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Abstract
Hydrogen presents an exciting opportunity as a zero-emission fuel, particularly for heavy-
duty and long-haul vehicles. This potential makes it a key player in reducing Norway’s
greenhouse gas emissions. Over recent years, the Norwegian Government has put an
extensive focus towards initiating a large-scale clean hydrogen supply chain in Norway,
giving substantial subsidies towards relevant research and private industry projects. Con-
sequently, many decision-makers are now planning hydrogen production operations, facing
crucial choices about the location, timing, and approach for establishing production fa-
cilities. Their objective is to meet future demand at the lowest possible cost. Notably,
electricity expenses make up 70-88% of the total cost of producing emission-free hydrogen.
As such, leveraging the flexibility of different production technologies could help optimize
these costs.

This thesis explores the influence of the flexibility offered by hydrogen production technolo-
gies on investment decisions for hydrogen facilities in Norway, considering the uncertainties
of electricity prices and future hydrogen demand in the transportation sector.

We introduce a multi-stage, multi-horizon stochastic model for facility location to encap-
sulate uncertainty and variations in electricity prices at an operational level and long-term
uncertainties in demand at a strategic level. This model seeks to minimize total anticip-
ated investment, production, and transportation costs. It encompasses strategic decisions
related to plant investments, including location, capacity, and technology choices. The
model allows for stepwise improvements in production efficiency and technology-related
investment costs. Capacity installed in earlier stages is employable to meet demand in
later stages. When electricity prices become known, the model accordingly optimizes pro-
duction during the operational stage. By integrating multiple time periods at this stage,
our model captures hourly electricity price fluctuations, thus assessing the impact of oper-
ational flexibility, granted by technology, on strategic investment decisions. To the best of
our knowledge, this is the first instance of a multi-horizon facility location problem being
presented in the literature.

We developed a Lagrange relaxation to improve solution times and handle larger problems.
However, the commercial solver Gurobi outperformed this approach for problems solvable
within our 48-hour (172,800 seconds) maximum timeframe.

Our findings suggest production flexibility has minimal impact on investment decisions
in the Norwegian context due to low hourly volatility in electricity prices. The primary
determinants are rather found to be production efficiency and investment costs. Alkaline
technology, being more cost-effective, therefore dominates Norway’s hydrogen supply chain
in 2023 and 2028, while the more flexible PEM technology becomes preferred by 2033 as the
cost disparity narrows. Cost distribution aligns with previous studies: 60-70% production,
5-10% investment, 20-30% transportation. A distributed supply chain with an average
hydrogen transport distance of 161 km is optimal, favoring capacity installations near
demand. Inter-zone hydrogen flow trends from northern to southern zones due to price
and transportation costs. There’s a mild preference for building larger facilities earlier,
suggesting economies of scale.
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Sammendrag
Hydrogen presenterer en spennende mulighet som et nullutslippsdrivstoff, spesielt for tun-
gtransport og langtransportkjøretøyer. Dette potensialet gjør det til en nøkkelspiller i
reduksjonen av Norges klimagassutslipp. I de senere årene har den norske regjeringen
investert betydelig for å initiere en norsk ren hydrogenforsyningskjede, og har gitt bety-
delige subsidier til relevant forsking og prosjekt innen privat industri. Følgelig planlegger
n̊a mange beslutningstakere drift av hydrogenproduksjon, og st̊ar overfor kritiske valg om
lokalisering, timing og tilnærming til etablering av produksjonsanlegg. Produsentenes m̊al
er å møte fremtidig etterspørsel til lavest mulig kostnad. Merkbar er det at elektrisitet-
skostnader utgjør 70-88% av de totale kostnadene ved produksjon av utslippsfri hydrogen.
Som s̊adan, kunne utnyttelsen av fleksibiliteten gitt av forskjellige produksjonsteknologier
hjelpe med å optimalisere disse kostnadene.

Denne avhandlingen utforsker innflytelsen av fleksibiliteten som tilbys av hydrogenproduk-
sjonsteknologier p̊a investeringsbeslutninger for hydrogenanlegg i Norge, og tar hensyn til
usikkerhetene ved elektrisitetspriser og fremtidig hydrogenbehov i transportsektoren.

Vi introduserer en flertrinns, flerhorisont stokastisk modell for anleggslokalisering for å
innkapsle usikkerhet og variasjoner i elektrisitetspriser p̊a et operasjonelt niv̊a, og lang-
siktige usikkerheter i etterspørsel p̊a et strategisk niv̊a. Denne modellen søker å minimere
totale forventede kostnader ved investering, produksjon, og transport. Den omfatter
strategiske beslutninger relatert til anleggsinvesteringer, inkludert lokalisering, kapasitet,
og teknologivalg. Modellen gir plass for trinnvise forbedringer i produksjonseffektivitet
og investeringskostnader knyttet til forskjellige teknologier. Kapasitet installert i tidligere
trinn kan brukes til å møte etterspørselen i senere trinn. N̊ar elektrisitetspriser blir kjent,
optimaliserer modellen tilsvarende produksjonen under den operasjonelle fasen. Ved å in-
tegrere flere tidsperioder p̊a dette stadiet, fanger v̊ar modell opp timeprisfluktuasjoner i
elektrisitet, og vurderer dermed virkningen av operasjonell fleksibilitet, gitt av teknologi,
p̊a strategiske investeringsbeslutninger. S̊a vidt vi vet, er dette det første tilfellet av et
flerstegs flerhorisont anleggslokaliseringproblem som blir brukt for et lokasjonsproblem.

For å forbedre løsningstider og h̊andtere større problemer, utviklet vi en Lagrange-relaksering.
Imidlertid overgikk den kommersielle løseren Gurobi denne tilnærmingen for problemer
som kan løses innen v̊ar maksimale tidsramme p̊a 48 timer (172 800 sekunder).

V̊are funn antyder at produksjonsfleksibilitet har minimal innvirkning p̊a investerings-
beslutninger i den norske konteksten p̊a grunn av lav timevolatilitet i elektrisitetspriser.
De primære bestemmelsesfaktorene er i stedet funnet å være produksjonseffektivitet og
investeringskostnader. Alkalisk teknologi, som er mer kostnadseffektiv, dominerer derfor
Norges hydrogenforsyningskjede i 2023 og 2028, mens den mer fleksible PEM-teknologien
blir foretrukket innen 2033 ettersom kostnadsforskjellen smalner. Kostnadsfordelingen
samsvarer med tidligere studier: 60-70% produksjon, 5-10% investering, 20-30% trans-
port. En distribuert forsyningskjede med en gjennomsnittlig hydrogen transportavstand
p̊a 161 km er optimal, favoriserer kapasitetsinstallasjoner nær etterspørsel. Inter-regional
hydrogen flyt trender fra nordlige til sørlige soner p̊a grunn av pris og transportkostnader.
Det er en mild preferanse for å bygge større anlegg tidligere, noe som antyder stordrifts-
fordeler.
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Chapter 1

Introduction
Climate change represents a profound challenge for humanity in the coming years. Signific-
ant political endeavors globally aim to curtail greenhouse gas (GHG) emissions. The most
recent major international effort was the Paris Climate Accords in 2016, where 193 states
agreed to an overall reduction in global GHG emissions. The aim is to limit the mean
global temperature increase to below 2°C. For its part, Norway has committed to reducing
GHG emissions by a minimum of 55% by 2030, compared to 1990 levels (The Norwegian
Government, 2022b). Achieving this target necessitates significant emission reductions in
the transportation sector, which accounted for 33% of Norway’s GHG emissions as of 2021
(Miljødirektoratet, 2022).

In the pursuit of reducing emissions, Norway leads the way in the electrification of its
vehicle fleet, including cars, trains, and ferries. It boasts the world’s highest proportion of
new electric car sales, reaching 79% in 2022 (SSB, 2023). However, some scenarios, such
as longer-haul ferry journeys, are not suitable for electrification due to battery weight
limitations and refueling times. Hydrogen, an energy carrier with the potential for zero
emissions (green hydrogen), can offer a solution in these contexts and could be instrumental
in reducing GHG emissions, particularly within the transportation sector and energy-
intensive industries.

Norway’s green hydrogen production is currently minimal (The Norwegian Government,
2022a), posing a barrier to the introduction of hydrogen-fueled vehicles. However, business
interest has surged in the past decade, with several companies planning national green
hydrogen production initiatives (Menon Economics, 2022). The government has fostered
this interest through supportive hydrogen policies. For example, the agency Enova has
disbursed billions in subsidies and grants. In 2022, Enova awarded over a billion Norwegian
kroner to projects related to green hydrogen production and its use as a fuel (Enova,
2022a).

Despite the lack of substantial green hydrogen production from a Norwegian supply side,
demand has already surfaced from the maritime sector. Notably, on March 31, 2023, the
Norwegian company Norled commenced operations of the world’s first green hydrogen-
fueled ferry Statens vegvesen (2023). Currently, Norled sources its hydrogen from a Ger-
man company Linde plc (2021) (Sjøfartsdirektoratet, 2023).

Given these developments, it’s evident that green hydrogen, especially in the maritime sec-
tor, will increasingly serve as a fuel source in the coming years. However, the extent of its
future prevalence remains unclear. A lag in domestic production relative to consumption
could potentially delay otherwise promising projects, setting up a classic chicken-or-egg
conundrum. This discrepancy adds an extra layer of uncertainty to hydrogen demand
in terms of overall demand and regional variations across Norway. Consequently, pro-
spective investors in Norway’s green hydrogen production face a complex decision-making
environment with uncertainty regarding future demand.

As hydrogen is a fungible good, being a commodity that is interchangeable with other
hydrogen units, businesses’ primary concern will be investing in production facilities that
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can minimize total unit costs of hydrogen production and distribution. Given that elec-
tricity costs constitute a significant component in green hydrogen production (70-88% of
total costs), companies are incentivized to establish production facilities in areas with low
electricity prices. In Norway, such areas are predominantly in the northern regions. Con-
versely, the majority of the anticipated demand is expected from southern Norway, which
is considerably distant from the cheap electricity available in the North. Thus, a trade-
off exists between production and transportation costs when investing in green hydrogen
production in Norway.

Green hydrogen is primarily produced using either Alkaline or PEM electrolyzers. While
Alkaline technology is more mature with lower required investment costs, PEM offers
superior flexibility in production throughput adjustment and a shorter ramp-up time. This
paper aims to determine whether the increased flexibility provided by PEM can justify
its higher investment costs. The optimal location for hydrogen production facilities in
Norway will also be examined as decision support for potential green hydrogen producers.

Previous research on optimizing hydrogen supply chains has employed deterministic and
stochastic programming. A recent paper investigates optimal hydrogen production facility
locations for Norway’s maritime sector up to 2035 using a multi-period facility location
model with capacity extension (Stádlerová & Schütz, 2021). However, limited research
has been conducted on how technological flexibility affects hydrogen supply chain design.
Refsdal and Sindre (2022) investigates the value of production flexibility within a two-stage
facility location problem, accounting for electricity price uncertainty but deterministic
demand. To our knowledge, no research has analyzed the optimization of hydrogen supply
chains using a multi-horizon model, considering technical and economic advancements over
time, long-term demand uncertainty, and operational uncertainties for assessing the impact
of production flexibility on strategic investment decisions. Neglecting sequential decision-
making could lead to suboptimal solutions due to anticipated improvements in hydrogen
production technologies’ cost and efficiency and uncertainties in long-term demand levels.
Ignoring the flexibility offered by production technologies could also result in suboptimal
solutions, particularly in cases of high price volatility.

To address these considerations, we formulate a multi-horizon stochastic optimization
model for determining where and when to invest in production plant facilities, their re-
spective capacities, and production technology. The model encompasses two time periods:
one for strategic facility investment decisions and the other for operational-level produc-
tion planning. The strategic time period comprises several five-year stages with demand
uncertainties. Over time, the investment and operational costs of hydrogen production
decrease. For each demand realization at each strategic stage, an operational compon-
ent models production planning across multiple time periods, thus capturing variability
in stochastic parameters and assessing the flexibility in production technology. Due to a
large number of scenarios and extensive solution times, we use Lagrangian relaxation. To
our knowledge, this is the first instance of formulating and solving a multi-horizon facility
location problem. The model is run generally, as well as for specific scenarios, to glean
managerial insights.

The structure of this paper is as follows: Chapter 2 delves into technical and financial as-
pects pertaining to the green hydrogen value chain, with emphasis on PEM and Alkaline
production technologies. Chapter 3 reviews pertinent literature on stochastic program-
ming and facility location, supply chain network design, and hydrogen production flexib-
ility. Chapter 4 provides a comprehensive description of the problem. A mathematical
model for the problem is presented in Chapter 5. In Chapter 6, we introduce a Lagrangian
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relaxation framework, which is then applied and tested on the model. Chapter 7 explains
how the model is implemented
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Chapter 2

Background
This chapter presents the reader with essential terminology and topics in order to under-
stand hydrogen production and its future development, mainly from a technological and
economic perspective. An emphasis is put on discussing the operational flexibility offered
by different production technologies, and their economic implication. Section 2.1 presents
the most widespread technologies used to produce hydrogen, their respective costs, and
the operational flexibility that they offer. In Section 2.2, the future global demand for hy-
drogen across different segments of the transportation sector is discussed. Further, the dis-
tribution of hydrogen from the production facility to consumers is discussed in Section 2.3.
Then the general cost functions of hydrogen production are discussed in Section 2.4, which
is important for later modeling of production. Finally, the Norwegian electricity market
is discussed in Section 2.5, including the economic impacts of operational flexibility.

2.1 Hydrogen production

In the process of energy generation via combustion, fuel cells, or turbines, hydrogen acts
as a zero-emission fuel by solely releasing water during operation. However, its production
can entail greenhouse gas emissions, the levels of which fluctuate depending on the input
factors and production techniques used (IRENA, 2020a). These production methods are
grouped into color-coded categories such as ”gray,” ”blue,” and ”green,” each reflecting
specific input factors, primary energy sources, and the direct and indirect emissions pro-
duced over their life cycle, as displayed in Figure 2.1 and Table 2.1 and further explained in
subsequent sections. Additionally, there are other categories like ”turquoise” and ”brown”
hydrogen, of which the former is still in its early stages of development through methane
pyrolysis (IRENA, 2020a), and the latter is disregarded in this report due to its coal-
derived nature making it irrelevant from the Norwegian supply chain perspective.

Figure 2.1: Schematic illustrating input and output factors, as well as CO2 emissions,
from gray, blue and green hydrogen production (The World of Hydrogen, 2022).
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Table 2.1: The colors of hydrogen adapted from Broadleaf (2021).

2.1.1 Green Hydrogen

Green hydrogen is generated by means of electrolysis that employs electricity generated
from renewable energy sources. As the production method only employs electricity to
transform water (H2O) into hydrogen (H2) and oxygen (O2), it does not discharge any
greenhouse gases, and is therefore emission free, both directly and indirectly.

Several electrolysis technologies are available, namely Alkaline, Anion Exchange Mem-
brane (AEM), Proton Exchange Membrane (PEM), and Solid Oxide Electrolyzer Cell
(SOEC). However, this report will solely focus on Alkaline and PEM as they are the most
established technologies and are commercially provided by major electrolyzer firms like
NEL, ITM Power, and Thyssenkrupp (Nel, 2021, ITM-Power, 2022, Thyssenkrupp, n.d.).
AEM, on the other hand, currently experiences issues with limited lifetimes, while SOEC
has high CAPEX and prolonged start-up times (Andrenacci et al., 2022).

2.1.1.1 Alkaline Electrolysis

Figure 2.2 illustrates the fundamental principle of Alkaline electrolysis. An Alkaline elec-
trolyzer is composed of two metallic electrodes immersed in a liquid electrolyte, typically
an aqueous solution of KOH or NaOH. Water reduction occurs at the cathode, as indicated
by the following equation:

H2O + 2e− −→ H2 + 2OH− (2.1)

And at the anode, oxidation of hydroxyl takes place:

2OH− −→ 1
2O2 +H2O + 2e− (2.2)

Only water is consumed in the process, and the products are hydrogen (H2) and oxygen
(O2) (Millet & Grigoriev, 2013).
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Figure 2.2: Alkaline hydrogen production schematic with half-reactions (IRENA, 2020b).

As reported by Andrenacci et al. (2022), alkaline electrolyzers present capacity utilization
versatility, although their operational flexibility is somewhat limited due to a constrained
load range of 20% to 100% of installed capacity. This implies a minimum operational
threshold of 20% for these electrolyzers. Consequently, in situations requiring less than
20% utilization, the system would generate surplus hydrogen, leading to unnecessary con-
sumption of electricity.

Nel (2021) states that the duration for initiating an alkaline electrolyzer startup hinges
on its design and configuration. Startups can be broadly classified into two types - a full
startup and a hot standby startup. The latter typically requires around 30 minutes, while
the former might take up to 150 minutes. Operating in hot standby mode, a prerequisite
for a hot startup, necessitates energy consumption. The extended startup period con-
strains the operational flexibility of alkaline electrolyzers, making them less suitable for
environments with variable electricity availability or price fluctuations, as they would be
unable to rapidly adjust to changes in power access or cost electricity prices.

When relying on dedicated renewable energy sources, like wind power, accessing electricity
for hydrogen electrolysis can pose a challenge. Wind power is known for its volatility, and
it’s not uncommon for the amount of power generated to fluctuate significantly and rapidly,
occasionally even dropping to zero if the wind stops blowing. In such cases, operational
flexibility in terms of the being able to swiftly return to full utilization levels after turning
production on, is crucial.

Andrenacci et al. (2022) report that alkaline electrolysis is an economically favorable op-
tion for hydrogen production due to its low dependence on costly raw materials which gives
relatively low CAPEX of 600 €/kW, which is lower than other electrolysis technologies.
Additionally, the expected CAPEX for alkaline electrolysis in 2030 is even lower at 480
€/kW. The operational costs associated with alkaline hydrogen production are estimated
to be around 50 €/(kg/d)/y in 2020, with further reductions anticipated to bring the
cost down to 48 €/(kg/d)/y by 2030. Alkaline electrolyzers are a well-established tech-
nology, having been used commercially for over a century. While economies of scale may
bring some reductions in the CAPEX, significant decreases are not expected (IEA, 2019).
Table 2.2 provides an overview of the critical KPIs associated with alkaline hydrogen
production.

6



Table 2.2: KPIs of Alkaline electrolyzers (Andrenacci et al., 2022).

2.1.1.2 Proton Exchange Membrane Electrolysis (PEM)

Figure 2.3 illustrates the fundamental principle of a PEM electrolyzer. The device com-
prises two electrodes separated by a proton-conducting polymer electrolyte, forming a
membrane electrode assembly (MEA). The anode is immersed in water, and at this elec-
trode, oxygen evolution occurs.

At the anode oxygen evolution takes place:

H2O −→
1
2O2 + 2e− + 2H+ (2.3)

The hydrogen electrons are transported across the membrane, and hydrogen gas is created
at the anode:

2H+ + +2e− −→ H2 (2.4)

Only water is consumed in the process, and the products are hydrogen (H2) and oxygen(O2)
(Millet & Grigoriev, 2013).

Figure 2.3: PEM hydrogen production schematic with half-reactions (IRENA, 2020b).

According to Andrenacci et al. (2022), PEM electrolyzers are not subject to a lower bound
on the load range and can operate at rates between 0% and 160% of their capacity.
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Although some vendors claim that overloading the system up to 160% is possible, this
capability is reliant on appropriate power supply and thermal management tailored to
the specific load, and it is not the industry standard. Hence, this capability will not be
considered in this report.

Nel (2021) states that the startup time for PEM electrolyzers varies depending on whether
it is a cold start (i.e., ≥ 6 hours since the last startup) or a warm start. A cold start
takes approximately 23 minutes, while a warm start requires only 8 minutes. In contrast,
other sources indicate that the response time for PEM electrolyzers is less than a few
seconds, and the energy needed to maintain a warm state for the system during startup is
negligible (Andrenacci et al., 2022). This enhanced flexibility in startup times makes PEM
electrolyzers a suitable option to pair with volatile electricity prices or availability, as the
system can be quickly turned off during periods of high prices or electricity unavailability
and in cases where prices drop significantly.

The production of PEM electrolyzers requires expensive materials for both the cathode
(such as iridium and platinum) and membrane materials, resulting in a higher CAPEX
compared to alkaline electrolyzers. However, ongoing research on cathode and membrane
technology is expected to lower the CAPEX of PEM electrolyzers. Despite this disadvant-
age, PEM electrolyzers offer the benefit of producing hydrogen at higher pressures than
alkaline electrolyzers, eliminating the need for compression during storage or delivery.
Currently, the lifespan of PEM electrolyzers is shorter than that of alkaline electrolyzers,
but future research is expected to address this issue (IEA, 2019).

Table 2.3: KPIs of PEM from Andrenacci et al. (2022).

2.1.1.3 Cost of Green Hydrogen Production

The production cost of green hydrogen is heavily influenced by technology selection, capa-
city utilization, and electricity prices. The Levelized Cost of Hydrogen (LCOH) estimates
for Alkaline and PEM technologies are illustrated in Figure 2.4, which breaks down the
costs into CAPEX, Operations & Maintenance (O&M), and electricity expenses, using
data from (Andrenacci et al., 2022).

8



Figure 2.4: Cost of hydrogen with CAPEX and O&M assumptions from Andrenacci
et al. (2022), based on the framework of UK Government (2022) and an electricity price
of 40 €/MWh.

The Levelized Cost of Hydrogen (LCOH) for Alkaline and PEM are presented in Figure 2.4,
and the cost largely depends on the technology choice, utilization rate, and electricity price.
Alkaline has a LCOH of 2.8 €/kg, while PEM has a LCOH of 3.2 €/kg. Electricity is the
most significant cost driver, contributing 80% of the total hydrogen production cost. The
reduction of LCOH is primarily driven by lower electricity prices. Alkaline has the lowest
CAPEX and electricity consumption, as shown in Section 2.1.1.1 and Section 2.1.1.2,
while PEM has the lowest O&M cost, leading to the price differences between the two
technologies.

Scaling up hydrogen production through electrolyzers can result in significant economies of
scale. According to IRENA (2020b) estimates, the cost per kilowatt (kW) of capacity for
alkaline electrolyzers decreases as the size of the electrolyzer increases, as shown in Figure
2.5. For example, a 1 MW alkaline hydrogen stack has a capital expenditure (CAPEX)
of $1000/kW, whereas a 10 MW stack has a CAPEX of $600/kW, and a 100 MW stack
has a CAPEX of $400/kW.

Figure 2.5: Economies of scale in the investment cost of hydrogen production adapted
from IRENA (2020b).
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2.1.2 Blue and Gray Hydrogen Production

Gray hydrogen is produced from natural gas using either Steam Methane Reforming
(SMR) or Autothermal Reforming (ATR) processes. However, gray hydrogen emits signi-
ficant amounts of greenhouse gases and is not a suitable option for a zero-emission future,
as stated by IEA (2019)

Blue hydrogen is a type of hydrogen produced from coal or natural gas with carbon capture
and storage (CCS). In Norway, natural gas is the only viable source for blue hydrogen
production, as there is no coal industry. However, since only 85-95% of the CO2 can
be captured, blue hydrogen is not completely emission-free (Moseman & Herzog, 2021).
Additionally, the production of natural gas involves emissions of methane and CO2, which
can result in higher GHG emissions than direct burning of the natural gas in some cases,
as demonstrated by Howarth and Jacobson (2021) for the USA. Nevertheless, this is not
the case with Norwegian gas production (Gardarsdottir, 2021).

This report does not consider blue and gray hydrogen technologies for hydrogen produc-
tion, as gray hydrogen may not be a suitable for a zero-emissions future. Additionally,
Stádlerová and Schütz (2021) show in their study that blue hydrogen technology is not a
preferred choice for a Norwegian supply chain in the maritime sector

2.2 Future Demand

The hydrogen industry is already significant, with fertilizer and chemical feedstock pro-
duction being the main drivers of demand. Unfortunately, the hydrogen used for these
industries is not sourced from low-emission production methods, resulting in approxim-
ately 900 million tonnes of CO2 emissions in 2020. This amount surpasses the combined
emissions of Germany and France, as reported by DNV (2022). Despite the industry’s size,
only 4% of global hydrogen production was sold on an open market in 2017, according to
DNV (2019). Additionally, most hydrogen production is integrated with the supply chain
and serves as an input factor, being located close to the consumption point.

Hydrogen is poised to have a significant impact in various industries, including transporta-
tion, building heating, electricity generation, and manufacturing (DNV, 2022). The open
market for hydrogen is projected to surge from 3 to 240 MtH2/year between 2020 and
2050, with an average annual growth rate of 15.7%. This trend is expected to account for
5% of the world’s total energy demand.
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Figure 2.6: Global hydrogen and its derivatives production for energy purposes by usage
route (DNV, 2022).

According to DNV (2022) and IEA (2019), there is significant uncertainty surrounding
the anticipated demand for hydrogen leading up to 2050, with a wide range of potential
projections. Moreover, as there is presently no existing supply chain to facilitate the
utilization of hydrogen, the creation of such a system will be necessary from the ground
up.

The scope of this report is limited to analyzing the demand for hydrogen solely within the
transportation sector of Norway. This decision is based on the fact that the transportation
industry is expected to account for the majority of hydrogen demand globally, as illustrated
in Figure 2.6. Furthermore, demand from other sectors is typically incorporated into more
extensive production processes and does not contribute to the hydrogen sold on the open
market. As of 2021, the transportation sector in Norway was responsible for 33% of the
country’s total CO2 emissions (Miljødierktoratet, 2022).

2.2.1 Road Transport

According to Miljødierktoratet (2022), road transportation accounts for around 50% of
the energy consumption in the transportation sector of Norway. This energy consumption
is further divided equally between passenger traffic and the transportation of goods, each
accounting for 50% of the total.
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Figure 2.7: Energy consumption in the transportation sector (Miljødierktoratet, 2022).

The majority of energy consumption in road transport is derived from fossil fuels, however,
effective policies implemented by the Norwegian government have led to a reduction in
emissions from private cars in recent years, as more individuals are transitioning to electric
cars. Electric vehicles are not as suitable for longer-distance transportation of passengers
or goods due to lengthy charging times and the high weight and space requirements for
batteries, thus DNV (2019) has identified three segments in which hydrogen may serve
as a more appropriate low-emission alternative: light-weight vehicles, bus transportation,
and heavy-weight vehicles.

2.2.1.1 Light Weight Vehicles

At present, light-weight hydrogen cars (FCEVs) are more costly than electric vehicles
(EVs), and it is anticipated that EVs will prevail in this segment until 2050. Nonetheless,
FCEVs can be competitive in certain segments where there are lengthy gaps between
charging stations, high range requirements, or prolonged usage periods, as noted by DNV
(2019). However, the report does not provide any estimates regarding the magnitude of
this demand.

2.2.1.2 Bus Transportation

The degree of competitiveness of hydrogen buses is contingent on their application. In the
case of buses that have short travel distances and a limited number of daily routes within
urban areas, such as school buses, electric buses are projected to be the predominant
technology. On the other hand, for routes that cover greater distances and have lower
population densities, hydrogen buses are expected to be able to compete with electric
buses. Various countries have already implemented hydrogen buses, including the USA,
France, and Japan (DNV, 2019).

2.2.1.3 Heavy Weight Vehicles

Hydrogen is projected to be a viable alternative to electric vehicles for heavy vehicles
because of the limitations in range that electric vehicles currently face. Regarding com-
petition with diesel vehicles, DNV (2019) refers to studies that suggest FCEVs will be
competitive by 2025.
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2.2.2 Rail Transport

A significant proportion of trains in Norway already incorporate zero-emission technology,
with over 80% of train traffic being serviced by electric trains. However, the reason for
not electrifying the remainder of the railway in Norway is due to the high infrastruc-
ture expenses associated with low-traffic routes. Looking toward a zero-emission future,
hydrogen-driven trains will likely compete against battery-electric trains. Hydrogen trains
benefit from a longer range and are lighter, while electric trains are expected to have a
lower price. This competition between electric and hydrogen trains is likely to divide the
rail sector, which is unsuited for contact wire, between hydrogen and battery-driven trains
(DNV, 2019).

2.2.3 Maritime Passenger Transport

Public tenders play a crucial role in Norway’s maritime passenger transportation sector
as they determine the operation of various routes. These tenders may specify the use
of zero- or low-emissions technology in contracts, such as the upcoming Bodø-Moskenes-
Værøy-Røst ferry connection which requires the use of hydrogen as fuel starting from 2025
(Samferdselsdepartementet, 2022). Using public tenders, the Norwegian government can
help promote the hydrogen market and boost demand. This can be anticipated beforehand
as public tenders are typically announced years in advance.

2.3 Distribution of Hydrogen

The transportation of hydrogen presents a range of technological and economic challenges.
Despite being the lightest element, hydrogen has a low volumetric energy density, measur-
ing between 0.8-2.1 kWh/L depending on pressure, state, and temperature. As depicted
in Figure 2.8, this is approximately four to five times lower than gasoline and diesel.

Figure 2.8: Volumetric energy density for different fuels based on lower heating values
(US. Department of energy, 2022).
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The limiting factor in transporting hydrogen is its volumetric energy density (Danebergs
& Aarsskog, 2020b). Due to this limitation, large volumes of hydrogen are required for
transportation, resulting in higher prices per kWh compared to other energy sources.
Additionally, hydrogen must be handled at high pressures or low temperatures to be
transported as a liquid. This process incurs additional costs, such as compression or
cooling expenses, which further increases the overall expense of transporting hydrogen.

Transporting hydrogen can be achieved through various means, including compressed or
liquid form, or as a derivative with a higher volumetric density, such as ammonia or liquid
hydrogen organic carriers (LHOCs). However, if the final demand is for pure hydrogen,
converting it into these derivatives incurs energy losses that make it economically unviable
for transportation within Norway (Ishimoto et al., 2020). Moreover, hydrogen transport-
ation through its derivatives is still in its early stages of development, leading to uncer-
tainties (Damman et al., 2020). Hence, this report excludes the option of transporting
hydrogen through its derivatives.

The transportation method for hydrogen depends on the distance and volume to be trans-
ported. For low volumes, trucks are the most suitable option. Compressed form is prefer-
able for short distances, whereas liquefaction is more cost-effective for longer distances.
Pipelines are the cheapest option for large volumes and short distances, while shipping is
the most economical means of transportation for long distances and large volumes. Fig-
ure 2.9 illustrates the costs and cheapest mode of transport for a specific set of volumes
and distances.

Figure 2.9: Specific minimum cost in NOK/kg and mode for hydrogen transport (Mad-
sen, 2019)

Figure 2.9, as presented by Madsen (2019), fails to consider the strict Norwegian regu-
lations requiring a 45-minute resting period after a truck has been driven for 4.5 hours,
which necessitates the employment of additional drivers for longer journeys. The cost of
transportation increases significantly in Norway due to the high labor costs associated with
employing more drivers (Arbeidslivet.no, n.d.). As a result, Figure 2.9 does not reflect the
cost spike that occurs due to this regulation, making the cost of hydrogen transportation
above 1000 km appear lower than it actually is.
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2.4 General Cost Functions of Production Plants

The costs of building and operating hydrogen production facilities are expensive, and
can be divided into two categories: short-term and long-term costs. Long-term costs are
associated with expenses that extend over several years, and involve a trade-off between
capital and labor input factors. The goal is to minimize these costs while maximizing
production levels, resulting in an optimal combination of capital and labor that can be
identified at the intersection of isoquant and isocost curves (Mathis & Koscianski, 2002).
Figure Figure 2.10 demonstrates this concept, where the ideal combination of capital and
labor for a given production quantity, q1, is located at the intersection of line AB and the
isocost curve for q1. Once a capital and labor combination is determined, the capital is
fixed and adjustments to production can only be made by modifying the labor input. For
example, to increase production to q2, labor input must be adjusted to L3, however, this
is not optimal as the ideal combination of labor and capital for q2 can be found at the
intersection of curve CD and the cost isocost for q2, with L2 and K2.

Figure 2.10: Long- and short-term expansion paths adapted from Pindyck and Rubinfeld
(2018).

At a specific capacity, the short-term cost function is linked to the long-term cost function,
with the short-term cost curves tangent to the long-term cost curve. In the short-term,
labor is the only input factor that can be adjusted, while capital remains constant. Assum-
ing that the marginal returns of input factors are decreasing, the short-term cost function
is convex in shape (Mathis & Koscianski, 2002), as illustrated in Figure 2.11. The shape
of the function is due to increasing economies of scale (Pindyck & Rubinfeld, 2018).
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Figure 2.11: Long- and short-term cost functions for production facilities, adapted from
(Pindyck & Rubinfeld, 2018).

When it comes to hydrogen production, the primary long-term decision involves determin-
ing the capacity to invest in and later making adjustments to that capacity. On the other
hand, decisions such as production quantities and transportation, which may require daily
adjustments, are associated with short-term costs. In the short-term, it is necessary to keep
at least one input factor constant, which is typically the capital for hydrogen production,
while labor inputs such as electricity and employees can be adjusted. As demonstrated
in Section 2.1.1.1 and Section 2.1.1.2, it is not possible to increase production beyond the
installed capacity for hydrogen production. As a result, the short-term cost curve is only
valid to the left of the long-term cost curve in Figure 2.11.

2.5 The Norwegian Electricity Market

As indicated in Section Section 2.1.1.3, the cost of electricity is the most significant factor
in determining the levelized cost of hydrogen (LCOH). Consequently, the cost of electricity
in Norway has a considerable impact on the optimal production planning and the choice
of regions for locating hydrogen production plants.

In Norway, there are five distinct regional electricity trading areas: NO1 (based in Oslo),
NO2 (based in Kristiansand), NO3 (based in Trondheim), NO4 (based in Tromsø), and
NO5 (based in Bergen) (Statnett, 2022). These regions have varying power generation and
consumption requirements, with the three southern regions being more interconnected
with the continental European power market. As a result, there are often significant
discrepancies in power prices between the northern and southern regions of Norway, as
illustrated in Figure 2.12. The regional division of the bidding zones is displayed in
Figure 2.13.
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Figure 2.12: Prices of power between the five Norwegian balancing regions, from January
2021, until September 2022 (Nord Pool, 2022a).

Figure 2.13: This map show the five electricity price bidding areas in Norway (Statnett,
2022).

Hydropower is Norway’s primary electricity production source, accounting for 90% of the
country’s power generation (Statkraft, 2022). The remaining 10% primarily consists of
wind power, which contributes 7.5% to the power supply. Norway leads the world in the
share of renewable energy production, with 99% of its electricity coming from renewable
sources (Enerdata, 2022), owing to its favourable mountainous topography for hydropower.
As a result, the price of electricity in Norway is heavily influenced by the water volume in
its reservoirs. This, combined with higher energy consumption during the winter months,
creates seasonal variation in power prices, as depicted in Figure 2.14. Typically, power
prices are at their lowest around July and peak during the winter months.
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Figure 2.14: Power prices in Norway’s five bidding zones between Q1 2004 to Q4 2020.
(Nord Pool, 2022b).

Electricity procurement often occurs a day in advance of delivery and consumption via the
day-ahead market, where hourly electricity prices are set according to the previous day’s
supply and demand dynamics (Olje- og energidepartementet, 2022). Despite the relatively
flat daily price profile in the Norwegian power system, due to low costs of adjusting
production, there are instances where the price can fluctuate significantly from hour to
hour Figure 2.15. Such price dynamics present challenges for industries like hydrogen
production, as electricity costs are the main cost component. If the start-up time exceeds
an hour, producers may not fully exploit potential hourly price drops, given the electricity
required for warming up during the preceding hours. Moreover, shorter start-up times
result in a larger proportion of actual production time within the hour, thereby increasing
the potential for exploiting price drops. This underscores the value of operational flexibility
offered by PEM to Alkaline in cases of high price volatility, as it enables greater utilization
of price drops, thereby reducing production costs.

Figure 2.15: Hourly day-ahead prices between for the bidding zones of Norway
16.05.2023. One can see price spikes of over a 100%at 15:00-16:00 and 23:00 - 24:00.
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Chapter 3

Related Literature
This chapter discusses the literature that studies problems relevant to stochastic program-
ming, facility location, supply chain network design, and hydrogen production. We begin
in Section 3.1 by introducing the facility location problem for deterministic problems and
under economies of scale. After this, we discuss relevant concepts within stochastic pro-
gramming in Section 3.2, such as multi-period and multi-stage stochastic facility location
programs, as well as multi-horizon stochastic programming. Next, we study supply chain
network design in Section 3.3, where a special emphasis is put on hydrogen supply chain
networks. Last, in Section 3.4, we cover literature that captures the modeling of hydrogen
production at the operational level.

3.1 Facility Location

Decisions pertaining to the location and configuration of production facilities and ware-
houses are critical for industrial companies, typically having a significant impact on pro-
duction and transportation costs, as well as the demand one can serve. Given their
substantial cost and long-term nature, these decisions must be thought through carefully.
The Facility Location Problem (FLP) focuses on finding the optimal locations for facilities
or equipment to serve a specific set of customers or demand points (Saldanha-da-Gama,
2022). In its simplest form, which includes no restrictions on capacity and transportation,
the FLP is known as the uncapacitated facility location problem (UFLP). In real life,
however, both lower and upper bounds on the capacities typically exist. The version of
FLP that considers such constraints is known as the capacitated facility location problem
(CFLP). For both problems, the investment, production, and transportation costs can
be location dependent. Sridharan (1995) provides a review of the CFLP and proposes a
generic model for solving this problem, as seen below:

z = min
m∑

i=1

n∑
j=1

cijxij +
n∑

i=1
fjyj (3.1)

subject to

n∑
j=1

xij = 1. i = 1, ...,m (3.2)
m∑

i=1
dixij ≤ qjyj , j = 1, ...,m (3.3)

0 ≤ xij ≤ yj , i = 1, ...,m; j = 1, ..., n (3.4)
n∑

i=1
qjyj ≥

m∑
i=1

di, j = 1, ...n (3.5)

yj ∈ {1, 0}, j = 1, ..., n (3.6)
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Where cij is the total cost of transportation from facility j to serve customer i; di is the
demand of customer i: qj is the capacity of facility j; fj is the fixed cost associated with
plant j; xij is the fraction of the demand of customer i supplied from plant j; yj = 0 or
1, depending on whether plant j is closed or open; I = {1, ...,m}: the set of customers;
J = {1, ..., n}: set of potential locations.

The model considers fixed costs and capacities for each location, with the choice of loca-
tions being the only decision variable. One can use a continuous investment variable when
dealing with linear investment costs. However, if the investment costs are nonlinear, an
alternative approach is to have a discrete set of capacities to choose from. In this case, a
variable is generated for each capacity at each location to decide the capacity to install.
As the number of capacities to choose from increases, the number of variables will grow
polynomially.

3.1.1 Facility Location Under Economies of Scale

As noted in Section 2.1.1.3, hydrogen production benefits from economies of scale, causing
non-linear increases in investment costs as capacity expands.To manage this aspect, many
Facility Location Problem (FLP) studies employ Staircase Costs (FLSC). According to
Holmberg (1994), the staircase cost function is a finite, piecewise linear, and increasing
function with a discrete set of discontinuities.

The modular capacitated plant location model (MCPL) is a generalized version of the
FLSC. This model selects capacities from a finite and discrete set of options without
limiting them to multiples of a particular size. Correia and Captivo (2003) used this model
to study healthcare facility locations in Portugal. Their study includes investment and
production costs related to specific capacities and facility locations and a set of customers
whose demand must be met by particular production facilities.

In their study, v.d. Broek et al. (2006) address an FLP involving slaughterhouse locations
in Norway, incorporating economies of scale. They utilize a discretized investment cost
function with multiple breakpoints to represent non-linear investment costs as a piecewise
linear function. Their model also includes transportation costs and demand requirements.
Here, transportation costs refer to the cost of moving animals from farms to slaughter-
houses, and demand represents the total number of animals that must be slaughtered.

3.2 Stochastic programming

Uncertainty is a critical factor in decision-making. Variables such as customer demand,
energy prices, and technological advancements, among others, all carry inherent uncer-
tainty. Stochastic programming addresses these uncertainties in optimization problems by
employing known or estimated probability distributions for the parameters.

Stochastic programming originated with Dantzig (1955), who introduced the two-stage
stochastic linear program with recourse aimed at minimizing expected total costs. The
model incorporates stochastic cost coefficients in the objective function, each with a spe-
cific probability distribution. Dantzig (1955) also demonstrated how to manage variance,
drawing on Markowitz’s mean-variance analysis. A comprehensive two-stage stochastic
linear program formulation is presented by Birge and Louveaux (2011):

min z = cT y + Eξ[min qT
s xs] (3.7)
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subject to:

Ay = b (3.8)

Tsy +Wx = hs (3.9)

y ≥ 0, xs ≥ 0 (3.10)

This formulation comprises two stages and presumes a finite discrete set of possible scen-
arios, S, each representing a complete realization of all uncertain parameters (Correia &
Saldanha-da-Gama, 2019). In the first stage, decisions, y, are made under uncertainty
about future, ξ, realizations. These first-stage decision variables are present in the object-
ive (3.7), in constraint (3.8), and in (3.9), where they connect to second-stage variables, xs.
The second stage, after the realization of a random event s ∈ S, allows decision-making
with known second-stage data qs, hs, and Ts. The vector ξT

ω = (qT
ω , h

T
ω , T

T
ω ) represents the

random variables in the second stage data. The first-stage variables y are independent of
s, while x depends on s, which adds complexity as the second-stage decisions can differ
per scenario. Though the problem involves two stages, this formulation can extend to
accommodate multiple stages, forming a multi-stage stochastic programming problem.

The flow of information is crucial in stochastic problems. Decisions made in one stage
can not be based on information one receives after the decision has been made. These
decisions are said to be made ex-ante, whereby all first-stage decisions remain consistent
across all scenarios. Decisions made after the uncertainty is revealed are said to be ex-post
decisions and typically react to realized values of uncertain parameters. For instance, in a
facility location problem, facility locations often constitute ex-ante decisions due to their
strategic nature (Correia & Saldanha-da-Gama, 2019).

3.2.1 Two-stage Stochastic Facility Location Problems

Long-term investment decisions in production facilities need consideration of location-
influencing factors like customer demand, production, and transportation costs. Given
the inherent uncertainty of these factors, informed decision-making poses a challenge.
In a two-stage facility location problem, facility location decisions are made during the
first stage without knowing the actual values of uncertain parameters until the second
stage. This necessitates anticipating potential scenarios to ensure decision robustness
under varying circumstances.

Ravi and Sinha (2004) explore a particular instance of a two-stage uncapacitated stochastic
facility location problem. This problem, formulated below, focuses on an initial stage with
unknown demand and aims to minimize the sum of the anticipated fixed and variable
costs. The uncertain demand varies across multiple scenarios, each associated with distinct
probabilities:

z =
∑
i∈F

fiy
0
i +

m∑
k=1

pk(
∑
i∈F

fk
i y

k
i +

∑
i∈F,j∈D

dk
j cijx

k
ij) (3.11)

subject to:

∑
i∈F

xk
ij ≥ dk

j , j = 1, ..., |D|; k = 1, ...,m (3.12)
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xk
ij ≤ y0

i + yk
i , i = 1, ..., n; j = 1, ..., |D|; k = 1, ...,m (3.13)

xk
ij , y

k
ij ∈ 0, 1, i = 1, ..., n; j = 1, ..., |D|; k = 1, ...,m (3.14)

In this formulation, F denotes the set of facilities, D is the set of clients, and cij represents
the distance between each facility and client. Each scenario k carries a specific probability
pk and demand dk

j . Every facility i has an opening cost f0
i for the first stage and a

recourse cost fk
i . The variable xk

ij equals one if, and only if, facility i serves customer j in
scenario k. According to constraint (3.13), if xk

ij = 1, then facility i must open either in
the first stage, implying y0

i = 1, or in the recourse scenario k, meaning yk
i = 1, or in both.

This single-period problem doesn’t specify costs for the second stage. Risk neutrality is
assumed, as demonstrated by minimizing the expected costs. However, the model can
incorporate risk aversion by adding a penalty for variance (Correia & Saldanha-da-Gama,
2019).

Schütz et al. (2008) developed a model that incorporates both uncertainties in the de-
mand and the short-term costs, with an S-shaped long-term cost function. The model
considers transportation costs and costs related to investing, maintaining, and operating
facilities, expressed through general and non-linear facility costs that capture economies
and diseconomies of scale. In the first stage, capacity decisions are made to establish a
range where variable costs are linear and equal to long-run costs. However, production
volumes outside this range are allowed and are subject to a piecewise linear short-term
cost function. Thus, this model presents a hybrid approach that combines features of both
capacitated and uncapacitated facility location problems.

As far as we know, Snyder (2006) is the most comprehensive review of facility location
under uncertainty. In addition, Melo et al. (2009) provides a review of facility location
in the context of supply chain management. Correia and Saldanha-da-Gama (2019) also
cover some of the more recent literature on facility location under uncertainty, following
Snyder (2006).

3.2.2 Multi-Period Stochastic Facility Location Problems

So far, we have explored facility location problems where influential parameters like in-
vestment costs, demand, and production costs are assumed constant. However, real-world
problems often exhibit temporal variations in these parameters. To accommodate pre-
dictable changes, a dynamic model is frequently necessary (Nickel & Saldanha-da-Gama,
2019).

The concept of a planning horizon, the timeframe over which decisions are made, becomes
essential when considering facility location over time. Problems incorporating a multi-
period planning horizon are termed as multi-period. Thus, multi-period facility location
problems (MPFLPs) determine where and what types of facilities to establish and when
to do so within the planning horizon. This allows for potential capacity expansions in
periods following the facility’s establishment, often in response to increasing demand.
Nickel and Saldanha-da-Gama (2019) introduce a standard multi-period pure phase-in
CFLP (facilities can only be opened):

min
∑
t∈T

∑
i∈I

fityit +
∑
t∈T

∑
j∈J

(
∑
i∈I

cijtxijt + ojtdjtvjt) (3.15)
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subject to:

∑
i∈I

xijt + vjt = 1, t = 1, ..., |T |; j = 1, ..., |J | (3.16)∑
i∈I

yit ≤ mt t = 1, ..., |T | (3.17)∑
j∈J

djtxijt ≤ Qiyit i = 1, ..., I; t = 1, ..., T (3.18)

yit ≥ yi(t−1) t = 2, ..., |T |; i ∈ Ic (3.19)

xijt ≥ 0 t = 1, ..., |T |; i = 1, ..., |I|; j = 1, ..., |J | (3.20)

yit ∈ 0, 1 t = 1, ..., |T |; i = 1, ..., |I| (3.21)

In the above formulation, yit denotes whether a facility operates at location i in time
period t, and fit represents a fixed cost incurred from operating a facility. The decision
variable xitj represents the fraction of the demand of customer j ∈ J in period t ∈ T that
is supplied by facility i ∈ I, with cijt being its corresponding unit cost. The parameter
ojt represents the unit costs of unmet demand in cases where the total customer demand
is unsatisfied, with vjt representing the proportion of unmet customer demand from time
period t. Demand satisfaction of the customers, including potential unmet demand, is
accounted for in (3.18). Only a given number of facilities mt can be operated at time t,
which is handled in restriction (3.17). Restriction (3.21) enforce capacity restrictions.

The above multi-period model allows for facility investments at any location across the
whole planning horizon, given that no existing facility was built beforehand. It does not
allow for capacity expansions, however. By assuming that capacity expansions occur at
the beginning of the time periods, the problem can be adjusted to allow for expansions in
the following way:

min
∑
t∈T

∑
i∈I

∑
p∈Pi

fiptyipt +
∑
t∈T

∑
j∈J

∑
i∈I

∑
p∈Pi

(cijptxijpt + ojtdjtvjt) (3.22)

subject to:

∑
i∈I

∑
p∈Pi

xijpt + vjt = 1, t = 1, ..., |T |; j = 1, ..., |J | (3.23)
∑
i∈I

∑
p∈Pi

yipt ≤ mpt t = 1, ..., |T | (3.24)

∑
j∈J

djtxijpt ≤ nip0Qp +
t∑

τ=1
Qpyipτ i = 1, ..., I; t = 1, ..., T ; p = i = 1, ..., |P | (3.25)

yipt ≥ yip(t−1) t = 2, ..., |T |; i ∈ Ic (3.26)

xijpt ≥ 0 t = 1, ..., |T |; i = 1, ..., |I|; j = 1, ..., |J |; p = i = 1, ..., |P | (3.27)

yipt ∈ 0, 1 t = 1, ..., |T |; i = 1, ..., |I|; p = i = 1, ..., |P | (3.28)

The above model considers a set of facility types P . For each location, a subset of these
types Pi ∈ P can be progressively established during the planning horizon, such that
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operational capacity can be adjusted. The parameter nip0 denotes the number of facilities
of type p operating at location i before the beginning of the planning horizon. Therefore,
the problem does not capture initial investments and further capacity expansions at the
same location but rather adjustments to a system that has already been built.

Stádlerová et al. (2023) present a multi-period stochastic facility location problem for
planning the Norwegian hydrogen supply chain for transportation. This model includes
various demand scenarios, each representing demand realizations across multiple years.
Capacity extensions are permitted to meet the demand for all years in a scenario, with
economies of scale assumed for both investment and operational costs. The former is
modeled in a staircase fashion. The model also imposes constraints on the maximum
transportation distance, ensuring facilities only meet a subset of the customer demand.
Due to the computational difficulty of the model, Lagrange Relaxation was applied to relax
the restrictions connecting facilities and customers. The resulting Lagrangian subproblem
optimizes the opening and expansion schedule for each facility across all scenarios, min-
imizing total expected costs. The scheduling of capacity expansions for a specific location
is formulated and solved as a shortest-path problem via dynamic programming. Further-
more, for a given capacity, time period, and location, the customer allocation problem is
solved as a continuous knapsack problem.

Multi-period problems add time as a complexity dimension, making models more chal-
lenging and time-consuming to solve. Therefore, there is a trade-off between the value
of formulating the problem as a multi-period model and the computational complexity.
The value of a multi-period solution is often case-dependent when compared to a static
counterpart. The latter uses the available data within the planning horizon to seek a
time-invariant solution, focusing on the optimal setup in the first period to fulfill all fu-
ture periods’ needs. Under capacity restrictions and changing parameters such as demand,
a static solution may require assuming maximum demand levels for every stage within the
planning horizon. This can lead to high costs and suboptimal solutions, particularly when
capacity expansions can exploit economies of scale. If investment costs decrease over time,
a reference cost must be established, such as the maximum or average cost, to balance
current expenditure against future adjustments for optimal planning (Nickel & Saldanha-
da-Gama, 2019). To the knowledge of this thesis writers, Nickel and Saldanha-da-Gama
(2019) is the most comprehensive review on multi-period facility location.

3.2.3 Multi-stage Stochastic Programming

In two-stage stochastic programming, it’s assumed that uncertainties realize only once after
first stage decisions have been made. However, many practical problems require sequential
decision-making in response to outcomes that unfold over time (Birge & Louveaux, 2011).
To address this complexity, multi-stage stochastic programming extends the two-stage ap-
proach to accommodate sequential decision-making and the progressive realization of un-
certainties. A general linear multi-stage stochastic program with fixed recourse is provided
by Birge and Louveaux (2011). The model uses implicit nonanticipativity constraints:

min z = c1x1 + E2
ξ [min c2(ω)x2(ω2) + ...+ EξH [min cH(ω)xH(ωH)]...] (3.29)

subject to:

W 1x1 = h1 (3.30)
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T t−1(ωt)xt−1 +W txt(ωt) = ht(ω) t = 2, ...,H; (3.31)

. . .
... (3.32)

TH−1(ωH)xH−1 +WHxH(ωH−1) = hH(ω); (3.33)

x1 ≥ 0;xt(ωt) ≥ 0 t = 2, ...,H; (3.34)

As depicted in (3.29), the model’s objective is to minimize the sum of expected costs ct(ωt)
associated with all decisions xt(ωt) taken at each stage t ∈ H. Here, W t is a known para-
meter, whereas T t, ht, and ct(ωt) are stochastic parameters, accommodating variations
in cost coefficients, constraint coefficients, and right-hand-side values. These stochastic
parameters can encapsulate variability in future investment costs, operational costs, and
demand. The decision variable x depends on the history up to time t, represented as ωt,
which is determined by the random process ξt.

3.2.3.1 Multi-stage Stochastic Facility Location Problems

Multi-stage facility location problems (MSFLPs) can offer more flexibility than their two-
stage multi-period counterparts, as new decisions can be made after the gradually revealed
information. This could be relevant for making adjustments such as capacity expansions
and new investments when new information about customer demand is revealed. To our
knowledge, however, only a handful of papers address MSFLPs. Yu et al. (2021) assesses
the value of multi-stage facility location with risk aversion by comparing two two-stage
multi-period CFLPs to a multi-stage one. The following mathematical formulation is
introduced:

min
T∑

t=1

M∑
i=1

fti

t∑
τ=1

xτi +
T∑

t=1

M∑
i=1

N∑
j=1

ctijytij (3.35)

subject to:

M∑
i=1

ytij = dtj , j = 1, ..., N ; t = 1, ..., T (3.36)

N∑
j=1

ytij ≤ hti

t∑
τ=1

xτi i = 1, ...,M ; t = 1, ..., T (3.37)

t∑
j=1

xτi ≤ 1, i = 1, ...,M ; t = 1, ..., T (3.38)

xti ∈ Z+ i = 1, ...,M ; t = 1, ..., T (3.39)

ytij ∈ R+ i = 1, ...,M ; t = 1, ..., T (3.40)

The problem involves |T | stages, where in each stage t ∈ T , the decision to rent 1, ...,M
potential facilities is made. The coefficient ctij signifies the unit cost of shipping a product
from facility i, and fti is the fixed rental cost for facility i at stage t. The objective function
in (3.35) seeks to minimize total rental and operational costs across all stages. Facility
capacity at location i in stage t is represented by hti. Demand dtj , t ̸= 1 is considered
stochastic, following a known probability distribution, whereas the first stage demand
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d1j is deterministic. The constraint in (3.36) ensures demand satisfaction, while (3.37)
restricts product shipment not to exceed production capacity. Constraint (3.38) limits
facility openings to a single instance per location.

Traditional two-stage FLPs are NP-hard, which require a long runtime for large decision
spaces. Expanding a two-stage FLP to become multi-stage further increases the complexity
and runtime exponentially, and are thus difficult problems to solve. It is, therefore, useful
to use either heuristics, meta-heuristics, or approximation methods to solve such problems
within a reasonable time. Lai et al. (2019) solves the following multi-objective four-stage
CFLP using simplified swarm optimization:

min
Nsup∑
i=1

Nplt∑
j=1

sijxij +
Nplt∑
j=1

Ndtc∑
k=1

tijyjk

+
Ndtc∑
k=1

Ncus∑
l=1

uklzkl +
Nplt∑
j=1

fjvj +
Ndtc∑
k=1

gkrk

(3.41)

max
Nplt∑
j=1

Upltjyjk +
Ndtc∑
k=1

Udtckzkl (3.42)

Subject to:

sumNplt
j=1 xij ≤ ai i = 1, ..., |I|; (3.43)

Ndtc∑
k=1

yjk ≤ bjvj j = 1, ..., |J |; (3.44)

Ncus∑
l=1

zkl ≤ ckzk k = 1, ...|K|; (3.45)

Ndtc∑
k=1

zkl ≥ dl l = 1, ..., |L|; (3.46)

vj , zk = {0, 1}∀j k = 1, ..., |K|; (3.47)

xij , yjk, zkl ≥ 0 i = 1, ..., |I|; j = 1, ..., |J |; k = 1, ...|K|; l = 1, ..., |L|; (3.48)

In the model discussed in the referenced paper, the objective function shown in Equation
(3.41) is designed to minimize the overall cost of a supply chain network (SCN), incor-
porating both transportation and fixed costs. In contrast, Equation (3.42) is purposed to
maximize the total utility derived from all operational facilities, which includes plants and
distribution centers. The calculation of facility utility leverages the Fuzzy Analytic Hier-
archy Process (FAHP), a method that employs qualitative factors outlined in the paper.
Each weight indicated as wpltjm or wdtckm for instance, is determined through expert
opinion as presented in this model by Lai et al. (2019). Constraints pertaining to capacity
for suppliers, plants, and distribution centers are respectively represented by Equations
(3.43)–(3.45). Meanwhile, equation (3.46) is designed to ensure customer demand satis-
faction.

26



This model relates to the capacitated facility location problem (CFLP), which is recognized
as a special case of the multi-stage CFLP. Due to the NP-hard nature of CFLP, it is
necessary to apply heuristic or meta-heuristic strategies to solve the problem effectively.
Given that multiple non-dominated solutions exist for multi-objective problems, providing
a spectrum of compromise alternatives for decision-makers, the authors propose a multi-
objective evolutionary algorithm (MOEA). This algorithm is intended to generate a set of
Pareto-optimal solutions, offering flexibility in decision-making.

3.2.3.2 Multi-horizon Multi-stage Stochastic Programming

Infrastructure planning and models are challenging due to the combination of time scales.
While planning and building infrastructure are strategic decisions, with time horizons
spanning multiple years, one needs an operational time scale to get a clear picture of
the infrastructure’s performance and profitability. Similarly, it is also important to assess
the operational impact of investment decisions for facility location decisions, especially for
hydrogen facility locations, where operational costs account for the majority of total costs.

Strategic and operational levels are fraught with uncertainties. On the strategic level, fu-
ture demand and technological evolution introduce uncertainty. These strategic decisions
subsequently restrict the range of operational recourse and influence operational-level de-
cisions. The operational uncertainties can be for instance, future spot prices of commod-
ities. The confluence of uncertainties across different time scales complicates the tradi-
tional multistage stochastic programming formulation, leading to an exponential growth
in model size (Kaut et al., 2014). This scenario explosion results from the approach of
branching operational scenarios for every strategic scenario at each strategic stage, given
the independence of strategic and operational events, as depicted in figure Figure 3.1a.

Kaut et al. (2014) propose an innovative modeling approach that significantly curbs model
size compared to the traditional approach. They argue that strategic decisions depend
not on individual operational scenarios but on the overall operational performance of the
respective strategic decision. Consequently, branching is only necessary between strategic
stages, while operational nodes are embedded within their respective strategic nodes. This
checks the feasibility and performance of the decisions at the respective strategic nodes
without the scenario explosion, as demonstrated in Figure 3.1, where Figure 3.1a illustrates
the traditional approach, and Figure 3.1b displays the multi-horizon approach.
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(a) both strategic and operational uncertainty (b) multiple operational scenarios per node

Figure 3.1: Illustrations provided by Maggioni et al. (2020a). To the left (a) we see
a scenario tree arising from the traditional way of modeling stochastic problems with
both strategic and operational uncertainty. The illustration to the right (b) show the
corresponding multi-horizon approach.

In the proposed multi-horizon structure by Kaut et al. (2014), there is no connection
between operational scenarios of two consecutive strategic nodes. This structure is exact
if the following two conditions are satisfied. Firstly, the strategic uncertainty must be
independent of the operational uncertainty, and the strategic decisions must not depend on
any particular operational decisions. Secondly, the first operational decision in a strategic
node cannot depend on the last operational decision from the previous period.

The first condition is reasonable and can be expected to be met in many situations,
mainly when the gap between strategic and operational time scales is significant (years
versus hours). However, the second condition is more challenging to meet precisely. For
instance, considering strategic periods that align with calendar years and one-hour op-
erational periods, we would need the operational decisions at 00:00 on January 1 to be
independent of those at 23:00 on December 31 of the previous year. This implies that
the proposed structure will most likely approximate the ’standard trees’ from the previous
section, and the degree of approximation is case-dependent. For example, consider a power
producer owning hydropower plants; water reservoirs introduce a temporal aspect to the
operational model, contravening the second condition. Nevertheless, in regions with cold
winters, reservoirs are generally at their minimum levels at the end of winter in most scen-
arios. Hence, the approximation error will be relatively insignificant if strategic decisions
are positioned at winter’s end.

Maggioni et al. (2020b) presents a formulation for a multi-horizon stochastic program
based on a multi-horizon scenario tree and node notation, which is given as follows:

min
x,y

H∑
t=1

∑
l∈Nt

πl(clxl +
∑
s∈St

ws
l

∑
τ∈Tt

qs,τ
l ys,τ

l ) (3.49)

subject to:
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Axl = hl l ∈ N1 (3.50)

Tlxa(l) +Wlxl = hl l ∈ Nt, t ∈ H \ {1} (3.51)

T s,1
l xl +W s,1

l ys,1
l = hs,1

l l ∈ Nt, s ∈ St, t ∈ H (3.52)

T s,τ
l ys,τ−1

l +W s,τ
l ys,τ

l = hs,τ
l l ∈ Nt, τ ∈ T \ {1}, s ∈ St, t ∈ H (3.53)

xl ∈ Rnt
+ l ∈ Nt, t ∈ H (3.54)

ys,τ
l ∈ Rnτ

t
+ l ∈ Nt, τ ∈ Tt, s ∈ St, t ∈ H (3.55)

In the equations, cl, hl, Tl, and Wl represent vectors and matrices at a strategic node
l ∈ N t, t ∈ H \ 1. For l ∈ N1, we set Tl = A,Wl = 0, and assume cl and hl as known
vectors. Each strategic node l at stage t has a unique ancestor, a(l), at stage t−1, excluding
the root node. The probability of reaching node l through strategic event realizations is
denoted by πl, and its conditional probability at the ancestor node is πa(l),l. Analogously
to ancestor nodes, each non-leaf node at stage t has successors at stage t+ 1.

3.3 Supply Chain Network Design

Supply chain network design (SCND) is an operations research discipline that determ-
ines the most efficient location and capacity for facilities and the flow of goods through
those facilities (Li et al., 2019). When dealing with uncertainty, the goal of SCND is to
create a configuration that performs well regardless of the specific outcomes of uncertain
parameters.

Supply chain management (SCM) comprises three planning levels that vary based on the
time frame: strategic, tactical, and operational. The strategic level is responsible for
decisions that have long-term impacts on the firm, typically spanning over several years
(Simchi-Levi et al., 2004). These decisions revolve around the quantity, location, and
capacities of facilities, which are related to the facility location discussed in Section 3.1.

The primary expansion of supply chain research beyond traditional facility location prob-
lems is the examination of how tactical and operational decisions impact optimal strategic
decisions. Numerous studies have developed stochastic models with multiple tactical or
operational periods (Govindan et al., 2017). In these models, the second stage encom-
passes several time periods, enabling the capture of variations in stochastic parameters
and the ability to modify tactical and operational decisions in different periods.

Schütz et al. (2009) investigate a two-stage stochastic program that involves a strategic
location decision in the first stage and operational decisions in the second stage, spanning
multiple time periods to capture variations in stochastic parameters. The authors examine
the impact of the level of aggregation in the second stage on the first-stage solution and
find that disaggregated problem instances result in lower expected costs than aggregated
instances. This suggests that solutions with higher temporal resolution lead to lower costs
for the given problem instances.
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3.3.1 Hydrogen Supply Chain Network Design

Li et al. (2019) conducted a review of the literature on hydrogen supply chain network
design and found that linear and mixed-integer linear programming models (LP/MILP)
are commonly used for modeling hydrogen supply chain networks.

Almansoori and Shah (2006)’s paper that introduces a model which accounts for produc-
tion, storage, and transportation under deterministic demand, serves as a foundation for
many subsequent papers cited in Li et al. (2019). Almansoori and Shah (2009) exten-
ded this model to address multiple periods. The authors applied their model to design a
hydrogen supply chain in Great Britain and considered the entire value chain, including
technology selection, facility location, production and storage capacities, and transporta-
tion mode.

Li et al. (2019) categorized modifications of Almansoori and Shah (2006) hydrogen sup-
ply chain model into four types: multi-objective, multi-period optimization, introducing
uncertainty, and integration with other supply chains. The paper selected for analysis in
this report focuses on uncertainty and multi-period modification. Most of these papers
examine uncertainty in demand, but Sabio et al. (2010) explore uncertainty in operating
costs and raw material prices. They propose a computationally intensive multi-scenario,
multi-period MILP to model the uncertainty. However, to handle the complexity of the
model, a decomposition strategy is introduced. A case study on a hydrogen supply chain
in Spain is used to illustrate the effectiveness of the decomposition strategy for up to
eight time periods, as opposed to six time periods without it, considering 18 potential
production locations, four technologies, and 50 scenarios

Myklebust et al. (2010) examine a hydrogen supply chain problem in Germany with de-
terministic parameters. The study aims to investigate how demand and input costs in-
fluence technology selection. The model considers three options for hydrogen production
from natural gas and only one for electrolysis. Regions with demand and the potential
for production capacity are included in the model, allowing demand and production to
coincide in many cases. The model also accounts for the option of exporting hydrogen to
other regions using pipelines or trucks.

Stádlerová and Schütz (2021) investigate the location of hydrogen facilities to cater to
the maritime transportation industry in Norway. Their research proposes a multi-period
model for facility location, featuring capacity expansion for developing the hydrogen sup-
ply chain towards 2035. The model incorporates economies of scale in investment and
production costs, provides a choice of hydrogen technologies, and enables customer alloc-
ation decisions.

3.4 Hydrogen Production flexibility

Electrolysis plant operators face a significant challenge related to the cost of electricity,
which accounts for 70-88% of the cost of hydrogen production. To overcome this challenge,
plants need to have the ability to operate dynamically, enabling them to take advantage of
lower electricity prices at certain times (Matute et al., 2021). The flexibility to efficiently
switch production on and off in response to significant price volatility can be advantageous.
However, there are no papers available that address the optimization of both short-term
hydrogen production in relation to electricity prices and the strategic decision of where to
locate hydrogen production plants.
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Matute et al. (2021) have created a model that considers the fluctuating prices of electricity
and determines the best plan for hydrogen production at a specific facility. The model has
limitations on the number of cold starts permitted within a given period to prevent undue
stress on the technology. It also ensures that production and power consumption have
minimum partial loads if the electrolyzer goes into standby mode. The proposed model is
a mixed-integer non-linear optimization problem (MINLP). The researchers used Alkaline
as a case study, and the model does not compare different technologies.

As previously mentioned, Alkaline has a significantly longer ramp-up time than PEM
before reaching full utilization potential after production is initiated. To model factors
such as this, different production modes can be implemented for a facility over a specific
time period. Leo and Engell (2018) used a two-stage stochastic program to determine
optimal day-ahead electricity procurement and production scheduling by incorporating
production modes. In the first stage, the program chooses different operation modes (Off,
Startup, and On), which determine the planned production throughput and electricity
consumption for a given time period. After a mode switch, a certain number of time
periods must elapse before the next switch can occur.

Corengia and Torres (2022) investigate the impact of time-varying power on the selec-
tion of hydrogen production technologies at a specific location. The paper compares the
Alkaline, PEM, and SOEC technologies for two scenarios: small-scale and large-scale hy-
drogen production plants, which are defined as producing 500 kg/day and 2.5 tons/day,
respectively. According to their findings, Alkaline technology offers a more cost-effective
solution in both cases, while PEM technology’s higher investment cost offsets its flexibil-
ity advantages. However, the study does not explore the benefits of flexibility in start-up
times.

Seljom and Tomasgard (2015) distinguish between short-term and long-term uncertainty
in their analysis of the impact of wind power’s short-term uncertainty on long-term energy
investments. Long-term uncertainty involves factors that affect parameters over an exten-
ded period, usually spanning years, such as future greenhouse gas reduction commitments.
Short-term uncertainty, on the other hand, refers to recurring conditions, including wind
conditions and commodity price fluctuations. To model energy investments under short-
term uncertainty, the authors utilize stochastic programming. The investment decision is
made in the first stage and implemented in the second stage, where uncertain paramet-
ers are revealed. The objective of operational decisions is to meet demand at the lowest
cost. The second stage follows an operational time structure, divided into four seasons,
each with 12 two-hour steps. This model captures the variability between every two-hour
step at the operational level, allowing for investment decisions that provide appropriate
flexibility.
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Chapter 4

Problem Description
This chapter presents our facility location problem under demand and electricity price
uncertainty, with the choice to invest in multiple production technologies. The problem
consists of making sequential strategic and operational decisions over multiple stages,
with the objective of making an overall optimal investment scheme, as defined by having
the lowest expected total costs, i.e., the sum of expected investment, production, and
transportation costs over all the stages.

The decision process for a given stage is illustrated in Figure 4.1, where for each stage,
strategic decisions and subsequent operational recourse decisions are made in response
to realization in the event space. The overall decision process takes place over multiple
stages, with decisions at one stage being influenced by previous decisions and realizations
and expectations over future realizations. The problem, therefore, entails a sequential
decision process and can be modeled as a multi-stage problem. Further, the operational
level consists of multiple time periods as well, each corresponding to a specific hourly elec-
tricity price realization. We, therefore, have two time scales, one for strategic investment
decisions and one for operational production decisions. Such a multi-stage problem can be
formulated as a multi-horizon problem as seen in Figure 4.2, where the operational stages
and decisions are embedded in the strategic ones.

Figure 4.1: Overview of the sequential decision process, each stage involves a strategic
event (demand level), a strategic investment decision, an operational event (electricity
price), and an operational recourse decision (production schema). This sequence occurs
for every stage.
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Figure 4.2: A three-stage multi-horizon stochastic problem. Strategic decisions are
made along the red squares, each corresponding to a specific demand realization. The
blue represents the operational decisions to be made, and are embedded into the strategic
decisions.

We are given a set of possible facility locations, production technologies, a set of customers,
and production capacities one can invest in. A set of strategic stages is given where one
can invest. The stage has associated nodes where each node has a realization of demand for
each customer. In addition, each node, except the root node at the first strategic stage, has
a parent node on which it depends on the previous investments done at a location. At each
node, one decides whether to invest or not and, if so, which combinations of production
technology and capacity to invest in. The chosen investment restricts the production
throughput and flexibility at a location. The installed capacity is an upper limit on the
production throughput of hydrogen for each location, and the chosen technology influences
the production plan in two ways. The technology determines the range of feasible capacity
utilization levels, where PEM has a broader interval to choose from than Alkaline. In
addition, the choice of technology affects production ramp-up time, where PEM offers an
almost instant ramp-up, whereas Alkaline spends over an hour in ramp-up mode. There
are thus different degrees of production-related flexibility between PEM and Alkaline, with
the former having the greatest flexibility. Once you have made an investment decision or
lack thereof, it cannot be undone, but additional investments can be made at later stages.
The investment and production costs are expected to drop over time due to technological
and economic advancements. The costs related to a specific production technology depend
on what stage it was acquired at.

At the operational level, one has a set of production periods, which consists of a set
of time periods. One needs to decide on a production plan for hydrogen, fulfilling the
demand at the given node while minimizing the production and transportation cost, given
the invested capacity at that given node. The production planning consists of deciding
production quantities for all opened facilities at all time periods for each realization of
the different strategic stages and electricity prices. Production is done according to the
restrictions that come from the capacity and technology chosen. The electricity price is
stochastic and is the only parameter variable over each operational horizon. Thus, it will
influence production planning: When the electricity price is high, one should produce
at low utilization rates, while if the electricity price is low, one should produce at high
utilization rates.
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The transportation costs are a function of the distance between the customer in the pro-
duction facility and the amount of hydrogen transported. The costs increase strictly with
the distance and weight. Each production facility can only reach the customers within a
maximum distribution range.
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Chapter 5

Mathematical Model
5.1 Sets

H = {1, ..., |H|} - Set of strategic stages
Nh - Set of ordered nodes of the strategic tree at stage h ∈ H
Sh - Set of operational scenarios (or profiles) at strategic time h ∈ H
I - Set of possible facility locations
J - Set of customer locations
K - Set of possible discrete capacities
P - Set of possible production technologies
E - Set of epochs for different seasons
T - set of time periods in each epoch

PW ⊆ P - Subset of production technologies requiring stay time in off mode after
production shutdown

5.2 Parameters

5.2.1 Strategic Parameters

Bp - Lower bound of production for technology p ∈ P
C l

kp - Annualized investment and operational costs for technology p ∈ P at
capacity level k ∈ K at strategic node l ∈ Nh, h ∈ H

Dl
je - Demand at port j ∈ J in epoch e ∈ E at strategic node l ∈ Nh, h ∈ H

in the scenario tree
Kk - Production capacity level k ∈ K

a(l)ω - Ancestor to the node l of degree ω ∈ {0, ..., h−1} , where degree indicates
number of preceding stages. Degree 0 corresponds to the current stage,
degree 1 correspond to it’s immediate ancestor (i.e., parent node), degree
2 corresponds to the ancestor of it’s immediate ancestor degree h − 1
corresponds to the root node, l ∈ Nh, h ∈ H

πl - Probability of strategic node l ∈ Nh, h ∈ H

5.2.2 Operational Parameters

Ehl
isτe - The cost of electricity at location i ∈ I at a given time period τ in epoch

e, as defined by scenario s ∈ Sh, derived at strategic node l ∈ Nh, h ∈ H
F hl

p - Production efficiency of technology p at the strategic time period h.
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wl
s - Weight (probability) of operational scenario s ∈ Sh, derived at strategic

node l ∈ Nh, h ∈ H
Wp - minimum stay time in off mode after turning production off for techno-

logy p ∈ PW

Tij - Distribution costs from facility i to customer j, i ∈ I, j ∈ J
Lij - 1 if demand at location j can be served from facility i, 0 otherwise,

i ∈ I, j ∈ J
U - Penalty cost per unit of hydrogen not supplied
O - Penalty cost per unit of hydrogen overproduced

5.3 Decision variables

5.3.1 Strategic Decision Variables

yl
ikp - 1 if a facility is opened at location i at the k-th capacity level for techno-

logy p at strategic node l, 0 otherwise, l ∈ Nh, h ∈ H, i ∈ I, k ∈ K, p ∈ P

5.3.2 Operational Decision Variables

dhl
ikpsτe - 1 if there is production at location i, at the k-th capacity level for tech-

nology p acquired in strategic period h, at time period τ in epoch e for
scenario s, derived from strategic node l, 0 otherwise, i ∈ I, k ∈ K, p ∈
P, τ ∈ T , e ∈ E , s ∈ Sh, h ∈ H

ol
ise - Amount of excess produced hydrogen at facility i in epoch e in scenario

s, derived from strategic node l ∈ Nh, i ∈ I, e ∈ E , s ∈ Sh, h ∈ H
qhl

ipτse - Production volume at facility i by technology of type p acquired in stage
h, at time period τ in epoch e of scenario s, derived from strategic node
l ∈ Nh, h ∈ H, i ∈ I, τ ∈ T , e ∈ E , s ∈ Sh

uhl
jse - Amount of unsatisfied demand after supply of non-imported hydrogen

to customer j for epoch e at scenario s, derived at strategic node l ∈ Nh,
h ∈ H, j ∈ J , e ∈ E , s ∈ Sh

xl
ijse - Amount of customer demand at location j satisfied from facility i in

epoch e and scenario s, derived at strategic node l ∈ Nh, h ∈ H, j ∈
J , i ∈ I, e ∈ E , s ∈ Sh

5.4 Objective function of investment planning master prob-
lem

min
y

∑
h∈H

∑
l∈Nh

πl(
∑
i∈I

∑
p∈P

∑
k∈K

C l
kpy

l
ikp(|H|+ 1− h) +

∑
s∈Sh

wsψs(y)) (5.1)

Equation 5.1 minimizes the total expected annualized costs of both the strategic decisions
and their respective operational costs, for all stages. The first expression of the objective
function captures the expected strategic investment cost made at every stage of the model,
h ∈ H, broken down by the respective strategic scenarios at each strategic stage, l ∈ Nh.
As capacity investments made in one stage will also be available for use in subsequent
stages, the annualized investment costs are multiplied by the number of strategic stages for

36



which they will be modeled operationally. That is, investments made at the strategic nodes
in the first stage will be multiplied by |H|, as these investments are modeled operationally
for all the strategic stages. Similarly, investments made at the last stage, i.e., leaf nodes,
will only be modeled operationally for one strategic period and are thus only multiplied
by a factor of 1.

The second expression of the objective function captures the expected operational costs
made at every stage. That is, the weighted sum of the expected production and trans-
portation costs from a strategic investment decision yl made in node l. The aim is not
to engage in actual operational planning but to adequately represent the anticipated op-
erational impacts of long-term investment decisions. The set of operational scenarios Sh

and its corresponding probability vector ws is the same for all the strategic nodes within
a strategic stage. The function ψs(y) denotes the operational costs tied to a specific in-
vestment decision at a strategic node l for a given operational scenario, s. It is important
to note that this is a recourse function consisting of scenarios and costs arising after the
investment decisions, yl, have been made. The objective function operates in a recursive
way, where for each stage h, strategic investment decisions yl made for each respective
demand realization, along with the current stage h and strategic node l are passed into
the operational recourse function.

5.5 Strategic Restrictions

∑
k∈K

∑
p∈P

yl
ikp ≤ 1, h ∈ H, l ∈ Nh, i ∈ I; (5.2)

yl
ikp ∈ {0, 1}, h ∈ H, l ∈ Nh, i ∈ I, k ∈ K, p ∈ P; (5.3)

Restriction 5.2 ensures that you only can invest in one capacity and technology at a location
for each node in a stage. Restriction 5.3 is the binary constraint on the investment variable.

5.5.1 Strategic Nonanticipativity constraints

y
a(l)
ikp = y

a(l′)
ikp , l, l′ ∈ Nh, h ∈ H \ {1}, a(l) = a(l′), k ∈ K, p ∈ P, i ∈ I; (5.4)

Restriction 5.4 ensures non-anticipativity of strategic nodes, such that for any pair of
nodes, l and l′, with the same strategic parent node, their respective parent nodes have
to have made the same investment decision. Thus, knowledge about future realizations
cannot be exploited.

5.6 Objection function of the operational subproblem

ψs(y) = min
h∑

δ=1

∑
i∈I

∑
p∈P

∑
τ∈T

∑
e∈E

Eδl
isτeF

δl
p q

δl
ipτse+

∑
i∈I

∑
j∈J

∑
e∈E

Tijx
l
ijse+

∑
j∈J

∑
e∈E

Uul
jse+

∑
i∈I

∑
e∈E

Ool
ise;

(5.5)
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Equation (5.5) represents the operational stage objective functions, which consists of the
sum of production costs, distribution costs, and penalty costs for not fulfilling demand
at a given operational scenario, s. F δl

ipsτe denotes the production costs of the short-term
cost function, which is the production unit costs. It encapsulates, among other things,
the cost of electricity for a specific production location i at a specific hour τ in a given
season e. Further, the term captures the electricity required to produce a unit of hydro-
gen for production technology p acquired a strategic time period h. qδl

ipτse denotes the
production volume at a given technology, location, and moment of time. As available
production capacity investments can have been made in previous stages as well, not only
in the current stage, it is indexed by δ. In this way, potential technological improvements
with respect to the efficiency of electricity usage during hydrogen production is captured.
In this way, capacity acquired at later stages can have improved electricity and cost effi-
ciency compared to capacity acquired at later stages. Thus, a given location can contain
available production capacity of the same technology type p, where the newer capacity
has a higher production efficiency than the older capacities while still being able to use
the older capacity. The rest of the objective function includes transportation costs, and
underage and overage costs, respectively.

5.7 Operational Restrictions

dδl
ikpsτe ≤ yω

ikp, δ = {1, ..., h}, ω = {a(l)(h−1), ..., a(l)1, l},
i ∈ I, τ ∈ T , p ∈ P, k ∈ K, e ∈ E , s ∈ Sh, h ∈ H;

(5.6)

Restriction (5.6) makes sure that one can only produce hydrogen from available installed
capacity at a given location and a given strategic stage. Similar to the production volume
variable qδl

ipτse, the ”production on or off”-variable dδl
ikpsτe is indexed by the strategic stage

in which it’s corresponding capacity was acquired. At a strategic node l ∈ Nh, there are
thus h such ”on or off”-variables for each location, capacity, and production technology,
corresponding to capacity acquired at the node l in the present strategic stage h and all
the available capacity acquired by its ancestors in previous stages.

5.7.1 Demand Fulfillment

∑
i∈I

xl
ijse + ul

jse ≥ Dl
je, j ∈ J , e ∈ E , s ∈ Sh, h ∈ H, l ∈ Nh; (5.7)

∑
j∈J

xl
ijse + ol

ise =
h∑

δ=1

∑
τ∈T

∑
p∈P

qδl
iptse, i ∈ I, e ∈ E , s ∈ Sh, h ∈ H, l ∈ Nh; (5.8)

Restriction (5.7) ensures that demand is either satisfied or not satisfied. Restriction (5.8)
ensures that the total amount of hydrogen produced at any location i in epoch e by all
the available capacities acquired in the current and preceding stages, qδl

iptse, is equal to the
demand satisfied to all it’s respective customers, xl

ijse, and the excess produced hydrogen
ol

ise.
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5.7.2 Transportation restriction

xl
ijse ≤ LijD

l
je, i ∈ I, j ∈ J , e ∈ E , s ∈ Sh, h ∈ H, l ∈ Nh; (5.9)

Constraint (5.9) restrict which facilities i can satisfy demand from customer location j.

5.7.3 Production restrictions

qδl
ipτse ≤

∑
k∈K

Kkd
δl
ikpsτe, δ = {1, ..., h}, i ∈ I, p ∈ P, τ ∈ T , e ∈ E , s ∈ Sh, h ∈ H, l ∈ Nh;

(5.10)

qδl
ipτse ≥

∑
k∈K

Bδ
pKkd

δl
ikpsτe,

δ = {1, ..., h}, i ∈ I, p ∈ P, τ ∈ T , e ∈ E , s ∈ Sh, h ∈ H, l ∈ Nh.

(5.11)

dδl
ikpsτe − dδl

ikps(τ+1)e ≤ 1− 1
Wp

σ=τ+1+Wp∑
σ=τ+2

dδl
ikpsτe,

δ = {1, ..., h}, i ∈ I, k ∈ K, p ∈ PW , τ ∈ T \ {|T | − 1, |T |}, e ∈ E , s ∈ Sh, h ∈ H, l ∈ Nh;
(5.12)

Restriction (5.10) force production volume from installed capacities to be zero if production
is not possible, i.e., if a facility is not opened at location i or during the waiting period
of the ramp up-stage, and force it to be less than or equal to the maximum installed
capacity. Constraint (5.11) makes sure that hydrogen production is greater than or equal
to the lower bound of allowable utilization for a technology p acquired in strategic stage δ,
or zero. Constraint (5.12) forces production in the following Wp periods to be zero if you
switch off production in one period for technology p ∈ PW . The on-and-off mechanism is
recorded for the strategic stage in the capacity was acquired. One can thus for instance,
have two installed production capacities of technology type p ∈ PW , respectively required
at the strategic stages δ and δ′, where only one of them is required to stay off, namely the
one which was turned off in the previous operational time period τ − 1.

5.7.4 Non-negativity and Binary Constraints

xl
ijse ≥ 0, i ∈ I, j ∈ J , e ∈ E , s ∈ Sh, h ∈ Hl ∈ Nh; (5.13)

qδl
ipτse ≥ 0, δ = {1, ..., h}, i ∈ I, p ∈ P, τ ∈ T , e ∈ E , s ∈ St, h ∈ Hl ∈ Nh; (5.14)

ul
jse ≥ 0, j ∈ J , e ∈ E , s ∈ Sh, h ∈ Hl ∈ Nh.; (5.15)
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ol
ise ≥ 0, i ∈ I, e ∈ E , s ∈ Sh, h ∈ Hl ∈ Nh; (5.16)

dδl
ikpsτe ∈ {0, 1}, δ = {1, ..., h}, i ∈ I, k ∈ K, p ∈ P, τ ∈ T, e ∈ E , s ∈ Sh, h ∈ H, l ∈ Nh;

(5.17)

Constraint (5.13) to (5.17) include binary and non-negativity requirements on the vari-
ables.

Our model exhibits the relatively complete recourse property as we have penalty costs
for producing too much hydrogen, but penalty costs for not fulfilling the demand due to
(5.7) and (5.8). Relatively complete recourse means that for every solution of the strategic
investment variables y we can construct a feasible solution for the operational stage. This
makes it easier to implement acceleration techniques to the model as one does not need
to take into account feasibility when relaxing constraints.
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Chapter 6

Solution Method
The main idea behind Lagrangian relaxation is to transform the original constrained op-
timization problem into a simpler, more manageable form. This is achieved by integrating
constraints directly into the objective function by introducing Lagrange multipliers. Each
constraint is associated with a multiplier, and a new term is added to the objective function
corresponding to the product of this multiplier and the constraint. This process relaxes
the problem by expanding the feasible solution space, making it easier to solve.

The Lagrangian problem is solved over several iterations, yielding a solution for different
values of the Lagrange multipliers. The set of best solutions forms the dual problem,
the solution which offers a lower bound to the original problem’s solution. An iterative
method, such as the subgradient method, determines the optimal values of the Lagrange
multipliers, fine-tuning them based on the extent of constraint violation.

As the process continues, the solution to the relaxed problem converges towards the original
problem’s solution, allowing us to solve the original complex optimization problem more
effectively and manageably. This process culminates either when a feasible solution that
satisfies the original constraints is identified or when an optimal solution is determined
such that further changes to the multipliers cease to enhance the objective function.

While the Lagrangian relaxation does not guarantee an optimal solution to the original
problem, it often offers an effective approximation, especially in cases where the direct
approach is computationally prohibitive. Furthermore, the solution to the dual problem
serves as a valuable indicator of the optimal solution’s bounds. This framework’s efficacy
can be visualized effectively in a two-dimensional space, as illustrated in Figure 6.1, show-
ing how sequential cuts (tangent lines) to a convex function converge to the function’s
minimum.
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Figure 6.1: Illustration of five steps of a Lagrangre relaxation on 2D minimization
problem.

The Lagrangian relaxation method has mainly been utilized in the field of facility location
in deterministic situations as seen in works by Shulman (1991), Holmberg et al. (1999),
Jena et al. (2016) and Jena et al. (2017), but also has some application to stochastic set-
tings as seen in Schütz et al. (2008). Recently, Stádlerová et al. (2023) applied Lagrangian
relaxation to a multi-period two-stage hydrogen facility location problem and found that
it produced good bounds within short running times. This suggests that the Lagrangian
relaxation method is a viable option to extend to this thesis’s multi-stage facility location
problem.

To do so, we relax the demand constraints (5.7): ∑
i∈I x

l
ijse + ul

jse ≥ Dl
je, j ∈ J , e ∈

E , s ∈ Sh, h ∈ H, l ∈ Nh;, which are the only constraints linking the decision variables
among various facility locations and have been used in the literature as seen in works by
Shulman (1991) in a deterministic setting, Schütz et al. (2008) in a single-period stochastic
setting, and Jena et al. (2016) in a multi-period setting. We define the matrix of Lag-
rangian multipliers, λl

jse, and arrive at the following Lagrangian subproblem:

min
y
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(6.1)

subject to constraints (5.2) - (5.6) and (5.8) - (5.17). In this relaxed problem, ul
jse is un-

bounded and is not connected to any other decision variable, as the only constraint related
to ul

jse in the original problem is the relaxed constrain (5.7). As this is a minimization
problem, the term ∑

j∈J
∑

e∈E(U −λl
jse)ul

jse can be disregarded as it will be equal to zero
in any optimal solution. Additionally, the expression ∑

j∈J
∑

e∈E λ
l
jseD

l
je is constant for
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a given set of multipliers λl
jse, and can be disregarded as well. Since all constraints are

specified individually for each facility location i ∈ I, the problem can be decomposed and
solved independently for each location i ∈ I. This allows us to decompose the problem
for each location, and define:

LR =
∑
i∈I

gi(λ) +
∑
h∈H

∑
l∈Nh

∑
s∈Sh

∑
j∈J

∑
j∈J

πlw
sλl

jseD
l
je (6.2)

Where gi for each location, i, is defined as:
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(6.3)

subject to (5.2) - (5.6) and (5.8) - (5.17) for the given facility i ∈ I

6.1 Solving the Lagrangian Subproblem

The optimal solution to the Lagrangian subproblem represents the optimal investment
decisions for each facility over all stages, all scenarios, and all epochs such that the total
expected costs are minimized. In deterministic problems, this has been identified by
solving the shortest path problem through the use of dynamic programming techniques
(Shulman, 1991, Jena et al., 2016). Further, Stádlerová et al. (2023) has shown it to be
a feasible method for solving a similar problem in the two-stage setting. Our problem
has a substantially more complex production planning problem, where we need to plan
the selected production level for several time periods t and epochs e. As well as having
binary variables d restricting if we can produce at a facility given if we have shut-down
production in previous time periods (5.12). In comparison, Stádlerová et al. (2023) only
needs to decide what percentage of the installed capacity one should produce, with a lower
bound on how low you can go. Therefore we will check if solving the problem through
the shortest path problem with dynamic programming is better than solving it with a
commercial solver.

6.2 Shortest path

As noted earlier, determining the best decisions for opening and expansion can be framed
as a shortest path issue within a single graph, which can then be resolved using dynamic
programming techniques as seen in deterministic settings in Shulman (1991), Holmberg
(1994) and Jena et al. (2016), and stochastic setting Schütz et al. (2008). For some multi-
period settings using a single graph might not be suitable, as seen in Stádlerová et al.
(2023). To the best of our knowledge, this has not been applied to a stochastic multi-stage
multi-horizon problem such as ours. For our problem, the graph where you can perform the
shortest-path algorithm will become very large due to the previous investment decisions
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needing to stay the same for nodes, and the production planning is dependent on the
previously installed capacity as you can use previously installed capacity to fulfill demand
in a later stage. This means that one needs to create a three-dimensional graph for each
facility. One dimension of this graph is the capacity layer, where you need connections
between each possible capacity you can install in one stage to all the possible capacities in
the next stage. This is illustrated in Figure 6.2. Further, as one has different production
technologies one can choose from and one is not restricted to sticking to the same over
all stages, one also needs a layer that connects all possible combinations of capacities
and technologies, |P | ∗ |K| to the same combinations for each stage. Finally, as we have
more and more realizations for the demand as we move forward in time (stages), one
needs a layer that represents this. As one can use the previously installed capacity to
fulfill demand, this layer grows exponentially with the number of possible combinations
of previously installed capacity and technology. For example, if you have eight possible
capacities and two technologies, one would need 2 ∗ 8 = 16 nodes to represent the possible
solutions in the first stage. For the second stage, one would need 16 ∗ 16 = 256 nodes for
each realization of the demand in that stage, Figure 6.3 tries to illustrate this.

Figure 6.2: Illustration of the shortest path problem for given facility in the stages vs.
capacity dimension
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Figure 6.3: Illustration of the shortest path problem for given facility in the stages vs.
nodes dimension

6.2.1 Operational Production Cost

In order to find the transition cost from one node to the next, one needs to compute the
expected cost of fulfilling demand in the next node with the capacity installed thus far
plus the intended installed capacity. To do this, we need to define a problem where you
are given i ∈ I, h ∈ H and n ∈ Nh, where the yl

ikp is given for all the ancestors of node n
and for the node n it also is given with the vector y with dimensions (i, k, p, l) with ones
where there have been installed capacity:
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S.T
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un
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dδn
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In addition to the value of this, one also needs to add the cost of installing the capacity
in the next node given by Cn

kp. Combining this one get the following expansion cost from
(a(n)1, k, p,y) to (n, k,y ∪ ya(n)1

kp = 1):

(a(n)1, k, p,y)(n, k′, p′,y ∪ ykp
a(n)1 = 1) = Cn

kp + Pnh
ikp(λ, y) (6.21)

6.2.2 Dynamic programming solution

In order to find the optimal solution from the graph created, one needs to find the path in
the tree which minimizes the expected costs over all demand realizations, which means you
need to find the expected shortest path from a source s to all of the leaf nodes representing
the final demand realizations where you respect the non-anticipavity constraint. This
means that starting from the bottom of the tree at stage h = |H| you find the optimal
decision (k, p)k ∈ Kp ∈ P for all possible realizations of y, which represent a possible
configuration of investments in ancestor node realizations, for each realization of demand
n ∈ Nh

Enh(y) = πnmink,pC
n
kp + Pnh

ikp(λ,y) (6.22)

You then obtain the optimal solution in the last stage for each given y. You then move
up to the next stage where you repeat the procedure for all given y for that stage and
obtain Enhs for h = |H| − 1, n ∈ Nh where you need to add ∑

l∈c(n)h El|H|(y ∪ (n, p, k)),
where c(n)h is the set of children of node n in strategic stage h. This continues upward the
tree until you reach the source node and find the minimum. This procedure is illustrated
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in Figure 6.4, where you have an illustration case with two possible technologies, two
realizations of demand per parent, and one possible production technology. Each tree
represents how one finds the optimal path for each stage, where the red circles signal that
it is the optimal solution.

Figure 6.4: Illustration of how one finds the optimal solution with the shortest path for
a small problem instance.

6.2.2.1 Curse of Dimentionality

The curse of dimensionality is a key challenge when applying dynamic programming to
complex problems. Introduced in Bellman (1952) the term highlights an issue that arises
as the number of decision variables in a problem increases: the computational complexity
grows exponentially, making high-dimensional problems difficult, if not impossible, to solve
within reasonable computational time and resource constraints.

Specifically, in dynamic programming, every potential state in the state space must be
examined to determine the optimal policy. With each additional dimension, the number of
possible states multiplies, rapidly increasing computational requirements. For instance, in
a simple 10x10 grid navigation problem, there are 100 states. Doubling the grid dimensions
to 20x20 raises the state count to 400, illustrating the exponential growth.

This phenomenon, the so-called ”curse of dimensionality,” is particularly relevant to our
study. Given the multi-dimensional nature of our problem, we must recognize that dy-
namic programming could potentially be hampered by this computational hurdle when
solving the Lagrange subproblem with shortest-path and dynamic programming.

6.3 Updating the Lagrangian multiplier

One finds a lower bound of the objective (5.1) subject to (5.2) - (5.6) and (5.8) - (5.17) by
solving it for a given λl

jse. To find the highest possible lower bound, one needs to find the
λ that maximizes the Lagrangian dual problem: LD = maxλLR(λ). The method utilized
to solve this LD in this thesis is iteratively updating the multiplier by a box step method
(Marsten et al., 1975), similar to Schütz et al. (2009) and Stádlerová et al. (2023). This
method makes it possible to compute a lower bound without computing an upper bound.
The subgradient ∇ml

jt is calculated as ∇ml
jt = Ds

jt−
∑

i∈I x
l
ijse in each iteration m for each

node l. We subsequently establish Lm as:
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and determine the updating multipliers by solving the ensuing linear optimization problem:

max ϕ (6.24)
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λm+1,l
jse ≤ λml

jse + δml
jse, j ∈ J , h ∈ H, s ∈ Sh, l ∈ Nh, e ∈ E (6.26)

λm+1,l
jse ≥ λml

jse − δml
jse, j ∈ J , h ∈ H, s ∈ Sh, l ∈ Nh, e ∈ E (6.27)

ϕ ∈ R, λm+1l
jse ∈ R (6.28)

This method limits how much the Lagrangian multiplier can change in each iteration
using the constraints 6.26 and 6.27. The box sizes δml

jse’s are unique for each λml
jse. These

λ’s are initialized to a value based on domain knowledge. The δml
jse’s are updated if the

sign of the subgradient ∇ml
jt changes according to δm+1,l

jse = α ∗ δml
jse where 0 < α <

1, similar to Stádlerová et al. (2023). Minimizing the box size aims to accelerate the
process of identifying the optimal multipliers (Marsten et al., 1975), where the idea is that
you prevent the model from jumping back and forth between very negative and positive
multipliers illustrated in Figure 6.5. When multipliers remain unchanged for five iterations,
we reset the box size, permitting larger multiplier adjustments to evade being trapped in
a local optimum. Figure 6.5 illustrate the concept of the box size in a two-dimensional
setting.

Figure 6.5: Illustration of the updating of Lagrange multipliers with box sizes.

6.4 Upper bound

The Lagrangian relaxation presented above gives a valid lower bound. Still, it does not
produce an upper bound since one is not guaranteed that the solution from the Lagrange
relaxation gives a feasible solution. To build a feasible upper-bound solution, we utilize a
greedy heuristic. Since we have a model with complete recourse due to the penalty cost of
producing too much and too little hydrogen, the relaxed problem will always be feasible.
But this solution might have very high penalty costs. In our upper bound heuristic, we
aim to find a feasible solution with minimum penalty costs. The main steps of the heuristic
are presented in Figure 6.6 where n represents the stage you are in ordered from 0 to the
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total number of demand realizations in all stages, |N |. E.g., if you have three stages and
four children per parent, you will have |N | = 1 + 4 + 16 = 21. You iterate from the first
node to the last and expand the demand until all demand is satisfied. This iterative way of
expanding demand is utilized since you can use the previously installed capacity to satisfy
demand.

Figure 6.6: Schemtic showing the process of producing an upper bound

First, we initialize the solution with the installed capacity from the solution of the Lag-
rangian dual problem, LD. We ignore the production and distribution solution from the
LD when we progress to the next steps of the heuristic.

Then we progress to the Assign Customer step. Here we create a list of pairs of facilities
i and customers with unfulfilled demand j, for the given node we find ourselves in. The
pairs are sorted based on their reduced transportation cost Tij−λn

jse. Then, we start with
the pair with the lowest reduced cost and serve the customers from the given facility until
all capacity has been used to serve customers. This is repeated until there is no more
demand to assign or all demand has been satisfied. Since we have relatively complete
recourse, we do not need to solve the production plan optimization to ensure that this is
a valid allocation of customers.

After the initial Assign Customer stage, we check whether we have excess production or
unfulfilled demand. The solution from the LD probably installs too little demand to satisfy
the demand in all nodes. To accommodate this, we introduce a procedure for increasing
the capacity. As the installed capacity in previous stages can be utilized to satisfy demand
in a stage, we iterate through all the nodes from the first one when increasing the capacity.
In a given node, we find the facility that can serve the most unsatisfied customers. If two
facilities can serve the same amount of unsatisfied customers, we choose randomly between
these. Then we increase the capacity of this facility by one step with the technology
already installed. If there is no installed capacity at the given facility, we choose the most
popular technology for that given stage. We do this based on the assumption that given
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our Lagrange relaxation, has decided that this technology is the dominating technology in
that node. This procedure is repeated until all demands in that node have been satisfied.
Then we progress to the next node and repeat the processes. This is done until we have
iterated through all nodes.

If the solution from the LD or the procedure of increasing demand has installed excess
capacity, we try to decrease the capacity. This is done by iterating through all the excess
capacity found for each facility and node in the Assign Customer step and checking if
the excess capacity at that node is greater than the capacity gap between the capacity
installed and the capacity one step below excessin > Kk ∗ yn

ikp −Kk−1 ∗ yn
ikp.

Finally, we fix the investment variables, yl
ikp, and solve the remaining optimization problem

of production planning and demand allocation with Gurobi. This is the problem presented
in Chapter 5 with the yl

ikp’s fixed such that the restrictions 5.2 to 5.4 can be disregarded.
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Chapter 7

Case Study
This chapter presents the data used as input data for our case study. In Section 7.1, we
present the demand data, specifically focusing on land-based transport and the maritime
transportation sector, as well as how this data is employed to generate demand scenarios.
Moving on to Section 7.2, we discuss the infrastructure data, including facility and cus-
tomer locations. Section 7.3 focuses on the cost data, covering investment costs, operation
and maintenance costs, hydrogen production specifications, distribution costs, electricity
costs, and penalty costs. Next, Section 7.4 outlines the process of generating electricity cost
scenarios, such as epoch generation, normal electricity scenarios, high variance scenarios,
very volatile scenarios, and high- and low-cost scenarios. Finally, Section 7.5 establishes
the instance nomenclature to ensure consistency throughout the computational study.

7.1 Demand

In this section, we showcase the demand data utilized within our model. As the future hy-
drogen demand remains uncertain, we anticipate it to experience a gradual increase leading
up to 2025. The data sources include DNV (2019), Danebergs and Aarsskog (2020a) and
Ocean Hyway Cluster (2020b), offering demand projections up to 2030, 2035, and 2035,
respectively. Figure 7.1 illustrates the progression of demand from these studies, divided
into land-based and maritime sectors and the overall demand. Furthermore, Figure 7.2
depicts the same demand distribution across Norway’s five electricity bidding zones for
2035.

Figure 7.1: Daily demand evolution of hydrogen from 2022 towards 2035
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Figure 7.2: Daily demand of H2 in tonnes per bidding zone: NO1 (Oslo), NO2 (Kristi-
ansand), NO3 (Trondheim), NO4 (Tromsø) and NO5 (Bergen

in 2035

7.1.1 Land-based Transport

Land-based transportation encompasses both rail and road transport. Road transport
can be categorized into bus, light, and heavy road transportation. The demands employed
in this report are derived from DNV (2019), which posits that light road transport will
predominantly consist of electric vehicles. Consequently, light road transportation will not
be considered a potential customer segment.

The land-based demand is allocated to customers described in Section 7.2.3 according to
their road traffic volumes of the municipality of the customer location.

7.1.1.1 Bus Transportation

Bus demand estimation is grounded in the objectives outlined by Samferdselsdepartemen-
tet (2020), which call for 75% of all new long-distance buses to be zero-emission vehicles
by 2030. DNV (2019) approximates a total of 6,000 long-distance buses in Norway. As-
suming a 10-year lifespan for buses and a 50% share of new hydrogen-fueled buses, there
will be 2,200 hydrogen buses in operation by 2030. These buses are expected to consume
7,000 tonnes of hydrogen annually.

7.1.1.2 Heavy Road Transportation

The projection for heavy road transportation is derived from the objectives set by Samferd-
selsdepartementet (2020), which aim for 50% of new heavy-duty trucks to be zero-emission
by 2030. Assuming a 10-year lifespan for trucks and a 40% share of new hydrogen-fueled
trucks, 5,000 heavy-duty hydrogen trucks will be on the road by 2030. These trucks are
anticipated to consume 29,000 tonnes of hydrogen annually (DNV, 2019).

7.1.1.3 Rail Transportation

DNV (2019) outlines the total potential demand for hydrogen in the rail transportation sec-
tor if all non-electrified routes (Solørbanen, Rørosbanen, Raumabanen, Nordlandsbanen)
were to transition to hydrogen. However, this scenario is not highly probable. DNV (2019)
suggests that hydrogen trains will most likely be used for passenger transportation. Under
this assumption, Rørosbanen and Raumabanen emerge as the most probable routes for
hydrogen trains. By 2030, DNV (2019) projects that 60% of the traffic on these routes
will be powered by hydrogen, resulting in an annual demand of 1,900 tonnes of hydrogen.
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7.1.2 Maritime Transportation Sector

The maritime transportation sector comprises domestic car ferries, high-speed passenger
ferries, and coastal routes. This section details the hydrogen demand for each of these cus-
tomer segments, with estimates based on Ocean Hyway Cluster (2020b) and the following
assumptions:

• Liquid hydrogen is deemed suitable only for vessels with consumption exceeding
1,000 kg between bunkering events. For lower consumption, compressed hydrogen is
considered the optimal solution.

• By 2030, hydrogen fuel cells are expected to be fully mature, taking into account
bunkering, storage, conversion, regulations, and integration.

• Fuel cell efficiencies are based on 2020 technology standards.
• No significant advancements are anticipated in ship performance.
• Timetables and vessel capacities for new contracts on established routes will remain

unchanged.
• All future public tenders for car ferries, high-speed passenger ferries, and coastal

routes will mandate zero emissions if technically feasible.

7.1.2.1 High-speed Passenger Ferries

Norway has approximately 100 high-speed passenger ferries, collectively consuming 56
million liters of diesel annually, which accounts for 0.7% of the country’s petroleum sales.
Danebergs and Aarsskog (2020a) examine the potential for hydrogen in this sector, focus-
ing on quantity, demand timing, and routes. The study compares hydrogen fuel cells and
battery electric solutions as competing low-carbon alternatives in this segment. Results
indicate that hydrogen is suitable for 51 routes, while battery electricity is appropriate for
30 routes.

The study employs conservative yet realistic estimates of diesel consumption, considering
only routes with an annual consumption above 20,000 liters. Demand timing is based on
information from public tenders and contract periods, assuming that all ferries will switch
to low-carbon fuels upon the expiration of their current contracts.

7.1.2.2 Domestic Car Ferries

Domestic car ferries represent a potential hydrogen demand segment in Norway. This
sector encompasses over 130 ferry connections, operated by over 250 vessels, which trans-
port nearly 20 million cars and 40 million passengers annually. The data employed in this
report is sourced from the non-publicly available Ocean Hyway Cluster (2020d) study.
This report outlines three distinct scenarios, reflecting uncertainties in the transition to
hydrogen. We utilize the medium scenario from this case study.

7.1.2.3 Coastal Route

The Norwegian coastal route spans between Bergen and Kirkenes. Ocean Hyway Cluster
(2020a) seeks to estimate the hydrogen demand along this route by 2030. The study
features three scenarios, with demand fluctuations based on the number of hydrogen-
powered vessels. While the results are not publicly accessible for presentation in this
report, we utilize the medium scenario as input for the demand analysis.
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7.1.3 Generation of Demand Scenarios

To create demand scenarios for our model, we need a procedure to create a demand
scenario tree. We do this by creating bounds on the maximum and minimum demand
in a given stage/level of the three. The minimum demand is based on the demand from
the Maritime Transportation sector described in Section 7.1.2. To a large degree, this
demand can be fulfilled by successful policies by the Norwegian government in public
tenders. The maximum demand is the sum of the Maritime Transportation Sector and
Land-Based Transportation demand, described in Section 7.1.1. As we want demand
strictly to increase, we pass down a growth rate that makes sure that the min limit is at
least a bit higher than the demand of the parent node. Further, we limit how much the
demand can grow from a parent to a child by. This is done with the assumption that it is
limited how much demand can grow from one period to the next and make sure that the
further away leaf nodes are, the less likely they are to have the same demand. I.e., the
nodes in the right-most part of the three have, in general, a higher demand than in the
leftmost. This is done by setting a maximum growth rate based on domain knowledge.
This is done by setting the max limit = max demand ∗ demandparent

max demandparent
∗ growth rate

After defining the maximum and minimum demand and the growth rate. The algorithm
creates the three by going down the three randomly, creating demand in the next children
in the range: [min(current demand ∗ growth rate,min demand),min(max demand ∗

currentdemand
max demandcurrent

∗ growth rate,max demand)] , with equal probability for all values in
this range. This ensures that the demand doesn’t decrease from one stage to the next,
as we assume that the demand for hydrogen will increase strictly. The algorithm is de-
scribed in pseudo-code in Algorithm 1, while Figure 7.3 shows how one a three of four
levels/stages with to children per parent could look like, within the given maximum and
minimum demands. We use a growth rate of 10% in this thesis.

Algorithm 1 Demand generation
function generate demand tree(start demand, demand limits, n children, m levels, growth rate)

root← start demand
demand tree← [root]
for i← 0 to m levels− 1 do

level← []
min demand, max demand← demand limits[i]
min demand× 0.95
max demand× 1.05
for all parent in demand tree[−n childreni :] do

for j ← 0 to n children− 1 do
if len(level) < n childreni+1 then

Calculate min percent, max percent, min limit, and max limit
demand← random integer(min limit, max limit)

end if
level.append(demand)

end for
end for
demand tree.extend(level)

end for
return demand tree

end function
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Figure 7.3: Example of how Algorithm 1 can produce a demand three for three levels
and three nodes per parent.

In Chapter 8 we use a three-stage model to represent the years from 2023 to 2032. Each
stage in the tree corresponds to a possible demand realization from 2023, 2028, or 2032. In
our model, the production decisions in each node are multiplied by five in order to make
it correspond to 5 years. Further, we create a balanced three, with equal probabilities for
each node in a given level.

7.2 Infrastructure data

This section introduces the data related to facility and customer locations. The inform-
ation on facility locations and customer locations is derived from the research conducted
by Stádlerová and Schütz (2021) as well as Aglen and Hofstad (2022).

7.2.1 Facility Locations

The possible facility locations are based on the interactive map of 17 potential sites
provided by Ocean Hyway Cluster (2020c). This map was later expanded to incorporate
additional locations with assigned production technologies. However, we do not consider
these modifications in our case study, particularly because choosing the production tech-
nology is a decision within our model. We supplement the initial 17 locations with those
that received funding from Enova for hydrogen production in the maritime sector in 2022
(Enova, 2022b) and were not already included. This results in a total of 20 potential
facility locations. Figure 7.3 showcases these possible locations for large-scale hydrogen
production, indicating the electricity bidding zone each site belongs to, adapted from
Ocean Hyway Cluster (2020c) and expanded with Enova (2022b).
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Figure 7.4: Facility location candidates adapted from Ocean Hyway Cluster (2020c) and
expanded with Enova (2022b), marked with the electricity bidding zone it belongs in.

7.2.2 Reducing Facility Locations

We devise three strategies to reduce the facility location space to mitigate high run times
for our model. These strategies are:

1. K-means clustering: We employ k-means clustering based on the longitude and
latitude of the locations to decrease the number of facilities to 12. This number
is chosen based on a visual inspection of the map displaying the complete facility
space.

2. Southern bidding zones with k-means reduction: We only consider facilities
in the bidding zones NO1 (Oslo), NO2 (Kristiansand), NO3 (Trondheim), and NO5
(Bergen), while also taking into account the k-means reduction. This approach
results in a total of 6 possible facilities.

3. Largest cities: We exclusively focus on the three largest cities in Norway: Oslo
(Slemmestad), Bergen (Kollsnes), and Trondheim.

Table 7.1 provides an overview of the facilities included in each of the three strategies.
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Table 7.1: Overview of the facility space for different reduction strategies

Strategy Facilities
1 Andnes, Berlev̊ag, Finnes, Florø, Glomfjord, Hellesylt, Koll-

snes, Slemmestad, Stavanger, Storekorsnes, Svolvær, Trond-
heim

2 Florø, Hellesylt, Kollsnes, Slemmestad, Stavanger, Trond-
heim

3 Slemmestad, Kollsnes, Trondheim

7.2.3 Customer Locations

The customer locations comprise 71 distinct sites, extending from Arendal in the south to
Berlev̊ag in the north. The 51 coastal locations are informed by Danebergs and Aarsskog
(2020a) and Ocean Hyway Cluster (2020b), both of which offer estimates of hydrogen
demand in the Norwegian domestic maritime transportation and high-speed ferry sectors.
These sites function as bunkering ports for Norway’s maritime sector. Additional inland
locations relevant to the road transportation sector are included to encompass the entire
transportation sector. These sites are based on the selection made by Stádlerová and
Schütz (2021) and represent the 20 municipalities with the highest road traffic volumes,
as reported by Statistisk Sentralbyr̊a (2021). Figure 7.5 shows this selection of customer
locations. There are no customers in the central part of Norway, which is related to it
not being any maritime demand there, in addition to it not having high volumes of road
traffic due to unfavorable road infrastructure for transportation.

Figure 7.5: Customer locations for hydrogen in Norway.

7.2.4 Reducing Customer Locations

Similar to the facility space, we suspect the customer space might be too large to achieve
solutions within acceptable timeframes when considering larger scenario spaces. To address
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this issue, we introduce three strategies to decrease the customer space, corresponding to
the same three strategies presented in Section 7.2.2.

1. K-means clustering reduction Reduction of the customer space by applying K-
means clustering on longitude and latitude, resulting in 30 locations.

2. Bidding zone-based reduction Retaining only the K-means reduced space for
bidding zones NO1 (Oslo), NO2 (Kristiansand), NO3 (Trondheim), and NO5 (Ber-
gen).

3. Further K-means clustering reduction Further reducing the space to 13 loca-
tions by employing K-means clustering, where 13 is chosen based on inspection of
the data.

For strategies 1 and 3, the total demand in a cluster is assigned to the location chosen
from that cluster. Table 7.2 presents the remaining customers for each strategy, offering
a clearer overview of the reduced customer spaces.

Table 7.2: Overview of the facilities included in the three strategies

Strategy Customer locations
1 Alta, Andøya, Askvoll, Bergen, Brattv̊ag, Dyrøy, Dønna,

Hasvik, Herøy, Kirkenes, Lødingen, Namsos, Os, Rosendal,
Sogndal, Svolvær, Sør-Tverrfjord, Tromsø, Vannøy, Ørnes,
Kongsvinger, Støren, Åndalsnes, Fredrikstad, Asker,
Hamar, Larvik, Karmøy, Berlev̊ag, Arendal

2 Askvoll, Bergen, Brattv̊ag, Dønna, Herøy, Namsos, Os,
Rosendal, Sogndal, Kongsvinger, Støren, Åndalsnes, Fre-
drikstad, Asker, Hamar, Larvik, Karmøy, Arendal

3 Askvoll, Bergen, Brattv̊ag, Herøy, Namsos, Os, Sogndal,
Støren, Asker, Hamar, Larvik, Karmøy, Arendal

7.3 Cost Data

In this section, we discuss the cost data utilized in this theis. The investment and opera-
tional expenses for hydrogen production are derived from Andrenacci et al. (2022), which
evaluates multiple key performance indicators (KPIs) for hydrogen electrolyzers, taking
into account current technology and objectives for 2030. Electricity prices, a crucial input
for hydrogen production, are sourced from Nord Pool (2023).

7.3.1 Investment Cost

The investment cost for both alkaline and PEM hydrogen production technologies is based
on the 2020 costs and 2030 targets provided by Andrenacci et al. (2022), offering CAPEX
estimates at a 1 MW scale. Since Andrenacci et al. (2022) do not account for economies of
scale, we estimate economies of scale using the curve from IRENA (2020b), as discussed
in Section 2.1.1.3, assuming that economies of scale beyond 100 MW are negligible.

Moreover, the installation and engineering costs associated with setting up production
facilities are assumed to be 20% of the investment (Jakobsen & Åtland, 2016). A facility
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can invest in 9 distinct capacity points for both technologies. These nine capacities were
chosen based on a logarithmic graph, where the maximum is selected such that all facilities
given the transportation restrictions, can satisfy the maximum amount of demand it can
reach.

Table 7.3 presents a summary of the investment cost for the discrete capacity points using
2020 data from Andrenacci et al. (2022), while Table 7.4 provides the same information for
2030 data. As discussed in Section 7.1.3, we create a demand scenario three with stages in
2023, 2028, and 2032. Our model uses the 2020 data for 2023 and the 2030 data for 2033.
For 2028, we create a linear approximation between these specifications to determine the
costs. This is represented in Table 7.5.

Table 7.3: Investment and engineering cost of hydrogen technologies over the discrete
capacities for 2023.

Discrete Capacities 1 2 3 4 5 6 7 8 9
Capacity [tonnes/day] 0.5 2.5 5 12.5 25 50 80 125 250
Investment PEM [mill €] 0.9 3.6 5.4 12.9 24.8 45 72 101.3 202.6
Engineering PEM [mill €] 0.2 0.7 1.1 2.6 5.0 9 14.4 22.5 45
Investment Alkaline [mill €] 0.6 2.4 3.6 8.6 16.5 30 48 75 150
Engineering Alkaline [mill €] 0.1 0.5 0.7 1.7 3.3 6 9.6 15 30

Table 7.4: Investment and engineering cost of hydrogen technologies over the discrete
capacities for 2033.

Discrete Capacities 1 2 3 4 5 6 7 8 9
Capacity [tonnes/day] 0.5 2.5 5 12.5 25 50 80 125 250
Investment PEM [mill €] 0.5 2 3 7.2 13.8 25 40 62.5 125
Engineering PEM [mill €] 0.1 0.4 0.6 1.4 2.7 5 8 12.5 25
Investment Alkaline [mill €] 0.4 1.9 2.9 6.9 13.2 24 38.4 60 120
Engineering Alkaline [mill €] 0.1 0.38 0.58 1.38 2.6 4.8 7.7 12 24

Table 7.5: Investment and engineering cost of hydrogen technologies over the discrete
capacities for 2028 interpolated data.

Discrete Capacities 1 2 3 4 5 6 7 8 9
Capacity [tonnes/day] 0.5 2.5 5 12.5 25 50 80 125 250
Investment PEM [mill €] 0.7 2.8 4.2 10.05 19.3 35 56 81.9 163.8
Engineering PEM [mill €] 0.15 0.55 0.85 2 3.85 7 11.2 17.5 35
Investment Alkaline [mill €] 0.5 2.15 3.25 7.75 14.85 27 43.2 67.5 135
Engineering Alkaline [mill €] 0.1 0.44 0.64 1.54 2.95 5.4 8.65 13.5 27

Since we need to have a correct ratio between investments done in the different stages of
our model, we divide these costs by 15 to annualize them and then multiply the investment
done in the first stage by 15, as it will produce hydrogen for 15 years, the second by ten
and the last by 5. The decision to annualize these costs by dividing by 15 is a trade-off
between the lifetime stated by the manufacturers of 90 000 hours (∼10 years) (IEA, 2019),
and the fact that this often is a pessimistic estimate in order to avoid the chance of having
to pay for early malfunctioning. In addition, we assume that producing at 100% for ten
years is not optimal. Thus, investments in the first stage will probably have some of the
90 00 hours of lifetime left ten years after installation.
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7.3.2 Operation and Maintenance Cost

Andrenacci et al. (2022) operates with yearly costs for operation and maintenance. We
transfer these costs to the investment cost and multiply the number of years the facility will
be in operation, similarly to how we handle the investment cost. The data from Andrenacci
et al. (2022) is also only provided for 2020 and 2030, this is handled in the same way as
for the investment costs, where 2020 data corresponds to the 2023 investments, 2030 data
to the 2032 investments, and 2028 is interpolated between these to data points. Table 7.6,
7.7 and 7.8 shows this data.

Table 7.6: Operation and maintenance of hydrogen for the different technologies per year
for 2023.

Discrete Capacites 1 2 3 4 5 6 7 8 9
Capacity [tonnes/day] 0.5 2.5 5 12.5 25 50 80 125 250
O&M PEM [mill €/ year] 0.02 0.1 0.21 0.51 1.0 2.1 3.3 5.1 10.2
O&M Alkaline [mill €/year ] 0.03 0.13 0.25 0.625 1.25 2.5 5 6.25 12.5

Table 7.7: Operation and maintenance of hydrogen for the different technologies per year
for 2033.

Discrete Capacites 1 2 3 4 5 6 7 8 9
Capacity [tonnes/day] 0.5 2.5 5 12.5 25 50 80 125 250
O&M PEM [mill €/ year] 0.01 0.05 0.11 0.26 0.53 1.1 1.7 2.6 5.2
O&M Alkaline [mill €/year ] 0.02 0.09 0.18 0.44 0.86 1.8 2.8 4.4 8.8

Table 7.8: Operation and maintenance of hydrogen for the different technologies per year
for 2028 interpolated data.

Discrete Capacites 1 2 3 4 5 6 7 8 9
Capacity [tonnes/day] 0.5 2.5 5 12.5 25 50 80 125 250
O&M PEM [mill €/ year] 0.015 0.075 0.16 0.385 0.765 1.6 2.5 3.85 7.7
O&M Alkaline [mill €/year ] 0.025 0.11 0.215 0.535 1.055 2.15 3.9 5.325 10.65

7.3.3 Hydrogen Production Specifications

The efficiency data for hydrogen production technologies are sourced from Andrenacci et al.
(2022). For production scales above 0.5 MW (equivalent to 0.25 tonnes/day H2), hydrogen
electrolyzer efficiencies remain consistent (Andrenacci et al., 2022). As a result, in our use
case, efficiency stays constant across different discrete investment capacities. While there
are minor differences in electrolyzer efficiency based on load variation and degeneration
under variable load (Andrenacci et al., 2022), these effects will not be considered in our
study, resulting in a linear short-term hydrogen production cost.

PEM and Alkaline technologies differ in their flexibility regarding the dynamic produc-
tion range. Alkaline has a production range of 20-100%, while PEM’s range is 0-100%
(Andrenacci et al., 2022). This sets a lower production limit for Alkaline at 20% of in-
stalled capacity. The production specifications for PEM and Alkaline are summarized in
Table 7.9, with power consumption being the only changing parameter between 2020 and
2030. For investments done in 2023 we use the 2020 data, and for the 2032 investments,
we use the 2030 data, and for 2028 we use the mid-point of 51.5 kWh/kg for PEM and 49
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kWh/kg for Alkaline.

Based on Nel (2021), startup times for PEM and Alkaline affect the required shutdown
duration before production can resume. For PEM, the startup time is less than one
hour, which is the granularity of electricity prices. Consequently, PEM has no restrictions
on shutdown time. Alkaline startup times can range between 30, 90, or 150 minutes,
depending on the initial state. We set a minimum shutdown time of 120 minutes (two
time periods in our model’s operational stage) for Alkaline as a compromise between these
estimates. Determining the electrolyzer state upon shutdown is a separate optimization
issue, which we will not address here. This factor does not impact the ability to vary the
electrolyzer load. For example, if an electrolyzer produces hydrogen at hour 0, experiences
a price spike at hour 1, and a price drop at hour 2, the optimal strategy for PEM would
be to shut down at hour 1 and restart at hour 2. For Alkaline, this is not possible, and
the options are either to shut down for both hour 1 and hour 2 or reduce the load to 20%
(the lower production limit) at hour 1 and return to 100% at hour 2.

Table 7.9: Production specification of hydrogen technologies.

PEM Alkaline
Power consumption (kWh/kg) 2020 55 50
Power consumption (kWh/kg) 2030 48 48
Dynamic production range 0-100% 20-100%
Start-up periods 0 (0 hours) 2 (2 hours)

7.3.4 Distribution Cost

In this case study, we focus solely on hydrogen transportation via road, as transporting
by ship or pipeline necessitates substantial single-point demands. Consequently, hydrogen
transportation depends only on distance, as trailers will always be fully loaded and incur a
fixed cost per trailer without any decreasing costs for each additional trailer. We adopt the
values from Madsen (2019) for 1-tonne hydrogen transportation, which is approximately
equivalent to a 40-foot, 300-bar container that a truck can carry.

As discussed in Section 2.3, Norwegian labor regulations limit truck drivers’ working hours
before requiring rest. As a result, our transportation costs have a maximum distance of
1000 km. The general cost function for hydrogen distribution, illustrated in Figure 2.9,
covers a range of distance intervals, Table 7.10 summarizes the data used in our model.

Table 7.10: Distribution cost per kg hydrogen as a function of distance (Madsen, 2019)

Distance [km] 1-50 51-100 101-250 251-500 501-750 751-1000
Cost [€/(km*kg) 0.00825 0.00573 0.00423 0.00372 0.00319 0.00262

7.3.5 Electricity Cost

The electricity cost in this thesis is collected from the historical data in the database
of day-ahead prices from Nord Pool (2023), and is used to represent the possible future
realizations of electricity prices. The data is collected for each bidding zone in Norway,
and each facility location from Section 7.2.1 is assigned its correct electricity price.

The data is collected from 2022, 2021, and 2020 and have been used to sample scen-
arios from. Figure 7.6 illustrates a sample of the data for a specific date within the
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Kristiansand, Trondheim, and Tromsø price areas. Meanwhile, Figure 7.7 displays the
variations throughout the entire time frame, highlighting the average monthly price for
Kristiansand, Trondheim, and Tromsø.

Figure 7.6: Daily fluctuations in the electricity price in Bergen, Trondheim, and Tromsø
the 1st of October (Nord Pool, 2023).

Figure 7.7: Monthly fluctuation in the electricity price in Bergen, Trondheim, and
Tromsø between January 2020- December 2022 (Nord Pool, 2023).

7.3.6 Penalty Cost

To ensure relatively complete recourse, penalty costs are applied for the overproduction
and underproduction of hydrogen. The penalty cost for overproduction is set at a relatively
high rate of 20 €/kg, which approximates the cost of generating hydrogen in Lindesnes
(the southernmost point in Norway) with an electricity price of 300 €/MWh and then
transporting it to Nordkapp (the northernmost point in Norway). On the other hand, the
penalty cost for underproduction is set at a comparatively low rate of 0.1 €/kg, assuming
that the expense associated with managing surplus hydrogen is minimal.

7.4 Generation of Electricity Cost Scenarios

This section will present how we construct the input data that consists of epochs and daily
electricity prices. Firstly explaining the epoch structure, and then explaining different
schemas for sampling electricity data.

7.4.1 Epoch Generation

Our model processes information from electricity data, which is divided into scenarios.
Each scenario consists of one or several epochs. An epoch, in turn, consists of a single day
with 24 hours. This method of representing scenarios was chosen to effectively capture
seasonal and daily electricity price variations. We will have 1, 2, or 4 epochs. The
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four epochs represent the seasons of a year in Norway, which have differences in prices.
Two epochs represent winter and summer, as these are the two seasons with the largest
variations in price between themselves. Finally, for the one epoch instance, the data for
one scenario is chosen from the pool of all the days in our electricity prices. For all
the different epochs, we randomly sample electricity data through Monte Carlo sampling.
The way this input data is generated is shown in Figure 7.8, 7.9, and 7.10, for 4, 2, and 1
epochs.

Figure 7.8: Illustration of how each scenario is generated for 4 epochs
.

Figure 7.9: Illustration of how each scenario is generated for 2 epochs
.

Figure 7.10: Illustration of how each scenario is generated for 1 epoch
.
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7.4.2 Normal Electricity Scenarios

We employed a straightforward Monte Carlo sampling methodology in our model’s limit
testing. This approach leans on the ”Law of Large Numbers,” which posits that the
scenarios will gradually align with a solid approximation of the data set given enough
trials. The implementation involved selecting a random year from our available data
without excluding it for subsequent picks and then picking a random date for each season,
also without excluding it. These choices formed the basis for individual model scenarios.

The random numbers were generated using Python’s randint function, which produces
pseudo-random numbers rooted in the current millisecond timestamp (Python, 2023b). We
establish our epochs based on the actual occurrences of electricity prices. Hence, all days
and years have the same chance of occurrence, forming uniform probability distributions.

7.4.3 High Variance Scenarios

The choice to use PEM technology is often attributed to the high volatility of electricity
prices (Abdollahipour & Sayyaadi, 2022). To determine if this factor similarly impacts
our model, we establish scenarios that narrow our sampling pool to the top 10% of days
exhibiting the greatest volatility, as determined by daily variance. We then use Monte
Carlo sampling to create scenarios from these selected days.

As we see an increase in the construction of more variable renewable energy sources, such
as onshore and offshore wind, along with solar PVs, the volatility of electricity prices could
rise. Additionally, the new electricity cables connecting to Europe may also influence this
trend in southern Norway as Europe’s power grid transitions towards more renewable
sources. Thus, exploring high-variance scenarios becomes crucial to determine the value
of flexibility in hydrogen production.

7.4.4 Very Volatile Scenarios

We create a highly volatile scenario where Monte Carlo samples are taken from the top
1% of scenarios demonstrating the greatest total sum inter-hour electricity price variation,
adjusted for the average daily price. This involves the absolute sum of the differences
between each pair of hours in a day divided by the average electricity price. Equation
(7.1) illustrates how this computation is done for a single day. This approach will provide
us with scenarios depicting the most substantial relative daily price changes.

1
p̄

23∑
i=0
∥pi+1 − pi∥ (7.1)

where pi is the electricity price in hour i and p̄ is the average electricity price.

7.4.5 High- and Low-cost Scenarios

The impact of learning curve effects related to renewable energy generation could poten-
tially reduce electricity costs. Conversely, increased electrification could create a demand
scenario that leads to a spike in market prices. It remains uncertain which of these influ-
ences will primarily shape future electricity prices. Thus, it’s intriguing to explore how
various future scenarios might impact the design of the hydrogen supply chain.

To examine if high or low electricity prices influence the choice of hydrogen technology,
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we employ an approach similar to generating high variance scenarios for high and low
electricity cost scenarios. This involves only sampling from the days falling within the top
or bottom 10% in terms of average electricity price. Monte Carlo sampling is then used
to formulate scenarios from these particular days.

7.5 Instance Nomenclature

The model is solved for different pairs of customers and facilities, number of children per
node, number of epochs, and number of electricity scenarios as described by the previous
sections in this Chapter. We have three different facility-customer configurations (C) which
we denote C1, C2, and C3. Further, we have either 1, 2, or 4 epochs, denoted as E1, E2,
and E4. For the electricity scenarios, we use 2, 5, and 10, 25, 50, and 100 realizations of
these, denoted S2, S5, S10, S25, S50, S100. We use 2, 4, 8, and X, denoted N2, N4, N8,
and NX, for the demand scenarios described through the number of children per parent
node. Finally, we have different characteristics of the electricity scenarios (T): n (normal),
l (low), h (high), v (volatile), and vv (very volatile). This gives the following notation
to distinguish between the instances CxExSxNxTx. For example, an instance with the
largest customer space of 3, 1 epoch, 5 electricity scenarios, four nodes per parent, and
normal electricity costs will be denoted C3E1S5N4Tn.
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Table 7.11: Overview of all instances used in Chapter 8

Name Customer-
Facility
config

Epochs Scenarios Number of
children per
parent

Electricity Scenario

C1E1S2N2Tn Small 1 2 2 Normal
C1E2S5N2Tn Small 2 5 2 Normal
C1E4S10N2Tn Small 4 10 2 Normal
C1E2S5N4Tn Small 2 5 4 Normal
C1E1S10N4Tn Small 1 10 4 Normal
C1E4S10N8Tn Small 4 10 8 Normal
C2E2S2N2Tn Medium 2 2 2 Normal
C2E4S5N2Tn Medium 4 5 2 Normal
C2E2S5N4Tn Medium 2 5 4 Normal
C2E4S10N4Tn Medium 4 10 4 Normal
C2E1S2N8Tn Medium 1 2 8 Normal
C2E2S2N8Tn Medium 2 2 8 Normal
C2E1S5N8Tn Medium 1 5 8 Normal
C2E2S5N8Tn Medium 2 5 8 Normal
C2E1S10N8Tn Medium 1 10 8 Normal
C3E1S2N2Tn Large 1 2 2 Normal
C3E2S10N2Tn Large 2 10 2 Normal
C3E2S2N4Tn Large 2 2 4 Normal
C3E1S5N4Tn Large 1 5 4 Normal
C3E2S5N4Tn Large 2 5 4 Normal
C3E1S10N4Tn Large 1 10 4 Normal
C3E1S2N8Tn Large 1 2 8 Normal
C3E2S2N8Tn Large 2 2 8 Normal
C3E1S10N8Tn Large 1 10 8 Normal
C1E4S25N2Tn Small 4 25 2 Normal
C1E4S502Tn Small 4 50 2 Normal
C1E2S50N2Tn Small 2 50 2 Normal
C1E2S75N2Tn Small 2 75 2 Normal
C1E1S75N2Tn Small 1 75 2 Normal
C1E1S100N2Tn Small 1 100 2 Normal
C1E1S150N2Tn Small 1 150 2 Normal
C1E1S25N2Th Small 1 25 2 High
C1E2S50N2Th Small 2 50 2 High
C1E1S100N2Th Small 1 100 2 High
C1E1S25N2Tl Small 1 25 2 Low
C1E2S50N2Tl Small 2 50 2 Low
C1E1S100N2Tl Small 1 100 2 Low
C1E1S25N2Tv Small 1 25 2 Volatile
C1E2S50N2Tv Small 2 50 2 Volatile
C1E1S100N2Tv Small 1 100 2 Volatile
C1E1S25N2Tvv Small 1 25 2 Very Volatile
C1E2S50N2Tvv Small 2 50 2 Very Volatile
C1E1S100N2Tvv Small 1 100 2 Very Volatile
C3E1S2N8Th Large 1 2 8 High
C3E1S2N8Tl Large 1 2 8 Low
C3E1S2N8Tv Large 1 2 8 Volatile
C3E1S2N8Tvv Large 1 2 8 Very Volatile
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Chapter 8

Computational Study
This chapter presents the results of the multi-horizon model applied, as detailed in Chapter 5,
to the case studies presented in Chapter 7. It is structured into two sections: Model Per-
formance Analysis (Section 8.1), and Managerial Insight (Section 8.2).

Section 8.1 initiates with the presentation of computational results using Lagrangian re-
laxation, both with and without the Shortest Path Heuristic, as introduced in Chapter 6.
Subsequently, we compare the optimality gaps and runtimes derived from Lagrangian
relaxation and commercial solver Gurobi. This comparison extends to the cases from
Chapter 7 and larger problem instances in order to also examine the scalability of these
methods in relation to our hardware capacity.

Section 8.2 emphasizes managerial implications. Here, we first explore the benefits of
the problem’s formulation as a stochastic multi-stage, multi-horizon program. This is
followed by an evaluation of production flexibility’s significance and, finally a discussion
on the problem solutions derived from our implementation. In the former discussion,
we present and discuss the insights gained from our problem solution with respect to
production flexibility, investment decisions related to location, capacity and technology
choice, cost factors, and the operational production schema.

In this chapter, all problem instances are solved on a computational cluster provided by
the Department of Industrial Economics and Technology Management at NTNU, utilizing
the same computational node. Gurobi, a commercial solver, is employed for these in-
stances. The hardware and software specifications employed across all runs can be found
in Table 8.1

Table 8.1: Hardware and software description.

Computer HP bl685cG7
CPU 4x2.2GHz AMD Opteron 6274 - 16 core
RAM 128Gb
Disk 300Gb SAS 15k rpm
Python version 3.10.4
Gurobi version 10.0.0

8.1 Model Performance Analysis

This section focuses on the performance of the solution method for the problem, in par-
ticular, the comparison between solving the model with Gurobi and with our Lagrange
Relaxation.
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8.1.1 Implementation

We leverage multiprocessing to solve the Lagrangian subproblems for each facility location
i in parallel, regardless of whether the subproblem is implemented as a shortest path
problem or by the standard model representation. This parallel computation is carried
out using the multiprocessing module within Python’s standard library (Python, 2023a),
a strategy deployed to reduce the runtime. This multiprocessing approach is visually
represented in Figure 8.1.

Figure 8.1: Illustration of the multiprocessing framework for solving the Lagrangian
subproblem

8.1.2 Solving the Lagrangian Subproblem With Shortest Path

As discussed in Section 6.1 we have implemented two methods for solving the Lagrangian
subproblem:

1. With dynamic programming and shortest path
2. With the commercial solver Gurobi

Our preliminary research involved comparing the two methods: method 1) the Shortest
Path formulation and method 2) the commercial solver, Gurobi. We found that for problem
sizes that fell within our established maximum solution time of 172,800 seconds (or 48
hours), the Shortest Path method exhibited significantly longer running times and yielded
larger optimality gaps compared to the Gurobi method. The comparative analysis is
detailed in Table 8.2, where the gap is defined the same way as by Gurobi:

Gap = UB − LB
UB

, (8.1)
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Table 8.2: Table showing the gap, the time used and the number of iterations for solving
the Lagrange subproblem with 1) shortest path and 2) Gurobi.

Inctance Method 1 Method 2
Gap (%) Time (s) Lagrange

iteration
Gap (%) Time (s) Lagrange

iteration
C1E1S2N2Tn 25 % 42010 3 10 % 325 12
C2E2S5N4Tn 100 % 172 800 2 9 % 26071 17
C3E1S2N8Tn 100 % 172 800 1 7 % 51584 31

The challenges in terms of the large optimality gaps yielded by the shortest path method
stem from the method’s iterative nature and the complexity of the problem. A gap of 100%
indicates that the Lagrange relaxation could not complete enough iterations to produce a
lower bound better than the first LB obtained from installing no capacity and fulfilling no
demand. The reason for why it is not able to complete enough iterations is largely due to
the numerous production optimization problems necessitated by the investments, as seen
in (6.4) - (6.20). These problems, though straightforward for Gurobi, are vast in terms of
variables and constraints, rendering their construction computationally intensive.

The model build-time for the production optimization problem is considerably larger than
the solve time, typically by a factor of 50 to 200. This vast discrepancy gives substantial
overhead time usage, especially when solving the problem via the shortest path algorithm.

The number of times one needs to solve the production optimization problem scales with
|P ||K|1−(|P ||K||N |)|S|

1−(|P ||K||N |) . This comes from the need to solve |P ||K| production optimization
problems in the first stage. In the second stage, one needs to solve |P ||K||N | produc-
tion optimization problems for each of the |P ||K| solutions from the first stage, a total of
(|P ||K|)2|N | problems. For the third stage, one also needs to solve |P ||K||N | production
optimization for all the solutions from the second stage, a total of (|P ||K|)3|N |2 prob-
lems. This development in the number of production optimization problems one needs to
solve continues for the following stages. Here |P |, |K|, |N |, and |S| denote the number of
production technologies, capacities, child nodes per parent node, and stages in the prob-
lem, respectively This gives the following geometric sum ∑s=|S|

s=1 (|P ||K|)s|N |s−1, which
simplified is |P ||K|1−(|P ||K||N |)|S|

1−(|P ||K||N |) .

Consequently, even our smallest problem instance (nine capacities, two technologies, three
stages, and two nodes per parent) leads to 23,994 problems. Additionally, inherent over-
head accompanies the Gurobi model setup, incorporating model loading, variable and
constant initialization, and parameter configuration.

Given the problem’s complexity, our maximum solve time of 172,800 seconds (or 48 hours)
may not suffice to fully benefit from solving the subproblem with the shortest path. Po-
tential enhancements might lie in speeding up the run time for solving the production
optimization problem in Gurobi. Techniques such as warm-starting could offer promising
avenues for exploration and improvement.

8.1.3 Comparison with Commercial Solver

This section will compare our implementation of Lagrange relaxation with solving the
model with a commercial solver. The two methods are defined as:
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1. Lagrange: Solving the model with our Lagrange Relaxation as defiend in Chapter 6,
but solving the Lagrange supproblem with Gurobi.

2. Gurobi: Solving the full model with the commercial solver Gurobi.

To be able to compare this we define the following numbers:

UBgap = UBgurobi − UBlagrange

UBlagrange
(8.2)

LBgap = LBlagrange − LBgurobi

LBlagrange
(8.3)

Equations (8.2) and (8.3) are established to determine whether the poorer performance is
a trend specifically associated with the UB-heuristic or if the results from the lower bound
produced by the Lagrange Relaxation. When doing this computational study, this time
is set to be approximately equal to the time used for solving the model with Gurobi, to
compare the gap provided by Gurobi with that of the Lagrange relaxation in similar time
scales.

Our Lagrange relaxation has two termination criteria:

1. Time, which is set such that this criterion is a bit higher than the exact solution
from Gurobi, in order to compare the gap provider by Gurobi wit that of Lagrange
relaxation in similar time scales. It is checked after each iteration of solving the
Lagrange subproblem.

2. If the Lagrange multipliers, λ, do not change more than 1%, defined as:

λnew−λold
λold

≤ 1%.

Table 8.3 summarizes the gap and time use for using Gurobi and the Lagrange relaxation,
as well as showing the UB-gap and LB-gap. For all instances, in Table 8.3, the Lagrange
relaxation is terminated by reaching the time limit. Further, in Gurobi, the termination
criteria were reaching an optimality gap below 1%.
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Table 8.3: Results comparison between Gurobi and Lagrange relaxation. ”*” denotes
instances where Gurobi was prematurely terminated due to memory exhaustion prior to
meeting the termination criteria. ”n/a” signals termination during model construction.

Instance Gurobi Lagrange Comparison
Gap
(%)

Time
(s)

Gap
(%)

Time
(s)

UB-gap
(%)

LB-gap
(%)

C1E1S2N2Tn 0.33 26 2.86 325 1.67 0.92
C1E2S5N2Tn 0.66 894 4.6 2568 4.6 0.66
C1E4S10N2Tn 0.75 5975 12.2 9121 13.2 -0.11
C1E2S5N4Tn 0.86 15841 4.3 20581 -0.64 4.3
C1E1S10N4Tn 0.80 10290 6.6 12220 4.2 2.03
C1E1S2N8Tn 0.5 1804 1.2 11531 -0.66 1.4
C1E2S2N8Tn 0.95 10252 1.2 20220 -1.0 1.1
C1E1S5N8Tn 2.57* 7995 0.84 11025 -1.74 -0.1
C1E1S10N8Tn n/a n/a 9.0 77059 n/a n/a
C1E4S10N8Tn n/a n/a 7.98 127027 n/a n/a
C2E2S2N2Tn 0.73 195 4.7 538 2.64 1.54
C2E4S5N2Tn 0.93 13516 9.5 26071 8.8 -0.33
C2E2S5N4Tn 0.94 16726 3.7 27910 2.5 0.14
C2E4S10N4Tn n/a n/a 8.5 51553 n/a n/a
C2E1S2N8Tn 0.99 13179 5.2 20217 2.2 2.2
C2E2S2N8Tn 1.9* 27552 4.6 40821 2.5 0.14
C2E1S5N8Tn 8.9* 12745 8.1 50625 2.0 -2.9
C2E2S5N8Tn n/a n/a 15.7 103520 n/a n/a
C2E1S10N8Tn n/a n/a 12.2 102832 n/a n/a
C3E1S2N2Tn 0.96 325 1,9 886 0.5 0.5
C3E2S10N2Tn 1.1* 64661 7.5 70529 5.8 1.0
C3E2S2N4Tn 0.87 22929 3.1 26072 0.19 2.0
C3E1S5N4Tn 0.94 30315 7.8 36210 4.8 1.9
C3E2S5N4Tn n/a n/a 8.6 71451 n/a n/a
C3E1S10N4Tn n/a n/a 5.8 50965 n/a n/a
C3E1S2N8Tn 0.99 63201 4.3 51329 3.2 0.92
C3E2S2N8Tn n/a n/a 7.5 51684 n/a n/a
C3E1S10N8Tn n/a n/a 100* 2421 n/a n/a
Mean 1.67 19572 7.4 39985 2.9 0.88
Median 0.94 11517 5.8 27910 2.35 1.0
Min 0.33 26 0.84 325 -1.7 -2.9
Max 8.9 250000 37 127027 13 4.3

As we can see from Table 8.3, solving the model with Gurobi outperforms solving the
model with our Lagrange relaxation for all instances that Gurobi can solve to optimality.
However, when the instances get large enough for a combination of C, E, S and N, Gurobi
either terminates before it reaches optimality or even solves the problem. This shows that
the Lagrange relaxation can solve larger instances of the problem that more accurately
represent the real world. However, the Lagrange relaxation also terminates for the largest
instance C3E1S10N8Tn. This is related to the subproblem going out of memory. A
possible workaround for this is not solving the sub-problems in parallel, as this would
require less memory usage but would however substantially increase the running time.

As one can see in Table 8.3, the gap between the lower bound from the Lagrange relaxation
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is, on average, 0.88% worse than that of Gurobi. Further, one can see that for some
instances, the lower bound from the Lagrange relaxation is better than that of Gurobi,
either due to the termination criteria of 1% for Gurobi or when Gurobi times out. This
suggests that given sufficient time, our Lagrange relaxation provides good lower bounds
for our problem.

At the same time, the upper bound from the Lagrange relaxation is, on average, 2.9%
worse than the one from Gurobi. This gives a hint that the upper bound heuristic used
is the main reason behind the Lagrange relaxation performing worse than Gurobi with
respect to their optimality gaps. Further, the quality of the optimality gap derived from
Lagrangian Relaxation shows more variation than the one derived from Gurobi. For certain
problem instances, such as C1ES10N2Tn and C2E4S5N2Tn, the Lagrangian relaxation gap
is relatively large, with 13.2% and 8.8%, respectively. Investigation of the results from the
Lagrange Relaxation of these two instances shows that these are solutions with very little
capacity installed, such that the heuristic has to install much capacity. I.e., the Lagrange
Relaxation does not give solutions that have installed sufficient capacity in order to fulfill
the demand but is rather punished through the Lagrangian multipliers for this behavior.

As we conclude this section, it becomes apparent that Lagrange Relaxation’s upper bound
calculation is the main reason behind the poor gaps. Its performance significantly lags
compared to Gurobi, leading to considerable gaps optimality gaps. The upper bound
provides a feasible solution, a critical element for gaining actionable managerial insights.
However, due to its possible deviation from the actual optimal solution, the insights derived
could suffer from inaccuracies when relying on the Lagrange Upper bound. Therefore, in
Section 8.2, we have adopted Gurobi for the solution of the problem. This choice is driven
by our intention to enhance the precision and value of our managerial insights.

8.1.4 Time Use for Lagrange Relaxation

Our Lagrange relaxation has three main steps that consume time:

• Solving the Lagrange subproblem

• Updating the Lagrange multipliers

• Computing the upper bound

Figure 8.2 shows the % distribution of the time spent between the three steps for C1E2S5N8Tn,
C1E1S10N8Tn, C2E1S2N4Tn, C2E2S5N4Tn, C3E1S2N2Tn, and C3E2S10N2Tn.
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Figure 8.2: Time distribution for different stages of Lagrange relaxation

For all instances, the Lagrange subproblem consumes by far the most time. However,
the timeshare used for computing the upper bound increases with larger facility-customer
spaces. This is related to the way our heuristic is set up where you for each demand
node in the demand scenario space you only expand one facility at a time. With the
increasing number of facilities in the instance, this step takes more time. In addition, the
complexity of the underlying production planning and distribution problem becomes more
complicated.

Further, we find that for C3E1S2N2Tn, the ”Updating multiplier” makes up a relatively
larger share of the total time spent, compared to the other problem instances. This stems
from the fact that instances with a low number of epochs, scenarios, and children per
parent can do more iterations of the Lagrange algorithm before reaching the stopping
criteria as the solution of the subproblem is easier to solve. This leads to more restrictions
in the updating multiplier step, which increases the complexity of this problem.

8.1.5 Limit Test Number of Epochs and Electricity Scenarios

As seen in Section 8.1.3, there exists a trade-off when deciding the dimensions of the
different input parameters to have a solvable model. To evaluate the value of production
flexibility when choosing which production technology to use for a Norwegian hydrogen
supply chain, one needs to evaluate the model over a high number of electricity scenarios.
Therefore, we also limit tests of our model in Gurobi regarding the number of epochs and
electricity scenarios while keeping the number of demand scenarios (N2) and customer-
facility (C1) space to a minimum.

We only perform limit-test by solving the model with Gurobi, as our Lagrange relaxation
proved to perform poorly in Section 8.1.3. Table 8.4 summarizes the findings from our
limit testing.
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Table 8.4: Results from limit testing the number of electricity cost scenarios. Instances
with gap ≥ 1% is terminated due to memory

Instance Gap Time (s)
C1E4S25N2Tn 0,87% 96112
C1E4S502Tn 3,90%* 179912
C1E2S50N2Tn 0,94% 115956
C1E2S75N2Tn 4,70%* 167382
C1E1S75N2Tn 0,97% 97213
C1E1S100N2Tn 0,98% 167382
C1E1S150N2Tn 15,20%* 102911

As we see from the above table, Gurobi already starts to struggle with solving problem
instances with 50 electricity price scenarios for four epochs. For instances with two epochs,
Gurobi does not reach the desired optimality gap of 1% when including 75 electricity
price scenarios. In contrast, for one epoch, Gurobi does not reach the desired gap with
150 electricity price scenarios. Therefore, we will use E4S25, E2S50, and E1S100 for
managerial insight, as they led to optimality gaps below 1%.

8.2 Managerial Insight

This subsection focuses on the managerial insight from the solutions we get when solving
the selected problem instances. In Section 8.2.1, we present a framework for measuring the
value of solving our outlined problem as a stochastic multi-stage multi-horizon problem.
Section 8.2.2 analyzes the value of production flexibility under differing types of electricity
price profiles, such as high price or volatile price scenarios. In Section 8.2.3, we focus
on how the hydrogen production configuration will look, and in Section 8.2.4, how the
hydrogen flows between electricity bidding zones.

For all instances in this section, we solve the model with Gurobi, as our Lagrange Relax-
ation was deemed unsuitable to provide good feasible solutions to gain managerial insight
from.

8.2.1 Value of Stochastic Programming

In stochastic programming, one can evaluate the gains from modeling the problem as
a stochastic program through the Value of Stochastic Solution. This is defined as the
discrepancy between the expected objective value derived from using the expected value
solution (EEV) and the result from the stochastic problem, also known as the recourse
problem (RP) (Birge & Louveaux, 2011). This difference can be seen in (8.4).

V SS = EEV −RP (8.4)

This is not straightforward in the multi-stage multi-horizon setting, as the VSS depends
on whether you use the expected value in the strategic and operational decisions. If you
lock the strategic decisions for all stages or only for a subset of these. Escudero et al.
(2007) have extended the value of stochastic programming to the multi-stage setting.
This approach was extended to the multi-horizon multi-stage setting by Maggioni et al.
(2020a).
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Maggioni et al. (2020a) presents the general multi-horizon stochastic program (MHSP)
given by (3.49) - (3.55). They then define the Multi-Horizon Expected Value problem
(MHEV), which is obtained by replacing both strategic uncertain parameters (cl, hl, Tl,Wl)
and operational uncertain parameters (qs,τ

l , hs,τ
l , T s,τ

l ,W s,τ
l ) with their expected values,

(
∑
l∈Nt

πlcl,
∑
l∈Nt

πlhl,
∑
l∈Nt

πlTl,
∑
l∈Nt
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and solving the deterministic problem.

MHEV := min
x,y

=
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∑
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τ
t ) (8.7)
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t , t ∈ H, τ ∈ Tt \ {1} (8.11)

They then go on to define the Multi-Horizon Expected result of Strategic Decision, MHEES,
which is obtained by solving (3.49) - (3.55) while having the strategic decision variables
x fixed at the values obtained from the MHEV. Further, they prove that MHSP ≤
MHEES.

The Value of Strategic Decision, VSD, is defined as:

V SD := MHEES −MHSP ≥ 0 (8.12)

The VSD measures the difference in outcomes between two strategies: one where decisions
are made with foresight (anticipating future stages and uncertainties) and one where de-
cisions are made on a stage-by-stage basis without considering future uncertainties. In
other words, the VSD quantifies the additional benefits obtained from making strategic
decisions that consider the possible outcomes in future stages rather than making de-
cisions based purely on the information available at the current stage. This can be seen
as a measure of the ”value” of strategic, forward-looking decision-making in the presence
of uncertainty.

Then Maggioni et al. (2020a) define the Value of Strategic Decision at strategic stage t,
VSDt, as:
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V SDt := MHEESt −MHSP ≥ 0, t ∈ H (8.13)

Where MHEESt, Mulit-Horizon Expected result of Strategic Decision, is obtained by solv-
ing (3.49) - (3.55) fixing the strategic decisions x at the optimal values obtained from the
MHEV up to stage t.

The VSDt allows for the examination of the value of strategic decisions not just in the
entire planning horizon but also at each individual stage of the decision-making process.

Further they prove that MHSP ≤ MHEES1 ≤ MHEES2 ≤ ... ≤ MHEESH−1, which
gives V SD1 ≤ V SC2 ≤ ... ≤ V SCH−1.

Table 8.5 show the results for both MHSP and the VSD, with data represented both in
absolute terms and as a percentage of the MHSP for Normal price (n), High Price (h),
Low Price (l), High Variance (v), and Very Volatile (vv) instances across stages 1, 2, and
3. The instances in consideration for this analysis are C3E1S2N8, corresponding to the
aforementioned electricity cost generation profiles. A striking insight from the results is the
significant value of stochastic programming across all stages and instances. Specifically,
the VSD ranges from 8-16% of the MHSP for the first stage, 11-19% for the second stage,
and displays an even wider range from 12-54% for the third stage.

Table 8.5: Value of stochastic programming for C3E1S2N8Txx instances

Instance MHSP (mill. €) VSD1 VSD2 VSD3
mill € % ( V SD

MHSP ) mill € % ( V SD
MHSP ) mill € % ( V SD

MHSP )
C3E1S2N8Tn 3537 331 9.4 % 403 11.4 % 437 12.4 %
C3E1S2N8Th 4169 339 8.1 % 703 16.9 % 1794 43.0 %
C3E1S2N8Tl 2276 364 16.0 % 446 19.6 % 512 22.5 %
C3E1S2N8Tv 3740 324 8.7 % 658 17.6 % 1297 34.7 %
C3E1S2N8Tvv 3099 338 10.9 % 428 13.8 % 583 18.8 %

The VSD exhibits a strictly increasing trend across the stages, as anticipated based on
existing literature. However, a noteworthy observation is a relatively minor increase for
the normal electricity cost scenario, which only escalates from 9.4 to 12.4%. The VSD
was presumed to rise steeply with increasing stages due to the balanced scenario tree
implementation of our problem, resulting in more strategic decisions being locked in later
stages. Upon inspection of the instance, it is observed that the two electricity cost scenarios
sampled are quite similar in terms of variability and cost, leading to the expected value of
operational input aligning closely with the actual ones.

The largest VSD1 is observed for C3E1S2N8Tl, with a cost reduction of 16% from modeling
it as a stochastic problem. The reason for this is the two electricity scenarios sampled
exhibit some large variations in electricity prices between hours, relative to the average
cost of electricity cost, which can be seen in Figure 8.3. By using the expected value of the
electricity costs these effects are reduced. To a degree, these effects can also be observed
in the C3E2S2N8Tvv instance, but to a lower degree, which is an argument for it having
the second highest VSD1.
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Figure 8.3: Electricity prices for low price instances with two electricity scenarios.

The largest values of the VSD2 and VSD3 are found in C3E1S2N8Th and C3E1S2N8Tv.
These are the instances with the highest average electricity prices and also the largest
absolute differences in electricity prices between the maximum and minimum of a day
as seen in Figure 8.4. This leads to the optimal solution, MHSP, to install very large
capacities to produce as much as possible during the hours with the lowest electricity cost.
This is an optimal solution due to the electricity costs being the most important part of
the cost of hydrogen. When you use the expected electricity cost the absolute difference
between hours gets leveled out, which pushes the VSD solution in a direction where it
is not optimal to invest in very much excess capacity. In addition, using the expected
demand to decide on investments will lead to under-investments in high-demand scenarios
and over-investments in low-demand scenarios. Since investment costs account for the
smallest proportion of the total costs when producing hydrogen, overinvestment will affect
the total costs less than underinvestment. With underinvestment, one would either have
to produce during all hours of the day, which incurs high costs when electricity prices are
high, or bear the high cost of not meeting the entire demand

(a) Electricity prices for high price instances
with 2 scenarios.

(b) Electricity prices for high variance in-
stances with 2 scenarios.

Figure 8.4: High price and variance electricity cost instances

8.2.2 Value of Production Flexibility

In the following sections, we will evaluate the value of the production flexibility for
PEM and Alkaline. This will be done by analyzing the results from C1E1S25N2Tx,
C1E2S50N2Tx, and C1E1S100N2Tx for different electricity cost generation strategies Nor-
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mal price (n), High price (h), Low price (l), High Variance (v), and Very Volatile price
(vv). This section presents the most interesting data from these instances on an aggreg-
ated level for each stage and the average result from all instances with the same electricity
cost. More in-depth data can be found in Appendix A.

As we have a three structure of demand scenarios, where you can have different investment
decisions for each scenario, we will use that notation summarized in Table 8.6 and depicted
in Figure 8.5 to distinguish the investment decisions.

Table 8.6: Node hierarchy used in the following sections

Node Stage Parent node Total Demand (tH2/day)
1 1 - 4 750
2 2 1 34 002
3 2 1 35 617
4 3 2 119 399
5 3 2 124 706
6 3 3 131 723
7 3 3 140 488

Figure 8.5: Illustration of the node hierarchy used in the following sections

8.2.2.1 Share PEM Installed

This section explores the share of installed capacity of PEM electrolyzers across various
electricity price generation profiles, within the hydrogen supply chain in Norway. Five
generation strategies were examined: Normal price, High price, Low price, High variance
in price, and Very volatile prices. Figure 8.6 presents the results of each stage, which were
aggregated from each demand node within that stage. Moreover, the data corresponding
to each electricity price profile was collected from instances E4S25, E2S50, and E1S100.
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Figure 8.6: Average share of PEM installed in stages 1, 2, and 3 for the different electricity
cost schemes for C1E3S25N2, C1E2S50N2, and C1E1S100N2 scenarios.

According to the analysis, in the Normal, Low price, and High variance scenarios, the
Alkaline technology dominated the first two stages with no PEM installed. The dominant
performance of Alkaline over PEM in these stages can be attributed to PEM’s lower pro-
duction efficiency and higher investment costs. Specifically, for the first and second stages,
PEM has 10% and 4% higher production costs and 13% and 4% higher investment costs,
respectively. These factors overshadow the flexibility offered by PEM, as the volatility of
the electricity cost data was insufficient to leverage this advantage.

However, when the scenarios involved High prices and Very volatile prices, PEM gained
more traction, albeit to varying degrees:

• In the High price scenario, the share of PEM installed was zero in the first stage and
minimal in the second stage.

• While under Very volatile prices, PEM’s flexibility became a more desirable attrib-
ute. Therefore, the first and second stages saw greater use of this technology than
for the other price profiles due to the considerable hourly variations in electricity
prices, enabling more effective utilization of PEM’s flexibility.

In the third stage, PEM emerged as the dominant technology under all circumstances. In
contrast, Alkaline was not installed in any instances due to the technologies reaching an
equal level of production efficiency and nearly equivalent investment costs.

8.2.2.2 Cost Split for Different Instances

This subsection discusses the distribution of total costs over its sub-categories production,
investment, and transportation, for five different electricity price profiles: Normal price,
High Price, Low Price, High Variance, and Very Volatile prices. The results are visually
represented in Figure 8.7, where the data displayed for each stage corresponds to the
average cost distribution of all demand nodes within the respective stage. Additionally,
the data from each electricity price profile is collated from instances E4S25, E2S50, and
E1S100.
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Figure 8.7: Average cost split between production, transportation, and investment costs
for the different electricity cost schemes aggregated for each stage for C1E3S25, C1E2S50,
and C1E1S100 scenarios.

Across all profiles, the cost distribution appears remarkably similar. However, it’s note-
worthy that as the stages progress, the average cost of installing capacity (€/(tH2/day)):
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decreases more significantly than the average production efficiency (kWh/(kgH2)), directly
impacting the production cost, as this is a number that is multiplied by the electricity
price.:
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This observation is outlined in Table 8.7.
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Table 8.7: Change in the average cost of installing hydrogen production capacity and
the production efficiency

Stage
Electricity Scheme Measure 1 2 3
Normal price ∆invh in (%) - 18 % 30 %

∆prodeffh in (%)) - 2 % 2 %
High variance ∆invh in (%) - 15 % 27 %

∆prodeffh in (%)) - 2 % 2 %
Very volatile ∆invh in (%) - 19 % 30 %

∆prodeffh in (%)) - 1 % 2 %
High price ∆invh in (%) - 34 % 28 %

∆prodeffh in (%)) - 0 % 3 %
Low price % ∆invh in (%) - 19 % 31 %

∆prodeffh in (%)) - 2 % 2 %

The reduction in the share of investment costs across all electricity price profiles is primar-
ily due to differences between the two electrolyzers’ rates for investment cost decreases and
production efficiency increases over time. In the first two stages, Alkaline electrolyzers are
installed, with comparatively higher efficiency. From 2023 and towards 2033, however,
PEM, a currently less commercially mature production technology, experience a signific-
antly steeper increase in its production efficiency compared to Alkaline. In 2033, PEM has
reached the same level of production efficiency as Alkaline. This gives a steeper decline in
the expected installation cost per capacity than in production efficiency. Moreover, later
stages see greater demand levels, resulting in the installation of higher capacities that
experience more economies of scale.

8.2.2.3 Excess Capacity Installed

This subsection examines the excess hydrogen production capacity installed across five dif-
ferent electricity price profiles: Normal price, High Price, Low Price, High Variance, and
Very Volatile prices. From the findings in Section 8.2.2.1, it was shown that Proton Ex-
change Membrane’s (PEM) initially higher investment and operation costs often outweigh
the value of its increased production flexibility. PEM was therefore shown to not be the
preferred choice of technology until after its costs matched those of Alakaline. Therefore,
we investigate alternative strategies for obtaining flexibility when installing production ca-
pacity, such as installing excess capacity in order to produce heavily during periods with
lower electricity prices. Nevertheless, it’s crucial to note the non-linear increase between
the available capacity levels to invest in along with the penalty cost for not meeting the
demand, as these factors can incentivize installments of excess capacity.

Figure 8.8 presents excess capacity installed over the different electricity price profiles.
For each stage, the data presented has been aggregated for all strategic nodes within
the respective stage. Additionally, data for each electricity price profile is collected from
instances with configurations C1E4S25N2, C1E2S50N2, and C1E1S100N2.
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Figure 8.8: Excess capacity installed as a % of total demand in stages 1, 2, and 3
under the different electricity price profiles for instances with configuration C1E3S25N2,
C1E2S50N2, and C1E1S100N2.

Except for the low price instances, the model tends to install considerably more capacity
than necessary to meet demand across all electricity scenario generation strategies, ranging
from an excess of 72% to 698%. However, for the low price instances, the model appears
to install capacity closely matching the total demand. This behavior is attributed to low
price scenarios having notably low and less volatile electricity prices, making it optimal to
produce throughout the day until demand is satisfied. This trend implies that flexibility
in terms of installing excess capacity is more valuable than the flexibility offered by PEM
compared to Alkaline. This is because investment costs constitute a fraction of total
costs, justifying an increase in capacity as long as the excess investment costs are more
than offset by the decreased production costs.

In the High Variance, Very Volatile, and High Variance profiles, the highest proportion of
excess capacity installments are observed during the first stage. The absence of this trend
in the Normal Price and Low Price profiles can likely be attributed to the insufficient
economies of scale under these profiles’ comparatively lower prices and price volatility.
These conditions are insufficient to offset the later stages’ production efficiency gains and
investment cost reductions.

For the three previously mentioned profiles, the dominance of first-stage excess capacity
installments, relative to the capacity needed for demand satisfaction, can be traced back to
three determinants. First, the first stage showcases the most substantial economies of scale,
signifying a greater potential advantage from excess capacity compared to subsequent
stages. Second, the economies of scale are most drastic at the smallest capacity levels
and decrease as capacity expands. Given the lower demand during the first stage, many
opportunities exist where demand can be met with lower-capacity facilities. However,
there is a strong incentive to escalate capacity at these levels, consequently driving a higher
incidence of excess capacity installations. Lastly, the first stage precedes two subsequent
stages in the model. Thus, when economies of scale apply, it can be more cost-efficient to
invest in excess capacity to meet future demand, instead of catering to this demand with
later capacity enhancements.
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In contrast, the third stage of the model does not have any successive stages. This struc-
tural difference means it’s not influenced by the third factor - considering later stages when
installing excess capacity for cost efficiency. Therefore, less capacity may get installed in
this final stage due to the absence of future stages that might necessitate additional capa-
city.

In light of these findings, there are cases where it may be wise to install an additional level
of excess capacity. This strategy allows for more effective planning and utilization of the
production site. However, this only holds under certain conditions. First, there should
be an anticipation of an increase in demand beyond the installed capacity in subsequent
stages, and if the demand is expected to rise in subsequent years, the effect can be more
pronounced. Secondly, the economies of scale from installing excess capacity at the stage
should be expected to be more significant than the cost reduction effects from potential
future increases in production efficiency and decreases in investment costs. Lastly, the
electricity prices and their regional differences should be at levels where there are significant
economies of scale from having the excess installed capacity. These conditions have been
fulfilled since 2021, when electricity prices, volatility, and regional differences have been
historically high.

There is a notable anomaly in the first stage of the High Price profiles, where an excess
capacity of 684% is installed. This anomaly is associated with the beneficial effects of
installing large facilities and transporting hydrogen over long distances. In this scenario,
you only install capacity in NO3 (Trondheim) and transport it to all customers, as the
difference in electricity prices between zones is large. Our input data has economies of
scale until capacity level 6, the installed capacity in this instance. Further, as we progress
in time, the optimal decision is still only to install capacity in NO3, where you install the
maximum available capacity across all demand scenarios in the last stage. This indicates
that in this instance, the maximum allowed capacity is lower than what would be the
optimal investment, meaning that the excess capacity installed in stages 2 and 3 is lower
than what would be optimal given larger maximum allowed installations.

8.2.2.4 Value of Flexibility Given Equal Costs

This section discusses the results from specific instances where the selection of the pro-
duction technology is locked, making all input factors, barring technology flexibility, con-
stant. Here, investment cost and production efficiencies are kept equal while differences
persist in the number of shutdown periods and their lower bounds for capacity utiliza-
tion during production. These instances are compared to discern the value of production
flexibility in isolation. The instances employed include C1E1S100N2Tn, C1E1S100N2Th,
C1E1S100N2Tl, C1E1S100N2Tv, and C1E1S100N2Tvv, where each instance is run with
the technology lock as described earlier. All instances were solved to a 0.1% optimality
gap using the Gurobi optimization software, as the differences in objective value are so
low that a 1% optimality gap would not be sufficient to detect differences.

Table 8.8 summarizes the economic outcomes, delineating the cost distribution between
investment, production, and transportation. It also specifies the absolute (€) and relat-
ive (%) difference in costs between using Proton Exchange Membrane (PEM) and using
Alkaline.
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Table 8.8: Overview of cost distribution and gains from instances where the choice of
production technology is locked to only PEM and only Alkaline

Instance Stage Share investment cost Share production cost Share transportation cost Lower Objective value of PEM
(value of production flexibility

PEM Alkaline PEM Alkaline PEM Alkaline MEUR %
C1E1S100N2Tn 1 9.2 % 9.2 % 72 % 72 % 19 % 19 %

2 8.3 % 9.2 % 72 % 73 % 19 % 18 %

3 6.9 % 7.7 % 72 % 72 % 21 % 21 %
13.3 0.93 %

C1E1S100N2Th 1 3.7 % 4.4 % 60 % 61 % 37 % 34 %

2 4.1 % 4.1 % 58 % 58 % 38 % 38 %

3 3.6 % 3.6 % 52 % 52 % 44 % 44 %
12.9 0.53 %

C1E1S100N2Tl 1 13 % 11 % 66 % 68 % 21 % 21 %

2 9.0 % 8.1 % 69 % 69 % 22 % 23 %

3 6.8 % 6.5 % 68 % 69 % 25 % 25 %
3.9 0.39 %

C1E1S100N2Tv 1 8.5 % 7.9 % 60 % 61 % 31 % 31 %

2 7.1 % 7.3 % 57 % 58 % 35 % 35 %

3 7.4 % 7.9 % 54 % 54 % 38 % 38 %
5.1 0.24 %

C1E1S100N2Tvv 1 8.8 % 11.1 % 69 % 69 % 22 % 20 %

2 9.3 % 9.4 % 70 % 70 % 20 % 20 %

3 8.0 % 8.1 % 68 % 68 % 24 % 24 %
14.1 0.95 %

The objective value reduces maximally by around 0.9% under the Normal Price (n) and
Very Volatile (vv) profiles, contrasting with a minimal reduction of 0.24% under the High
Variance (v) profiles. These findings suggest modest economic benefits linked to produc-
tion flexibility. Nonetheless, they corroborate earlier subsections’ outcomes, highlighting
that these economic benefits do not outweigh PEM’s relatively higher investment and
production costs in the first two stages.

Moreover, in the equal cost case, the cost distribution between investment, production,
and transportation remains similar between PEM and Alkaline. This is related to the
specific investment decisions being quite similar between the stages as in cases where costs
are not equal. There is no trend where either Alkaline needs to install more capacity to
be able to switch off production during high price hours, or PEM installs more capacity
to respond fast to volatile electricity prices. The total expected installed capacity for the
different instances split by stages can be seen in Table 8.9.

Table 8.9: Expected total installed capacity for instances C1E1S100N2Tn,
C1E1S100N2Th, C1E1S100N2Tl, C1E1S100N2Tv and C1E1S100N2Tvv split by stages.

Installed Capacity (MW) Stage 1 Stage 2 Stage 3
Instance PEM Alkaline PEM Alkaline Pem Alkaline
C1E1S100N2Tn 15 15 137.5 150 501.25 571.25
C1E1S100N2Th 10 10 110 110 360 360
C1E1S100N2Tl 15 16 100 88.5 331.5 323.5
C1E1S100N2Tv 21 20 166 182.5 926 932.5
C1E1S100N2Tvv 15 20 152.5 170 617.5 602.5

A more thorough investigation of the results shows that the difference in costs resulting in
the lower objective value of the instances with PEM technology comes from marginal lower
production costs for each stage. These minor differences are hard to spot in Table 8.8,
but one can see that the Share production cost for PEM is always equal to or lower than
that of Alkaline. The absolute value of the production cost is, across all instances and
stages, lower for PEM but only marginally so. This shows that PEM allows for a more
efficient production plan than Alkaline, but that the electricity price input data is not
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volatile enough for it to make a significant impact.

In conclusion, these results show that our instances’ economic gain from the modeled
production technology flexibility is relatively low. The main reason behind this is the
sampled historical electricity price input data from the Norwegian power market does not
have properties that give significant value to the modeled production technology flexibility
of PEM. The price of electricity in Norway is often quite stable hour to hour within a day,
where there either exists a general declining or increasing trend in the data, or there
are single hours with spikes in prices (either in terms of low or high prices). Given this
kind of price profile and movements observed in our data, both PEM and Alkaline can
produce quite similar and optimal production plans. For flexibility to be valued, one needs
electricity prices that are more volatile on an hour from hour basis for a substantial share
of the time.

8.2.2.5 Cost of Hydrogen

The discussion in this subsection revolves around the average cost of hydrogen production
across various electricity price profiles - Normal price (n), High Price (h), Low Price (l),
High Variance (v), and Very Volatile (vv). The instances utilized for the analysis are
C1E1S100N2, C1E2S50N2, and C1E4S25N2 for the respective electricity scenario genera-
tion strategies. All instances are resolved using Gurobi optimization software until a 1%
optimality gap is obtained.

Figure 8.9 summarizes the average expected levelized costs of hydrogen (LCOH), a metric
used for indicating the cost of producing a kg of hydrogen under each electricity price and
for each stage. This corresponds to the average investment and production costs from
hydrogen production but does not include transportation costs explicitly, only implicitly,
because transportation costs and restrictions affect where facilities are located. The in-
vestment costs consist of the annualized investment costs multiplied by the length a stage
represents (5 years). This is done since you can use investments from the first stage to
produce hydrogen in later stages. I.e., the second stage includes the share investment cost
from stage 1 that can be distributed to the years of stage 2. As evident from the figure, the
average cost of hydrogen production demonstrates a downward trend as time progresses
across all instances. This observation aligns with expectations, given the increased pro-
duction efficiency, declining investment costs, and improved economies of scale resulting
from establishing larger facilities over time.
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Figure 8.9: Average cost per kg hydrogen produced excluding the transportation costs.

As expected, the highest average cost of hydrogen production is seen in the High Price
electricity price profile, and correspondingly the lowest is seen in the Low Price profile. The
distribution between investment and production costs demonstrates a decreasing pattern
as we move forward in time, indicating an initial installation of excess capacity to cater
to later stages. This trend can be attributed to the decrease in average installation cost
per capacity surpassing the rate of increase in average production efficiency, as discussed
in Section 8.2.2.3.

The findings also emphasize the dominant role of electricity costs in determining the total
hydrogen production cost. In concurrence with the insights shared in Section 2.1.1.3,
electricity costs account for most of the levelized cost of hydrogen (LCOH) production
across all results. On average, electricity costs contribute to 86% of LCOH. This is aligned
with other literature suggesting electricity consists of 70-88% (IEA, 2019, UK Government,
2022, IRENA, 2020b) of the LCOH. We are at the higher end of this range due to us using
forecasts of the future technical specifications, which have a considerably lower investment
cost, and electricity cost from historical realizations in the Norwegian market, which is
higher than the costs used in other studies.

8.2.3 Investments in Hydrogen Production Capacity

The analysis of the configuration of investments in hydrogen production technologies for
Norway’s supply chain, based on the C3E1S2N8Tn and C3E1S2N8Th instances solved to
optimality within 1% with Gurobi, presents several key insights. The reasoning behind
choosing these instances is that the Normal electricity price profile represents the value
chain given historical prices, while the high electricity profile is representative of the exper-
ienced high prices in 2021 and 2022. Figures 8.10, 8.11, and 8.12 delineate the investments’
configuration for the first stage, expected second stage solution, and expected third stage
solution. It is important to note that the scale of the y-axis changes between each stage
as the demand and installed capacity increase with stages. Further, it is important to
note that you can only invest in a discrete number of capacities which gives quite large
differences between the optimal investments in each location.
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(a) C3E1S2N8Tn (b) C3E1S2N8Th

Figure 8.10: First stage investment decisions divided by Alkaline (Alk) and PEM with
capacity in tonnes hydrogen per day (tH2/day)

(a) C3E1S2N8Tn (b) C3E1S2N8Th

Figure 8.11: First stage and expected second stage investment decisions, divided by
Alkaline (Alk) and PEM with capacity in tonnes hydrogen per day (tH2/day)
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(a) C3E1S2N8Tn (b) C3E1S2N8Th

Figure 8.12: First stage, second stage expected and third stage expected investment
decisions divided by Alkaline (Alk) and PEM with capacity in tonnes hydrogen per day
(tH2/day)

From these figures, it’s apparent that the size of the investments increases as we progress
in time, with the first stage witnessing the lowest investments and the last stage experi-
encing the highest. Table 8.10 presents the total installed capacity divided between the
technologies, the average demand, and the average investment size.

Table 8.10: Aggregated results for C3E1S2N8Tn that describe the average installed
capacity over the stages.

C1E1S2N8Tn C1E1S2N8Th
Stage 1 2 3 1 2 3
Average Demand (tonnes H2/ day) 11846 85367 293842 11846 85367 293842
Total Installed Capacity (tonnes H2/day) 21500 121188 397498 10250 80700 348931
Total Excess Capacity 181 % 142 % 135 % 87 % 95 % 119 %
Avg. Investment size (tonnes H2/day) 2.4 8.3 23 1.7 8.8 38
Share of installed capacity PEM 0 % 0 % 100 % 0 % 0 % 100 %
Total share PEM 0 % 0 % 70 % 0 % 0 % 77 %

Moreover, the selection of technology appears to be stage-specific. The first two stages
see installations of Alkaline technology exclusively, while the third and final stage only
witness PEM installation. This observation aligns with the findings in Section 8.2.2.1,
where the instances had more electricity scenarios but a smaller customer-location space.

In the Normal Price profile, an interesting pattern emerges concerning the supply chain’s
configuration. Every candidate facility location receives investments, suggesting that a
distributed hydrogen supply chain is favored, with production capacity installed proximal
to demand. This preference for decentralized production is further substantiated by the
fact that hydrogen is transported at a distance of 161 km on average, significantly below
the limit of 1000 km. This suggests that transportation costs are substantial enough to
outweigh the economies of scale that could be gained from centralized production. At
maxima, hydrogen is transported 725 km. However, this is between Svolvær (in NO4) and
Namsos (in NO3), where the model takes advantage of the differences in electricity prices
and economies of scale and transports hydrogen from NO4 to NO3.

For the high electricity price profile, we see no capacity installation in the southern elec-
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tricity zones (NO1, NO2, and NO5). This is related to the high price instance having very
large price differences between the southern and northern electricity zones. It, therefore,
is optimal to install capacity only in the zones with low electricity prices and transport it
south. In the north, there are signs of a distributed supply chain as all locations in NO3
and NO4 receive investments. In addition, it is prominent that the average capacity of the
facilities is larger for the High Price instance, with a more centralized production setup,
as one needs to install large facilities in NO3 to satisfy demand in the south.

The findings of the configuration of the hydrogen production value chain are consistent
with the findings of Refsdal and Sindre (2022). They also looked at a hydrogen facility
location problem and solved a problem both for 2020 and 2030 technology specification,
but with deterministic demand. The results also suggested a distributed value chain, with
Alkaline being the dominant technology in 2020 and PEM the dominant technology for
2030 specifications.

8.2.4 Flow of Hydrogen Between Bidding Zones

The Norwegian electricity market is divided into five bidding zone as explained in Sec-
tion 2.5. These bidding zones have different prices, where the trend is that the northern-
most bidding zones (NO3 and NO4) have considerably lower prices than the southernmost
(NO1, NO2, and NO5). This observation can be seen in Figure 8.13 showing the average
monthly electricity price over the whole period we sample data from where the largest price
differences have occurred in the last years. Table 8.11 show the specific average electricity
price over the scenarios in C3E2S2N8Tn for the different electricity bidding zones.

Figure 8.13: Average monthly electricity price for NO1, NO2, NO3, NO4 and NO5 from
2018 to 2023.

Table 8.11: Average electricity price for the bidding zones in C3E1S2N8Tn

Bidding zone Average Electricity
Price (€/MWh) in
C1E1S2N8Tn

Average Electricity
Price (€/MWh) in
C1E1S2N8Th

Oslo (NO1) 38.21 199.92
Kristiansand (NO2) 38.88 226.84
Trondheim (N03) 28.02 59.058
Tromso (NO4) 21.76 57.28
Bergen (NO5) 38.43 192.58
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Figures 8.14, 8.15, and 8.16 illustrate the import/export dynamics between the five Nor-
wegian bidding zones: NO1 Oslo, NO2 Kristiansand, NO3 Trondheim, NO4 Tromsø, and
NO5 Bergen.

(a) C3E1S2N8Tn (b) C3E1S2N8Th

Figure 8.14: Hydrogen flow between bidding zoned in the first stage.

For the Normal electricity price profile, in the first stage, exportation between NO2 and
NO5, with approximately 8% of the demand in NO5 being supplied by a facility in NO2.
Given that electricity prices in these zones are typically similar, this observation initially
appears unexpected. However, on deeper analysis, it becomes clear that this situation
results from the equal distance of a major customer in NO5 to the nearest possible facilities
in both NO2 and NO5. Given the greater demand for NO2 during the first stage, it appears
the model leverages economies of scale to build a larger facility in NO2. As the demand in
NO5 increases in subsequent stages, the flow between these two zones decreases, thereby
allowing the facilities in NO5 also to take advantage of economies of scale.

Further, there is export from NO3 to NO4, which also is transportation from a bidding
zone with a higher electricity price. Investigation of the data also reveals a customer close
to the border of NO3 in NO4, which have similar distances to the closest facility in NO3
and the closest facility in NO4. As there is more demand in NO3 than NO4, the model
takes advantage of the economies of scale, builds a larger facility in NO3, and supplies the
customer in NO4 from NO3.

For the High electricity price profile, there is export from NO3 to NO2 and NO5. Where
all demand in NO2 and NO5 are satisfied by facilities in NO3. This is related to the very
large difference in electricity price, which is approximately 4x as expensive in NO2 and
NO5 as in NO3. There is no export between NO3 and NO1 as there is no demand for
NO1 in the first stage.
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(a) C3E1S2N8Tn (b) C3E1S2N8Th

Figure 8.15: Expected hydrogen flow between bidding zoned in the second stage.

(a) C3E1S2N8Tn (b) C3E1S2N8Th

Figure 8.16: Expected hydrogen flow between bidding zoned in the second stage.

For the Normal electricity price instance, in the later stages, there emerges a trend of
hydrogen flowing from northern to southern bidding zones. Most notably, there is a
significant hydrogen flow from NO3 to NO5, accounting for more than 10% of the total
demand in both the second and third stages. But there is also a substantial hydrogen flow
from NO4 to NO3 and N01 to NO2. This north-to-south hydrogen transport pattern is
an interesting aspect of the supply chain configuration and signifies the interplay between
electricity price differences and transportation costs across different regions. Across all
stages, the average distance hydrogen is transported is 161 km, which is way lower than
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the maximum allowed distance of 1000 km. However, it is essential to note that all bidding
zones receive investments as seen in Section 8.2.3. This suggests that the transportation
costs often outweigh the lower electricity prices between bidding zones. Therefore, it could
be interesting to see how many extra kilometers the model will transport hydrogen between
bidding zones to fulfill demand. To do this, we define the following numbers:

For the High electricity price instance, the same trend as in the first stage is prominent,
where facilities in NO3 fulfill all demand in the south in NO1, NO2, and NO5. In addition,
there is some export between NO4 and NO3, which might be related to the slightly lower
price in NO4, and the installed capacity in NO3 is not enough to satisfy all demand in
NO1, NO2, and NO5, as well as its own demand.

• Extra Distance between i and j in stage h node l (EDijhl) is the difference between
the distance transported hydrogen between a customer (j) and facility (i) in different
bidding zones, and the distance between closest facility in the bidding zone of the
customer j and customer j.

• Average Extra Distance in stage h (ADh) is the average of the EDijhl for a stage
h over all i and j. This is adjusted for the total volume of hydrogen transported
between bidding zones.

• Max Extra Distance in stage h node l (MEDhl) is the maximum of the difference
between the distance hydrogen is transported between a customer and facility in
different bidding zones, and the distance between the closest facility in the bidding
zone of the customer j and customer j.

• Max Extra Distance in stage h (MEDh) is the maxima of MEDhl for a stage h.
• Average Max Extra Distance in stage h (AEDh) is the average of the MEDhl for a

stage. This is adjusted for the total volume transported between bidding zones in
total. This is adjusted for the total hydrogen transported between hydrogen in that
stage.

Table 8.12 summarizes the values for MEDh, AEDh and ADh.

Table 8.12: Max and average extra distances transported hydrogen

C1E1S2N8Tn C1E1S2N8Th
Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

MEDh 4 km 536 km 312 km 756 km 464 km 480 km
AEDh 4 km 24 km 4 km 230 km 282 km 328 km
ADh -40 km -81 km -100 km 230 km 215 km 269 km

For the Normal electricity price instance, the maximum extra distance hydrogen is trans-
ported is 546 km between Svolvær (south N04) and Namsos (north in NO3), and occurs
in the second stage. In the third stage, this decrease decreased to 312 km, while in the
first stage, the model does not transport hydrogen any further than necessary. When one
looks at the ADh, it shows that, on average, when there is transportation between bidding
zones, the distance is lower between the chosen facility, i for customer j, than the distance
is to the closest facility to j in j’s bidding zone. This means that a key driver of export
between bidding zones is lower transportation distances. Still, a prerequisite for this is
that the electricity price is lower in the bidding zone where there is production.
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For the High electricity price instance, the hydrogen demand in NO2 and NO5 is satisfied
by facilities in NO3. This leads to high values for MEDh, AEDh, and ADh. This finding
underlines that huge differences in electricity prices can lead to an optimal investment
scheme where you transport hydrogen long distances.
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Chapter 9

Future Research
This Chapter focuses on possible future research based on the results and findings in
this thesis. Firstly possible improvements of the Lagrangian relaxation are presented in
Section 9.1. In Section 9.2, we discuss how the electricity input data might affect our results
and changing these might alter the results. After, a discussion on how one can improve
the representation of the technology flexibility is carried out in Section 9.3. Finally, other
frameworks for solving this problem are presented in Section 9.4.

9.1 Lagrangian Relaxation

As seen in Section 8.1.3, our Lagrangian relaxation has a longer solution time than solving
the model with Gruobi and provides larger gaps. The only metric where our Lagrange
relaxation outperforms Gurobi is that it can solve larger problem instances. This section
will describe future research on improving the Lagrange relaxation for this problem.

9.1.1 Solving the Lagrangian Subproblem

Given sufficient time, our Lagrangian relaxation finds a good lower bound. But the running
time is higher than that for solving the model with the commercial solver Gurobi. This
means that the main problem of the Lagrangian relaxation is the running time being
too high. Our analysis in Section 8.1.4 shows that solving the Lagrangian Subproblem
consumes the most time. Therefore, one can gain the most in terms of reducing the total
running time by improving the solution time of the Lagrangian Subproblem.

In this thesis, we tried to do this by formulating the problem as a shortest-path problem.
Still, our preliminary research suggested that our implementation of this did not perform
well. This might be related to the curse of dimensionality (Bellman, 1952). One could
improve the performance of this way of solving the subproblem by finding ways of cutting
off parts of the solution space.

It is worth noting that alternative methods might further accelerate the solution time for
the Lagrange subproblem. However, the exploration and adaptation of such methods lie
outside the scope of this thesis. We acknowledge the potential for future advancements in
this area, yet we do not propose any concrete recommendations.

9.1.2 Improving the Upper Bound

In Section 8.1.3, it is evident that the upper bound heuristic is the main reason for our
Lagrange relaxation providing sub-optimal gaps. This could be related to the fact that our
upper bound heuristic aims to install sufficient demand to satisfy demand while balancing
not installing too much. This seemed like a good strategy as our Lagrange relaxation
could give solutions that installed very little or very much capacity. However, we see in
Section 8.2.2 that optimal solutions often install much excess capacity and utilize this
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flexibility to produce nothing during high-price electricity periods of a day and much
during low-price electricity periods. How much excess capacity is installed depends on the
electricity scenarios.

In essence, our upper bound heuristic consist of two procedures that both affect how much
capacity is installed:

1. Increase capacity in order to satisfy demand
2. Decrease capacity in order to ensure not too much installed capacity

For improving the 1) Increase capacity, one can add something that gives the heuristic
an incentive to install more capacity than the minimum in order to satisfy demand. This
could be done by increasing the capacity, solving the production and customer allocation
problem, and checking if the objective value improves. Or by using information from the
Lagrangian multipliers to give incentives for installing excess capacity.

To improve the heuristic one could remove 2) Decrease capacity, as we know, excess in-
stalled capacity has a substantial economic value. One could also alter how much excess
capacity needs to be installed before one reduces the capacity. The current implementa-
tion checks whether the excess capacity is larger than the difference in capacity between
the current capacity and the capacity at one capacity level lower. By checking with, for in-
stance, two or three lower capacity levels, one would give the heuristic a bias for installing
excess capacity.

9.1.3 Relaxing the Non-anticipativity Constraints

We decided to relax the demand constraint linking facilities to customers, as this has
been done much in facility location literature. However, it is also possible to relax the
non-anticipativity constraints (5.4) linking the stages together. Investigation into how
relaxing this constraint will affect the model might be interesting.

9.2 Better Representation of Volatility in Electricity Prices

Our analysis shows that for the electricity price input data used in this thesis only in
instances with very volatile electricity prices, our modeled flexibility of PEM is valued
enough to compensate for the higher investment and production costs. The main reason
behind this is that the Norwegian grid has historically had very stable electricity prices
daily. This means that the electricity data we sample scenarios from are not volatile
enough, except for the constructed very volatile price instances, for flexibility to be im-
portant when investing.

The flexibility differences between PEM and Alkaline are larger on lower time scales. We
use 1 hour as the time resolution, but one can buy electricity on a 15-minute time scale
in inter-day trading in Norway (Olje- og energidepartementet, 2022). Lowering the time
resolution could therefore affect the model in the direction of giving a higher value to
flexibility.

The future electricity grid in Norway will be more affected by renewable energy from
volatile sources such as wind. As well as the increased impact on the electricity markets
in Europe with more electricity cables connecting the Norwegian market to the markets
in Europe. This will affect the prices in the Norwegian electricity market, which might
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become more volatile. As the design of the hydrogen value chain is not dependent on
historical electricity prices but rather on future prices, altering how we construct electricity
scenarios could affect the results.

Finally, we have assumed that when producing hydrogen in Norway, one connects the
production to the Norwegian electricity grid. This assumption might not hold as many
hydrogen plants may rely on connecting to dedicated renewable energy, such as wind and
solar, which are more volatile than the electricity grid. Using electricity cost data from
such sources might alter the results. However, it is important to note that this might alter
the problem at hand: Where one might need to add the decision to invest in the sufficient
capacity of renewable energy generation to the problem. This will add a restriction on
how much electricity you have for hydrogen production related to the production from the
wind or solar park or/and an optimization on whether you should use the electricity to
produce hydrogen or sell it to the grid.

9.3 Better Modeling of Technology Flexibility

As seen in Section 8.2.2, the lower production and investment cost of Alkaline techno-
logy outweighs the higher production flexibility offered by PEM until the investment and
production costs are similar. This might be related to our simplified modeling of flexibility:

1. Restricting technologies to be turned off at least S periods after being turned off
2. Restricting the allowable range of the installed capacity one can produce hydrogen

at.

In reality, switching on and off production strains the technologies differently, in addition
to different costs related to heating and pressurizing the technology when turning it on.
Further, Alkaline has modes it can be operated in, such as standby mode, which has an
associated cost but a shorter start-up time than completely turning it off.

In addition, a balancing market for electricity in Norway ensures the consumption and
production of electricity are balanced (Olje- og energidepartementet, 2022). Here one can
get paid to make electricity consumption available within short time frame such as seconds
or minutes, to balance the market. The faster the response time, the higher the premium
is for making this capacity disposable. A prerequisite here is to have energy sources with
a fast response time, which might be the case for PEM but not Alkaline. Adding the
possibility to dedicate a certain amount of the installed capacity to participate in this
market could increase the value of flexibility.

It is worth noting that making the modeling of the flexibility more complex will make an
already hard problem to solve harder. Therefore, it could be an idea to split the decisions
of i) first solve where to invest in production capacity and which customers each facility
should serve, and then ii) solve what technology and capacity to invest in when designing
the hydrogen supply chain in Norway.

9.4 Alternative Solution Methods

This section discusses possible solution methods that could be applied to reduce the solu-
tion time of our model.
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9.4.1 Nested Benders Decomposition

Nested Benders Decomposition is a widely recognized technique for solving multi-stage
problems. Rooted in mathematical programming, it provides an efficient framework for
large-scale, complex problems where decisions are taken in stages. The strength of Nested
Benders lies in its ability to decompose the original problem into a series of interconnected
sub-problems. This way, each stage of decision-making can be considered independently,
allowing for more manageable computational complexity and enhancing the practicality
of solutions. This technique has found extensive application across numerous domains,
including energy system modeling (MacRae et al., 2016) and supply chain optimization
(Khatami et al., 2015), where multi-stage decision-making under uncertainty is a common
challenge. Investigation of this technique applied to our model could be interesting.

9.4.2 Stochastic Dual Dynamic Programming

Lara et al. (2020) presents a Multistage Stochastic Mixed-integer Programming model,
focusing on optimizing power generation expansion over several years. Key factors integ-
rated into this model include detailed operational constraints, intermittency of renewable
generation, power flow dynamics between regions, energy storage options, and a multiscale
representation of strategic and operational uncertainty. This model resembles our own,
particularly with its multistage multi-horizon problem with integer recourse characterist-
ics. Therefore, exploring this method could provide insightful strategies for future research.

To cope with the substantial computational challenge, which escalates exponentially with
each stage in the scenario tree, the researchers utilized the Stochastic Dual Dynamic
Integer Programming (SDDiP) algorithm. Notably, this algorithm, albeit computationally
intensive, was expedited effectively via parallel processing. An intriguing aspect of this
study was the simultaneous application of both Benders and Lagrange cuts on the non-
anticipativity constraints. This approach may be worth investigating in the context of our
model.

9.4.3 Scenario Clustering

The operational stage of the model introduced in Chapter 5 is inspired by the work of
Refsdal and Sindre (2022). They also evaluate the value of flexibility when designing
the hydrogen value chain in Norway, but only under uncertain electricity prices and in
a two-stage setting. In their report, they encounter run-time problems when using large
input data to represent the real world accurately. To overcome this, they utilize a scenario
clustering framework form Hewitt et al. (2022) developed for two-stage stochastic prob-
lems. This framework has not yet been developed for multi-stage stochastic problems,
not to mention the multi-stage multi-horizon problem presented in this thesis. However,
looking into how to adapt this framework to multi-stage, multi-horizon problems could be
interesting. As this is not straightforward, one should start with the multi-stage setting.
Adapting this framework to a multi-stage setting can make it possible to solve larger and
more realistic decision spaces.
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Chapter 10

Concluding Remarks
This thesis investigates the value of the flexibility offered by various hydrogen production
technologies, and it’s impact on production plant investment decisions in Norway. A
stochastic multi-stage multi-horizon facility location problem was introduced to assess the
value of flexibility for the optimal location of hydrogen production facilities in Norway.
The two technologies, PEM and Alkaline, have different flexibility in terms of the number
of periods needed to be closed after an initial shutdown and the load ranges where it
is possible to produce hydrogen. The facilities are intended to meet the transportation
sector’s demand from 2023 to 2038. The analysis encompasses instances with three to
12 production facilities, 13 to 30 demand locations, nine capacities, two technologies, two
to 100 electricity price scenarios, five electricity price characteristic schemes, and demand
data from 2023 to 2033.

The developed model aims to minimize expected costs associated with investment, pro-
duction, and transportation in hydrogen production. Lagrangian relaxation was imple-
mented to improve solution times and problem-size management. However, due to the
curse of dimensionality and slow Gurobi subproblem resolution, the Lagrangian relaxa-
tion showed subpar runtime performance and optimality gap for instances within our set
limit of 172,800 seconds (48 hours). Additionally, our upper bound heuristic was found to
undervalue the installation of excess capacity for subsequent stages, leading to insufficient
capacities. Excess capacity has proven valuable because it provides flexibility by not re-
quiring continuous production throughout the day. Our heuristic aimed to install sufficient
capacity to meet demand without favoring excessive installations. This underscores the
necessity of heuristic refinement.

Our results suggest a preference for Alkaline technology in Norway’s hydrogen supply
chain for 2023 and 2028 due to its lower costs. Nonetheless, PEM emerges as the preferable
choice by 2033 as it narrows the cost gap. The total cost breakdown of our model aligns
with previous studies: production costs account for 60-70%, investment costs for 5-10%,
and transportation costs for 20-30% of total costs.

A distributed supply chain configuration with an average hydrogen transport distance of
161 km proved optimal, echoing findings of Refsdal and Sindre (2022) and Stádlerová and
Schütz (2021). Furthermore, hydrogen flow tends to move from northern to southern Nor-
wegian electricity bidding zones, influenced by lower electricity prices and transportation
cost considerations. A slight trend was observed towards building larger facilities early to
meet later demand stages, mainly for low-production capacities.

The value of modeling this problem as a stochastic multi-horizon model is highlighted
by the high Value of Strategic Decision (VSD), given the presence of both operational
(electricity prices) and strategic (demand) uncertainties.

This thesis provides significant insights into the crucial considerations for the location of
hydrogen production plants under conditions of uncertainty, and it also advances the field
of facility location problems with a first-ever multi-horizon formulation, to the authors’
knowledge. While our Lagrangian relaxation technique did demonstrate certain limita-
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tions, it nonetheless furnished essential insights that can fuel further research in this field.
The study’s findings underline key trends in hydrogen production technology and facility
location, namely that for all problem instances, one saw the installations of excess capacity
to increase proportionately to higher electricity prices. This indicates that flexibility from
excess capacity is more valuable than technological flexibility. As we navigate towards
a future where hydrogen assumes a crucial role in energy production, these findings will
prove instrumental in guiding the optimization of the hydrogen supply chain.
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Jakobsen, D., & Åtland, V. (2016). Concepts for large scale hydrogen production (Master’s
thesis). NTNU. Norway. https ://ntnuopen.ntnu.no/ntnu- xmlui/handle/11250/
2402554

Jena, S. D., Cordeau, J.-F., & Gendron, B. (2016). Solving a dynamic facility location
problem with partial closing and reopening. Computers and Operations Research,
67, 143–154. https://doi.org/https://doi.org/10.1016/j.cor.2015.10.011

Jena, S. D., Cordeau, J.-F., & Gendron, B. (2017). Lagrangian heuristics for large-scale
dynamic facility location with generalized modular capacities. INFORMS Journal
on Computing, 29, 388–404. https://doi.org/https://doi.org/10.1287/ijoc.2016.0738

Kaut, M., Midthun, K. T., Werner, A. S., Tomasgard, A., Hellemo, L., & Fodstad, M.
(2014). Multi-horizon stochastic programming [Special Issue: Computational Tech-
niques in Management Science]. Computational Management Science, 11 (1–2),
179–193. https://doi.org/10.1007/s10287-013-0182-6

Khatami, M., Mahootchi, M., & Farahani, R. Z. (2015). Benders’ decomposition for con-
current redesign of forward and closed-loop supply chain network with demand and
return uncertainties. Transportation Research Part E: Logistics and Transportation
Review, 79, 1–21. https://doi.org/https://doi.org/10.1016/j.tre.2015.03.003

Lai, C.-M., Chiu, C.-C., Liu, W.-C., & Yeh, W.-C. (2019). A novel nondominated sorting
simplified swarm optimization for multi-stage capacitated facility location prob-
lems with multiple quantitative and qualitative objectives. Applied Soft Computing
Journal, 84. https://doi.org/10.1016/j.asoc.2019.105684

Lara, C. L., Siirola, J. D., & Grossmann, I. E. (2020). Electric power infrastructure plan-
ning under uncertainty: Stochastic dual dynamic integer programming (sddip)
and parallelization scheme. Optim Eng, 21, 1243–1281. https : //doi . org/https :
//doi.org/10.1007/s11081-019-09471-0

Leo, E., & Engell, S. (2018). Integrated day-ahead energy procurement and production
scheduling. IEEE Transactions on Power Systems, 66, 950–963. https://doi.org/
10.1515/auto-2018-001610.1515/auto-2018-0016

Li, L., Manier, H., & Manier, M.-A. (2019). Hydrogen supply chain network design: An
optimization-oriented review. Renewable and Sustainable Energy Reviews, 103,
342–360. https://doi.org/https://doi.org/10.1016/j.rser.2018.12.060

Linde plc. (2021). Linde to supply world’s first hydrogen-powered ferry. Retrieved 22nd May
2023, from https://www.linde.com/news-media/press-releases/2021/linde-to-supply-
world-s-first-hydrogen-powered-ferry

MacRae, C., Ernst, A., & Ozlen, M. (2016). A benders decomposition approach to trans-
mission expansion planning considering energy storage. Energy, 112, 795–803.
https://doi.org/https://doi.org/10.1016/j.energy.2016.06.080

Madsen, S. A. (2019). Tep4520 1 industriell prosessteknikk, fordypningprosjekt: Hydrogen
export technology from extreme areas. Fordynpingsporsjekt at NTNU.

Maggioni, F., Allevi, E., & Tomasgard, A. (2020a). Bounds in multi-horizon stochastic
programs. Annals of Operations Research, 292, 605–625. https://doi .org/https:
//doi.org/10.1007/s10479-019-03244-9

Maggioni, F., Allevi, E., & Tomasgard, A. (2020b). Multi-horizon stochastic programming.
Computational Management Science, 292, 605–625. https : / / doi . org / 10 . 1007 /
s10479-019-03244-9

Marsten, R. E., Hogan, W. W., & Blankenship, J. W. (1975). The boxstep method for
large-scale optimization. Operations Research, 23 (3), 389–405.

Mathis, S., & Koscianski, J. (2002). Microeconomic theory: An integrated approach. Pren-
tice Hall.

102

https://itm-power.com/products
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2402554
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2402554
https://doi.org/https://doi.org/10.1016/j.cor.2015.10.011
https://doi.org/https://doi.org/10.1287/ijoc.2016.0738
https://doi.org/10.1007/s10287-013-0182-6
https://doi.org/https://doi.org/10.1016/j.tre.2015.03.003
https://doi.org/10.1016/j.asoc.2019.105684
https://doi.org/https://doi.org/10.1007/s11081-019-09471-0
https://doi.org/https://doi.org/10.1007/s11081-019-09471-0
https://doi.org/10.1515/auto-2018-001610.1515/auto-2018-0016
https://doi.org/10.1515/auto-2018-001610.1515/auto-2018-0016
https://doi.org/https://doi.org/10.1016/j.rser.2018.12.060
https://www.linde.com/news-media/press-releases/2021/linde-to-supply-world-s-first-hydrogen-powered-ferry
https://www.linde.com/news-media/press-releases/2021/linde-to-supply-world-s-first-hydrogen-powered-ferry
https://doi.org/https://doi.org/10.1016/j.energy.2016.06.080
https://doi.org/https://doi.org/10.1007/s10479-019-03244-9
https://doi.org/https://doi.org/10.1007/s10479-019-03244-9
https://doi.org/10.1007/s10479-019-03244-9
https://doi.org/10.1007/s10479-019-03244-9


Matute, G., Yusta, J. M., Beyza, J., & Correas, L. (2021). Multi-state techno-economic
model for optimal dispatch of grid connected hydrogen electrolysis systems oper-
ating under dynamic conditions. International Journal of Hydrogen Energy, 46 (2),
1449–1460. https://doi.org/https://doi.org/10.1016/j.ijhydene.2020.10.019

Melo, T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain
management – a review. European Journal of Operational Research, 196 (2), 401–
412. https://doi.org/https://doi.org/10.1016/j.ejor.2008.05.007

Menon Economics. (2022). Verdien av den norske hydrogennæringen: Status og fremtid-
sutsikter. https://www.menon.no/verdien-av-den-norske-hydrogennaeringen-status-
og-fremtidsutsikter/

Miljødierktoratet. (2022). Klimagassutslipp fra transport i norge. Retrieved 24th March
2023, from https://miljostatus.miljodirektoratet.no/tema/klima/norske-utslipp-av-
klimagasser/klimagassutslipp-fra-transport/

Miljødirektoratet. (2022). Klimagassutslipp fra transport i norge. Retrieved 9th December
2022, from https://miljostatus.miljodirektoratet.no/tema/klima/norske-utslipp-av-
klimagasser/klimagassutslipp-fra-transport/

Millet, P., & Grigoriev, S. (2013). Renewable hydrogen technologies. In L. M. Gand́ıa, G.
Arzamendi & P. M. Diéguez (Eds.). Elsevier. https://doi.org/https://doi.org/10.
1016/B978-0-444-56352-1.00002-7

Moseman, A., & Herzog, H. (2021). How efficient is carbon capture and storage? Retrieved
15th February 2023, from https://climate.mit.edu/ask-mit/how-efficient-carbon-
capture-and-storage

Myklebust, J., Holth, C. B., Tøftum, L. E. S., & Tomasgard, A. (2010). Optimizing in-
vestments for hydrogen infrastructure in the transport sector. in: Techno-economic
modelling of value chains based on natural gas:with consideration of co2 emissions.
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/265786?show=full

Nel. (2021). Nel hydrogen electrolyzers: The worlds most efficient and reliable electrolyzers
[Collected bBrigey contacting NEL offices].

Nickel, S., & Saldanha-da-Gama, F. (2019). Multi-period facility location. Spinger New
York. https://doi.org/10.1007/978-3-030-32177-2 11

Nord Pool. (2022a). Day-ahead prices. Retrieved 24th February 2023, from https://www.
nordpoolgroup.com/en/Market-data1/Dayahead/Area-Prices/NO/Monthly/?view=
chart

Nord Pool. (2022b). Day-ahead prices. Retrieved 24th October 2022, from https://www.
nordpoolgroup.com/en/Market-data1/Dayahead/Area-Prices/NO/Monthly/?view=
chart

Nord Pool. (2023). Nordic ftp server [data retrieved from ftp://ftp.nordpoolgroup.com/
Elspot/Elspot prices/Norway/].

Ocean Hyway Cluster. (2020a). 2030 hydrogen demand for the coastal route bergen-kirkenes
c.3 rev. 0 [Workpackage C: Mapping future hydrogen demand.].

Ocean Hyway Cluster. (2020b). 2030 hydrogen demand in the norwegian domestic mari-
time sector [Workpackage C: Mapping future hydrogen demand.].

Ocean Hyway Cluster. (2020c). Interactive map - potential maritime hydrogen in norway
[Workpackage C: Mapping future hydrogen demand].

Ocean Hyway Cluster. (2020d). Mapping of 2030 hydrogen demand in the norwegian do-
mestic car ferry sector.

Olje- og energidepartementet. (2022). Kraftmarkedet. Retrieved 26th May 2023, from https:
//energifaktanorge.no/norsk-energiforsyning/kraftmarkedet

Pindyck, R. S., & Rubinfeld, D. L. (2018). Microeconomics (9th ed.). Pearson.
Python. (2023a). Multiprocessing — process-based parallelism. Retrieved 5th May 2023,

from https://docs.python.org/3/library/multiprocessing.html

103

https://doi.org/https://doi.org/10.1016/j.ijhydene.2020.10.019
https://doi.org/https://doi.org/10.1016/j.ejor.2008.05.007
https://www.menon.no/verdien-av-den-norske-hydrogennaeringen-status-og-fremtidsutsikter/
https://www.menon.no/verdien-av-den-norske-hydrogennaeringen-status-og-fremtidsutsikter/
https://miljostatus.miljodirektoratet.no/tema/klima/norske-utslipp-av-klimagasser/klimagassutslipp-fra-transport/
https://miljostatus.miljodirektoratet.no/tema/klima/norske-utslipp-av-klimagasser/klimagassutslipp-fra-transport/
https://miljostatus.miljodirektoratet.no/tema/klima/norske-utslipp-av-klimagasser/klimagassutslipp-fra-transport/
https://miljostatus.miljodirektoratet.no/tema/klima/norske-utslipp-av-klimagasser/klimagassutslipp-fra-transport/
https://doi.org/https://doi.org/10.1016/B978-0-444-56352-1.00002-7
https://doi.org/https://doi.org/10.1016/B978-0-444-56352-1.00002-7
https://climate.mit.edu/ask-mit/how-efficient-carbon-capture-and-storage
https://climate.mit.edu/ask-mit/how-efficient-carbon-capture-and-storage
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/265786?show=full
https://doi.org/10.1007/978-3-030-32177-2_11
https://www.nordpoolgroup.com/en/Market-data1/Dayahead/Area-Prices/NO/Monthly/?view=chart
https://www.nordpoolgroup.com/en/Market-data1/Dayahead/Area-Prices/NO/Monthly/?view=chart
https://www.nordpoolgroup.com/en/Market-data1/Dayahead/Area-Prices/NO/Monthly/?view=chart
https://www.nordpoolgroup.com/en/Market-data1/Dayahead/Area-Prices/NO/Monthly/?view=chart
https://www.nordpoolgroup.com/en/Market-data1/Dayahead/Area-Prices/NO/Monthly/?view=chart
https://www.nordpoolgroup.com/en/Market-data1/Dayahead/Area-Prices/NO/Monthly/?view=chart
ftp://ftp.nordpoolgroup.com/Elspot/Elspot_prices/Norway/
ftp://ftp.nordpoolgroup.com/Elspot/Elspot_prices/Norway/
https://energifaktanorge.no/norsk-energiforsyning/kraftmarkedet
https://energifaktanorge.no/norsk-energiforsyning/kraftmarkedet
https://docs.python.org/3/library/multiprocessing.html


Python. (2023b). Random — generate pseudo-random numbers. Retrieved 18th May 2022,
from https://docs.python.org/3/library/random.html

Ravi, R., & Sinha, A. (2004). Hedging uncertainty: Approximation algorithms for stochastic
optimization problems. Lecture Notes in Computer Science, 3064. https://doi.org/
https://doi.org/10.1007/978-3-540-25960-2 8

Refsdal, I., & Sindre, T. S. (2022). The impact of flexibility on hydrogen production plant
location under uncertain electricity prices.

Sabio, N., Gadalla, M., Guillén-Gosálbez, G., & Jiménez, L. (2010). Strategic planning
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Appendix

A Data From Instances to Assesses Value of Flexibility

Table 1: Electricity Scenario Measurements normal electricity prices

Instance Measure 1 2 3 4 5 6 7
C1E1S100N2Tn Production cost (%) 73% 73% 75% 69% 70% 70% 71%

Transportation cost (%) 18% 16% 16% 19% 20% 19% 20%
Investment cost (%) 12% 9% 9% 7% 7% 5% 7%
% PEM installed 0% 0% 0% 74% 74% 77% 77%
Avg Eur/kg H2 6.92 6.71 6.77 6.44 6.50 6.21 6.40
Avg cost per installed capacity (€/MW) 233000 202176 201765 140050 147494 88669 145085
Avg production efficiency (kWh/kgH2) 50 49.17 49.15 48.30 48.30 48.27 48.27
Excess capacity (%) 111% 78% 82% 95% 87% 114% 101%

C1E2S50N2Tn Production cost (%) 72% 75% 75% 73% 72% 71% 72%
Transportation cost (%) 19% 16% 16% 21% 21% 20% 21%
Investment cost (%) 9% 8% 8% 6% 7% 8% 7%
% PEM installed 0% 0% 0% 73% 78% 80% 80%
Avg Eur/kg H2 7.31 7.27 7.31 6.97 6.96 7.02 6.95
Avg cost per installed capacity (€/MW) 245000 203244 201956 138701 136900 151975 142157
Avg production efficiency (kWh/kgH2) 50.00 49.13 49.12 48.29 48.24 48.22 48.22
Excess capacity (%) 58% 76% 75% 97% 125% 139% 126%

C1E4S25N2Tn Production cost (%) 73% 73% 77% 71% 72% 72% 73%
Transportation cost (%) 18% 16% 16% 20% 21% 20% 20%
Investment cost (%) 9% 11% 7% 9% 7% 8% 7%
% PEM installed 0% 0% 0% 76% 69% 81% 79%
Excess capacity (%) 58% 144% 68% 189% 117% 139% 106%
Avg Eur/kg H2 7.35 7.46 7.23 7.16 7.02 7.04 6.95
Avg cost per installed capacity (€/MW) 245000 195095 183827 144145 148761 141927 143818
Avg production efficiency (kWh/kgH2) 50.00 49.09 49.13 48.26 48.33 48.21 48.23

Table 2: Electricity Scenario Measurements

Instance Measure 1 2 3 4 5 6 7
C1E1S100N2Th Production cost (%) 44% 57% 56% 53% 53% 53% 54%

Transportation cost (%) 29% 39% 39% 44% 44% 44% 43%
Investment cost (%) 27% 5% 5% 3% 3% 3% 3%
% PEM installed 0% 0% 20% 71% 71% 73% 73%
Excess capacity (%) 953% 47% 75% 47% 40% 42% 33%
Avg Eur/kg H2 11.83 8.18 8.28 7.86 7.86 7.87 7.88
Avg cost per installed capacity (€/MW) 215000 215000 211650 152500 152500 155550 155550
Avg production efficiency (kWh/kgH2) 50.00 50.00 50.30 48.57 48.57 48.77 48.77

C1E1S100N2Tn Production cost (%) 46% 60% 60% 59% 59% 59% 60%
Transportation cost (%) 28% 36% 36% 37% 37% 37% 36%
Investment cost (%) 26% 4% 4% 4% 4% 4% 4%
% PEM installed 0% 0% 0% 80% 80% 80% 80%
Excess capacity (%) 953% 47% 40% 114% 104% 94% 82%
Avg Eur/kg H2 12.57 9.26 9.27 9.48 9.47 9.48 9.49
Avg cost per installed capacity (€/MW) 215000 215000 215000 144657 144657 144657 144657
Avg production efficiency (kWh/kgH2) 50.00 50.00 50.00 48.39 48.39 48.39 48.39

C1E1S100N2Tn Production cost (%) 52% 59% 54% 56% 56% 55% 56%
Transportation cost (%) 31% 36% 36% 40% 39% 40% 39%
Investment cost (%) 17% 5% 10% 4% 4% 5% 5%
% PEM installed 0% 0% 0% 74% 77% 56% 56%
Excess capacity (%) 163% 168% 572% 99% 115% 137% 122%
Avg Eur/kg H2 10.91 9.03 9.47 8.97 9.10 8.96 8.94
Avg cost per installed capacity (€/MW) 510000 195100 191000 145289 143294 155440 155440
Avg production efficiency (kWh/kgH2) 50.00 49.20 49.09 48.32 48.28 48.48 48.48
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Table 3: Electricity Scenario Measurements loe electricity prices

Instance Measure 1 2 3 4 5 6 7
C1E1S100N2Tn Production cost (%) 67% 70% 70% 69% 69% 69% 69%

Transportation cost (%) 21% 22% 20% 25% 25% 24% 24%
Investment cost (%) 13% 8% 10% 6% 6% 7% 7%
% PEM installed 0% 0% 0% 76% 76% 74% 74%
Excess capacity (%) 58% -4% 26% 15% 10% 33% 25%
Avg Eur/kg H2 4.81 4.43 4.51 4.21 4.22 4.28 4.26
Avg cost per installed capacity (€/MW) 245000 241223 217853 143812 156425 152876 152876
Avg production efficiency (kWh/kgH2) 50.00 49.23 49.17 48.29 48.29 48.30 48.30

C1E2S50N2Tl Production cost (%) 69% 72% 72% 71% 70% 70% 70%
Transportation cost (%) 22% 19% 19% 24% 24% 23% 23%
Investment cost (%) 9% 9% 8% 5% 6% 7% 6%
% PEM installed 0% 0% 0% 78% 70% 74% 74%
Excess capacity (%) 5% 32% 26% 68% 20% 33% 25%
Avg Eur/kg H2 4.83 4.72 4.66 4.39 4.47 4.49 4.47
Avg cost per installed capacity (€/MW) 269000 206908 191964 83311 153198 150062 150062
Avg production efficiency (kWh/kgH2) 50.00 49.11 49.11 48.25 48.33 48.29 48.29

C1E1S100N2Tn Production cost (%) 68% 71% 71% 69% 69% 70% 70%
Transportation cost (%) 21% 20% 20% 25% 24% 24% 24%
Investment cost (%) 10% 9% 10% 6% 6% 6% 6%
% PEM installed 0% 1% 0% 67% 71% 69% 71%
Excess capacity (%) 16% 28% 35% 10% 19% 16% 18%
Avg Eur/kg H2 4.77 4.58 4.60 4.33 4.34 4.34 4.33
Avg cost per installed capacity (€/MW) 272273 207299 206063 156503 152769 153985 152268
Avg production efficiency (kWh/kgH2) 50.00 49.16 49.11 48.38 48.34 48.35 48.32

Table 4: Electricity Scenario Measurements

Instance Measure 1 2 3 4 5 6 7
C1E1S100N2Tv Production cost (%) 46% 55% 55% 54% 55% 54% 55%

Transportation cost (%) 37% 33% 34% 37% 38% 37% 36%
Investment cost (%) 17% 12% 11% 9% 7% 9% 8%
% PEM installed 0% 0% 0% 73% 75% 75% 75%
Excess capacity (%) 426% 268% 251% 281% 301% 280% 256%
Avg Eur/kg H2 8.56 8.11 8.07 7.82 7.62 7.84 7.82
Avg cost per installed capacity (€/MW) 224000 194200 194200 145824 112300 144175 144175
Avg production efficiency (kWh/kgH2) 50.00 49.20 49.20 48.33 48.30 48.30 48.30

C1E2S50N2Tv Production cost (%) 59% 62% 62% 60% 60% 60% 61%
Transportation cost (%) 27% 27% 27% 31% 31% 31% 30%
Investment cost (%) 14% 11% 11% 9% 9% 9% 8%
% PEM installed 0% 0% 0% 74% 76% 76% 76%
Excess capacity (%) 268% 246% 230% 275% 295% 274% 251%
Avg Eur/kg H2 8.83 8.56 8.53 8.28 8.31 8.29 8.26
Avg cost per installed capacity (€/MW) 229786 193160 193160 144740 143165 143165 143165
Avg production efficiency (kWh/kgH2) 50.00 49.15 49.15 48.30 48.27 48.27 48.27

C1E4S25N2Tv Production cost (%) 56% 59% 60% 58% 58% 58% 60%
Transportation cost (%) 25% 27% 28% 32% 32% 33% 32%
Investment cost (%) 19% 14% 11% 11% 10% 9% 8%
% PEM installed 0% 0% 0% 71% 71% 75% 75%
Excess capacity (%) 426% 356% 251% 344% 325% 280% 256%
Avg Eur/kg H2 9.51 9.01 8.60 8.42 8.41 8.31 8.29
Avg cost per installed capacity (€/MW) 228500 193742 195100 146873 146873 144400 144400
Avg production efficiency (kWh/kgH2) 50.00 49.16 49.20 48.34 48.34 48.30 48.30
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Table 5: Electricity Scenario Measurements

Instance Measure 1 2 3 4 5 6 7
C1E1S100N2Tvv Production cost (%) 66% 69% 68% 69% 69% 71% 68%

Transportation cost (%) 20% 23% 23% 23% 23% 23% 24%
Investment cost (%) 15% 8% 8% 8% 7% 6% 7%
% PEM installed 20% 14% 24% 84% 82% 84% 84%
Excess capacity (%) 163% 62% 75% 147% 112% 130% 115%
Avg Eur/kg H2 7.19 6.54 6.60 6.46 6.44 6.34 6.31
Avg cost per installed capacity (€/MW) 250100 209455 207690 142780 144509 110349 144068
Avg production efficiency (kWh/kgH2) 51 49.68 49.9 48.31 48.35 48.39 48.39

C1E2S50N2Tvv Production cost (%) 65% 70% 74% 67% 68% 68% 69%
Transportation cost (%) 22% 22% 20% 25% 24% 25% 24%
Investment cost (%) 13% 8% 7% 8% 8% 7% 7%
% PEM installed 0% 0% 20% 83% 84% 83% 83%
Excess capacity (%) 163% 84% 75% 143% 145% 130% 115%
Avg Eur/kg H2 7.36 6.97 7.13 6.73 6.87 6.77 6.75
Avg cost per installed capacity (€/MW) 240200 204320 168430 143372 142622 143659 143659
Avg production efficiency (kWh/kgH2) 50.00 49.20 49.70 48.25 48.24 48.35 48.35

C1E1S100N2Tn Production cost (%) 66% 70% 69% 65% 68% 68% 67%
Transportation cost (%) 21% 22% 23% 26% 26% 25% 26%
Investment cost (%) 13% 9% 8% 8% 7% 7% 7%
% PEM installed 0% 7% 60% 80% 81% 91% 92%
Excess capacity (%) 163% 99% 75% 158% 159% 107% 115%
Avg Eur/kg H2 7.48 6.94 6.99 6.60 6.58 6.67 6.57
Avg cost per installed capacity (€/MW) 240200 194296 205000 144350 111938 145275 143512
Avg production efficiency (kWh/kgH2) 50.00 49.37 50.70 48.30 48.29 48.62 48.56
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