06:00 to 20:00. The baseline simulations, with no rebalancing operation,
results in just more than 30,200 failed events, or a service rate of 71.53%.

Simulation results from the different policies, illustrated in Figure 9.1, show considerable
differences between the performance of the policies after 10 days of simulation. Note that
the system starts in a balanced state, so the differences only start to show after some time
has elapsed. Detailed results are provided in Table D.3 in Appendix D. While the greedy
policies exhibit comparatively poor performance, the number of failures is still reduced
to 11,350 and 9,878 for GP and GPNI, respectively. This corresponds to a service rate
of 89.77% and 91.17%, with GPNI demonstrating the highest performance of the two.
Notably, GPNI achieves almost 25% fewer starvations compared to GP. A plausible ex-
planation for this can be that the policy accounting for neighborhood interactions converts
starvations into roaming. However, the amount of roaming for bikes is in fact lower for
GPNI than for GP, as seen in Table D.3. This points towards a better system balance in
terms of distribution of bikes in general.

The two PILOT policies demonstrate higher performance than the greedy policies, with
Kloimüllner PILOT resulting in 9,480 failed events, and X-PILOT outperforming the
others with only 8,243 failures. Kloimüllner PILOT actually shows a higher number of
starvations than GPNI, however, the reduction in long roaming for locks is larger in
magnitude. This indicates that the two policies seem to favor different types of violations.
X-PILOT, on the other hand, exhibits the lowest number of both starvations and long

70

Figure 9.1: Development of failed events for different rebalancing policies for the Oslo
instance with two vehicles, plotted for a single simulation

roaming for locks. This results in a service rate of 92.65%.

As noted in Section 9.1.1, the GPNI is effectively the same policy as the X-PILOT without
lookahead features. Hence, the performance difference between these can be interpreted
as the value of looking ahead. Specifically, in this instance, employing lookahead features
results in a decrease from 9,878 to 8,243 failed events, representing a notable reduction
of 16.6%. This reduction is primarily driven by a decrease in long roaming for locks,
accounting for nearly two-thirds of the overall improvement.

Furthermore, the Kloimüllner PILOT can be seen as a special case of X-PILOT, in which
all possible first-moves are examined, but no further branching is performed later in the
PILOT tree. Therefore, a meaningful part of the difference between the performance of
the Kloimüllner PILOT and X-PILOT may be attributed to this additional branching. A
deeper branching means that larger parts of the solution space is explored, by evaluating
more future options from each first-move. The difference between the two PILOT methods
turns out to be rather significant, with the X-PILOT achieving more than 1,200 fewer
failed events. Recall that the X-PILOT is solved with α = 2, so this additional value
is achieved using only one extra depth of branching. However, it should also be noted
that the branching width likely affects the results. Studies in Section 8.3.1 reveal that the
performance of X-PILOT deteriorates when an excessively wide branching is applied.

Each policy is also simulated for the smaller BG_W35_1V instance. This instance is far more
self-balanced with approximately 1,900 failures, or a service rate of 96.98% over a 10-day
period without any rebalancing efforts. Given the inherently well-balanced nature of this
instance, we anticipate observing smaller variations between the policies when applied to
it.

The simulation results presented in Figure 9.2, and detailed in Appendix D, confirm that

71

Figure 9.2: Number of starvations and long roaming for locks for different rebalancing
policies. Three different instances are tested.

the performance is indeed rather similar between the policies. However, most of the trends
observed from the OS_W31_2V instance persist. GP exhibits the poorest performance,
averaging 881 failures, which is 10.6% more failures than X-PILOT with 796 failed events.
X-PILOT continues to demonstrate the best performance, while GPNI and Kloimüllner
PILOT are close behind with 807 and 822 failures, respectively.

An intriguing finding is that in the absence of rebalancing, long-distance roaming for
locks is by far the most common type of failure, accounting for 71.3% of the total failed
events. However, all rebalancing policies cause the distribution of failures to change,
with considerably fewer events of long roaming for locks compared to starvations. This
observation suggests a higher emphasis on addressing congestions over starvations within
the rebalancing policies. This finding gains further support from the analysis of the Oslo-
instance, where the reduction in long roaming for locks is notably higher compared to the
reduction in starvations.

Next, the large-scale NY_W31_3V instance with three service vehicles is simulated for 10
days. Although the system has a high service rate of 95.20% without rebalancing opera-
tions, this still represents more than 47,000 failed events, meaning that there is considerable
room for improvement by rebalancing.

A notable finding for this large instance is that the Kloimüllner PILOT policy fails to
solve the problem within a reasonable timeframe. Consequently, no simulation results are
obtained for this particular policy. Recall that the Kloimüllner PILOT policy assesses all
feasible successors, which can be an extensive set of stations for the New York BSS. This
high number of successors is likely the primary reason for the lacking tractability.

Apart from the deficiency of the Kloimüllner PILOT policy, results from the NY_W31_3V

align with the observations made for the other instances. X-PILOT demonstrates superior
performance with 29,942 failed events, followed by GPNI with 30,475 failed events. Once
again, the GP policy falls short in matching the performance of the other policies, resulting
in a total of 32,552 failed events.

72

Interestingly, the most significant performance disparities between GP and the other
policies arise from long-distance roaming for locks. While the number of starvations shows
a 6.6% increase compared to X-PILOT, the occurrence of long roaming for locks is 17.5%
higher. A similar trend is observed when comparing with GPNI. One possible explanation
for this discrepancy is that both GPNI and X-PILOT take into account the spillover effect
and roaming distances between stations, while GP neglects these factors. Consequently,
GPNI and X-PILOT value a conversion from a long roaming into a shorter roaming,
whereas GP considers both cases as congestion.

In conclusion, the X-PILOT solution method is proven to outperform alternative solution
methods across all the analyzed instances. The magnitude of improvement is particularly
pronounced in larger and more imbalanced systems, where the potential for enhancement
is most significant. This study shows that the selection of rebalancing policy can have a
considerable effect on user satisfaction. Although an increase in service rate from 89.77%
to 92.65% for the Oslo instance may not seem vast in terms of percentage points, it
translates to a reduction of up to 75,000 failed events throughout a season, assuming that
the simulated period is representative.

9.2 Coordination of Service Vehicles

Section 9.1 reveals that X-PILOT performs better than other benchmark policies. How-
ever, we have not yet examined in detail where the improvements stem from. In Section
5.5.1, we establish that our construction algorithm considers all service vehicles in the
system concurrently during the creation of rebalancing plans. This coordinated approach
aims to optimize the utilization of current vehicle locations when determining their sub-
sequent destinations. The underlying expectation is that this methodology capitalizes
on synergies within a multi-vehicle context, resulting in enhanced overall performance,
compared to other approaches.

To examine whether this is the case, we simulate how the policies GP, GPNI and X-PILOT
perform with different number of vehicles in Oslo. In real life, four vehicles are employed in
the Oslo BSS during periods of high demand. We therefore perform tests on configurations
with one to four vehicles in this study. For comparison, the only coordination in GP and
GPNI is that vehicles cannot drive to stations where other vehicles are already headed. If
the marginal benefit of additional vehicles is greater in X-PILOT than in GP and GPNI,
this can indicate that a more coordinated approach is achieved. 10 days of simulation
is conducted for each vehicle configuration on the OS_W31_xV instance, with rebalancing
operations from 06:00 to 14:00. The relatively short rebalancing period is used to avoid
the system from becoming too balanced when adding multiple vehicles, making it difficult
to compare solution quality.

The results presented in Table 9.1 demonstrate that with the coordinated approach of X-
PILOT, we indeed experience a greater reduction in failed events compared to the other
policies. When utilizing only one vehicle, the number of failed events are nearly identical
across the three polices, approximately 35,000. This translates to a service rate of 79%.
However, when increasing to two vehicles, X-PILOT achieves a reduction in failed events
to 26,461, an improvement of 8,036 events or 23.3%. In contrast, GP and GPNI exhibit
comparatively lower improvements of only 18.6% and 18.5%, respectively.

This trend persists as the number of vehicles increases to three. With X-PILOT, the
number of failed events is reduced by 20.9%, whereas GP and GPNI obtain reductions of

73

16.9% and 19.9%, respectively. Further increasing the number of vehicles to four, GPNI
experiences the greatest improvement, while the performance of GP lags behind. X-PILOT
demonstrates a slightly lower improvement than GPNI. This can be attributed to the
challenge of achieving further enhancements as the service rate approaches a comparably
high level. It suggests that the benefits of additional vehicles diminish as the system
achieves a more balanced state. This theory finds support in the diminishing improvement
in absolute numbers per additional vehicle across all policies.

Table 9.1: Service rate, number of failed events and relative improvement of failed events
when employing more vehicles for different policies.

Policy # vehicles Service rate Failed events Improvement

GP

1 78.7% 35,086 - -
2 82.8% 28,560 6,526 18.6%
3 85.8% 23,748 4,811 16.9%
4 88.2% 19,882 3,867 16.3%

GPNI

1 79.0% 34,706 - -
2 83.1% 28,277 6,429 18.5%
3 86.5% 22,664 5,613 19.9%
4 89.5% 17,790 4,874 21.5%

X-PILOT

1 79.1% 34,497 - -
2 84.2% 26,461 8,036 23.3%
3 87.6% 20,922 5,539 20.9%
4 90.3% 16,488 4,434 21.2%

9.3 Effects of Neighborhood Interactions

This section highlights the integration of neighborhood interactions into the decision-
making process for the Dynamic Bicycle Rebalancing Problem. The main objective is
to assess the impact of this integration on the effectiveness of rebalancing strategies. To
achieve this, we conduct simulations on multiple BSS instances, solving the DSBRPNI
using our proposed solution method, X-PILOT, with and without consideration of neigh-
borhood interactions. The differences obtained from these simulations are presented and
analyzed in this section. Moreover, to determine the statistical significance of the dif-
ferences observed between the two approaches, two-sample t-tests are conducted with a
significance level of 5%.

When neighborhood interactions are not considered, three adjustments are made to the
solution method. Firstly, the weight of the neighborhood criticality component is set to
zero for all criticality weight sets. Secondly, the weight for enabled roaming is set to zero
in the evaluation function. Lastly, we recall from Section 5.3 that loading quantities are
adjusted if there are starved or congested stations in close proximity. This adjustment is
not applicable when neighborhood interactions are ignored.

Both solution approaches utilize α = 2, β1 = 5 and a time horizon of 40 minutes. The
evaluation of plans is performed across 100 scenarios, and the selection criterion applied
is expectation. Tests are performed on multiple different instances to investigate whether
the effects of neighborhood interactions are dependent on the characteristics of the BSS.
A 10-day simulation period is applied, and the simulations are run with 20 different seeds.
Average results from the simulation runs are presented in Table D.1 in Appendix D.

74

Table 9.2 summarizes the key findings for the different instances. The results reveal that
the value of incorporating neighborhood effects varies between the different instances.
Several instances experience improved solution quality from the inclusion of neighborhood
interactions, although the improvement is modest. For other instances, there is no sig-
nificant difference between the two solution approaches. In general, the greatest benefits
seem to be achieved for the larger and more imbalanced instances, as both OS_W31_1V,
OS_W31_2V, OS_W34_2V and NY_W31_2V experience a statistically significant reduction in
failed events. The solution quality of the smaller and highly well-balanced instances,
TD_W34_1V and BG_W35_1V, is not notably affected.

Table 9.2: Simulation results showing the effect of incorporating neighborhood interactions
into the solution method for different instances

No
interactions

Neighborhood
interactions

Instance
Failed
events

Service
rate

Failed
events

Service
rate

Statistical
significance

TD_W34_1V 279 99.04% 288 99.01% No
BG_W35_1V 782 98.76% 804 98.72% No
OS_W31_1V 17,589 83.95% 17,093 84.41% Yes
OS_W31_2V 8,526 92.39% 8,205 92.68% Yes
OS_W34_2V 18,119 89.35% 17,784 89.54% Yes
NY_W31_2V 33,637 96.61% 33,436 96.63% Yes

When examining the service rates of TD_W34_2V and BG_W35_2V, it is not very surpris-
ing that the inclusion of neighborhood effects have little influence. Considering the high
service rates of 99.01% and 98.72% in these systems, they are already well balanced, and
there are likely few areas in the systems with large imbalance. This limits the significance
of addressing long-distance roaming. The results indicate that almost all user demand is
satisfied either directly or through short roaming. This limits the necessity for both rebal-
ancing operations in general, and for addressing neighborhood interactions in rebalancing.

Figure 9.3 provides a more detailed representation of how the solutions differ. One import-
ant observation is that for all instances, a considerable amount of roaming occurs, both for
bikes and locks. This highlights the importance of recognizing neighborhood interactions.
Upon analyzing the instances with statistically significant differences, it is evident that
the majority of the discrepancy stems from a reduction in long-distance roaming for locks.
The number of short-distance roaming for locks, however, is almost identical. These find-
ings can indicate that the incorporation of neighborhood interactions reduces the number
of unwanted events where users must roam a long distance to return their bike. This result
harmonizes with the aim of including the spillover effect. As the two policies are almost
identical for the most part, we do not expect there to be fewer empty or starved stations.
Rather, the aim is to perform a smart selection of stations and loading quantities so that
the distances to nearby available options are reduced.

In contrast to the observed effect on long-distance roaming for locks, a similar effect is
not observed for starvations and roaming for bikes. Ideally, the inclusion of neighborhood
effects should lead to a conversion of starvations into roaming for bikes. The expectation
is that if there are more non-starved stations in close proximity to a starved station,
users would be more likely to roam instead of giving up on their attempt to pick up a
bike. However, the number of starvations and roaming for bikes remains nearly unchanged
between the two policies. This finding suggests that our solution method may not fully

75

Figure 9.3: How the inclusion of neighborhood interactions in the solution method impacts
the performance of different BSS instances.

76

leverage the spillover effect when it comes to addressing starved stations.

For the instances in Trondheim and Bergen, certain variations can be observed between
the two policies. However, it is important to note that the t-tests have confirmed that
there is no significant difference between the two solution methods. Therefore, the ob-
served differences are likely to be attributed to natural variations that occur during the
simulations. Note that the y-axis in the figure is scaled based on the absolute number of
events. As a result, the differences may appear more pronounced when there are fewer
events.

9.4 Improved System Performance Metric

Traditionally, the performance of BSSs has been measured in terms of starvations and
congestions. A starvation is simply defined as a user arrival at an empty station, and con-
gestion is a bike arrival at a full station. In addition, successes and failures are traditionally
defined for trips rather than events. While these measures may provide an indication of
the system performance, they fail to include important mechanisms of a BSS and of user
utility. In this thesis, we introduce a novel way of measuring system performance and
simulating user behavior. This can provide decision makers with better tools to manage
BSSs, both in terms of analyzing rebalancing policies and for utilization of resources.

As discussed in Chapter 2, a trip is not necessarily lost once a user arrives at a station.
In fact, most user are willing to roam more than 300 metres in order to pick up a bike,
as shown in Figure 7.1. The same concept applies to congestions; if a station is full, the
user may find available options nearby. Furthermore, each trip consists of both a bicycle
pick-up and return, and both events impact user satisfaction. This means that the service
rate and user satisfaction cannot simply be captured by looking at stations and trips in
isolation, but requires more thorough analysis. We therefore introduce a new event based
definition of successes and failures.

It is clear from the study conducted by Costa Affonso et al. (2021) that the likelihood of a
lost trip due to a starvation is highly dependent on the distance from the starved station
to available options. Thus, this distance should be taken into account. In this thesis, we
introduce a roaming module for BSS simulators that mimics actual user behavior, as de-
scribed in Chapter 6. This allows for more realistic simulations of the system development
and more accurate simulation results.

When it comes to congestions, it is reasonable to also here incorporate the effects of roam-
ing distance. For example, if a user can find an available lock within 50 metres it clearly
makes little sense to consider this a failed event, as would be the case with traditional
evaluation metrics. Instead, we suggest defining a distance limit, so that roaming shorter
than this limit is considered a successful event, while longer roaming is considered a failure.

A simulation may yield rather different results, depending on how the performance is
measured. This is shown in Table 9.3, where our evaluation metric is compared to a
traditional metric for the same simulation. The count of different events is shown for the
first seed of our simulation of the OS_W31_2V instance used in Section 9.1.

Firstly, a noticeable difference is the number of events or trips. As our metric counts both
bicycle pick-ups and returns, the number is almost twice as high. The reason that the
number is not exactly doubled is that there is no return-event after a starvation. Further,
because traditional metrics only consider starvations, events where the users decide to

77

Table 9.3: Comparison of Performance Metrics for an Example Simulation

Performance Metric Inngjerdingen & Møller Traditional Metrics

Events/Trips 112,210 57,486

Starvations 2,762 5,070

Roaming, bikes 2,308 -

Short roaming, locks 4,479 -

Long roaming, locks 5,779 -

Congestions - 10,258

Sum successful 103,669 42,158

Sum failures 8,541 15,328

Service rate 92.4% 73.3%

roam for bikes are also considered starvations. Even if a trip is successfully initiated from
a nearby station, the event is noted as a failure. This results in the number of starvations
being 83.6% higher when using a traditional metric for this simulation.

Another considerable difference is that our metric does not include congestions. Recall
how we assume that a user cannot abandon a bike at a congested station, but has to find
a vacant lock elsewhere. This means that there are no ”pure” congestions, only roaming
for locks. Hence, we distinguish between a long roaming that can be considered a failure,
and a short roaming that is of limited inconvenience for the user. This distinction is not
present in traditional metrics, meaning that the number of failed events due to congested
stations is far higher. For this simulation, the increase is as much as 77.5%.

The resulting service rate from our metric is 92.4%, while the traditional metric yields
only 73.3%. If the performance of the system is to be analyzed, this marks a material
difference. The magnitude of the difference is of course dependent on the limits used in the
definition of a short and long roaming for lock, as well as the probability of a user roaming
for a bike. These parameters can be defined by the decision maker according to their
preferences and local conditions, but it is clear that the incorporation of neighborhood
interactions can be of great significance.

Considering that simulations are often utilized for the development of rebalancing policies
and for system management decisions, it is important to have an accurate and realistic
performance measure. Thus, we argue that our performance evaluation metric and roam-
ing module may facilitate better rebalancing operations and improved BSS management.
As shown in this study, a traditional evaluation method can give a false impression of the
service level, and thus might lead to inadequate resource utilization and flawed assessment
of rebalancing policies. For example, if the BSS operator in this example aims for a service
level of 90%, the conclusion from the simulation results would be very different depending
on the metric used. With a service rate of just more than 73%, possible responses could
be to add more service vehicles and personnel, or to employ longer shifts. However, if the
service rate is over 93%, this would be a waste of resources.

78

Chapter 10

Concluding Remarks

The main focus of this thesis has been to study the effects of interactions between stations
in bike sharing systems (BSSs) in a rebalancing context. A thorough review of existing
literature on Dynamic Bicycle Rebalancing Problems (DBRPs) has been performed, which
has revealed that limited research has been conducted on the spillover effect between
neighboring stations, and how users can roam between stations to fulfill demand. While
some research has examined the impact of the spillover effect on demand predictions and
the problem of determining the optimal initial inventory level, the DBRP has not yet been
addressed while taking this effect into account.

To develop an efficient solution method that can be used for actual decision making in a
dynamic setting, we have formulated the Dynamic Stochastic Bicycle Rebalancing Prob-
lem with Neighborhood Interactions (DSBRPNI). Furthermore, we have introduced a me-
taheuristic called the Explorative Preferred Iterative LOokahead Technique (X-PILOT),
which is implemented into a solution method for the DSBRPNI. The method incorporates
the spillover effect and utilizes lookahead features to make rebalancing decisions while
taking future implications into account.

Through a computational study, the X-PILOT method has been proven to scale well, ef-
ficiently solving large instances such as Citi Bike New York with more than 900 stations
within a few seconds. In terms of solution quality it has been observed that utilizing longer
time horizons and more scenarios leads to better results. Nevertheless, the benefits of ex-
tending these factors are diminishing after a certain point and must be weighed against
the increased solution time. Furthermore, extensive analysis has shown that X-PILOT
consistently outperforms other benchmark policies. After 10 days of system simulation,
X-PILOT achieved 27.4% fewer failed events compared to a benchmark policy proposed
in Bakker et al. (2022). Additionally, when compared to a policy based on the PILOT
framework presented by Kloimüllner et al. (2014), X-PILOT exhibited a noteworthy im-
provement of 13.1%. The lookahead features of X-PILOT were estimated to reduce the
number of failed events by 16.6%.

Moreover, our solution method has been shown to perform notably better when more
vehicles are employed, compared to other policies that lack vehicle coordination. This
suggests that our integrated multi-vehicle approach, which considers all vehicles when
constructing solution trees, indeed leads to better coordination and thereby higher service
rates.

As simulations are commonly used to analyze BSSs and to develop solution methods for

79

rebalancing operations, we have developed a roaming module that facilitates more realistic
modelling of user behavior and system development. Simulation-based analysis have shown
that roaming between stations frequently occurs in BSSs, and that neglecting spillover of
demand between stations may thus lead to inaccurate simulations.

Furthermore, we have investigated how the incorporation of roaming in the X-PILOT solu-
tion method affects solution quality. The results demonstrated that the effect varies across
different instances, and is likely related to the degree of system balance. Well-balanced
instances like Trondheim and Bergen showed minimal influence from the incorporation
of roaming in decision making. However, larger and more imbalanced instances like Oslo
and New York exhibited a statistically significant increase in service rates. These findings
highlight the potential benefits of integrating neighborhood interactions in rebalancing
strategies, particularly in large and imbalanced BSS instances. Further analysis revealed
that the improvement was attributed to a reduction in long-distance roaming for locks,
while the number of starvations remained unchanged. This suggests that the X-PILOT
method successfully utilizes roaming for locks to enhance system performance, while there
is potential for further improvements by incorporating roaming for bikes more effectively.

Finally, we have introduced a novel way of evaluating the performance of BSSs through an
improved performance metric that incorporates neighborhood effects into the service rate.
While traditional metrics only consider starvations and congestions, neglecting users abil-
ity to roam to fulfill demand, we employ a more thorough analysis that considers whether
or not user demand would actually be lost, and how severely users are impacted by full
stations. We argue that if user demand is easily fulfilled by a nearby station, there is
no reason to consider this a failure. Our analysis reveal that traditional metrics tend to
greatly underestimate the performance of BSSs by neglecting important aspects of user
behavior. We argue that utilizing inaccurate simulations and inadequate performance
metrics can lead to inferior system management and waste of resources. Thus, the sim-
ulation framework and evaluation metric presented in this thesis may facilitate improved
performance for BSS operators.

To conclude, this thesis has shed light on the importance of interactions between stations
in bike sharing systems, and shown how the incorporation of these effects can lead to more
accurate simulations, better evaluations of system performance, improved rebalancing and
better tools for decision making. We have developed a heuristic solution method that can
significantly reduce the number of failed events in a BSS, and is well-suited for use in a
real-world setting due to short solution times.

80

Chapter 11

Future Research

This chapter highlights future research opportunities that we believe hold the potential to
contribute to the advancement of solution methods for the Bicycle Rebalancing Problem.
Moreover, these research avenues offer the prospect of gaining a deeper understanding
of important real-world aspects within bike sharing systems. The first section discusses
challenges related to understanding the true demand of a BSS. Section 11.2 presents
possible improvements of the modelling and understanding of neighborhood interactions.
Finally, Section 11.3 discusses other real-life aspects relevant for future studies.

11.1 Demand Censoring

The methodology proposed in this model relies on an accurate estimation of user demand.
This estimation plays a crucial role in several key components, including calculating tar-
get inventory levels, assessing station criticality, and evaluating rebalancing plans. If the
estimated demand fails to provide a reliable approximation of reality, the quality of rebal-
ancing is likely to be unsatisfactory. In this light, it is important to note that the historical
data from bike sharing systems only reflects realized demand, not the true demand. Un-
realized demand at starved stations is not registered. This concept, referred to as demand
censoring, also applies to situations where there is demand for locks at congested stations.
Thus, demand is likely to be underestimated at imbalanced stations. As a consequence,
the effect of demand spillover between stations is likely to be underestimated as well.
With a more realistic representation of demand at imbalanced stations, we would expect
the effect of considering neighborhood interactions to be even more prominent. Accurately
estimating true demand remains a vital research question that can significantly impact
the quality of rebalancing operations.

11.2 Neighborhood Interactions

Even though this thesis introduces several key elements of the interactions between sta-
tions, we have identified additional aspects that might further improve the modelling of
these effects. We have defined neighborhoods based on the distance between stations,
which may not always be an accurate representation of reality. Various obstacles such
as rivers or major roads can render nearby stations practically inaccessible, making it
infeasible to roam between them. Therefore, it is possible to improve the definition of

81

neighborhoods to better align with the practical constraints of station connectivity.

Another interesting point is that the nature of roaming may be changing. More and
more systems incorporate real-time technology, allowing users to check the availability of
stations beforehand. This may eliminate the ”traditional” roaming where users arrive at
an unavailable station, and initiates roaming from there. Instead, users can identify an
available station through and app or web page and go there directly. We argue that this
makes roaming easier for users, which may increase the importance of roaming in modern
systems. In addition, this might impact the dynamics and user flow in BSS systems, and
is an interesting topic for future research.

Furthermore, it is worth exploring how solution methods can be enhanced to better ad-
dress the issue of starved stations. Results from Chapter 9 indicates that our X-PILOT
implementation is able to reduce long-distance roaming for locks, while the number of
starvations and roaming for bikes remains unchanged. A more efficient utilization of neigh-
borhood interactions around starved stations can potentially lead to a higher conversion
of starvations into roaming for bikes.

11.3 Other Real-Life Aspects

In this section we highlight other real-life aspects that may improve the rebalancing model
or be relevant topics for future research. The findings are based on discussions with
Urban Infrastructure Partners (UIP) and the authors’ own observations from taking part
in rebalancing operations in Oslo BSS.

Drivers from UIP presented the issue of varying parking availability throughout the day.
Some stations are located in areas where it very challenging to find parking spots during
busy hours. For this reason, they are not able to visit these stations at certain periods
during the day. Such aspects can be incorporated in rebalancing models in order to ensure
feasible solutions. However, gathering the required information can be challenging without
local knowledge and experience.

Travel times represent another possible area of improvement. In our model, calculations of
travel times, for users and service vehicles, are based on direct distances and fixed speeds.
In reality, travelling the direct distance is often not possible, so infrastructure such as
roads and bike lanes should be taken into account. Moreover, the travel times often vary
throughout the day depending on traffic. Especially in city centers, where BSSs often are
located, this can impose significant variations. A solution that might be investigated is
integration with online map services with live traffic information, such as Google Maps
API.

Another noteworthy research topic is user incentivized rebalancing. Incentivizing users to
relocate bikes from congested areas to starved areas can potentially be a useful supplement
to traditional rebalancing. As presented in Chapter 3, monetary user incentives is an
emerging research topic in BSS literature. UIP managers expressed interest in studies
that compare the cost of traditional rebalancing versus user-based rebalancing. The cost
per relocated bike can be considerable with vehicle-based rebalancing. An interesting
research topic is the comparison of these costs to the level of reward users would require
to contribute to rebalancing operations. Even though studies have been conducted using
discrete event simulators, analysis of real-life implementations can provide further insights.

82

Appendix

A Results from Parameter Tuning

Complete results from the parameter tuning performed in Chapter 8 are presented in this
appendix. Each combination of configuration and instance is run 10 times, and the average
number of total failures are presented in the tables. Based on the number of failures, each
configuration is ranked according to the performance relative to other configurations. The
best configuration gets a rank of one, the second gets two etc. Then, the rank from each
instance is summed for each configuration. This sum is the final evaluation metric, where
a lower sum indicates a better performance. The configurations that are selected from the
parameter tuning are marked in green. Discussions of results are found in Chapter 8.

A.1 Evaluation Function Weights

The complete results from the tuning of evaluation function weights are presented in Table
A.1. Weights are presented in the order (Avoided violations (ωv), Enabled roaming (ωr),
Reduced deviation (ωd)). The highest performing configuration, which is selected to be
used in the remaining studies, is (0.85, 0.1, 0.05).

A.2 Discounting Factors

Results from the parameter tuning of discounting factors are summarized in Table A.2.
Values of γKr between 0.1 and 1 are tested, with increments of 0.1. The results indicate
that γKr = 0.1 provides the best results, and is hence selected for the following studies.

A.3 Criticality Weights

Results from the parameter tuning of criticality weights are summarized in Table A.3.
Weights for the criticality parameters are presented in the order (Time to violation (tvi),
Deviation from target inventory level (di), Neighborhood criticality (ni), Net demand (Di),
Driving time (TD

ji)). There are four different categories of weights based on their main are
of focus; balanced, long term, short term, and extremes. The best weight set from each of
the first three categories is selected to be used in the remaining studies: (0.3, 0.15, 0.25,
0.2, 0.1), (0.3, 0.5, 0, 0, 0.2) and (0.6, 0.1, 0.05, 0.2, 0.05). The green fields indicate the
best scores, and hence the weight sets that are selected from the study.

83

Table A.1: Results from the computational study on evaluation function weights (ωv, ωr,
ωd). The green field highlights the configuration with the best score.

Evaluation weights Instance Failed events Rank
∑

Rank

OS_W31_2V 2,999 4
TD_W34_1V 151 11(0.4, 0.3, 0.3)
BG_W35_1V 364 12

27

OS_W31_2V 2,918 1
TD_W34_1V 112 6(0.8, 0.1, 0.1)
BG_W35_1V 286 6

13

OS_W31_2V 3,077 9
TD_W34_1V 154 13(0.1, 0.8, 0.1)
BG_W35_1V 355 11

33

OS_W31_2V 3,533 16
TD_W34_1V 168 16(0.1, 0.1, 0.8)
BG_W35_1V 406 16

48

OS_W31_2V 3,005 5
TD_W34_1V 128 8(0.6, 0.1, 0.3)
BG_W35_1V 347 10

23

OS_W31_2V 3,035 7
TD_W34_1V 129 9(0.3, 0.6, 0.1)
BG_W35_1V 325 9

25

OS_W31_2V 3,465 15
TD_W34_1V 164 15(0.3, 0.1, 0.6)
BG_W35_1V 379 14

44

OS_W31_2V 3,021 6
TD_W34_1V 124 7(0.6, 0.3, 0.1)
BG_W35_1V 305 8

21

OS_W31_2V 3,230 14
TD_W34_1V 56 1(1.0, 0.0, 0.0)
BG_W35_1V 263 3

18

OS_W31_2V 3,068 8
TD_W34_1V 134 10(0.45, 0.45, 0.1)
BG_W35_1V 305 7

25

OS_W31_2V 3,152 10
TD_W34_1V 158 14(0.45, 0.1, 0.45)
BG_W35_1V 379 15

39

OS_W31_2V 3,159 11
TD_W34_1V 153 12(0.33, 0.33, 0.33)
BG_W35_1V 364 13

36

OS_W31_2V 2,993 3
TD_W34_1V 93 4(0.9, 0.05, 0.05)
BG_W35_1V 271 5

12

OS_W31_2V 3,181 13
TD_W34_1V 68 2(0.95, 0.04, 0.01)
BG_W35_1V 252 1

16

OS_W31_2V 2,969 2
TD_W34_1V 102 5(0.85, 0.1, 0.05)
BG_W35_1V 267 4

11

OS_W31_2V 3,164 12
TD_W34_1V 71 3(0.9, 0.09, 0.01)
BG_W35_1V 262 2

17

84

Table A.2: Results from the computational study on discounting factor γKr . The green
field highlights the best configuration.

Factor Instance Failed events Rank
∑

Rank

OS_W31_2V 2,923 6
TD_W34_1V 91 41
BG_W35_1V 271 7

17

OS_W31_2V 2,967 9
TD_W34_1V 95 70.9
BG_W35_1V 277 10

26

OS_W31_2V 2,947 8
TD_W34_1V 98.6 90.8
BG_W35_1V 275.6 9

26

OS_W31_2V 2,925 7
TD_W34_1V 99 80.7
BG_W35_1V 262 3

18

OS_W31_2V 2,885 4
TD_W34_1V 93 60.6
BG_W35_1V 271 8

18

OS_W31_2V 2,916 5
TD_W34_1V 89 20.5
BG_W35_1V 262 4

11

OS_W31_2V 2,979 10
TD_W34_1V 87 1

13
0.4

BG_W35_1V 261 2

OS_W31_2V 2,817 2
TD_W34_1V 99 100.3
BG_W35_1V 265 6

18

OS_W31_2V 2,825 3
TD_W34_1V 90 30.2
BG_W35_1V 264 5

11

OS_W31_2V 2,753 1
TD_W34_1V 93 50.1
BG_W35_1V 247 1

7

85

Table A.3: Results from the computational study on criticality weights for the parameters
(tvi , di, ni, Di, T

D
ji). The green fields indicate the best scores.

Criticality weights Instance Failed events Rank
∑

Rank

OS_W31_2V 2,849 10
TD_W34_1V 101 13(0.2, 0.2, 0.2, 0.2, 0.2)
BG_W35_1V 271 13

36

OS_W31_2V 2,791 5
TD_W34_1V 85 3(0.3, 0.15, 0.25, 0.2, 0.1)
BG_W35_1V 254 2

10

OS_W31_2V 2,761 3
TD_W34_1V 95 10(0.2, 0.4, 0.2, 0.1, 0.1)
BG_W35_1V 267 9

22

OS_W31_2V 2,755 2
TD_W34_1V 90 8(0.3, 0.3, 0.1, 0.1, 0.2)
BG_W35_1V 268 10

20

B
a
la

n
ce

d

OS_W31_2V 2,800 7
TD_W34_1V 100 11(0.2, 0.7, 0.05, 0.05, 0)
BG_W35_1V 278 14

32

OS_W31_2V 2,884 12
TD_W34_1V 103 14(0.05, 0.9, 0.05, 0, 0)
BG_W35_1V 295 15

41

OS_W31_2V 2,714 1
TD_W34_1V 101 12(0.1, 0.6, 0.1, 0.1, 0.1)
BG_W35_1V 264 6

19

OS_W31_2V 2,792 6
TD_W34_1V 89 7(0.3, 0.5, 0, 0, 0.2)
BG_W35_1V 261 5

18

L
on

g
te

rm

OS_W31_2V 3,344 14
TD_W34_1V 75 1(0.9, 0, 0, 0.1, 0)
BG_W35_1V 266 7

22

OS_W31_2V 2,865 11
TD_W34_1V 86 4(0.7, 0.05, 0.1, 0.1, 0.05)
BG_W35_1V 259 4

19

OS_W31_2V 2,785 4
TD_W34_1V 89 6(0.6, 0.1, 0.05, 0.2, 0.05)
BG_W35_1V 259 3

13

OS_W31_2V 2,809 8
TD_W34_1V 94 9(0.5, 0.05, 0.2, 0.05, 0.2)
BG_W35_1V 246 1

18

S
h

or
t

te
rm

OS_W31_2V 3,289 13
TD_W34_1V 87 5(1, 0, 0, 0, 0)
BG_W35_1V 270 12

30

OS_W31_2V 2,830 9
TD_W34_1V 109 15(0, 1, 0, 0, 0)
BG_W35_1V 269 11

35

OS_W31_2V 5,608 16
TD_W34_1V 218 16(0, 0, 1, 0, 0)
BG_W35_1V 541 16

48

OS_W31_2V 5,628 17
TD_W34_1V 225 17(0, 0, 0, 1, 0)
BG_W35_1V 562 17

51

OS_W31_2V 3,383 15
TD_W34_1V 85 2(0, 0, 0, 0, 1)
BG_W35_1V 267 8

25

E
x
tr

em
es

(e
x
tr

as
)

86

B Results from X-PILOT Parameter analysis

This appendix presents detailed results from the analysis on X-PILOT parameters.

B.1 X-PILOT Width and Depth

In table B.1, it is shown how the solution quality and solution time varies for different
combinations of α and β1. The table presents the average values from 10 simulation runs
on the OS_W31_2V instance. Simulation is performed over five days and a time horizon of
60 minutes is used. Evaluation is performed over 100 scenarios and the consensus criterion
is applied.

Table B.1: Number of failed events and solution time in seconds for various combinations
of α and β1. Combinations marked in grey are not tested because of too long solution
times.

β1
1 3 5 7 10 15 20

Failed events 2,877 2,619 2,654 2,673 2,635 2,892 2,907
1

Solution time 0.29 0.51 0.69 0.91 1.21 1.73 2.26
Failed events 2,925 2,710 2,666 2,653 2,795 2,861 2,895

2
Solution time 0.30 0.75 1.10 5.54 9.82 60.60 136.46
Failed events 2,834 2,600 2,530 2,542 2,600 2,662

3
Solution time 0.31 0.83 1.23 9.22 16.22 333.25
Failed events 2,866 2,635 2,566 2,679 2,711

4
Solution time 0.32 0.91 1.64 14.00 23.39
Failed events 2,882 2,582 2,608 2,699 2,753

5
Solution time 0.35 1.03 1.55 17.45 30.55
Failed events 2,884 2,592 2,603 2,698 2,830

6
Solution time 0.35 1.09 1.64 19.96 35.69
Failed events 2,841 2,612 2,641 2,680 2,706

α

7
Solution time 0.37 1.17 1.79 22.73 39.77

B.2 Number of Scenarios

The X-PILOT solution method employs evaluation of solutions across multiple scenarios
as a mean of addressing uncertainty. Table B.2 presents the number of failed events for
different scenario configurations, for 40 different seeds.

87

Table B.2: Number of failed events for different scenario configurations

Number of scenarios

Seed Exp. demand 1 10 100 500 1,000 2,000

1 10,656 10,445 10,745 10,317 10,479 10,290 10,449
2 10,396 10,386 10,287 10,546 10,420 10,425 10,455
3 10,737 11,360 10,978 10,928 10,853 10,765 10,397
4 10,313 10,231 9,802 9,911 9,867 9,971 9,783
5 11,464 11,340 11,368 11,028 11,173 11,044 11,230
6 10,313 9,581 9,859 9,793 10,059 10,057 9,583
7 9,714 10,373 10,488 10,056 9,824 10,227 10,155
8 10,934 11,255 11,147 11,166 11,152 10,711 10,836
9 10,106 10,653 10,770 10,506 10,568 10,473 10,642
10 10,829 10,514 10,412 10,750 10,326 10,317 10,466
11 10,166 10,350 10,057 9,927 9,909 10,278 10,320
12 11,011 11,084 10,866 10,770 11,117 10,544 10,511
13 10,219 10,800 11,113 10,592 10,598 10,398 10,305
14 11,289 11,937 11,495 11,343 11,023 11,047 11,180
15 10,333 10,933 10,467 11,077 10,039 10,703 10,801
16 11,206 11,336 10,770 11,277 11,371 11,208 11,350
17 10,310 10,669 10,564 10,508 10,527 10,843 10,644
18 9,994 9,753 9,594 9,884 9,877 9,669 9,827
19 10,058 9,843 10,098 10,156 9,905 9,773 9,979
20 10,698 10,955 11,089 10,381 10,897 11,291 10,620
21 9,140 9,657 9,340 9,586 9,336 9,133 9,383
22 10,072 10,045 10,496 10,294 10,083 10,290 10,184
23 10,882 10,909 11,097 11,197 11,206 10,925 10,792
24 11,559 12,089 11,687 11,297 11,372 11,592 11,938
25 12,129 12,071 11,642 11,965 11,766 11,417 11,546
26 10,450 11,225 10,739 10,582 10,192 10,687 10,358
27 10,801 10,809 10,389 10,535 10,657 10,270 10,240
28 10,863 11,141 10,841 11,090 10,561 10,971 10,800
29 11,292 10,799 11,189 10,881 10,771 10,754 10,745
30 9,491 9,558 9,568 9,504 9,780 9,638 9,456
31 10,992 10,981 11,374 10,837 10,906 11,256 10,725
32 10,056 10,781 10,673 10,508 10,686 10,320 10,015
33 10,589 10,941 10,681 10,659 10,551 10,350 10,684
34 11,103 11,306 10,655 11,170 11,115 11,165 11,105
35 11,070 11,172 10,998 10,852 10,504 10,928 11,014
36 10,808 11,149 10,730 10,862 11,317 10,987 10,658
37 10,031 10,395 10,047 10,083 9,955 10,028 10,101
38 10,691 11,358 11,122 11,109 10,739 11,133 10,671
39 11,444 11,015 11,221 11,145 11,120 11,023 10,917
40 10,157 10,470 10,461 10,117 10,533 10,005 10,324

88

C Two-Sample t-test

A two-sample t-test is a statistical test which is used to compare the means of two inde-
pendent groups to determine if they are significantly different from each other. In this
thesis, we employ two-factor t-tests to investigate if different solution methods and con-
figurations yield statistically significant differences in solution quality. Since simulation
results only offer an approximation of solution quality due to the limited number of seeds
simulated, employing statistical tests becomes crucial in assessing if the observed differ-
ences in the results are statistically significant. This appendix provides an overview of
the two-sample t-tests, offering a general description and outlining their application in our
research.

In order to compare two different configurations, X and Y, we do a pairwise comparison of
the results obtained from each of the seeds simulated. This means that for each of the n
seeds, we set Zs = Xs−Ys, where Xs and Ys are the total violations from the two different
configurations with seed s. Zs is the difference between the two results. Employing the
t-test, we can assess how likely it is that Z is zero, meaning that the configurations perform
equally well for a given significance level α.

We define the following null hypothesis and alternative hypothesis:

• H0 : E[Z] = 0

• H1 : E[Z] ̸= 0

where E[Z] is the expected difference between the configurations.

A significance level of α=5% is selected, giving a confidence level of 1 − α = 95%. The
following steps are conducted in order to create a 95% confidence interval:

• Define sample mean Z =
∑n

s=1 Zj

n

• Define sample variance: S2 =
∑n

s=1(Zs−Z)2

n−1

• The variance of the estimate: Z is var(Z) = S2

n Confidence interval with confidence
level 1-α: (

Z − tα
2
,n−1

√
var(Z), (Z + tα

2
,n−1

√
var(Z)

)
The probability that this interval spans the real value of Zs = Xs − Ys is 1 − α = 95%.
Hence, if zero is included in the interval we fail to reject the null hypothesis and conclude
that there is not enough evidence to support a significant difference.

An example is provided in Table C.1 for two different selection criteria, using n = 20 seeds
(see Section 8.3.4). The result is a 95% confidence interval 95% CI [-14.03, -2.27]. As zero
is not a part of this interval, we reject the null-hypothesis. Thus, we can say with 95%
probability that the different selection criteria provide different solutions.

89

Table C.1: Results and parameter values for two-sample t-test

Results of Two-Sample t-test

Sample mean Z -8.15
Sample variance S2 157.92

Var estimate var(Z) 7.90
tα
2
,n−1 2.093

CI lower bound -14.03
CI upper bound -2.27

D Results from Heuristic Performance and Managerial In-
sights

Results from the simulations performed in Chapter 9 are presented in this appendix. Each
simulation is run with 20 seeds, and the average numbers are provided here.

D.1 Effect of Neighborhood Interactions

Complete results from simulations of the X-PILOT with and without consideration of
neighborhood interactions are presented in Table D.1. This includes each type of event,
in addition to service rate and average roaming distances.

Table D.1: How the incorporation of neighborhood interactions in the X-PILOT solution
method impacts solution quality for six different BSS instances. In four of the instances,
the incorporation yields significantly lower mean values of failed events.

No interactions
TD_W34_1V BG_W35_1V OS_W31_1V OS_W31_2V OS_W34_2V NY_W31_2V

Starvations 198 417 5,247 2,709 6,050 21,607
Roaming, bikes 160 824 3,135 2,162 4,926 14,049
Long roaming, locks 81 365 12,343 5,816 12,069 12,030
Short roaming, locks 162 958 6,727 4,514 8,156 7,094
Failed events 279 782 17,589 8,526 18,119 33,637
Service rate 99.04% 98.76% 83.95% 92.39% 89.35% 96.61%
Avg. roam dist., bikes 0.28 km 0.21 km 0.31 km 0.30 km 0.29 km 0.33 km
Avg. roam dist., locks 0.34 km 0.27 km 0.46 km 0.42 km 0.44 km 0.43 km

Neighborhood interactions
TD_W34_1V BG_W35_1V OS_W31_1V OS_W31_2V OS_W34_2V NY_W31_2V

Starvations 199 434 5,166 2,713 6,037 21,526
Roaming, bikes 168 849 3,116 2,177 4,922 13,949
Long roaming, locks 89 369 11,926 5,493 11,747 11,911
Short roaming, locks 166 972 6,606 4,404 7,966 7,081
Failed events 288 804 17,093 8,205 17,784 33,436
Service rate 99.01% 98.72% 84.41% 92.68% 89.54% 96.63%
Avg. roam dist., bikes 0.29 km 0.21 km 0.31 km 0.30 km 0.29 km 0.33 km
Avg. roam dist., locks 0.35 km 0.27 km 0.46 km 0.42 km 0.44 km 0.43 km

D.2 Comparison with Other Policies

Results from the comparison of different rebalancing policies are presented in this section.
Table D.2 provides results from the BG_W35_1V instance, while Table D.3 contains results

90

from OS_W31_2V. Results from NY_W31_3V are presented in Table D.4.

Table D.2: Results of comparison between policies for the BG W35 1V instance

Instance BG W35 1V
Policy Starvations Long roaming, locks Failed events Service rate

Do nothing 853 1,034 1,887 96.98%
GP 463 418 881 98.60%

GPNI 447 359 807 98.72%
Kloimüllner PILOT 444 377 822 98.69%

X-PILOT 430 367 796 98.73%

Table D.3: Results of comparison between policies for the OS W31 2V instance

Instance OS W31 2V
Policy Starvations Long roaming, locks Failed events Service rate

Do nothing 8,716 21,512 30,228 71.53%
GP 3,908 7,442 11,350 89.77%

GPNI 2,960 6,918 9,878 91.17%
Kloimüllner PILOT 3,117 6,363 9,480 91.51%

X-PILOT 2,680 5,563 8,243 92.65%

Table D.4: Results of comparison between policies for the NY W31 3V instance. Data for
Kloimüllner PILOT is not

Instance NY W31 3V
Policy Starvations Long roaming, locks Failed events Service rate

Do nothing 28,665 18,717 47,381 95.20%
GP 20,623 11,929 32,552 96.73%

GPNI 19,810 10,665 30,475 96.94%
Kloimüllner PILOT - - - -

X-PILOT 19,342 10,149 29,491 97.04%

91

Bibliography

Andersson, H., Hoff, A., Christiansen, M., Hasle, G., & Løkketangen, A. (2010). Industrial
aspects and literature survey: Combined inventory management and routing. Computers
& Operations Research, 37 , 1515–1536. doi:10.1016/j.cor.2009.11.009.

Bakker, S. J., Djupdal, A., Natvig, L., Andersson, H., Fagerholt, K., & Jahre, M. (2022).
FOMOSim: Enabling rigorous performance evaluation of shared mobility systems using
an open-source simulator . Working Paper. URL: https://github.com/EECS-NTNU/
fomo.

Brinkmann, J., Ulmer, M. W., & Mattfeld, D. C. (2020). The multi-vehicle stochastic-
dynamic inventory routing problem for bike sharing systems. Business Research, 13 ,
69–92. doi:10.1007/s40685-019-0100-z.

Büttner, J., Mlasowsky, H., Birkholz, T., Gröper, D., Fernandéz, A., Emberger, G.,
Petersen, T., Robért, M., Vila, S., Reth, P., Blümel, H., Rodriguez, C., Pineda, E.,
Piotrowic, A., Ejsmont, R., Kuropatwiski, P., Kowalenska, M., Vecchiotti, F., Reiterer,
H., & ... Banfi, M. (2011). Optimising bike sharing in European cities-a handbook . OBIS.

Chandler, M. (2020). The History of Bike Sharing Schemes (And What They’ll
Look Like In The Future). Discerning Cyclist. URL: https://discerningcyclist.com/
history-of-bike-sharing-schemes-future-predictions/.

Chemla, D., Meunier, F., Pradeau, T., Calvo, R. W., & Yahiaoui, H.
(2013). Self-service bike sharing systems: simulation, repositioning, pricing,
. URL: https://www.researchgate.net/publication/258222799 Self-service bike sharing
systems simulation repositioning pricing.

Chen, F., Turoń, K., K los, M., Pamu la, W., Sierpiński, G., & Czech, P. (2018). Fifth
generation of bike-sharing systems-examples of poland and china. Scientific Journal of
Silesian University of Technology. Series Transport , 99 , 05–13. doi:10.20858/sjsutst.
2018.99.1.

Chiariotti, F., Pielli, C., Zanella, A., & Zorzi, M. (2018). A dynamic approach to rebal-
ancing bike-sharing systems. Sensors, 18 , 512. doi:10.3390/s18020512.

Citi Bike NYC (2023). Get to know Citi Bike. Citi Bike NYC. URL: https://citibikenyc.
com/how-it-works.

Coelho, L. C., Cordeau, J.-F., & Laporte, G. (2014). Thirty years of inventory routing.
Transportation Science, 48 , 1–19. doi:10.1287/trsc.2013.0472.

Contardo, C., Morency, C., & Rousseau, L.-M. (2012). Balancing a dynamic public bike-
sharing system, . 4 . URL: https://www.cirrelt.ca/documentstravail/cirrelt-2012-09.pdf.

92

http://dx.doi.org/10.1016/j.cor.2009.11.009
https://github.com/EECS-NTNU/fomo
https://github.com/EECS-NTNU/fomo
http://dx.doi.org/10.1007/s40685-019-0100-z
https://discerningcyclist.com/history-of-bike-sharing-schemes-future-predictions/
https://discerningcyclist.com/history-of-bike-sharing-schemes-future-predictions/
https://www.researchgate.net/publication/258222799_Self-service_bike_sharing_systems_simulation_repositioning_pricing
https://www.researchgate.net/publication/258222799_Self-service_bike_sharing_systems_simulation_repositioning_pricing
http://dx.doi.org/10.20858/sjsutst.2018.99.1
http://dx.doi.org/10.20858/sjsutst.2018.99.1
http://dx.doi.org/10.3390/s18020512
https://citibikenyc.com/how-it-works
https://citibikenyc.com/how-it-works
http://dx.doi.org/10.1287/trsc.2013.0472
https://www.cirrelt.ca/documentstravail/cirrelt-2012-09.pdf

Costa Affonso, R., Couffin, F., & Leclaire, P. (2021). Modelling of user behaviour for static
rebalancing of bike sharing system: Transfer of demand from bike-shortage stations to
neighbouring stations. Journal of Advanced Transportation, 2021 . doi:10.1155/2021/
8825521.

Datner, S., Raviv, T., Tzur, M., & Chemla, D. (2019). Setting inventory levels in a bike
sharing network. Transportation Science, 53 , 62–76. doi:10.1287/trsc.2017.0790.

Delli, K. (2023). Motion for a resolution on developing an EU cycling strategy. URL:
https://www.europarl.europa.eu/doceo/document/B-9-2023-0102 EN.html.

DeMaio, P., Yu, C., O’Brien, O., Rabello, R., Chou, S., & Benicchio, T. (2021). The
meddin bike-sharing world map: Mid-2021 report, . URL: https://bikesharingworldmap.
com/reports/bswm mid2021report.pdf.

Di Gaspero, L., Rendl, A., & Urli, T. (2013a). Constraint-based approaches for balancing
bike sharing systems. In Principles and Practice of Constraint Programming: 19th In-
ternational Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings
19 (pp. 758–773). Springer. doi:10.1007/978-3-642-40627-0_56.

Di Gaspero, L., Rendl, A., & Urli, T. (2013b). A hybrid aco+ cp for balancing bicycle
sharing systems. In Hybrid Metaheuristics: 8th International Workshop, HM 2013,
Ischia, Italy, May 23-25, 2013. Proceedings 8 (pp. 198–212). Springer. doi:10.1007/
978-3-642-38516-2_16.

Espegren, H. M., & Kristianslund, J. (2016). Optimal Repositioning in Bike Sharing
Systems. Master’s thesis Norwegian University of Science and Technology.

Faghih-Imani, A., & Eluru, N. (2016). Incorporating the impact of spatio-temporal inter-
actions on bicycle sharing system demand: A case study of new york citibike system.
Journal of transport geography , 54 , 218–227. doi:10.1016/j.jtrangeo.2016.06.008.

Forma, I. A., Raviv, T., & Tzur, M. (2015). A 3-step math heuristic for the static
repositioning problem in bike-sharing systems. Transportation Research Part B: Meth-
odological , 71 , 230–247. doi:10.1016/j.trb.2014.10.003.

Garcia-Gutierrez, J., Romero-Torres, J., & Gaytan-Iniestra, J. (2014). Dimensioning of a
bike sharing system (bss): a study case in nezahualcoyotl, mexico. Procedia-Social and
Behavioral Sciences, 162 , 253–262. doi:10.1016/j.sbspro.2014.12.206.

Garćıa-Palomares, J. C., Gutiérrez, J., & Latorre, M. (2012). Optimizing the location of
stations in bike-sharing programs: A gis approach. Applied Geography , 35 , 235–246.
doi:10.1016/j.apgeog.2012.07.002.

Ghosh, S., Varakantham, P., Adulyasak, Y., & Jaillet, P. (2017). Dynamic repositioning to
reduce lost demand in bike sharing systems. Journal of Artificial Intelligence Research,
58 , 387–430. doi:10.1613/jair.5308.

Gleditsch, M. D., Hagen, K., Andersson, H., Bakker, S. J., & Fagerholt, K. (2022). A
column generation heuristic for the dynamic bicycle rebalancing problem. European
Journal of Operational Research, . doi:10.1016/j.ejor.2022.07.004.

Hagen, K., & Gleditsch, M. D. (2018). A column generation heuristic for the dynamic
rebalancing problem in bike sharing systems. Master’s thesis NTNU.

93

http://dx.doi.org/10.1155/2021/8825521
http://dx.doi.org/10.1155/2021/8825521
http://dx.doi.org/10.1287/trsc.2017.0790
https://www.europarl.europa.eu/doceo/document/B-9-2023-0102_EN.html
https://bikesharingworldmap.com/reports/bswm_mid2021report.pdf
https://bikesharingworldmap.com/reports/bswm_mid2021report.pdf
http://dx.doi.org/10.1007/978-3-642-40627-0_56
http://dx.doi.org/10.1007/978-3-642-38516-2_16
http://dx.doi.org/10.1007/978-3-642-38516-2_16
http://dx.doi.org/10.1016/j.jtrangeo.2016.06.008
http://dx.doi.org/10.1016/j.trb.2014.10.003
http://dx.doi.org/10.1016/j.sbspro.2014.12.206
http://dx.doi.org/10.1016/j.apgeog.2012.07.002
http://dx.doi.org/10.1613/jair.5308
http://dx.doi.org/10.1016/j.ejor.2022.07.004

Haider, Z., Nikolaev, A., Kang, J. E., & Kwon, C. (2018). Inventory rebalancing through
pricing in public bike sharing systems. European Journal of Operational Research, 270 ,
103–117. doi:10.1016/j.ejor.2018.02.053.

Heineke, K., Kloss, B., & Scurtu, D. (2020). The future of micromobil-
ity: Ridership and revenue after a crisis. McKinsey & Company. URL:
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/
the-future-of-micromobility-ridership-and-revenue-after-a-crisis.

Inngjerdingen, C., & Møller, S. (2022). Modelling Spillover Effects in the Dynamic Bicycle
Rebalancing Problem. Project Thesis, Norwegian University of Science and Technology.

Jiang, H., & Jamba, H. (2019). To Solve China’s Bike-Sharing Woes, Hangzhou and Shang-
hai Turn to Bluetooth and Geofencing. The City Fix. URL: https://thecityfix.com/blog/
solve-chinas-bike-sharing-woes-hangzhou-shanghai-turn-bluetooth-geofencing-hui-jiang-harshita-jamba/.

Kaspi, M., Raviv, T., & Tzur, M. (2014). Parking reservation policies in one-way vehicle
sharing systems. Transportation Research Part B: Methodological , 62 , 35–50. doi:10.
1016/j.trb.2014.01.006.

Kaspi, M., Raviv, T., Tzur, M., & Galili, H. (2016). Regulating vehicle sharing sys-
tems through parking reservation policies: Analysis and performance bounds. European
Journal of Operational Research, 251 , 969–987. doi:10.1016/j.ejor.2015.12.015.

Kloimüllner, C., Papazek, P., Hu, B., & Raidl, G. R. (2014). Balancing bicycle sharing
systems: an approach for the dynamic case. In Evolutionary Computation in Com-
binatorial Optimisation: 14th European Conference, EvoCOP 2014, Granada, Spain,
April 23-25, 2014, Revised Selected Papers 14 (pp. 73–84). Springer. doi:10.1007/
978-3-662-44320-0_7.

Lin, J.-R., & Yang, T.-H. (2011). Strategic design of public bicycle sharing systems with
service level constraints. Transportation research part E: logistics and transportation
review , 47 , 284–294. doi:10.1016/j.tre.2010.09.004.

Ma, G., Zhang, B., Shang, C., & Shen, Q. (2021). Rebalancing stochastic demands for
bike-sharing networks with multi-scenario characteristics. Information Sciences, 554 ,
177–197. doi:10.1016/j.ins.2020.12.044.

Oslo City Bike (2023). About Oslo City Bike. Oslo City Bike. URL: https://oslobysykkel.
no/en/about.

Pfrommer, J., Warrington, J., Schildbach, G., & Morari, M. (2014). Dynamic vehicle redis-
tribution and online price incentives in shared mobility systems. IEEE Transactions on
Intelligent Transportation Systems, 15 , 1567–1578. doi:10.1109/TITS.2014.2303986.

Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. L. (2013). A review of dynamic
vehicle routing problems. European Journal of Operational Research, 225 , 1–11. doi:10.
1016/j.ejor.2012.08.015.

Puterman, M. L. (1990). Markov decision processes. Handbooks in operations research
and management science, 2 , 331–434. doi:10.1016/S0927-0507(05)80172-0.

Rainer-Harbach, M., Papazek, P., Hu, B., & Raidl, G. R. (2013). Balancing bi-
cycle sharing systems: A variable neighborhood search approach. In Evolutionary
Computation in Combinatorial Optimization: 13th European Conference, EvoCOP
2013, Vienna, Austria, April 3-5, 2013. Proceedings 13 (pp. 121–132). Springer.
doi:10.1007/978-3-642-37198-1_11.

94

http://dx.doi.org/10.1016/j.ejor.2018.02.053
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-future-of-micromobility-ridership-and-revenue-after-a-crisis
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-future-of-micromobility-ridership-and-revenue-after-a-crisis
https://thecityfix.com/blog/solve-chinas-bike-sharing-woes-hangzhou-shanghai-turn-bluetooth-geofencing-hui-jiang-harshita-jamba/
https://thecityfix.com/blog/solve-chinas-bike-sharing-woes-hangzhou-shanghai-turn-bluetooth-geofencing-hui-jiang-harshita-jamba/
http://dx.doi.org/10.1016/j.trb.2014.01.006
http://dx.doi.org/10.1016/j.trb.2014.01.006
http://dx.doi.org/10.1016/j.ejor.2015.12.015
http://dx.doi.org/10.1007/978-3-662-44320-0_7
http://dx.doi.org/10.1007/978-3-662-44320-0_7
http://dx.doi.org/10.1016/j.tre.2010.09.004
http://dx.doi.org/10.1016/j.ins.2020.12.044
https://oslobysykkel.no/en/about
https://oslobysykkel.no/en/about
http://dx.doi.org/10.1109/TITS.2014.2303986
http://dx.doi.org/10.1016/j.ejor.2012.08.015
http://dx.doi.org/10.1016/j.ejor.2012.08.015
http://dx.doi.org/10.1016/S0927-0507(05)80172-0
http://dx.doi.org/10.1007/978-3-642-37198-1_11

Rainer-Harbach, M., Papazek, P., Raidl, G. R., Hu, B., & Kloimüllner, C. (2015). Pilot,
grasp, and vns approaches for the static balancing of bicycle sharing systems. Journal
of Global Optimization, 63 , 597–629. doi:10.1007/s10898-014-0147-5.

Raviv, T., & Kolka, O. (2013). Optimal inventory management of a bike-sharing station.
Iie Transactions, 45 , 1077–1093. doi:10.1080/0740817X.2013.770186.

Regue, R., & Recker, W. (2014). Proactive vehicle routing with inferred demand to solve
the bikesharing rebalancing problem. Transportation Research Part E: Logistics and
Transportation Review , 72 , 192–209. doi:10.1016/j.tre.2014.10.005.

Romero, J. P., Ibeas, A., Moura, J. L., Benavente, J., & Alonso, B. (2012). A simulation-
optimization approach to design efficient systems of bike-sharing. Procedia-Social and
Behavioral Sciences, 54 , 646–655. doi:10.1016/j.sbspro.2012.09.782.

Ruch, C., Warrington, J., & Morari, M. (2014). Rule-based price control for bike sharing
systems. In 2014 European Control Conference (ECC) (pp. 708–713). IEEE. doi:10.
1109/ECC.2014.6862386.

Rudloff, C., & Lackner, B. (2014). Modeling demand for bikesharing systems: neighboring
stations as source for demand and reason for structural breaks. Transportation Research
Record , 2430 , 1–11. doi:10.3141/2430-01.

Russell Meddin (2022). The Meddin Bike-sharing World Map. URL: https://
bikesharingworldmap.com/.

Schuijbroek, J., Hampshire, R. C., & Van Hoeve, W.-J. (2017). Inventory rebalancing
and vehicle routing in bike sharing systems. European Journal of Operational Research,
257 , 992–1004. doi:10.1016/j.ejor.2016.08.029.

Shaheen, S., Guzman, S., & Zhang, H. (2010). Bikesharing in europe, the americas, and
asia: Past, present, and future. Institute of Transportation Studies, UC Davis, Institute
of Transportation Studies, Working Paper Series, 2143 . doi:10.3141/2143-20.

Shui, C., & Szeto, W. (2020). A review of bicycle-sharing service planning problems.
Transportation Research Part C: Emerging Technologies, 117 , 102648. doi:10.1016/j.
trc.2020.102648.

Szeto, W., Liu, Y., & Ho, S. C. (2016). Chemical reaction optimization for solving a static
bike repositioning problem. Transportation research part D: transport and environment ,
47 , 104–135. doi:10.1016/j.trd.2016.05.005.

Szeto, W. Y., & Shui, C. S. (2018). Exact loading and unloading strategies for the static
multi-vehicle bike repositioning problem. Transportation Research Part B: Methodolo-
gical , 109 , 176–211. doi:10.1016/j.trb.2018.01.007.

Urban Sharing (2023). Making Micromobility Profitable. Urban Sharing. URL: https:
//urbansharing.com/.

Vallez, C. M., Castro, M., & Contreras, D. (2021). Challenges and opportunities in
dock-based bike-sharing rebalancing: a systematic review. Sustainability , 13 , 1829.
doi:10.3390/su13041829.

Vogel, P. (2016). Service network design of bike sharing systems. In Service Network Design
of Bike Sharing Systems (pp. 113–135). Springer. doi:10.1007/978-3-319-27735-6.

95

http://dx.doi.org/10.1007/s10898-014-0147-5
http://dx.doi.org/10.1080/0740817X.2013.770186
http://dx.doi.org/10.1016/j.tre.2014.10.005
http://dx.doi.org/10.1016/j.sbspro.2012.09.782
http://dx.doi.org/10.1109/ECC.2014.6862386
http://dx.doi.org/10.1109/ECC.2014.6862386
http://dx.doi.org/10.3141/2430-01
https://bikesharingworldmap.com/
https://bikesharingworldmap.com/
http://dx.doi.org/10.1016/j.ejor.2016.08.029
http://dx.doi.org/10.3141/2143-20
http://dx.doi.org/10.1016/j.trc.2020.102648
http://dx.doi.org/10.1016/j.trc.2020.102648
http://dx.doi.org/10.1016/j.trd.2016.05.005
http://dx.doi.org/10.1016/j.trb.2018.01.007
https://urbansharing.com/
https://urbansharing.com/
http://dx.doi.org/10.3390/su13041829
http://dx.doi.org/10.1007/978-3-319-27735-6

Voß, S., Fink, A., & Duin, C. (2005). Looking ahead with the pilot method. Annals of
Operations Research, 136 , 285–302. doi:10.1007/s10479-005-2060-2.

Wang, J., Tsai, C.-H., & Lin, P.-C. (2016). Applying spatial-temporal analysis and retail
location theory to public bikes site selection in taipei. Transportation Research Part A:
Policy and Practice, 94 , 45–61. doi:10.1016/j.tra.2016.08.025.

Zhang, D., Yu, C., Desai, J., Lau, H., & Srivathsan, S. (2017). A time-space network flow
approach to dynamic repositioning in bicycle sharing systems. Transportation research
part B: methodological , 103 , 188–207. doi:10.1016/j.trb.2016.12.006.

96

http://dx.doi.org/10.1007/s10479-005-2060-2
http://dx.doi.org/10.1016/j.tra.2016.08.025
http://dx.doi.org/10.1016/j.trb.2016.12.006

	=Preface
	=Abstract
	=Sammendrag
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Background
	Bike Sharing Concept
	Historic Development
	New Kinds of Systems
	Urban Sharing
	Challenges in Bike Sharing Systems
	The Spillover Effect

	Literature Review
	Planning Levels in Bike Sharing Systems
	Strategic Level
	Tactical Level
	Operational Level

	Neighborhood Interactions
	The Dynamic Bicycle Rebalancing Problem as an Inventory Routing Problem
	Heuristic Solution Methods
	Heuristics for the Bicycle Rebalancing Problem
	PILOT Method

	Studies on the Dynamic Bicycle Rebalancing Problem
	Objective Function
	Demand
	Coordination of Service Vehicles
	Modeling Characteristics
	Solution Method

	Conclusion and Motivation of the Thesis
	Considering Neighborhood Interactions
	Improving the Solution Method

	The Dynamic Stochastic Bicycle Rebalancing Problem with Neighborhood Interactions
	Problem Description
	Decisions to Be Made
	Available Information and Problem Assumptions
	Objective

	Example Problem

	Solution Method
	Rolling Horizon and the Subproblem
	Overview of Algorithm
	Loading Decision
	Routing Decision
	Identifying Potential Stations
	Criticality Score

	X-PILOT
	Construction Algorithm
	Evaluation Function

	Simulation Framework
	Overview of Simulator
	Roaming Module
	Evaluation of Policies

	Case Study
	Input Data and Parameters
	Stations and Driving Time
	Roaming and Neighboring Stations
	Service Vehicles and Handling Time
	User Demand
	Initial State
	Target Inventory Level
	Length of Time Horizon
	Weights for Criticality Score and Evaluation Function

	Test Instances
	Example Solution to a Selected Test Instance

	Computational Study
	Evaluation Metrics
	Parameter Tuning
	Evaluation Function Weights
	Discounting Factors
	Criticality Weights

	X-PILOT Parameter Analysis
	Branching Width & Depth
	Time Horizon Length
	Number of Scenarios
	Selection Criteria

	Computational Performance

	Heuristic Performance and Managerial Insights
	Comparison with Other Policies
	Description of Policies
	Simulation Results

	Coordination of Service Vehicles
	Effects of Neighborhood Interactions
	Improved System Performance Metric

	Concluding Remarks
	Future Research
	Demand Censoring
	Neighborhood Interactions
	Other Real-Life Aspects

	Appendix
	Results from Parameter Tuning
	Evaluation Function Weights
	Discounting Factors
	Criticality Weights

	Results from X-PILOT Parameter analysis
	X-PILOT Width and Depth
	Number of Scenarios

	Two-Sample t-test
	Results from Heuristic Performance and Managerial Insights
	Effect of Neighborhood Interactions
	Comparison with Other Policies

	Bibliography

