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Abstract

Unmanned aerial vehicles (UAVs) have the potential to transform society’s perception of ac-
cessibility. During the last decade, UAVs, also known as drones, have accumulated considerable
interest from both institutional and commercial actors. UAVs are able to exploit the underu-
tilized low-altitude urban airspace and provide increased flexibility in parcel and passenger
transport compared to more traditional means of transportation. UAVs can hence broaden the
general population’s access to various essential and non-essential goods and services.

It is not unlikely that UAVs will handle a significant share of parcel and passenger transport
within a wide range of sectors in the coming years. To make this transition successful, the
flight paths taken by each UAV must be well planned and the social impact of the paths must be
accounted for. Thus, this thesis proposes a path planning model to generate socially acceptable
system flight plans for a set of UAVs in an urban environment.

This thesis studies the multi-UAV path planning (MUAVPP) problem in a static, three dimen-
sional, urban environment. The problem is modeled as a multi-objective mixed integer non-
linear program that balances four objectives which are all to be minimized; flight time, risk,
visual pollution and noise pollution. A hybrid evolutionary algorithm (HEA) that combines the
non-dominated sorting genetic algorithm III (NSGA-III) with ant colony optimization (ACO)
is proposed to solve the MUAVPP problem.

Several gaps in existing literature are addressed in this thesis. Most prominent is the current
lack of incorporating visual and noise pollution, which are both critical for social acceptability.
Furthermore, this thesis models air risk, in addition to ground risk, which is also absent in
the reviewed literature. In addition, the proposed model allows various UAV and operational
characteristics to vary between different parts of the UAVs’ voyages. Taking a holistic view, the
use of an evolutionary algorithm to solve a multi-objective, multi-UAV path planning problem
in a three dimensional urban environment, is a novel proposition.

By applying the HEA to the static MUAVPP problem, we see promising results. Using the Norwe-
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gian city of Stavanger as a case study, the HEA finds a set of system flight plans that successfully
trades off the four objectives for the designed test instances. The HEA works with a large set of
system flight plans during its runtime, and selects five diverse system flight plans to return. The
solution method thus ensures a manageable number of options for a decision maker to choose
from, while simultaneously allowing the degree of social impact to be controlled. The results
thus make it clear that it is possible to incorporate social acceptability when performing UAV
path planning in urban environments. The proposed model suffers from extensive runtimes
however, and future research should focus on efficiency enhancements if the model is to be
used in the real world.



Sammendrag

Ubemannede luftfartøy (“unmanned aerial vehicles”, UAV) har mulighet til å endre samfun-
nets syn på tilgjengelighet. I løpet av det siste tiåret har UAVer, også kjent som droner, fått
større og større interesse fra både institusjonelle og kommersielle aktører. Den lavere delen
av luftrommet i urbane områder er underutnyttet, og UAVer kan benytte nettopp denne delen
av luftrommet. Samtidig sørger UAVer for større fleksibilitet i transport av pakker og passas-
jerer sammenlignet med mer tradisjonelle transportmidler. UAVer kan dermed utvide tilgjen-
geligheten til ulike essensielle og ikke-essensielle varer og tjenester for folk flest.

Det er ikke usannsynlig at UAVer vil håndtere en betydelig del av pakke- og passasjertrans-
porten innen en rekke ulike sektorer de kommende årene. For at denne overgangen skal bli
vellykket må flyruten til hver UAV være godt planlagt, og påvirkningen flyrutene har på sam-
funnet må hensyntas. Formålet med denne masteroppgaven er derfor å foreslå en ruteplan-
leggingsmodell som genererer sosialt akseptable systemflygeplaner for et sett med UAVer i et
urbant miljø.

Denne masteroppgaven studerer fler-UAV ruteplanleggingsproblemet (“multi-UAV path plan-
ning”, MUAVPP) i et statisk, tredimensjonalt, urbant miljø. Problemet er modellert som et ikke-
lineært, fler-objektiv, blandet heltallsproblem som balanserer fire objektiver; flygetid, risiko,
visuell forurensing og støyforurensing. Alle objektivene skal minimeres. En hybrid evolusjonær
algoritme som kombinerer non-dominated sorting algorithm III (NSGA-III) med ant colony op-
timization (ACO) brukes for å løse problemet.

Flere hull i eksisterende litteratur adresseres i denne masteroppgaven. Mest fremtredende
er den manglende inkluderingen av visuell forurensing og støyforurensing, som begge er
svært sentrale faktorer for sosial aksept. I tillegg modellerer denne masteroppgaven både luft-
og bakkerisikoen tilknyttet UAVer, hvilket ikke ble funnet i den undersøkte litteraturen. Den
foreslåtte modellen tillater også variasjon av ulike karakteristikker ved UAVer og deres op-
erasjoner mellom ulike deler av UAVenes reiser. Fra et mer overordnet perspektiv, er bruken
av en evolusjonær algoritme til å løse et fler-objektiv, fler-UAV ruteplanleggingsproblem i et
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tredimensjonalt, urbant miljø en ny tilnærming.

Ved å anvende den hybride evolusjonære algoritmen på MUAVPP problemet, ser vi lovende
resultater. Algoritmen finner et utvalg systemflygeplaner som gjør gode avveininger mellom
de fire objektivene for et sett med testinstanser som benytter Stavanger som en casestudie.
Algoritmen jobber med en stor mengde systemflygeplaner underveis i kjøringen, og velger ut
fem differensierte systemflygeplaner som returneres. Løsningsmetoden sørger dermed for at
beslutningstakeren får et håndterbart antall systemflygeplaner å velge mellom, og sikrer samti-
dig at graden av samfunnspåvirkning kan kontrolleres. Resultatene gir altså en klar indikasjon
på at det er mulig å hensynta sosial aksept i ruteplanleggingen for UAVer i urbane miljøer. Den
foreslåtte modellen har imidlertid lang kjøretid, og fremtidig forskning bør derfor fokusere på
effektivitetsfremmende tiltak hvis modellen skal brukes i den virkelige verden.
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Chapter 1

Introduction

The low-altitude airspace in urban environments represents a major opportunity for transport-
ation that has yet to be fully utilized. An unmanned aerial vehicle (UAV), commonly called a
drone, can operate in this airspace. A UAV is an unmanned aircraft that is either autonom-
ous and guided by onboard software or controlled remotely (Hu & Lanzon, 2018; Merriam-
Webster, n.d.). Using this definition, the first UAVs were developed in the 20th century with
a military use case, and since then the use cases and interest in UAVs have expanded rapidly
(Lutkevich, 2021; Posea, 2021). The European Commission envisions UAVs to provide nu-
merous services by 2030, including emergency and commercial transport services (European
Commission, 2022). Delivery UAV trials have taken place in various countries and the first pas-
senger UAV trials are expected to take place in 2023 (European Commission, 2022; Stavanger
kommune, n.d.).

The market for UAV services is expected to grow significantly in the coming years (European
Commission, 2022; Grandview Research, 2020), implying both possibilities and challenges.
The commercial potential of UAVs includes taxi services and parcel delivery from e.g. DHL or
Amazon. The medical sector can also benefit greatly from UAV services, through transport of
medical personnel or delivery of e.g. organs, blood products or vaccines. More broadly, UAVs
can take advantage of the aforementioned opportunity in the low-altitude airspace, and thus
become a middle ground between transport in high-altitude airspace and transport on the
ground. UAVs avoid the limitations road infrastructure imposes on vehicles on the ground.
Furthermore, UAVs do not need as much space for take-off and landing as airplanes, which
again gives the UAVs greater maneuverability and access to various areas. Despite the possib-
ilities, current regulations heavily constrain the use of UAVs in urban environments, making it
rather limited. Widespread use of UAVs also introduces challenges. Studies by the AiRMOUR-
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project found that people have concerns regarding the risk, visual pollution and noise pollution
associated with more widespread use of UAVs. AiRMOUR is a research and innovation project
focused on the use of UAVs for emergency medical services in urban areas, and is supported
by the European Union (EU)(AiRMOUR, 2022).

Path planning is key to effective UAV transport. Path planning may be defined as finding op-
timal paths between locations (Gasparetto et al., 2015) and many variations of the problem
have been studied. It has been used to gather information, to reach a given destination or
to visit a set of locations. Path planning has also been studied for various vehicles, both in
single-vehicle and multi-vehicle settings, including UAVs, ships, robots and trucks. Minimiz-
ing time or distance traveled is a commonly studied objective, and both single-objective and
multi-objective models have been proposed. Among the multi-objective models, a bi-objective
model of risk and either time or distance is often used. The environments studied also vary
greatly, with various combinations of the four dichotomies; two or three dimensional, static or
dynamic, discrete or continuous and urban or rural. Evolutionary algorithms (EA) are often
proposed to solve path planning problems, but many also develop their own problem-specific
exact methods or heuristics, often based on shortest path algorithms.

Motivated by the great opportunity of navigating urban skies, the purpose of this thesis is to
develop a path planning model to generate system flight plans for a set of UAVs that accounts
for the challenges associated with UAV transport. We define a system flight plan as a set with
one flight path with associated timestamps for each UAV in the system. Each UAV has one or
more locations that it must visit in sequence, in addition to its start location. The environment
studied is three dimensional, static and urban, and it is discretized and represented by a grid.
The problem may thus be defined as a static, multi-UAV path planning (MUAVPP) problem.
The problem considers four objectives; flight time, risk, visual pollution and noise pollution.
This thesis considers the risk UAVs pose to humans if they were to fall down due to malfunc-
tions or collisions, as opposed to the more common consideration of the risk of the UAVs being
destroyed. Since all objectives are to be minimized, the MUAVPP problem is a multi-objective
minimization problem. The problem also limits the energy consumption of each UAV to avoid
exceeding its energy capacity. This thesis solves the problem using a hybrid evolutionary al-
gorithm (HEA) consisting of non-dominated sorting genetic algorithm III (NSGA-III) and ant
colony optimization (ACO). The HEA is run on various test instances to prove or disprove a
set of hypotheses for the MUAVPP problem in the computational study.

This thesis contributes to current literature in multiple ways. To the best of our knowledge,
visual pollution and noise pollution have not been taken into account in any path planning
problem before. Furthermore, the risk to humans associated with UAVs flying in urban envir-
onments has also received little attention in the literature. These aspects are crucial to urban
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UAV path planning, as widespread use of UAVs will affect the population in urban areas. Thus,
by taking risk, visual pollution and noise pollution into account, this thesis aims to generate
socially acceptable system flight plans. Another contribution is the possibility to let character-
istics differ between a UAV’s segments. A segment consists of a pair of subsequent locations
on a UAV’s voyage. Hence, if a UAV is to visit locations A, B and C, there are two segments,
namely A to B and B to C. This thesis allows the importance of efficiency, i.e. the importance of
short flight time, and the weight of the payloads carried by a UAV to vary between segments.
Furthermore, this thesis contributes through the proposed solution method, since an evolu-
tionary algorithm has, to the best of our knowledge, not been used to solve a multi-objective,
multi-vehicle problem in an urban environment before.

The remainder of this thesis is structured into nine chapters. Chapter 2 introduces relev-
ant background information regarding UAVs, applicable laws and regulations, urban envir-
onments, risk, visual pollution and noise pollution. Chapter 3 presents literature relevant to
the MUAVPP problem. Chapter 4 gives a detailed description of the MUAVPP problem, which
is used to formulate the mathematical model of the problem in Chapter 5. Chapter 6 presents
the models for the environment, energy consumption, risk, visual pollution and noise pollution
associated with both a single UAV and a system of UAVs, while Chapter 7 proposes a solution
method to solve the MUAVPP problem. Chapter 8 is the computational study, and it presents
the input parameters, hypotheses and test instances, and discusses the results of applying the
solution method to the test instances. Chapter 9 provides concluding remarks, and Chapter 10
discusses possibilities for future research.





Chapter 2

Background

This chapter presents relevant background information. Section 2.1 gives a simplified overview
of UAV characteristics, while Section 2.2 introduces different UAV use cases. Section 2.3 gives
an overview of laws and regulations to give an understanding of the limitations currently
imposed on UAV usage, while Section 2.4 introduces our definition of an urban environment.
Sections 2.5-2.7 describe factors that are taken into account when evaluating different UAV
paths in this thesis. Section 2.5 explains the risks associated with UAVs, while Sections 2.6 and
2.7 describe the concepts of visual and noise pollution, respectively. This chapter is a revised
and updated version of the corresponding chapter in our preparatory research project.

2.1 Unmanned Aerial Vehicle Characteristics

The basic functionality of a UAV is flight and navigation. In order to fly, UAVs have a frame,
rotors and a power source. The frame tends to be a composite and lightweight material to
ensure maneuverability. The two main categories of UAVs are rotor and fixed-wing. The ro-
tor category includes both single-rotor and multi-rotor, such as quadcopters. UAVs may also
include many other components, such as speed and flight controllers, GPS, various sensors, an-
tennas, cameras, receivers, an altimeter to measure altitude and an accelerometer to measure
speed (Lutkevich, 2021). Due to numerous possible components, UAVs may vary significantly
in design, e.g. in size, weight, speed, emitted sound, battery capacity and flight range.

2.1.1 Energy Consumption
Both external and internal factors affect energy consumption and thus the flight range of a
UAV. The factors can be categorized into three groups; UAV design, including weight and size,
UAV dynamics, such as speed, flight altitude and type of motion, and the environment, such as
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weather and air density (Demir et al., 2014; Zhang, Campbell et al., 2021). Empirical studies
of UAV energy consumption have looked at many of the factors in these three categories. For
example, Abeywickrama et al. (2018) found that energy consumption increases with increas-
ing speed and with increasing height. When a UAV is hovering at a fixed altitude, a higher
altitude leads to a higher energy consumption, and flying horizontally at a given altitude is
more energy consuming than hovering at the same altitude. Furthermore, flying vertically up-
wards requires more energy than flying vertically downwards. Increases in the weight and
potential payload weight of a UAV were also found to increase energy consumption.

2.2 Unmanned Aerial Vehicle Use Cases

The first UAVs were used by the military. In later years the use of UAVs has expanded and today
UAVs also take on many different civilian use cases. Some examples include delivery, search
and rescue, monitoring of traffic, wildlife and weather, surveillance, medical and emergency
services, passenger transport, photography and hobbyist use (Lutkevich, 2021; Posea, 2021).
The remainder of this section takes a closer look at commercial and medical use cases.

2.2.1 Commercial
Using UAVs for delivery of commercial parcels has been in the works for a while. Since 2013,
companies like Amazon, UPS, Alphabet and DHL have all been developing their own UAV
technology for parcel delivery and urban logistics (Roca-Riu & Menendez, 2019). There are
many different kinds of parcels that may be delivered, including food, clothing, equipment
and other goods. Alphabet’s Wing initiative has tested UAV delivery of small parcels, such as
food, beverages and over-the-counter chemist items, in multiple regions. DHL’s Parcelcopter
has been used to deliver parcels to rural areas in Germany (Burgess, 2016). In addition, UAVs
have been tested in combination with trucks to deliver e-commerce parcels, with the trucks
working as mobile landing platforms for the UAVs (Roca-Riu & Menendez, 2019).

The use of UAVs for passenger transport is a novel concept. Multiple actors are currently com-
peting to be the first to offer a UAV passenger service, with the largest barriers being related
to regulations and safety (Feist, 2022; Sims, 2022). In 2021, Jetson became the first European
company, and among the first companies in the world, to produce a passenger UAV for per-
sonal use (Cluff, 2021; Konopka, 2022). EHang is another company making passenger UAVs,
including a taxi UAV for inter-city travel with two seats (Singh, 2021b). The US-based com-
pany Archer plans to launch a two-seat taxi UAV by 2024 (Singh, 2021a). An example of a
passenger UAV is shown in Figure 2.1.
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Figure 2.1: The EHang 216 Autonomous Aerial Vehicle (EHang, 2016).

2.2.2 Medical
The first use of medical UAVs were for damage assessments in disaster areas, as UAVs could
avoid roadblocks and fly over difficult terrains without endangering the life of a flight crew
(Meier, 2015). They have also been used to assess chemical or biological hazards, measure ra-
diation, aerosols and other health hazards, track disease spread and gather information about
the number of people in high-risk environments that are in need of care (Rosser et al., 2018).

In addition to assessments, a large part of UAVs’ role in medical services relates to delivery.
UAVs was used for delivery of aid packages to people affected by disasters as early as in 2010,
and have delivered disease testing kits to, and transported test samples from, remote villages
and rural areas in Africa (Balasingam, 2017). Multiple studies have also shown that UAVs can
safely transport blood products and vaccines (Balasingam, 2017; Roca-Riu & Menendez, 2019;
Toor, 2016). Delivery UAVs have also been tested in the US for transport of medical supplies
to a small clinic in a rural part of Virginia (Balasingam, 2017; Rosser et al., 2018).

UAVs can also be used for emergency transport. This includes the delivery of automated ex-
ternal defibrillators (AED) to people suffering cardiac arrests outside of hospitals (Rosser et
al., 2018; Schierbeck et al., 2021). This UAV use case has been tested in relation to the AiR-
MOUR project in Sweden in 2021 and Norway in 2022 (Crumley, 2022; Crumley, 2021), and
is already practiced by the company Everdrone in Sweden (Everdrone, n.d.). Passenger UAVs
are also used in emergencies to transport medical personnel to people in need (Crumley,
2022). Through the AiRMOUR project, EHang is currently planning to test passenger UAVs
in Stavanger in Norway in 2023 (Stavanger kommune, n.d.).

2.3 Laws and Regulations

Due to the novelty of the UAV sector, there is still ongoing work on UAV regulations. In 2019,
the European Commission adopted several UAV regulations, focusing mainly on individual UAV
operations (European Commission, 2019a; European Commission, 2019b). Due to the increas-
ing complexity and number of UAV operations entering the airspace, the European Commission
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adopted another set of regulations in 2021, with additional rules and procedures regarding
certain geographical zones, called the U-space (European Commission, 2021a; European Com-
mission, 2021b; European Commission, 2021c). These zones for example include areas where
a large number of simultaneous UAV operations are expected. The regulations adopted by the
European Commission are the foundation for all UAV operation regulations in the EU and a
number of other countries, including Norway.

In addition to the regulations described above, countries can have individual, supplement-
ary regulations. The most important regulation for UAVs in Norway is the “regulation on un-
manned aircraft” (“Forskrift om luftfartøy som ikke har fører om bord”), also known as “The
drone regulation” (“Droneforskriften”) (Samferdelsdepartementet, 2015). In addition, UAV
traffic is regulated through the law of aviation (“Luftfartsloven”) (Samferdelsdepartementet,
1996) as well as through a number of other laws and regulations.

There is considerable overlap between the contents of the various UAV regulations. All the
regulations establish three different categories of UAV operations, affecting what kind of rules
that apply. The regulations mostly include rules and procedures regarding the competency
of a remote pilot, the airworthiness of the UAV and the authorization and registration of the
UAV operation. In addition, there are rules regarding the allowed flight altitudes, as well as
procedures for risk management and noise minimization. The regulations also specify that
there are some areas that can be particularly sensitive to UAV operations and that local au-
thorities may enforce additional rules that prohibit or restrict UAV operations in certain areas.
These types of areas are referred to as no-flight zones in this thesis. Examples of no-flight zones
are airports, embassies and prisons. Furthermore, the EU regulations on U-space contain re-
quirements that ensure collaboration between the different stakeholders of a U-space, e.g the
U-space service providers, the UAV operators and relevant air traffic service units (European
Commission, 2021a; European Commission, 2021b; European Commission, 2021c). Some ex-
amples of requirements are specific procedures for coordination and communication, such as
geo-awareness services and weather information services. With increased use of the U-space,
a major objective is to avoid collisions between aircrafts. The Standardized European Rules
of the Air (SERA) is based on the pilot of an aircraft using the “see and avoid” principle, to
avoid mid-air collisions. The European Commission points out that since UAVs are by defini-
tion unmanned, this principle cannot be strictly followed. Hence there is a need for new ways
to mitigate the risk of collisions between UAVs (European Commission, 2022).

The rapid development of UAV technology and expansion of UAV use cases makes it difficult
to know what future UAV regulations will look like. As society learns more about the effects
of widespread use of UAV operations, a need for new and improved regulations arise. As of
May 2023, UAVs that operate over assemblies of people or carrying passengers, are so heavily
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regulated that such UAV operations are in practice prohibited. In addition, the regulations are
heavily based on the fact that there is a pilot controlling the UAV remotely, with little attention
given to UAVs guided by onboard software. Therefore, a continuous development of UAV laws
and regulations is a big part of the UAV strategy of the European Commission from November
2022 (European Commission, 2022).

2.4 The Urban Environment

There exist several definitions of an urban environment, and the European Commission points
out that it can be hard to give a definition that applies globally (Dijkstra & Poelman, 2014).
Nevertheless, most uses of the term urban environment emphasize a high population dens-
ity (Rutledge et al., 2022). Cities and their surrounding areas are thus natural examples of
urban environments. The term urban environment is important for research and regulations of
UAVs, because a high population density implies a higher risk associated with UAV operations
in these areas. Current regulations strongly limit the use of UAVs in urban areas (European
Commission, 2019a; European Commission, 2019b), but with smart city projects, such as the
Smartbyen project in Stavanger (Stavanger kommune, n.d.), urban UAV usage is expected to
become increasingly common in the future.

2.5 Risk

It is widely acknowledged that risk assessments of UAV operations are essential (EASA, 2015;
Primatesta et al., 2020; Sedov, Polishchuk & Vishwanath, 2021; Watkins et al., 2020). This is
also supported by the fact that the regulations adopted by the European Commission in 2019
follow a risk-based approach (European Commission, 2019a; European Commission, 2019b).
The importance of risk is also emphasized in the official UAV strategy of both Norway and the
EU (European Commission, 2022; Helse- og omsorgsdepartementet et al., 2018). A central
goal of UAV operations is the minimization of air risk and ground risk (European Commission,
2019a; European Commission, 2019b; Helse- og omsorgsdepartementet et al., 2018). Ground
risk comprises third-party risks, i.e. the risk to people, animals and property on the ground
which are not a part of the UAV operation. Air risk is the risk for users of the same airspace as
a UAV. Air risk comprises the risk for the passengers inside the aerial vehicles, both in the UAV
itself and in other vehicles, due to the possibility of the UAV colliding with other aerial vehicles
or malfunctioning (Helse- og omsorgsdepartementet et al., 2018; Samferdelsdepartementet,
2015; Sedov, Polishchuk, Maury et al., 2021; Sedov, Polishchuk & Vishwanath, 2021).

As of May 2023, the UAV risk assessments in Europe are mainly qualitative. UAV operations
of a certain risk level must conduct an operational risk assessment to get an approval to carry
out the operation (European Commission, 2019a; European Commission, 2019b; Sedov, Pol-
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ishchuk & Vishwanath, 2021). A common way to quantify and measure the risk associated
with UAV operations, is a probabilistic approach calculating the expected fatality rate (EFR) of
a given path (Primatesta et al., 2020; Sedov, Polishchuk, Maury et al., 2021; Sedov, Polishchuk
& Vishwanath, 2021; Susini, 2015).

2.5.1 Air Risk
Air risk is the primary focus of risk assessments for conventional aviation traffic, and conven-
tional aviation traffic has therefore inspired much of the work on air risk associated with UAV
operations (Primatesta et al., 2020; Sedov, Polishchuk, Maury et al., 2021; Sedov, Polishchuk &
Vishwanath, 2021). However, unlike conventional aviation, UAVs do not have a clearly defined
risk measurement (EASA, 2013). Sedov, Polishchuk, Maury et al. (2021) calculate the air risk
of a UAV path as the EFR associated with the path, using the expected number of conflicting
airplanes along the path and the expected number of people on board each airplane. The work
shows that the EFR associated with air risk is virtually zero in most places, because UAVs and
airplanes operate at different altitudes. The only exception is near airports, but since airports
are considered no-flight zones for UAVs, as described in Section 2.3, the increased EFR in
these areas is irrelevant. Sedov, Polishchuk, Maury et al. (2021) and other work in the field
(Helse- og omsorgsdepartementet et al., 2018; Primatesta et al., 2020; Sedov, Polishchuk &
Vishwanath, 2021), do not take passenger UAVs into account due to their novelty. Therefore,
the air risk for the people on board a UAV is not considered. With increased use of the U-space
described in Section 2.3, the risk of collisions between UAVs must be taken into account.

2.5.2 Ground Risk
Ground risk is a fairly new research area, motivated by the fact that UAV operations often op-
erate in closer proximity to people compared to e.g. conventional aircraft (Sedov, Polishchuk,
Maury et al., 2021). Various quantifications of risk and calculations of EFR have been proposed.
The EFR calculations often depend on the probability that a UAV falls down, the probability
that the UAV hits people on the ground and the probability of fatality if the UAV hits a per-
son. These factors are again dependent on the characteristics of the UAV, such as its weight,
size and battery capacity, but also external factors such as the population density, the weather
and the sheltering level of the overflown area (Primatesta et al., 2020; Sedov, Polishchuk &
Vishwanath, 2021; Susini, 2015).

2.6 Visual Pollution

There have been many different definitions of visual pollution over the years, with the defini-
tions gradually becoming wider (Jensen et al., 2014; Portella, 2007; Sumartono, 2009; Yilmaz
& Sagsöz, 2011). A general definition of visual pollution is the negative impact an individual
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may experience by viewing a visual pollutant and its movement. A visual pollutant may be
defined as any object or artificial structure that degrades visual quality. This includes any
element that may be considered as misplaced in a given outdoor or indoor landscape, and
also relates to the spatial arrangement of elements and whether they appear to be organ-
ized (Ahmed et al., 2019; Thomas, 2022). Examples of visual pollutants thus include littered
waste, advertisements, buildings that stand out from surrounding infrastructure, unordered
parking spots, wires and wind farms (Mohamed et al., 2021; Skenteris et al., 2019). A UAV
flying through a city could thus also be considered as a visual pollutant, and widespread UAV
usage could further amplify the pollution (Kraus et al., 2020). There exists various methods
for studying visual pollution (Thomas, 2022). Despite the different methods, visual pollution
is difficult to quantify as little research exists and visual pollution is subjective (EASA, 2021).

Visual pollution can have various health-related consequences, such as distraction, mood dis-
orders, stress, anxiety, overstimulation and reduced work efficiency (Mohamed et al., 2021;
Thomas, 2022). Furthermore, visual pollution does not fade over time, and can even increase
the perception of other pollutants such as noise, since viewing the source of noise pollution may
amplify a person’s perception (Schäffer, Pieren, Hayek et al., 2019; Thomas, 2022). Despite
these possible consequences of visual pollution, it was rated second to last out of ten proposed
reservations towards delivery UAVs in a European Union Aviation Safety Agency (EASA) sur-
vey, behind e.g. noise pollution and risk (EASA, 2021). It should be noted however, that visual
pollution was not considered to be insignificant despite being rated as less important. Thomas
(2022) found that the four factors that influence visual pollution the most are distance to the
closest UAV, the number of UAVs, the UAVs’ use cases and the awareness of the UAVs. Whether
the environment was urban or rural did not have much of an impact.

Visual pollution can be reduced through various techniques. Generally, UAVs should avoid fly-
ing in open and highly populated areas. If it cannot be avoided, the UAVs should fly at high
altitudes to appear smaller in size. Another possible measure is to highlight the positive aspects
of using UAVs, since having a positive opinion prior to seeing UAVs lead to people perceiving
UAVs as less visually polluting (Thomas, 2022). This also coincides with our findings in Ap-
pendix A. Finally, since the studies in Appendix A indicate a greater acceptance for emergency
medical UAVs, they should be clearly marked, e.g. with an identifying color.

2.7 Noise Pollution

According to Jhanwar (2016), noise pollution is distressing sound that may harm the physical
or mental activity of humans or animals. In this thesis, the word sound is used to describe any
audio, while the word noise is considered as a subcategory of sound, describing an undesirable
and negatively associated sound. Using the classes of noise pollution proposed by Jhanwar
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(2016), UAV noise may be classified as environmental noise, and is characterized by high
frequencies and high tonality (Alexander & Whelchel, 2019; Torija, Self et al., 2019). A UAV
emits noise through its engine but also aerodynamic noise from compression and friction in
the air when the UAV is in motion (Jhanwar, 2016).

Psychological factors impact the perceived noise pollution, and people may have different
subjective perceptions of the same noise (Torija & Clark, 2021). Moreover, a 2017 study from
NASA shows that UAV noise is considered more annoying per decibel (dB) compared to noise
from other forms of transportation. Possible explanations for this are that noise coming from
above can be perceived as more frightening, that the noise emitted by UAVs is unfamiliar or
that UAV noise might remind people of insects (Christian & Cabell, 2017; Norsk forening mot
støy, 2018). Furthermore, an individual can perceive the same UAV noise differently depending
on the presence of other background noise, since such a presence affects the noticeability of
the UAV noise. It might thus be beneficial to make UAVs fly above highways and other areas
where there is already a high noise level (European Commission, 2022).

There exist many different metrics and measurement methods for noise, emphasizing different
sound characteristics. However, it is not generally agreed upon which procedures are best
for UAV noise, among other things because UAVs have characteristics that make their noise
different from the noise emitted by more researched vehicles, such as airplanes (Schäffer,
Pieren, Heutschi et al., 2021; Torija & Clark, 2021). EASA has worked on creating guidelines
for objective and comparable noise measurements of UAVs for years, and the agency published
a first draft in October 2022 (EASA, 2022). It is likely that there will be more research on the
topic as the use of UAVs become more widespread.

Noise pollution is a major concern in the discussion of widespread use of UAVs, and it plays
a role in the development of UAV regulations, as mentioned in Section 2.3. In general, the
lower the sound level, the better and the overall aim is hence to minimize noise. The World
Health Organization (WHO) has published guidelines of acceptable noise levels from various
noise sources, and different countries and areas can have specific limits on acceptable levels
of noise (WHO, 2018). Noise pollution can have adverse health effects, and is thus important
to consider when deciding where UAVs may or may not fly. According to Aasvang et al. (2022)
at Folkehelseinstituttet (FHI), noise above 80-85 dB over a long time period can result in
permanent damage. It is also well documented that noise can disturb concentration and sleep.
The long-term effects of noise and its relation to diseases is more uncertain, but it seems to
increase the likelihood for some heart and vascular diseases (Aasvang et al., 2022). There is,
however, ongoing research on possible methods to reduce UAV noise, and for example is the
company Whisper Aero working on designing a UAV that customizes its sound so that it blends
into the sound in its surroundings (Vance, 2021).



Chapter 3

Literature Review

This chapter presents a review of relevant literature for the static, multi-UAV path planning
(MUAVPP) problem studied in this thesis. Path planning is a fundamental part of UAV opera-
tions and has been researched for decades (Bortoff, 2000). When also including other vehicles,
path planning has been studied even longer and the amount of literature is vast. This chapter
presents the key findings and is split into seven sections. Section 3.1 describes the search
strategy used. From the large set of literature initially gathered using the search strategy, 36
papers were selected for further analysis. Sections 3.2-3.6 classify these papers based on vari-
ous aspects. In Section 3.2 the problem categories and problem types are presented, while
Section 3.3 discusses the model elements found in the papers. Sections 3.4 and 3.5 introduce
the environments and vehicles studied, while 3.6 discusses the solution methods used. Finally,
Section 3.7 takes a holistic view of the classifications from the previous sections, discusses
identified gaps in relation to the various aspects and explains our contribution to the existing
literature. The majority of the literature review in this thesis was conducted in relation to our
preparatory research project, but has been updated to fit the MUAVPP problem.

3.1 Search Strategy

The search for literature started out broad, and was later narrowed down based on relevance.
Since there exists numerous variants of path planning and related problems, with differing
considerations and approaches, it was deemed necessary to use a wide set of search terms.
The search terms are presented in Table 3.1.

To ensure a structured literature review, the search terms were combined into search queries
using logical operators such as "AND" or "OR". A query could contain multiple search terms
from the same group, e.g. “Multi UAV”, and a query did not necessarily contain a term from

13
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Table 3.1: Overview of search terms used in various combinations to find relevant literature.

Problem Model elements Environment Vehicle Solution method

Path planning Energy consumption Continuous Drone Exact
Route planning Multi-objective Discrete UAV Heuristic
Shortest path Noise pollution Dynamic Robot Mathematical programming

Trajectory planning Risk Static Ship Optimization
Visual pollution Urban Truck

2D Single
3D Multi

every group. The queries were then fed into Scopus, a search engine for a database of citations
and abstracts. We have also utilized ScienceDirect and Google Scholar to further broaden our
search. During the search and review process, the pool of literature was further extended to
include papers citing, and papers cited by, the papers found.

This search strategy resulted in a large number of papers that were carefully assessed. By
sorting out the papers most relevant for this thesis, we were left with 36 papers, which are
analyzed from multiple angles in the remaining sections. The selected papers are organized in
Table 3.2 in Section 3.7.

3.2 Problems

The papers in this literature review studies various problem categories and problem types. We
define the problem category as the overarching problem that is solved. Three recurring problem
categories are path planning, trajectory planning and route planning. Both path planning and
trajectory planning aim to find one or more optimal paths between a set of ordered locations.
Path planning differs from trajectory planning by discretizing the environment and defining
an optimal path as a set of points through a grid or other type of network, limiting the possible
paths a vehicle may take. Trajectory planning, on the other hand, describes an optimal path
by a time schedule of when and how much to update the trajectory the vehicle is currently on.
Thus, there is no limit to the possible paths a vehicle may take when using trajectory planning
(Gasparetto et al., 2015). The route planning problem differs more clearly from the previous
two problem categories, as route planning finds the optimal order to visit a set of locations
(Murray & Raj, 2020). Hence, path planning and trajectory planning focus on finding the
actual path between given, ordered locations, whereas route planning focuses on deciding the
visitation order of locations. Of the 36 papers analyzed, about 69% study path planning, 19%
study trajectory planning, and 25% study route planning, often combined with either path or
trajectory planning.



Chapter 3: Literature Review 15

In addition to an overarching problem category, most of the papers have a more specific pur-
pose or problem type. Three recurring problem types are observed in the reviewed papers;
information gathering, reaching a target and visiting a set of locations. The information gath-
ering problem type focuses on gathering as much information as possible in a given area, but
does not require that one or more locations must be visited. The information gathering prob-
lem type is used in 19% of the papers, and includes surveillance (Modares et al., 2017), search
and rescue (Hayat et al., 2017), identifying causes of disasters (Qadir et al., 2022) and other
forms of data gathering. The second problem type is simply to reach a target location from a
given initial location, and is found in 33% of the papers. The third problem type is to visit a
set of given, ordered or unordered locations, possibly for the purpose of delivery, and is found
in 36% of the papers. The problem type of visiting locations may be viewed as a set of con-
secutive reaching-a-target problems between two and two locations. We refer to a set of two
consecutive locations as a segment. The three problem types are shown in Figure 3.1.

Figure 3.1: Illustration of the three problem types; the left part is information gathering, the
middle part is reaching a target and the right part is visiting a set of locations. The gray dot is
the starting point for each of the problem types. In the left part of the figure, the red shaded
area around the actual path is the area information was gathered from. In the right part of the
figure, there are three segments, shown by the blue, green and orange lines.

3.3 Model Elements

The analyzed papers have included various elements as objectives or constraints in their mod-
els. Some common elements include time, distance, risk and energy consumption. Almost 69%
of the analyzed papers include either time or distance minimization in the objective function,
which means they are essentially modeling versions of the well-known shortest path problem.

Risk minimization is an objective in 39% of the papers. Among the papers that study UAVs and
have risk as an objective, only Sedov, Polishchuk and Vishwanath (2021) considers the ground
risk to humans, as defined in Section 2.5. The rest of the papers focus solely on the risk of the
UAVs being destroyed. Destruction can for example happen through collision with static or
dynamic obstacles or by being shot down by enemies. Collision avoidance has been included
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both as an objective, e.g. by Shao et al. (2020), and as a constraint, e.g. by Bai et al. (2022). All
but one of the papers that include collision avoidance incorporate it through a measurement
of the closest distance between the objects that are at risk of colliding. Furthermore, only
Fügenschuh and Müllenstedt (2015) differentiate the collision risk based on the type of vehicle
or object that the vehicle in question could collide with.

Energy consumption is included as a minimization objective in 19% of the papers. Papers
with energy consumption as an objective tend to develop more complex and realistic models
for energy consumption compared to those only including energy consumption as a capacity
constraint. The latter often opt for modeling energy consumption as a function of only time or
distance traveled, while the prior often also include kinematic characteristics of the vehicle’s
movement, such as speed.

There is an even split between single-objective and multi-objective problems in the papers.
The most common multi-objective model is a bi-objective model minimizing risk and time or
distance traveled. Some of the papers also have three or more objectives, including Hu, Naeem
et al. (2017) and Ma et al. (2018). All of the papers minimizing time or distance in combination
with other objectives are essentially studying multi-objective shortest path problems.

3.3.1 Multi-Objective Optimization
Following Jaimes et al. (2009), a multi-objective optimization problem (MOP) is defined as

Minimize ~f (~x ) = [ f1(~x ), f2(~x ), ..., fk(~x )]

s.t. ~x 2 X
where ~x is a vector of n decision variables, X ✓ Rn is the feasible set, implicitly determined
by a set of constraints, and ~f : Rn ! Rk is a vector function made up of k scalar objective
functions fi : Rn! R.

While comparing solutions is trivial for single-objective problems, there is no straightforward
way to do such comparisons for multi-objective problems. This is for example due to conflict-
ing objectives or differing units for the objectives. A common method for comparing multi-
objective solutions is to use the Pareto dominance relation. This method does not usually lead
to a single solution, but instead finds a set of solutions, called Pareto optimal solutions. These
solutions have different trade-offs among the objectives, but are all non-dominated (Jaimes
et al., 2009). For a minimization problem, the Pareto dominance relation states that a vector
~z of length k Pareto dominates another k-length vector ~u, and we write ~z � ~u, if and only if

8i 2 {1, ..., k} : zi  ui and 9i 2 {1, ..., k} : zi < ui

Using this relation, a set of candidate solutions may be reduced to the set of Pareto optimal
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solutions. A solution ~x 2 X is considered Pareto optimal if there does not exist a solution
~x0 2 X that Pareto dominates ~x . As shown in Figure 3.2, the set of Pareto optimal solutions in
the variable space, Rn, creates a Pareto front in the objective space, Rk (Jaimes et al., 2009).

Figure 3.2: Illustration of the Pareto optimal solutions in the variable space and the Pareto
front they span out in the objective space. Red dots correspond to Pareto optimal solutions in
the left part of the figure, and to objective function values on the Pareto front in the right part.
The red lines between the points in the right part of the figure map out the Pareto front.

Despite there being multiple Pareto optimal solutions to an MOP, only one can be selected
and implemented in practice. Thus, a decision maker (DM) is needed to provide preference
information which may be used to select the most suitable solution. The DM may communicate
preferences prior, during or after the search for Pareto optimal solutions. An approach used by
half of the MOP papers analyzed in this literature review, including Yang, Tang et al. (2015)
and Yang and Yoo (2018), is to minimize the weighted sum of all objectives. In this method, the
DM conveys their preferences by assigning a weight to each objective and the MOP is converted
into a single-objective optimization problem.

3.4 Environments

The environments studied in the papers may be categorized based on different aspects. The
first aspect is the representation, which can be either continuous or discrete. In a continuous
environment, infinitely many trajectories between two locations are possible. One possible
continuous representation of the environment is a vector of kinematics, such as speed, angle and
acceleration, for each unit of time. Another possibility is to locate waypoints where the vehicle
changes the trajectory it follows. 22% of the analyzed papers use a vector of kinematics, while
25% use waypoints. For discrete environments, two categories of discretization are found in
the papers. The first category is a grid representation, which divides the environment into
a set of cells using intersecting gridlines (Ren et al., 2019). The grid may either be regular
and consist entirely of equidistant parallel or perpendicular gridlines, or it may be irregular.
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An irregular grid differs from a regular grid by not containing only equidistant gridlines, but
instead allowing gridline sections to be a multiple of other sections. Irregular grids require less
memory compared to regular grids, but may result in reduced path quality in areas with large
gridline sections (Souissi et al., 2013). About 25% of the papers use regular grids. Only one
paper uses an irregular grid, namely Ren et al. (2019). The second category of discretization
found in the papers is node networks. In such networks, the vertices are not all equidistant nor
are all edges parallel or perpendicular to each other. In total, 27% of the papers use a node
network environment model.

The second aspect is the dimensionality of the environment. There appears to be more literat-
ure considering two dimensional space, with 67% of the selected papers studying movement
in two dimensions, while the remaining 33% study a three dimensional space. It is natural to
focus on two dimensions when considering vehicles moving on the ground, such as ships or
robots. A more surprising finding is that the majority of the papers studying UAVs also use a
two dimensional environment, despite the fact that UAVs operate in the air, which is inherently
three dimensional. Nonetheless, the percentage of papers using a three dimensional environ-
ment and studying UAVs is 44%, and hence somewhat higher than the overall percentage of
papers studying a three dimensional environment.

The third environment aspect is the static-dynamic dichotomy. In a static environment, all in-
formation about the environment is known in advance and no changes occur between decision
making and execution. Thus, offline planning may be used, meaning all decisions are made be-
fore the execution begins (Yang, Tang et al., 2015). Static environments make up 70% of the
papers, while the remaining 30% study a dynamic environment. In a dynamic environment,
unforeseen incidents may happen during execution. In such environments, online planning
might be needed to update the decision making during execution. The predominance of static
problems may be due to such problems being easier to solve, but it comes at the cost of reduced
realism.

The fourth environment aspect is the split between urban and rural environments. Urban en-
vironments, as defined in Section 2.4, make up only 21% of the analyzed papers, with all of
them studying UAV problems. Rural environments make up 51% of the papers. We have not
classified the remaining 28% of the analyzed papers as urban or rural, due to the urban-rural
distinction not being as clear for papers studying vehicles other than UAVs.

3.5 Vehicles

Path planning and related problems have been studied for various vehicles. Our search has
primarily focused on UAVs, and this type of vehicle thus makes up 72% of the selected papers.
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Nonetheless, the problem of path planning has been studied more in-depth in the field of
robotics, often under the name of motion planning, as found in e.g. Alexopoulos and Griffin
(1992) and Li et al. (2011). Other vehicles studied include ships and trucks.

Another important aspect is the number of vehicles. Among the papers, 67% study a single
vehicle while the remaining 33% study multiple vehicles. The use of multiple vehicles may
indicate that the operations are too complicated for a single vehicle, and often introduces
more complexity into the modeling compared to the study of a single vehicle. The multi-vehicle
problems studied in the papers either give each vehicle individual tasks, as seen in the paper by
Murray and Raj (2020), or make the vehicles work together to complete tasks, as seen in the
paper by Hayat et al. (2017). The split between considering heterogeneous and homogeneous
vehicles is quite even among the papers studying multiple vehicles.

3.6 Solution Methods

A variety of optimization-based solution methods have been applied to solve the path planning
problem and the related problems. This section gives an overview of and discusses the different
solution methods found in the papers.

3.6.1 Evolutionary Algorithms
The most common solution method among the analyzed papers is evolutionary algorithms
(EA), which make up 44% of the papers. Furthermore, EAs have been used to solve 67% of
the papers studying multi-objective problems. EAs are also used in 67% of the papers consid-
ering a three dimensional environment, as well as in 44% of the papers considering an urban
environment. EAs are stochastic search and optimization methods that in different ways simu-
late evolutionary processes found in nature. Similar to other stochastic search strategies, EAs
are not guaranteed to find optimal solutions, but rather aim to find good solutions in a reas-
onable amount of time (Jaimes et al., 2009). Two common EAs are genetic algorithms (GA)
and ant colony optimization (ACO).

In GAs, a population of candidate solutions is gradually evolved through a set of iterations
to increase the fitness of the population. In each iteration, pairs of candidate solutions are
combined and possibly modified through mutations to create an offspring population. The
offspring candidate solutions are then evaluated by a fitness function, which is usually the
objective function of the problem. Fit candidate solutions from the offspring population re-
place less fit candidate solutions in the current population to construct the next generation
of the population (Zhao et al., 2018). Some GAs have also been developed specifically for
multi-objective problems, e.g. the non-dominated sorting genetic algorithm (NSGA) (Srinivas



Chapter 3: Literature Review 20

& Deb, 1994). NSGA differs from other GAs in the evaluation of candidate solutions, using a
non-dominated sorting technique. NSGA-II (Deb, Agrawal et al., 2000), an improvement of
the original NSGA, calculates a crowding distance between candidate solutions to ensure di-
versity when selecting individuals for the next generation. NSGA-II does not scale well with
the number of objectives however, which is why NSGA-III (Deb & Jain, 2014) was proposed.
Instead of a crowding distance, NSGA-III uses a predefined set of reference points. NSGA-II is
used by Ren et al. (2019), NSGA-III is used by Bai et al. (2022), and other GAs are used by
e.g. Hayat et al. (2017) and Shivgan and Dong (2020).

The ACO algorithm expresses feasible solutions using the paths of virtual ants. The solution
space is represented by the set of ant paths, and over time, the pheromone concentration of
good paths will increase. This leads to more ants taking similar paths, and can potentially lead
to the whole colony converging to a single best path. This path corresponds to a solution of
the optimization problem (Zhao et al., 2018). ACO is used by e.g. Chen, Xu et al. (2017) and
Liu et al. (2009), and the algorithm is combined with a GA by Yang and Yoo (2018).

Other EAs found in the papers include particle swarm optimization (Ma et al., 2018; Shao et al.,
2020), an algorithm for differential evolution of singular waypoints (Yang, Tang et al., 2015), a
Whale optimization algorithm (Wu et al., 2018), a multi-objective EA based on decomposition
(Peng et al., 2022) and a dynamic group-based cooperative optimization algorithm (Qadir et
al., 2022).

3.6.2 Problem-Specific Heuristics
Problem-specific heuristics are, as the name entails, heuristics. They are thus not guaranteed
to find an optimal solution, but will hopefully find good approximations. Problem-specific
heuristics make up 22% of the solution methods proposed by the papers, and are commonly
used for single-objective problems. Among the studied papers, the paper by Yin et al. (2018)
is the only one that uses a problem-specific heuristic for a multi-objective problem. Further-
more, most of the problem-specific heuristics have been developed for two dimensional en-
vironments. Among the papers studying a dynamic environment, 36% use problem-specific
heuristics. Examples of problem-specific heuristics include an A*-based heuristic in Li et al.
(2011), a spatial-temporal clustering-based algorithm in Chen, Du et al. (2021), a heuristic
search algorithm in Zhang, Chen et al. (2012) and an adaptation of the Lin-Kernighan heuristic
in Modares et al. (2017).

3.6.3 Problem-Specific Exact Methods
In contrast to the problem-specific heuristics described above, problem-specific exact methods
find optimal solutions to problems and are used in 16% of the papers. Problem-specific exact
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methods have been used solely on single-vehicle problems in static environments. Most of these
papers also study a two dimensional environment and a single objective. Since the static, two
dimensional, single-vehicle, single-objective problem is the most simple among those studied,
it makes sense that these are the problems that have been attempted to be solved exactly. The
problem-specific exact methods used include a variation of A* (Alexopoulos & Griffin, 1992), a
graph-based routing algorithm based on the Floyd algorithm (Hentschel et al., 2007), the fast
marching square algorithm (Chen, Huang et al., 2020) and a variation of Dijkstra’s algorithm
(Soltani & Fernando, 2004). Thus, it appears to be common to use shortest path algorithms as
the starting point for problem-specific exact methods.

3.6.4 Mathematical Programming
Mathematical programming is a less common solution method and is used in 14% of the pa-
pers. It is used in multiple different ways for various problems, environments and vehicles.
Chen, Du et al. (2021) and Murray and Raj (2020) use a mixed integer linear program (MILP)
to solve small instances of a problem, while a problem-specific heuristic is used for larger in-
stances. Bellingham et al. (2003) use an MILP in a subroutine of a problem-specific heuristic.
Only two of the papers solve their problems using only mathematical programming. The first
is Chen, Han et al. (2012), who solve a single-UAV trajectory planning problem in a three
dimensional, dynamic environment using a linear program for each waypoint. The second is
Fügenschuh and Müllenstedt (2015), who solve a multi-UAV routing and trajectory planning
problem in a three dimensional, static environment using an MILP.

3.6.5 Other Methods
In addition to the more common solution methods described above, other methods have also
been proposed in the papers. Machine learning is used in three of the papers, which all study
single-vehicle problems in two dimensional environments (Chen, Huang et al., 2020; Woodley
& Acar, 2004; Zaccone & Martelli, 2018). The vehicles in focus in these papers have been either
a ship or a truck, and thus no UAVs. Other methods used include a model predictive control
algorithm, a logic-based Benders’ decomposition, and various dynamic programming methods.

3.7 Literature Overview

From this literature review, it is clear that many variations of path planning and related prob-
lems have been studied. At the same time, several gaps can be identified in the literature.
Subsection 3.7.1 discusses these gaps, while Subsection 3.7.2 presents how this thesis contrib-
utes to filling gaps and creating new insights. Table 3.2 gives an overview of central aspects
of the papers analyzed in this literature review. The papers are ordered chronologically by
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publishing year. This thesis is included at the bottom of the table for comparison.

An interesting observation from Table 3.2, is that studying UAV operations in an urban en-
vironment appears to be a quite recent concept, first showing up in papers from 2018. This
intuitively makes sense, as urban UAV use cases are relatively new. We also notice that the
number of objectives studied increases over time. Another thing to note is that the use of EAs
becomes more prominent over time, possibly as the problems increase in complexity. Apart
from these developments, there does not appear to be any other clear trends in the literature.

3.7.1 Gaps in the Literature
The literature review reveals various gaps in the current literature. As described in Section 3.2,
the most common problem type among the selected papers is to visit a set of locations. How-
ever, none of the papers with this problem type look at the possibility of varying characteristics
between segments, i.e. between pairs of subsequent locations to be visited. Examples of char-
acteristics that may be varied include vehicle characteristics, such as increasing or decreasing
the total weight of the vehicle based on whether the vehicle carries a payload on a given seg-
ment, or varying the importance of an objective on different segments. While papers studying
heterogeneous vehicles could allow for something similar by having different vehicles travel on
different segments, no papers study the possibility of the same vehicle changing characteristics
between segments.

Despite a variety of objectives and model elements found in the papers, no paper that models
visual pollution or noise pollution, either in the objective function or otherwise, was found.
While it could make sense to neglect these pollutants in rural environments, such a simpli-
fication is less intuitive in an urban environment. Hence, there appears to be a gap in the
literature in regards to taking visual and noise pollution into account in path planning and
related problems. Furthermore, none of the reviewed papers studying UAVs consider the air
risk for passengers of a UAV. This is natural as none of the papers consider passenger UAVs,
but is important to include when looking at passenger transport. The consideration of ground
risk to humans was also found to be sparse.

Section 3.4 shows that less attention has been given to three dimensional environments com-
pared to two dimensional environments, even among the papers studying UAVs. Furthermore,
none of the selected papers study the problem category of path planning for multiple UAVs in
an urban environment. Hence, although these aspects are studied in detail separately, there is
a gap in the literature as to study the overall effect of this combination.

The reviewed papers use a wide range of solution methods, with EAs being a popular choice.
However, none of the papers use an EA to solve a multi-objective, multi-vehicle problem in an
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urban environment. This thus constitutes a gap.

3.7.2 Our Contribution
This thesis addresses several gaps in the current literature, related to both modeling choices
and solution method. An important contribution to the problem type of visiting a set of loca-
tions is that this thesis allows for characteristics to vary between segments of a voyage traveled
by the same UAV. The weight of the potential UAV payload may for example vary, resulting
in different total weights. This will again have an impact on model elements that vary with
weight, such as the energy consumption of a UAV.

The thesis minimizes four objectives; flight time, risk, visual pollution and noise pollution,
while ensuring the energy consumption of each UAV does not violate a capacity constraint.
Thus, we address the gap of modeling visual and noise pollution. By developing quantitative
measures for the visual and noise pollution generated by a UAV flying through an urban en-
vironment, more socially acceptable paths can be found. Furthermore, this thesis models both
the ground risk and the air risk to humans associated with UAVs, which is shown to be sparse
or lacking among the papers studied. This thesis also aims to provide a more realistic energy
consumption model, by considering more aspects than just distance or time in the constraint.
Thus, the joint consideration of visual pollution, noise pollution, air and ground risk and flight
time as objectives, along with more realistic energy consumption constraints, is a novel pro-
position. Furthermore, though not entirely new, this thesis also considers a three dimensional
and urban environment, which is less commonly studied.

Finally, this thesis uses a hybrid evolutionary algorithm consisting of NSGA-III with ACO as a
subroutine to solve the MUAVPP problem. EAs have been found to be quite popular among the
reviewed papers, but only Yang and Yoo (2018) use a similar hybrid evolutionary algorithm
consisting of a GA and ACO. Furthermore, the use of NSGA-III is only found in the paper
by Bai et al. (2022). It is also worth mentioning that Yang and Yoo (2018) only consider a
single-vehicle problem, while Bai et al. (2022) consider a rural environment.



Chapter 3: Literature Review 24

Table 3.2: Overview of reviewed literature and our thesis.

Problem Objective functions Environment Vehicle
Paper

Cat. Type Time/
Dist.

Risk Visual/
Noise

Other Dims. Static/
Dynamic

Urban/
Rural

Model Type Single/
Multi

Solution
method

Alexopoulos and Griffin
(1992), model 1

P G ÿ - - - 2D Static - Node net. Robot Single PSE

Alexopoulos and Griffin
(1992), model 2

P G ÿ - - - 2D Dynamic - Node net. Robot Single PSH

Bellingham et al. (2003) T U ÿ - - - 2D Dynamic Rural Waypoints UAV Multi MP, PSH
Soltani and Fernando (2004) P G ÿ ÿ - ÿ 2D Static - Grid Vehicle* Single FL, PSE
Woodley and Acar (2004) P G ÿ - - - 2D Dynamic - Vector Truck Single ML
Hentschel et al. (2007) T G - - - ÿ 3D Static - Waypoints Truck Single PSE
Lamont et al. (2007) P, R, S V - ÿ - ÿ 3D Static Rural Grid UAV Multi EA
Liu et al. (2009) R V ÿ - - - 2D Static Rural Node net. Vehicle* Multi EA
Li et al. (2011) P G ÿ - - - 2D Dynamic - Grid Robot Single PSH
Tezcaner and Köksalan (2011) P, R V ÿ - - ÿ 2D Static Rural Grid UAV Single PSE
Chen, Han et al. (2012) T P - - - ÿ 3D Dynamic Rural Waypoints UAV Single MP
Zhang, Chen et al. (2012) R, T V - - - ÿ 3D Static Rural Node net. UAV Single PSH
Di Franco and Buttazzo (2015) P V - - - ÿ 2D Static Rural Node net. UAV Single PSH
Fügenschuh and Müllenstedt
(2015)

R, T V ÿ - - ÿ 3D Static Rural Vector UAV Multi MP

Yang, Tang et al. (2015) P G ÿ ÿ - ÿ 3D Static Rural Waypoints UAV Single EA
Yao and Zhao (2015) P V - - - ÿ 2D Dynamic Rural Vector UAV Single MPC
Chen, Xu et al. (2017) R V ÿ - - - 2D Static Rural Node net. UAV Multi EA
Hayat et al. (2017) P I ÿ - - - 2D Static Rural Grid UAV Multi EA
Hu, Naeem et al. (2017) P G ÿ ÿ - ÿ 2D Dynamic - Waypoints Ship Single EA
Modares et al. (2017) P I - - - ÿ 2D Static Rural Waypoints UAV Multi PSH
Ma et al. (2018) P G ÿ ÿ - ÿ 2D Static - Vector Ship Single EA
Wu et al. (2018) P I ÿ ÿ - ÿ 3D Static Urban Vector UAV Single EA
Yang and Yoo (2018) P I ÿ ÿ - ÿ 3D Dynamic Urban Grid UAV Single EA
Yin et al. (2018) P U ÿ ÿ - - 2D Dynamic Urban Grid UAV Single PSH
Zaccone and Martelli (2018) P G ÿ ÿ - - 2D Dynamic - Vector Ship Single ML
Ren et al. (2019) P G ÿ ÿ - - 3D Static Urban Grid UAV Single EA
Baloch and Gzara (2020) F V - - - ÿ 2D Static Urban Node net. UAV Multi BD
Chen, Huang et al. (2020) P V ÿ - - - 2D Static - Grid Ship Single ML, PSE
Dasdemir et al. (2020) R, T V ÿ - - ÿ 2D Static Rural Vector UAV Single EA

Murray and Raj (2020) R V ÿ - - - 2D Static Urban Node net.
UAV &
Truck

Both MP, PSH

Shao et al. (2020) P G ÿ ÿ - ÿ 3D Static Rural Vector UAV Multi EA
Shivgan and Dong (2020) P, R I - - - ÿ 2D Static Rural Waypoints UAV Single EA
Chen, Du et al. (2021) P I ÿ - - - 2D Static Rural Node net. UAV Multi MP, PSH
Peng et al. (2022) P V - ÿ - ÿ 3D Static Urban Node net. UAV Single EA
Sedov, Polishchuk and
Vishwanath (2021)

P G ÿ ÿ - - 2D Static Urban Grid UAV Single DP

Qadir et al. (2022) P I - - - ÿ 2D Both Both Waypoints UAV Single EA
Bai et al. (2022) T P ÿ ÿ - ÿ 3D Static Rural Waypoints UAV Multi EA

Our thesis P V ÿ ÿ ÿ - 3D Static Urban Grid UAV Multi EA

In the problem category column "Cat." we have P: Path planning, R: Route planning, T: Trajectory planning, F: Facility location,
S: Swarm behavior. In the problem type column "Type" we have V: Visit, I: Information gathering, G: Get to destination, P: Target
pursuit, U: Unspecified. In the "Solution method" column, we have DP: Dynamic programming, EA: Evolutionary algorithm,
PSE: Problem-specific exact method, MP: Mathematical programming (exact), PSH: Problem-specific heuristic, MPC: Model
predictive control algorithm, BD: Benders’ decomposition, FL: Fuzzy logic, ML: Machine Learning.
*Unspecified vehicle type



Chapter 4

Problem Description

The problem studied in this thesis is the static, multi-UAV path planning (MUAVPP) problem.
The aim of this problem is to develop flight paths with associated timestamps for a system of
UAVs, which we refer to as a system flight plan. The generation of a system flight plan consists
of deciding what paths the UAVs should take on their respective voyages. Each voyage has a
given start time and consists of a set of given locations that must be visited in a given order.
Thus, a path for a UAV consists of a segment path on each segment between locations on the
UAV’s voyage. At each location, the UAV descends to the ground, performs a service and then
flies back up and continues its voyage. An illustration of a system flight plan is shown in Figure
4.1. The environment is static and hence does not change between path planning and actual
flight. All path planning decisions are thus made before the UAVs take off.

Figure 4.1: Illustration of a system flight plan for a system of three UAVs. The gray dots rep-
resent starting points for each UAV, and the path of each UAV is shown in a different color.
The orange path is an implementation of the voyage consisting of visiting locations A, B and
then C. This voyage thus consists of two segments; A to B and B to C. The path and associated
timestamps for each of the three UAVs constitutes the system flight plan.
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The locations visited by the UAVs during their voyages are all within a bounded geographical
area, more precisely a three dimensional urban environment. When encountering an obstacle,
a UAV can thus either fly around the obstacle while keeping the same altitude or change the
altitude and fly above or below the obstacle. Furthermore, other properties of the urban envir-
onment, such as the population densities and landscape characteristics, e.g. parks or market
squares, are also given.

To determine a path for each UAV, there is a trade-off between four factors: flight time, risk,
visual pollution and noise pollution. Thus, the MUAVPP problem is a multi-criteria problem.
Each UAV voyage has specific characteristics that are affected by the UAV type and use case,
which impact how important the different criteria are when finding a path. The importance
of efficiency characteristic denotes whether a short flight time is of particular significance. A
short flight time is essential when e.g. an emergency medical UAV transports a defibrillator to
an individual in danger. The importance of efficiency is given for each segment for every UAV
in the system, and it may vary between segments belonging to the same UAV’s voyage. Each
UAV must take the paths of other UAVs into account to avoid collisions. A UAV is not allowed
to wait by hovering in the air, and its path must thus be adjusted if it gets too close to another
UAV at any point in time. Furthermore, a UAV may not wait on the ground after performing a
service, unless ascent results in an immediate collision.

Each UAV has a set of given characteristics, including its weight, size and speed, which impact
what paths the UAV can take. Each UAV also has a limited energy capacity which cannot be
exceeded. The UAVs fly with constant speed. We assume that the UAVs operate during the
daytime and that the weather is stable. Regulations also impact the paths the UAVs can take.
In particular, altitude regulations and no-flight zones must be taken into account. The altitude
regulations entail that the UAVs must fly between a given maximum and minimum altitude
above ground.

The goal of the MUAVPP problem is to find a set of optimal system flight plans by balancing
the flight time, risk, visual pollution and noise pollution criteria for the entire system of UAVs.
The importance of the different criteria depends on the characteristics of each of the UAVs and
the segments along their respective voyages.



Chapter 5

Mathematical Model

This chapter presents a mathematical model of the static, multi-UAV path planning (MUAVPP)
problem described in Chapter 4. The model is a mixed integer nonlinear program (MINLP).
Section 5.1 describes the mathematical model and the underlying assumptions. Section 5.2
presents the sets, parameters and decision variables used in the model. The objective functions
are explained in Section 5.3 and the constraints in Section 5.4. The chapter uses a compact
formulation of the models for energy consumption, risk, visual pollution and noise pollution.
A full overview of the equations for these models is given in Chapter 6 and summarized in
Appendix B.

5.1 Model Description and Assumptions

The static MUAVPP problem is modeled as a multi-objective optimization problem with the set
of objectives being flight time, risk, visual pollution and noise pollution. Despite considering
a system of UAVs, many of the UAV constraints can be handled independently in the model.
There are two aspects connecting the UAVs in the model, however. The first is the collision
avoidance requirement. The second is the fact that UAVs operating in close proximity can
affect the total amount of risk, visual pollution and noise pollution generated in a nonlinear
way. This effect can potentially make it beneficial to ensure that the UAVs either fly close or
keep their distance from one another. These interactive effects are explained in Chapter 6.

There are a number of assumptions made about the input to the problem. The first is the
discretization of the environment into a grid, and the definition of a graph of edges and vertices
on this grid. The set of vertices is assumed to be preprocessed, so that only feasible vertices are
included. This means that vertices positioned in no-flight zones, within obstacles or outside
the minimum and maximum allowed flight altitudes above ground, are removed. This set of

27
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assumptions results in a rather compact mathematical model in terms of constraints, as the
grid limitations are mostly taken care of through the preprocessing. Locations that must be
visited by each UAV correspond to vertices in the graph, and consecutive locations to visit thus
represent start and end vertices of segments. We assume that all locations the UAVs must visit
are at the minimum allowed flight altitude above ground. When a UAV reaches the end vertex
of a segment, it flies down to the ground, performs a service and flies back up to the same
vertex. Thus, the end vertex of each segment is also the start vertex of the next segment. Finally,
we assume that the flight time and energy consumption of each UAV as it moves between
vertices in the graph are given.

5.2 Definition of Sets, Parameters and Decision Variables

This section presents the sets, parameters and decision variables used in the MINLP model.

5.2.1 Sets
N Set of vertices
Ni Set of neighboring vertices to vertex i, Ni ✓N
N H

i Set of horizontal neighboring vertices to vertex i, N H
i ✓N

NQ
jl Set of pairs of vertices [i, k] that create horizontal squares with

vertices j and l as end vertices on diagonal edges (i, j) and (k, l)
U Set of UAVs
Su Set of segments included in the voyage for UAV u

5.2.2 Parameters
EMax

u Energy capacity of UAV u
Eui js Energy consumed flying from vertex i to vertex j on segment s for

UAV u
I F
uis 1 if vertex i is the end vertex of segment s for UAV u, 0 otherwise

IS
uis 1 if vertex i is the start vertex of segment s for UAV u, 0 otherwise

Jus Importance of efficiency on segment s for UAV u
PN (~t ) Function to calculate the total noise pollution when system flight

plan ~t is used
PV (~t ) Function to calculate the total visual pollution when system flight

plan ~t is used
R(~t ) Function to calculate the total risk when system flight plan ~t is

used
TS

u Start time of the voyage of UAV u
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TO
ui Service time of UAV u, i.e. the time spent flying down to the ground

directly below vertex i, performing a service and flying back up to
vertex i

Tui j Time UAV u spends flying from vertex i to vertex j
T D Minimum time difference between two UAVs traversing intersect-

ing diagonal edges
T E Minimum time difference between two UAVs traversing the same

edge in opposite directions
T V Minimum time difference between two UAVs visiting the same ver-

tex

5.2.3 Decision Variables

tuis Time when UAV u enters vertex i on segment s, vectorized as ~t

xui js =

8
<
:

1, UAV u flies directly from vertex i to vertex j on segment s

0, Otherwise

5.3 Objective Functions

The objective function vector (5.1) consists of four objective functions which are all to be min-
imized. The first objective function is to minimize the total flight time. Tui j is a generalized
time parameter, and Jus is a weighting parameter for each segment and UAV. Jus is used to in-
dicate the importance of efficiency on each segment of a UAV’s voyage. Since the service time
at locations is constant, it is not included in the objective value for flight time. The second ob-
jective is to minimize the total risk, i.e. the combined air and ground risk. The third and fourth
objectives are to minimize the total visual pollution and noise pollution, given as PV (~t ) and
PN (~t ), respectively. The R(~t ), PV (~t ) and PN (~t ) functions are explained in-depth in Chapter 6.
While the flight time objective is calculated for each separate UAV based on traversed edges,
the remaining three objectives are calculated based on entire system flight plans ~t . A system
flight plan consists of the set of tuis variables, i.e. a system flight plan is defined as a set of
variables stating which UAVs are in which vertices at what time.

min
X

u2U

X

i2N

X

j2Ni

X

s2Su

Jus · Tui j · xui js , R(~t ) , PV (~t ) , PN (~t )
�

(5.1)
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5.4 Constraints

This section presents the four types of constraints in the MINLP model; flow constraints, time
constraints, collision avoidance constraints and energy consumption constraints.

5.4.1 Flow Constraints
The flow constraints ensure that the MINLP model produces a single, connected path both
within each segment and across the different segments of each UAV’s voyage. Constraints
(5.2) state that for all vertices that are not the start or end vertex on a given segment s for UAV
u, the number of times a vertex i is entered must equal the number of times vertex i is exited.
X

j2Ni

xui js �
X

k2Ni

xukis = 0 u 2 U , i 2N , s 2 Su | IS
uis + I F

uis = 0 (5.2)

For the start and end vertex on each segment, the flow constraints are slightly altered. Since
all objectives are positive, non-decreasing and to be minimized, multiple visits to the start and
end vertices of a segment would only worsen the objective values. Thus, constraints (5.3) limit
the start vertex i to only be exited once. Conversely, constraints (5.4) limit the end vertex i to
only be entered once.
X

j2Ni

xui js = 1 u 2 U , i 2N , s 2 Su | IS
uis = 1 (5.3)

X

j2Ni

xu jis = 1 u 2 U , i 2N , s 2 Su | I F
uis = 1 (5.4)

Finally, constraints (5.5) require that each UAV visits a given vertex at most once on each
segment. These constraints ensure that the UAVs cannot indirectly “wait” on a segment path,
by moving back and forth between two or more vertices.
X

j2Ni

xu jis  1 u 2 U , i 2N , s 2 Su (5.5)

5.4.2 Time Constraints
The time constraints ensure a cohesive flow of time in the MINLP model. The nonlinear con-
straints (5.6) require the point in time when UAV u is positioned in vertex j on segment s to
equal the point in time when the UAV was residing in a neighboring vertex i plus the time
needed to fly from i to j. Constraints (5.7) ensure that every UAV starts its flight at its spe-
cified start time TS

u . Constraints (5.8) set the time tuis of the start vertex of each intermediate
segment of a UAV. The earliest time for tuis is the time the UAV reached the same vertex as
the end of the previous segment, plus the service time TO

ui . To allow the UAV to avoid a colli-
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sion immediately upon ascent, tuis may be further delayed by up to the largest minimum time
difference to avoid collision.

tu js =
X

i2N j

(tuis + Tui j) · xui js u 2 U , j 2N , s 2 Su (5.6)

tui1 = TS
u u 2 U , i 2N | IS

ui1 = 1 (5.7)

0 tui(s+1) � (tuis + TO
ui)max (T D, T E , T V ) u 2 U , i 2N , s 2 Su \ {|Su|} | I F

uis = 1 (5.8)

5.4.3 Collision Avoidance Constraints
Collision avoidance constraints are added to the MINLP model since each UAV must consider
the paths taken by the other UAVs in the system. The nonlinear constraints (5.9), (5.10) and
(5.11) each cover one of the three possible collision types, shown in Figure 5.1.

Figure 5.1: Illustration of possible UAV collision types, C1-C3. Collision type C1 is shown at
the top left, where two UAVs want to fly to the same vertex i at similar points in time. Collision
type C2 is shown at the top right, where two UAVs want to fly across the same edge in opposite
directions at similar points in time. Collision type C3 is shown at the bottom, where two UAVs
want to fly along intersecting diagonals at similar points in time, with one UAV wanting to fly
from vertex i to j and the other UAV from vertex k to l. C3 also exemplifies the NQ

jl set, which
consists of the two remaining vertices [i, k] needed to create a horizontal square with vertices
j and l as end vertices on diagonal edges (i, j) and (k, l).

Constraints (5.9) avoid collision type C1 by stating that two UAVs cannot enter the same vertex
with a time difference less than T V . Constraints (5.10) avoid collision type C2 by ensuring
that two UAVs cannot traverse the same edge in opposite directions with a time difference less
than T E . Finally, constraints (5.11) avoid collision type C3 by prohibiting two UAVs to cross
intersecting diagonal edges with a time difference less than T D. The set NQ

jl is also exemplified
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in the graph at the bottom part of Figure 5.1.

|tuis � tu0 is0 |� T V ·
 X

j2Ni

xu jis +
X

k2Ni

xu0kis0 � 1

!
u, u0 2 U , i 2N , s 2 Su, s0 2 Su0 | u 6= u0

(5.9)

|tuis · xujis � tu0 js0 · xu0 i js0 |� T E u, u0 2 U , i 2N , j 2Ni , s 2 Su, s0 2 Su0 | u 6= u0

(5.10)

|tu js · xui js � tu0 ls0 · xu0kls0 |� T D u, u0 2 U , j 2N , l 2N H
j , [i, k] 2NQ

jl , s 2 Su, s0 2 Su0 | u 6= u0

(5.11)

5.4.4 Energy Consumption Constraints
The energy consumption constraints (5.12) ensure that each UAV does not consume more
energy than EMax

u . The equation for calculating Eui js is explained in Chapter 6.

X

i2N

X

j2Ni

X

s2Su

Eui js · xui js  EMax
u u 2 U (5.12)

5.4.5 Binary and Non-Negativity Constraints
Naturally, the variables have non-negativity constraints, covered by constraints (5.13) and the
binary constraints (5.14).

tuis � 0 u 2 U , i 2N , s 2 Su (5.13)

xui js 2 {0, 1} u 2 U , i 2N , j 2Ni , s 2 Su (5.14)



Chapter 6

World and Objective Models

This chapter presents the models for the environment, energy consumption and the objectives
used in this thesis. Section 6.1 describes the environment model and how energy consump-
tion and the various objectives are connected to this model. Section 6.2 explains the model
of energy consumption. Both the models for the environment and energy consumption are
revised and updated versions of the models used in our preparatory research project. Sections
6.3, 6.4 and 6.5 present the models for the risk, visual pollution and noise pollution object-
ives, respectively. For each of the three objective model sections, we first propose the model
for calculating the objective from a single-UAV perspective, which is based on work done in
our preparatory research project. We then present the necessary updates to take the system
perspective into account. A compact representation of the models for energy consumption and
the objectives is given in Appendix B. Note that interaction between the objectives, e.g. that
noise pollution from a UAV may be perceived worse if an individual sees the UAV while hearing
it, is not taken into account. All the equations displayed in this chapter are developed with an
urban environment in mind.

6.1 Environment Model

The static MUAVPP problem explained in Chapter 4 takes place in a discrete, three dimensional
urban environment. The environment is defined by a bounded map of the landscape, and is
discretized into a grid. The length of a gridline between gridline intersections is denoted L. An
undirected, weighted graph with a set of vertices and edges is defined on the grid. The edges
represent where the UAVs can fly, while the vertices represent either locations that have to be
visited by a UAV or possible traversal points on a voyage. The UAVs are allowed to fly vertically
upwards or downwards, or horizontally right, left, forwards, backwards or diagonally. Hence,
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each vertex, apart from the vertices in the outermost part of the graph, has ten neighbors, as
shown in the left and middle part of Figure 6.1.

Figure 6.1: In the left and middle part of the figure the blue vertices and edges are feasible
moves for a UAV in a given vertex. The middle part of the figure has a simplified graph compared
to the left part to improve readability. The gray squares at the bottom are ground squares, which
are separate from the flyable graph. The ground square multiple � is set equal to 2 for all parts
of the figure, thus leading to one ground square below the left and middle parts of the figure,
and three ground squares below the right part. The dashed lines illustrate the projection of the
graph onto the ground squares, omitting the diagonal edges for readability. The right part of
the figure shows how the graph shifts based on the altitude of a ground square.

The initial graph must be modified. First, vertices that interfere with static obstacles and no-
flight zones are removed as they cannot be used by UAVs. Vertices outside the minimum and
maximum allowed flight altitudes above ground are also removed, thus dividing the environ-
ment into a flyable graph in the air and a separate set of ground squares on the ground, as
shown in Figure 6.1. We hence define G to be the set of all ground squares, indexed by g. The
ground squares do not need to be as fine-grained as the gridline sections in the grid, and the
side length of a ground square is therefore set to a multiple � of L. The altitude above sea of
each ground square is rounded up to the closest multiple of L. Thus, the flyable graph shifts
upwards or downwards based on the altitude of a ground square, as shown in the left part
of Figure 6.1, to ensure that the UAVs always stay within the allowed flight altitudes above
ground. We assume that the minimum allowed flight altitude is strictly greater than zero. Due
to these modifications, some of the vertices that are not in the outermost part of the graph
might also end up with less than ten neighbors.

The objectives and energy consumption of a UAV u are associated with various parts of the
graph. Each vertex i has an associated measure of visual and noise pollution, denoted by PV

ui
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and PN
ui , respectively. The weight of an edge (i, j) on a segment s is a vector (Jus·Tui j , Rui js, Eui js),

representing the importance of efficiency-adjusted flight time, the risk and the energy con-
sumption, respectively. These relationships are displayed in Figure 6.2. The reason for this
allocation is that the equations for visual and noise pollution do not incorporate time, while
energy consumption and risk do. The total flight time and energy consumption of a given UAV
is thus found by simply summing over all edges traversed in the UAV’s path. The total object-
ive values for risk, visual pollution and noise pollution require more sophisticated methods of
summation when considering a system of UAVs, and are explained in the following sections.

Figure 6.2: Illustration of measures associated with vertices and edges in the graph. PV
ui and PN

ui

are the values of visual pollution and noise pollution associated with vertex i for UAV u. The
edge weight vector consists of the importance of efficiency-adjusted flight time Tui j , the risk
Rui js and the energy consumption Eui js associated with traversing the edge between vertices i
an j for UAV u on segment s.

6.2 Energy Consumption Model

Most energy consumption models for path planning problems include time or distance limit-
ations, as described in Chapter 3, with some models further assuming constant energy con-
sumption per unit of time or distance traveled. A basic model of energy consumption is stated
as the energy consumed per unit of time, multiplied by the time (Yang & Yoo, 2018). To give
a more realistic view of energy consumption, this thesis extends this simple energy consump-
tion model by taking the effects of payloads, flight altitude and flight direction, i.e. whether
the UAV is flying horizontally, vertically upwards or vertically downwards, into account. Taking
inspiration from Majeed et al. (2020), we thus end up with the following model for energy
consumption for a given UAV u on an edge going from vertex i to j on segment s

Eui js = Tui j · (Wu +W P
us) · (EW

u + EF
ui) , where EF

ui =

8
>><
>>:

HS
i · EA

u , if j is horizontal to i

HS
i · EU

u , if j is above i

HS
i · ED

u , if j is below i

(6.1)

In equation (6.1), EW
u is the energy consumed per kilogram per unit of time UAV u is in active

mode, i.e. not switched off. Wu is the weight of UAV u and W P
us is the weight of the payload

carried by UAV u on segment s, which may potentially be zero. The effect of flight direction
on energy consumption, EF

ui , is split into three cases. EA
u , EU

u and ED
u denote energy consumed

traveling horizontally, vertically upwards and vertically downwards, respectively, per kilogram
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of weight per meter above sea level per unit of time, with EU
u > ED

u . HS
i is the altitude above

sea level of vertex i of edge (i, j). Note that this thesis ignores the energy consumed by a UAV
during service, i.e. when it descends to the ground from a vertex corresponding to a location
that must be visited, performs a service on the ground and flies back up to the same vertex.

6.3 Risk Model

A common way to measure the risk associated with UAVs is a probabilistic approach where
the expected fatality rate (EFR) is calculated, as described in Section 2.5. The state of the art
in the field only considers the risk for humans, excluding the risk to animals and buildings,
and we make the same simplification. However, the risk to animals and protected buildings
may still be partly taken into consideration through the use of no-flight zones in e.g. nature
conservation areas. The EFR associated with a UAV is calculated as follows

EFR=
N Ex p · B

T F
(6.2)

where T F is the mean time between failures for the UAV, N Ex p is the expected number of
individuals at risk when the UAV falls down and B is the probability of a fatality, given that an
individual is at risk (Sedov, Polishchuk & Vishwanath, 2021).

The risk associated with UAVs must be calculated from two different perspectives. The first is
from the perspective of a single, isolated UAV. The second perspective is for the entire system
of UAVs, i.e. how much risk a system flight plan generates, taking the simultaneous risk effects
from multiple UAVs into account. This section first develops a model to calculate the risk value
from the single-UAV perspective and then from the system perspective.

6.3.1 Single Unmanned Aerial Vehicle Perspective
To quantify the risk associated with UAVs, this thesis uses expected fatalities, given as EFR
multiplied by flight time. The total expected fatalities is the sum of the expected fatalities
associated with air risk and the expected fatalities associated with ground risk. The total risk
associated with a given path for a single UAV u is given as

Ru =
X

i2N

X

j2Ni

X

s2Su

1
T F

u
· (NA

us · BA+ N G
ui js · BG

ui js) · Tui j · xui js ,

where NA
us = Kus , BA = 1 , N G

ui js = (Wu +W P
us) ·

✓
M L

u +
HP

sin(AG
u )

◆
· 1
|GR

ui js|
X

g2GR
ui js

Dg ,

BG
ui js =

1
|GR

ui js|
X

g2GR
ui js

1

1+
«

CR,Mid

CR,Low ·
Å

CR,Low
1
2 ·(Wu+W P

us)·(CG ·(HG
i +HG

j )+(Vu)2)

ã 1
4Fg

(6.3)
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In equation (6.3), T F
u is the mean time between failures for UAV u. T F

u only depends on UAV
characteristics, and is therefore constant for a given UAV. NA

us and N G
ui js are the expected number

of individuals at risk associated with air and ground risk, respectively. BA and BG
ui js are the

probabilities of fatality given that an individual is at risk, for air and ground risk, respectively.

Air Risk Model
Equation (6.3) only considers the risk for the passengers aboard UAV u when calculating the air
risk. This is because the air risk associated with UAVs for the passengers on board other aerial
vehicles than UAVs is virtually zero, as described in Subsection 2.5.1. Thus, NA

us is assumed to
equal the number of individuals on board UAV u on the segment s, Kus. BA is set to 1, similar
as for conventional aviation (Sedov, Polishchuk, Maury et al., 2021).

Ground Risk Model
The ground risk for a given UAV u on segment s varies based on the edge (i, j) traversed by
the UAV. The variation is due to N G

ui js and BG
ui js depending on the population density and the

sheltering in the area underneath the UAV. In this thesis, N G
ui js and BG

ui js are calculated assuming
that UAV u is located at the middle of the edge between vertex i and vertex j.

Equation (6.3) estimates the expected number of individuals on the ground at risk, N G
ui js, as the

expected number of individuals in the lethal area of a UAV (Dalamagkidis et al., 2008; Sedov,
Polishchuk & Vishwanath, 2021; Weibel & Hansman, 2015). The lethal area is the area at
risk of being hit by the UAV and potential debris if the UAV falls down, and is given in the
first two factors of N G

ui js in equation (6.3). Wu and W P
us are the weights of the UAV and its

payload, respectively, M L
u is the length of the UAV and HP is the average height of a person.

AG
u is the glide angle, i.e. the angle of the UAV’s descent. The calculation of the lethal area was

proposed by Dalamagkidis et al. (2008) and the observant reader may notice that the unit for
the resulting value is not m2. However, the resulting value corresponds well with the size of the
lethal area, and is therefore used as an estimation. The lethal area is assumed to be a circle in
this thesis. The expected number of individuals in the lethal area is estimated using the average
of the population densities, Dg , of the ground squares within the lethal area and constitutes
the third factor of N G

ui js in equation (6.3). GR
ui js is the set of ground squares fully included in

the lethal area when UAV u flies between vertex i and vertex j on segment s. If no ground
squares are fully included, the ground squares that are covered the most are included in GR

ui js.
Figure 6.3 illustrates two lethal areas and the ground squares included in each of them.

Equation (6.3) estimates the probability of fatality, BG
ui js, as the average probability of fatality

for the ground squares included in GR
ui js. The equation for the probability of fatality used for

each ground square was proposed by Dalamagkidis et al. (2008). Fg 2 (0,1] is the sheltering
factor and quantifies the degree of shelter given to individuals located in a ground square g
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Figure 6.3: Illustration of the lethal area of a UAV. The red circle illustrates the lethal area,
while the ground squares shaded in light red are the ones included in the risk calculations.
In the left part of the figure, multiple ground squares are fully included in the lethal area. No
ground squares are fully included in the right part.

by e.g. buildings and trees. The sheltering factor may also include to what degree individuals
on the ground are paying attention to what is happening around them, and therefore to what
degree they are able to protect themselves from a falling UAV (Dalamagkidis et al., 2008;
Primatesta et al., 2020). CR,Mid is the energy required at impact for a fatality probability of
50%, while CR,Low is the energy required at impact to cause a fatality as Fg goes to zero
(Dalamagkidis et al., 2008). The denominator below CR,Low is the kinetic energy at impact,
assuming free fall of the UAV from a given altitude. HG

i is the altitude above ground for vertex i,
CG is the acceleration of free fall and Vu is the speed of UAV u. This is a conservative approach,
due to the free fall assumption.

6.3.2 System Perspective
When considering the risk of a system flight plan, the risk of collisions must be incorporated.
The time difference requirements of constraints (5.9) through (5.11) in the MINLP model
in Chapter 5 may equivalently be stated as distance requirements between UAVs. While the
MINLP model avoids guaranteed collisions through the collision avoidance constraints, the risk
of collisions is still present if multiple UAVs are in close proximity to each other. To handle the
increased risk associated with a system of UAVs, time is discretized into a set of time intervals
with length �, and DMin and DMax distances are given. The described situation is shown in
Figure 6.4. The circle shaded in light red with radius DMin is called the collision area, and no
UAVs may fly closer than this to any other UAV. DMin must thus equal the distance equivalent
of the largest time difference needed to avoid collision, to ensure the collision constraints in
the MINLP model are upheld. The area shaded in light blue and bounded by DMax in Figure
6.4 is called the collision risk area. UAVs may fly within the collision risk areas of other UAVs,
but it increases the risk value compared to when there are no other UAVs in the collision risk
area within a given time interval. We hence refer to DMax as the collision risk threshold.
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Figure 6.4: Illustration of the collision area and the collision risk area. The collision area is the
area shaded in light red, and the collision risk area is the area shaded in light blue. DMin is the
minimum distance between two UAVs to avoid collision. The collision risk threshold, DMax , is
the maximum distance between two UAVs that results in increased risks.

The risk associated with a given system flight plan ~t is given as

R(~t ) =
X

⌧2T

X

u2U

X

i2
N (u,s,⌧,�,~t )

X

j2Ni

X

s2Su

1
T F

u � T C(u,⌧,�, ~t )
· (NA

us ·BA+N G
ui js ·BG

ui js) · Tui j · xui js ,

where T C(u,⌧,�, ~t ) = ↵·T F
u ·min

0
B@

X

u02
UC (u,⌧,�,~t )

Wu0
W Max

u

min(D(u, u0,⌧, ~t ), D(u, u0,⌧+�, ~t ))� DMin + 1
,1

1
CA

(6.4)

In equation (6.4), T is the set of start times, ⌧, for time intervals of length �. N (u,⌧,�, s, ~t )
is the set of vertices visited by UAV u on segment s in system flight plan ~t in time interval
[⌧,⌧+�). The system perspective model is almost equal to the single-UAV perspective model
shown in equation (6.3), using the same equations for NA

us, BA, N G
ui js, and BG

ui js. The only dif-
ference is that the denominator in the fraction which has been updated to ensure an increased
risk value in the collision risk area. The denominator is no longer the mean time between fail-
ures T F

u , but the mean time between falldowns. We assume that the only possible causes of a
UAV falling down are inherent failures that depend on the UAV’s characteristics and mid-air
collisions. Thus, T F

u is decreased using a function T C(u,⌧,�, ~t ), which depends on what UAVs
reside within the collision risk area of UAV u in the time interval [⌧,⌧ + �). T C(u,⌧,�, ~t ) is
assumed to be zero if no UAVs reside within the collision risk area of UAV u.

In the collision risk adjustment function T C(u,⌧,�, ~t ), ↵ 2 [0,1) is a factor that decides the
maximum reduction of the mean time between falldowns due to the possibility of collisions.
With ↵ equal to 0, the UAVs in the system only affect each other through the collision avoidance
constraints. As ↵ increases, the system effect becomes more and more prominent by allowing
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for increased risk when UAVs fly within each other’s collision risk areas. UC(u,⌧,�, ~t ) is the
set of UAVs that affect the risk of mid-air collisions for UAV u, i.e. are within DMax from UAV u,
in time interval [⌧,⌧+�) in system flight plan ~t . As described in Section 3.3 in the literature
review, a common measure of collision risk is the distance to the closest moving obstacle or
other vehicle. Distance is incorporated as the denominator of the collision risk adjustment
function, with D(u, u0, t, ~t ) being the distance between UAV u and UAV u0 at time t in system
flight plan ~t . There is more risk associated with flying in close proximity to a heavy UAV
compared to a lightweight UAV. Therefore, the weight of each other UAV, Wu0 , that are within
the collision risk area are included in the T C(u,⌧,�, ~t ) function. We consider the distances
between UAVs to be more important than weight in regards to whether collisions occur. Hence,
distance is given as an absolute value, while the part of T C(u,⌧,�, ~t ) concerning UAV weight
is given as a ratio, with W Max

u being the baseline used to decide the importance of weight.

6.4 Visual Pollution Model

Little research exists on the quantification of visual pollution. As described in Section 2.6, a
study by Thomas (2022) found that the number of UAVs observed appears to be the most
important factor for visual pollution, followed by the distance to the closest UAV. The study
presents the following equation quantifying the amount of visual pollution from the perspect-
ive of a single individual at a given point in time

PV = a · (No. of UAVs)b

(Distance to closest UAV)c
+ d (6.5)

where a, b, c and d are constants. A larger value in equation (6.5) means more visual pollution.
Since the equation only looks at the distance to the closest UAV, the visual pollution of e.g. one
UAV at 60 meters altitude and four at 200 meters altitude will give the same visual pollution
as if all UAVs were at 60 meters altitude. Due to this weakness, we only use equation (6.5) as
a starting point for our model of visual pollution for a single UAV and create our own equation
for the visual pollution generated by multiple UAVs. The quantification of visual pollution
thus takes the same two perspectives as the risk model; a single-UAV perspective and a system
perspective. The single-UAV perspective finds how much visual pollution a given UAV generates
when it is located in each vertex of a path. The system perspective finds the simultaneous effect
of the visual pollution from multiple UAVs. For both perspectives, the subjectivity of visual
pollution described in Section 2.6 is disregarded.

6.4.1 Single Unmanned Aerial Vehicle Perspective
To quantify the total visual pollution generated by UAV u in a given vertex i when the system
aspect is ignored, equation (6.5) is adjusted to yield the following equation
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PV
ui =

X

g2GV
ui

(1� Fg) · (CV,1 · 1

(DU
ig)

CV,2 ) ·Qg (6.6)

where CV,1 and CV,2 correspond to the constants a and c in equation (6.5), respectively. Con-
stants b and d are omitted, since equation (6.6) is only used for a single UAV and we assume
that there is no visual pollution if there are no UAVs. Equation (6.6) multiplies the visual pol-
lution experienced by a single individual by the number of individuals in an affected ground
square, Qg , and takes the sheltering factor associated with each ground square, Fg , into ac-
count. DU

ig is the Euclidean distance from vertex i, where the UAV is located, to the center of
ground square g. GV

ui ✓ G is the set of affected ground squares when UAV u is positioned in
vertex i.

Figure 6.5: Illustration of the ground squares affected by visual pollution given a cut-off dis-
tance DV

u . The red shaded ground squares have their center within the circle spanning the cross
section of the cut-off sphere. Ground square g is not shaded, despite being within the circle,
since DU

ig > DV
u .

To decide which ground squares are affected by visual pollution when a UAV is located in a
given vertex, a threshold is used to find the cut-off distance. The cut-off distance corresponds
to the radius of a sphere around a UAV, and we assume that only individuals in ground squares
with centers within the sphere experience visual pollution from the UAV. Figure 6.5 shows how
the affected ground squares may vary based on the cut-off distance and the altitude above sea
of a ground square. The cut-off distance, DV

u , is found by calculating the distance at which the
length of UAV u, M L

u , appears smaller than a given threshold, RV , to an observer standing at
the center of a ground square measuring the size of the UAV in the sky with a measurement
device at a distance DE from the observer’s eyes.

DV
u =

M L
u

RV
· DE (6.7)

There are a few things to note about the visual pollution equation. The values from equation
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(6.6) allow for linear comparisons such as a visual pollution value of 10 being twice as bad as
5, but the values have no easily interpretable meaning on their own. Furthermore, we use the
value of the vertex a UAV leaves from when summing over vertices, and the visual pollution
value of the final vertex on each segment is included. Thus, each intermediate location a UAV
must visit between the initial and the final location on a voyage is counted twice. The double
summation of these vertices intuitively makes sense, as the UAV will have to fly from each
intermediate location, down to the ground to perform a service and then back up to the vertex,
i.e. visit the vertex twice.

The total visual pollution of a given path for a single UAV u is given as

PV
u =

X

i2N

X

j2Ni

X

s2Su

PV
ui · xui js +

X

i2N

X

s2Su

PV
ui · I F

uis (6.8)

6.4.2 System Perspective
To quantify the total visual pollution generated by a system flight plan, we begin by finding
the visual pollution in each ground square. Algorithm 1 calculates the total visual pollution
in ground square g by dividing the entire time frame of system flight plan ~t into a set of
time intervals of a given length �. For each time interval, the for-loop in lines 7-9 calculates
the visual pollution values from the single-UAV perspective for each UAV that affects ground
square g, i.e. each UAV that has g in its set of affected ground squares GV

ui . The equation used
in line 8 is similar to equation (6.6). The only difference is that the parameter DU

ig in equation
(6.6) is replaced by the function D(tuis, g). D(tuis, g) finds the distance between the ground
square g and the vertex i that UAV u is located in at time tuis.

Lines 11-13 deal with non-linear addition of visual pollution values from multiple UAVs. The
visual pollution values from the single-UAV perspective are sorted in descending order and
multiplied by a factor � 2 [0,1) raised to the power of the position this value has in the
descending list. A � value of 0 means that only the most visually polluting UAV has an impact
on a ground square within a given time interval. As � goes towards 1, the impact of each
additional UAV becomes less and less discounted and thus closer to the full impact of the
UAV. We require � < 1, so that each additional UAV has a diminishing effect on the total
visual pollution. This is due to the fact that the human ability to recognize a quantity without
counting stops at about 3 to 4 (Hasak & Toomarian, 2022). As an example, the human brain
can distinguish between 2 and 5 UAVs, but the difference between 10 and 13 UAVs is more
challenging to grasp. Finally, the total visual pollution PV

g is the sum of the discounted visual
pollution values for each time interval. Note that with a higher � value, the objective value
for visual pollution will tend to be lower since more values can be discounted within the same
time interval. Also note that a given UAV u may have multiple tuis values in the same time
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Algorithm 1 Algorithm to find the total visual pollution generated by a system flight plan in a given
ground square g

Input: System flight plan ~t , ground square g
Output: Visual pollution in ground square g, PV

g

1: function PV (~t , g)
2: PV

g  0
3: tMax  max{tuis 2 ~t}�min{tuis 2 ~t}
4: T  {0,�, 2�, ..., b tMax

� c�}
5: for ⌧ 2 T do
6: PV

g⌧  []
7: for {tuis 2 ~t | 9u2U , i2N , s2Su

tuis 2 [⌧,⌧+�) ^ g 2 GV
ui } do

8: PV
g⌧.append

Å
(1� Fg) · (CV,1 · 1

D(tuis ,g)
CV,2 ) ·Qg

ã

9: end for
10: PV

g⌧  DescendingSor t(PV
g⌧)

11: for n 2 {0,1, ..., |PV
g⌧|� 1} do

12: PV
g  PV

g + PV
g⌧[n] · �n

13: end for
14: end for
15: return PV

g

16: end function

interval. Since traversing a diagonal edge takes more time than traversing a straight edge,
more vertices end up in the same time interval if only straight edges are used. Furthermore,
two tuis values with an absolute difference smaller than � could potentially end up in different
time intervals. Thus, the use of non-overlapping time intervals is a simplification. It should
also be noted that the set of time intervals T defined in line 4 defines the earliest UAV start
time as time 0.

The total amount of visual pollution generated by a system flight plan ~t , is thus given as the
total visual pollution generated in all ground squares as follows

PV (~t ) =
X

g2G
PV (~t , g) (6.9)

6.5 Noise Pollution Model

We have chosen to build a model for noise pollution using sound pressure level (SPL). SPL
is a commonly used measure for noise levels with great presence in both literature and em-
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pirical data, and has good correlation with human perception of loudness (Long, 2014). SPL
is distance dependent (Kjær, n.d.), and hence fits well with the quantification of how noise
propagates from UAVs. Empirical research shows that the smallest angle between a UAV, an
observing individual and the horizontal has a significant impact on the SPL at the position
of the individual (Schäffer, Pieren, Heutschi et al., 2021). The SPL is highest directly below
and above the UAV, i.e. at a 90� angle. The change in SPL due to changes in the aforemen-
tioned angle varies somewhat differently depending on the frequencies emitted by the UAV,
but can in general be said to change linearly with the change in angle (Heutschi et al., 2020;
Treichel & Körper, 2019). Furthermore, a review by Schäffer, Pieren, Heutschi et al. (2021)
finds that there is a positive but decreasing relationship between UAV weight and the SPL
(Schäffer, Pieren, Heutschi et al., 2021). The effect of carrying payloads with different weights
is disregarded in this thesis, however.

Figure 6.6: Illustration of the angles and distances used to calculate noise pollution. In the left
part of the figure, the blue box represents a measurement device. AM and AU

ig represent angels,
and DM and DU

ig represent distances. The ground square multiple � is set equal to 2, leading to
one ground square below the graph in the right part of the figure. The dashed lines illustrate
the projection of the graph onto the ground squares. The diagonal edges have been omitted for
readability.

A basic equation for the SPL, measured in decibels, experienced in the center of ground square
g when a UAV is positioned in vertex i can be formulated as follows

SPLig = MS +O · (90� AM ) + 20 · log10(D
M )�O · (90� AU

ig)� 20 · log10(D
U
ig) (6.10)

Equation (6.10) uses a measured SPL value from a UAV, MS , as a starting point. The second
and third term convert the value to the corresponding SPL vertically downwards at a distance
1 meter away from the UAV by adjusting for the angle, AM , and distance, DM , at which MS

was measured. This is shown in the left part of Figure 6.6. The two last terms further adjust
for the angle AU

ig and the distance DU
ig to give the appropriate SPL value at the center of ground

square g. This is shown in the right part of Figure 6.6. The angle adjustments are based on
the linear relationship between change in SPL value and change in angle. AM is defined as the



Chapter 6: World and Objective Models 45

smallest angle between the UAV, the horizontal and the measurement device, while AU
ig is the

smallest angle between vertex i, the horizontal and the center of ground square g. The distance
adjustments are based on physical laws for sound propagation in space when considering the
sound from a UAV as a point source.

Since decibel is a logarithmic unit, linear addition of decibel values does not make sense. We
hence need to make use of the relationship between SPL and the pressure caused by the sound
wave, p, which is given as

SPL= 20 · log10

Å
p
p0

ã
() p = p0 · 10

SPL
20 (6.11)

where p0 is the pressure at the hearing threshold and denotes the lowest sound a human can
hear (European Commission, 2008).
Similar to the models for risk and visual pollution, the quantification of noise pollution takes
both a single-UAV perspective and a system perspective. Again, we disregard possible subject-
ive differences in perception between individuals.

6.5.1 Single Unmanned Aerial Vehicle Perspective
To quantify the total noise pollution from UAV u when it is positioned in vertex i, we use the
following equation

PN
ui =

X

g2GN
ui

22·log10

�
p

p0

�
·Qg =

X

g2GN
ui

22·log10

�
p0 ·10

SP Luig
20

p0

�
·Qg =

X

g2GN
ui

2
SPLuig

10 ·Qg

=
X

g2GN
ui

2
MS

u +O·(90�AM
u )+20·log10(D

M
u )�O·(90�AU

ig )�20·log10(D
U
ig )

10 ·Qg (6.12)

where GN
ui ✓ G is the set of ground squares affected by noise pollution from the UAV. Equation

(6.12) combines equation (6.10) and the common statement that a 10 dB sound increase is
perceived twice as loud (Salford Acoustics, n.d.), which corresponds to a

p
10 times higher

pressure. The logic behind the equation is to find the ratio between the pressure p experienced
in a given ground square and the pressure at the hearing threshold, p0. By raising 2 to the
power of 2 multiplied by the base-10 logarithm of this ratio, we find how many times higher
than the hearing threshold the sound is perceived. Finally, we multiply the value by the number
of individuals in each affected ground square, Qg , and simplify the math. The noise pollution
values PN

ui do not have a clear interpretation in themselves, but they are linearly comparable.
Thus, they are appropriate for saying how many times worse it is to include one vertex in a
UAV’s path compared to another.

To find the affected ground squares, we set a cut-off threshold in decibels, RN , where noise
below the threshold level is regarded as no noise pollution. Similar to the model for visual
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pollution, we create a sphere around the UAV with a radius equal to a cut-off distance, DN
u , i.e.

the maximum distance from the UAV where noise from the UAV could be above the threshold
RN . Note that although the noise pollution in a certain ground square depends on the both
the distance DU

ig and angle AU
ig relative to the vertex the UAV is in, we find the cut-off distance

using only change in distance to ensure that the corresponding sphere covers all potentially
affected ground squares. The affected ground squares are then found by checking whether the
SPL in the center of each ground square within the sphere is above RN . This check is necessary
since the angle adjustment may lead to the SPL being below RN although the distance from
the UAV is less than DN

u . The cut-off distance DN
u is found by solving the following equation

MS
u +O · (90� AM

u ) + 20 · log10(D
M
u )� 20 · log10(D

N
u ) = RN

) DN
u = 10

MS
u +O·(90�AM

u )+20·log10(D
M
u )�RN

20 (6.13)

Similar to the model of visual pollution, we use the noise pollution value of the vertex a UAV
leaves from, and include the value associated with the final vertex on each segment, when
finding the total noise pollution. Thus, the total noise pollution of a given path for a single
UAV u is given as

PN
u =

X

i2N

X

j2Ni

X

s2Su

PN
ui · xui js +

X

i2N

X

s2Su

PN
ui · I F

uis (6.14)

6.5.2 System Perspective
To quantify the total noise pollution generated by a system flight plan, we first find the noise
pollution in each ground square g using Algorithm 2. The appropriate decibel value of the
simultaneous impact from a system of UAVs can be found by converting the decibel values
to pressure, summing the square of the pressures, and converting the square root of this sum
back to decibels (Baker, n.d.). This implies that the sum of the noise from experiencing multiple
UAVs separately is greater than the noise from experiencing them simultaneously.

Algorithm 2 divides the entire time frame of system flight plan ~t into a set of time intervals
of a given length �. The earliest start time among the UAVs in the system is set as time 0 in
line 4. The for-loop in lines 7-9 sums up the squared pressures from the UAVs in a given time
interval, using the conversion from SPL to pressure shown in equation (6.11). The expression
in the exponent in line 8 is similar to equation (6.10), except for the added u index, and that
Au

ig and Du
ig are replaced with the functions A(tuis, g) and D(tuis, g), respectively, which return

the same values. In line 10, the resulting SPL from the system of UAVs is found by converting
back to decibels according to equation (6.11). The if-statement in line 11 checks whether the
resulting decibel value is above the threshold. If so, the appropriate noise pollution value for
the time interval is found using equation (6.12) for ground square g and linearly added to
the total noise pollution value, PN

g , in line 12. Note that a change in the value of � can affect
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Algorithm 2 Algorithm to find the total noise pollution generated by a system flight plan in a given
ground square g

Input: System flight plan ~t , Ground square g
Output: Noise pollution in ground square g, PN

g

1: function PN (~t , g)
2: PN

g  0
3: tMax  max{tuis 2 ~t}�min{tuis 2 ~t}
4: T  {0,�, 2�, ..., b tMax

� c�}
5: for ⌧ 2 T do
6: PN

gt  0
7: for {tuis 2 ~t | 9u2U , i2N , s2Su

tuis 2 [⌧,⌧+�) ^ g 2 GNS
ui } do

8: PN
g⌧  PN

g⌧ +
Å

p0 · 10
MS

u +O·(90�AM
u )+20·log10(D

M
u )�O·(90�A(tuis ,g))�20·log10(D(tuis ,g))

20

ã2

9: end for

10: SP Lg  20 · log10

Åq
PN

g⌧
p0

ã

11: if SP Lg > RN then

12: PN
g  PN

g + 2
SP Lg

10 ·Qg

13: end if
14: end for
15: return PN

g

16: end function

the noise pollution objective value in both directions. If UAVs individually generate noise that
exceeds the noise pollution threshold in the center of a ground square, it is beneficial with
a higher � value since more values can be discounted. If, on the other hand, the UAVs do
not generate noise exceeding the threshold on their own, but the simultaneous impact from a
system does, a higher � value can increase the objective value. Similar to the model of visual
pollution, a UAV may have multiple tuis values in the same time interval and two tuis values
with an absolute difference smaller than � may end up in different time intervals.

A thing to note about Algorithm 2 is that the set GNS
ui ✓ G in line 7 is different from the set

GN
ui ✓ G in equation (6.12). The rationale for this is that a UAV might contribute to the SPL

from a system of UAVs exceeding the threshold, although the SPL from the UAV in isolation is
below the threshold. Hence, the set of affected ground squares when considering the UAV as
part of a system of UAVs, GNS

ui , is based on a reduced threshold value compared to RN , namely
RN �RN ,Red , and GNS

ui can thus include more ground squares than GN
ui . RN ,Red is set low enough

to ensure that all UAVs that can contribute to the total noise from a system of UAVs exceeding
RN in any ground square are accounted for.
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The total amount of noise pollution generated by a system flight plan ~t , is thus given as the
total noise pollution generated in all ground squares for all time intervals as follows

PN (~t ) =
X

g2G
PN (~t , g) (6.15)



Chapter 7

Solution Method

This chapter presents the solution method used to solve the static, multi-UAV path planning
(MUAVPP) problem, which is a hybrid evolutionary algorithm (HEA). This heuristic approach
combines the non-dominated sorting genetic algorithm III (NSGA-III) with ant colony optimiz-
ation (ACO), and is described in Section 7.1. To better understand runtime and solution quality
aspects of the heuristic solution method, this thesis compares the HEA to an exact problem-
specific algorithm called multi-objective Dijkstra’s algorithm (MDA). The MDA uses dynamic
programming to generate the complete Pareto front, and is presented in Section 7.2. The MDA
used in this thesis is based on work done in our preparatory research project, but is sped up
using a technique proposed by Maristany de las Casas et al. (2021).

7.1 Hybrid Evolutionary Algorithm

This section describes how the static MUAVPP problem described in Chapter 4 and modeled in
Chapter 5, is solved using a hybrid evolutionary algorithm. There are several reasons behind
our choice of solution method. As described in the literature review in Chapter 3, evolutionary
algorithms (EAs) are a common solution method, especially for more complex problems with
multiple objectives or a three dimensional environment. Since the MUAVPP problem considers
both of these elements, in addition to e.g. multiple vehicles, the use of an EA seems reason-
able. Furthermore, since generating good system flight plans is adequate and optimality is
not a necessity, the choice of an EA as a solution method is strengthened. An EA can also be
more efficient than an exact method, because it does not have to find the entire Pareto front.
Moreover, a decision maker will have no use for hundreds of choices, and generating the entire
Pareto front with an exact method is thus not of practical value. It should also be noted that
the system perspective equations for the risk, visual pollution and noise pollution objectives

49
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are more complex than the single-UAV perspective equations described in Chapter 6. Hence,
an efficient solution method is essential. Finally, an EA may be stopped at any point in time
and return viable solutions, which again supports the efficiency argument.

The HEA used in this thesis consists of NSGA-III with ACO as a subroutine. NSGA-III and ACO
are described in Subsections 7.1.1 and 7.1.2, respectively.

7.1.1 Non-Dominated Sorting Genetic Algorithm III
The NSGA-III used as the basis for the HEA, is heavily inspired by the original NSGA-III de-
veloped by Deb and Jain (2014). There are multiple aspects of NSGA-III that make it suitable
for solving the MUAVPP problem. First, genetic algorithms are a common type of EA among
the analyzed papers in the literature review in Chapter 3. Furthermore, genetic algorithms
produce a set of solutions in a single run, since such algorithms evolve an entire population
of solutions in each iteration. Since the MUAVPP problem is a multi-objective problem, gen-
erating a few system flight plans with various trade-offs between the objectives is essential as
it gives the decision maker a realistically sized set of options to choose from. The choice of a
non-dominated sorting genetic algorithm in particular is also motivated by the problem stud-
ied in this thesis having multiple objectives, making Pareto dominance tests essential to decide
which system flight plans are better than others. The use of the NSGA-III version of NSGA, is
due to NSGA-III being more well-suited, and thus more efficient, as the number of objectives in
a multi-objective problem increases compared to NSGA and NSGA-II. This is due to NSGA-III
using reference points to select individuals for the next iteration (Deb & Jain, 2014).

The implementation of the NSGA-III-based HEA is shown in Algorithm 3 and visualized as
a flowchart in Figure 7.1. The algorithm begins by creating an initial parent population P
containing N individuals. Each individual in the population is a system flight plan, i.e. one
path with associated timestamps for each UAV in the system. The isS ystem variable denotes
whether the problem to be solved considers a system of UAVs and is used to determine how
the initial parent population is created in lines 2-10. When isS ystem is True, the algorithm
recursively calls itself once for each UAV in the system, with isS ystem= False and M = N =
d N
|U |e in lines 3-5. These |U | initializations of non-system, i.e. single-UAV, HEA runs is the reason

why there is a set of arrows between the “Create initial population” and “Initialize non-system
HEA” boxes at the top of the flowchart in Figure 7.1. The non-system runs of the HEA lead to a
set of flight plans for each UAV individually, and these results are merged in line 6 in Algorithm
3. Random combinations of one path for each UAV are used to create system flight plans for the
initial population in the createIni t ialS ystemPopulat ion method in line 7. This is visualized
in the large blue box at the top-right of the flowchart in Figure 7.1. When isS ystem is False,
the algorithm uses ACO to create the initial population in line 9. The intermediate non-system



Chapter 7: Solution Method 51

Figure 7.1: A flowchart for the hybrid evolutionary algorithm (HEA) for a system of UAVs.
Blue boxes are steps in the NSGA-III base, while dark blue hexagons are if-statements with
corresponding dark blue result arrows. The light red boxes are steps using ACO. The two black,
rounded boxes correspond to the start and end points of the algorithm. Orange arrows means
the value on the arrow was created or updated by the box the arrow originates from.
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HEA runs are included to improve the paths generated by the ACO runs before they are used
as the initial population in the system HEA run. After generating the initial parent population
P, Algorithm 3 computes the fitness for each individual in P. The computeF i tness method
uses the single-UAV perspective equations in Chapter 6 if isS ystem is False, and the system
perspective equations if isS ystem is True. The method associates a fitness vector [Flight time,
Risk, Visual pollution, Noise pollution], i.e. a vector with one value for each objective, with each
individual in P.

The main part of Algorithm 3 is the while loop in lines 12-27. In short, each iteration generates
an offspring population Q of size N . Then the N most fit individuals from the combined parent
and offspring population of size 2N are selected to be in the parent population P in the next
iteration of the algorithm. The while loop continues until a given stopping criteria is met. The
stopping criteria used in the HEA is based on the percentage improvement of the average fitness
vector of a population compared to its predecessor population, and is given as

9c2C c � cMin, C =

®
T

prev � T

T
prev ,

R
prev � R

R
prev ,

P
V,prev � P

V

P
V,prev ,

P
N ,prev � P

N

P
N ,prev

´
(7.1)

Equation (7.1) states that if the population’s average values for one or more objectives are at
least a percentage threshold cMin lower than the corresponding objective values in the previous
iteration, the while loop continues for another iteration. A minimum number of iterations to
run before the improvement percentage becomes a requirement can also be specified.

The createOf f spring method in line 13 in Algorithm 3 is used to create an offspring popula-
tion Q of size N in each iteration. This method is explained in detail at the end of this subsec-
tion. Once an offspring population has been created, the algorithm computes the fitness vectors
of the offspring population in line 14, before combining the parent and offspring populations
in line 15. Then the nonDominatedSor t method is used to perform non-dominated sorting on
the combined population R. The implementation of nonDominatedSor t exactly follows the
common implementation found in the original NSGA (Srinivas & Deb, 1994), NSGA-II (Deb,
Agrawal et al., 2000) and NSGA-III (Deb & Jain, 2014) papers. For each individual in R, the
method checks which individuals dominate, and are dominated by, the given individual based
on the fitness vectors. This information is then used to sort the individuals into non-dominated
levels, where the individuals in each level are only dominated by individuals in a higher level.
This means that level 1 individuals are not dominated by any other individuals in R, level 2
individuals are only dominated by individuals in level 1, level 3 individuals are dominated by
individuals in level 1 and 2, and so on. After the non-dominated sorting, a new empty popu-
lation is created, PNew. Then the while loop in lines 19-22 in Algorithm 3 adds entire levels
from the combined and non-dominated-sorted population F to PNew. It begins by adding level
1, and continues until the addition of another level L would lead to the number of individuals
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Algorithm 3 NSGA-III-based hybrid evolutionary algorithm to generate a set of system flight plans
Input: Set of UAVs U , population size N , number of system flight plans to generate M

(M  N), whether the problem considers a system of UAVs isS ystem
Output: Set of system flight plans, {~t 1, ~t 2, ..., ~t M}

1: function HEA(U , N , M , isS ystem)
2: if isS ystem then
3: for u 2 U do
4: Pu  HEA({u}, d N

|U |e, d
N
|U |e, False)

5: end for
6: PAll  

S
u2U

Pu

7: P  createIni t ialS ystemPopulat ion(PAll , N)
8: else
9: P  createIni t ialPopulat ionWithACO(U , N)

10: end if
11: computeF i tness(P, isS ystem)
12: while stopping criteria not met do
13: Q createOf f spring(U , P, N , isS ystem)
14: computeF i tness(Q, isS ystem)
15: R P [ Q
16: F  nonDominatedSor t(R)
17: PNew  ;
18: L getNex t Level(F)
19: while |PNew|+ |L| N do
20: PNew  PNew [ L
21: L getNex t Level(F)
22: end while
23: if |PNew|< N then
24: PNew  PNew [ ref erencePointBasedAddit ion(PNew, L, N � |PNew|)
25: end if
26: P  PNew

27: end while
28: P F in  f inalSelec t ionRef erencePointBasedAddit ion(P, M)
29: return P F in

30: end function

in PNew becoming strictly larger than N . The algorithm then checks if there are less than N
individuals in PNew in line 23, and uses the ref erencePointBasedAddit ion method to decide
which individuals from the level L to add to PNew to reach a population size of N if needed.



Chapter 7: Solution Method 54

The implementation of the ref erencePointBasedAddit ion method follows NSGA-III (Deb &
Jain, 2014) exactly. The method begins by generating evenly distributed reference points on a
normalized hyper-plane that intercepts each of the objective axes in 1 and are equally inclined
to all axes. An example is given in Figure 7.2. The number of reference points is given by

No. of reference points=
Å

No. of objectives+ d � 1
d

ã
(7.2)

where d is the number of divisions made along each objective axis. Each reference point con-
sists of a set of four values, one for each of the objectives. Each value is a multiple of 1/d,
and the sum of the values in a reference point is 1. The observant reader may notice that this
implies that the set of reference points may be viewed as a set of weightings for the four ob-
jectives, with each of the four values in a reference point corresponding to the weight given to
each of the objectives.

Figure 7.2: Illustration of reference points for a tri-objective problem with the number of divi-
sions d = 4. The red dots are reference points, the light red triangle is the normalized hyper-
plane, and the blue line is the reference line for the reference point it goes through.

After creating the reference points, the ref erencePointBasedAddit ion method normalizes the
fitness vectors of each individual so all the objective values are between 0 and 1. Each of the
normalized fitness vectors are then associated with a reference point. This is done by defining
reference lines between each reference point and the origin, and assigning each normalized
fitness vector to the reference point corresponding to the reference line the vector is closest to
in the normalized objective space. Each reference point is then given a niche count, which is the
number of individuals in PNew that is associated with the given reference point. Finally, PNew

is increased to N individuals by repeatedly finding the reference point with the lowest niche
count, with ties being broken by random choice, and checking which individuals from level
L are associated with this reference point. If multiple such individuals exist, the individual
with the minimum distance to the reference line corresponding to the chosen reference point
is added to PNew. Then the niche count of the chosen reference point is increased by 1. If no
individual from level L is associated with the chosen reference point, the reference point is
discarded for the rest of the run of the ref erencePointBasedAddit ion method. Once PNew

reaches a size of N individuals, the method returns the updated PNew. An important strength
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of using reference points is that it attempts to maintain diversity among the individuals, by
adding individuals that are associated with reference points with the lowest niche counts first.

After filling up any remaining slots to ensure the new parent population PNew has N individu-
als, PNew becomes the parent population P in the next iteration of the while loop in lines 12-27.
Once the stopping criteria is met, the f inalSelec t ionRef erencePointBasedAddit ion method
reduces P down to M individuals if M < N . The method uses ref erencePointBasedAddit ion
to select individuals from level 1, i.e. non-dominated individuals, if there are M or more level
1 individuals. Otherwise it supplements with lower level individuals to reach M individuals.
If M = N , the method just returns P. The use of reference points in the final selection is done
to ensure diversity in the final set of individuals P F in returned from Algorithm 3. Note that if
M < N , the number of reference points is reduced to fit the reduced number of individuals to
select in the f inalSelec t ionRef erencePointBasedAddit ion method compared to the number
of reference points used in the ref erencePointBasedAddit ion method in line 24.

Creation of Offspring
The createOf f spring method used to generate an offspring population Q based on a parent
population P, is shown in Algorithm 4. Until N energy feasible offspring have been created,
the while loop in lines 3-17 selects two individuals from the parent population P using the
selec tParents method. For each of the two parents to select, the selec tParents method se-
lects a parent at random from all individuals in P with a given probability, otherwise a random
choice of parent is made among the non-dominated individuals in P. After selecting parent in-
dividuals p1 and p2, one of the UAVs in the system is chosen at random to have its path updated
in line 5. The reason behind only updating the path of one of the UAVs when creating an off-
spring, is that updating the paths of multiple UAVs at once could lead to a fitness improving
change in one UAV’s path being offset by a worsening change in another UAV’s path. Having
chosen the UAV to update the path of, a new offspring is created by using mutatingC rossover
with a given probability, otherwise regularC rossover is used. If isS ystem= True, any colli-
sions are fixed after the crossover.

The mutatingC rossover method is shown in the upper right part of Figure 7.3. It begins by
randomly selecting one segment, s, on the path of UAV u. For all segments before segment s,
the segment path of parent p1 is used, while for all segments after segment s, the segment
path of parent p2 is used. For the chosen segment s however, a random portion of the start
of the segment path of p1 is used and a random portion of the end of the segment path of p2

is used, leaving a gap between the two. Then ACO is used to connect the two partial paths
on segment s. Since the point in time when UAV u reaches the various locations in p1 and
p2 may vary, all the tuis values from the vertex where the ACO path begins and throughout
the rest of the total path must be updated. After the timing update, the mutatingC rossover
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Algorithm 4 Algorithm to create offspring for an iteration of the HEA
Input: Set of UAVs U , parent population P, population size N , whether the problem

considers a system of UAVs isS ystem
Output: An offspring population, Q

1: function CREATEOFFSPRING(U , P, N , isS ystem)
2: Q ;
3: while |Q|< N do
4: p1, p2  selec tParents(P)
5: u randomChoice(U)
6: if randomF loat(0,1)� mutationThreshold or |Su|= 1 then
7: of f spring  mutatingC rossover(p1, p2, u)
8: else
9: of f spring  regularC rossover(p1, p2, u)

10: end if
11: if checkIsEner g yFeasible(of f spring) then
12: if isS ystem then
13: of f spring  f i x PotentialCol l isions(of f spring)
14: end if
15: Q Q [ {of f spring}
16: end if
17: end while
18: return Q
19: end function

method combines the new path for UAV u with paths for the remaining UAVs to create a new
individual. All the remaining UAVs’ paths are taken from one of the parents, with the parent
being chosen at random. The new individual is then returned.

The regularC rossover method works by going through each segment in the path of UAV u and
randomly choosing between the segment path of parent p1 or p2, ensuring that each parent
is chosen at least once. Since the method combines segment paths from the two parents, a
UAV with only one segment are not able to use the regularC rossover method, which is why
the size of the segment set of the chosen UAV u, |Su|, is checked in line 6 of Algorithm 4.
Similar to the mutatingC rossover method, updates must be made to a subset of the tuis

values. All tuis values from the start of the second segment, or a later segment if the same
parent is used for consecutive segments in the beginning, and throughout the rest of the total
path must be updated. Then the paths from p1 are used for the remaining UAVs to create
a new individual that is subsequently returned. The selection of which parent the remaining
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paths are taken from is essentially random, since p1 is randomly selected from either the entire
parent population P or from the non-dominated subset of P. The regularC rossover method
is illustrated in the lower right part of Figure 7.3.

Figure 7.3: Illustration of the two crossover types used in the hybrid evolutionary algorithm.
The left part of the figure shows the paths for UAV u for parents p1 and p2, with the red and
blue dots corresponding to locations to visit. The upper right part shows a mutation crossover
on the second segment. The red parts of the path are from p1 while the blue parts are from
p2. The green part of the path is the mutated path generated by ACO, and the small green dots
are the start and end vertices of the ACO path. The lower right part shows a regular crossover,
where the first and third segment are taken from p2 while the second segment is taken from p1.
The first green dot in the mutation crossover path and the first red dot in the regular crossover
path correspond to the starting points for where timing updates must be made to the rest of
the paths.

After a new offspring has been created, its energy feasibility is checked in line 11 of Algorithm
4. If the offspring is energy feasible, i.e. constraints (5.12) in the MINLP model described in
Chapter 5 hold, the offspring is added to the offspring population Q. If the problem is a multi-
UAV problem, any collisions occurring due to the selected UAV’s updated path are fixed in
line 13 using the f i x PotentialCol l isions method, before the offspring is added to Q. The
f i x PotentialCol l isions method greedily finds the shortest collision-free path from the final
vertex before a collision to the first vertex after the collision, with “collision vertices” defined
as any vertex in a UAV’s path that violates the collision constraints (5.9)-(5.11) in the MINLP
model. Thus, it is the UAV selected to be updated that is responsible for avoiding a collision
due to its new path. Then the while loop in lines 3-17 begins another iteration.

7.1.2 Ant Colony Optimization Subroutine
The HEA uses ACO to generate paths for a single UAV, either as part of the generation of an
initial parent population or as part of the mutating crossover, as described in Subsection 7.1.1.
The implementation of ACO takes inspiration from several articles, but is mainly based on the
original ACO algorithm proposed by Colorni et al. (1991). The main motivation behind the
use of ACO as a subroutine, is that it is a simple and efficient way to generate UAV paths.
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The use of a genetic algorithm requires an initial population of system flight plans. Using ACO
allows for a more guided search for good UAV paths than for example random path generation.
In addition, the use of ACO in mutating crossovers introduces completely new paths into the
system flight plans, which helps the HEA to break out of local optima. Furthermore, ACO was
found to be a common EA for path planning and similar problems in the literature review in
Chapter 3, although not as common as genetic algorithms.

Algorithm 5 Ant colony optimization algorithm for finding paths for a single UAV

Input: Maximum number of iterations I , total number of ants A, set of start vertices VS ,
set of end vertices VE , number of paths to create P

Output: A set of P paths for a single UAV

1: function ACO(I , A, VS , VE , P)
2: bestPaths  ;
3: ini t ial izePheromones(VS)
4: for ⇣ 2 {1, 2, ..., I} do
5: antPaths  [[vS

1 ], [v
S
2 ], ..., [vS

A]]
6: while unfinished ants exist do
7: for a 2 unf inishedAnts do
8: vNex t  selec tNex tVer tex(antPaths[a])
9: if vNex t is None then

10: antPaths[a] [vS
a ]

11: else
12: antPaths[a].inser t(vNex t)
13: end if
14: onlinePheromoneU pdate(antPaths[a], vNex t)
15: end for
16: unf inishedAnts  getUnf inishedAntPaths(antPaths,VE)
17: end while
18: evaluateSolutions(antPaths, VS)
19: of f l inePheromoneU pdate(antPaths, VS)
20: possibleBestPaths  getEner g yFeasiblePaths(antPaths, VS)
21: bestPaths  updateBestPaths(bestPaths, possibleBestPaths, P)
22: end for
23: if not vS

1 = vS
2 = ...= vS

A then
24: bestPaths  combineSegmentPaths(bestPaths)
25: end if
26: return bestPaths
27: end function
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The ACO implementation used in this thesis is shown in Algorithm 5. In short, the algorithm
creates A ant paths in each iteration and updates the set of best paths if better paths are found
in the given iteration. After I iterations, it returns the P best paths found. An important thing
to note is that in both applications of ACO in the HEA, i.e. in mutating crossover and in the
generation of an initial parent population, a given ant will only be used to find a path on one
segment. This means that when ACO is used for mutation, all A ants traverse the same segment
and have the same start and end vertices, i.e. all values in VS are equal and all values in VE

are equal. When ACO is used to create an initial parent population on the other hand, the A
ants are spread across the set of segments for the UAV and the values in VS and VE vary based
on the segment a given ant is set to traverse.

Algorithm 5 begins by creating an empty set, bestPaths, and initializing the pheromone values
of all edges in the graph to a common value, µ0. It then starts the search for UAV paths in the
for-loop in lines 4-22. In each iteration, line 5 places each ant a at its start vertex vS

a , i.e. creates
a path list of only one vertex for each ant. The while-loop in lines 6-17 then runs until every ant
has found a path from its start vertex to its end vertex. The for-loop in lines 7-15 goes through
each ant a that has yet to reach its end vertex and finds the next vertex in its path using the
selec tNex tVer tex method. The selec tNex tVer tex method is based on Colorni et al. (1991).
It works by randomly selecting a vertex among the neighboring vertices of the vertex the ant
is currently in. The probability of selecting a neighboring vertex j when ant a is positioned in
vertex i on segment s, ⇡ai js, is given by

⇡ai js =

8
<
:

(µi js)" ·(⌘a j)!P
l2Ni
(µils)" ·(⌘al )!

, if ant a traverses segment s and j 2Ni and j /2N V
a

0 , otherwise
,

where ⌘a j =
1

d( j, vE
a )

(7.3)

where µi js is the current pheromone value on edge (i, j) on segment s, ⌘a j is the inverted
distance between vertex j and the end vertex vE

a for ant a, and " and ! are constants. The
segment index on the pheromone values is due to the possibility of not all ants traversing the
same segment. Only ants on the same segment should use the same pheromone values, because
some of the parameters that affect the four objectives vary based on segment, and thus the same
edge can be “good” for one segment and “bad” for another. N V

a is the set of vertices already
visited by ant a, and is included to avoid the ants going in cycles. The selec tNex tVer tex
method will return None if all neighboring vertices to vertex i have already been visited. If this
occurs, Algorithm 5 restarts the ant at its start vertex in line 10. Otherwise, vertex j, called
vNex t in the algorithm, is added to the path of ant a in line 12. Then an online pheromone
update for edge (i, j) is performed in line 14. This local update is done to increase search
diversity, as it reduces the chance of multiple ants taking the same path in a given iteration. The
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implementation of the onlinePheromoneU pdate method follows Dorigo and Gambardella
(1997) exactly, using the following equation to update the pheromone value of edge (i, j) on
segment s

µi js = (1�') ·µi js +' ·µ0 (7.4)

where ' 2 (0,1] is the pheromone decay rate and µ0 is the initial pheromone value. After
selecting the next vertex for each ant in unf inishedAnts, the unf inishedAnts set is updated in
line 16 by removing all ants that have reached their end vertices.

Once all A ants have reached their end vertices, the ant paths are evaluated by the
evaluateSolutions method. Since the static MUAVPP problem is a multi-objective problem
and the original ACO algorithm proposed by Colorni et al. (1991) was created for single-
objective problems, the method is implemented based on a multi-objective version of ACO
proposed by Ntakolia and Lyridis (2022). The evaluateSolutions method begins by comput-
ing the objective values for each ant path using the single-UAV perspective equations from
Chapter 6. Then the objectives are normalized and the normalized root mean square error
(NRMSE) for each ant paths’ objective values is calculated using the following equation

NRMSEa =
1
4
·
∆
(T Norm)2 + (RNorm)2 + (PV,Norm)2 + (PN ,Norm)2 (7.5)

The resulting NRMSE values are associated with each ant path. If ACO is used to create an ini-
tial parent population, the NRMSE values are calculated per segment, i.e. using the maximum
and minimum objective values for ants on the same segment as ant a to normalize the object-
ives. The use of NRMSE for solution evaluation is due to its high convergence speed (Ntakolia
& Lyridis, 2022).

Next, an offline pheromone update is performed on all edges in the graph. The
of f l inePheromoneU pdate method is implemented based on the pheromone differentiated
update strategy proposed by Xie et al. (2022). Compared to the offline pheromone update
used in the the original ACO algorithm (Colorni et al., 1991), the pheromone differentiated
update strategy proposed by Xie et al. (2022) is able to reflect low-NRMSE paths in the pher-
omone values more quickly and thus increase the efficiency of the search. First, the amount
of pheromone left by an ant a on edge (i, j) given that ant a traversed segment s, �µa

i js, is
calculated as follows

�µai js =

8
<
:

NRMSEAvg
s �NRMSEa

NRMSEAvg
s �NRMSEMin

s
· 1

NRMSEa
, if NRMSEa  NRMSEAvg

s

� NRMSEa�NRMSEAvg
s

NRMSEAvg
s �NRMSEMin

s
· 1

NRMSEMax
s

, if NRMSEa > NRMSEAvg
s

(7.6)

where NRMSEMax
s , NRMSEMin

s and NRMSEAvg
s are the maximum, minimum and average

NRMSE values of all ants traversing the same segment s as ant a.�µai js is assumed to be zero
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for all edges and segments ant a did not traverse in the given iteration. Then the segment
pheromone value of each edge (i, j) in the graph for each segment s is updated as follows

µi js = (1�⇢) ·µi js +⇢ ·
X

a2A
�µai js +

8
<
:

Q
NRMSEMin

s
, if (i, j) in NRMSEMin

s path

0 , otherwise
(7.7)

where ⇢ 2 [0, 1) is the pheromone evaporation rate, Q is the pheromone amount carried by
every ant and A is the set of ants, A= {1, 2, ..., A}. An additional Q

NRMSEMin
s

pheromone change
is given to edges included in the ant path with the minimum NRMSE value on segment s.

After the offline pheromone update, the ant paths are checked for energy feasibility in line 20 in
Algorithm 5 and only energy feasible paths are returned from the getEner g yFeasiblePaths
method. Then the set of best paths is updated to include ant paths from the current itera-
tion if they are better than the current best paths, ensuring that the total number of paths in
bestPaths does not exceed P. The updateBestPaths method adds a path b from
possibleBestPaths to bestPaths if b Pareto dominates a path in bestPaths, or if b is not dom-
inated by any path in bestPaths and has a better NRMSE value than a path in bestPaths. In
the case of ACO for initial parent population generation, the bestPaths set contains the P best
paths for each segment, i.e. |Su| · P paths in total. When ACO is used in mutating crossover
on the other hand, only P paths are included in the bestPaths set, since all ants traverse the
same segment in this case. After possibly updating the set of best paths, a new iteration of the
overall for-loop in lines 4-22 begins. After I iterations, the best paths on each segment must
be combined if ACO has been used for initial population generation, i.e. all the starting ver-
tices of the ants are not the same. This is done in the combineSegmentPaths method, which
creates all combinations of the best paths for each segment into full paths and then selects P
non-dominated and energy feasible full paths. Finally, the algorithm returns the set of paths
in bestPaths.

7.2 Exact Method for Evaluation

To evaluate the HEA, it is compared to an exact method called multi-objective Dijkstra’s al-
gorithm (MDA). This algorithm was used in our preparatory research project to generate the
set of optimal paths, i.e. the Pareto front, for the static, single-UAV path planning (SUAVPP)
problem. The SUAVPP problem has many similarities to the MUAVPP problem, but it only
considers a single UAV and hence does not account for the collision avoidance constraints ex-
plained in Chapter 5. Furthermore, it uses the single-UAV perspective equations for the risk,
visual pollution and noise pollution objectives described in Chapter 6. Thus, the evaluation of
the HEA consists of comparing the runtimes and the Pareto fronts generated by the MDA for
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each UAV in a system to the results from the HEA with isS ystem= False, to see whether the
paths found by the non-system HEA are close to the optimal paths for individual UAVs. This
investigation will again give insights into the quality of the HEA with isS ystem = True, and
is discussed in detail in Section 8.3.

Simply put, the MDA finds all Pareto optimal paths between two vertices in a graph. The MDA
cannot be applied to the MUAVPP problem directly, and we thus begin by decomposing the
problem into a set of SUAVPP problems by ignoring the collision avoidance constraints and
using the single-UAV perspective models for risk, visual and noise. Each of these single-UAV
problems have a primal block-angular structure. The primal block-angular structure means
that further decomposition of the single-UAV problem into independent path planning prob-
lems for each segment of the UAV’s voyage is hindered by a complicating constraint, i.e. a
constraint that makes the subproblems dependent. It is the energy capacity constraint (5.12)
that is complicating, since it applies across all segments of a UAV’s voyage. Thus, we tempor-
arily ignore the energy constraint, allowing for the decomposition of the single-UAV problem
into one path planning subproblem per segment. Since each segment consists of a start and
end vertex, the MDA can be applied to solve each of these subproblems.

After all subproblems have been solved using the MDA, the global Pareto front for every UAV u
in the system is found by combining the Pareto fronts for every segment s 2 Su and removing
paths that do not comply with the energy constraint and paths that are Pareto dominated. The
described approach is evidently not needed if the voyage of UAV u only consists of one seg-
ment. By the principle of optimality in dynamic programming, the combination of Pareto fronts
from independent subproblems will lead to the global Pareto front for the original problem.
However, when a complicating constraint is introduced, the combination approach described
could fail to generate the entire global Pareto front. To see this, consider the simple example
with a voyage consisting of two segments. On the first segment, a segment path p1 is Pareto
dominated by another segment path p2. Thus, p1 is discarded. When combining the Pareto
fronts to find the global front, the path using segment path p2 on the first segment is found
to break the complicating constraint. If p1 was only Pareto dominated by p2 and the path con-
sisting of segment path p1 instead of p2 complies with the complicating constraint, this path
is missing from the Pareto front. Thus, the approach has not succeeded in generating the full,
global Pareto front. However, due to the strong correlation between the energy consumption
model proposed in Section 6.2 and the flight time, this situation is rather unlikely.

7.2.1 Multi-Objective Dijkstra’s Algorithm
The MDA used to find Pareto optimal paths for a UAV u on segment s 2 Su is heavily based
on Maristany de las Casas et al. (2021). The MDA follows the same principles as the single-
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objective version of Dijkstra’s algorithm (Dijkstra, 1959). The MDA is a label-setting algorithm
that applies Pareto dominance on possible paths in the graph, represented as labels. Given a
path ending in vertex v, the unique label representing the path is given by z = (v, c(z), e(z), p(z)).
c(z) is the cost vector of the path, and corresponds to a vector of aggregated single-UAV per-
spective objective values. e(z) is the aggregated energy consumption along the path, and
p(z) is the path traversed from the start vertex b to v, represented as a list of vertices. Us-
ing the definition of Pareto dominance described in Subsection 3.3.1, we say that a label
z = (v, c(z), e(z), p(z)) Pareto dominates another label k = (w, c(k), e(k), p(k)), and we write
z � k, if and only if

v = w and c(z)� c(k)

The energy consumption of each of the labels, i.e. e(z) and e(k), are not included in the dom-
inance test, since energy consumption is a constraint and not an objective. The MDA finds the
minimum complete set of the efficient, i.e. Pareto optimal, paths. A minimum complete set of
efficient paths implies that there exists exactly one efficient path for every non-dominated cost
vector. This means that if several paths have the exact same cost vectors, only the first one to
be found by the MDA is included in the set of efficient paths. Thus, cost vector equivalence is
enough to discard a label. The MDA uses a dynamic programming approach, where it traverses
the graph by extending previously explored partial paths to find all Pareto optimal paths from
the start location to the end location on a given segment of a UAV u. The MDA can be applied
because the principle of optimality in dynamic programming holds, since all objectives are
non-negative, which is a requirement for the principle of optimality.

In short, the MDA will, for a given graph G = (V,E) and given start and end vertices b and f
of a segment of a UAV’s voyage, find the efficient label set Z f , i.e. the efficient labels of the end
vertex f . The MDA is shown in Algorithm 6. The algorithm starts by initializing several sets
used throughout the algorithm, in lines 2-7. K is a priority queue, which consists of candidate
labels for every vertex, i.e. labels that are next to be explored in the algorithm. Each vertex
v has at most one associated label in K, and this is the lexicographically smallest candidate
label for the vertex. In addition, the MDA manages a set of efficient labels Zv for every vertex
v. The total set of efficient labels Z is the union of all the efficient label sets for all vertices, as
shown in line 7. D is a set indexed by the edges in the graph, containing an index for the last
processed label for every edge.

In lines 8-9, a label for the start vertex b is created and added to the priority queue K. The
rest of the algorithm consists of the while-loop in lines 10-23. The MDA continues until there
are no labels left in the priority queue, meaning there are no more candidate labels that may
dominate the labels in the efficient label set for the end vertex f . In line 11, the next label to
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Algorithm 6 Multi-objective Dijkstra’s algorithm used to generate the set of Pareto optimal paths for
a UAV u on segment s

Input: Graph G = (V,E), start vertex b, end vertex f , set of lower bound cost vectors C
Output: Set of Pareto optimal labels for the end vertex f , Z f

1: function MULTOBJECTIVEDIJKSTRA(G, b, f , C)
2: K ;
3: D  ;
4: for v 2 V do
5: Zv  ;
6: end for
7: Z  

S
v2V

Zv

8: zb  (b, (0, ..., 0), 0, None)
9: K K.inser t(zb)

10: while K 6= ; do
11: zv  ex t ract Lex icographical l yMin(K)
12: Zv  Zv .inser t(zv)
13: zc

v  getNex tCandidateLabel(v, D, Z, C)
14: if zc

v is not None then
15: K K.inser t(zc

v)
16: end if
17: vprev  get LastV isi tedVer tex(zv)
18: for w 2 getNeighbors(v) do
19: if w is not vprev then
20: K propagate(G, zv , w, K, C)
21: end if
22: end for
23: end while
24: return Z f

25: end function

be explored is extracted. The selected label is the lexicographically smallest label zv in the
priority queue K. The exploration strategy of the MDA is hence dependent on the order of the
costs in the cost vector. In this thesis, the order of the costs is flight time, risk, visual pollution
and noise pollution. Thus, until the algorithm has found an efficient label for the end vertex
f , the graph is explored in a breadth-first manner, following the flight time cost of every label.
The extracted label zv is added to the efficient label set Zv in line 12, since it is guaranteed to
be a non-dominated label for vertex v.
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The next step in the algorithm, shown in lines 13-16, is to search for a new candidate label
for the vertex v corresponding to the extracted label zv using the getNex tCandidateLabel
method. This method works by finding the lexicographically smallest efficient label, zw, where
w is a neighbor of v, and creating a new candidate label for v by extending the label zw. A
more in-depth description of the getNex tCandidateLabel method is found in Appendix C.
If a candidate label is found, it is added to the priority queue.

After using the getNex tCandidateLabel method to extend labels along edges going in to
vertex v, the MDA extends labels along the edges going out from vertex v using the propagate
method in lines 17-22. The propagate method extends the label zv along an outgoing edge
(v, w), and potentially updates the priority queue for vertex w. The method is described in
detail in Appendix C. To avoid unnecessary computations, the algorithm does not propagate
to the vertex vprev that it just arrived from, as this extension will never lead to a non-dominated
label in vprev .

The getNex tCandidateLabel and propagate methods both apply the lower bound pruning
technique proposed by Maristany de las Casas et al. (2021) to decrease the search space of
the MDA. This technique uses a set of lower bound cost vectors, which consist of a vector of the
optimal cost for every objective to get from every vertex v in the graph to the end vertex f . To
generate the set of lower bound cost vectors, single-objective MDA is used to solve the shortest
path problem from the end vertex f to every other vertex in the graph, for every objective.
These lower bound cost vectors are then used to check whether it is necessary to extend a path
ending in v to vertex w. The lower bound cost vector for vertex w, i.e. the lowest value for
each objective for a path from w to end vertex f , is added to the current cost vector in the label
for vertex v along with the cost of going from vertex v to w. If this total cost vector is Pareto
dominated by or equal to the cost vector of a label in the efficient label set for end vertex f ,
there is no need to extend the path from v to w, as the path will never be added to the set of
efficient labels for f . In addition to the lower bound pruning, the getNex tCandidateLabel
and the propagate methods perform two other Pareto dominance checks. The new candidate
label or propagated label for vertex v, zv , must not be dominated by or have equal cost vector
as the efficient label set of v or the efficient label set of the end vertex f . Furthermore, the
label zv must comply with the energy consumption constraint.





Chapter 8

Computational Study

This chapter presents the results of applying the hybrid evolutionary algorithm (HEA) ex-
plained in Chapter 7 to the static, multi-UAV path planning (MUAVPP) problem. In this chapter,
we introduce the terms HEAC, HEAT and HEAF. HEAC denotes the complete algorithm, i.e. run-
ning HEA with isS ystem= True, which recursively calls HEA with isS ystem= False once for
each UAV in the system to create the initial population. Furthermore, HEAF refers to running
HEA with isS ystem = False, while HEAT refers to all other parts of the HEAC except for the
recursive calls of HEAF.

The chapter is split into ten sections. Section 8.1 concerns the input parameters used in this
computational study, while Section 8.2 describes our hypotheses and the test instances we
developed to evaluate them. Section 8.3 compares HEAF to the exact multi-objective Dijk-
stra’s algorithm (MDA) presented in Section 7.2. Section 8.4 discusses differences between
the single-UAV perspective and the system perspective, i.e. differences between the results
from HEAF and HEAC. In Section 8.5, the overarching runtime results for HEAC are presented,
while Section 8.6 discusses the effects of various components, operators and parameters of the
HEAC. Furthermore, Section 8.7 analyzes the stability of HEAC and Section 8.8 concerns the
impact of the ground square size. Section 8.9 investigates the system behavior when running
HEAC and evaluates each of the hypotheses. Finally, Section 8.10 summarizes the findings in
regards to the hypotheses and takes a broader view on the results presented in this computa-
tional study.

The code for this thesis is written in Python because of its popularity, accessibility and our
prior experience with the programming language. All the test instances are run on Lenovo M5
servers with two 3.4 GHz Intel E5-2643v3 processors, 512 GB RAM, 12 cores and 12 threads.

67
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8.1 Input

This computational study makes use of several parameters regarding the urban environment,
the UAVs, the objective models and the solution method. The values for these parameters are
presented and explained in Appendix D. The computational study uses the Norwegian city of
Stavanger as a case study. The area used is shown in Figure 8.1, and spans an area of 4.97 km
west-east, referred to as the x-direction in this thesis, and 2.60 km south-north, referred to as
the y-direction. Subsection 8.1.1 presents a subset of the input parameters that are tested with
various values in this computational study.

Figure 8.1: The urban environment used in the computational study (GoogleMaps, 2023).

8.1.1 Modified Parameters
Table 8.1 gives an overview of the parameters that are tested with various values in the compu-
tational study, which we refer to as modified parameters. The parameters above the horizontal
line belong to the world and objective models, while those below the line are solution method
parameters. Each parameter is given a base value, as well as a reduced and an increased value.
In the following sections, the parameters take their base values unless it is stated otherwise.
The term base case is used to denote the case where all parameters take their base values.

Modified World and Objective Model Parameters
Seven world and objective model parameters are tested with different values in the compu-
tational study. What values these parameters will get in a future with widespread UAV usage
is to a large extent a political question, and thus up to policy makers. We therefore want to
test different values, to investigate which parameters the system flight plans returned from the
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Table 8.1: Overview of the values of the modified parameters. Each modified parameter is
given a base value, a reduced value and an increased value.

Parameter [unit] Description Base Reduced Increased

↵

Factor for maximum reduction in mean
time between falldowns due to the
possibility of collisions

0.5 0.3 0.7

�
Discount factor for the system
perspective visual pollution model

0.7 0.6 0.9

� [s]
Length of time interval regarded as
simultaneous UAV impact

5 3 7

� Ground square side length multiple of L 10 6 12

DMax [s] Collision risk threshold 45 30 60

RN [dB] Threshold for noise pollution 55 52 58

RV [m] Threshold for visual pollution 0.005 0.0025 0.0075

N Population size for HEAT 30 20 50

pMut Threshold for performing a mutating
crossover for HEAC 0.8 0.5 0.9

HEAC are sensitive to and thus must be carefully assessed by policy makers. For more details
regarding each of the parameters, refer to Chapter 6.

The first parameter is ↵, for which we set the base value to 0.5. Thus, the mean time between
falldowns can at most be halved compared to when no other UAVs are flying close by. The
second parameter is � , which is given a base value of 0.7. This implies a significant increase
in the visual pollution value from each additional UAV when the total number of UAVs is low,
while simultaneously implying a clear diminishing effect as the number of UAVs increases.
Third, we adjust �, which both decides what is considered simultaneous impact for the visual
and noise pollution models, and how often relative positions between UAVs are checked in
the risk model. Based on our judgment, a base value for � of 5 seconds is deemed reason-
able. Fourth, the ground square multiple � is adjusted. The base value is set to 10, making
the side length of a ground square � · L = 10 · 10 meters = 100 meters. The reduction and
increase in � correspond to a change in the number of � = 1 ground square equivalents of
64 and 44, respectively, which we consider a reasonable range. Fifth, we adjust the collision
risk threshold parameter DMax , which decides the maximum distance between two UAVs that
results in increased risk. We set the base value to be three times the value of DMin, which is the
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minimum distance between two UAVs to avoid collision. DMin is set to 15 meters because this
ensures that two UAVs are at least an edge away from each other, as the length of a diagonal
edge is

p
102 + 102 = 14.14 meters. Hence, the base value for DMax is 45 meters, and the

collision risk is increased if UAVs are located within the area 30 meters outside the collision
area. The sixth parameter is the threshold for noise pollution, RN , which determines which
ground squares that are affected by noise pollution. There exists various recommendations
regarding noise pollution thresholds. We set the base value to 55 dB, which seems reasonable
when looking at WHO recommendations for community noise exposure and guidelines from
the Norwegian Government regarding outdoor noise (Aviation Environment Federation, n.d.;
Klima- og miljødepartementet, 2021). Using the formulas in Section 6.5, we see that a 3 dB
increase from the base value approximately corresponds to a 25% higher noise pollution value,
which we think is a fair deviation when testing this parameter. Finally, we also test different
values for the visual pollution threshold, RV , which determines the ground squares affected
by visual pollution. Current regulations have not set a threshold for visual pollution, and we
thus set 0.005 meters as the base value based on our own judgment.

Modified Hybrid Evolutionary Algorithm Parameters
There are numerous possible combinations of parameter values that can be tested for the
solution method. Due to time constraints, we have limited the adjustments to the parameters
we believe are most relevant. The parameters we adjust concern the NSGA-III, and not the
ACO. The reason for this is two-fold; NSGA-III is our main algorithm, and the parameters in
NSGA-III are more independent of each other, which is explained in Appendix D, making it
more appropriate to look at the effects of changing single parameters in isolation.

The first algorithmic parameter we adjust is the population size, N , for HEAT. There are some
variations across different sources regarding what population size is appropriate. We believe
that 30 is a reasonable base value for N , for two main reasons. First, preliminary testing showed
that the HEAC has long runtimes, and that the runtime has a strong, positive correlation to
population size. Thus, a smaller population size is necessary, despite population sizes of up
to 100 individuals being common. Second, the use of HEAF within the HEAC to improve the
initial parent population allows for a more guided search for individuals, and can thus help
to make up for the smaller population. To further test whether 30 is a fair population size,
we also reduce the HEAT population down to 20 to see if an even smaller population could
produce the same results. Similarly, we test a HEAT population size of 50, to see if this leads to
large enough improvements to make up for the additional complexity. The second algorithmic
parameter is the threshold for performing a mutating crossover in both HEAF and HEAT, pMut .
We believe 0.8 is a fair base value. This implies that mutating crossover is used in the creation
of one out of every five offspring on average, i.e. new paths are introduced regularly although
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regular crossover is most prevalent. We set the increased value to 0.9, since this implies a
halving in the number of times mutating crossover occurs. For the reduced value, we test with
0.5 since this implies that both crossover operators are equally likely.

8.2 Hypotheses and Test Instances

This section explains the main areas investigated in this computational study. Subsection 8.2.1
presents our hypotheses about the system flight plans generated by the HEAC when applied
to the static MUAVPP problem. Based on the hypotheses, we have developed a set of test
instances, which are explained in Subsection 8.2.2.

8.2.1 Hypotheses
In our preparatory research project, we studied how a single UAV behaved in an urban en-
vironment. Our focus in this computational study is to investigate how the introduction of a
system of UAVs affects UAV behavior. We have developed a set of eight hypotheses to guide the
computational study, which are summarized in Table 8.2. The first four hypotheses concern the
general interaction between UAVs and the effect of the environment on system behavior. The
first hypothesis, H1, is that population density trumps sheltering factor, i.e. UAVs will not want
to fly above areas with a large population even if the sheltering factor is high. The results from
our preparatory research project indicated that this hypothesis holds in the single-UAV setting.
We therefore want to test whether it still holds for the multi-UAV setting, thus indicating that
environment characteristics affecting individual UAVs are not neglected when introducing a
system of UAVs. The second hypothesis, H2, investigates this area further by testing whether
system effects might be considered more important than environment characteristics, given
that the characteristics are not neglected. More precisely, H2 states that a UAV flying far away
from other UAVs in a system behaves differently when another UAV is introduced in its vi-
cinity. Such an introduction can directly influence the behavior of the previously lonely UAV
through the need to consider collision avoidance, the other UAV’s collision risk area and the
possibility to affect the same ground squares in regards to visual and noise pollution. The third
hypothesis, H3, is that UAVs with a lower importance of efficiency are the ones responsible for
collision avoidance when encountering UAVs with higher importance of efficiency. By respons-
ible for collision avoidance, we refer to a UAV making a deviation from its path to fly either
above, below or around the path taken by another UAV to avoid a collision. As explained in
Section 7.1, only one UAV changes its path when two UAVs are on collision course. The fourth
hypothesis, H4, builds on H3 and states that given equal importance of efficiency values, UAV
characteristics determine which UAV is responsible for collision avoidance when two UAVs
meet. Given the system perspective objective models, a UAV with a higher weight results in
a higher risk value, a UAV with a larger size results in a higher visual pollution value, and a
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UAV producing more noise results in increased noise pollution. It thus seems reasonable to
assume that UAVs with lower values for such UAV characteristics are responsible for collision
avoidance, since their overall impact on the system perspective objectives are smaller than the
impact of a UAV with higher values for the UAV characteristics. Since only two UAV types are
used in this thesis, H4 is equivalent to delivery UAVs being responsible for collision avoidance
when encountering passenger UAVs.

The last four hypotheses concern modified parameters described in detail in Subsection 8.1.1,
and focus on flight proximity between UAVs, i.e. the degree to which UAVs fly close over a
period of time. Hypotheses H5-H7, state that ↵, � and �, respectively, affect the proximity
of UAVs. Similarly, the last hypothesis, H8, is that the thresholds DMax , RV and RN affect the
proximity of UAVs.

Table 8.2: Overview of hypotheses.

Hypothesis Description

H1
Population density trumps the sheltering factor, i.e. UAVs will not want to
fly above areas with a large population even if the sheltering factor is high

H2
A UAV flying far away from other UAVs in a system behaves differently
when another UAV is introduced in its vicinity

H3
UAVs with a lower importance of efficiency are responsible for collision
avoidance when encountering UAVs with higher importance of efficiency

H4
Given equal importance of efficiency values, UAV characteristics determine
which UAV is responsible for collision avoidance when two UAVs meet

H5
The maximum reduction in mean time between falldowns due to the
possibility of collisions, ↵, affects the proximity of UAVs

H6 The visual pollution discount factor, � , affects the proximity of UAVs

H7 The length of a time interval, �, affects the proximity of UAVs

H8
The thresholds for risk, visual pollution and noise pollution, i.e. DMax , RV

and RN , affect the proximity of UAVs

8.2.2 Test Instances
We have developed a set of three test instances to evaluate the eight hypotheses; TI1, TI2 and
TI3. All UAVs are one of two types, either a passenger UAV based on the EHang 216 Autonom-
ous Aerial Vehicle or a delivery UAV based on the Amazon Prime Air UAV. Refer to Appendix
D for further details regarding the two UAV types. The distances between the locations for
each UAV in the three test instances have been kept rather short, due to the computational
complexity of the system perspective objective models. Since there are many UAVs in each
test instance, we have chosen not to assign a specific story to the voyage taken by each UAV.
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Instead, we have assigned varying payloads, locations and importance of efficiency values so
that the UAVs cover a wide variety of use cases. Typical non-urgent commercial use cases can
be the delivery of clothes or leisure articles bought online. More urgent commercial use cases
include the delivery of warm takeout food or UAV taxi services for passengers in a hurry. Med-
ical use cases can also be more or less urgent. Prominent urgent medical use cases include
transport of healthcare personnel or medical supplies in case of emergency. Examples of non-
urgent medical use cases can be routine deliveries of supplies to hospitals, or transport of
medical personnel to and from planned home visits. The voyage of a UAV will often have vary-
ing importance of efficiency values for the different segments. Despite a delivery or passenger
transport being urgent, the return trip will often not be, thus resulting in a low importance
of efficiency on the return segment. Another example where the importance of efficiency can
vary between segments is for vaccine delivery. Consider a vaccine that deteriorates if kept out
of the fridge for too long. A UAV that first flies to a hospital to pick up these vaccines and then
transports the vaccines to a local doctor’s office, can have low importance of efficiency on the
first segment and a high importance of efficiency on the second segment.

Each of the thee test instances are explained below. For all the test instances, the payload
weights for the passenger UAVs are based on the average weight of Norwegian males at 86.6
kg (FHI, 2021). Furthermore, we have chosen to let the importance of efficiency parameter,
Jus, take the values 1, 2 or 5. These values were chosen to ensure a notable difference in
the importance of efficiency between a non-urgent, a somewhat urgent and an emergency
segment of a UAV’s voyage. The start times, TS

u , for each UAV is set with the intent of creating
possibilities for the UAVs to fly in close proximity and perform collision avoidance, to lay a
good foundation for evaluating the hypotheses. Note that since hypotheses H5-H8 consider a
UAV system as a whole, the testing of these hypotheses are not directly linked to certain UAVs
in the test instances.

Test Instance 1
The ten UAVs in TI1 form clusters in three different areas in the environment. Figure 8.2
displays the voyages of the UAVs, with a straight line drawn for each segment. UAV 1.6 and
1.9 have locations on each side of the border between areas varying in terms of population and
sheltering and are thus aimed at testing H1. Furthermore, the UAVs with crossing segments in
the two clusters containing UAVs 1.1-1.5 and 1.6-1.9 are used to test H3 and H4. Moreover,
UAV 1.10 is used to test H2, together with UAVs from TI2 and TI3. Table 8.3 shows different
voyage-specific parameters for each of the UAVs in TI1.
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Figure 8.2: Illustration of the voyages for the UAVs in TI1. The “1.x” formulation of UAV names
is omitted for simplicity, and each number points at the corresponding start location for each
UAV. A straight line is drawn between the locations for each segment. Red and purple dots and
lines represent delivery UAVs, while blue and green dots and lines represent passenger UAVs.

Table 8.3: Overview of voyage-specific parameters for each UAV in the system for TI1.

Test instance 1

UAV Type
Start time,

TS
u [s]

Number of
segments, |Su|

Importance of
efficiency, Jus

Number of
passengers, Kus

Payload weight,
WP

us [kg]
1.1 P 35 2 1, 1 0, 1 0, 86.6

1.2 P 1 2 1, 1 0, 2 0, 173.2

1.3 D 61 2 1, 1 - 1, 0

1.4 P 68 2 5, 1 1, 0 86.6, 0

1.5 D 68 2 1, 1 - 1, 2

1.6 D 2 2 1, 1 - 2, 1

1.7 D 2 3 1, 1, 1 - 2, 1, 0

1.8 P 46 2 1, 1 1, 2 86.6, 173.2

1.9 P 16 3 1, 1, 1 0, 1, 0 0, 86.6, 0

1.10 D 12 2 1, 1 - 1, 0

In the "Type" column we have P: Passenger, D: Delivery.

Test Instance 2
The ten UAVs in TI2 form clusters in four different areas in the environment. Figure 8.3 dis-
plays the voyages of the UAVs, as well as four additional fictional no-flight zones. As explained
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in Section 2.3, authorities can introduce new no-flight zones, and we consider the introduc-
tion of additional no-flight zones in urban areas plausible as the UAV service market grows.
UAVs 2.4 and 2.5 have their first segments crossing, and are designed to test hypothesis H3.
Furthermore, UAV 2.10 is equal to UAV 1.10 in TI1, but in contrast to UAV 1.10, UAV 2.10 has
another UAV, namely UAV 2.9, flying close by. These UAVs are thus aimed at testing H2, i.e.
the behavior of system flight plans when a UAV flies “by itself” in a system compared to when
another UAV is flying close by. Table 8.4 shows the different parameters for the UAVs.

Figure 8.3: Illustration of the voyages for the UAVs in TI2 and TI3. The “2.x”/"3.x" formulation
of UAV names is omitted for simplicity, and each number points at the corresponding start
location for each UAV. A straight line is drawn between the locations for each segment. Red,
orange and purple dots and lines represent delivery UAVs, while blue and green dots and lines
represent passenger UAVs. The four light gray polygons correspond to the fictional no-flight
zones in TI2.

Test Instance 3
TI3 is identical to TI2 except for the absence of the fictional no-flight zones and changed
importance of efficiency values for UAVs 3.4 and 3.5 compared to UAVs 2.4 and 2.5. By testing
both with and without the fictional no-flight zones, we will see the effect of such obstruction
more clearly. The changed importance of efficiency values for UAVs 3.4 and 3.5 are meant to
explore H3 in conjunction with UAVs 2.4 and 2.5 in TI2. Furthermore, UAV 3.9 and 3.10 are
used to test H2. Table 8.5 shows the parameter values that are changed for TI3 compared to
TI2.
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Table 8.4: Overview of voyage-specific parameters for each UAV in the system for TI2.

Test instance 2

UAV Type
Start time,

TS
u [s]

Number of
segments, |Su|

Importance of
efficiency, Jus

Number of
passengers, Kus

Payload weight,
WP

us [kg]
2.1 P 5 2 1, 1 1, 0 86.6, 0

2.2 P 5 2 2, 1 2, 0 173.2, 0

2.3 D 3 2 2, 1 - 1, 0

2.4 P 5 2 5, 1 1, 0 86.6, 0

2.5 D 4 2 1, 1 - 2, 0

2.6 D 11 2 2, 1 - 1, 0

2.7 D 10 2 1, 1 - 1, 0

2.8 D 11 3 1, 1, 1 - 2, 1, 0

2.9 D 11 2 1, 1 - 1, 0

2.10 D 12 2 1, 1 - 1, 0

In the "Type" column we have P: Passenger, D: Delivery.

Table 8.5: Overview of voyage-specific parameter changes for TI3 compared to TI2.

Test instance 3

UAV Importance of efficiency, Jus

3.4 1, 1

3.5 5, 1

8.3 Exact Method Comparison

This section compares the HEA to the exact MDA method. As explained in Section 7.2, the
MDA solves the single-UAV path planning problem instead of the more complex multi-UAV
path planning problem. Hence, HEAF, which also finds paths for a single UAV, is used for
the comparison instead of HEAC. The suitability of a solution method is a balance between
runtime and solution quality, and we therefore look into both of these aspects. An important
thing to note about both this and remaining sections of the computational study, is that the
short distances between UAV locations in the test instances only make our findings indicative,
and should thus be considered as a sign that further research should be conducted.

Table 8.6 presents the results from running HEAF and MDA on TI1-TI3 with base values for the
modified parameters. The solution methods are run for each UAV in parallel, and thus the num-
bers shown in the table reflect the longest runtime among the UAVs. It is clear from the table
that the HEAF has much shorter runtimes than the MDA. Whereas the HEAF values range from
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Table 8.6: Runtimes of HEAF and MDA for each test instance. The solution methods have been
run in parallel for each UAV, and the runtimes correspond to the longest runtime among the
UAVs in the system.

Runtime [hrs]

Solution method TI1 TI2 TI3

HEAF 18.1 11.5 9.1

MDA 302.6 207.0 185.9

9.1-18.1 hours, the MDA runtime stretches over 185.9-302.6 hours. We also see that for both
solution methods, TI3 has the shortest runtime and TI1 has the longest runtime. TI1 is more
complex than TI2 and TI3 since it contains more passenger UAVs, leading to more affected
ground squares to calculate objective values for and thus increased runtime. The increased
runtime of TI1 compared to TI2 and TI3 is discussed in depth in Section 8.5. The considerably
longer runtime for the MDA for TI1 compared to TI2 and TI3, thus indicates that the runtime
weakness of the MDA will only become more prominent as test instances increase in complex-
ity. It should be noted that HEAF is subject to randomness, and runtimes may hence vary when
performing multiple runs. Running HEAF ten times for TI1 resulted in runtime deviations of
up to 15% of the average runtime value. The HEAF runtimes are thus still considerably shorter
than the MDA runtimes when accounting for the runtime variations. Efficient computations are
important in UAV path planning, and the heuristic HEA hence seems like a more appropriate
solution method than the exact MDA from a runtime perspective.

To gain insight into the solution quality of HEAF, we compare the paths and corresponding
objective fronts returned from the two methods. Due to the large number of UAVs in the test
instances, we show the results for a representative set of UAVs when comparing the HEAF to
the MDA. Overall, the comparison gives three main insights, and we thus use a set of three
UAVs to exemplify each of the conclusions.

Figure 8.4 shows three dimensional plots of the paths found by the HEAF and the MDA for
UAVs 1.6, 2.8 and 3.3. The figure shows that the HEAF paths tend to be positioned within the
large set of optimal MDA paths. Extreme changes of the environment characteristics between
ground squares close to each other are rare, making it unlikely that HEAF paths close to MDA
paths at the same altitude will have very large differences in objective values. The results hence
indicate that the HEAF finds paths that are close to or at optimality. While the HEAF in parts a)
and b) in Figure 8.4 finds a set of paths that appear to include various path variations found
by the MDA, the HEAF paths found in Figure 8.4 c) only seem to include paths close to the
MDA paths at low altitudes.
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Figure 8.4: Illustration of three dimensional path plots for HEAF and MDA. Part a) shows UAV
1.6, part b) shows UAV 2.8 and part c) shows UAV 3.3. The MDA paths are shown in blue,
and the HEAF paths are shown in red. Note that each part of the figure is angled differently
to give the most representative view of the paths shown. Also note that the ground in each
part displays a more detailed version of the ground than the ground squares used for objective
calculations. The color of the ground within each part of the figure ranges from dark blue to
yellow, with a lighter color corresponding to a higher altitude above sea level.

It is not sufficient to only compare the paths found by the two methods to assess whether
the HEAF finds optimal or close-to-optimal paths. Figure 8.5 shows three dimensional front
plots for different combinations of the four objectives for the same three UAVs displayed in
Figure 8.4. It should be noted that since the objective function vector is four dimensional,
these three dimensional plots are only approximations and not exact fronts. Furthermore,
there is no limit on the variation of the non-plotted objective. This is due to the number of
single-UAV paths returned from HEAF being small, and the probability of having the exact
same or very close values for the non-plotted objective is thus miniscule. Figure 8.5 shows that
HEAF does not find the MDA paths with the more extreme trade-offs between the objectives.
In general, it is important to return diverse paths so that a decision maker has a real choice
regarding what social impact a system flight plan should have. Yet, it is unlikely that a decision
maker prefers paths with very extreme trade-offs, since all four objectives are important in UAV
path planning. Thus, the paths returned from HEAF can still constitute a satisfactory degree
of diversity. Figure 8.5 also shows that the HEAF fronts generally seem to be positioned quite
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Figure 8.5: Illustration of three dimensional fronts for different objective combinations for
HEAF and MDA. Parts a) and b) belong to UAV 1.6, part c) and d) to UAV 2.8 and part e) and f)
to UAV 3.3. The gray points belong to the MDA, and the red points belong to HEAF. Note that
each part is angled differently to give the most representative view of the fronts. Also note that
the illustration does not show true fronts since the problem is four dimensional, and the fronts
in the illustration are three dimensional. The objectives displayed in the different plots are
shown on the associated axis and stated above each plot, with “FT”, “R”, “VP” and “NP” being
short for flight time, risk, visual pollution and noise pollution, respectively. The flight time unit
is seconds, the risk unit is expected fatalities and the units for visual and noise pollution have
no straight-forward interpretation. Note that the numeric values for risk are inflated due to the
conservative estimation method and thus overestimates the actual number of fatalities.

close to the MDA fronts, with the HEAF fronts in parts c) and d) appearing to be on the MDA
fronts. This hence appears to be in line with the insights from the path plots in Figure 8.4 and
further strengthens the case for HEAF. Bringing the focus to UAV 3.3 again, parts e) and f)
in Figure 8.5 show that the MDA finds paths with lower values for visual and noise pollution
compared to HEAF. This coincides well with HEAF not finding paths that are similar to the
higher-altitude MDA paths in Figure 8.4 c), since the single-UAV perspective objective models
in Chapter 6 are based on higher altitude paths resulting in lower visual and noise pollution
values. Parts e) and f) in Figure 8.5 could thus indicate that the HEAF has a preference for
shorter paths with a lower flight time objective value.

To summarize, the MDA has much longer runtimes than HEAF. As shown in Chapter 6, the sys-
tem perspective objective models require substantially more complex objective computations
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than the single-UAV perspective models. Thus, the use of a heuristic solution method seems
to be the natural choice for the MUAVPP problem. Furthermore, HEAF seems to find quite
good paths, despite being a heuristic solution method. More specifically, there are three main
insights from the comparison. First, the HEAF finds paths that appear to be close to optimal,
as illustrated by UAV 1.6. Second, HEAF appears to find some optimal paths, as illustrated by
the fronts for UAV 2.8, where parts of the HEAF fronts are on the MDA fronts. Third, HEAF

can be inclined towards finding shorter paths with low values for the flight time objective, as
opposed to longer paths that can reduce noise and visual pollution, as illustrated by UAV 3.3.

We take the results from the HEAF comparison as a positive sign for HEAC. With single-UAV
perspective equations, the HEA seems to successfully maneuver around in the solution space
and return paths with adequate diversity. Although HEAC also incorporates collision avoidance
and uses system perspective objective equations, the main workings of the algorithm in itself
stays the same. Hence, we assume the good qualities of HEAF to also be applicable for HEAC.
The differences between the paths returned from HEAF and HEAC are explored in Section 8.4.

8.4 Implications of Perspective: Single versus System

With the previous section motivating the choice of a heuristic solution method, this section
looks at how the choice of perspective affects the resulting UAV paths. By comparing the single-
UAV perspective and the system perspective, we can take a stance regarding whether it is worth
using the more computationally intensive system perspective.

Figure 8.6 shows HEAC and HEAF paths for a selection of UAVs that exemplifies important
findings in the comparison of the two perspectives. Part a) of the figure shows that the two
perspectives result in very similar paths for UAV 1.1. In contrast, there are big differences
between the paths from the two perspectives for UAV 2.3, shown in part b) of the figure. HEAF

returns paths on both sides of the fictional no-flight zone, while HEAC only uses paths on one
side. Part c) of the figure shows the HEAC paths for UAV 1.6. In the first segment, which is
shown rightmost in the plot, the HEAC paths are spread out, but they coincide on the second
segment. In contrast, the HEAF paths are very spread out on the second segment. Furthermore,
UAV 1.10 has locations far away from other UAVs, and is hence not at collision risk. Still, part
d) of Figure 8.6 shows that the paths returned from HEAF and HEAC differ. The reason for this
is that the system perspective objectives are calculated for the system as a whole and that UAV
1.10 can still affect the same ground squares as other UAVs in other parts of the graph. Figure
8.6 hence shows that the paths from HEAF and HEAC do not always coincide.

The comparison of HEAF and HEAC indicates that the choice of perspective influences the
paths taken by the UAVs. The use of system perspective models for the objectives thus seems
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Figure 8.6: Illustration of three dimensional path plots for HEAC and HEAF. The different parts
show UAVs as follows: a) 1.1, b) 2.3, c) 1.6 and d) 1.10. The HEAF paths are shown in gray,
and all other colors represent HEAC paths. In cases where paths coincide, only one is displayed.
If HEAF and HEAC paths coincide, a HEAC path is displayed. Note that each part of the figure is
angled differently to give the most representative view of the paths shown. Also note that the
ground in each part displays a more detailed version of the ground than the ground squares
used for objective calculations. The color of the ground within each part of the figure ranges
from dark blue to yellow, with a lighter color corresponding to a higher altitude above sea level.
The area framed in red on the ground in part b) corresponds to a no-flight zone.

to be valuable for finding good system flight plans. To further test this indication, we study
the system perspective objective values of the initial population of HEAC, i.e. system flight
plans consisting of combinations of UAV paths from HEAF, compared to the system perspective
objective values of the final population in HEAC. More precisely, we select five system flight
plans from the initial population the same way that the five system flight plans returned from
HEAC are selected.

Figure 8.7 shows that the objective values of the five system flight plans from the initial and
final populations of HEAC are similar for the flight time objective, while all other objectives
are considerably lower for the final population system flight plans. For risk, visual pollution
and noise pollution, the maximum objective values of the five system flight plans from the
final population are lower than the minimum values of the five system flight plans for the
initial population. The even flight time values intuitively makes sense, since this objective is
not directly affected by the system perspective. The objective models for risk, visual pollution
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Figure 8.7: Illustration of the objective values of the five system flight plans selected from the
initial and final population of HEAC. The objective values of TI1, TI2 and TI3 are shown in
the blue, red and green plots, respectively. The “1e6” in the corner of the noise pollution plots
denotes that the values are in millions. The flight time unit is seconds, the risk unit is expected
fatalities and the units for visual and noise pollution have no straight-forward interpretation.
Note that the numeric values for risk are inflated due to the conservative estimation method
and thus overestimates the actual number of fatalities.

and noise pollution are affected by the system perspective however, and the advantage of using
the system perspective in the HEAT part of HEAC is thus further strengthened by the lower
values for these objectives in the final system flight plans. We hence consider it worth taking
the more computationally intensive system perspective when solving path planning problems
regarding a system of UAVs.
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8.5 Runtime Results

This section presents the runtime results for the modified parameter versions of HEAC. To make
the HEAC versions as comparable as possible, every random occurrence in the code is seeded.
This ensures that the same stream of random numbers is used for all versions of the HEAC. The
only exception is for a set of additional TI1 base case runs used in Section 8.6 to discuss the
stability of the HEAC. Tables 8.7 and 8.8 show the total runtimes for each test instance when
modifying world and objective model parameters and algorithmic parameters, respectively.

Table 8.7: Runtimes of HEAC for each test instance when modifying world and objective model
parameters. Parameters with a “+” correspond to increased values compared to the base case
(BC), while parameters with a “-” correspond to reduced values compared to the base case. The
runtimes in each row below the "BC" row are given as multiples of the base case.

Runtime

Version TI1 TI2 TI3

BC 185.8 hrs 132.3 hrs 113.4 hrs

↵+ 0.972x 0.961x 0.966x
↵� 0.969x 0.960x 0.965x

�+ 0.968x 0.964x 0.967x
�� 0.969x 0.963x 0.973x

�+ 1.010x 0.973x 0.991x
�� 1.001x 0.975x 0.997x

�+ 0.642x 0.577x 0.541x
�� 2.093x 2.041x 1.990x

DMax+ 0.978x 0.990x 0.992x
DMax� 0.947x 0.955x 0.941x

RN+ 0.738x 0.718x 0.701x
RN� 1.308x 1.319x 1.336x

RV+ 0.825x 0.804x 0.793x
RV� 1.505x 1.524x 1.557x

Overall, Tables 8.7 and 8.8 show that the HEAC has long runtimes. Preliminary profiling of the
algorithm indicated that most aspects of HEAC are in fact quite fast. However, the calculations
of the system perspective objective values to generate fitness vectors in HEAT are very time
consuming. This is mostly due to the system perspective models for visual and noise pollution,
which calculate the amount of pollution generated in each ground square in each time interval,
based on which UAVs that affect the ground square in a time interval. This is clearly a big task
when there are many UAVs affecting ground squares in various parts of the environment.
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Table 8.8: Runtimes of HEAC for each test instance when modifying HEA parameters. Paramet-
ers with a “+” correspond to increased values compared to the base case (BC), while parameters
with a “-” correspond to reduced values compared to the base case. The runtimes in each row
below the "BC" row are given as multiples of the base case.

Runtime

Version TI1 TI2 TI3

BC 185.8 hrs 132.3 hrs 113.4 hrs

N+ 1.518x 1.534x 1.551x
N� 0.717x 0.695x 0.674x

pMut+ 0.998x 0.970x 0.988x
pMut� 1.027x 1.015x 1.021x

No HEAF 0.992x 0.982x 0.997x

Only mutating crossover 1.052x 1.036x 1.030x

Only regular crossover 0.983x 0.897x 0.967x

The apparent positive correlation between runtime and the number of affected ground squares
is strengthened by the results in Tables 8.7 and 8.8. The most clear sign of this positive correl-
ation, is the fact that changes in the ground square multiple � results in the largest runtime
effects in Table 8.7. Furthermore, Table 8.7 shows a clear tendency of longer runtimes when
the visual and noise pollution thresholds decrease, i.e. RV� and RN�, and shorter runtimes
when the thresholds increase. Decreases in the threshold values result in more ground squares
being affected, while threshold increases result in less ground squares being affected. In con-
trast, the modified world and objective model parameters that do not influence the number
of ground squares affected by the UAVs, i.e. ↵, � , � and DMax , have much smaller effects on
the runtime. This is also the case for several of the modified algorithmic parameters, which
runtimes are discussed in more detail in Section 8.6. The tables also show that the runtimes
for TI2 are somewhat longer than those for TI3, despite the two test instances having many
similarities. A natural reason for this is that since TI2 includes fictional no-flight zones, some
of the UAVs in the system have to take longer paths, which thus results in more ground squares
being affected and longer runtimes. Furthermore, we see that the runtimes for TI1 are longer
than those for TI2 and TI3. This runtime difference is most likely due to the system of UAVs
in TI1 having two additional passenger UAVs compared to TI2 and TI3, since passenger UAVs
affect more ground squares than delivery UAVs. As described in Chapter 6, the number of
ground squares affected by visual and noise pollution increases with the length and SPL of a
UAV, respectively, and the passenger UAV type used in this thesis has greater length and SPL
values than the delivery UAV type.
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8.6 Importance of Components, Operators and Parameters of the
Hybrid Evolutionary Algorithm

This section dives deeper into the inner workings of the HEA by investigating three aspects
of the solution method. One aspect is how the inclusion of HEAF runs in HEAC affects the
resulting system flight plans. As explained in Section 7.1, HEAC calls HEAF for each UAV in
the system to generate an initial population. The HEAF runs also need initial populations, and
HEAF uses ACO for the initial population generation. We have thus tested using the results
from ACO to create the initial population for HEAC directly. Another aspect investigated in this
section is the effect of the chosen offspring generation operators, namely regular crossover
and mutating crossover. As described in Section 7.1, regular crossover works by randomly
combining segment paths for one UAV from the two selected parent individuals to create an
offspring. Mutating crossover works by selecting a segment of one UAV’s voyage and using
ACO to alter the path taken on the segment, while all preceding segments use the segment
paths from one parent individual and all succeeding segments use the segment paths from
the other parent individual. To better understand the effects of the two crossover operators,
HEAC has been run using only one of the two operators for both the HEAF and HEAT parts
of the algorithm. The last aspect investigated in this section is the effect of the modified HEA
parameters, i.e. the population size of the HEAT part and the mutation threshold for both the
HEAF and HEAT parts.

Table 8.8 in Section 8.5 shows that modifying the population size parameter, N , of the HEAT

part of HEAC appears to have a significant impact on runtime, while none of the other aspects
considered in this section have a similarly sized effect. The table indicates a strong positive
correlation between population size and runtime. Reducing the population size by a third also
reduced the runtime by about a third, with multiples of 0.674-0.717 of the base cases. Similarly,
increasing the population size by two thirds increased the runtime of the test instances by more
than half, with runtime multiples of 1.518-1.551. These results are thus in line with the fitness
computation being the most time consuming part of HEAT, since each additional individual in
the population results in an additional fitness computation.

For the crossover operators, Table 8.8 shows that using only regular crossover results in re-
duced runtimes for all test instances, with multiples of 0.897-0.983 of the base cases. Con-
versely, Table 8.8 shows that using only mutating crossover resulted in increased runtimes for
all test instances, with multiples of 1.030-1.052 of the base cases. These runtime effects intuit-
ively make sense, since using ACO to create a new path is more time consuming than combining
existing segment paths. The runtime differences would most likely have been more significant
if the UAVs had flown longer paths, as that would lead to ACO creating longer paths in each
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mutating crossover, which takes more time. The effect of modifying the mutation threshold
pMut , i.e. how often mutating crossover is used, naturally has a similar, but weaker, runtime
effect than only using one of the two crossover operators. Table 8.8 shows that reducing the
mutation threshold, i.e. increasing the probability of creating offspring using mutating cros-
sover, from the base value of 0.8 down to 0.5, increases the runtime with multiples between
1.015-1.027 of the base cases. Conversely, increasing the mutation threshold from 0.8 to 0.9
reduces the runtime with multiples between 0.970-0.998 of the base cases.

In regards to the effect of including the HEAF component, Table 8.8 in Section 8.5 shows that
the runtime reduction achieved by skipping HEAF is minimal for all three test instances, with
runtime multiples between 0.982-0.997 of the base cases. A likely reason for the small runtime
effects is that computational results are stored during the runs of the HEAF, including during
the initial population generation by the ACO. Preliminary testing showed that, similar as for
HEAC, the objective computations constitute the most time-consuming part of the HEAF runs.
By storing the calculated values, the energy consumption and single-UAV perspective objective
values associated with each vertex and edge in the graph are only calculated once for each type
of UAV. Since the ACO runs are the first step in HEAF, the remaining parts of HEAF can just
look up the values that have already been calculated by the ACO run. This in turn makes the
following steps of HEAF fast. Since the system perspective calculations depend on where each
of the UAVs in the system is located at each point in time, which differs between system flight
plan individuals in the population, the same type of intermediate value storage and lookup
is not possible for the HEAT part of the HEAC. The system perspective fitness vector of each
individual is stored in the HEAT part however, and does hence not need to be recalculated if
an individual stays in the population for multiple iterations.

While only the population size parameter seems to have a significant runtime effect, several of
the aspects impact the solution quality. Figure 8.8 shows the objective values for the five system
flight plans returned from HEAC for the various versions of the test instances. Most notably,
the runs using only mutation crossover appear to perform best overall, in terms of finding
the lowest minimum values for the various objectives. It is even more important than the
population size, which has a relatively small impact. The runs using only mutating crossover
are best for all objectives for TI1 and TI2, and best for the risk and noise pollution objectives
for TI3, with the reduced mutation threshold runs performing best on the other two objectives
for TI3. Thus, it appears that finding the optimal ratio between regular and mutating crossover
is the most important algorithmic choice. This result makes sense, since mutating crossover
includes randomness in the ACO generated paths, thus introducing new paths which can help
to avoid local optima. Conversely, Figure 8.8 shows that the runs using only regular crossover
generally perform rather poorly, which makes sense since it only switches around existing
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Figure 8.8: Illustration of the objective values of each of the five system flight plans returned
from the HEAC for the base case (BC) and various HEAC versions with differing algorithmic
parameter values. The objective values of TI1, TI2 and TI3 are shown in the blue, red and
green plots, respectively. Parameters with a “+” correspond to increased values compared to
the base case, while parameters with a “-” correspond to reduced values. Note that pMut has
been shortened to pM in the figure. Furthermore, we have NF: no HEAF, MC: only mutating
crossover and RC: only regular crossover. The “1e6” in the corner of the noise pollution plots
denotes that the values are in millions. The flight time unit is seconds, the risk unit is expected
fatalities and the units for visual and noise pollution have no straight-forward interpretation.
Note that the numeric values for risk are inflated due to the conservative estimation method
and thus overestimates the actual number of fatalities.

segment paths, which increases the chance of getting stuck in local optima. The results further-
more seem to indicate that the optimal ratio between the two crossover types is more inclined
towards mutating crossover than the equal split tested by the reduced mutation threshold runs,
i.e. it might be beneficial to set the mutation threshold lower than the 0.5 value tested as the
reduced mutation threshold value in this thesis. Overall, the results hence indicate that it is
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possible to keep the population size, and thus the runtime, down while keeping the solution
quality high by using mutating crossover often enough in the HEAC.

It might not be beneficial to lower the mutation threshold down to 0 however, as indicated by
the reduced threshold run having lower minimum values than the only mutating crossover run
for flight time and visual pollution objectives for TI3. As previously mentioned, the runtime
increase from using the mutating crossover operator more often will likely be more significant
as the path lengths for the UAVs increase. Furthermore, since the mutating crossover operator
only updates one randomly selected segment of one randomly selected UAV’s voyage when
generating a new offspring and there is randomness involved in the path generation by ACO,
the propagation of improved segments for a given UAV throughout various system flight plans
can be slow. To see this, assume the use of the mutating crossover operator leads to significant
improvement in the path on segment s for UAV u for a new offspring individual p. It will take
many offspring generations to significantly improve the population of system flight plans, since
the good segment update on s must be recreated by the ACO for all system flight plans that
do not have the individual p as a parent. It is furthermore not guaranteed that the mutating
crossover operator will create such an improving path for a segment of a UAV’s voyage for each
offspring generation. Both the increased runtime and the potentially slow propagation of good
paths may be mitigated by also using regular crossover. While the mutating crossover operator
can ensure that local optima are avoided by introducing new segment paths for UAVs, the
regular crossover can spread such new segment paths more quickly throughout the population
and thus keep the runtime more manageable. Hence, the use of a combination of the two
operators in the HEA might still be the preferred choice.

In regards to the effect of including HEAF in HEAC, Figure 8.8 indicates that the base case runs
find lower minimum values for the risk and flight time objectives. The results are less clear
for visual and noise pollution, however. TI2 has worse base case values for noise pollution
compared to the no-HEAF values, and both TI2 and TI3 have worse base case values for visual
pollution. Thus, whether to include the HEAF runs seems to result in a trade-off between the
objectives. This trade-off can potentially be avoided by combining the results from running
only ACO and running HEAF when creating the initial population for HEAC. This combination
could consist of creating some initial individuals using only the ACO results and some using
only the HEAF results, or by combining paths from both ACO and HEAF in the same individual.
Such a combination of results from ACO and HEAF in the initial population generation could
thus potentially allow for the exploitation of the good qualities of both. Since TI1 has better
values for the base case for all objectives in Figure 8.8, the inconsistencies in visual and noise
pollution objectives for TI2 and TI3 could also be related to the solutions found by the HEAC

not being entirely stable. This possibility is discussed further in Section 8.7.
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8.7 Stability of the Hybrid Evolutionary Algorithm

The randomness included in the HEA makes it important to assess the stability of the algorithm.
To explore the stability of the HEA, we ran HEAC ten times for the base case for TI1, without the
seeding of random numbers described in Section 8.5. We first look at the runtime differences
between the runs, and then the variation in objective values.

The runtimes of the HEAC runs are displayed in Table 8.9. The maximum runtime variation is
approximately 9% from the average runtime, thus indicating noticeable variations. A possible
explanation for the variations is that some of the runs have found longer paths for the UAVs,
resulting in more affected ground squares to calculate system perspective objective values for.

Table 8.9: Runtimes of HEAC for different TI1 base case runs. TI11 (BC) is the run used as the
base case in the other sections of the computational study.

Run Runtime [hrs] Runtime multiple

TI11 (BC) 185.8 1.000x

TI12 190.9 1.028x

TI13 183.1 0.985x

TI14 186.6 1.004x

TI15 165.3 0.890x

TI16 162.7 0.875x

TI17 166.1 0.894x

TI18 181.8 0.978x

TI19 169.1 0.910x

TI110 162.9 0.877x

Average [-/+ dev] 175.4 [12.8/15.5] 0.944 [0.069/0.083]

Figure 8.9 shows the objective values for each objective for the five system flight plans returned
from each TI1 run. Similar as for the runtime, there is also variation in solution quality. While
many of the runs have found similar minimum values for flight time, there is considerably more
variation in the other three objectives. It may thus be beneficial to run the HEAC multiple times.
The orange lines in Figure 8.9 shows the objective values resulting from selecting the final five
system flight plans from the set of all system flight plans returned from the ten TI1 runs. This
combination-based approach is clearly able to extract the good qualities of the various TI1
runs, and results in the lowest minimum values for all objectives in Figure 8.9. It hence seems
that the best performance for HEAC can be achieved by using a meta-algorithm that runs the
HEAC multiple times, combines the result and selects the final set of system flight plans using
the final selection method used by each HEAC run, described in Section 7.1.
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Figure 8.9: Illustration of the objective values for each of the five system flight plans returned
from the HEAC for ten base case runs of TI1. The “TI1x” naming has been simplified to just “x”
in the figure. "1" corresponds to the base case run used in the seeded version of the HEAC. The
orange line at the right end of each plot named "A" is the result of selecting five system flight
plans from the set of all system flight plans returned from the ten runs of TI1. The “1e6” in the
corner of the noise pollution plot denotes that the values are in millions. The flight time unit
is seconds, the risk unit is expected fatalities and the units for visual and noise pollution have
no straight-forward interpretation. Note that the numeric values for risk are inflated due to the
conservative estimation method and thus overestimates the actual number of fatalities.

8.8 The Ground Square Size Trade-off

The number of ground squares affected by a system of UAVs has a significant impact on
runtime, as explained in Section 8.5. The parameter that influences the ground squares the
most is the ground square multiple �, which decides the size of a ground square and thus also
the total number of ground squares in the environment. Table 8.7 shows that increasing � from
the base value of 10 to 12, resulted in runtime reductions with multiples between 0.541-0.642
of the base case runs, while a reduction of � down to 6 resulted in runtime increases with
multiples between 1.990-2.093. Given the extensive runtimes of the HEAC with � = 10, a re-
duction to 6 seems unreasonable given the doubling in runtime. The speed-up from increasing
� to 12 is more interesting, however. Generally, a smaller value of � results in more accurate
computations of the objective values as explained in Subsection 8.1.1. It is therefore essential
to find a good balance between runtime and computational accuracy, and an increase in �
from 10 to 12 requires further analysis to understand which value is more suitable.

We begin the analysis by studying the objective values. Since the size of a ground square dir-
ectly affects the objective values, objective values are not directly comparable across HEAC runs
with different values for �. To allow for such comparisons, the objective values for the system
flight plans returned from the HEAC runs with � = 10 and � = 12 have been recomputed
using the set of ground squares with � = 6. Figure 8.10 shows these comparable objective
values for the three test instances for � 2 {6,10, 12}. The HEAC runs with � = 6 are included
for reference. For all the plots in Figure 8.10, the minimum objective values of the base case
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runs with � = 10 are closer or equally close to the minimum objective values for the runs with
� = 6 compared to the runs with � = 12. Thus, � = 10 appears to be more suitable.

Figure 8.10: Illustration of the objective values for each of the five system flight plans returned
from the HEAC for the base case (BC), for HEAC with � reduced to 6 (��) and for HEAC with
� increased to 12 (�+). The objective values for TI1, TI2 and TI3 are shown in the blue, red
and green plots, respectively. The “1e6” in the corner of the noise pollution plots denotes that
the values are in millions. The flight time unit is seconds, the risk unit is expected fatalities
and the units for visual and noise pollution have no straight-forward interpretation. Note that
the numeric values for risk are inflated due to the conservative estimation method and thus
overestimates the actual number of fatalities.

To further investigate the differences between � = 10 and � = 12, we consider how the ground
square size affects environment characteristics, i.e. population density and sheltering factor.
Since these characteristics are associated with each ground square, increasing the size of a
ground square means more information must be aggregated or combined for each ground
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square, possibly at the expense of accuracy. Figures 8.11 and 8.12 show the population dens-
ity and sheltering factor, respectively, for � values of 1, 10 and 12. Comparing the population
densities and sheltering factors in Figures 8.11 and 8.12 for � = 1 and � = 10, the overall char-
acteristics of the environment seems to be preserved when � = 10. When further increasing �
to 12, we see many similarities with the figures for � = 10, but also some differences.

Figure 8.11: Illustration of the population density in the urban environment with � values of 1,
10 and 12. A darker color indicates a higher population density. The stars point to areas where
the parts of the figure with � = 10 and � = 12 have clearly visible differences.

In Figure 8.11, the highly populated area marked with one star is still present when � = 10, but
seems to disappear when � = 12. Similarly, the area marked with two stars is clearly visible
when � = 10, but has faded significantly more when � = 12, meaning the population has
become more evenly dispersed due to the size of the ground squares. In Figure 8.12, the area
marked with stars all indicate areas where the plot with � = 12 overestimates the sheltering
factor compared to � = 10. Overestimating the sheltering factor can be problematic, as it can
make areas of the environment seem more safe to fly in, in terms of keeping objective values
low, while in reality resulting in higher risk, visual pollution and noise pollution. This problem
is clearly visible in Figure 8.10, with � = 12 having significantly higher minimum values than
� = 10 for some of the objectives. Thus, � = 10 seems to preserve environment characteristics
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to a larger degree than � = 12. Overall, � = 10 hence appears the most suitable, as it gives a
satisfactory trade-off between runtime and accuracy.

Figure 8.12: Illustration of the sheltering factor in the urban environment with � values of 1,
10 and 12. A darker color indicates a higher sheltering factor. Given the large number of areas
with the lowest possible sheltering factor when � = 1, these areas are left without a color in
the plot to make the remaining sheltering factors more visible. The stars point to areas where
the parts of the figure with � = 10 and � = 12 have clearly visible differences.

8.9 System Behavior

The previous sections indicate that the HEA overall has the potential to be a suitable solution
method for the static, multi-UAV path planning problem. This section investigates the system
flight plans returned for the three test instances to evaluate the hypotheses stated in Section
8.2. Given the short flight distances between the locations for each UAV in the test instances,
the energy constraint is never binding and is thus not discussed further. Note that since the sys-
tem perspective objectives are calculated for a system flight plan as a whole, it can be difficult
to pinpoint why a system flight plan does well for a given objective. Some UAVs’ paths that give
low values for an objective might be offset by other UAVs’ paths giving a higher value for the
same objective. It should also be noted that some of the system flight plans contain squiggles
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that are not necessarily advantageous in terms of the objectives, but originate from the ACO
used as foundation when generating system flight plans. Furthermore, the path plots in this
section show the final paths after all UAVs have reached their final locations. The start times of
the UAVs have been set to allow simultaneous flight of UAVs in close proximity however, as ex-
plained in Section 8.2. References to figures when discussing UAV interactions hence concern
UAV movements at the same points in time, if not clearly stated otherwise. Finally, this section
only concerns HEAC, and thus uses the term HEA. The two following subsections consider the
hypotheses H1-H4 and H5-H8, respectively.

8.9.1 Interplay Between Objectives and Unmanned Aerial Vehicles
This subsection takes a closer look at the results from the base case runs of HEA to discuss
hypotheses H1-H4. First we present some overarching results, followed by investigations of
each of the four hypotheses.

Figure 8.13 shows the objective values for the five system flight plans returned for the base case
of each test instance. Overall, we see that the HEA is able to find diverse trade-offs between
the objectives, thus allowing a decision maker to decide which system flight plan best suits
their preferences. While the value ranges for some of the objectives appear small in absolute
values, we consider the ranges satisfactory given the short distances covered by the UAVs.
The flight time objective constitutes the most simple and easily interpretable example of this.
The passenger and delivery UAV types need 0.36 and 0.6 seconds to traverse a straight edge,
respectively. Thus, the smallest and largest value ranges for flight time across the three test
instances are equivalent to adding approximately 23-56 additional passenger UAV edges or 14-
33 additional delivery UAV edges. This introduces path length increases of between 230-560
meters and 140-330 meters since the length of a straight edge is 10 meters, as described in
Appendix D. These possible path length increases are considerable given the overall distances
covered, shown in Figures 8.2 and 8.3.

We draw three further insights from Figure 8.13. The first additional insight is that system
flight plans with a low risk value, often have higher values for visual and noise pollution.
Such a negative correlation is likely related to the fact that while flying in close proximity
to other UAVs can decrease both the visual and noise pollution objective values, flying closer
than DMax increases the risk objective values. Looking at the yellow points for TI2, it is also
possible to have low values for risk, visual pollution and noise pollution simultaneously. A
possible explanation for this is that the UAVs fly close enough to get significant reductions in
visual and noise pollution due to simultaneous impact, but not close enough to be within each
other’s collision risk areas. Flying in close proximity to other UAVs is not always beneficial for
the noise pollution objective however, which is related to the second additional insight from
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Figure 8.13: Illustration of the objective values for the five system flight plans for the base
case of each test instance. Objective values for TI1, TI2 and TI3 are shown in the top, middle
and bottom row, respectively. The color of a point within a row indicates the system flight plan
it belongs to. The “1e6” in the corner of the noise pollution plots denotes that the values are
in millions. The flight time unit is seconds, the risk unit is expected fatalities and the units
for visual and noise pollution have no straight-forward interpretation. Note that the numeric
values for risk are inflated due to the conservative estimation method and thus overestimates
the actual number of fatalities.

the figure, namely that the objective values for visual and noise pollution can both be positively
and negatively correlated. Since the threshold for visual pollution is considered for each UAV
in isolation, the objective value is always reduced when UAVs fly in close enough proximity to
affect the same ground squares within the same time intervals. This is not always the case for
noise pollution, however. It is possible that two UAVs individually generate noise that is below
the noise pollution threshold in a given ground square, but end up exceeding the threshold
when they fly within close enough proximity. Flying in close proximity can hence result in the



Chapter 8: Computational Study 96

UAVs generating noise pollution in more ground squares than when they are further apart.
Thus, it is only beneficial that the UAVs fly in close proximity when both UAVs already gener-
ate noise exceeding the noise pollution threshold in a given ground square. Visual and noise
pollution can hence be both positively and negatively correlated. The third additional insight
from Figure 8.13 is that the flight time objective is not clearly correlated with the other object-
ives. The figure shows that both long and short flight times can result in high and low values
for the other objectives. This seems reasonable since there exists various ways for the UAVs to
fly that result in low values for the objectives. For risk, a short flight time is beneficial if the
environment below the UAV is fairly homogeneous and there are no UAVs within the given
UAV’s collision risk area. In contrast, a longer flight time might for example be beneficial if
it makes the UAV avoid the increased risk area of other UAVs. For visual and noise pollution,
flying at high altitudes above ground, which is more time consuming, and flying closer to other
UAVs, which can be less time consuming since it can be done at low altitudes, generally result
in reduced objective values.

Figure 8.14: Illustration of a two dimensional path plot for one system flight plan returned
from the HEA for each test instance. The “1.x”/"2.x"/"3.x" formulation of UAV names has been
omitted for simplicity, and each number points at the corresponding start location for each UAV.
Red, orange and purple dots and lines represent delivery UAVs, while blue and green dots and
lines represent passenger UAVs. A lighter version of the colors correspond to the UAVs flying at
a higher altitude above ground.

Having analyzed the objective values for the system flight plans for each test instance, we now
take a closer look at the paths taken by each UAV. Figure 8.14 shows two dimensional path
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plots for one system flight plan for each test instance. We only show one system flight plan
for each test instance, due to the system flight plans generally having many similarities. The
differences between the system flight plans are discussed later. Some general insights can be
gathered from the two dimensional path plots in Figure 8.14, however. The plots for TI2 and
TI3 in the figure show that the UAVs in TI3 fly further apart when there are no fictional no-flight
zones, which is also the case for the other system flight plans for the two test instances. This
can be related to the short distances traveled by each UAV. With shorter distances, the increase
in objective values from an increase in the path length become relatively larger than if the path
was longer, thus making system flight plans with short path lengths more common. Another
possible reason for the proximity differences between TI2 and TI3 can be that there exists an
area outside two UAVs’ collision risk areas where any relative positions of the two UAVs lead to
the common affected ground squares staying the same. Since the system perspective objective
models use the Euclidean distance from a UAV to the center of a ground square, there is a
balance between being as far away from a ground square while simultaneously ensuring that
the two UAVs affect the same ground squares. Thus, the path differences between the UAVs
flying near fictional no-flight zones in TI2 compared to the same UAVs in TI3, can be related
to the size of the area where two UAVs affect the same ground squares being larger than the
distance between the pairs of fictional no-flight zones located in the same area.

To properly discuss hypotheses H1-H4, the paths taken by various UAVs must be studied in
more detail. We thus take a closer look at the various clusters. Despite it being necessary to
consider all UAVs in a system when discussing objective values, as stated in the beginning of
this section, it makes sense to zoom in to clusters when investigating how the overflown area
or the possibility of collisions affect UAV behavior.

Effect of Population Density and Sheltering Factor
To discuss hypothesis H1, i.e. that population density trumps the sheltering factor, we take
a closer look at UAVs 1.6 and 1.9 in TI1. Both UAVs start in areas with high sheltering and
population density and move to areas with lower values for both factors. Figure 8.15 shows
a close up of the different path alternatives in the cluster containing UAVs 1.6-1.9. The figure
indicates that both UAV 1.6 and 1.9 generally tries to fly out of the highly populated and
sheltered area as fast as possible, keeping a low altitude and moving in a fairly straight line
away from the area. Thus, the paths of the two UAVs in the various system flight plans indicates
that hypothesis H1 holds. This result seems reasonable, as flying above low populated areas
results in lower values for the risk, visual pollution and noise pollution objectives, while a
high sheltering factor only reduces risk and visual pollution while having no impact on noise
pollution. However, the results could also be related to the fact that the short path length
overall leads to a relatively large impact on the objective values when the path length increases.
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Figure 8.15: Illustration of two dimensional path plots for the cluster consisting of UAVs 1.6-
1.9 from TI1. The red lines and dots represent UAV 1.6, purple lines and dots represent UAV
1.7, blue lines and dots represent UAV 1.8 and green lines and dots represent UAV 1.9. A lighter
version of the respective colors correspond to the UAVs flying at a higher altitude above ground.

Effect of Proximity Differences
Hypothesis H2 states that a UAV flying far away from other UAVs in a system behaves differently
when another UAV is introduced in its vicinity. Figure 8.16 shows the resulting paths for UAV
1.10 in TI1 compared to UAVs 2.10 and 3.10 in TI2 and TI3, respectively. For simplicity, the
figure only shows a representative selection of system flight plans that covers the types of paths
found in the various test instances. Parts a)-c) of the figure appear to indicate that UAV 1.10
flies more varied paths, many which include higher-altitude paths. In contrast, UAVs 2.10 and
3.10 have fairly homogeneous paths, all generally at low altitudes, as shown by parts d)-f) in
the figure. Figure 8.2 thus seems to strengthen hypothesis H2, as the path choices are different
for UAV 1.10 compared to UAVs 2.10 and 3.10.

Figure 8.16: Illustration of three dimensional path plots for corresponding clusters for the test
instances. Parts a)-c) show the path variations flown by UAV 1.10 in red, while parts d)-f) show
the path variations flown by UAV 2.10 and 3.10 in red. The purple lines and dots in parts d)-f)
represent UAVs 2.9 and 3.9. Note that the ground in each part displays a more detailed version
of the ground than the ground squares used for objective calculations. The color of the ground
within each part of the figure ranges from dark blue to yellow, with a lighter color corresponding
to a higher altitude above sea level.
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Effect of Importance of Efficiency on Collision Avoidance
Various UAVs in the three test instances can be studied to evaluate hypothesis H3, i.e. that UAVs
with a lower importance of efficiency are the ones responsible for collision avoidance when
encountering UAVs with higher importance of efficiency. We begin by looking at the UAVs in
TI1. Unfortunately, the timing of UAVs 1.1 and 1.4 do not match up and they are hence never
on collision course. Thus, we cannot use the interaction between these two UAVs to discuss
H3. The high importance of efficiency-valued UAV 1.4 crosses paths with the low importance
of efficiency-valued UAV 1.3 at the same point in time, however. Figure 8.17 shows the four
different paths that UAV 1.3 takes in the five system flight plans for TI1, with the last system
flight plan being omitted as UAV 1.3 flies the same full path as in the system flight plan in
part a) of the figure. Hypothesis H3 is upheld by the two UAVs, i.e. the UAV with the lower
importance of efficiency, shown in red in the figure, is responsible for avoiding collision with
the UAV with the higher importance of efficiency, shown in green.

Figure 8.17: Illustration of three dimensional path plots for the cluster consisting of UAVs 1.1-
1.5 from TI1. The red lines and dots represent UAV 1.3 and green lines and dots represent
UAV 1.4. The rest of the UAVs, as well as the paths on other segments for UAVs 1.3 and 1.4,
have been faded out for increased readability. Note that the ground in each part displays a
more detailed version of the ground than the ground squares used for objective calculations.
The color of the ground within each part of the figure ranges from dark blue to yellow, with a
lighter color corresponding to a higher altitude above sea level.

The same result is seen for UAVs 2.4 and 2.5 in TI2 and UAVs 3.4 and 3.5 in TI3, shown in
Figure 8.18. Two system flight plans have been omitted for TI2 since UAV 2.5 flies the same
full path as in part a) for the omitted system flight plans, and two system flight plans have
been omitted for TI3 since UAV 3.4 flies the same full path as in part c) for the omitted system
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flight plans. In parts a), b) and c) of the figure, UAV 2.5, which has a low importance of
efficiency and paths shown in red, is responsible for collision avoidance with UAV 2.4, which
has a high importance of efficiency and paths shown in blue. Conversely, when the importance
of efficiency is switched around for the two UAVs in TI3, the opposite UAV is responsible for
collision avoidance. For parts a) and b) of the figure, we can furthermore see that UAV 2.4
chooses to fly higher for a portion of its path on the segment after the collision segment. This
might be due to the additional height reducing visual and noise pollution.

Figure 8.18: Illustration of three dimensional path plots for UAVs 2.4 and 2.5 from TI2 and
UAVs 3.4 and 3.5 from TI3. The red lines and dots represent UAVs 2.5 in parts a)-c) and UAV 3.5
in parts d)-f). The blue lines and dots represent UAV 2.4 i parts a)-c) and UAV 3.4 in parts d)-f).
The paths on other segments for the UAVs have been faded out for increased readability. Note
that the ground in each part displays a more detailed version of the ground than the ground
squares used for objective calculations. The color of the ground within each part of the figure
ranges from dark blue to yellow, with a lighter color corresponding to a higher altitude above
sea level.

One thing to note from the analysis of H3, is that each of the pairs of UAVs considered above
contain one passenger and one delivery UAV. Since a passenger UAV generates higher increases
in objective values with increased path length compared to a delivery UAV, and the low import-
ance of efficiency-valued passenger UAV still performs the collision avoidance when a higher
importance of efficiency-valued delivery UAV is in its way, the short distances traveled actually
strengthen the hypothesis.

Effect of Unmanned Aerial Vehicle Types on Collision Avoidance
While hypothesis H3 appears to be strengthened by the results, we now consider if the same
holds for H4, i.e given equal importance of efficiency values, delivery type UAVs are the ones
responsible for collision avoidance when encountering passenger UAVs, due to the significant
differences in UAV characteristics between the two UAV types. Figure 8.19 shows the four
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different paths that UAVs 1.1 and 1.5 take in the five system flight plans for TI1, with the last
system flight plan being omitted as both UAVs fly the same full paths as in the system flight
plan in part a) of the figure. The results in the figure appear to strengthen the hypothesis,
since delivery UAV 1.5, shown in purple, is always responsible for the collision avoidance with
passenger UAV 1.1, shown in blue.

Figure 8.19: Illustration of three dimensional path plots for the cluster consisting of UAVs 1.1-
1.5 from TI1. The purple lines and dots represent UAV 1.5 and blue lines and dots represent
UAV 1.1. The rest of the UAVs, as well as the paths on other segments for UAVs 1.1 and 1.5,
have been faded out for increased readability. Note that the ground in each part displays a
more detailed version of the ground than the ground squares used for objective calculations.
The color of the ground within each part of the figure ranges from dark blue to yellow, with a
lighter color corresponding to a higher altitude above sea level.

While Figure 8.19 strengthens hypothesis H4, the results for delivery UAV 1.7 and passenger
1.8 are more unclear. The delivery UAV 1.7 flies upwards and passenger UAV 1.8 flies down-
wards when the two UAV cross paths in Figure 8.20, and thus it is not clear which UAV is
responsible for the collision avoidance. At the same time, UAV 1.7, shown in purple in the
figure, has to move to a higher altitude to reach its next location and it never flies higher than
this given altitude. In contrast, UAV 1.8, shown in blue in the figure, appears to fly lower than
necessary given the location it is flying to. This could thus indicate that it is in fact passenger
UAV 1.8 that is responsible for collision avoidance, thus weakening hypothesis H4. It could
also be the case that UAV 1.8 wants to fly at a low altitude above ground and is following the
changes in the terrain, since the altitude above sea level of the ground becomes lower in the
given area. Thus, the result in regards to H4 remains inconclusive. Similar to the other figures,
one system flight plan has been omitted from Figure 8.20, since its full paths for UAVs 1.7, 1.8
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and 1.9 are equal to part d) in the figure. In contrast to the comparison between delivery UAV
1.7 and passenger UAV 1.8, Figure 8.20 shows that delivery UAV 1.7 is always responsible for
collision avoidance with passenger UAV 1.9 shown in green, in line with hypothesis H4.

Figure 8.20: Illustration of three dimensional path plots for the cluster consisting of UAVs
1.6-1.9 from TI1. The purple, blue and green lines and dots represent UAV 1.7, 1.8 and 1.9,
respectively. The rest of the UAVs, as well as the paths on other segments for UAVs 1.7-1.9,
have been faded out for increased readability. Note that the ground in each part displays a
more detailed version of the ground than the ground squares used for objective calculations.
The color of the ground within each part of the figure ranges from dark blue to yellow, with a
lighter color corresponding to a higher altitude above sea level.

8.9.2 Effect of Modifying World and Objective Model Parameters
This subsection investigates the effects of modifying the world and objective model parameters
related to hypotheses H5-H8. Since H5-H8 regard entire systems of UAVs, we consider the
behavior of all UAVs collectively when evaluating the hypotheses, as opposed to the interplay
between a subset of UAVs in the system studied in H1-H4. A proximity measure is used to
discuss each of these hypotheses, rather than path plots. Visual inspection of path plots is not
a viable option to gain insight into overall changes in proximity due to the large number of
UAVs within each test instance.

The proximity values are shown in Table 8.10. The proximity measure used to generate the
values in the table finds the average proximity of the five system flight plans returned from
a HEA run. For each system flight plan, the proximity is calculated by first aggregating the
Euclidean distance in meters between each pair of UAVs within the same cluster every 0.2
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seconds. The distance is only calculated for UAVs flying between locations in the air, i.e. the
distance to a UAV performing a service is ignored for the duration of the service time and UAVs
that have either not begun or have finished their voyages are also ignored at a given 0.2 second
checkpoint. A cluster consisting of only one UAV has a proximity value of 0. After finding the
proximity value of each cluster in a test instance, the cluster values are aggregated to obtain
the proximity value of the system flight plan. The 0.2 second time interval length has been
set to ensure that no UAV passes through more than one vertex between checkpoints, given
the straight edge traversal times of 0.36 and 0.6 seconds for a passenger and a delivery UAV,
respectively. A higher value for the proximity measure implies that the UAVs fly further apart,
while a lower value implies that they fly closer to each other. The reason why this proximity
measure was chosen, and not e.g. to aggregate the distances between every UAV and its closest
UAV, is that the system perspective models calculate objective values for the system of UAVs as
a whole. Thus we believe the chosen measure is more appropriate than a measure that looks
at UAVs within the same clusters separately.

Table 8.10: Proximity values of the base case (BC) and various HEA versions with modified
world and objective model parameter values. Parameters with a “+” correspond to increased
values compared to the base case, while parameters with a “-” correspond to reduced values.
For each test instance, both the proximity value and the deviation of the proximity value from
the base case is shown.

TI1 TI2 TI3

Version Proximity [m] Dev. [m] Proximity [m] Dev. [m] Proximity [m] Dev. [m]
BC 467 550 0 246 804 0 242 224 0

↵+ 452 602 -14 948 249 348 2 544 242 976 753

↵� 459 027 -8 523 251 695 4 891 242 373 149

�+ 458 987 -8 563 247 200 396 239 096 -3 128

�� 459 719 -7 831 250 111 3 307 241 786 -438

�+ 458 406 -9 144 250 969 4 165 241 312 -912

�� 463 567 -3 983 254 026 7 222 241 693 -531

DMax+ 470 269 2 719 248 317 1 513 241 639 -585

DMax� 457 012 -10 538 248 013 1 209 245 006 2 782

RV+ 466 127 -1 423 249 864 3 060 245 118 2 894

RV� 454 872 -12 678 245 845 -959 237 934 -4 290

RN+ 460 578 -6 972 247 673 869 240 397 -1 827

RN� 459 919 -7 631 246 623 -180 241 045 -1 179

Overall, Table 8.10 shows that both increasing and decreasing the values of many of the mod-
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ified parameters result in decreases in the proximity value, i.e. the UAVs fly closer than in the
base case, for TI1 and TI3, while the parameters result in increases in the proximity value
for TI2. This could indicate that there are other factors, such as environment or UAV charac-
teristics, that impact the effect the modified parameters have on system flight plans and that
these variations have not been sufficiently accounted for in the test instances. It could also
be the case that the selected base values for the various parameters are not as suitable as we
assumed. In the remainder of this subsection, we use two UAVs flying 10 meters apart as an
equivalent to the proximity measure, denoted tenquivalent, to make the interpretation of the
numerical values in Table 8.10 more intuitive. Two UAVs flying 10 meters apart for 1 second,
results in a proximity value of 10 · 1

0.2 = 50. Thus, a proximity value of e.g. 5000 corresponds
to 5000

50 = 100 seconds of two UAVs flying 10 meters apart, i.e. 100 seconds of tenquivalent.

Impact of Modifying ↵
Hypothesis H5 states that ↵, i.e. the factor for maximum reduction in mean time between
falldowns due to the possibility of collisions, affects the proximity of UAVs. The ↵+ and ↵�

rows in Table 8.10 show that ↵ can affect the proximity in both directions. The table shows
that the UAVs in TI1 fly somewhat closer for both modifications of ↵, indicated by a negative
number in the deviation column. In contrast, both modifications of ↵ for TI2 and TI3 result
in positive deviation values, i.e. the UAVs fly further apart compared to the base case. The
deviations in proximity across the test instances for both increasing and reducing ↵ correspond
to 3-299 seconds, i.e. up to 5 minutes, of tenquivalent. The deviations when looking at TI3
in isolation correspond to 3-15 seconds of tenquivalent, which weakens H5. However, when
looking at all three test instances, it is clear that ↵ can have a significant impact on proximity,
thus strengthening H5.

Impact of Modifying �
Similar to the results for↵, the discount factor for the system perspective visual pollution model
has varying effects on proximity. The results in Table 8.10 for �+ and �� show that the UAVs
in TI1 and TI3 fly in closer proximity when both increasing and reducing � , while the UAVs in
TI2 fly further apart for both modifications of � . Thus, it appears as if changing � in isolation
does not guarantee a given behavior among the UAVs in terms of flying closer or further apart.
The deviations across the test instances for both reducing and increasing � correspond to 8-
171 seconds, i.e. up to 2.9 minutes, of tenquivalent, showing that modifications of � can have
both small and big impact on proximity. Hypothesis H6, i.e. that � affects proximity of UAVs,
thus appears to hold.

Impact of Modifying �
To evaluate H7, i.e. that the length of a time interval, �, affects the proximity of UAVs, we again
look at Table 8.10. Similar as for ↵ and � , the results show that changes in � have an effect on
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the proximity of UAVs, combined with variations across the test instances regarding whether
the UAVs fly closer or further apart. It makes sense that changes in � can have different effects
on proximity as e.g. noise pollution values can both increase and decrease when � increases,
as explained in Subsection 8.1.1, and thus support both more and less proximity. Similarly,
a given � can lead to both underestimation and overestimation of the risk values. Since �
decides how often the relative positions of UAVs are checked, an increased � leads to the same
mean time between falldowns being used for a longer period of time. Thus, if the distances
between UAVs are greater than the collision risk threshold at the two checkpoints at the start
and end of a time interval, an increased � leads to a lower risk value than the true value if
the UAVs were in fact closer than the collision risk threshold somewhere between the two
checkpoints. The deviations when changing � correspond to 11-183 seconds, i.e. up to 3.0
minutes, of tenquivalent across the test instances. It thus seems that � has the potential to
impact proximity quite significantly, however it might not always do so.

Impact of Modifying Thresholds
The final hypothesis from Section 8.2, H8, is that the thresholds for collision risk, visual pollu-
tion and noise pollution, i.e. DMax , RV and RN , affect the proximity of UAVs. Looking at Table
8.10, we see that the proximity values are lower when reducing both RV and RN , across all
three test instances. It should however be noted that for TI2, there is only a small deviation
in proximity from the base case when reducing RN . A possible reason for the lower proximity
values when the threshold values are lower, is that flying closer may result in an increase in
the proportion of common ground squares among the UAVs’ affected ground squares. When
increasing RV and RN we see both higher and lower proximity values, however. Thus, the
thresholds for visual and noise pollution can impact proximity in both directions. The devi-
ations in proximity values across the test instances when changing RV and RN correspond
to 19-254 seconds, i.e. up to 4.2 minutes, of tenquivalent and 4-153 seconds, i.e. up to 2.5
minutes, of tenquivalent, respectively. This thus indicates that changing these thresholds can
have a significant impact on proximity, but that it is not always the case. For DMax we also see
an impact on proximity both towards flying closer and further apart, and there is no clear trend
for the direct effects of DMax on proximity. The deviations across the test instances when chan-
ging DMax correspond to 12-211 seconds, i.e. up to 3.5 minutes, of tenquivalent, and DMax

can therefore greatly impact proximity. At the same time, DMax does not always have a great
impact on proximity, and the differences in proximity impact make sense when looking at the
risk model in Section 6.3. If most UAVs fly at distances that are always within DMax� or always
outside DMax+ when modifying the parameter, it makes sense with small changes in proximity.
If many UAVs fly at distances between the different DMax values, however, it makes sense with
larger changes in proximity. This could again indicate that the sensitivity to changes in DMax

are different for different intervals.
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8.10 Discussion

The main focus of the computational study has been to investigate how the introduction of a
system of UAVs affects UAV behavior, as explained in Section 8.2. This section first provides
a summary of the findings in regards to the hypotheses, and then takes a broader look at the
results in regards to widespread UAV usage.

8.10.1 The Hypotheses Reviewed
To get a more detailed picture of what impacts the system flight plans returned from the HEAC,
we developed a set of eight hypotheses. The first four hypotheses regard the system behavior
for the base cases, while the last four consider the effects that different world and object-
ive model parameters have on system behavior. Beginning with hypothesis H1, which states
that population density trumps the sheltering factor, the hypothesis generally appears to be
strengthened by the test instances. This indicates that environment characteristics surround-
ing a UAV are still considered despite other UAVs flying close by. It should be noted that the
short distances traveled by the UAVs may have intensified the population versus sheltering
results.

Hypothesis H2, i.e. that a UAV flying far away from other UAVs in a system behaves differently
when another UAV is introduced in its vicinity, appears to be strengthened by the results from
the test instances. The results indicate that flight patterns that are no longer beneficial due
to the introduction of the additional UAV are discarded. Combined with the insights from
hypothesis H1, it appears as if the system effects influence UAV behavior to a larger degree
than environment characteristics, but environment characteristics still play an important role.

All the test instances indicate that hypothesis H3, which states that UAVs with a lower import-
ance of efficiency are the ones responsible for collision avoidance when encountering UAVs
with higher importance of efficiency, holds. The validation of H3 is not necessarily entirely
positive however, as it may be an indication that the HEAC is inclined to finding paths that do
well for the flight time objective at the cost of the other objectives, similar to the insight for
HEAF in Section 8.3.

Hypothesis H4 states that given equal importance of efficiency values, UAV characteristics de-
termine which UAV is responsible for collision avoidance when two UAVs meet. As previously
mentioned, this hypothesis is equivalent to stating that delivery UAVs are responsible for col-
lision avoidance when encountering passenger UAVs. H4 holds for two of the three pairs of
UAVs testing this hypothesis. This could indicate that there are other factors that affect which
UAV is responsible for collision avoidance to a larger degree than the increased values for the
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UAV characteristics.

Hypotheses H5-H8 state that ↵, � , � and the thresholds DMax , RV and RN affect the prox-
imity of UAVs. The proximity measure appears to strengthen all four hypotheses since all the
modified parameters are able to significantly impact UAV proximity. The parameter values
do not always have a great impact on proximity, however. Furthermore, there are no clear
trends regarding whether the proximity increases or decreases when changing a parameter.
As explained in Subsection 8.1.1, the values for the world and objective model parameters
considered in H5-H8 will be decided by policy makers. It is thus crucial that policy makers
understand the effects of altering the parameters values, to ensure the outcome is as intended.
Thus, it appears as if further testing of the parameters considered by H5-H8 is necessary to
gain more insights into their effects, potentially in more controlled and homogeneous envir-
onments, to reduce the possibility of other factors than the parameter in question affecting
the results. It is also crucial to look at parameter values in conjunction. For example, both ↵
and DMax directly impact the risk objective. It is thus important to perform further testing on
different combinations of these parameters, as well as other parameter combinations affecting
different objectives.

Overall, the computational study has shown that the introduction of a system of UAVs has a
great impact on UAV behavior. By accounting for collision avoidance and using system per-
spective equations to calculate objective values, the paths taken by each UAV can differ signi-
ficantly from the paths taken if each UAV was considered in isolation. Thus, it is essential to
take a system perspective when planning paths for a system of UAVs.

8.10.2 Beyond the Skies: The Bigger Picture
In addition to studying the system flight plans in and of themselves, it is also important to
consider the effects of widespread UAV usage from a broader perspective. From an ethical
point of view, allowing risk, visual pollution and noise pollution to take any value might not
be desirable. As explained in Sections 2.6 and 2.7, visual and noise pollution can have negative
health effects, and the same clearly applies for risk. Regulations for safety and allowable noise
levels already exist for other means of transportation, and extending the model in this thesis
with upper limits for risk, visual pollution and noise pollution could thus be beneficial. By
studying what value levels for the objectives that result in adverse health effects, policy makers
can introduce suitable limits that cannot be exceeded by the system flight plans. Using risk as
an example, such an approach ensures a decision maker that regardless of which system flight
plan is chosen, a statistical maximum number of expected fatalities will never be exceeded.

There is ongoing work and still a long way to go to develop effective UAV regulations, as de-
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scribed in Section 2.3. Researching future UAV regulations is thus essential from a political and
legal viewpoint. The research should focus on understanding how various laws, regulations
and limitations affect the behavior of UAVs, to ensure that the introduced policies have the
desired effect. If behavioral effects are not taken into account and regulations are introduced
without understanding the consequences, new regulations could possibly have no effect or
the opposite of the desired effect. The results from hypotheses H5-H8 described above, which
we consider to be important parameters for policy makers to understand, makes it clear that
further assessment of the parameters is necessary.

Finally, it is worth making a note of the environmental dimension of UAV usage. This thesis
focuses solely on the societal, i.e. human, impact of system flight plans, thus no attention is
given to animals or plant life. While no-flight zones in nature conservation areas can help
protect the animals in these areas, as mentioned in Section 6.3, animals living in other urban
areas such as various types of birds, squirrels and pets are not protected nor accounted for
in this thesis. As an example, consider an area with zero population density, such as a nature
area consisting of a body of water or covered in trees and bushes, which is located in between
more populated areas. If a UAV has to fly across these areas, it would naturally choose to fly
above the nature area, as the zero population density is helpful given the incorporation of
social impact in the objective models in this thesis. Thus, the plants and animals present in the
area can be affected by the UAV. As the number of UAVs flying in urban areas increases, it is
thus important to be aware of, and possibly account for, the environmental impact of UAVs, to
avoid unnecessary disturbances or adverse effects on animal or plant life.
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Concluding Remarks

The use of UAVs for transportation in urban environments is expected to see significant growth
in the future, thus also increasing the impact of UAV transport on the population in these
areas. Path planning models that account for social impact are hence paramount, and this
thesis proposes a model that finds socially acceptable solutions, called system flight plans, to
the static, multi-UAV path planning (MUAVPP) problem in an urban environment. The model
balances four objectives; flight time, risk, visual pollution and noise pollution, and accounts for
the effect that simultaneous impact from multiple UAVs have on each objective. Furthermore,
the energy capacity of each UAV is incorporated as constraints. A hybrid evolutionary algorithm
(HEA) consisting of the non-dominated sorting genetic algorithm III (NSGA-III) and ant colony
optimization (ACO) has been developed to solve the problem.

This thesis makes multiple contributions to existing literature. The literature review uncovered
that visual and noise pollution have not been modeled as part of a path planning problem be-
fore, and the risk UAVs pose to humans has received little attention in UAV path planning
literature. Allowing characteristics to vary along a voyage for a UAV also constitutes a contri-
bution. This thesis allows the UAV payload weight and the importance of efficiency, i.e. the
importance of short flight time, to vary along a voyage. Furthermore, to the best of our know-
ledge, using an evolutionary algorithm to solve a multi-objective, multi-vehicle problem in an
urban environment is a novel proposition.

The HEA is applied to various test instances of the MUAVPP problem in a three dimensional
urban environment. Overall, the solution method returns system flight plans with diverse
trade-offs between the four objectives. The set of system flight plans are furthermore of a
manageable size, thus facilitating a thorough and transparent decision making process. On
a technical level, there are a couple of insights worth noting however. The HEA needs long
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runtimes even for relatively small test instances, in terms of distances traveled by each UAV in
a system. The long runtime is mostly caused by the way simultaneous impact from multiple
UAVs is accounted for in the objective models. The results also show that the solution method
can be further improved. The amount of mutation taking place in the NSGA-III part of the HEA
run should be increased and a meta-algorithm combining results from multiple runs of HEA
on the same problem instance can improve both performance and stability.

The results from running HEA gave insights into a set of hypotheses, which overarchingly tests
how the introduction of a system of UAVs affects UAV behavior. The first insight is that the
environment characteristics affecting individual UAVs are still accounted for when a system
of other UAVs are introduced. Conversely, a UAV flying by itself far away from other UAVs in
a system, appears to fly significantly different paths when another UAV is introduced in its
vicinity, thus indicating that the system effects might be considered more important than en-
vironment characteristics. An important aspect of studying systems of UAVs is the possibility of
collisions. A further insight from the results is that the UAV that deviates from its path to avoid
collision when two UAVs meet seem to depend on the importance of efficiency and UAV char-
acteristics of the two UAVs. Low importance of efficiency-valued UAVs seem to be responsible
for collision avoidance when encountering UAVs with a higher importance of efficiency, and
smaller, lighter-weight and less noisy UAVs tend to be responsible for collision avoidance when
encountering larger, heavier and more noisy UAVs. Furthermore, the evaluations of the hypo-
theses gave insights into the impact of using different values for world and objective model
parameters. The values set for the maximum reduction in mean time between falldowns due
to the possibility of collisions, the visual pollution discount factor, the length of a time interval
and the thresholds for collision risk, visual pollution and noise pollution can all have a signific-
ant impact on the proximity of UAVs. That being said, the direct effects of varying each of the
parameters are not clear from the evaluations, and further testing on the parameters should
thus be performed.

In conclusion, the model proposed in this thesis appears to provide a socially conscious way to
utilize the low-altitude urban airspace, by solving the static, multi-UAV path planning problem
balancing flight time, risk, visual pollution and noise pollution criteria. The extensive runtimes
is a clear weakness of the proposed solution method, and must hence be improved to facilitate
real-world applicability. Be that as it may, this thesis still proves that it is possible to incorporate
social acceptability when navigating urban skies.
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Future Research

The static, multi-UAV path planning problem considers a wide variety of aspects. Thus, there
exist several avenues for future research to create more effective models for UAV path planning
in an urban environment, both from a societal and from a scientific viewpoint.

Creating more realistic and advanced models for risk, visual pollution, noise pollution and
energy consumption constitutes a possible area of future research. Both the visual and noise
pollution objectives can be made time dependent, which further opens up the possibility of
allowing UAVs to vary their flight speeds and wait in the air to avoid collisions. The quantifica-
tion of visual and noise pollution can also be extended to differentiate the degree of pollution
based on the UAV use case, since medical UAVs are considered more socially acceptable, as
described in Section 2.6. The quantification of noise pollution can also be improved by e.g.
accounting for the effect of varying UAV payloads or the existing noise levels in an area. The
perceived noise from a UAV is likely to be lower in areas with high pre-existing noise levels, and
could thus reduce the noise pollution. In regards to risk, further developments can be made
for both air and ground risk. The probability of fatality for air risk is assumed to be constant
in this thesis, but it is also possible to make it variable and dependent on e.g. the sheltering
factor. The quantification of ground risk could be extended to consider various UAV descent
models, as opposed to our assumption that the UAVs fall vertically straight down.

Another possible area of future research is to incorporate the interaction between the object-
ives, since e.g. the noise of a UAV can be perceived as worse if an individual is also able to see
the UAV, as described in Section 2.6. It is also possible to differentiate the objective values for
risk, visual pollution and noise pollution based on who is affected, i.e. assigning worse values
if the same individual is affected twice compared to if two different individuals are affected
once each. Furthermore, the system perspective equations proposed in Chapter 6 are complex,
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resulting in the computation of the system objective values being quite time-consuming. Thus,
one area of future research is to test other models for system perspective quantifications of the
objectives, i.e. of how the simultaneous impact from multiple UAVs affect risk, visual pollution
and noise pollution. As discussed in Subsection 8.10.2, including upper limit constraints on
the objectives or accounting for the environmental impact of UAV usage on nature life also
constitute possible extensions to the model. In addition, the model should also be updated as
new regulations are introduced to keep it up to date.

Future research can also expand on the environment. In reality, the UAVs will operate in a
dynamic environment. Unforeseen events can take place during the execution of a system
flight plan, e.g. the need for an emergency medical UAV to make a delivery to a person in
need, or due to other aerial vehicles and birds that move around in the low-altitude airspace
in urban environments. Furthermore, the problem can incorporate stochasticity, e.g. through
variable edge flight times due to weather conditions or variable population in ground squares
based on the time of day. Thus, studying the MUAVPP problem in a dynamic or stochastic
environment, or both, can increase real world applicability. Further developments can also be
made to the feasible moves of the UAVs, e.g. allowing for diagonal movement up and down in
the graph in addition to horizontal diagonals. Such an extension will increase the complexity
of the graph however, and must thus be weighted against the increased realism of the UAV
movement.
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A AiRMOUR Studies

This appendix was designed as part of our preparatory research project and presents some of
the research conducted by the EU-funded AiRMOUR project. Section A.1 presents results from
a survey conducted in February 2022, and Section A.2 presents findings from a demonstration
held in September 2022, which we were able to participate in. Note that some terminology
is changed to fit with the terminology used in the rest of this thesis, e.g. the word drone is
replaced with the word UAV.

A.1 AiRMOUR Citizen Questionnaire, Norway February 2022
The AiRMOUR Citizen Questionnaire was answered by regular citizens and had almost 200
respondents from Oslo/Viken, Rogaland and Vestland. The survey concerned usage of both
delivery and passenger UAVs. Figure A.1 shows that for both delivery and passenger UAVs,
people are generally more positive to UAVs with medical purposes.

(a) Delivery UAV acceptance. (b) Passenger UAV acceptance.

Figure A.1: Degree of acceptance amongst respondents for medical and personal deliveries
from delivery UAVs, and medical and non-medical use of passenger UAVs.

Furthermore, the questionnaire found that about one third of the respondents strongly or
somewhat agreed that they would be comfortable with a delivery or passenger UAV flying
above them when walking along the street. On the other hand, 20% expressed a strong dis-
agreement to the statement for delivery UAVs and 25% stated the same for passenger UAVs.

Figure A.2 shows the respondents’ degree of concern regarding safety, visual pollution and
noise pollution from UAVs in general. It is clear that people have some inherent concerns,
however the answer option "Somewhat concerned" is more common than "Very concerned".
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Figure A.2: Respondents’ degree of concern regarding safety, visual pollution and noise pollu-
tion.

Building on the issue of noise pollution, the respondents were faced with the following two
questions:

• Q1: If a passing delivery UAV makes the same level of noise as a passing car, would that
be an issue for you?
• Q2: If a passing passenger UAV makes the same level of noise as a passing ambulance

with its siren, would that be an issue for you?

The answers to these questions are shown in Figure A.3. The figure indicates that people have
diverging attitudes towards UAV noise, with the number of “Yes” and “No” answers being fairly
similar in size.

(a) Noise from delivery UAV. (b) Noise from passenger UAV.

Figure A.3: Respondents’ attitudes towards noise emitted by delivery and passenger UAVs.

The answers show that people have different attitudes towards UAV noise, and the yes and no
pools are of fairly similar size.
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A.2 AiRMOUR Demonstration, Stavanger September 2022
On 21st of September 2022, AiRMOUR held a UAV demonstration at Mostun Natursenter in
Stavanger. Both technical stakeholders from e.g. the medical sector and Stavanger Kommune,
as well as regular citizens, were invited and around 30 people attended. The Stavanger demon-
stration was conducted in cooperation with LuxMobility, a transport consultancy firm based in
Luxembourg.

The event was divided into three parts. Before the demonstration began, the attendees were
invited to take a pre-survey mapping their current attitudes towards medical use cases for
UAVs. Then there was a live demonstration of a flying delivery UAV and an exhibition of a pas-
senger UAV, followed by the attendees conducting an on-site survey about the demonstration.
The last part of the event was focus group discussions where the attendees could elaborate
on their thoughts and opinions, as well as if the demonstration had led to changes in their
attitudes towards UAV. The findings from the demonstration event that are most relevant for
this thesis are presented below.

Pre-survey
The pre-survey showed that 70% of the respondents strongly agreed that, given adequate
technology, delivery UAVs should be used for urgent medical deliveries, such as for transport
of organs or blood products. For non-urgent medical deliveries, the answers varied more, but
almost 50% responded that they strongly or somewhat agreed to such a use case.

The respondents were also asked to state their concerns regarding the following aspects of
delivery UAV usage:

• Q1: Safety, such as flying vehicles possibly crashing
• Q2: Visual pollution, such as annoying air traffic
• Q3: Noise pollution, such as loud and/or annoying sounds of flying aircraft

The answers are displayed in Figure A.4. Although these questions only consider delivery UAVs,
they are quite similar to those displayed in Figure A.2 in Subsection A.1. Again, we see that
"Somewhat concerned" is the most chosen alternative for all three aspects. However, in contrast
to the AiRMOUR Citizen Questionnaire result, very few people in this survey answered that
they are very concerned. A potential explanation for this is that some of the respondents were
stakeholders with prior interest and knowledge on the topic.
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Figure A.4: Responses to survey questions Q1-Q3.

Demonstration Site Survey
During the demonstration, a delivery UAV was flown above the area where the attendees were
standing, and they were asked how they rated the noise and visual impact of the UAV when
it was at the highest point they could see. The responses are shown in Figure A.5. The figure
indicates that the respondents in general experienced quite low noise and visual impact, with
about 70% of the respondents choosing numbers 1 to 3.

Figure A.5: Perception of UAV noise and visual impact during the demonstration, with a value
of 1 indicating no impact and 10 indicating extreme impact.

Post-demonstration Focus Groups
A total of five focus group discussions were conducted, and the responses were quite similar
across the groups. In general, people were more positive to using UAVs for emergency med-
ical purposes than for non-urgent purposes. Regarding the latter, the attendees had diverging
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opinions. Some thought non-urgent UAV deliveries could be very convenient and that it could
be especially useful for transport of e.g. pharmaceutical products to more rural areas. Others
expressed great concerns in regards to privacy and surveillance. Some attendees were positive
to the use of colors or other trademarks to clarify the use case of a UAV, similar to how emer-
gency helicopters are colored yellow or ambulances have blue lights. Several attendees stated
that the UAV flown in the demonstration generated less visual and noise pollution than what
they expected beforehand. Lastly, it was a common attitude that strict regulations have to be
in place if UAV usage is to be introduced at a large scale, and that increased information about
UAV usage could help to increase acceptability for widespread usage.
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B Overview of World and Objective Models

This appendix gives a structured overview of the equations for energy, risk, visual pollution
and noise pollution developed in Chapter 6 and used in the MINLP in Chapter 5. Section
B.1 presents the energy consumption model used in constraints (5.12) in the MINLP. Sections
B.2-B.4 present the risk, visual pollution and noise pollution models, respectively. For each
objective model, the single-UAV perspective is presented first and then the system perspective,
with the system perspective being the model used in the objective function vector (5.1) in the
MINLP. For further details on any equation, refer to Chapter 6.

B.1 Energy Consumption Model
Sets

N Set of vertices
Ni Set of neighboring vertices to vertex i, Ni ✓N
Su Set of segments included in the voyage for UAV u

Parameters

EA
u Energy consumed by UAV u traveling horizontally per kilogram of weight per

meter above sea level per unit of time, [J/(kg·m·s)]
ED

u Energy consumed by UAV u traveling vertically downwards per kilogram of weight
per meter above sea level of the starting height per unit of time, [J/(kg·m·s)]

EU
u Energy consumed by UAV u traveling vertically upwards per kilogram of weight

per meter above sea level of the starting height per unit of time, [J/(kg·m·s)]
EW

u Energy consumed by UAV u per kilogram of weight per unit of time when the UAV
is in active mode, [J/(kg·s)]

HS
i Altitude of vertex i above sea level, [m]

Tui j Time UAV u spends flying from vertex i to vertex j, [s]
Wu Weight of UAV u, [kg]
W P

us Weight of the payload in UAV u on segment s, [kg]

Equations
The total energy consumption on a path for UAV u is given by

Eu =
X

i2N

X

j2Ni

X

s2Su

Tui j · (Wu +W P
us) · (EW

u + EF
ui) ,

where EF
ui =

8
>><
>>:

HS
i · EA

u , if j is horizontal to i

HS
i · EU

u , if j is above i

HS
i · ED

u , if j is below i

(B.1)
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B.2 Risk Model
Sets

N Set of vertices
U Set of UAVs
Su Set of segments included in the voyage for UAV u
GR

ui js Set of ground squares that are entirely within the lethal area associated
with the edge between vertex i and vertex j on segment s for UAV u

Ni Set of neighboring vertices to vertex i, Ni ✓N
T Set of time interval start times, in multiples of �
N (u,⌧,�, s, ~t ) Set of vertices visited by UAV u on segment s in system flight plan ~t in time

interval [⌧,⌧+�)
UC(u,⌧,�, ~t ) Set of UAVs within the collision risk area of UAV u in system flight plan ~t

in time interval [⌧,⌧+�)

Parameters

↵ Factor for maximum reduction in mean time between falldowns due to the
possibility of collisions

� Length of time interval regarded as simultaneous UAV impact, [s]
AG

u Glide angle of UAV u, [�]
CG Acceleration of free fall, [m/s2]
CR,Low Required impact energy to cause a fatality as the sheltering factor, Fg , goes

to zero, [J]
CR,Mid Required impact energy for a fatality probability of 50% with the sheltering

factor Fg=0.5, [J]
DMin Minimum distance between two UAVs to avoid collision, [m]
Dg Population density in ground square g, [# individuals/m2]
D(u, u0, t, ~t ) Distance between UAV u and UAV u0 in system flight plan ~t at time t, [m]
Fg Sheltering factor in ground square g
HP Average height of a person, [m]
HG

i Altitude of vertex i above ground level, [m]
Kus Number of passengers in UAV u on segment s [# individuals]
M L

u Length of UAV u, [m]
T F

u Mean time between failures for UAV u, [s]
Tui j Time UAV u spends flying from vertex i to vertex j, [s]
Vu Speed of UAV u, [m/s]
Wu Weight of UAV u, [kg]
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W Max
u Weight baseline in relation to risk for UAV u, [kg]

W P
us Weight of the payload in UAV u on segment s, [kg]

Single-UAV Perspective Equations
The total risk associated with UAV u flying a path is given by

Ru =
X

i2N

X

j2Ni

X

s2Su

1
T F

u
· (NA

us · BA+ N G
ui js · BG

ui js) · Tui j · xui js ,

where NA
us = Kus , BA = 1 , N G

ui js = (Wu +W P
us) ·

✓
M L

u +
HP

sin(AG
u )

◆
· 1
|GR

ui js|
X

g2GR
ui js

Dg ,

BG
ui js =

1
|GR

ui js|
X

g2GR
ui js

1

1+
«

CR,Mid

CR,Low ·
Å

CR,Low
1
2 ·(Wu+W P

us)·(CG ·(HG
i +HG

j )+(Vu)2)

ã 1
4Fg

(B.2)

System Perspective Equations
The total risk associated with system flight plan ~t is given by

R(~t ) =
X

⌧2T

X

u2U

X

i2
N (u,⌧,�,s,~t )

X

j2Ni

X

s2Su

1
T F

u � T C(u,⌧,�, ~t )
· (NA

us ·BA+N G
ui js ·BG

ui js) · Tui j · xui js ,

where

T C(u,⌧,�, ~t ) = ↵ · T F
u ·min

0
B@

X

u02
UC (u,⌧,�,~t )

Wu0
W Max

u

min(D(u, u0,⌧, ~t ), D(u, u0,⌧+�, ~t ))� DMin + 1
, 1

1
CA

(B.3)
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B.3 Visual Pollution Model
Sets

G Set of ground squares
N Set of vertices
U Set of UAVs
GV

ui Set of affected ground squares when UAV u is positioned in vertex i
Ni Set of neighboring vertices to vertex i, Ni ✓N
Su Set of segments included in the voyage for UAV u

Parameters

� Discount factor for the system perspective visual pollution model
� Length of time interval regarded as simultaneous UAV impact, [s]
CV,1 Constant used in the visual pollution model
CV,2 Constant used in the visual pollution model
DE Distance between ruler and eye when measuring perceived UAV size, [m]
DU

ig Distance between a UAV located in vertex i and the center of ground square g,
[m]

Fg Sheltering factor in ground square g
I F
uis 1 if vertex i is the end vertex of segment s for UAV u, 0 otherwise

M L
u Length of UAV u, [m2]

Qg Population in ground square g, [# individuals]
RV Threshold for visual pollution, [m]

Single-UAV Perspective Equations
The total visual pollution generated by UAV u flying a path is given by

PV
u =

X

i2N

X

j2Ni

X

s2Su

PV
ui · xui js +

X

i2N

X

s2Su

PV
ui · I F

uis ,

where PV
ui =

X

g2GV
ui

(1� Fg) · (CV,1 · 1

(DU
ig)

CV,2 ) ·Qg

(B.4)

The ground squared included in the set of affected ground squares for UAV u have their centers
within a sphere with radius DV

u

DV
u =

M L
u

RV
· DE (B.5)
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System Perspective Equations
The total visual pollution generated by system flight plan ~t is given by

PV (~t ) =
X

g2G
PV (~t , g) (B.6)

with PV (~t , g) given by Algorithm 7. In line 8 of the algorithm, D(tuis, g) is a function returning
the same value as DU

ig .

Algorithm 7 Algorithm to find the total visual pollution generated by a system flight plan in a given
ground square g

Input: System flight plan ~t , ground square g
Output: Visual pollution in ground square g, PV

g

1: function PV (~t , g)
2: PV

g  0
3: tMax  max{tuis 2 ~t}�min{tuis 2 ~t}
4: T  {0,�, 2�, ..., b tMax

� c�}
5: for ⌧ 2 T do
6: PV

g⌧  []
7: for {tuis 2 ~t | 9u2U , i2N , s2Su

tuis 2 [⌧,⌧+�) ^ g 2 GV
ui } do

8: PV
g⌧.append

Å
(1� Fg) · (CV,1 · 1

D(tuis ,g)
CV,2 ) ·Qg

ã

9: end for
10: PV

g⌧  DescendingSor t(PV
g⌧)

11: for n 2 {0,1, ..., |PV
g⌧|� 1} do

12: PV
g  PV

g + PV
g⌧[n] · �n

13: end for
14: end for
15: return PV

g

16: end function
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B.4 Noise Pollution Model
Sets

G Set of ground squares
N Set of vertices
U Set of UAVs
GN

ui Set of affected ground squares when UAV u is positioned in vertex i with
threshold RN

GNS
ui Set of affected ground squares when UAV u is positioned in vertex i with

threshold RN � RN ,Red

Ni Set of neighboring vertices to vertex i, Ni ✓N
Su Set of segments included in the voyage for UAV u

Parameters

� Length of time interval regarded as simultaneous UAV impact, [s]
AU

ig Angle between a UAV located in vertex i, the center of ground square g and the
horizontal, [�]

AM
u Angle between UAV u, measurement device and the horizontal when SPL was

measured, [�]
DU

ig Distance between a UAV located in vertex i and the center of ground square g,
[m]

DM
u Distance between UAV u and measurement device when SPL was measured, [m]

MS
u SPL of UAV u measured by measurement device, [dB]

O Decrease in SPL per degree decrease in angle between the vertex the UAV is
located in, measurement device and the horizontal, [dB/�]

p0 Reference level for sound pressure, [Pa]
Qg Population in ground square g, [# individuals]
RN Threshold for noise pollution, [dB]
RN ,Red Reduction in threshold for noise pollution to find affected ground squares in the

system perspective, [dB]

Single-UAV Perspective Equations
The total noise pollution generated by UAV u flying a path is given by

PN
u =

X

i2N

X

j2Ni

X

s2Su

PN
ui · xui js +

X

i2N

X

s2Su

PN
ui · I F

uis ,

where PN
ui =

X

g2GN
ui

2
MS

u +O·(90�AM
u )+20·log10(D

M
u )�O·(90�AU

ig )�20·log10(D
U
ig )

10 ·Qg (B.7)
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The cut-off distance, DN
u , used to find potentially affected ground squares is given by

DN
u = 10

MS
u +O·(90�AM

u )+20·log10(D
M
u )�RN

20 (B.8)

The ground squared included in the set of affected ground squares for UAV u have their centers
within a sphere with radius DN

u and SPL value exceeding the threshold, RN

SM +O · (90� AM ) + 20 · log10(D
M )�O · (90� AU

ig)� 20 · log10(D
U
ig)� RN (B.9)

System Perspective Equations
The total noise pollution generated by system flight plan ~t is given by

PN (~t ) =
X

g2G
PN (~t , g) (B.10)

with PN (~t , g) given by Algorithm 8. In line 8 of the algorithm, A(tuis, g) is a function returning
the same value as AU

ig , and D(tuis, g) is a function returning the same value as DU
ig .

Algorithm 8 Algorithm to find the total noise pollution generated by a system flight plan in a given
ground square g

Input: System flight plan ~t , Ground square g
Output: Noise pollution in ground square g, PN

g

1: function PN (~t , g)
2: PN

g  0
3: tMax  max{tuis 2 ~t}�min{tuis 2 ~t}
4: T  {0,�, 2�, ..., b tMax

� c�}
5: for ⌧ 2 T do
6: PN

gt  0
7: for {tuis 2 ~t | 9u2U , i2N , s2Su

tuis 2 [⌧,⌧+�) ^ g 2 GNS
ui } do

8: PN
g⌧  PN

g⌧ +
Å

p0 · 10
MS

u +O·(90�AM
u )+20·log10(D

M
u )�O·(90�A(tuis ,g))�20·log10(D(tuis ,g))

20

ã2

9: end for

10: SP Lg  20 · log10

Åq
PN

g⌧
p0

ã

11: if SP Lg > RN then

12: PN
g  PN

g + 2
SP Lg

10 ·Qg

13: end if
14: end for
15: return PN

g

16: end function
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C Multi-Objective Dijkstra’s Algorithm

This appendix gives a more detailed explanation of the various methods used in the MDA,
presented in Section 7.2. Sections C.1 present the getNex tCandidateLabel method, and
Section C.2 presents the propagate method. In the algorithms for both methods, we use the
term set domination, denoted Z � z0, to mean that there exists at least one label z 2 Z that
Pareto dominates or has an equal cost vector to a label z0.

C.1 Selection of the Next Candidate Label
The getNex tCandidateLabel method is a part of the search strategy used by the MDA and
is shown in Algorithm 9. The method creates a new candidate label for vertex v by finding the
lexicographically smallest efficient label, zw, where w is a neighbor of v, and extending this
label.

Algorithm 9 begins with an empty candidate label with all objective costs set to infinity in line
2. Then lines 3-25 check the ingoing arc (w, v) for every neighbor w of v to decide whether zw

should be extended to create the next candidate label for v. In lines 4-8, the costs associated
with the arc (w, v) are retrieved and the arc is added to the last processed label set D if an
index for (w, v) does not already exist. Lines 9-24 check the efficient labels in the set Zw from
the index of the last processed label to the end of Zw. This is done by extending the label zi

w to
a potential candidate label zp

v and checking for dominance and lexicographical ordering. The
reason why only the last |Zw| - i labels in Zw need to be checked to find a candidate label, is due
to the lexicographic order of Zw. This ordering is a consequence of the fact that a label zu can
only be added to its efficient set Zu from the priority queue, K. Since the priority queue always
stores the lexicographically smallest candidate label zu for a given vertex u, the efficient label
set Zu inherits this property. Maristany de las Casas et al. (2021) argue that because of the
lexicographical ordering of the efficient label sets, if the labels prior to position i in an efficient
label set Zw was not chosen as the base for a candidate label in vertex v in the ( j�1)th search,
they will never be chosen in the jth or later searches. Therefore, the for-loop can start from
the index of the last processed label in Zw, as shown in line 9, instead of checking all the labels
Zw for every run of the getNex tCandidateLabel algorithm. The lexicographical ordering of
the efficiency set also enables the algorithm to break the for-loop in line 19 when a candidate
label zc

v from efficient label set Zw at position i is found, because all the labels in positions > i
are lexicographically larger than zc

v . Thus, in any search for a candidate label, the number of
labels that must be tested for dominance is reduced. The lower bound pruning described in
Section 7.2 is applied in lines 12-13. Line 15 in Algorithm 9 allows for additional pruning by
checking if the extended label zp

v is dominated by any labels in the efficient label set of the end
vertex Z f . This line only applies when Z f is not empty, meaning that the algorithm has
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Algorithm 9 Algorithm to find the next candidate label to add to the priority queue for a vertex v
Input: Vertex v, last processed label set D, total set of efficient labels Z, set of lower

bound cost vectors C
Output: Candidate label zc

v

1: function GETNEXTCANDIDATELABEL(v, D, Z, C)
2: zc

v  (None, (1, ...,1), 0, None)
3: for w 2 getNeighbors(v) do
4: e  getEner g yCost(w, v)
5: c  getEd geCost(w, v)
6: if (w, v) /2 D then
7: D[(w, v)] 0
8: end if
9: for i 2 {D[(w, v)],D[(w, v)] + 1, ..., |Zw|} do

10: D[(w, v)] i
11: zi

w  Zw[i]
12: zc

f  ( f , c(zi
w) + c + cv , None, None)

13: if not Z f � zc
f then

14: zp
v  (v, c(zi

w) + c, e(zi
w) + e, p(zi

w).append(v))
15: if not Z f � zp

v then
16: if not Zv � zp

v then
17: if zp

v lexicographically smaller than zp
c then

18: zc
v  zP

v

19: break
20: end if
21: end if
22: end if
23: end if
24: end for
25: end for
26: if c(zc

v) = (1, ...,1) then
27: return None
28: end if
29: return zc

v

30: end function

reached the end vertex f . This implies that the algorithm possibly can dominate away a lot of
labels as soon as it has reached the end vertex. Unfortunately, this advantage will not apply
before the algorithm has reached the end vertex for the first time. If no candidate label is found
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in the for-loop in lines 3-25, None is returned in line 27. Otherwise the next candidate label is
returned in line 29.

C.2 Propagation
The Propagate method is another part of the search strategy used by the MDA and is shown
in Algorithm 10. The method extends the label zv for a vertex v along an outgoing edge (v, w),
and potentially updates the priority queue for the vertex w.

Algorithm 10 Algorithm to propagate a label zv along the outgoing edge (v, w)
Input: Graph G = (V,E), label zv , neighbor vertex w, priority queue K, total set of efficient

labels Z, set of lower bound cost vectors C
Output: Potentially updated priority queue K

1: function PROPAGATE(G, zv , w, K, C)
2: e  getEner g yCost(v, w)
3: if not isEner g yFeasible(e(zv) + e) then
4: return K
5: end if
6: zc

f  ( f , c(zv) + c + cw, None, None)
7: if not Z f � zc

f then
8: c  getEd geCost(v, w)
9: zw  (w, c(zv) + c, e(zv) + e, p(zv).append(w))

10: if not Z f � zw then
11: if not Zw � zw then
12: if w /2 K then
13: K K.inser t(zw)
14: else if zw lexicographically smaller than kw then
15: K K.remove(w)
16: K K.inser t(zw)
17: end if
18: end if
19: end if
20: end if
21: return K
22: end function

Algorithm 10 begins by computing the energy consumption for (v, w) in line 2. In lines 3-5,
the algorithm checks if the energy consumption of the extended label exceeds the maximum
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energy consumption, thus making the path infeasible. In that case there is no need to propagate
further, and the priority queue is returned with no modifications. If the extended label is energy
feasible, lower bound pruning is performed in lines 6-7. If the lower bound cost label is not
dominated or equaled, the actual label is extended along the edge (v, w), as shown in lines
8-9. Line 10 checks if the extended label zw is dominated by the efficient label set of the end
vertex Z f , and line 11 checks if zw is dominated by the efficient label set of the vertex w, Zw.
If any of these apply, zw should not be added to the priority queue K. However, if zw is not
dominated, the label is potentially a part of a Pareto optimal path. Since the priority queue K
at any point in the MDA only should store the lexicographically smallest candidate label for a
given vertex, the next step is to check whether or not vertex w is in the priority queue K, and
modify K accordingly. This is done in lines 12-17. Lastly, the algorithm returns the modified
priority queue K in line 21.
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D Overview of Input Parameters

This appendix presents the input parameters used in the computational study, and is partially
based on work done in our preparatory research project. Section D.1 describes the parameters
of the urban environment, Section D.2 explains the UAV parameters, Section D.3 details the
objective model parameters and Section D.4 presents the parameters used in the HEA solution
method. Note that this appendix uses the same naming convention as in the computational
study; HEAC denotes the complete algorithm, HEAF refers to running HEA with isS ystem =
False and HEAT refers to all remaining parts of HEAC when omitting HEAF. Also note that
the values for the parameters that are modified in the computational study are explained in
Section 8.1, and they are thus not explained again in this appendix.

D.1 Urban Environment Parameters
Table D.1 shows the parameters used to create the urban environment. While the first four
parameters are independent of the environment, the minimum and maximum longitudes and
latitudes depend on the chosen environment. The computational study uses Stavanger, a city
on the south-west coast of Norway, as a case study. We chose an actual city, as opposed to
a fictional one, to get a more realistic computational study and to simplify the information
gathering, as we do not possess enough prior knowledge to design a realistic city from scratch.
Stavanger is the third largest city in Norway by population (Statistisk Sentralbyrå, 2021), and
a test arena for emergency medical UAVs by the AiRMOUR project (Stavanger kommune, n.d.).
The outermost coordinates of the environment used correspond to an area of 4.97 km west-east
and 2.60 km south-north. The area is the most urban part of Stavanger, and includes the city
center, a hospital and nature areas such as parks and lakes. Note that any urban environment,
real or fictional, could have been used as the basis for the computational study in this thesis,
and the solution method does not depend on the city of Stavanger in any way.

The city of Stavanger is discretized into a graph for the UAVs to fly in, with the length of a grid-
line between gridline intersections, L, set relatively small to obtain more realistic and smooth
UAV paths. Data about no-flight zones is obtained using the map from Safe To Fly (n.d.), which
collects data from different external sources to provide a complete map of no-flight zones in
Norway. On the ground, there is a separate set of ground squares. Each ground square is as-
signed an altitude above sea level, a population and a sheltering factor. Data about altitudes
above sea level is found by combining coordinate data from OpenStreetMap (n.d.) with alti-
tude data from Topographic Map (n.d.). To assign ground squares with a population Qg , we
use data from Statistisk Sentralbyrå (2022), containing the population for squares with a side
length 250 meters. The population is distributed evenly for all the ground squares within each
250x250 meter square. Topological data for the sheltering factor is obtained from OpenStreet-
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Table D.1: Overview of parameters values for the urban environment.

Parameter [unit] Description Value

� Ground square side length multiple of L 10

HG,Max [m] Maximum allowed flight altitude above ground 120

HG,Min [m] Minimum allowed flight altitude above ground 60

L [m] Length of gridline between gridline intersections 10

x Max [�] Maximum longitude in environment 5.767408712025858

x Min [�] Minimum longitude in environment 5.680502674393980

y Max [�] Maximum latitude in environment 58.974277855489525

y Min [�] Minimum latitude in environment 58.950793750000000

Map (n.d.). This source contains data as a set of coordinate points with an associated area
category, e.g. buildings such as schools, malls and residential homes, and recreational areas
such as parks, beaches and market squares. The sheltering factor Fg is then assigned using
the classification for various urban areas displayed in Table D.2, which we developed in our
preparatory research project based on work by Primatesta et al. (2020).

Table D.2: Overview of sheltering factor classification in different areas.

Area characteristics Sheltering factor, Fg

Open area, no shelter 0.01

Small constructions, e.g. public toilets or telephone booths 0.15

Small buildings, e.g. garages or gazebos 0.30

Dense forests or large constructions, e.g. bridges 0.50

Residential buildings 0.60

Industrial or public buildings 0.90

The minimum allowed flight altitude above ground, HG,Min, is set to 60 meters, based on
conversations with an EHang representative during an AiRMOUR demonstration in Stavanger,
discussed in Appendix A.2. The value of the maximum allowed flight altitudes above ground,
HG,Max , is based on the UAV regulations applicable in Norway as of May 2023 (European
Commission, 2019a). The regulations state that a UAV cannot fly above 120 meters from the
closest point on the Earth’s surface, unless it is flying over an artificial obstacle. In such cases,
the UAV is allowed to fly 15 meters above the obstacle within a horizontal distance of 50 meters
from the obstacle. In the specific case study of Stavanger, the last part of the regulation does
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not apply as the tallest building in Stavanger is 78 meters tall (Visit Norway, 2022). Thus, the
maximum flight altitude is set to 120 meters everywhere in the graph.

D.2 Unmanned Aerial Vehicle Parameters
The UAV parameters are presented in Table D.3. The two UAVs used in the computational study
are a passenger UAV based on the EHang 216 Autonomous Aerial Vehicle (EHang, 2016) and
a delivery UAV based on the Amazon Prime Air UAV (Amazon, 2022). Many of the parameters
of the Amazon Prime Air UAV are based on the analysis done by Jung and Kim (2017). Since
only two UAV types are used, the UAV index u is omitted from the parameters in Table D.3.

The weight, W , the length, M L , and the speed, V , of the UAVs are set using information about
the above-mentioned UAVs. W Max is set to 100 kg and 500 kg for the delivery and passenger
UAV, respectively, which we consider fair values based on the weights of the two UAV types.
As described in Section 2.5, the mean time between failures, T F , varies depending on e.g. the
weight, battery capacity and size of the UAV. In this thesis the value of T F is based on the
failure analysis performed by Lin and Shao (2020) on UAVs with vertical takeoff and landing,
and assumed equal for the two UAV types. For simplicity, the glide angle, AG , is set to 90� for
both UAV types, i.e. the UAVs fall vertically straight down in case of malfunction or collision.
The service time TO

i is set to 30 seconds for both UAV types for all vertices i. We consider
this to be a fair estimate for delivery UAVs taking into account their speed and the fact that
all locations are defined to be at the minimum allowed flight altitude above ground, resulting
in equal vertical traversal distances. For simplicity, we use the same value for the passenger
UAVs, although in reality, potential boarding and disembarking is likely to take more time.

As described in Section 2.1, energy consumption depends on a number of internal and external
factors. Thus, the energy specific parameters vary greatly depending on UAV characteristics.
The energy capacity, EMax , is set based on values of the Amazon Prime Air UAV and the EHang
216 UAV. It is challenging to obtain information about the remaining energy specific para-
meters, and we make the simplification that the weight of the UAV is the only UAV-specific
factor affecting these parameters. Consequently, the remaining energy parameters are equal
for the two types of UAVs, since they are given in a per-weight unit. The value of the energy
consumed per kilogram per unit of time when the UAV is in active mode, EW , is based on
an average between the energy consumed for the Amazon UAV at maximum speed and when
hovering (Jung & Kim, 2017). As stated in Section 2.1, energy consumption increases with
flight altitude. For simplicity, we assume a linear relationship between the energy consumed
and each additional meter above sea level. The value of the energy consumed traveling hori-
zontally per kilogram per meter above sea level per unit of time, EA, is obtained from Majeed
et al. (2020). To obtain the energy consumed traveling an edge vertically downwards, ED, and
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Table D.3: Overview of parameter values for UAV characteristics. The UAV index u is omitted in
the leftmost column in the table since only one type of delivery UAV and one type of passenger
UAV are used in the computational study.

Parameter [unit] Description Delivery Passenger

AG [�] Glide angle of the UAV 90 90

AM [�]
Angle between the UAV, the measurement device
and the horizontal when the SPL was measured

30 90

DM [m]
Distance between the UAV and the measurement
device when the SPL was measured

1 10

EA [J/(kg·m·s)]
Energy consumed traveling horizontally per
kilogram of weight per meter above sea level per
unit of time

0.3237 0.3237

ED [J/(kg·m·s)]
Energy consumed traveling vertically downwards
per kilogram of weight per meter above sea level
of the starting height per unit of time

0.3237 0.3237

EMax [J] Energy capacity of the UAV 1.322 · 106 91.8 · 106

EU [J/(kg·m·s)]
Energy consumed traveling vertically upwards per
kilogram of weight per meter above sea level of
the starting height per unit of time

1.619 1.619

EW [J/(kg·s)] Energy consumed per kilogram of weight per unit
of time when the UAV is in active mode

553.3 553.3

M L [m] UAV length 1.15 5.64

MS [dB] SPL of the UAV measured by measurement device 90 90

T F [h] Mean time between failures for the UAV 100 100

TO* [s] UAV service time 30 30

V [m/s] UAV speed 16.67 27.78

W [kg] UAV weight 3.8 360

W Max [kg] Weight baseline in relation to risk for the UAV 100 500

*Vertex index i omitted since the parameter value is the same for all vertices.

upwards, EU , per kilogram per meter above sea level of the starting altitude of the edge per
unit of time, we use the fact that it was found to be five times more energy consuming to fly
vertically upwards than downwards (Abeywickrama et al., 2018). ED is assumed to equal the
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energy consumption of flying horizontally in the starting altitude of the edge, i.e. ED = EA.
Hence, EU = 5 · ED = 5 · EA.

Similar to the energy parameters, there was hardly any specific data available concerning the
noise pollution of different types of UAVs. For the passenger UAV, the sound pressure level
measured by a measurement device, MS , is set equal to the values from a measurement of the
EHang 216 UAV (Transport Up, 2019). However, angle and distance information about the
measurement was not stated. Therefore, the angle between the UAV, the measurement device
and the horizontal, AM , and the distance between the UAV and the measurement device, DM ,
are assigned values we found reasonable based on common sense and some test calculations
with different values of the parameters. For the delivery UAV, the values of MS , AM and DM

are based on noise measurements of two different multicopters, DJI Inspire 2 and DJI S-900
(Schäffer, Pieren, Heutschi et al., 2021). When assigning these values, we have ensured a
plausible relationship between the noise of the passenger and the delivery UAVs.

D.3 Parameters of the Objectives
Table D.4 gives an overview of the parameters of the objectives. To estimate the lethal area
of the UAVs in the risk model, we need, in addition to data about UAV characteristics, the
payload and the glide angle, the average height of a person, HP . HP is set to 1.735 meters,
which corresponds to the average height of a Norwegian (Statistisk Sentralbyrå, 2012). The
values for CR,Low and CR,Mid are set using the work by Dalamagkidis et al. (2008).

In the visual pollution model, CV,1 and CV,2 take the same values as in the study by Thomas
(2022), which the visual pollution model uses as a starting point. To calculate the cut-off dis-
tance for visual pollution DV

u , we have to set a parameter value of DE , which denotes the
distance from an observer’s eye to a measurement device used to measure the size of a flying
UAV. We set the value of DE to 0.5 meters, corresponding to the observer measuring a UAV
with a ruler at an arm’s length distance. DV

u is found by taking the minimum of the calculated
distance from equation (6.7) and 1000 meters. This is due to the fact that for distances ex-
ceeding 1000 meters, we assume that there will be buildings or other objects that block the
view of the UAV for a potential observer.

For the noise pollution model, we need to set the value of O, which denotes the decrease
in sound pressure level per degree decrease in the angle between the UAV, the measurement
device and the horizontal. As described in Section 2.7, the sound pressure level decreases
almost linearly with change in angle. By considering empirical research on UAVs at different
frequencies and choosing a midpoint (Heutschi et al., 2020; Treichel & Körper, 2019), the
sound pressure level can be said to change with approximately 8 dB depending on the angle
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Table D.4: Overview of parameter values needed for calculation of the objectives.

Parameter [unit] Description Value

↵
Factor for maximum reduction in mean time between falldowns
due to the possibility of collisions

0.5

� Discount factor for the system perspective visual pollution model 0.7

� [s] Length of time interval regarded as simultaneous UAV impact 5

CG [m/s2] Acceleration of free fall 9.81

CR,Low [J]
Required energy at impact to cause a fatality as the sheltering
factor, Fg , goes to zero

106

CR,Mid[J]
Required energy at impact for a fatality probability of 50% with
the sheltering factor Fg=0.5

100

CV,1 Constant used in the visual pollution model 47.757

CV,2 Constant used in the visual pollution model 0.678

DE [m]
Distance between ruler and eye when measuring perceived UAV
size

0.5

DMax [m] Collision risk threshold 45

DMin [m] Minimum distance between two UAVs to avoid collision 15

HP [m] Average height of a person 1.735

O [dB/�]
Decrease in SPL per degree decrease in angle between the vertex
the UAV is located in, the measurement device and the horizontal

0.09

p0 [Pa] Reference level for sound pressure 2 · 10�5

RN [dB] Threshold for noise pollution 55

RN ,Red [dB]
Reduction in threshold for noise pollution to find affected ground
squares in system perspective

10

RV [m] Threshold for visual pollution 0.005

AM , when AM is between 0� and 90�. For modeling purposes, we can hence say that the sound
pressure level decreases by 8 dB

90� = 0.09 dB per degree decrease in the angle AM . RN ,Red , which
is used to find the affected ground squares in the system perspective, is set to 10 dB. RN ,Red

should be set high enough to ensure that the set of affected ground squares includes all ground
squares that experience noise pollution above RN when considering the combined SPL of the
UAVs in the system. At the same time, a lower value of RN ,Red speeds up the solution method,
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because it results in less calculation. As described in Section 6.5, a 10 dB increase is experienced
as twice as loud. With the equations presented in Section 6.5, one would need 10 UAVs with
the same SPL within the same time interval to make the simultaneous noise pollution from the
UAVs 10 dB higher, and we hence believe setting RN ,Red to 10 dB is a fair value.

D.4 Solution Method Parameters
The HEA solution method contains several parameters that have to be set, both in relation to
the NSGA-III and the ACO. Table D.5 shows the values selected for these parameters for HEAT

and HEAF. The parameters of the ACO have a high degree of interdependence, exemplified
by the pheromone decay rate ' and the number of ants A. A high pheromone decay rate is
needed to ensure diversity in the paths found by the ants if the number of ants are low. With a
large number of ants, diversity is already covered and thus a lower value for the decay rate is
sufficient. Thus, the values of the ACO parameters cannot be decided in isolation, and we have
found suitable values by systematically testing various combinations of the parameters to strike
a balance between solution quality and runtime efficiency. We have looked at the parameter
values proposed by Colorni et al. (1991), Dorigo and Gambardella (1997), Ntakolia and Lyridis
(2022) and Xie et al. (2022) for guidance.

In contrast to the ACO, the NSGA-III parameters are fairly independent. We have set quite
low values for the percentage improvement thresholds, cMin, to ensure that the algorithm
continues as long as it can make significant improvements, but without the need for complete
convergence, to keep the runtime manageable. The percentage has been set higher for HEAF

than HEAT, since HEAF is only used as a preprocessing step. The higher percentage criteria for
HEAF also makes it natural to set a higher minimum number of iterations, I Min, for this part
of HEAC. The preprocessing aspect is also the reason why the population size, N , for HEAF has
been set smaller than for HEAT, and why the number of flight plans to return, M , is set equal to
N for HEAF. The number of objective axis divisions d for the reference point generation have
been set based on values proposed by Deb and Jain (2014). Since we set M = 5 for HEAT, the
five system flight plans returned from HEAC correspond to the ones with minimum values for
each objective, in addition to the one that does best when all objectives are normalized and
weighted equally. If the same system flight plan has the lowest value for multiple objectives, the
second best system flight plan for one of the objectives is chosen until all five system flight plans
are unique. The threshold for randomly selecting a parent from the entire population, pSel , is
set to 0.8. This means that selecting parents from the entire population happens on average
for 20% of the offspring in each iteration, which we consider to be a reasonable degree of
randomness.
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Table D.5: Overview of the values for the solution method parameters used in HEAF and HEAT.
The values above the horizontal line in the table refer to ACO parameters, while the parameters
below the horizontal line refer to NSGA-III parameters.

Parameter [unit] Description HEAF HEAT

"
Constant used to calculate the probability of
selecting next vertices in ACOMut and ACOInit 1 1

µ0
Initial pheromone value per edge in ACOMut and
ACOInit 10 10

⇢
Pheromone evaporation rate in ACOMut and
ACOInit 0.5 0.5

' Pheromone decay rate in ACOMut and ACOInit 0.7 0.7

!
Constant used to calculate the probability of
selecting next vertices in ACOMut and ACOInit 7 7

AInit Number of ants in ACOInit 4 · |Su| 4 · |Su|

AMut Number of ants in ACOMut 4 4

I Ini t Number of iterations in ACOInit 6 6

I Mut Number of iterations in ACOMut 5 5

PInit Number of paths to return from ACOInit 10 10

PMut Number of paths to return from ACOMut 1 1

Q
Amount of pheromone carried by each ant in
ACOMut and ACOInit 1 1

cMin [%] Percentage improvement threshold 2 1

d
Number of divisions along each objective axis
for reference point generation

4 6

I Min Minimum number of iterations 10 5

M
Number of flight plans/system flight plans to
return

10 5

N Population size 10 30

pMut Threshold for performing a mutating crossover 0.8 0.8

pSel Threshold for randomly selecting a parent from
entire parent population

0.8 0.8

In the "Description" column we have ACOMut: ACO used for mutating crossover, ACOInit: ACO used for initial

parent population generation.




	Preface
	Abstract
	Sammendrag
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Background
	Unmanned Aerial Vehicle Characteristics
	Energy Consumption

	Unmanned Aerial Vehicle Use Cases
	Commercial
	Medical

	Laws and Regulations
	The Urban Environment
	Risk
	Air Risk
	Ground Risk

	Visual Pollution
	Noise Pollution

	Literature Review
	Search Strategy
	Problems
	Model Elements
	Multi-Objective Optimization

	Environments
	Vehicles
	Solution Methods
	Evolutionary Algorithms
	Problem-Specific Heuristics
	Problem-Specific Exact Methods
	Mathematical Programming
	Other Methods

	Literature Overview
	Gaps in the Literature
	Our Contribution


	Problem Description
	Mathematical Model
	Model Description and Assumptions
	Definition of Sets, Parameters and Decision Variables
	Sets
	Parameters
	Decision Variables

	Objective Functions
	Constraints
	Flow Constraints
	Time Constraints
	Collision Avoidance Constraints
	Energy Consumption Constraints
	Binary and Non-Negativity Constraints


	World and Objective Models
	Environment Model
	Energy Consumption Model
	Risk Model
	Single Unmanned Aerial Vehicle Perspective
	System Perspective

	Visual Pollution Model
	Single Unmanned Aerial Vehicle Perspective
	System Perspective

	Noise Pollution Model
	Single Unmanned Aerial Vehicle Perspective
	System Perspective


	Solution Method
	Hybrid Evolutionary Algorithm
	Non-Dominated Sorting Genetic Algorithm III
	Ant Colony Optimization Subroutine

	Exact Method for Evaluation
	Multi-Objective Dijkstra’s Algorithm


	Computational Study
	Input
	Modified Parameters

	Hypotheses and Test Instances
	Hypotheses
	Test Instances

	Exact Method Comparison
	Implications of Perspective: Single versus System
	Runtime Results
	Importance of Components, Operators and Parameters of the Hybrid Evolutionary Algorithm
	Stability of the Hybrid Evolutionary Algorithm
	The Ground Square Size Trade-off
	System Behavior
	Interplay Between Objectives and Unmanned Aerial Vehicles
	Effect of Modifying World and Objective Model Parameters

	Discussion
	The Hypotheses Reviewed
	Beyond the Skies: The Bigger Picture


	Concluding Remarks
	Future Research
	Bibliography
	Appendices
	AiRMOUR Studies
	AiRMOUR Citizen Questionnaire, Norway February 2022
	AiRMOUR Demonstration, Stavanger September 2022

	Overview of World and Objective Models
	Energy Consumption Model
	Risk Model
	Visual Pollution Model
	Noise Pollution Model

	Multi-Objective Dijkstra's Algorithm
	Selection of the Next Candidate Label
	Propagation

	Overview of Input Parameters
	Urban Environment Parameters
	Unmanned Aerial Vehicle Parameters
	Parameters of the Objectives
	Solution Method Parameters



