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Abstract

Developing a cost-efficient feeding plan that maximizes milk production is an important aspect of

dairy farming. However, the feeding planning process is complicated by factors such as limited

ingredient availability, uncertain nutritional content in ingredients, changing nutritional require-

ments of the dairy herd, and the trade-off between high feed quality and low costs. To address

these challenges, this thesis presents the Stochastic Cattle Feeding Planning Problem (SCFPP).

The aim is to investigate the value of using mathematical optimization to support farmers when

determining a feeding plan. The SCFPP is formulated as a two-stage stochastic problem, taking

uncertainty related to the content of the silage bales into account. The first-stage decisions decide

which silage bales to use every day during the planning horizon, and are made when the actual

content of each silage bale is unknown. The second-stage decisions are taken on the day of usage

when the actual content of the silage bale is known. These decisions decide the combination of

silage and feed concentrate for the daily feed compositions and aim to create feed compositions

that satisfy the daily requirements of the dairy herd. The problem aims to both minimize costs

and ensure correct and stable quality in the feed compositions. These two objectives are combined

using a weighted-sum.

A literature review is conducted to get a broader understanding of the existing literature on diet-

and blending problems with similar problem structures, as well as existing literature within the

agricultural industry. Through this literature review, we identify three gaps in the literature that we

address in this thesis. Firstly, while previous studies primarily focus on minimizing costs, our thesis

addresses the trade-off between cost and feed quality. Secondly, this thesis incorporates factors

such as limited feed availability, uncertain quality of ingredients, changing feeding requirements,

and inventory management to the feeding problem. By doing so, we combine operational and

tactical aspects to a greater extent than what has been done in previous literature. Lastly, by

formulating the feed planning problem as a two-stage stochastic problem and solving it using the

L-shaped method, we provide a novel approach to addressing the uncertainty in the problem.

The preparatory project to this thesis (Fosen & Nygaard, 2022) revealed that the Cattle Feeding

Planning Problem (CFPP) is computationally heavy to solve. As the SCFPP is a continuation of

this model where uncertainty is included, the L-shaped method is proposed as a solution method to

improve the efficiency of the model. The L-shaped method is further accelerated by using the multi-

cut version, adding a Two-Phase approach, generating Pareto-optimal cuts, and approximating

the master solution. The computational results reveal that this accelerated L-shaped method

outperforms the standard Gurobi solver in most cases and is able to achieve a gap smaller than

10% for instances where the Gurobi solver achieves 100% optimality gap.

The computational results of the SCFPP also demonstrate how the model may be used as a valuable

tool for decision-making. Investigating the value of planning with uncertainty reveals that the

stochastic model finds solutions with lower costs and improved quality of the meals, compared to



a deterministic approach. Furthermore, when resources are limited, planning for a longer horizon

results in a more even distribution of the available ingredients. The computational results also

illustrate that the prioritization of cost and quality has a considerable impact on the optimal

feed compositions. This highlights the challenges associated with balancing the two objectives and

demonstrates the value of a tool that allows the decision-maker to adjust the prioritization between

them.

The SCFPP successfully demonstrates how mathematical optimization can be useful for farmers

when determining feeding plans for dairy cattle. Although further research and development of

the model is required to utilize it in a real-world scenario, it makes a valuable contribution to

the existing literature within the field of farming optimization. We believe this work serves as an

important starting point for future research in this area.



Sammendrag

Valg av fôringsstrategi har en stor p̊avirkning p̊a b̊ade melkeproduksjonen og det økonomiske res-

ultatet til en melkeg̊ard. Det er imidlertid flere faktorer som kan gjøre det utfordrende å utvikle

en god fôringsplan. Noen av disse utfordringene er knyttet til en stor variasjon i næringsbehovene

til dyrene, begrenset tilgang p̊a ingredienser, usikker kvalitet p̊a ingrediensene, og en balanse

mellom fôrkvalitet og kostnader. For å adressere disse utfordringene, presenterer vi i denne mas-

teroppgaven et planleggingsproblem for fôring av melkekyr (Stochastic Cattle Feeding Planning

Problem (SCFPP)). Form̊alet er å undersøke verdien av å bruke optimering til å utvikle en god

fôringsplan. Problemet er formulert som et to-stegs stokastisk problem som inkluderer usikkerhet

knyttet til innholdet i rundballer. Beslutningene i første steg bestemmer hvilke rundballer som skal

brukes p̊a hvilken dag i planleggingshorisonten. Disse beslutningene tas n̊ar det faktiske innholdet

i rundballene er usikkert. Beslutningene i andre steg tas n̊ar usikkerheten er realisert og det fakt-

iske innholdet i rundballene er kjent. Disse beslutningene bestemmer hvordan man kan kombinere

surfor og kraftfor til fôrsammensetninger som tilfredsstiller de daglige kravene til melkekyrene.

Problemet har som m̊al å minimere kostnadene og sørge for at kvaliteten p̊a fôret holdes p̊a et

riktig og stabil niv̊a. Disse to objektivene kombineres ved hjelp av en vektet sum.

Et litteraturstudie er gjennomført for å f̊a innsikt i eksisterende forskning p̊a diettproblemer og

relevant litteratur innen jordbruksindustrien. Gjennom dette litteraturstudiet identifiserer vi tre

omr̊ader som tidligere forskning ikke dekker, og som vi tar sikte p̊a å addressere i denne masteropp-

gaven. For det første, mens tidligere studier hovedsakelig har fokusert p̊a kostnadsminimering, tar

v̊ar modell hensyn til b̊ade kostnad og fôrkvalitet, og utforsker balansen mellom disse to faktorene.

For det andre inkluderer v̊ar modell faktorer som begrenset fôrtilgang, usikkerhet knyttet til in-

nholdet i rundballer, variasjoner i ernæringsmessige krav hos dyrene og aspekter knyttet til lager-

styring. S̊a langt vi vet, har disse faktorene ikke blitt kombinert tidligere. Til slutt, ved å formulere

fôrplanleggingsproblemet som et to-stegs stokastisk problem, presenterer vi en ny tilnærming for

å h̊andtere usikkerheten i problemet.

SCFPP er et komplekst problem og vi benytter derfor L-shaped metoden for å løse modellen mer

effektivt. Denne metoden er utforsket i kombinasjon med ulike aksellerasjonsmetoder som for ek-

sempel å legge til flere kutt for hver iterasjon, å dele løsningsmetoden inn i to steg, å generere

Pareto-optimale kutt og å approksimere løsningen p̊a masterproblemet. Resultater fra beregn-

ingsstudiet viser at den aksellererte L-shaped metoden lykkes i å forbedre effektiviteten til model-

len, og klarer å oppn̊a et optimalitetsgap p̊a 10% i tilfeller der Gurobi oppn̊ar et gap p̊a 100%.

Analyser for å undersøke verdien av å bruke SCFPP som et beslutningsverktøy innen fôring er ogs̊a

gjennomført. Resultater fra analysene viser at den stokastiske modellen, SCFPP, finner løsninger

som b̊ade gir lavere kostnader og bedre kvalitet p̊a fôret sammenliknet med en deterministisk

modell. I tillegg viser resultatene at man oppn̊ar en jevnere fordeling av begrensede ressurser ved

å forlenge planleggingshorisonten. Videre viser analysene at prioriteringen av kostnad og kvalitet



p̊avirker de optimale fôrsammensetningene, noe som demonstrerer verdien av et verktøy som lar

beslutningstakeren prioritere mellom disse objektivene.

Denne masteroppgaven lykkes i å vise hvordan optimering kan være nyttig for melkebønder n̊ar

en fôringsplan skal lages. Selv om videre utvikling er nødvendig for å kunne ta modellen i bruk i

virkeligheten, mener vi at arbeidet er et godt utgangspunkt for fremtidig forskning.
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Chapter 1

Introduction

Agriculture is an important industry in Norway, providing the country with milk, meat, cereals,

and vegetables. With increased geopolitical uncertainty and supply disruptions due to climate

issues, domestic food production has gained further importance (Regjeringen, 2021). According

to SSB (2022), there are approximately 38 000 agricultural enterprises in the country today, and

around 6 700 of these are farms that engage in milk production (Opplysningskontoret for Meieri-

produkter, 2022). The dairy sector has achieved high self-sufficiency, surpassing 98% in 2022

(Landbruksdirektoratet, 2022), making it an important contribution to Norway’s food production

and security.

Planning and decision-making within the agricultural industry have traditionally been based on

experience. However, with technological advancements, there has been an increasing adoption of

innovative production and automation systems, which has stimulated the need for decision support

systems based on mathematical optimization. This has resulted in a significant increase in research

within this field (Glen, 1987). Some researchers focus on strategic decisions related to investments

in technology, and decisions related to optimal harvesting strategies (Crabtree, 1981; Moghaddam

& DePuy, 2011). Others address tactical problems related to the allocation of feeding resources

(Bellingeri et al., 2020; Meyer & Newett, 1970; Notte et al., 2020; Polimeno et al., 1999), or

operational decisions related to developing optimal feed compositions for animals (Dean et al.,

1969; Goswami et al., 2013; Gupta et al., 2013; Rahman et al., 2015; Zhang et al., 2021).

This thesis focuses on both tactical and operational decisions related to the feeding planning process

within dairy farming. According to TINE R̊adgivning (2012), animal feeding is associated with a

large part of the total costs within milk production, and the choice of feeding strategy consequently

has a large impact on the financial result for a dairy farm. In addition, a well-designed feeding

strategy that meets the specific nutritional requirements in each stage of a cow’s life cycle can im-

prove milk production, reproductive performance, and overall animal health. However, the feeding

planning process is complicated by several factors. These include changing nutritional require-

ments of the dairy herd, limited availability of ingredients such as silage bales and uncertainties

related to their nutritional content, and the balance between cost-efficiency and high feed quality.

Determining and planning a good feeding strategy is therefore an important and challenging task

for the dairy farmer, and advanced decision support systems can be important for streamlining

the process, optimizing resource allocation, and improving the cost efficiency and quality of the

animal feed.

In this thesis we formulate and study the Stochastic Cattle Feeding Planning Problem (SCFPP).

1



The purpose is to investigate the value of using mathematical optimization to support dairy farmers

in developing feeding plans. The primary focus of the problem is to determine how to distribute a

limited number of silage bales over a planning period, and how to use them in combination with

feed concentrate to create high-quality and cost-effective meals for dairy cattle. Building upon the

deterministic Cattle Feeding Planning Problem (CFPP) studied in the preparatory project by Fosen

and Nygaard (2022), this thesis extends the problem formulation by incorporating uncertainty

related to the dry matter and nutritional content in silage bales. The hypothesis driving this

research is that considering this uncertainty when making feeding plans for dairy cows can lead to

cost savings and an overall improvement in feed quality.

The purpose of this thesis is to be achieved through three goals. In the preparatory project for

this thesis (Fosen & Nygaard, 2022), the CFPP proved to be computationally heavy to solve.

Therefore, the first goal is to develop a solution method capable of effectively addressing the high

computational complexity of the SCFPP, which becomes more challenging when uncertainty is

introduced. The second goal is to demonstrate the value of planning for a longer time horizon

while considering uncertainty when developing a feeding plan for dairy cattle. Lastly, the third

goal is to investigate the trade-off between cost and quality and develop a model that enables

farmers to prioritize between cost and quality when developing a feeding plan.

Through this research, three significant contributions are made to the existing literature. Firstly,

while prior studies within feeding planning primarily focus on cost minimization, this thesis in-

troduces a multi-objective model that addresses the trade-off between quality and cost. Secondly,

it improves the integration of tactical and operational decisions by incorporating aspects such as

limited feed availability, uncertain ingredient quality, changing feeding requirements, and inventory

management to the traditional feeding problem. To the best of our knowledge, simultaneously ad-

dressing these aspects is not explored in the existing literature. Lastly, by formulating the model

as a two-stage stochastic model and solving it using the L-shaped method, we provide a novel

approach to addressing uncertainty within feeding planning.

The thesis is written in collaboration with SINTEF, one of Europe’s largest independent research

organizations, and T. Kverneland & Sønner AS (TKS), a Norwegian producer of advanced farming

equipment. TKS is currently developing a platform for automated feeding logistics for animal

farms, where SINTEF is engaged to develop optimization models needed for the automated solu-

tion. As an established player in the agricultural industry, TKS has contributed with deep industry

knowledge and an understanding of the current challenges faced by farmers. Meanwhile, SINTEF’s

expertise in optimization, including their experience within the farming domain, has provided valu-

able insights to this thesis. The collaboration with SINTEF and TKS has been an important part

of defining the problem, and regular discussions and knowledge exchange has served as important

foundations for this thesis.

The thesis is structured as follows. Chapter 2 introduces the cattle feeding process, and provides

necessary background information about dairy cattle feeding requirements, ingredients, and feeding

supply chain logistics and challenges. Chapter 3 presents the reviewed literature and positions the

SCFPP in this context. In Chapter 4, we provide an in-depth description of the problem, and

the mathematical model used to solve the problem is presented in Chapter 5. Subsequently,

Chapter 6 introduces the solution- and evaluation methods used. In Chapter 7, the data sets and

parameters generated to test the model are introduced, before Chapter 8 presents and discusses the

computational results of our study. Lastly, concluding remarks and future research are presented

in Chapter 9.

2



Chapter 2

Background

This chapter introduces the necessary background information for this thesis. The content in this

section builds upon the findings from the preparatory project of this thesis (Fosen & Nygaard,

2022), supplemented with additional relevant information. A major part of the insights presented

in this chapter is derived from discussions with our industry partners, SINTEF and TKS, who

possess valuable knowledge within the field. Furthermore, an increased understanding of the

dairy industry’s perspective and challenges is gained through interviews with TINE. To ensure a

thorough understanding of the topic, we also contacted a farmer, who shared practical knowledge

and experiences from an on-the-ground point of view. Additional insights are gathered from

online research and research articles to obtain additional insights and ensure a comprehensive

understanding of the problem.

First, Section 2.1 presents important characteristics within the dairy cattle feeding process. This

includes an introduction to the general feeding requirements for dairy cattle, an introduction to

the animal dynamics, and lastly a presentation of relevant ingredients. Thereafter, the feeding

supply chain for dairy cattle is described in Section 2.2. Lastly, some of the main challenges when

determining a feeding strategy are presented in Section 2.3.

2.1 Animal Feeding Characteristics

The following section presents characteristics that are important to understand within the dairy

cattle feeding process. This includes an introduction to the general feeding requirements of dairy

cattle, an overview of the dairy cattle’s lifecycle and how this impacts the feeding requirements, as

well as a description of ingredients used to construct daily feed compositions.

2.1.1 Feeding Requirements

Cattle are rumen animals and consequently process food differently than other animals. An import-

ant distinction in a cattle’s digestive system is that the stomach has four separate compartments,

allowing cattle to digest grass or vegetation without completely chewing it first. This makes it

possible for cattle to convert vegetation into usable energy more efficiently than other animals.

The conversion is done by rumen microbes, which consist of fungi, bacteria, and protozoa that are

produced in the rumen part of the animal’s stomach. These microbes work together to break down

3



the feed and turn it into usable energy and protein. Providing a diet that ensures a high production

of rumen microbes is therefore an important aspect of cattle feeding to ensure a successful milk

production. This is done by providing a stable and consistent diet with feed compositions that

satisfies the daily requirements of the animals.

When determining feed compositions for the animals, it is important to provide the correct intake

of dry matter and nutrients. Ensuring a correct dry matter intake is important to obtain high milk

production, growth, reproduction, and body condition for the animals. Therefore, dairy cattle

typically have a target value, as well as an upper and lower limit of dry matter intake, usually

expressed in kg per day. The main determinant of dry matter in dairy cows is body weight, and

typically a dry cow, i.e a cow that is not lactating, has to consume dry matter corresponding to

2-3% of its body weight per day. For higher-producing lactating cows, a minimum amount of 4%

is often required. (Department of Agriculture, Fisheries and Forestry and Dairy Australia, 2013a).

In addition to dry matter intake, other nutritional requirements are essential to ensure optimal

production. Some important nutrients to consider are Neutral Detergent Fiber (NDF), energy,

sugar, and protein, and it is important to ensure a correct intake of these nutrients. A too high

intake may both affect cow health, and reduce the feed conversion efficiency, i.e the kg of milk

produced per kg of feed. At the same time, a too low intake may have a significant impact on milk

production, fertility and cow health (West et al., 1991). Therefore, dairy cattle often have a target,

upper and lower limit of the different nutrients. The intake of nutrients is dependent on the total

dry matter intake, and nutritional requirements are therefore often expressed per kg dry matter.

The feed composition requirements of dairy cattle strongly depend on the animal’s purpose and

phase, which is further discussed in Section 2.1.2.

For optimal rumen microbe growth and activity, it is important to provide dairy cattle with a

consistent diet with minimal changes. This is because rumen microbes take time to recover after

sudden feed changes, and may use up to six weeks to fully adjust to a change of feeds. (Department

of Agriculture, Fisheries and Forestry and Dairy Australia, 2013b) Thus, if the feed composition is

changed frequently, the rumen microbes will not be able to convert the feed into useable energy in

an optimal manner which affect the milk production and performance of the animal. It is therefore

crucial to keep the diet as stable as possible and make adjustments gradually if needed.

2.1.2 Animal Dynamics

Dairy cattle go through several phases during their life cycle, depending on their growth, lactation,

and gestation. The feeding requirements change in line with the phase the animal is in, and

providing a balanced diet that meets these changing requirements is challenging.

Table 2.1 summarizes some of the main phases that dairy cattle go through. Calf, Youngstock, and

Heifer are cows in the growth stage, that have not yet had their first calf. For these animals, it is

important to provide them with a diet that supports healthy growth. For instance, it is important

to feed calves with feed consisting of a high amount of protein, to support high muscle and skeletal

development. After the first calving, the cattle can go through phases five to eight several times.

This is referred to as the lactation cycle, which is the period between one calving and the next.

During the lactation period, i.e phase five to seven, the cows produce milk, and proper feeding

management is important to ensure high milk production and quality. Phase eight is the dry

period, where the cattle gather strength to begin a new lactation process. Managing the different

phases in the lactation cycle is important, as variations in milk production, feed intake, and weight
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of the animal have a significant impact on the feeding requirements. Figure 2.1 illustrates the four

cycles and the changes that occur. As the figure shows, the milk production is highest during the

first months of lactation, leading to higher feed requirements to support the production. Phase

nine represents cattle that do not fit into any of the other phases, i.e animals who are sick or not

lactating. The dynamics between the phases complicate the feeding logistics and make it difficult

for the farmer to predict future feeding needs.

Table 2.1: Overview of animal groups in a dairy farm including a description of when cattle

typically are in each phase.

Phase number Animal group Description

1 Calf < 6 months

2 Youngstock 6 months - first pregnancy (typically 17 months)

3 Heifer During first pregnancy (until calving)

4 In-calf cow During pregnancy (2nd time or more)

5 Lactation - early 0 - 75 days after calving

6 Lactation - mid 75 - 150 days after calving

7 Lactation - late > 150 days after calving

8 Dry Cow 0 - 65 days after finished lactating

9 Other Not specified

Figure 2.1: Variations in dry matter intake, milk production and body weight during lactation

cycle.

2.1.3 Ingredients

The feeding of dairy cattle is done by mixing ingredients into a meal that aim at satisfying the

daily feeding requirements of the animals. A typical feed composition consists of forage such as

hay, silage, and grains, supplemented with vitamins and minerals from feed concentrate. In this

thesis we focus on silage stored as bales and different types of feed concentrate.
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Silage Bales

Baled silage is forage that is baled at higher moisture than forage stored as dry hay. The hay is

fermented, which means that it is harvested green and preserved in a more-or-less airtight container

until being used. The goal of this preservation process is to maintain the nutritional quality of the

forage, allowing farmers to have a reliable source of feed for their livestock throughout the year.

If handled correctly, silage bales can offer high-quality feed that is both tasty and nutritionally

balanced for dairy cattle.

However, the quality of silage, in terms of both dry matter and nutritional content, may vary

greatly depending on several factors such as cultivation strategy, soil quality, weather conditions

and harvesting policy. Within the same field, there may be large variations in the quality and

content of the silage. This is shown in Figure 2.2, where the dry matter content of the silage

within a field is illustrated by a satellite image, showing the variation. In addition, handling,

wrapping, and storage conditions have a great impact on the fermentation process, affecting the

quality of the silage bales. Silage bales are sensitive to air exposure, and damages to the bale

wrap due to carelessness during transportation or storing may lead to mold and yeast in the silage,

significantly reducing its quality. This may even lead to the silage bale being useless to the farmer,

and TKS informs that around 20% of the silage bales that are considered useless are due to bad

wrapping.

Figure 2.2: Satellite picture of the field showing the variance in dry matter content. Red color

indicates a low dry matter content while green indicate high dry matter content. The picture is

received from TKS.

Furthermore, the quality of silage is perishable, and both the nutritional- and dry matter content

is reduced over time with a varying degree of deterioration. TKS estimates that a high-quality

silage bale typically has a loss of nutritional content of 0.5-1% every month, while a silage bale

with a less successful fermentation process may experience a loss of up to 10% every month. These

variations may make it difficult to accurately predict the nutritional content of a silage bale and

design an optimal feeding strategy.

To get an indication of the silage bales, farmers often perform a silage analysis 5-6 weeks after en-

siling, based on samples from the silage bale batch. This gives an expected value of the dry matter-

and nutritional content. However, the actual quality of the silage bale is often not discovered until

the day of usage, when the silage bale is opened.
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Feed Concentrates

Feed concentrates are feed additives that are rich in nutrients, such as protein, fiber, vitamins,

and minerals. They are often added to the feed composition as a supplement to forage and help

provide a balanced and complete diet for the animals. Feed concentrates play a crucial role in cattle

feeding, especially in cases where the forage is of lower quality with an insufficient concentration of

certain nutrients. The nutritional and dry matter content of feed concentrate is known and stable,

and it can be stored over a long period of time without deteriorating.

Feed concentrates are bought from the market, and are associated with a significantly high cost

compared to forage such as silage bales. Farmers can choose from a range of feed concentrates,

depending on the specific nutritional needs of the animals. For instance, some types of feed

concentrate are high in protein and suitable for growing or high-producing cattle. Others are

higher in fat and may be a good option if the focus is high content of fat in the milk.

The amount of feed concentrate used in each feed composition depends on various factors, includ-

ing the animals’ life cycle phase, level of production, and their specific nutritional requirements.

For instance, lactating cattle have higher nutritional requirements to support their milk produc-

tion, and therefore, a larger amount of feed concentrate is often needed to meet their needs and

ensure high-quality milk. On the other hand, when dealing with animals that are unwell or not

producing milk, the primary focus shifts to maintenance rather than production, resulting in a

smaller amount of feed concentrate needed to fulfill their nutritional needs. While feed concentrate

provides concentrated nutrients, it lacks certain essential components such as roughage, fiber, and

minerals that are necessary for proper digestion and overall well-being. Therefore, feed concentrate

alone cannot constitute the complete diet of a dairy cattle.

2.2 The Feeding Supply Chain

We have identified the main steps in the feeding supply chain of dairy cattle, illustrated in Fig-

ure 2.3. The goal of this section is to give a general description of the different parts of the supply

chain and the activities that occur in each step.

2.2.1 Production and Procurement of Ingredients

The first-stage in the animal feeding supply chain is the production and procurement of ingredients.

Silage is often self-grown in one or several fields. To produce high-quality silage bales, farmers need

to make strategic decisions regarding crop production. This involves choosing which crops to grow,

deciding when to plant them, determining the area to use for each crop, and whether or not they

should use fertilizer. However, uncertainties related to weather conditions, pests, and diseases can

complicate this planning process and greatly affect crop quality.

In addition, farmers must make tactical decisions related to harvesting schedules. Limited har-

vesting resources on the farm can make it difficult to harvest all crops at an appropriate time, and

farmers must decide how to best perform the harvesting operations to ensure the best quality silage.

Therefore, self-produced silage bales become available in batches at different times throughout the

year due to both harvesting seasons and schedules.

Feed concentrates are often bought in large quantities from the market. Different types of feed
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Figure 2.3: An overview of the feeding supply chain, illustrating the identified steps from production

and procurement to the feeding of cattle.

concentrate are available with varying nutritional content. When procuring feed concentrate,

farmers need to ensure that the purchased ingredients meet the specific requirements of the dairy

herd while keeping costs within budget.

2.2.2 Long-Time Storage of Ingredients

The second step in the supply chain is the storage of the ingredients. Silage bales are often long-

time stored on the field, inside a barn, or in another big storage unit. After the silage has been

rolled into bales, the bales should be transported to the long-time storage immediately to reduce

the risk of damaging the bales. The longer time it takes before the bales are moved, the less

firm they will be, and moving them may result in collapsed silage bales with significantly reduced

quality. The silage bales have to be stored in long-time storage for at least six weeks before they

are used. This is done for the conservation of the ingredients to be complete.

2.2.3 Kitchen Storage and Mixing

The area where the feed compositions are made is referred to as the kitchen. The number of

kitchens in a farm depends on the farm size, where larger, industrial, farms may have multiple

kitchens, while smaller to medium-sized farms usually only has one. Each kitchen typically has an

associated kitchen storage, as well as a mixing area. On the day of usage, the relevant silage bales

are moved to the kitchen storage, which is a storage close to the mixing area. The kitchen storage

has limited capacity and is intended for storing the silage bales that are planned used on a given

day. However, the feed concentrates are stored in the kitchens storage at all times.

In the mixing area, the ingredients for the feed compositions are mixed together by a mixing

machine. The silage bales are opened one by one and sequentially loaded into the mixing machine.

Feed concentrate is added in the end, before the feed composition is mixed together. After the

mixing, the meals are distributed to the relevant animals. This can be done manually or by an

8



automated feeding robot.

2.3 Challenges in Determining a Feeding Strategy

Determining a good feeding strategy can be challenging, and the farmer must manage a range of

complicating factors. In this section, we present some of the challenges a farmer experiences when

determining a feeding strategy for dairy cattle. We also discuss some of the strategies they may

use to overcome these challenges and develop a successful feeding plan.

2.3.1 Uncertain Nutritional Content of Ingredients

As described in Section 2.1.3, the actual dry matter and nutritional content of silage bales is

uncertain. This complicates the feeding planning process as it may be difficult to ensure that

the animals are receiving a correct and consistent diet. Today, farmers often use sample quality

analysis as a basis for planning feed compositions for the animals. However, due to both changes

in the nutritional content over time, and uncertainties in the quality of the individual silage bales,

these sample analyses are not reliable for determining the actual content of the silage bale. This

may lead to suboptimal feed compositions, which can lead to reduced production, milk quality,

appetite, and animal welfare. Therefore, farmers often have to readjust their feeding strategy after

they observe how the animals respond to the feed.

To limit the challenges related to uncertainty, farmers may take the potential variability in the

quality of silage bales into account when developing a feeding strategy. Moreover, individual silage

bales could be tested on a regular basis to get more accurate information about the nutritional

content. This may allow for supplementing the silage with other feed concentrates or adding

nutritional supplements to ensure that the animals are receiving all the necessary nutrients.

2.3.2 Resource Utilization Planning

Due to harvesting seasons and schedules, silage bales of different quality become available at

different times during the year. It is necessary to distribute these ingredients in such a way

that the daily feed intake satisfies the requirements for dry matter and nutritional content. For

instance, it might be suboptimal to use all silage bales with the highest quality at the beginning of

the planning period as this might lead to future feed compositions not satisfying the requirements.

Furthermore, this may lead to higher variations in the feed compositions over the planning horizon.

Tactical planning related to the distribution of ingredients over a given time horizon must therefore

be made. Several factors complicate these decisions. As described in Section 2.1.2, the animal dy-

namics complicate the feeding planning process as feeding requirements vary between the different

phases. As the animals evolve, the requirements change, making it difficult to plan the usage and

distribution of ingredients. In addition, uncertainties regarding the actual quality of silage bales

further complicate the planning process.
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2.3.3 Trade-off Between Cost and Quality

Another challenge in determining an optimal feeding strategy is the trade-off between serving the

animals with high-quality feed compositions and keeping the cost low for the farmer. Ingredients

with high nutritional content, such as feed concentrate or high-quality silage, are generally asso-

ciated with better milk production and animal health. However, these ingredients often come at

a higher cost than lower-quality feed. On the other hand, using lower-quality feed is more cost-

effective, but may lead to reduced milk production and potential health issues. Therefore, the

farmer must find a balanced feeding strategy, aiming to maintain animal health and productiv-

ity, while keeping costs within budget. This requires careful planning and decision-making based

on factors such as the availability and price of different ingredients, as well as the nutritional

requirements of the animals at different stages of their life cycle.
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Chapter 3

Literature review

This section presents relevant literature reviewed for this thesis. First, Section 3.1 presents the

strategy used for finding the literature. Second, Section 3.2 presents literature on diet and blending

problems, as these problems have a similar problem structure as the SCFPP. Thereafter, Section 3.3

presents existing literature within the farming industry. Section 3.2 and Section 3.3 are reproduced

from the preparatory project by Fosen and Nygaard (2022) and mainly address deterministic

problems. Section 3.4 present relevant literature that addresses uncertainty, and the solution

methods used. Finally, Section 3.5 positions this thesis in the existing literature and provides the

motivation for this thesis.

3.1 Search Strategy

This section presents the search strategy for the literature review. The search is conducted using

Scopus as the primary search portal due to its advanced search capabilities. However, additional

relevant literature is found through Google Scholar by examining references, as they have a larger

selection of articles.

The initial search is divided into two main searches: mathematical model search and industry

search. The goal of the mathematical model search is to find literature related to similar problem

structures, while the industry search aims to provide an overview of related literature in the field

of agriculture. In both searches, common keywords such as ”optimization” and ”mathematical

model” are used to find literature within the field of optimization. Additionally, search words

such as ”stochastic”, ”multi-objective” and ”uncertainty” are used to find problems addressing

similar aspects as the SCFPP. Table 3.1 provides an overview of the search words used for the two

searches. Note that some search words have an asterisk at the end. This is done to ensure that all

variants of a word are captured.
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Table 3.1: Overview of search keywords for literature review.

Search Search

Within

Keywords

Mathematical

Model Search

Title (Diet, menu, blending)

In combination with: (Planning, Problem or Model)

Industry Search Title (Farm*, Feed*, Animal, Cattle or Dairy)

In combination with: (Planning, Problem or Model)

Common for

both searches

Title, Abstract,

Keywords

(Optimization, Mathematical Model, Operations research or De-

cision Support System)

In combination with: (Stochastic, Multi-objective, Uncertain*,

Limited resources or Allocation)

The procedure for finding relevant articles is illustrated in Figure 3.1. After performing the initial

search for both models, the results are combined, duplicates are removed, and only English articles

are considered. The results are then filtered by removing irrelevant subject areas such as ”Energy”

and ”Arts & Humanities”, and irrelevant keywords such as ”Wind power”. Titles and abstracts of

the remaining articles are carefully reviewed and additional relevant articles are found by examining

citations. By following this procedure, we end up with 30 articles that thoroughly read.

458 papers

Initial search

(Mathematical

models)

358 papers

Initial search

(Industry)

806 papers

Remove

duplicates

513 papers

Limit to

English articles

113 papers

Exclude

irrelevant

subject areas

and keywords

21 papers

Evaluate titles

and abstracts

30 papers

Check citations

Figure 3.1: An overview of the material collection for literature review.

3.2 Blending and Diet Problems

The blending problem is one of the oldest optimization models solved using the simplex method.

The problem involves determining the optimal blend of ingredients to create one or more products

while respecting composition-related specifications. The objective of the problem is to minimize

costs. The first variant of the blending problem is the problem proposed by George Stigler (Stigler,

12



1945), referred to as Stigler’s diet problem. This problem determines the optimal combination

of different ingredients and aims to minimize costs while satisfying nutritional requirements. The

proportions of the nutrients in each food are given, in addition to the cost of the food. Furthermore,

the recommended intake of each nutrient is known.

Since Stigler’s diet problem was introduced, the problem has appeared in literature for several

different application areas. Osman and Sufahani (2022) design a problem to ensure that sinusitis

patients achieve a healthy diet, while Sufahani and Ismail (2015) develop a mathematical model to

optimize the weekly diet plan for Malaysian school children, ensuring that the necessary nutrient

intake is achieved. As for the traditional diet problem, both models aim at minimizing cost.

Some researchers extend diet models to include other objectives than minimizing costs. The

Thrifty Food Plan (TFP), originally developed by the Agricultural Research Service in 1974-1975,

aims to develop nutritious diets focusing on tastiness and variety. The objective of the model

is to minimize the deviation from previous food consumption patterns while meeting nutritional

goals, and the model includes the cost perspective as budget constraints (Garille & Gass, 2001).

Other objectives may include minimizing the total glycemic load (Bas, 2014) or minimizing the

environmental footprint (Gephart et al., 2016). Researchers also include multiple objectives in their

problem formulations. Amin et al. (2019) present a multi-objective model with four objectives:

minimize total cost, minimize saturated and trans fats in the foods, minimize sugar in the foods and

maximize the amount of vitamins. The problem is solved using both the weighted-sum method and

the ϵ-constraint technique. Cakrak and Cimen (2017) develop a model for optimal meal planning

in the military. They consider two objectives: minimizing the total costs of the food supply chain

and maximizing the variety of the dishes. This is solved by adding an objective function composed

of penalties and goals.

Diet problems can be solved for multiple periods. When planning an optimal diet for the military,

Cakrak and Cimen (2017) consider a time horizon of 365 days. The problem is solved using

a genetic algorithm, and food-supply chain aspects such as ordering frequency, ordering costs,

inventory costs, and inventory capacity are taken into account. Amin et al. (2019) also consider a

multi-period model, over a time period of one month. In the model, they consider how both the

costs of the ingredients and the nutritional requirements may vary from day to day. Furthermore,

Osman and Sufahani (2022) and Sufahani and Ismail (2015) develop a model for a multi-period

horizon, respectively five days and a week. Both models are constrained by each food only being

allowed to use once during the planning horizon, and they both solve this using a delete reshuffle

algorithm. This algorithm runs in a loop and solves the model for one day at a time. As food is

selected for a given day, this food is removed as a possible choice for the rest of the days in the

planning horizon (Osman & Sufahani, 2022; Sufahani & Ismail, 2015).

Some problems take limitations regarding raw material availability into account. Fomeni (2018)

presents a tea blending problem, where the aim is to make tea blends where the content is as close

as possible to the target recipe. The original tea blend problem aims to make tea blends that

correspond exactly to their target recipe. However, due to limited resource availability, this is not

always feasible. Fomeni (2018) proposes two methods to account for this. First, he develops a

parametric relaxation of the model. The model allows the requirements to be within a specified

bound, and Monte Carlo simulation is used to simulate different values of the bounds. Second,

he introduces a multi-objective optimization model, aiming to minimize the total cost of the tea

blend as well as the violation of the targeted blend characteristics.

Limited resources may also lead to tactical decisions involving production planning aspects such
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as resource allocation, inventory planning, or purchasing decisions, as done by Cakrak and Cimen

(2017) in the military problem introduced earlier. Gómez-Pantoja et al. (2021) introduce a food

bank resource allocation problem, aiming to help food banks decide how to allocate limited re-

sources among different beneficiaries. The problem focuses on deciding which beneficiaries to serve

and what products to deliver, taking aspects such as inventory management, purchasing policy,

and nutritional content into account. The mathematical model is formulated as a Mixed Integer

Problem (MIP), and an adaptive heuristic is used to solve larger instances of the problem.

3.3 Planning Problems Within the Farming Industry

The farming industry has undergone significant changes over the past century, primarily due to

advances in technology. This advancement has led to increased complexity and importance in farm

planning (Glen, 1987), and multiple decision-support models have been proposed to address this

increasing complexity. In this section, we provide an overview of the existing literature on planning

problems in the farming industry within three planning levels: strategic-, tactical-, and operational

planning. The main focus is on literature related to animal feeding at the tactical and operational

planning levels as this is most relevant for the SCFPP. However, we give a brief overview of the

strategic planning level as well.

3.3.1 Strategic Planning Level

The strategic planning level includes decisions with a long-term planning horizon, typically one

year or more. The scope of these problems is often broad and the decisions are made on a fairly

high managerial level. Within the farming industry, strategic decisions involve investments in

technology, storage space or land, and decisions regarding what and how many acres to harvest.

All of these decisions aim at making the farm more profitable in the long run. For an example

regarding investment in equipment, we refer to Crabtree (1981). With regards to the harvesting

strategy, Moghaddam and DePuy (2011) create a model aiming to find the optimal harvesting

strategy for maximizing profit.

3.3.2 Tactical Planning Level

The tactical planning level involves decisions with a planning horizon between a few months and five

years. Within farming, these decisions often include the allocation of resources, as well as decisions

related to harvesting and storage. There exist several models considering the allocation of feeding

resources within farming. Some of these models aim at distributing the limited ingredients in an

optimal manner over a given time period (Bellingeri et al., 2020; Notte et al., 2020). Bellingeri et

al. (2020) solve the resource allocation problem with a linear programming approach, while Notte

et al. (2020) use the Differential Evolution (DE) algorithm as a solution method. Other models,

such as Glen (1980), Meyer and Newett (1970) and Polimeno et al. (1999), include the animals’

evolution in their models, aiming at making feed compositions that result in a certain weight for

the animals. This is done by taking a dynamic programming approach.

An important aspect of farming is the relationship between the dairy products the farm produces

and the resources it uses, such as crops or food for the animals. Effective management of these

relationships can help a farm to be sustainable and profitable. Bellingeri et al. (2020) approach
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this by creating a model that selects the optimal cropping plan while simultaneously creating an

allocation plan for the different ingredients. The model is solved for one year at a time and aims at

finding the most cost efficient plan for harvesting and feeding while taking limited storage capacity

and field limitations into account. A similar model is created by Kikuhara et al. (2009), where

the feeding costs over one year are minimized while ensuring high production levels and satisfied

feeding requirements.

The objective function in tactical farm feeding problems is often subject to cost or income optim-

ization (Bellingeri et al., 2020; Glen, 1980; Kikuhara et al., 2009; Meyer & Newett, 1970; Polimeno

et al., 1999; Sirisatien et al., 2009). However, Notte et al. (2020) present a model aiming at max-

imizing milk production, margin over feed costs and herbage intake, while also minimizing the diet

cost and the supplement intake.

3.3.3 Operational Planning Level

The time horizon for the operational planning level is short, and the planning is typically performed

on a daily basis. Decisions involve determining detailed plans regarding the transportation of bales

from the field to the storage unit, feeding of animals, and allocation of production to machines.

This section focuses on decisions related to feed composition, since this is considered to be most

relevant for this thesis.

Most of the existing problems regarding animal feeding focus on the monetary aspects of the

creation of feed compositions. For instance, Dean et al. (1969) approach the least-cost feed formu-

lation for dairy cattle by solving a linear programming model with the objective to maximize profit

while still meeting the animal’s feeding requirements. The model aim at selecting the concentrate

and roughage components for the feed composition, the amount of feed each animal should be fed,

and the quantity of milk production in an optimal manner. Goswami et al. (2013) solves a similar

problem, creating the least cost balanced diet for small dairy farmers in India by solving a linear

programming program. Furthermore, also Gupta et al. (2013) and Rahman et al. (2015) solve the

diet problem for farm animals with objective to minimize the associated costs.

Although many researchers solve the feed composition problem using a linear programming ap-

proach, Gupta et al. (2013) states the limitations of these approaches and solves the problem using

the Controlled Random Search Technique and Genetic Algorithm. The result is a faster model

with small deviations from the optimal solution. Furthermore, Rahman et al. (2015) solve the

problem using the Evolutionary Algorithm. They find that this solution approach provides feas-

ible solutions in all runs and prove that it is robust to parameter changes. Lastly, Zhang et al.

(2021) use the Improved Tabu Search heuristic to create optimal feed compositions for pigs.

3.4 Methods for Handling Uncertainty

In the literature reviewed in Section 3.2 and Section 3.3, all input data is assumed to be known and

deterministic. However, in reality, many parameters are subject to uncertainty, making the math-

ematical models more complex. In this section, we provide an overview of the relevant literature

on diet problems and feeding problems that incorporates uncertainty. We study the various types

of uncertainties that are included in problems and review the solution methods used to handle this.

A common way of addressing uncertainty in diet and feeding problems is by using a stochastic
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programming framework, where either the objective function or constraints are treated with prob-

abilistic terms. Bas (2014) proposes a diet problem with the objective of minimizing the total

glycemic load in a human diet. A robust optimization approach is used to account for uncertainty

in the glycemic load values of different ingredients. Within animal feeding, Van de Panne and

Popp (1963) are amongst the first to consider the uncertainty of the nutritional content in feed

ingredients. They formulate a feed mixing problem for cattle with probabilistic, non-linear protein

constraints. Similarly, Patil et al. (2022) discusses the optimization problem of formulating the

lowest-cost ration for Indian goats, taking into account variations in the nutritional content of

various ingredients. They formulate a stochastic model to solve this problem, where they replace

the nutritional content criteria with a probabilistic one. Other researchers, such as Rahman and

Bender (1971), and Chen (1973), propose a linear approximation of the probabilistic constraint.

While Rahman and Bender (1971) aim to minimize the cost of the feed mix while meeting nutri-

tion requirements, Chen (1973) aim to maximize the probability of success while minimizing costs

and uses an iterative quadratic programming technique to solve the problem. Patil et al. (2022)

suggests both the use of a linear and non-linear stochastic model for solving the feeding problem

for goats. Peña et al. (2009) presents a multi-objective stochastic model for designing feed com-

positions for pigs. Instead of fixing the desired level of probability, they suggest a multi-objective

model, aiming to minimize the cost of the ration and to maximize the probability of meeting the

nutrient requirements of the animal.

Other authors use simulation to address the effects of uncertainty. Shalloo et al. (2004) develop

a stochastic simulation model of a dairy farm, including uncertainties related to milk price, feed

concentrate cost, and silage quality. They use Monte Carlo simulation to determine the influences

of stochastic parameters and estimate the resulting farm profitability. Trebeck and Hardaker

(1972) investigates a stochastic farm planning problem through the integrated use of simulation

and linear programming. The article discusses an optimization problem faced by a beef producer

and includes strategic decisions related to the stocking of feed, as well as tactical decisions related

to cattle management over a time period of a year. The problem includes uncertainty in terms of

weather variability, affecting the quality of the crops and the amount of feed available during the

year. Simulation is used to evaluate possible outcomes of strategic decisions, and use this as input

for making tactical decisions.

Amin et al. (2019) use a scenario-based approach to develop an optimization problem for solving a

multi-objective diet problem, considering uncertainty in both the nutritional content and the cost

of ingredients. Other researchers have applied a two-stage stochastic formulation to account for

uncertainty in their models. Flaten and Lien (2007) formulate a two-stage stochastic model for a

dairy farm that aims to maximize the expected net income. Their model accounts for uncertainties

regarding crop yield, where the actual quality is known when the crops are harvested. The decisions

in this model are related to production activities, labor activities, and the number of heifers to

obtain. Udomsungworagul and Charnsethikul (2018) formulate a two-stage linear programming

problem that is used to optimize the feed mix production planning in the animal feed industry.

Its purpose is to find the optimal feed mix with the minimum cost fulfilling nutrient requirements,

taking into account the uncertainty of the nutrient content in the different ingredients and the

demand for different product mixes. The first-stage decisions are related to the quantity of each

ingredient used in the final mix, while the second-stage variables determine the results of these

decisions in each scenario. To improve the effectiveness of the model, they solve the problem using

a combination of Dantzig-Wolfe decomposition and Benders decomposition.
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3.5 Our Contribution

As presented in this chapter, many researchers have studied problems related to diet and meal

planning, as well as planning problems within farming. In this section, we describe our contribution

to the existing literature and motivate this thesis.

While the majority of diet problems within animal feeding focus on reducing costs, we introduce

a multi-objective optimization problem considering the trade-off between cost and quality. Both

cost and quality provide a high contribution to the overall profitability of the farm, and by taking

a multi-objective approach, we aim to better reflect the trade-offs that dairy farmers face when

making feeding decisions. Furthermore, we introduce the importance of having a stable diet. As

far as we know, this aspect of cattle feeding has not been explored in literature within optimization

but is an important consideration for dairy farmers as described in Section 2.1.

We also integrate tactical decisions related to resource utilization and operational decisions related

to daily feeding to a larger extent than what has been done in previous literature. Within the

farming industry, there has been research on both tactical and operational decisions, as presented in

Section 3.3. Some of these studies take the impact of limited resources or the animal dynamics into

account. Meanwhile, other researchers have their main focus on the creation of feed compositions,

aiming to satisfy the feeding requirements of the animals, both considering uncertainty and not.

However, as far as we know, these aspects have not been combined. We fill this gap by proposing

a model that incorporates operational decisions related to constructing optimal feed compositions,

while also taking into account tactical aspects such as limitations in feed availability, uncertain

quality, changing feeding requirements, and inventory aspects. By doing so, we provide a more

comprehensive understanding of the problem that can lead to more effective feeding strategies.

Our study addresses the challenge of uncertainty in the nutritional content of ingredients, which

is typically handled using methods such as chance constraints, quadratic programming, fuzzy pro-

gramming, or simulation in existing research. We address a gap in the literature by formulating and

solving the problem as a two-stage stochastic program and using the L-shaped method to improve

the effectiveness of the model. Similar to our problem, Udomsungworagul and Charnsethikul (2018)

address uncertainty in the nutritional content of products and formulates the problem as a two-

stage stochastic problem. However, in their model, first-stage decisions focus on feed mixing, while

second-stage decisions are linked to the outcome and quantity of products sold. Consequently,

Udomsungworagul and Charnsethikul (2018) lack flexibility in feed mixing after the nutritional

content is known. In contrast, our approach assumes that the quality of ingredients is known on

the day of usage, allowing for the adjustment of the feed mix in the second-stage, once the actual

quality of ingredients is known. By using this two-stage approach, we aim to better reflect the daily

uncertainty faced by dairy farmers and provide increased flexibility in decision-making processes

related to feed planning.

In summary, our study combines a multi-objective perspective, integrates tactical and operational

decisions, incorporates uncertainty in ingredient quality, and suggests a solution method that

is rarely used in previous animal feeding problems. This approach offers valuable insights and

contributions to the field of dairy cattle feeding. Table 3.2 provides an overview of a selection

of the reviewed literature and compares important elements to our report. The table illustrates

categories that are relevant to this thesis, with the cells highlighted in blue indicating similarities

with the SCFPP. From analyzing the table, it becomes clear that none of the reviewed literature

is entirely comparable to the SCFPP, emphasizing how our study differentiates itself from the

existing literature.
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Table 3.2: Comparison of the relevant literature and the SCFPP.

Reference
Planning

level
Objective

Limited

Resources
Uncertainty Solution Method

Van de Panne

and Popp

(1963)

Operational Minimize cost No Yes
Chance constrained

programming

Dean et al.

(1969)
Operational Maximize profit Yes No LP

Meyer and

Newett (1970)
Tactical Minimize cost No No LP and DP

Rahman and

Bender (1971)
Operational Minimize cost No Yes Stochastic LP

Trebeck and

Hardaker (1972)

Strategic /

Tactical
Maximize Payoff Yes Yes

Integrated simulation

and LP

Chen (1973) Operational Minimize cost No Yes
Iterative quadratic

programming

Glen (1980) Tactical Minimize cost No No LP and DP

Polimeno et al.

(1999)
Tactical Maximize income No No LP and DP

Tozer (2000) Operational Minimize cost No Yes

LP with

RHS-adjustment,

safety margin and

stochastic

programming

Shalloo et al.

(2004)
Strategic Maximize profit Yes Yes Stochastic simulation

Flaten and Lien

(2007)

Strategic /

Tactical

Maximize net

income
Yes Yes Two-stage stochastic

Kikuhara et al.

(2009)
Tactical Minimize cost No No LP

Peña et al.

(2009)
Operational

Minimize cost

and maximize

probability of

meeting

requirements

No Yes
Stochastic

programming

Goswami et al.

(2013)
Operational Minimize cost No No LP

Gupta et al.

(2013)
Operational

Maximize milk

yield
No No

Heuristic and Genetic

Algorithm

Udomsungworagul

and

Charnsethikul

(2018)

Tactical Minimize cost No Yes

Two-stage stochastic,

Dantzig-Wolfe and

Benders

decomposition

Amin et al.

(2019)

Tactical /

Operational

Minimize cost

and maximize

health

No Yes
Scenario-based

approach

Notte et al.

(2020)
Tactical

Maximize profit

and milk

production

Yes No

Heuristics:

Pareto-frontier

Differential Evolution

(DE)

Bellingeri et al.

(2020)
Tactical Minimize cost Yes No LP

Zhang et al.

(2021)
Operational Minimize cost No No Heuristic

Patil et al.

(2022)
Operational Minimize cost Yes Yes

Stochastic

programming

Our model
Tactical /

Operational
Cost and Quality Yes Yes

Two-Stage

Stochastic/L-shaped
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Chapter 4

Problem Description

This chapter provides a detailed description of the Stochastic Cattle Feeding Planning Problem

(SCFPP). The SCFPP aims to determine how to distribute silage bales over a given time period

and how to use them in combination with feed concentrates to construct daily feed compositions

that satisfy the animals’ feeding requirements while minimizing the costs. The problem takes the

uncertainty of the actual quality of the silage bales into account. First, Section 4.1 provide a

description of the characteristics defining the problem. Afterward, Section 4.2 gives an overview

of the objectives and decisions of the SCFPP.

4.1 Problem Characteristics

The problem consists of a set of animal groups, i.e. dairy cattle in different phases. The animal

groups have daily feeding requirements in terms of both dry matter and nutritional content. We

assume that the daily amount of feed for each animal group is mixed together at the beginning

of the day. In this mixture, each animal group has a target for daily dry matter content, as

well as a minimum and maximum limit that must not be exceeded. Furthermore, the content of

each nutrient should be as close to a given target value as possible, preferably within a specified

interval. The feeding requirements for each animal group can change from day to day, as the

animals continuously evolve.

A set of ingredients are available for constructing the feed compositions, consisting of different

types of silage bales and feed concentrates. There is a cost related to the usage of the silage

bales (per bale) and different types of feed concentrates (per kg). Silage bales become available

in batches at different times during the time horizon. As silage bales become available, they are

stored at the barn for long-time storage in a specific order. Feed concentrates are stored in the

kitchen storage, and we assume that the supply of feed concentrates is unlimited. Every ingredient

has a dry matter content (kg) and nutritional density (per kg dry matter) of each nutrient. While

feed concentrates have stable and known content, the content of silage bales is both perishable and

uncertain. The dry matter content and nutritional density of a silage bale depend on which batch

it belongs to, what day it is used, as well as individual differences between the bales. Until a silage

bale is opened, the actual nutritional content of the bale is unknown. On the day of usage, the true

values are learned, and it is possible to adapt to this new knowledge by using feed concentrate.

However, every animal group has a maximum allowable amount of feed concentrate that can be
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used in the feed composition. This amount is expressed as a fraction of the target dry matter

content in the composition. Reserve silage can also be added to the feed composition, but this is

associated with a significantly high cost. During the mixing of ingredients, we assume that you do

not need to use an entire silage bale before opening another.

A set of kitchens determines where the feed compositions may be produced, and the composition

for one animal group can only be made in one kitchen for a given day. Furthermore, all kitchens

have an associated storage capacity, specified in the number of silage bales that can be stored in

one day. Silage bales that are planned to be used on a given day must be transported from the

barn to the associated kitchen storage at the beginning of the day of usage. Therefore, only silage

bales that have been transported to the kitchen can be used for constructing feed compositions.

As air exposure ruins the conservation of hay, we assume that all leftover silage in a kitchen is

thrown away at the end of the day.

4.2 Objectives and Decisions

The SCFPP is a multi-objective problem aiming to both minimize costs and ensure a correct and

stable content in the feed compositions. The cost objective includes minimizing the costs related

to the usage of ingredients. The quality objective is split into two parts. The first part aims to

minimize deviations from the target in terms of dry matter and nutritional content. The second

part aims at ensuring a stable diet by minimizing fluctuations between the nutritional and dry

matter content in a feed composition from one day to the next for every animal group.

The objectives of the SCFPP are to be achieved through several decisions. These decisions can be

divided into two main groups:

• Tactical decisions related to resource allocation planning. This includes determining which

silage bales to transport to which kitchen every day during the planning horizon. Further-

more, it includes determining in which kitchen the daily feed compositions for the different

animal groups should be produced. The tactical decisions related to resource allocation

planning are performed once at the beginning of the planning period.

• Operational decisions related to daily feed compositions. These decisions are made daily and

aim to decide how much silage and feed concentrate to use in the final feed compositions for

each animal group. The final feed compositions are made after the silage bales are opened

and the actual quality is known.

An overview of the model is given in Figure 4.1. The figure summarizes the decisions and the

objectives of the model and illustrates what part of the value chain the specific decisions are

related to.
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Figure 4.1: An overview of the decisions and objectives in the SCFPP, illustrating what part of

the cattle feeding value chain the specific decisions are related to.
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Chapter 5

Mathematical Model

This section presents our mathematical formulation for the Stochastic Cattle Feeding Planning

Problem (SCFPP), described in Chapter 4. The model is a continuation of the preparatory project

by Fosen and Nygaard (2022), but is modified and extended by including uncertainty. Section 5.1

introduces the modeling approach used, before the mathematical model is presented in Section 5.2.

5.1 Modelling Approach

A two-stage approach is used to formulate and solve the SCFPP. The first-stage decisions are

related to resource allocation planning, determining which silage bales to transport to which kitchen

on which day during the planning horizon. The second-stage decisions are related to the daily feed

compositions and are made after the actual content of the silage bales is known. Figure 5.1 illustrate

the value chain of the problem, as well as the input and output of the two stages.

Figure 5.1: Illustration of the stochastic modelling approach, dividing the problem into two stages

with separate decisions.

A set of scenarios describes the uncertainty in the problem, where each scenario expresses a possible

realization of quality for all silage bales available during the planning period. The scenarios are

generated using a sample-based approach, where the quality of a silage bale in a scenario is drawn
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from a known distribution. This distribution is described in Chapter 7.

5.2 Mathematical Formulation

The following section presents the mathematical formulation for the SCFPP. First, the notation is

introduced, followed by the objective functions. Thereafter, the constraints are presented together

with a short description. The compressed version of the model can be found in Appendix A.

5.2.1 Notation

Sets and Indices

A Set of animal groups, a ∈ A

D Set of days in the planning horizon, d ∈ D

I Set of silage bale batches, i ∈ I

F Set of feed concentrate types, f ∈ F

K Set of kitchens, k ∈ K

N Set of nutrients, n ∈ N

S Set of possible scenarios, s ∈ S

Bi Set of silage bales from batch i

Di Set of days when silage bale batch i is available, Di ⊆ D

Id Set of silage bale batches available on day d, Id ⊆ I
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Parameters

CB
di Cost per silage bale from batch i on day d

CR Cost of using reserve silage

CF
f Cost per kg used of feed concentrate type f

DA
i The day silage bale batch i becomes available

FB
bdis Amount (kg) dry matter in silage bale b from batch i in scenario s on day d

FF
f Fraction of dry matter in feed concentrate type f

FMAX
a Maximum fraction of dry matter from feed concentrate in the feed composition for

animal group a

Kk Daily storage capacity in kitchen k

NB
bdins Nutritional density of nutrient n (per kg dry matter) in silage bale b from batch i in

scenario s on day d

NF
fn Nutritional density of nutrient n (per kg dry matter) in feed concentrate type f

NR
n Nutritional density of of nutrient n (per kg dry matter) in reserve silage bale

LM
ad Minimum dry matter (kg) for animal group a on day d

UM
ad Maximum dry matter (kg) for animal group a on day d

TM
ad Target dry matter (kg) for animal group a on day d

LN
adn Minimum amount (per kg dry matter) of nutrient n for animal group a on day d

UN
adn Maximum amount (per kg dry matter) of nutrient n for animal group a on day d

TN
adn Target amount (per kg dry matter) of nutrient n for animal group a on day d

Ps Probability of scenario s

PM Penalty for deviating from dry matter target

P IN Penalty for deviating from nutrient target when the content is between target and

minimum or maximum value

PON Penalty for deviating from nutrient target when the content is outside the minimum

or maximum limit

RM
a Relative deviation from dry matter target for animal a on the last day before planning

horizon start

RN
an Relative deviation from target for nutrient n for animal a on the last day before

planning horizon start
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Decision Variables

xabdkis Amount (kg) dry matter from silage bale b from silage bale batch i used in the feed

composition for animal group a on day d in kitchen k in scenario s

rads Dry matter (kg) from reserve bale used in feed composition for animal group a on

day d in scenario s

yadfs Amount (kg) of feed concentrate type f used in feed composition for animal group

a on day d in scenario s

dM
ads Deviation in dry matter content in feed composition for animal group a on day d

in scenario s

dN
adns Deviation in nutritional content of nutrient n for animal group a on day d in scenario

s

pM
ads Penalty related to deviation from dry matter target in feed composition for animal

a on day d in scenario s

pN
adns Penalty related to deviation from target for nutrient n in feed composition for

animal a on day d in scenario s

vM
a(d−1)ds Variation in deviation from target for dry matter content in two consecutive feed

compositions, from day (d − 1 ) to day d for animal group a

vN
a(d−1)dns Variation in deviation from target for nutrient n in two consecutive feed composi-

tions, from day (d − 1 ) to day d for animal group a in scenario s

mbdik 1 if silage bale b from batch i is transported to kitchen k on day d, 0 otherwise

wadk 1 if the feed composition for animal group a on day d is produced in kitchen k, 0

otherwise

Weight Parameters

α Weight of quality objective

5.2.2 Modeling

Quality Objective

fQ = min
∑
s∈S

Ps(
∑
a∈A

∑
d∈D

((pMads +
∑
n∈N

pNadns) + (vMa(d−1)ds +
∑
n∈N

vNa(d−1)dns)) (5.1)

The quality objective function consists of two parts. The first part aims to ensure that the dry

matter and nutritional content in each feed composition is as close as possible to the target value

by penalizing deviations from the target. The second part minimizes the variation in deviation

from day to day.
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Cost Objective

fC = min
∑
d∈D

∑
i∈Id

∑
b∈Bi

∑
k∈K

CB
dimbdik +

∑
s∈S

Ps(
∑
a∈A

∑
d∈D

(
∑
f∈F

CF
f yadfs + CRrads)) (5.2)

The objective function that aims at minimizing costs includes the costs related to the usage of

ingredients. This includes the cost of transporting silage bales in the first-stage, as well as the cost

of using feed concentrate and reserve silage in the second-stage.

Weighted Sum Objective

Z = min αfQ + (1− α)fC (5.3)

We have chosen to formulate the multi-objective problem as a weighted sum as shown in Equation

(5.3). The weights, α and (1− α), represent the importance of each objective.

Resource Allocation Constraints

∑
k∈K

wadk = 1 a ∈ A, d ∈ D (5.4)

∑
d∈Di

∑
k∈K

mbdik ≤ 1 i ∈ I, b ∈ Bi (5.5)

d∑
d′=1

∑
k∈K

(m(b−1)d′ik −mbd′ik) ≥ 0 d ∈ D, i ∈ Id, b ∈ Bi \ {1} (5.6)

∑
i∈Id

∑
b∈Bi

mbdik ≤ Kk d ∈ D, k ∈ K (5.7)

Constraints (5.4) ensure that each feed composition is mixed in exactly one kitchen. Constraints

(5.5) make sure that each silage bale can only be used once. Constraints (5.6) ensure that bales

that are stacked in front are used first. Constraints (5.7) limit the number of transported silage

bales to a kitchen on a given day to the kitchen’s daily storage capacity.

Production Constraints

xabdiks ≤M1wadk a ∈ A, d ∈ D, i ∈ Id, b ∈ Bi, k ∈ K, s ∈ S (5.8)

∑
a∈A

xabdiks ≤ FB
bdismbdik d ∈ D, i ∈ Id, b ∈ Bi, k ∈ K, s ∈ S (5.9)

Constraints (5.8) state that feed compositions only use silage bales from the kitchen they are mixed.

Constraints (5.9) ensure that the amount of dry matter used from a silage bale does not exceed

the actual dry matter content of the bale. The big-M values for Constraints (5.8) are set to the
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maximum amount of dry matter that can be used from a given bale in a given feed composition

in a given kitchen. This is either limited by the maximum amount of dry matter in the feed

composition or by the dry matter content in the specific bale. This is formulated as:

M1 : Madibs = min{UM
ad , F

B
bdis}

Feed Construction Constraints

∑
k∈K

∑
i∈Id

∑
b∈Bi

xabdiks +
∑
f∈F

FF
f yadfs + rads = TM

ad + dMads a ∈ A, d ∈ D, s ∈ S (5.10)

LM
ad ≤ TM

ad + dMads ≤ UM
ad a ∈ A, d ∈ D, s ∈ S (5.11)

∑
k∈K

∑
i∈Id

∑
b∈Bi

NB
bdnsxabdiks +

∑
f∈F

NF
fnF

F
f yadfs +NR

n rads = TN
adn + dNadns a ∈ A, d ∈ D, n ∈ N , s ∈ S

(5.12)

∑
f∈F

FF
f yadfs ≤ FMAX

a TM
ad a ∈ A, d ∈ D, s ∈ S (5.13)

Constraints (5.10) set the deviation from the target for dry matter content, and Constraints (5.11)

ensure that the dry matter content in a feed composition is within its lower and upper limit

in all scenarios. Constraints (5.12) set the deviation from target in nutritional content. Lastly,

Constraints (5.13) ensure that the amount of feed concentrate used in a feed composition is lower

than its maximum limit.

Penalty Constraints

As described in Chapter 4, all animals have requirements regarding nutritional and dry matter

content, and the further the content is from the target value, the higher the penalty is. Figure 5.2

illustrate the penalty functions for deviating from the target for dry matter and nutrients. As the

figures show, the penalty increases linearly as the content deviates from the target, until it reaches

PM and P IN at the limits for dry matter and nutrients, respectively. The slope of the penalty

curve depends on the difference between the target and the upper or lower limit. This is based

on the assumption that it is worse to deviate from the limit if the allowed interval is narrow. For

nutrients, the upper and lower limits are not strict. However, as shown in Figure 5.2b, when the

content reaches its upper or lower bound, the growth rate of the penalty increases to a rate of

PON .
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(a) Penalty function for deviating from target in dry

matter content.

(b) Penalty function for deviating from target in nu-

tritional content.

Figure 5.2: Illustration of the penalty functions used for penalizing deviation from target in dry

matter and nutritional content in a feed composition.

As the penalty functions are convex and piecewise linear, they are described using linear inequal-

ities:

pMads ≥
PMdMads

UM
ad − TM

ad

a ∈ A, d ∈ D, s ∈ S (5.14)

pMads ≥
PMdMads
LM
ad − TM

ad

a ∈ A, d ∈ D, s ∈ S (5.15)

pNadns ≥
P INdNadns

UN
adn − TN

adn

a ∈ A, d ∈ D, n ∈ N s ∈ S (5.16)

pNadns ≥
P INdNadns

LN
adn − TN

adn

a ∈ A, d ∈ D, n ∈ N , s ∈ S (5.17)

pNadns ≥ P IN + PON (TN
adn + dNadns − UN

adn) a ∈ A, d ∈ D, n ∈ N , s ∈ S (5.18)

pNadns ≥ P IN − PON (TN
adn + dNadns − LN

adn) a ∈ A, d ∈ D, n ∈ N , s ∈ S (5.19)

The penalties for deviating from the dry matter target are set in Constraints (5.14) and (5.15).

Constraints (5.16) - (5.19) set the penalties for deviating from target for the different nutrients.

Constraints (5.16) and (5.17) set the penalties when the content is between the target and upper

or lower bound, while Constraints (5.18) and (5.19) set the penalties for being outside the upper

or lower limits.

Variability Constraints

vMa(d−1)ds ≥
dMads
TM
ad

−
dMa(d−1)s

TM
a(d−1)

a ∈ A, d ∈ D \ {1}, s ∈ S (5.20)
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vMa(d−1)ds ≥
dMa(d−1)s

TM
a(d−1)

− dMads
TM
ad

a ∈ A, d ∈ D \ {1}, s ∈ S (5.21)

vNa(d−1)dns ≥
dNadns
TN
adn

−
dNa(d−1)ns

TN
a(d−1)n

a ∈ A, d ∈ D \ {1}, n ∈ N , s ∈ S (5.22)

vNa(d−1)dns ≥
dNa(d−1)ns

TN
a(d−1)n

− dNadns
TN
adn

a ∈ A, d ∈ D \ {1}, n ∈ N , s ∈ S (5.23)

vMa01s ≥
dMa1s
TM
a1

−RM
a a ∈ A, s ∈ S (5.24)

vMa01s ≥ RM
a −

dMa1s
TM
a1

a ∈ A, s ∈ S (5.25)

vNa01ns ≥
dNa1ns
TN
a1n

−RN
an a ∈ A, n ∈ N , s ∈ S (5.26)

vNa01ns ≥ RN
an −

dNa1ns
TN
a1n

a ∈ A, n ∈ N , s ∈ S (5.27)

Constraints (5.20)-(5.23) set the relative variation from one feed composition to another in terms

of dry matter and nutritional content and ensure that this variation is set to the absolute value.

Constraints (5.24)-(5.27) set the deviation for dry matter and nutritional content at the first day

of the planning period.

Variable Constraints

xabdiks ≥ 0 a ∈ A, d ∈ Di, i ∈ Id, b ∈ Bi, k ∈ K, s ∈ S (5.28)

yadfs ≥ 0 a ∈ A, d ∈ D, f ∈ F , s ∈ S (5.29)

rads, p
M
ads, v

M
a(d−1)ds ≥ 0 a ∈ A, d ∈ D, s ∈ S (5.30)

pNadns, v
N
a(d−1)dns ≥ 0 a ∈ A, d ∈ D, n ∈ N , s ∈ S (5.31)

mbdik ∈ {0, 1} i ∈ I, b ∈ Bi, d ∈ D⟩, k ∈ K (5.32)

wadk ∈ {0, 1} a ∈ A, d ∈ D, k ∈ K (5.33)

dMads free a ∈ A, d ∈ D, s ∈ S (5.34)

dNadns free a ∈ A, d ∈ D, n ∈ N , s ∈ S (5.35)

Constraints (5.28)-(5.35) are variable constraints. Constraint (5.28) - (5.31) are non-negativity

constraints, while Constraints (5.32)-(5.33) ensure binary variables. Lastly, Constraints (5.34)-

(5.35) allows the variables to take any value.
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Chapter 6

Solution- and Evaluation Methods

This chapter introduces the methods used to solve and evaluate the mathematical model presented

in Chapter 5. First, Section 6.1 provides an overview of the L-shaped method. Next, Section 6.2

proposes an L-shaped decomposition algorithm for the SCFPP based on the Benders reformulation

of the problem, and introduces the algorithm used to implement the model. In Section 6.3, several

acceleration techniques that aim at improving the efficiency of the L-shaped method are presen-

ted. A method for reducing the complexity of the problem is presented in Section 6.4. Lastly, a

simulation-based evaluation approach is presented in Section 6.5. By the end of this chapter, read-

ers should have a comprehensive understanding of the method used to solve the SCFPP problem,

and the techniques implemented to accelerate the solution algorithm. Furthermore, they should

have insight into the method used to evaluate the model.

6.1 L-Shaped Method

The SCFPP, as presented in Chapter 5, has a characteristic structure known as the dual block-

angular structure, illustrated in Figure 6.1. This structure enables each scenario to be solved

independently of the others, given the initial decisions made. Therefore, it is well-suited for ap-

plying Benders decomposition, a reformulation and decomposition technique utilized to solve large

linear programs. In the case of stochastic programs, the Benders decomposition method is called

the L-shaped method (Van Slyke & Wets, 1969).
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Figure 6.1: Illustration of dual block angular structure.

The L-shaped method is a cutting plane technique. The main idea is to approximate the recourse

function in the objective. By doing this, the model avoids multiple function evaluations for the
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recourse function and consequently reduces the computational solution time (Birge & Louveaux,

2011). The decomposition is done by establishing a master problem, where the recourse function

only is evaluated exactly as a subproblem. The L-shaped algorithm iterates between the master-

and the subproblem until a satisfactory solution is found. For each time the second-stage problem,

i.e. the subproblem, is solved, a feasibility cut and/or an optimality cut is added to the master

problem. This method enables the model to solve smaller problems in each iteration, where only

the necessary restrictions are included. If there exists a solution in each subproblem for all possible

solutions in the master problem, then the problem has relatively complete recourse. This means

that there is no need for feasibility cuts, as a feasible solution always will be found.

To utilize the L-shaped method, the problem is required to have a finite number of scenarios. Given

that real-life probabilities often follow continuous distributions, it is common practice to sample

a finite set of scenarios from these distributions, aiming to ensure that the selected scenarios are

representative of the underlying distribution. As stated in Chapter 5, this approach is also used

when solving the SCFPP, where the distribution is presented in Chapter 7.

6.2 Applying the L-shaped Method to the SCFPP

This section presents the application of the L-shaped method to the SCFPP. First, the Benders

reformulation of the mathematical model is presented. Section 6.2.1 and Section 6.2.2 present the

sub- and master-problem of the formulation. The algorithm used for implementation is presented

in Section 6.2.3 and lastly, Section 6.2.4 introduces the termination criteria used in the implement-

ation.

In the decomposition of the SCFPP, the master problem consists of the first-stage decisions presen-

ted in Chapter 5. The subproblems deal with the second-stage decisions and are solved after the

actual content of the silage bales is known. The decisions in the different subproblems are inde-

pendent of each other. Figure 6.2 gives an overview of the decisions that are made in the master-

and subproblems.

Master Problem

Number of silage bales from each

batch to transport to which kitchen

each day of the planning horizon

In which kitchen each feed

composition should be mixed

Subproblem

Amount from each transported silage

bale to add to each feed composition

Amount of each feed concentrate

to add to each feed composition

Amount reserve silage to

add to each feed composition

Figure 6.2: Overview of the decisions taken in the master- and subproblem when solving the

problem using the L-shaped method.

6.2.1 Subproblem

The subproblem corresponds to the second-stage problem in the mathematical model presented

in Chapter 5. Each subproblem is independent of all other subproblems and represents a scenario
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s ∈ S. The presented formulation represents a general formulation for any scenario. The optimal

first-stage decisions in the current iteration is used as input in the subproblem as m̂bdik and

ŵadk, where m̂bdik represent whether or not a silage bale is transported to kitchen k on day d

and ŵadk represents the choices related to where each feed composition should be made. The

objective function for the quality and cost objectives is given by Equation (6.1) and Equation

(6.2), respectively. Equation (6.3) presents the weighted-sum objective function that is used in the

subproblem.

Quality Objective for Subproblem

fQ
s = min

∑
a∈A

∑
d∈D

((pMads +
∑
n∈N

pNadns) + (vMa(d−1)ds +
∑
n∈N

vNa(d−1)dns)) (6.1)

Cost Objective for Subproblem

fC
s = min

∑
a∈A

∑
d∈D

(
∑
f∈F

CF
f yadfs + CRrads) (6.2)

Weighted-Sum Objective

ZSP
s = min αfQ

s + (1− α)fC
s (6.3)

Constraints

xabdiks ≤M1ŵadk a ∈ A, d ∈ D, i ∈ Id, b ∈ Bi, k ∈ K (6.4)

∑
a∈A

xabdiks ≤ FB
bdism̂bdik d ∈ D, i ∈ Id, b ∈ Bi, k ∈ K (6.5)

Constraints (6.4)-(6.5) correspond to Constraints (5.8)-(5.9) in the original formulation. In the

subproblem, these constraints are formulated with the first-stage solutions held fixed. We introduce

the dual variables of Constraints (6.4) in L-shaped iteration j as αj
abdiks and the dual variables of

Constraints (6.5) in L-shaped iteration j as βj
bdiks. These dual variables are used in the formulation

of the master problem, specifically in the formulation of the optimality cut.

∑
k∈K

∑
i∈Id

∑
b∈Bi

xabdiks +
∑
f∈F

FF
f yadfs + rads − dMads = TM

ad a ∈ A, d ∈ D (6.6)

LM
ad ≤ dMads + TM

ad ≤ UM
ad a ∈ A, d ∈ D (6.7)

∑
k∈K

∑
i∈Id

∑
b∈Bi

NB
bdnsxabdiks +

∑
f∈F

NF
fnyadfs +NR

n rNads − dNadns = TN
adn a ∈ A, d ∈ D, n ∈ N (6.8)

∑
f∈F

FF
f yadfs ≤ FMAX

a TM
ad a ∈ A, d ∈ D (6.9)
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pMads −
PMdMads

UM
ad − TM

ad

≥ 0 a ∈ A, d ∈ D (6.10)

pMads −
PMdMads
LM
ad − TM

ad

≥ 0 a ∈ A, d ∈ D (6.11)

pNadns −
P INdNadns

UN
adn − TN

adn

≥ 0 a ∈ A, d ∈ D, n ∈ N (6.12)

pNadns −
P INdNadns

LN
adn − TN

adn

≥ 0 a ∈ A, d ∈ D, n ∈ N (6.13)

pNadns − PONdNadns ≥ P IN + PON (TN
adn − UN

adn) a ∈ A, d ∈ D, n ∈ N (6.14)

pNadns + PONdNadns ≥ P IN − PON (TN
adn + LN

adn) a ∈ A, d ∈ D, n ∈ N (6.15)

vMa(d−1)ds − (
dMads
TM
ad

−
dMa(d−1)s

TM
a(d−1)

) ≥ 0 a ∈ A, d ∈ D \ {1} (6.16)

vMa(d−1)ds − (
dMa(d−1)s

TM
a(d−1)

− dMads
TM
ad

) ≥ 0 a ∈ A, d ∈ D \ {1} (6.17)

vNa(d−1)dns − (
dNadns
TN
adn

−
dNa(d−1)ns

TN
a(d−1)n

) ≥ 0 a ∈ A, d ∈ D \ {1}, n ∈ N (6.18)

vNa(d−1)dns − (
dNa(d−1)ns

TN
a(d−1)n

− dNadns
TN
adn

) ≥ 0 a ∈ A, d ∈ D \ {1}, n ∈ N (6.19)

vMa01s −
dMa1s
TM
a1

≥ −RM
a a ∈ A (6.20)

vMa01s +
dMa1s
TM
a1

≥ RM
a a ∈ A (6.21)

vNa01ns −
dNa1ns
TN
a1n

≥ −RN
an a ∈ A, n ∈ N (6.22)

vNa01ns +
dNa1ns
TN
a1n

≥ RN
an a ∈ A, n ∈ N (6.23)

Constraints (6.6)-(6.23) correspond to Constraints (5.10)-(5.27) in the original problem and does

not contain any first-stage decision variables. The difference from the original model formulation

is that the scenario s is set in each of the subproblems, and the constraints are consequently only

applicable to the current scenario.
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xabdiks ≥ 0 a ∈ A, d ∈ D, i ∈ Id, b ∈ Bi, k ∈ K (6.24)

rads, p
M
ads, v

M
a(d−1)ds ≥ 0 a ∈ A, d ∈ D (6.25)

yadfs ≥ 0 a ∈ A, d ∈ D, f ∈ F (6.26)

pNadns, v
N
a(d−1)dns ≥ 0 a ∈ A, d ∈ D, n ∈ N (6.27)

dMads free a ∈ A, d ∈ D (6.28)

dNadns free a ∈ A, d ∈ D, n ∈ N (6.29)

Constraints (6.24)-(6.29) are variable constraints.

6.2.2 Master Problem

The objective of the master problem consists of two parts. Firstly, it includes the costs associated

with the first-stage decisions. Secondly, it incorporates an estimated second-stage cost, represented

by the variable θ. This allows the master problem to consider the impact of the initial decisions on

the second-stage solutions, leading to more informed decision-making. The objective of our master

problem is formulated in Equation (6.30).

ZMP = min
∑
i∈IM

∑
d∈Di

∑
b∈Bi

∑
k∈K

CB
i mbdik + θ (6.30)

Constraints

∑
k∈K

wadk = 1 a ∈ A, d ∈ D (6.31)

∑
d∈Di

∑
k∈K

mbdik ≤ 1 i ∈ I, b ∈ Bi (6.32)

d∑
d′=1

∑
k∈K

(m(b−1)d′ik −mbd′ik) ≥ 0 d ∈ D, i ∈ Id, b ∈ Bi \ {1} (6.33)

∑
i∈Id

∑
b∈Bi

mbdik ≤ Kk d ∈ D, k ∈ K (6.34)

Constraints (6.31)-(6.34) of the master problem correspond to Constraints (5.4)-(5.7) in the original

formulation.

θ ≥
∑
s∈S

Ps(
∑
a∈A

∑
d∈D

∑
i∈Id

∑
b∈Bi

∑
k∈K

M1wadkα
j
abdiks (6.35)

+
∑
d∈D

∑
i∈Id

∑
b∈Bi

∑
k∈K

FB
bdismbdikβ

j
bdiks)

+W j
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Each iteration of the subproblems adds a new optimality cut, denoted by (6.35), which restricts

the value of θ. This constraint approximates the second-stage objective value given the first-stage

decisions. The right-hand side of the constraint is computed as a sum of the dual values to the

constraints associated with the first-stage variables, i.e. Constraints (6.4)-(6.5), multiplied by their

corresponding first-stage variables. The constant W j includes all the constant values involved in

the calculation, and is given by the following expression:

W j =
∑
s∈S

Ps(Z
SP
s + (πj

s)
TTsx

j) (6.36)

where ZSP
s is the objective function value in scenario s, πj

s is the dual values of the solution in

scenario s and Ts is the constant matrix for the first-stage values in scenario s. In Equation (6.36),

xj is the first-stage decisions, which in the SCFPP is represented by the variables wadk and mbdik.

mbdik ∈ {0, 1} i ∈ I, b ∈ Bi, d ∈ D, k ∈ K (6.37)

wadk ∈ {0, 1} a ∈ A, d ∈ D, k ∈ K (6.38)

θ ≥ 0 (6.39)

Constraints (6.37)-(6.39) are variable constraints.

6.2.3 Algorithmic Implementation

Algorithm 1 presents the L-shaped algorithmic implementation of the reformulation. The algorithm

starts by building the master and subproblems and initializing the lower and upper bounds. In

each iteration, the master problem is solved, before the subproblem is solved with fixed first-stage

decisions. Then, the upper and lower bound is updated. The algorithm terminates if a termination

criterion is reached, discussed further in Section 6.2.4. Otherwise, an optimality cut is added to

the master problem, and the algorithm continues.

On the first iteration of the master problem, there are no optimality cuts. Each time the subproblem

is solved, one optimality cut is added to the master problem, as long as a termination criterion is

not reached. This formulation is a single-cut formulation of the problem since only one optimality

cut is added each time the subproblem is solved.

6.2.4 Termination Criteria

In the L-shaped algorithm proposed by Birge and Louveaux (2009), the termination criterion is

when the lower bound equals the upper bound, i.e. when the optimal solution is found. However,

with large problems such as the SCFPP, many iterations may be needed before this is the case.

Therefore, to reduce the number of iterations, a common termination criterion is to stop the

algorithm when the gap between the lower- and upper bound is below a given value. Equations

(6.40) and (6.41) present the calculation of the upper and lower bound, respectively. The lower

bound is the current best objective value for the master problem. The upper bound is the minimum
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Algorithm 1 Proposed algorithm

1: procedure L-shaped method for SCFPP

2: Build master problem

3: Build a subproblem for each scenario s ∈ S
4: LB ← −∞, UB ← +∞, Continue← True, i← 0

5: while Continue do

6: i← i+ 1

7: Solve master problem to optimality

8: for all s ∈ S do

9: Solve subproblem s with given first-stage decisions

10: end for

11: Update LB and UB

12: if Termination criteria is reached then

13: Continue← False

14: else

15: Add optimality cut to master problem

16: end if

17: end while

18: output Solved master problem

19: end procedure

of the existing upper bound and the first-stage costs plus the actual total second-stage costs from

the subproblems.

LB = ZMP (6.40)

UB = min{UB, ZMP − θ +
∑
s∈S

PsZ
SP
s } (6.41)

Using this, the bounds are evaluated in every iteration. When the gap between upper and lower

bound is smaller than a predetermined value, or the maximum time limit or iteration limit is

reached, the algorithm is terminated.

6.3 Acceleration Techniques to the L-Shaped Method

The L-shaped method can be computationally heavy, particularly for larger instances. Further-

more, when the number of scenarios is large, the number of iterations required to obtain a good

solution can be very high. This can lead to a long computational time, especially for realistic

problem sizes. Therefore, several acceleration methods are proposed to improve the efficiency and

convergence of the L-shaped method, such as a multi-cut version, approximate master solve, and

two warm start approaches. These methods aim to speed up the overall solution process. In the

context of solving the SCFPP, these techniques are discussed and implemented to improve the

computational efficiency of the L-shaped method. It should be noted that all the following accel-

eration techniques are presented using the single-cut version of the L-shaped method unless stated

otherwise.
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6.3.1 Multi-Cut Version of the L-Shaped Approach

The generalized Benders optimality cut for the mathematical model in Section 6.2, presented in

Equation (6.35) is a single-cut version. In this cut, the optimal simplex multipliers are aggregated

together. However, the structure of stochastic programs allows for adding several cuts instead of

one. This results in multiple rows being added to the master problem for each iteration of the

subproblem, increasing the amount of information in the master problem. Birge and Louveaux

(1988) introduce a Benders decomposition multi-cut version where they use outer approximations

of each subproblem. The main goal of this approach is that multiple optimality cuts give more

information than a single cut and result in fewer iterations needed for convergence. However,

neither the single-cut version nor the multi-cut version of Benders optimality cuts is superior to

the other in all circumstances. The balance between the increased size of the master problem and

the reduced number of iterations of the subproblem is problem-dependent. Birge and Louveaux

(1988) prove that the multi-cut approach can be expected to be especially efficient for problems

where the subproblem is large, multiple optimality cuts are needed and the number of scenarios is

not larger than the number of variables in the master problem.

The multi-cut constraints for SCFPPs mathematical model are presented in Restrictions (6.42).

In this case, there is one θs for each scenario. The algorithm for the multi-stage approach is equal

to 1, but the optimality cut in Equation (6.35) is replaced with Equations (6.42). Furthermore,

the objective function in the master problem has to accumulate the θs for all scenarios to get an

approximation of the second-stage cost. The θ in the objective function is therefore replaced with∑
s∈S Psθs.

θs ≥
∑
a∈A

∑
d∈D

∑
i∈Id

∑
b∈Bi

∑
k∈K

M1wadkα
j
abdiks s ∈ S (6.42)

+
∑
d∈D

∑
i∈Id

∑
b∈Bi

∑
k∈K

FB
bdismbdikβ

j
bdiks

+W j
s

6.3.2 Warm Start Techniques

Warm start can be a useful technique to reduce the computational effort required for a problem

solved with the L-shaped method (Kuudela & Popela, 2017). There exists multiple different warm

start strategies in the literature (Rahmaniani et al., 2017), but in the context of the SCFPP we

present and implement two different approaches, namely a Robust Warm start (RW) approach and

an Initializing Warm start (IW) approach. These two approaches differ in the way that the first

one aims at warm starting the first iteration of the algorithm, while the second approach aims at

warm starting the master problem in each iteration. The main goal for both methods is to get a

good description of the master problem in a short amount of time.

The RW method solves a deterministic problem before solving the problem with the L-shaped

method. The deterministic problem is solved with the worst-case scenario. In the context of the

SCFPP, this means a scenario where all the silage bales are assigned the lowest quality possible

from the scenarios in the stochastic problem. The solution obtained is used as an initial first-stage

solution in the subproblems. The algorithm for the RW method is presented in 2, where the change

from 1 is that the first iteration in the stochastic problem uses the first-stage solutions from the

robust optimization problem.
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Algorithm 2 Proposed algorithm

1: procedure L-shaped method for SCFPP with Warm Start

2: Lines (2)-(4) of Algorithm 1

3: Solve the robust optimization problem

4: for all s ∈ S do

5: Fix first-stage variables in subproblem s from the deterministic problem

6: Solve subproblem s

7: end for

8: Add optimality cut to master problem

9: Lines (5)-(17) of Algorithm 1

10: end procedure

The second commonly employed technique for warm start in the L-shaped method involves initial-

izing the master problem with the solution obtained from the previous iteration. This approach

enables the master problem to leverage the information already gathered and potentially speed up

the discovery of an optimal solution, thereby accelerating the overall problem-solving process, as

discussed in Rodŕıguez et al. (2021).

6.3.3 A Two-Phase Approach

McDaniel and Devine (1977) introduces a modified algorithm for solving mixed integer problems

with the L-shaped method. They show that valid optimality cuts can be obtained from the solution

to the Linear Programming (LP) relaxation of the master problem. To take advantage of this, they

apply the decomposition algorithm in two phases. In the first phase, they solve the linear relaxation

of the master problem, which enables them to generate initial solutions rapidly and tighten the

relaxation. Then, in the second phase, they reintroduce the integrality requirements to the master

problem, and the solution process continues. By using this Two-Phase (TP) approach, McDaniel

and Devine (1977) demonstrate that they are able to solve mixed integer programming problems

more efficiently and effectively than prior methods. As the master problem in the SCFPP is a

mixed integer problem, the TP approach can be applied to faster get a good description of the

master problem and consequently converge more rapidly toward the optimal solution.

The effectiveness of the TP approach introduced by McDaniel and Devine (1977) depends on when

the transition from the first to the second phase is done. In the original paper, the authors propose

three different methodologies for determining this point. The first method involves continuing the

LP iterations until no further iterations were possible. The second method is to solve the master

problem as an LP for the first k iterations. Finally, the third method is to switch to the original

master problem when the upper bound is less than or equal to the lower bound plus a small epsilon

value.

For the purpose of this report, we adopt the third method proposed by McDaniel and Devine

(1977). By using this method we avoid using too much time solving the linear relaxation, as

method one might. Furthermore, the third method guarantees that a ϵ-optimal solution is found,

which is not the case for method two, where the LP solution might have a very high gap. We

consequently expect to achieve a balance between solution time and solution quality.

Note that when the integrality property is added to the master problem, the upper bound is set to

∞ while the lower bound is unchanged. This is because the LP-relaxation of the master problem
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Algorithm 3 Proposed algorithm

1: procedure L-Shaped Method for SCFPP with a Two-Phase Approach

2: Build master problem as a linear problem

3: Line (3)-(17) in Algorithm 1

4: if Termination criteria is reached then

5: Introduce integrality property to the master problem

6: UB ←∞
7: Line (5)-(17) in Algorithm 1

8: end if

9: end procedure

generates a valid lower bound, but an invalid upper bound.

6.3.4 The Magnanti-Wong Method

The effectiveness of the L-shaped method relies on the quality of the optimality cuts it generates.

In their work, Magnanti and Wong (1981) highlight that the degenerate primal subproblem yields

optimality cuts with varying degrees of strength. To address this issue, they introduce a method for

identifying a Pareto-optimal cut, which refers to a cut that is not dominated by any other cut. This

technique involves utilizing core points which are points residing within the relative interior of the

convex hull of the feasible area. The method solves the master problem and the subproblem in the

same manner as the original L-shaped method. However, after solving a subproblem, the method

distinguishes from the original method by solving the Magnanti-Wong subproblem for the same

scenario in a chosen core point and by using the dual values from the Magnanti-Wong subproblem

to generate an optimality cut. The Magnanti-Wong subproblem is also possible to formulate on

dual form. This formulation is similar to the original dual subproblem, but includes a Magnanti-

Wong constraint that ensures that the objective value is equal to the optimal objective value found

in the original subproblem. The dual variable of this constraint is used in the formulation of the

Magnanti-Wong primal problem.

Figure 6.3 is an illustration of the Magnanti-Wong (MW) method. In this figure, the original

solution to the master problem is denoted as y, while y0 and y1 represent two computed core

points. The dotted red lines signify the potential optimality cuts identified at point y. As depicted

in the figure, multiple optimality cuts exist, and the original subproblem may not necessarily select

the strongest one. By employing the Magnanti-Wong subproblem with a core point, the Pareto

optimal cut, that is specific to that core point, is determined. However, Figure 6.3 demonstrates

that the strongest cut varies for different core points. For core point y0, the Pareto-optimal cut is

represented by (a), while it is (b) for core point y1.

The main goal of the MW method is to increase the information gained in each optimality cut

and consequently converge faster. Even though the MW method finds the Pareto-optimal cut at

each iteration, there are some drawbacks. One of the drawbacks is the need to solve two Linear

Programming problems for each subproblem in each iteration. This increases the computational

time used on each iteration, and might make the total computational time higher than what is

needed when generating normal optimality cuts. Furthermore, the MW acceleration might suffer

from numerical instability. Specifically, this is a common problem when the objective function

value and the core points are of small magnitude (Perrykkad et al., 2022). Lastly, the generation

of core points is not necessarily an easy task, and the generated cuts depend greatly on which core
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Figure 6.3: Illustration of the Magnanti-Wong method. y represent the found optimal solution for

the master problem, while y0 and y1 represent two calculated core points. The dotted red lines,

(a) and (b) represent the Pareto-optimal cuts for core point y0 and y1, respectively.

points are being used, as illustrated in Figure 6.3 (Magnanti & Wong, 1981).

Implementing Magnanti-Wong for the SCFPP

The objective function in the primal Magnanti-Wong subproblem is given in Equation (6.43). The

difference from the original subproblem objective function is the additional term (ZSP − ϵ)β. This

term comes from the Magnanti-Wong formulation, where ZSP is the optimal objective value for

the corresponding sub problem, ϵ is a tolerance parameter added due to numerical instability and

β is the dual variable to the Magnanti-Wong constraint in the dual Magnanti-Wong subproblem.

ZMWSP = min αfQ
s + (1− α)fC

s + (ZSP − ϵ)β (6.43)

The constraints with both first- and second-stage variables, i.e. Constraints (6.4)-(6.5) are re-

formulated in Constraints (6.44)-(6.45). The variables w0
adk and m0

bdik represent the core points.

In the SCFPP, these are calculated as the average of the optimal solution and another feasible

solution found in the current iteration of the master problem. Since both points are feasible, the

average is a relative interior point unless both points are on the same facet of the integer hull.

xabdiks ≤M1(w
0
adk − ŵadk) a ∈ A, d ∈ D, i ∈ Id, b ∈ Bi, k ∈ K (6.44)

∑
a∈A

xabdiks ≤ FB
bdis(m

0
bdik − m̂bdik) d ∈ D, i ∈ Id, b ∈ Bi, k ∈ K (6.45)

For all constraints without a first-stage variable, i.e. Constraints (6.6)-(6.23), the Magnanti-Wong

acceleration only affects the right hand side. The change can be written as shown in Equation

(6.46).

RHS = RHS(1− β) (6.46)

Due to the numerical instability, where ϵ is added to the right hand side of the dual Magnanti-

Wong constraint, β is set to be ≤ 0 in the Magnanti-Wong subproblem. This makes sure that the

objective value in the original subproblem is ≥ ZSP
s − ϵ.
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Algorithm 4 Proposed algorithm

1: procedure L-Shaped Method for SCFPP with Pareto-Optimal Cuts

2: Lines (2)-(8) of Algorithm 1

3: Build a Magnanti-Wong subproblem for each scenario s ∈ S
4: for all s ∈ S do

5: Solve subproblem s with given first-stage decisions

6: Solve Magnanti-Wong subproblem with given first-stage decisions, core points and

optimal subproblem-solution

7: end for

8: Lines (11)-(17) of Algorithm 1

9: end procedure

6.3.5 Approximate Master Solution

The SCFPP has integer first-stage variables, and solving the master problem to optimality can

therefore become a time-consuming process. According to research by Magnanti and Wong (1981)

and Zarandi (2010), the master problem can account for over 90% of the total computational

time. To address this issue, modifications can be made to the general L-shaped algorithm, such as

terminating the master problem before it reaches optimality. By doing so, the algorithm can send

first-stage decisions to the subproblems earlier, which allows for the creation of optimality cuts and

may accelerate the overall process. The main goal of the following proposed methods is to faster

get a good description of the master problem, and consequently reduce the computational time.

One way to approximate the master solution is by stopping the solution process of master problem

when a solution equal to the best lower bound so far is found, hereby referred to as the LB-stop

method. This technique significantly reduces the computational effort required to solve the master

problem, since finding a better solution that is valid is impossible. According to Rahmaniani et al.

(2017), this approach can be particularly effective when used in conjunction with the L-shaped

approach. They note that by exploiting the structure of the problem, the approach can reduce the

computational effort required to solve the problem by up to 60%.

Another approximation method suggested by Rahmaniani et al. (2017) is the ϵ-approach. This

involves solving the master problem to ϵ-optimality, allowing for a small tolerance in the objective

function value each time the master problem is solved. The value of epsilon can be gradually

decreased over successive iterations until the optimal solution is obtained. According to Zhao et

al. (2017), the ϵ-technique can significantly reduce the number of iterations required to solve the

problem, consequently reducing the total computation time.

Lastly, it is possible to accelerate the master problem for a given iteration by stopping the solution

process after a certain number of solutions have been found, hereby referred to as the SolNum

approach. This number can be gradually increased for each successive iteration, which can further

accelerate the algorithm. The goal of this approach is to get more information from the subproblems

in the form of optimality cuts, and consequently find the optimal solution in a shorter amount of

time. However, this approach may require additional iterations of the algorithm to improve the

solution quality.
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6.4 Reducing Complexity by Limiting Uncertain Days

When dealing with uncertainty over a long planning horizon, the problem becomes increasingly

complex and computationally heavy to solve. To reduce the computational complexity, while still

being able to solve for a longer planning horizon, we propose a method that involves incorporating

uncertainty for a subset of days in the planning horizon. While reducing the uncertainty in the

problem may have a considerable impact on the solution of the model, the hypothesis behind the

proposed method is that the reduced complexity may outweigh these effects. The effect of the

method is studied in Chapter 8.

The proposed method is performed by splitting the planning period into two periods; with and

without uncertainty. During the period including uncertainty we consider uncertainty regarding

nutritional and dry matter content. For the period without uncertainty, we assume that the dry

matter and nutritional content of all silage bales is equal to the expected value of the corresponding

batch. This means that during the period when uncertainty is not considered, FB
bdis = F

B

di and

NB
bdins = N

B

bdins for all bales b in batch i. The only additional input parameter that is necessary

when using this approach is the chosen number of days that should take uncertainty into account.

6.5 Simulation-Based Approach for Model Evaluation

To evaluate the performance of the model, we propose a simulation-based approach that incor-

porates a rolling horizon method. This allows us to observe the outcome of the models’ decisions

in a real-life situation by simulating the quality of each silage bale over the planning horizon and

allowing new information to become available as time progresses.

An illustration of the method is illustrated in Figure 6.4. In the SCFPP, the first-stage decisions

are tactical decisions that are made once at the beginning of the planning horizon. In contrast, the

second-stage decisions are made daily, when the actual quality is known. Therefore, the first-stage

decisions are fixed based on the initial decision made at the start of the planning horizon, while

the second-stage decisions are solved one day at a time. The actual quality of the silage bales

transported on each day is simulated by sampling from its corresponding distribution. Using this

sampled quality, the second-stage decisions are solved, taking the quality of the silage bales as well

as decisions made on the previous days into account. By continuing this process for each day of

the planning horizon until the entire planning horizon is solved, we can evaluate the performance

of the model under a simulated reality. The objective value of the simulated model may then be

compared to the objective value of the original model with scenarios.
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Figure 6.4: Illustration of the simulation-based approach for model evaluation.
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Chapter 7

Data Sets and Parameters

This section describes the data sets and parameters used to generate instances for the compu-

tational study of the model. First, Section 7.1 describes the farm size and the animal groups

considered in our test instances. Thereafter, input data related to the animal groups’ feeding

requirements are presented in Section 7.2. Section 7.3 presents the ingredients considered and

data regarding their availability and nutritional content. Since a major part of the data used in

our model is generated for the purpose of this thesis, the data may be prone to uncertainties and

inaccuracies. Therefore, Section 7.4 presents some limitations to the generated data.

7.1 Farm Size and Animal Groups

In this case study, we consider a small to medium-sized farm with 30 dairy cattle, which is the

average size of a Norwegian dairy farm (Statistisk sentralbyr̊a, 2023). The farm has one kitchen

with a daily capacity of four silage bales. The animals on the farm are divided into three main

categories: growing, lactating, and maintained, where each of the animal groups consists of a

combination of the groups introduced in Section 2.1.2. The animal groups considered in this case

study are described in Table 2.1.

Table 7.1: An overview of the animal groups considered in this case study.

Group Description

Growing 10 growing animals such as calves and heifers. The feeding requirements vary over

the time horizon based on the animals’ weight and growth rate.

Lactating 15 lactating animals of varying production. This group covers all stages of lacta-

tion: early lactation, mid-lactation, late lactation, and dry cows. The feeding

requirements change depending on the stage of lactation.

Maintained 5 animals that are not lactating or in a growth stage, such as mature cows that

have completed their lactation cycle and heifers that have not yet started their

lactation cycle. The main goal when feeding these animals is to maintain their

current body weight and health.
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7.2 Feeding Requirements

For each animal group presented in Section 7.1, a data set is generated regarding the daily feed

composition requirements. Each data set includes the daily minimum, maximum, and target

values for dry matter, protein, and Neutral Detergent Fiber (NDF) over a time period of 365 days.

Triangulation is used to combine data from multiple sources to improve the credibility and overall

quality of the data. The main sources used for data collection are research articles, example data,

and knowledge provided by TINE and TKS.

The daily requirements for each animal group are based on typical requirements for one animal in

each animal group and multiplied by the number of animals. For the growing group, the single

animal requirements are based on cattle with a starting weight of 100 kg and a daily growth rate

of 1 kg per day. The lactating group’s requirements are generated based on a typical lactation

cycle, with specific requirements for each stage of lactation. The nutritional requirements for the

maintenance group correspond to an average adult animal in a non-growth and non-lactating stage.

Figure 7.1 illustrates the target values for dry matter and protein for each of the three animal

groups over a time period of 365 days. The NDF target is not illustrated, as this is constant at

30% of the target dry matter intake for all animal groups. The requirements for dry matter are

illustrated in Figure 7.1a. For the growing animal group, the requirements for dry matter increase

over time as the animal grows up and gains weight. For the lactating group, the dry matter

requirements peak during the first months of lactation, following the development as described in

Section 2.1.2. The dry matter requirements for the maintained group remain stable throughout

the time period. Figure 7.1b illustrates the protein requirements for the animal groups. As the

figure shows, the protein requirements for the growing group are higher at the beginning of the

time horizon. As described in Section 2.1.2, this is because the animal requires a higher amount

of protein to support high muscle and skeletal development during the early stages of growth.

Likewise, for the lactating group, the protein requirements are highest during the early stage of

lactation when milk production is at its peak. The protein requirements for the maintaining group

remain consistent throughout the entire time period as illustrated in Figure 7.1b. The upper and

lower bounds of all feeding requirements for the three animal groups are illustrated in Appendix B.
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Figure 7.1: Target content of dry matter and protein for the different animal groups over a time

horizon of 365 days.
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The maximum amount of feed concentrate, FMAX
a , is set based on the animals’ stage and pro-

duction level. For the lactating group, the maximum amount of feed concentrate in each feed

composition is set to 70% of the target dry matter intake, as they require a higher level of nu-

trition to support milk production. Growing animals require less feed concentrate than lactating

ones, and the limit is set to 40% of the target dry matter intake. For the maintained group, the

lowest level of feed concentrate is required, and the limit is set to 20% of the target dry matter

intake.

The penalty function parameter values, PON , P IN and P IM , are described in Chapter 5, and

are set to penalize deviations from the target content. If the nutritional or dry matter content

is between the target and the upper or lower limit, the penalty increases linearly until it reaches

P IM or P IN at the limits, where the penalty is set to 1. The slope of the penalty function when

the amount of nutritional content exceeds the limits is determined by PON . This value is set to

400 as the upper and lower bound are considered to be quite strict limits.

7.3 Ingredients

The ingredients used in our case study are limited to silage bales and feed concentrates. Data

regarding the content of the different ingredients is mainly provided by TINE, but also supple-

mented by information from TKS and online research. Specifically, the Nordic feed evaluation

platform NorFor (Nordic Feed Evaluation System, 2023) has been a valuable tool for getting addi-

tional information on the nutritional content of ingredients and ensuring the accuracy of the data

generated. The costs of silage bales and the different types of feed concentrate are set to reflect

the cost ratio found in the data provided by TINE.

7.3.1 Silage Bales

Our case study considers six silage bale batches, each becoming available at different times during

the planning horizon. The silage bale batches are harvested from different places on the field at

different times, affecting their nutritional content. The total amount of silage bales available in a

batch is dependent on the number of days in the planning horizon of the test instance. This is

done to ensure that all instances have comparable resource availability regardless of the length of

the planning horizon. For batch 1, which is in stock from last year, the number of bales is set to

1 ∗ |D|. For all batches i that become available during the planning horizon (batch 2 - batch 6)

the number of bales in each batch is set to 2 ∗ |D|.

The expected nutritional content of the silage bale batches on the day of harvest is based on

actual silage quality analyses provided by TINE, found in Appendix C. To account for the natural

deterioration of silage bales presented in Chapter 2, we assume that the expected content of dry

matter, protein, and NDF decreases by 1% per day during the planning horizon. The cost of using

a silage bale is set to 120 NOK on the day it becomes available. The cost is linearly reduced as

the quality decreases.

As described in Section 2.1.3, the actual quality of each single silage bale is subject to uncertainty

due to various factors such as cultivation strategy, soil quality, weather conditions, harvesting

policy, handling, and storage conditions. We model this uncertainty using a triangular distribution,

a modeling strategy that is supported by several studies (Hardaker et al., 2015; Shalloo et al., 2004).

The triangular distribution is illustrated in Figure 7.2. The mode of the triangular distribution is
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Table 7.2: Information on the silage bale batches used in this case study.

Batch [i ] Day available [DA
i ]

1 1 (In stock from last year)

2 1

3 1

4 5

5 10

6 20

set to 1. This represents the expected value of the silage bale batch on a given day. Given the

potential risks associated with the fermentation process, we assume that the likelihood of a silage

bale having lower quality than indicated by the sample analysis is higher than that of it having

higher quality. Therefore, the minimum and maximum values are set to 0.4 and 1.2, respectively.

As described in Chapter 5, the scenarios are generated by drawing random values from the trian-

gular distribution. Additionally, we account for a 5% probability that the fermentation process of

the silage bale results in a complete loss, and that the silage bale is useless. When this is the case,

the content of the silage bale in terms of both dry matter and nutritional content is set to 0.

In situations where the content of a silage bale is insufficient or the bale is unusable, an alternative

solution is to utilize reserve silage as outlined in Chapter 4. To discourage regular reliance on

the reserve silage, the cost of using it has been set at 10 NOK per kilogram of dry matter, which

approximates 2000 NOK for an entire bale. This cost has been set high to ensure that it is not

preferable to depend on the reserve silage. However, it remains low enough to make it more

favorable to use the reserve silage in the rare cases when a silage bale is useless, rather than

consistently transporting an additional silage bale.

Probability

10.4 1.2

Figure 7.2: Triangular distribution used to model the uncertainty in silage bale content.

7.3.2 Feed Concentrates

TINE has shared the nutritional content of different types of feed concentrates. For this case

study, four types with varying nutritional content and cost are included. An overview of these are

presented in Table 7.3.
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Table 7.3: Information on the feed concentrate types used in this case study.

Feed Concentrate Description Cost (kr/kg)

Formel Protein 32 FKA High protein content, medium fiber quality 12

Formel Elite Normal FKA Medium protein content, high fiber quality. 10

Formel Solid Normal FKA Medium protein content, medium fiber quality. 9

Natura Protein FKA Very high protein content, medium fiber quality 13

7.4 Limitations of Data Generated

It is important to note that the data generated has certain limitations, which may affect the

accuracy of the results. These limitations are due to the lack of real-life data and assumptions

made during the data generation process. Firstly, the generated feeding requirements only cover

dry matter, protein, and NDF, which is not an accurate reflection of the complete nutritional

requirements of dairy cattle. In addition, the data assumes that all animals in a particular group

have the same feeding requirements, despite the fact that animals in a group may be at different

stages of growth or lactation at different times. Lastly, the modeling of the uncertainty and

natural deterioration of silage bales is a simplification of reality and does not accurately reflect

reality. These limitations may affect the results of the model, and the choices it takes. However,

we believe that the generated data is sufficient for testing the model and gaining valuable insights

into the potential of the model as a useful tool for optimizing dairy cattle feeding.
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Chapter 8

Computational Study

This chapter presents and discusses the computational results of this thesis. Throughout the

chapter we aim to address the three goals outlined in Chapter 1; developing an efficient solution

method to handle the computational complexity of the SCFPP, demonstrating the value of plan-

ning while considering uncertainty, and investigating the trade-off between cost and quality when

developing feeding plans for dairy cattle.

The sections are organized as follows. To begin, we establish a base case in Section 8.1, determining

the divisors and weights needed for meaningful comparisons between objectives in the model.

Thereafter, Section 8.2 addresses the first goal of this thesis by analyzing and evaluating the

technical performance of the proposed solution methods. In Section 8.3, a sample stability analysis

is conducted to determine the appropriate number of scenarios for the remaining computational

study. Sections 8.4, 8.5, and 8.6 adress the second goal of the thesis, and investigate the value

of long-term planning while considering uncertainty. Section 8.4 studies the value of uncertainty,

Section 8.5 explores the benefits of extended planning horizons, and Section 8.6 analyzes the impact

of reducing the number of days with uncertainty to enable longer planning horizons. Finally, in

Section 8.7, we address the last goal of the thesis by investigating the trade-off between cost and

quality.

8.1 Base Case Divisors and Weights

The objective function of the model presented in Chapter 5 consists of two components: cost

and quality, which are combined using a weighted sum objective. To compare these objectives

effectively during the computational study and to make it easier to interpret α, it is necessary to

establish an objective function where none of the terms is dominant when the two objectives are

weighted the same, i.e. α = 0.5. Since the magnitudes of the individual objective terms may differ

significantly, each term is assigned a divisor that ensures they possess equal significance in the

overall objective function.

To determine the balancing divisors, we solve the problem with different values of α, specifically 0.99

and 0.01. These values correspond to approximately solving a single-objective problem for quality

and cost, respectively. The objective value for the prioritized objective is set as the divisor for

that particular objective. As a result, when implementing these divisors, the best possible solution

for each objective is represented by a value of 1. All subsequent problem instances discussed in
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this chapter utilize the divisors presented in Table 8.1. It is worth noting that the divisors are

generated by solving a problem with 10 days and 20 scenarios. Even though we have not generated

one specific divisor for each of the test instances, the presented divisors are evaluated to be adequate

for the analysis done in this thesis. Furthermore, all models are run with α = 0.5 unless stated

otherwise.

Table 8.1: The objectives with their respective divisors.

Objective Divisor

Quality 51.86

Cost 1597.60

8.2 Model Performance Analysis

This section addresses one of the three goals presented in Chapter 1, namely, finding a solution

method that effectively solves the SCFPP. This is done by evaluating the performance result of

the model when solved with the solution methods presented in Chapter 6, and comparing this

to the performance of the standard commercial solver, Gurobi. First, the performance of the

standard Gurobi solver is presented in Section 8.2.1. Thereafter, Section 8.2.2 evaluates the L-

shaped method and its acceleration methods one by one, aiming to find a suitable combination of

acceleration methods. Lastly, Section 8.2.3 compares the resulting combined acceleration method of

the L-shaped method to the performance of the Gurobi solver. The primary focus when evaluating

and comparing the methods is studying how the optimality gap and bounds evolve over time for

the different modeling techniques.

All instances are run with a time limit equal to three hours (10 800 seconds), a maximum number

of iterations of 1 000, and a 1% optimality gap as termination criteria. The model is implemented

using the commercial software Gurobi Optimizer version 9.5.2 with the Gurobi Python Interface.

All preprocessing and test instance generation is done using Python 3.8.8. The problem instances

are run on a computational cluster provided by the Department of Industrial Economics and

Technology Management at NTNU. The specifications of the computational nodes that are used

are presented in Table 8.2.

Table 8.2: Hardware specifications.

Computer Dell PowerEdge R640

Processor 2x2.4GHz Intel Xeon Gold 5115 CPU - 10 core

RAM 96Gb

Disk 55Gb SATA SSD

The model is solved for different numbers of days in the planning horizon, number of scenarios,

and solution methods. Based on results from preliminary testing, the number of days are set to

5, 10, 15, and 20 days and the number of scenarios is set to 2, 10, 20, 60, and 100 scenarios. We

apply the standard Gurobi solver as well as the solution methods presented in Chapter 6 to our

test instances. We use notation to differentiate between the instances, where we name the test
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instance from the number of days (D) and the number of scenarios (S). For example, a test instance

denoted as 10D20S represents an instance with 10 days and 20 scenarios.

8.2.1 Model Performance using Gurobi Solver

This section provides an analysis of the results obtained by applying the standard Gurobi Solver

to solve the SCFPP. An overview of the results is presented in Table 8.3, while the complete result

table can be found in Appendix D.

The findings reveal that for the smallest instances, the commercial solver successfully solves the

problem to optimality well within the specified time limit of 10 800 seconds. However, as the

period length increases, the optimality gap and runtime do the same. In the case of the largest

instances, the solver obtains a 100% optimality gap when reaching the time limit. This highlights

the need to explore alternative solution approaches to improve the overall performance.

Table 8.3: Results from solving the problem instances using the standard Gurobi solver.

Number of days

5 10 days 20 days

Scenarios time gap time gap time gap

2 2.72s 0.52% 1576.15s 1.00% -* 8.43%

10 54.83s 0.00% -* 3.95% -* 32.03%

20 453.75s 0.71% -* 16.18% -* 32.14%

100 722.34s 0.00% -* 99.99% -* 100.00%

* timed out (runtime > 10 800s)

8.2.2 Performance of the L-Shaped Decomposition Method

This subsection compares the different versions of the L-shaped algorithm, aiming at finding a good

version of the method to use further in the computational study. The original L-shaped method, i.e.

the single-cut version, serves as our initial Base Case (BC). One by one, the acceleration techniques

presented in Section 6.3 are added to the general L-shaped algorithm. Each are evaluated against

the current BC and added to the BC if the results are better. This is a greedy approach where we

are not guaranteed to find the best combination of acceleration techniques. However, we consider

it to be an approach that will result in a sufficiently good acceleration approach for this thesis.

The enhancement techniques are added and evaluated in the order presented in Table 8.4.

Comparing the Single- and Multi-Cut Version of the L-Shaped Approach

The first acceleration technique to be compared to the Base Case is the multi-cut version of the L-

shaped method. The performance of the L-shaped method with single- and multi-cut is presented

in Table 8.5 and 8.6, respectively. We observe that the multi-cut version outperforms the single-cut

version for all instances where the number of days is five, and for most instances when the number
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Table 8.4: The order the acceleration methods are added to the Base Case and evaluated.

Number Evaluated Method(s)

1 Multi-cut version of L-shaped

2 Warm start techniques and the Two-Phase (TP) approach

3 The Magnanti-Wong (MW) method

4 LB-stop

5 The ϵ- and the SolNum approach

of days is 15. However, when the number of days reaches 20, both the single- and the multi-cut

version struggles.

Table 8.5: Results from solving the problem instances using the single-cut version of the L-shaped

method.

Number of days

5 days 15 days 20 days

Scenarios time gap time gap time gap

2 195.93s 0.99% -* 91.87% -* 99.43%

10 -* 15.73% -* 98.02% -* 96.71%

20 -* 75.49% -* 96.99% -* 98.85%

100 -* 69.17% -* 96.28% -* 95.67%

* timed out (runtime > 10 800s)

Table 8.6: Results from solving the problem instances using the multi-cut version of the L-shaped

method.

Number of days

5 15 20

Scenarios time gap time gap time gap

2 62.04s 0.96% -* 92.52% -* 95.91%

10 162.79s 0.94% -* 29.67% -* 96.91%

20 2225.56s 1.00% -* 24.89% -* 98.93%

100 -* 2.10% -* 93.81% -* 95.85%

* timed out (runtime > 10 800s)

Figure 8.1 illustrates the upper and lower bound development for the single- and multi-cut version

of the L-shaped method on the instances 5D2S and 5D20S. In Figure 8.1a we observe that both

instances find the optimal upper bound long before the time limit is reached. However, it is evident

that the cuts generated from the multi-cut version are significantly more efficient than those in
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the single-cut version. This can be seen from the fact that the lower bound increases faster for the

multi-cut version. This distinction becomes particularly apparent when looking at Figure 8.1b. In

this graph, the lower bound of the single-cut version shows minimal growth, struggling to increase

at all, whereas the lower bound of the multi-cut version approaches the upper bound, indicating a

much more efficient optimization.

(a) Results for instance 5D2S. (b) Results for instance 5D20S.

Figure 8.1: Lower- and upper bound development for the BC (single-cut) and multi-cut version of

the L-shaped method.

As the multi-cut version dominates the single-cut version on smaller instances, and has a compar-

able performance on larger instances, we consider it beneficial to incorporate the multi-cut version

as part of the BC. Consequently, the multi-cut version is employed for all the following evaluations.

Effect of Adding Warm Start Methods and the Two-Phase Approach

In the following evaluation, we investigate the effect of adding each of the two warm start techniques

introduced in Chapter 6, namely the Robust Warm start (RW) algorithm and the Initializing

Warm start (IW). The Two-Phase (TP) approach is also evaluated at this step, as this method

has similarities to the warm start techniques. Each of these three methods is individually added

to the Base Case (BC) and compared against one another. By evaluating their performance and

effectiveness, we aim to determine whether any of these three approaches should be incorporated

into the BC as an acceleration technique. Since all three approaches initialize the solution process

in different ways, we only consider adding one of them to the BC.

As described in Chapter 6 the Two-Phase approach allows us to relax the integer property in the

master problem until a chosen point in time. In this particular implementation, we transition to

an integer master problem when the relative gap between the upper and lower bounds is below

a predefined tolerance value. For this study, we have set this value to 0.2, considering it to

be a suitably small value that can produce satisfactory linear programming solutions without

significantly impacting the computational time. With this choice, we aim at achieving a balance

between obtaining good integer solutions and maintaining computational efficiency.

Table 8.7, 8.8 and 8.9 approach presents the results for RW, IW and TP, respectively. All solu-

tion methods are able to solve all but one of the instances with five days planning horizon to

1%-optimality. Here, the RW method demonstrates the shortest computational solving times.

However, as the instance size grows, the optimality gap for all solution methods increases. The TP

approach performs best when this is the case, with the lowest optimality gap for several instances.
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For most of the 15 and 20 day horizon instances, the TP approach is able to get lower gaps com-

pared to both the RW and IW method. This indicates that the TP approach is more effective at

improving the lower bound for instances with a longer time horizon.

Compared to the BC, all the added acceleration methods performs slightly worse on computational

time for the smaller instances. However, as the number of days and scenarios increase, the TP

approach performs slightly better when considering optimality gaps, as can be seen for all instances

with 20 days.

Table 8.7: Results from solving the problem instances using the Robust Warm start (RW).

Number of days

5 15 20

Scenarios time gap time gap time gap

2 72.77s 0.99% -* 91.87% -* 92.72%

10 278.34s 0.94% -* 50.92% -* 95.86%

20 2783.91s 0.96% -* 42.21% -* 99.01%

100 -* 3.31% -* 96.27% -* 96.67%

* timed out (runtime > 10 800s)

Table 8.8: Results from solving the problem instances using the Initializing Warm start (IW)

method.

Number of days

5 15 20

Scenarios time gap time gap time gap

2 131.02s 0.00% -* 91.87% -* 92.72%

10 572.28s 0.71% -* 50.39% -* 96.95%

20 9563.87s 0.58% -* 46.16% -* 98.85%

100 -* 75.08% -* 96.27% -* 96.35%

* timed out (runtime > 10 800s)

Figure 8.2 presents the progression of upper and lower bounds for the three warm start techniques

(RW, IW, and TP) along with the BC on two selected test instances: 5D10S and 15D2S. When

analyzing Figure 8.2a, it is evident that both the BC and RW method are able to find good feasible

solutions relatively fast for test instance 5D10S, while the TP approach and IW struggle more.

However, it is important to note that the lower bound on the TP approach increases at a faster

rate than all the other methods. Furthermore, examining the instance presented in Figure 8.2b, it

becomes apparent that the TP approach outperforms the other methods by finding both a better

upper and lower bound. It is worth noting that the TP approach does not find a valid upper bound

until it exceeds 2 000 seconds, unlike the other methods. However, once the TP approach finds

a feasible solution, it significantly outperforms the quality of the solutions obtained by the other

methods within the time limit of 10 800 seconds.
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Table 8.9: Results from solving the problem instances using the Two-Phase (TP) approach.

Number of days

5 15 20

Scenarios time gap time gap time gap

2 103.14s 0.00% -* 23.57% -* 29.33%

10 350.50s 0.56% -* 47.09% -* 94.91%

20 7193.22s 0.76% -* 76.50% -* 87.45%

100 -* 5.15% -* 31.71% -* 67.60%

* timed out (runtime > 10 800s)

(a) Results for instance 5D10S. (b) Results for instance 15D2S.

Figure 8.2: Lower- and upper bound development for the Base Case (BC), Robust Warm start

(RW) method, Initializing Warm start (IW) method, and Two-Phase (TP) approach.

Based on the analysis presented, both the TP approach and the RWmethod demonstrate promising

results. As several remaining acceleration techniques rely on iterations, we look at how many

iterations the two methods are able to perform within the time limit. This is done to distinguish

between the methods and decide which method to add to the BC. An overview of the number of

iterations for the largest instances is presented in Table 8.10. The results clearly show that the TP

approach is able to perform a higher number of iterations compared to the RW method.

When considering which method to proceed with, the TP approach is the preferred choice. As the

approach performs good in terms of gap and solution time, as well as being able to perform a high

number of iterations within the time limit, we consider it to have the greatest potential for further

improvements. By leveraging the TP approach’s capability for a larger number of iterations, we

can take full advantage of the additional acceleration techniques. This strategic choice is expected

to yield improved outcomes, accelerating the overall effectiveness of the approach.

Effect of Adding the Magnanti-Wong Method

The next acceleration technique is the Magnanti-Wong (MW) method, which creates Pareto-

optimal optimality cuts. As stated in Chapter 6, the core point used in the Magnanti-Wong
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Table 8.10: Number of iterations performed when using the Two-Phase approach and the Robust

Warm start method.

Number of days

15 20

Scenarios TP RW TP RW

20 18 17 21 2

60 16 2 20 2

100 15 2 17 2

subproblem in this thesis is found by taking the average of the optimal solution found and another

feasible solution found in the current iteration of the master problem. If only one feasible solution

is found when solving the master problem, the MW method is not used in that iteration. An

overview of the performance when adding this method to the BC is presented in Table 8.11. Here,

we observe that the method finds a solution with a gap smaller than 1.00% for all the smallest

instances. Furthermore, it manages to find a sufficiently small gap as the number of days increases.

However, for the largest instances with the highest number of scenarios, the method struggles. The

complete performance table can be found in Appendix D.

Table 8.11: Results from solving the problem instances with the Magnanti-Wong method added

to the Base Case.

Number of days

5 10 20

Scenarios time gap time gap time gap

2 6.48s 0.26% -* 16.52% -* 11.72%

10 20.94s 0.81% -* 10.25% -* 61.32%

20 42.56s 0.30% -* 15.01% -* 81.93%

100 443.87s 0.96% -* 78.52% -* 61.54%

* timed out (runtime > 10 800s)

The upper and lower bound development for the BC and the BC with the MW method for instance

5D60S and 10D20S is illustrated in Figure 8.3. Figure 8.3 clearly illustrates the improvement of

adding the Magnanti-Wong method to the BC. The implementation of Pareto-optimal cuts through

the Magnanti-Wong subproblem results in a much quicker convergence. This is as expected, as

the MW method aims at quicker cutting away the infeasible solutions and consequently needs less

iterations to find the optimal solution. As the presented results show, the Magnanti-Wong method

improves the solution method on almost all instances. The conclusion is therefore to include the

MW method in the Base Case in the further computations.

56



(a) Results for instance 5D60S. (b) Results for instance 10D20S.

Figure 8.3: Lower- and upper bound development for the Base Case (BC) and Magnanti-Wong

(MW) method.

Effect of Terminating the Solution Process in the Master Problem when Current

Lower Bound is Found

To try to reduce the time spent on solving the master problem in each iteration, we add the LB-stop

method to the problem, where the current iteration of the master problem stops if an objective

value equal to the current lower bound is found. A selection of the results from this approach is

presented in Table 8.12.

Table 8.12: Results from solving the problem instances with the () method added to the Base

Case (BC).

Number of days

5 10 20

Scenarios time gap time gap time gap

2 7.20 0.26% 6063.50 0.24% -* 11.36%

10 25.44s 0.88% 3908.232s 0.82% -* 14.67%

20 72.18s 0.99% -* 3.91% -* 69.43%

100 451.80s 0.96% -* 8.20% -* 38.38%

* timed out (runtime > 10 800s)

In comparison to the current Base Case, the runtime for the smallest instances is longer. However,

the gap is smaller for the instances where the time limit is reached. By looking at Figure 8.4 we

see that by adding the LB-stop method, the solver is able to increase the lower bound faster. This

aligns with the expected behavior, as the LB-stop method aims at spending less time solving the

master problem and consequently is able to iterate faster.
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(a) Results for instance 5D60S. (b) Results for instance 10D10S.

Figure 8.4: Lower- and upper bound development for the Base Case (BC) and the LB-stop method.

As the results show that adding the LB-stop method to the BC improves the result for the majority

of the instances, the LB-stop method is added to the BC.

Effect of Adding the ϵ- and SolNum Approach

The next acceleration approaches that are evaluated are the ϵ approach and the SolNum approach.

As stated in Chapter 6, these two approaches aim at giving a good description of the master

problem in a faster manner. The performance of both the ϵ- and SolNum approach depend on

their initialized settings. The ϵ approach depend on the value of ϵ and the SolNum approach

depend on how many solutions it should find in each iteration. We initially set ϵ to 0.10 based on

preliminary testing for different ϵ values. The value is set to decrease with 0.02 on each iteration.

This means that ϵ is set to 0 after five iterations. For the SolNum approach, the number of solutions

to find is set to 10 for the first five iterations and the maximum for all other iterations. A selection

of the results from solving the test instances with the ϵ- and SolNum approach are presented in

Table 8.13 and Table 8.14, respectively. The complete result table can be found in Appendix D.

Table 8.13: Results from solving the problem instances with the ϵ-approach added to the Base

Case.

Number of days

5 10 20

Scenarios time gap time gap time gap

2 6.64s 0.94% -* 1.22% -* 17.89%

10 23.70s 0.83% -* 6.04% -* 40.65%

20 39.04s 0.96% -* 5.12% -* 69.33%

100 -* 0.25% -* 25.48% -* 65.68%

* timed out (runtime > 10 800s)

When comparing the results in Table 8.13 and Table 8.14 to the BC in Table 8.12, we find that

both the BC and the SolNum approach demonstrates more consistent performance in reducing
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Table 8.14: Results from solving the problem instances with the SolNum approach added to the

Base Case.

Number of days

5 10 20

Scenarios time gap time gap time gap

2 7.05s 0.26% 7301.762s 0.24% -* 15.31%

10 25.35s 0.88% -* 4.02% -* 10.23%

20 39.58s 0.73% -* 4.29% -* 9.85%

100 133.09s 0.66% -* 3.68% -* 9.47%

* timed out (runtime > 10 800s)

optimality gaps compared to the ϵ approach. Furthermore, both the BC and SolNum approach

are able to solve more instances to optimality than the ϵ approach. This result can be due to the

initial value of ϵ, as the larger instances might benefit from having a larger initial ϵ value than

what is appropriate to use in the smallest instances. When comparing the BC with the SolNum

approach, the SolNum approach tends to either solve the instances faster or obtain a lower gap

when the solution process reaches the time limit. The SolNum approach exhibits slightly worse

performance when the number of scenarios is low. However, as the number of scenarios and the

number of days increase, the SolNum approach significantly outperforms the BC algorithm.

Figure 8.5 illustrates the development of the upper- and lower bound when solving instance 5D20S

and 15D100S using the BC-, ϵ- and SolNum approach. For instance 5D20S, Figure 8.5a shows that

all three solution methods finds a similar upper bound with less than a 1% gap to the lower bound

within a short amount of time. However, it is clear that the lower bound increase significantly

faster for the ϵ- and SolNum approach. This is expected, as the two approaches aims at finding

a good description of the master problem in a short amount of time by iterating rapidly in the

beginning of the solution process. The same tendency can be seen in Figure 8.5b, where the BC

struggles to find a good upper bound while both the ϵ- and the SolNum approach performs better.

However, Figure 8.5b shows that the SolNum approach is more efficient in the convergence, which

indicates that the method manages to gather more information than the ϵ approach.
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(a) Results for instance 5D20S. (b) Results for instance 15D100S.

Figure 8.5: Lower- and upper bound development for the Base Case (BC), ϵ approach and SolNum

method.

As the presented results show, adding the SolNum approach results in better performance of the

L-shaped approach compared to the current Base Case and the ϵ-approach. We therefore add the

SolNum approach to the Base Case in the subsequent computational results.

The Resulting Best Combination of Acceleration Methods

An overview of the acceleration methods and whether or not they are added to the Base Case is

presented in Table 8.15. The resulting accelerated L-shaped approach consists of adding multiple

cuts in each iteration, solving the problem as a two-phase problem, adding Pareto-optimal cuts,

stopping the solution process in the master problem when the current lower bound is found, and

limiting the number of found solutions in the master problem for the first iterations. In the

following section, this combination of acceleration techniques is compared to the performance of

the standard Gurobi solver.

Table 8.15: The evaluated acceleration methods and whether or not they are added to the Base

Case.

Acceleration Method Added to Base Case

Multi-cut version of L-shaped ✓

Robust Warm start technique ✗

Initializing Warm start technique ✗

The Two-Phase approach ✓

The Magnanti-Wong method ✓

LB-stop ✓

The ϵ approach ✗

The SolNum approach ✓
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8.2.3 Comparing the Accelerated L-Shaped Method and the Gurobi

Solver

In this subsection, we compare the results from solving the instances using the standard Gurobi

solver and the resulting accelerated L-shaped method. The results from solving the instances

using Gurobi solver are presented in Table 8.3, and results from solving with the accelerated L-

shaped method are presented in Table 8.14. Table 8.16 presents the best performance of the two

approaches for some of the test instances. The cell color presents the solution method used to get

the results presented in the cell. When the color of the cell is green, the solution approach used to

obtain the results is the standard Gurobi solver. When the cell color of the cell is blue, the used

solution approach is the accelerated L-shaped method.

Table 8.16: Best performance results when solving the problem instances. Green = best perform-

ance when using the standard Gurobi solver. Blue = best performance when using the accelerated

L-shaped method.

Number of days

5 10 20

Scenarios time gap time gap time gap

2 2.72s 0.52% 1576.15 1.00% -* 15.31%

10 25.35s 0.88% -* 3.95% -* 10.23%

20 39.58s 0.73% -* 4.29% -* 9.85%

100 133.09s 0.66% -* 3.68% -* 9.47%

* timed out (runtime > 10 800s)

From Table 8.3 and 8.14 it is clear that the Gurobi solver obtains a greater gap than the accelerated

L-shaped method for all instances that times out except from one. Furthermore, the accelerated

L-shaped method finds a solution with a smaller gap than 1% faster than the Gurobi solver for

three out of five of the instances presented in Table 8.16. This indicates that the accelerated

L-shaped method is a well-suited decomposition technique for the problem.

Figure 8.6 illustrates the lower- and upper bound development for solving instance 5D20S and

15D20S by using Gurobi solver and the accelerated L-shaped method. As expected, the accelerated

L-shaped method converges faster to the optimal solution than the Gurobi solver. The upper- and

lower bound for the acceleration technique moves rapidly towards the optimal solution both in

Figure 8.6a, where both solution methods finds the optimal solution within the time limit, and in

Figure 8.6b, where neither of the models finds an optimal solution within the time limit.
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(a) Results for instance 5D20S. (b) Results for instance 15D20S.

Figure 8.6: Lower- and upper bound development for the accelerated L-shaped method and Gurobi

solver.

As the presented results show, the accelerated L-shaped method outperforms the standard Gurobi

solver in the majority of the test instances, either by having lower runtime or by having a lower

gap at the time limit. Therefore, the computations in the following sections are solved using the

accelerated L-shaped approach.

8.3 Sample Stability Analysis

In this section, we perform stability tests to evaluate the model and the scenario generation pro-

cedure. As described in Chapter 5, scenarios are generated based on sampling, and it is important

to investigate whether this scenario generation approach results in reliable and accurate results.

Our goal with the sample stability analysis is to determine a reasonable number of scenarios to use

when running the model and ensure that the generated scenarios provide a valid representation of

the underlying probability distribution.

There are two main types of stability tests: in-sample and out-of-sample. The in-sample stability

test is a test on the model’s internal consistency and investigates whether the scenario generation

procedure generates scenarios that result in similar objective values. The out-of-sample stability

test is a test on the model itself and studies the model’s performance when the solution from the

model is evaluated based on real-life data. The sample stability analysis presented in this section

is performed on test instances of ten days with varying numbers of scenarios. All theory presented

in this section is from King and Wallace, 2012.

8.3.1 In-Sample Stability

When testing in-sample stability, the objective values of instances that are solved with different

scenarios are compared. If all instances get approximately the same objective value, regardless of

the scenario tree used in the model, we have in-sample stability. This means that with perfect in-

sample stability, the model will find the same objective function value, independent of the scenarios

used in the instance.

To find the scenario size that gives in-sample stability for the SCFPP, the model is solved for
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an increasing number of scenarios. For each scenario size, we solve five instances where different

scenarios are generated for each instance. We then compare the variations in the objective values

for all instances of the same scenario size.

Figure 8.7 illustrates the standard deviation in the objective values for the different scenario sizes.

The standard deviation is relatively low for all instances, ranging from 0.01 to 0.06. However,

as seen in the figure, the standard deviation decreases as the number of scenarios increases. The

improvement is especially evident as the number of scenarios reaches 30. After 30 scenarios, the

figure shows that the standard deviations stabilize to a large extent, demonstrating a clear trend

toward enhanced consistency in the results.
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Figure 8.7: Results from in-stample stability test.

8.3.2 Out-of-Sample Stability

In an out-of-sample stability test, the goal is to test if you get approximately the same true

objective value when a problem is solved with different scenario trees. The true objective value is

the objective value of the true problem, where all possible scenarios are taken into account. The

out-of-sample stability test is performed by solving the model for an increasing number of scenarios,

where five instances are solved for each. For all instances with a given number of scenarios, the

true objective value is approximated and compared. As it is nearly impossible to solve the true

problem, we instead approximate the true objective value by fixing the first-stage variables from

the original solution, and then solving the problem taking 1 000 scenarios into account. This

approach provides an estimation of the true objective value, which we can use for comparison.

Figure 8.8 shows the standard deviation of the true objective value for the instances of different

scenario sizes. We see a similar effect as for the in-sample test, where the variation significantly

decreases as the number of scenarios increases. Specifically, the standard deviation is reduced from

0.39 when the models are solved with one scenario to 0.12 when the number of scenarios reaches

30. After this point, the standard deviation varies between 0.07 and 0.18. Although it does not

stabilize completely, it remains at a significantly lower variation compared to the instances with

1 to 20 scenarios. The standard deviation is overall higher for the out-sample stability test than

for the in-sample test. This means that the model requires a larger number of scenarios to give

reliable results for the problem in real life.
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Figure 8.8: Results from out-of-stample stability test.

8.3.3 Conclusion from Sample Stability Tests

The aim of this section is to determine a reasonable number of scenarios to use when running

future tests of the model, that ensures an acceptable stability of the results. The results from

the stability tests indicate that the in-sample stability is overall higher than the out-of-sample

stability. However, for both tests, the results demonstrate enhanced stability as the number of

scenarios increases. As reviewed in Section 8.2, the computational performance of the model

is significantly reduced as the number of scenarios increases. Consequently, there is a trade-off

between ensuring high stability and acceptable computational performance. Taking the findings

from the stability tests and the trade-off between stability and computational performance into

consideration, we find that using 30 scenarios is a reasonable number of scenarios. This ensures

that the model is able to solve the problems with a smaller gap, while still giving quite stable

results.

8.4 The Value of Uncertainty

One goal of this thesis is to investigate the value of tactical planning with uncertainty. To contribute

to this goal, this section studies the value of taking uncertainty into account when solving the

SCFPP. We begin by quantifying the value by using the Value of the Stochastic Solution (VSS).

Thereafter, we study the impact in a simulated reality. Lastly, we investigate the cost and quality

of the animal feed from a deterministic versus a stochastic solution, as well as the different choices

made by the model.

8.4.1 Value of the Stochastic Solution

The VSS is a concept that quantifies the value of uncertainty. It measures the benefit that can be

obtained by using a stochastic solution rather than a deterministic solution when facing uncertain

outcomes. The equation for calculating the VSS for a minimization problem is stated in Equation

(8.1) (Birge & Louveaux, 2011).

V SS = EEV −RP (8.1)
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In Equation 8.1, the Expected result of using the Expected Value solution (EEV) is a measure of

the quality of a solution when the expected value of the random variables is taken into account.

The Recourse Problem (RP) represents the value of the stochastic problem. To calculate the EEV,

we first solve the Expected Value (EV) problem. This is solved by only considering one scenario,

where all silage bales have a quality equal to the expected value of their corresponding batch.

Thereafter, the first-stage decisions of the EV problem are fixed, and the model is solved by using

the same set of scenarios as for the RP.

Table 8.17: VSS for test instances with planning horizon of 5, 10 and 15 days.

Instance EEV RP VSS VSS/EEV (%)

5D30S 1.22 0.99 0.22 18%

10D30S 2.49 2.09 0.40 16%

15D30S 3.64 3.86 0.23 6%

Table 8.17 shows the results for the VSS calculations for the SCFPP for three different instances,

5D30S, 10D30S, and 15D30S. As the table shows, the objective value is improved for all instances

when the model takes uncertainty into account. Note that the percentage of improvement tends

to decrease as the planning horizon increases. This may be due to the fact that as the number

of days increases, so does the optimality gap. Hence, the optimal solutions are not found for the

larger instances. However, as the EEV is significantly positive for all instances, the results indicate

that taking uncertainty into account when determining a feeding plan has a substantial value for

the farmer.

8.4.2 Value of Uncertainty in a Simulated Reality

When determining the VSS, both models are solved for the same set of scenarios. This set of

scenarios are the same scenarios as the RP consider when solving the problem. It is therefore

natural that the RP in most cases achieves better results than the EEV, as supported by the

results in Section 8.4.1. Therefore, it is interesting to also compare the stochastic and deterministic

solution in a possible real-life situation. In this section, we explore the value of uncertainty in a

simulated reality by comparing the stochastic and deterministic solutions when both solutions

are evaluated based on a simulated scenario. We refer to this analysis as the V SSSIM , where

the comparison objectives with and without uncertainty are denoted as EEV SIM and RPSIM ,

respectively.

To calculate EEV SIM and RPSIM , we use the simulation framework introduced in Section 6.5.

As for the traditional EEV, we first solve the EV problem, considering the scenario where all silage

bales take their expected value. We then fix the first-stage variables and run the simulation model,

denoting the solution as EEV SIM . Thereafter, we solve the stochastic problem based on a set of

scenarios and run the simulation model for the same simulated scenario as the EEV SIM , denoting

this solution as RPSIM . Lastly, we compare the two solutions. Since the simulated scenarios are

generated randomly, the outcomes may be affected by the specific scenarios generated. To account

for this variability, we run the simulation five times and compare the average objective values. The

objective values for all simulations are found in Appendix E.
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Table 8.18: V SSSIM for test instances with planning horizon of 5, 10 and 15 days. The values

presented are average values based on five simulated scenarios.

Instance EEVSIM RPSIM VSSSIM VSSSIM/EEVSIM(%)

5D30S 1.28 0.95 0.32 25%

10D30S 2.55 1.99 0.56 21%

15D30S 3.69 3.05 0.64 17%

Table 8.18 presents the results when evaluating the solutions in a simulation-based scenario. These

findings align with those presented in Table 8.17, demonstrating a notable improvement in the

objective function value when the first-stage decisions are made using a stochastic model (RPSIM )

compared to a deterministic model (EEV SIM ). Specifically, all three instances indicate 17-25%

improvement when solved utilizing the stochastic model. Note that when comparing the results

in Table 8.18 to the results in Table 8.17, the V SSSIM is higher than the VSS for all instances.

The reason for this may be that the simulated scenarios are randomly generated, introducing

variability in the results for each simulated reality. These random variations can lead to more

extreme individual cases, some resulting in a substantial effect on solving the stochastic program.

These variations are seen from the results of each simulation, which are presented in Appendix E.

Nevertheless, the results from this analysis support the findings from Table 8.17, and indicate a

significant effect of considering uncertainty, also when considering a real-life scenario.

8.4.3 Impact on Objective and Decisions

Section 8.4.1 and Section 8.4.2 illustrate the value of considering uncertainty by comparing the

objective value of stochastic and deterministic solution methods in a stochastic environment. How-

ever, it is also interesting to study the impact on the different parts of the objective and the decisions

made by the model as this provides insights into the practical benefits of considering uncertainty

in feed planning. In this section, we study the impact of considering uncertainty on the cost and

quality and investigate the differences it leads to in decision-making. We use the test instances from

Table 8.18, and compare the stochastic and deterministic solution when evaluated in a simulated

reality.

Table 8.19 provides a breakdown of the cost and quality objectives for both the deterministic and

stochastic solutions. The cost is divided into first-stage and second-stage costs, where the first-

stage costs are costs associated with the transportation of silage bales, and the second-stage costs

are related to the usage of feed concentrate and reserve silage bales. The quality is represented by

the total penalty of deviating from the target for dry matter and nutritional content, denoted as

Q1, as well as the penalty for not ensuring a stable diet for the animals, denoted as Q2.

The results from Table 8.19 show that for all instances, the first-stage costs are higher for the

stochastic model compared to the deterministic model, indicating that the stochastic model trans-

ports more silage bales. Furthermore, the table shows that the stochastic solutions consistently

have lower second-stage costs compared to their deterministic counterparts. This is expected, as

the deterministic model does not account for variations in the actual quality of silage bales during

the planning, and therefore has to compensate with feed concentrate or reserve silage when the

silage bales have reduced quality. The quality objective is also consistently better for the stochastic

model than for the deterministic model, although the difference is smaller than for the cost ob-
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Table 8.19: Breakdown of the cost- and quality objectives for deterministic and stochastic solutions.

Cost Quality

Instance Type 1st stage 2nd stage Total Q1* Q2** Total

5D30S
Deterministic 0.07 0.74 0.82 0.43 0.03 0.46

Stochastic 0.19 0.45 0.64 0.28 0.04 0.32

10D30S
Deterministic 0.14 1.79 1.93 0.56 0.07 0.63

Stochastic 0.38 1.01 1.39 0.54 0.06 0.60

15D30S
Deterministic 0.21 2.45 2.66 0.92 0.12 1.04

Stochastic 0.78 1.45 2.23 0.76 0.07 0.83

* Total penalty for deviating from target

** Total penalty for not ensuring a stable diet

jective. This indicates that by using additional feed concentrate, the model is able to construct

feed compositions of relatively high quality. The variation penalty is quite low for all instances,

showing that the model in most cases is able to construct a stable diet.

To illustrate a specific outcome, Figure 8.9 shows the daily feed compositions for the lactating

animal group for test instance 5D30S under one of the simulated scenarios. As the figure shows,

the deterministic model uses significantly higher amounts of feed concentrate on a daily basis,

explaining the higher costs compared to the stochastic model. Moreover, on days one and five the

deterministic model does not use any transported silage. This indicates that the silage transported

on that day was not sufficient to meet the dry matter requirements for all animal groups, making

it necessary to rely on feed concentrate and reserve silage. It is worth noting that both the

deterministic and stochastic models yield similar amounts of dry matter in the feed compositions.

This supports the findings from Table 8.19 indicating a smaller improvement in quality compared

to cost.
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Figure 8.9: Feed composition in deterministic (D) and stochastic (S) solution for test instance

5D30S.

Figure 8.10 illustrates the transportation of silage bales for instance 5D30S, showing the increased

transportation of silage bales in the stochastic model compared to the deterministic. Although

this leads to a lower overall cost and a higher quality in our model, it is worth noting that this

increased transportation has some negative effects. In scenarios where the actual silage quality is

high, a considerable amount of the transported silage might end up being thrown away, leading to

a waste of ingredients.

Figure 8.10: Silage bales transported in deterministic (D) and stochastic (S) solution for test

instance 5D30S.

Overall, studying the impact on the cost and quality objectives, as well as the decisions made by

the farmer, the results indicate that it is beneficial to plan with uncertainty. This makes it possible

to avoid situations where it either is necessary to use an additional amount of costly ingredients
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such as feed concentrate or reserve silage, or compromise on the quality of the feed. The results

illustrate the benefits of increasing the transportation of silage bales to mitigate the uncertainty in

the nutritional content, even though it may lead to a higher degree of waste. To address both the

uncertainty and waste concerns, potential strategies for future research are presented in Section 9.2.

8.5 The Value of Planning

This section studies the value of planning for a longer planning horizon, aiming to further address

the goal of investigating the value of tactical planning with uncertainty. While Section 8.4 addresses

the value of taking uncertainty into account, the focus in this section shifts towards evaluating the

value of tactical planning. First, Section 8.5.1 illustrates the impact on the objective value when

the length of the planning horizon is varied. Thereafter, Section 8.5.2 studies the impact on the

cost and quality objectives, as well as the decisions made by the model.

8.5.1 Varying the Length of the Planning Horizon

To study the value of planning with a longer planning horizon, we employ the rolling horizon

method. This involves testing the model performance by keeping the total length of the horizon

constant, but varying the number of days the model optimizes for, hereby referred to as the central

section. This approach allows us to examine the impact of looking further into the future when

resources are limited.

We set the total length of the horizon to 20 days. This enables the model to solve instances over

the full planning horizon close to optimal, making it easier to compare the models, while still being

of adequate length to study the value of planning. The central section is set to 1, 10, and 20 days,

and the forecasting section is set to zero. In addition, instead of setting the number of bales in

each batch to be dependent on the length of the planning horizon as explained in Section 7.3, we

limit the number of bales in each batch to 10. This is done to reflect the limited availability of

silage bales over the total planning horizon of 20 days.

Table 8.20 presents the results from solving the model with the different lengths of the central

section, where the models with a central section of 1, 10, and 20 days are referred to as 1R, 10R,

and 20R, respectively. The findings show an improved objective value as the length of the central

section increases. Specifically, the objective value is improved by 21.5% from 1R to 20R. This

indicates a considerable value of lengthening the planning horizon.

Table 8.20: Results from solving the problem using a rolling horizon method with a central section

of 1, 10, and 20 days.

Model Total Horizon Central section Obj.

1R 20 1 6.27

10R 20 10 5.28

20R 20 20 4.92

69



8.5.2 Impact on Objectives and Decisions

The results obtained from Section 8.5.1 demonstrate that extending the planning horizon has a

positive impact on the objective value. In this section, we study the cost and quality objectives,

as well as the decision-making of the model, when solving models with different planning horizons.

The aim is to provide a more comprehensive understanding of the underlying factors that contribute

to the improvement observed when utilizing longer planning horizons.

Table 8.21 provides an overview of the cost and quality objectives for the three models introduced

in Section 8.5.1. The cost objective is split into first- and second-stage costs, and the quality

objective is split into the total penalty for deviating from the target of dry matter and nutrients

(Q1), and the penalty for not ensuring a stable diet (Q2). The results shown in Table 8.21 reveal

that the improvement in the objective function value primarily comes from improvements in the

cost objective, particularly in terms of second-stage costs. As the length of the planning horizon

is increased, the second-stage costs are significantly reduced, meaning that less reserve silage and

feed concentrate are used. In contrast, the three models obtain relatively similar performance in

the quality aspect. One interesting observation is that when the central section is 1, the models

perform worse in terms of deviation from target, but better in terms of keeping a stable diet. This

may suggest a trade-off between deviation from the target and diet stability, where the model

prioritizes stable compositions when it is not able to be close to target. However, the three models

overall demonstrate relatively comparable performance in terms of quality, suggesting that the

lengthening of the planning horizon primarily affects the second-stage costs of the feeding plan.

Table 8.21: Breakdown of cost- and quality objectives for rolling horizon solutions 1R, 10R, 20R.

Cost Quality

Model 1st stage 2nd stage Total Q1* Q2** Total

1R 0.54 4.21 4.75 1.44 0.07 1.51

10R 0.57 3.25 3.82 1.33 0.13 1.46

20R 0.57 2.86 3.43 1.35 0.13 1.48

*Total penalty for deviating from target

**Total penalty for not ensuring a stable diet

Figure 8.11 illustrates the aggregated cost objective over the total horizon of 20 days for the

three models. The results reveal that models 1R and 10R initially have lower costs than model

20R. However, over time these models experience a substantial increase in costs, with the highest

increase observed for model 1R. This indicates that while the models obtain high quality at a low

cost at the beginning of the planning period, they struggle to maintain this over time. For model

20R, the costs remain relatively consistent, resulting in an overall lower aggregated cost compared

to the other models.
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Figure 8.11: Aggregated cost objective when solving the model using a rolling horizon method

with varying length of the central section. The green, red and blue line represents models with a

central section of 1, 10 and 20 days, respectively.

The results observed in Figure 8.11 suggest that a shorter planning horizon could lead to inefficient

allocation of resources. This is supported by Figure 8.12, which illustrates the daily transportation

of silage bales throughout the planning horizon for the three models.

The figure reveals a clear trend in the transportation behavior of the models, where both models

1R and 10R transport many silage bales at the beginning of the planning horizon, but significantly

fewer towards the end. In particular, from day 13 to day 19, model 1R does not transport any

silage bales at all. This indicates that the model uses all its available silage bales by day 13 and is

unable to transport any more until a new batch becomes available on day 20. Consequently, the

model is forced to compensate with reserve silage and feed concentrate, resulting in significantly

increased costs. However, when the model is forced to only use reserve silage and feed concentrate

in the feed compositions, it is able to compose the exact same feed composition each day for each

animal group. This may explain the low value in the variability objective (Q1) for 1R.

In contrast, model 20R demonstrates a more even distribution of bales throughout the planning

horizon. Initially, the model transports a lower quantity of bales compared to 1R and 10R, which

may be the reason why 20R incurs higher costs during the initial phase of the planning period, as

transporting fewer bales can result in an increased demand for feed concentrate and reserve silage.

However, due to the even distribution of resources, it is able to avoid situations where it becomes

completely reliant on reserve silage and feed concentrate. Consequently, the model achieves lower

overall costs as compared to the other models.
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Figure 8.12: Transported silage bales when solving the model usina a rolling horizon method with

varying length of the central section. The green, red and blue lines represent models that is solved

with a central section of 1, 10 and 20 days, respectively.

The findings from this section indicate that planning for a longer planning horizon leads to a

more efficient allocation of resources and a better ability to maintain cost control over an extended

planning horizon. While a shorter planning horizon may provide immediate favorable outcomes in

terms of cost and quality, it fails to account for future needs, leading to increased costs over time.

This highlights the value of considering longer planning horizons when determining feeding plans,

especially when there are limited resources available.

8.6 Effect of Reducing the Number of Days with Uncer-

tainty

In Section 8.4, the value of uncertainty is studied, and the results indicate a significant improvement

when the problem is solved with a stochastic model compared to a deterministic one. Thereafter,

Section 8.5 illustrates the value of planning, showing that the length of the planning horizon has a

significant impact on the choices that are made, and that solving the model with a longer planning

horizon distributes the resources more evenly. However, as the number of days and scenarios

increase, the model performance is significantly reduced, as evident from the findings presented

in Section 8.2. Therefore, this section investigates the possibility of combining uncertainty and a

longer planning horizon, by limiting the number of days where uncertainty is included.

In this section, the model presented in Section 6.4 is used, allowing the decision maker to only

consider uncertainty on a subset of days during the planning horizon. To perform the analysis,

we run several models for a fixed number of days in the planning horizon, with a varying number

of days where uncertainty is taken into account. After the models have been solved, they are

evaluated using the simulation-based approach presented in Section 6.5, where five simulations are

run for each model. Finally, the average objective values in the simulated scenarios are compared,

in addition to the optimality gap of the original models. The goal is to investigate the trade-off

between the quality of the solution and the computational efficiency when uncertainty is included.

Figure 8.13 illustrates the results for test instance 10D30S. In the figure, the x-axis represents

the number of days where uncertainty is considered, ranging from 1 to 10. The primary y-axis
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represents the simulated objective values, while the secondary y-axis represents the optimality gap

(%). The average simulated objective values for all models are presented by the red line, while the

gap is presented by the blue line.
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Figure 8.13: Effect on objective value and optimality gap when varying the number of days where

uncertainty is taken into account. Effect on objective value and optimality gap when varying the

number of days where uncertainty is taken into account.

As illustrated in Figure 8.13, the simulated objective value is significantly reduced when the number

of days that takes uncertainty into account increases. This is expected due to the value of uncer-

tainty studied in Section 8.4. Furthermore, as the number of days with uncertainty increase, so do

the optimality gaps, reflecting the increased computational complexity as studied in Section 8.2.

It is interesting to look at these two metrics in relation. Figure 8.13 illustrates that the most

substantial improvement in objective value occurs when the number of days increases from one

to three and from five to seven. Furthermore, as the number of days with uncertainty increases

beyond seven, the improvement in the objective values starts to level off. Taking the substantial

increase in computational complexity as the number of days with uncertainty increases into account,

these findings may suggest that it could be beneficial to not consider uncertainty during the

entire planning horizon. Instead, by choosing a subset of days where uncertainty is considered,

decision-makers may strike a balance between improved solutions and manageable computational

complexity.

In conclusion, the findings presented in this section illustrate the potential benefits of only in-

cluding uncertainty for a subset of days during the planning horizon, to reduce the computational

complexity. These results open up possibilities for future research, which is further discussed in

Section 9.2.
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8.7 Trade-off Between Cost and Quality

In this section, we address the third goal for this thesis, namely investigating the trade-off between

cost and quality. In the previous sections of this chapter, all models are solved with α = 0.5, i.e

an equal weighing of the two objective terms, cost and quality. However, in reality, one objective

may be more important to prioritize than the other, likely affecting the decisions made when

determining the feeding plan. In Section 8.7.1 we study the trade-off through a Pareto front

analysis. Thereafter, in Section 8.7.2, we study the impact the prioritization has on the value of

the objective terms and the decisions made.

8.7.1 Pareto Front Analysis

The Pareto front analysis is a tool for studying the trade-off between two objectives. Each point

on the Pareto front represents a solution that is not dominated by any other solution, i.e a solution

that cannot be further improved without compromising the performance of at least one other

objective. It is important to note that as our model uses a weighted-sum method to address the

two objectives, it may not identify all Pareto-optimal points on the front. However, it still offers

valuable insights into the trade-offs between the different objectives.

Figure 8.14 illustrates the Pareto front for a test instance of 10 days and 30 scenarios. The figure

shows that as α increases, the quality is improved while the costs are increased. From the figure,

we see that the slope of the front is steeper along the quality axis than the cost axis. This means

that it is possible to achieve substantially improved quality, with only a small increase in costs. For

instance, as the value of α increase from 0.01 to 0.4, the quality improves by 42%, while the cost

only increases by 8%. However, the figure also indicates that it becomes more costly to achieve

an improvement in quality when the quality reaches a specific point. This can be seen by the

substantial increase in cost compared to quality when α increases from 0.9 to 0.99. This illustrates

the importance of weighing the two objectives in a way that strikes a desirable balance between

the final cost and quality of the feed.
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Figure 8.14: Pareto front for test instance 10D30S. The number at each of the points indicate the

value of α that is used when solving the problem.
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8.7.2 Impact on Objectives and Decisions

To further analyze the effect of different prioritization, this section investigates the impact on the

different parts of the cost and quality objective. To perform this analysis, we focus on three of the

instances presented in Figure 8.14; one mainly prioritizing cost (α = 0.2), another equally weighing

the two objectives (α = 0.5), and lastly, one prioritizing quality (α = 0.8). Table 8.22 presents the

breakdown of the cost and quality objectives for the three instances. The cost objective consists of

the first- and second-stage costs, while the quality objective consists of the penalty for deviating

from the target (Q1) and the penalty for not having a consistent diet (Q2). Note that the values

in the table are not multiplied with their corresponding weights α and 1− α to better be able to

compare the results.

Table 8.22 shows that when the cost objective is prioritized (α = 0.2), the second-stage costs

are significantly smaller than for the other models, while the quality objective is higher. This

indicates that in situations where the silage bale quality is insufficient, the model rather obtains a

lower quality of the feed composition than supplying with additional feed concentrate or reserve

silage. When the quality objective is prioritized (α = 0.8), the opposite effect can be observed.

The second-stage costs are higher, reflecting a higher usage of feed concentrate and reserve silage

to ensure lower deviations from the target and improved diet consistency. Lastly, when the two

objectives are equally prioritized, a trade-off between the two objectives is made to a larger extent.

As shown in Table 8.22, the values for all metrics are between the values when α = 0.2 and α = 0.8,

indicating a balanced consideration of both objectives.

Table 8.22: Breakdown of the cost- and quality objective for test instance 10D30S with different

values of α.

Cost* Quality*

α 1st stage 2nd stage Total Q1** Q2*** Total

0.2 1.01 1.22 2.22 1.70 0.12 1.82

0.5 1.02 1.71 2.72 0.88 0.09 0.97

0.8 1.02 2.82 3.84 0.34 0.08 0.42

* The objectives are not multiplied with α and 1− α

** Total penalty for deviating from target

*** Total penalty for not ensuring a stable diet

One interesting observation is that the first-stage costs are comparable for all three instances,

indicating that the instances make similar decisions with regard to the silage bales transported

every day. Figure 8.15 illustrates the silage bales transported every day during the planning horizon

for the models mainly prioritizing cost and quality. Figure 8.15a illustrates the transportation when

α = 0.2 and Figure 8.15b illustrates the transportation when α = 0.8. The figures show that the

models transport different silage bales on different days, likely related to the varying quality of

the bales. However, the total number of silage bales, as well as the total number from each batch

is approximately the same for the three models. Consequently, the trade-off seems to be more

concentrated on the actual feed composition and how much of what ingredient to use, rather than

the transportation of silage. This observation is likely related to the fact to the second-stage

decisions provide an opportunity to obtain a high quality by using feed concentrate and reserve
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silage, even when the silage bale is of poor quality. However, this comes at a significant cost,

and the usage of these ingredients will consequently depend on the decision-makers’ prioritization

between the two objectives.

(a) α = 0.2 (b) α = 0.8

Figure 8.15: Number of silage bales transported for test instance 10D30S with different prioritiza-

tion of the objectives.

Table 8.22 also illustrates a significant variation in the penalty for deviating from the target (Q1)

as the value of α varies. This penalty is visualized in Figure 8.16, illustrating the average absolute

deviation from the target for dry matter, protein and NDF for the three instances. As expected,

when quality is prioritized (α = 0.8), a lower deviation from the target for all three requirements

is achieved. Oppositely, when the cost is prioritized (α = 0.2), the deviation is higher, whereas

(α = 0.5) illustrates deviations in between.

For the dry matter content, illustrated in Figure 8.16a, all three instances obtain a relatively low

deviation, with deviations ranging from 4% to 7%. However, Figure 8.16b shows that all instances

have higher deviations from the NDF target. Specifically, when costs are prioritized, the model

experiences deviations of up to 20%, indicating that it is more difficult and costly to satisfy this

requirement. Lastly, for the protein requirement, illustrated in Figure 8.16c, all instances have low

deviations from the target. Although the deviations are significantly increased when the cost is

prioritized (α = 0.2), the deviations are still low, ranging from 3% to 6%.

These results indicate that a major part of the deviation penalty comes from deviation from the

NDF target. In practice, this suggests that farmers could benefit from focusing on strategies to

meet the NDF requirement more effectively. However, it is important to note that these specific

results are the outcome of generated data, as explained in Chapter 7. Therefore, the results and the

recommendations may differ from reality. Nevertheless, it provides insights into how prioritizing

the objectives impacts overall deviations and affects the decision-making processes.
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Figure 8.16: Average absolute deviation from target of dry matter and nutritional content for test

instance 10D30S when α = 0.2, α = 0.5 and α = 0.8.

In conclusion, the weighing of the cost and quality objective has a considerable impact on the

objectives and decisions of the model. An interesting finding from this analysis is that although

the cost and quality objectives are greatly affected by the prioritization between the two, most

of the changes in the decisions are related to the second-stage decisions. In practice, this means

that the trade-off between cost and quality is most important to consider during the daily feed

construction, and does not affect the tactical planning to a great extent. However, the insights

gained from this analysis contribute to understanding the trade-off between cost and quality, and

how it impacts the decisions that are made in the context of animal feeding.
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Chapter 9

Concluding Remarks and Future

Research

This chapter highlights the findings of this thesis and discusses some opportunities for future re-

search. First, a summary of the findings and the concluding remarks are presented in Section 9.1.

As the model still requires further modifications and work to be applicable in real life, we pro-

pose several areas for improvement and development. These possibilities for future research are

presented in Section 9.2.

9.1 Concluding Remarks

This thesis studies the Stochastic Cattle Feeding Planning Problem (SCFPP). The SCFPP is

formulated as a two-stage stochastic problem where the first-stage decisions decide how to distribute

silage bales over the planning horizon. The second-stage decisions are operational decisions related

to the daily construction of feed compositions. These decisions are made after the actual quality

of the silage bales is known, and involve choosing a combination of silage and feed concentrate

that satisfies the animals’ daily feeding requirements. The problem is a multi-objective problem,

aiming to both minimize costs and ensure a correct and stable quality of the diet. The purpose of

the thesis is to investigate the value of using mathematical optimization to help farmers overcome

challenges in determining a feeding plan for dairy cattle. This objective is pursued by working

towards three goals.

The first goal is to develop a solution method that is capable of effectively solving the SCFPP. In the

preparatory project for this thesis (Fosen & Nygaard, 2022), the Cattle Feeding Planning Problem

(CFPP) proved to be computationally heavy to solve, and as uncertainty is included in the SCFPP,

the complexity of the problem is further increased. Therefore, the L-shaped method, along with

several acceleration methods are investigated to solve the two-stage stochastic formulation of the

SCFPP. The proposed accelerated L-shaped method incorporates multiple cuts for each iteration,

solves the problem with a two-phase approach, generates Pareto-optimal cuts, and approximates

the solution of the master problem. The computational results show a considerable effect of

accelerating the L-shaped method, where the proposed solution method is able to obtain a gap

lower than 10% for the largest instances of 20 days and 100 scenarios, while the Gurobi solver

terminates with a gap of 100%.
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The second goal is to investigate the value of planning with uncertainty and the potential to

improve decision-making for dairy farmers by doing so. Although further work is necessary to

make the model applicable in real-life, the computational study reveals significant benefits of tac-

tical planning with uncertainty. By incorporating uncertainty into the planning process, both cost

reduction and improved feed quality are achieved compared to feeding plans made with a determin-

istic model. Specifically, the computational study reveals an improvement in the objective function

of up to 25% when uncertainty is considered. Furthermore, the computational study highlights the

impact of the length of the planning horizon, where shorter planning horizons prioritize immediate

cost and quality benefits without considering future needs. In contrast, longer planning horizons

lead to a more balanced distribution of ingredients, resulting in a more consistent and cost-effective

feeding approach for the dairy herd. However, solving the model for long planning horizons with

uncertainty leads to computational challenges. Therefore, the potential benefits of only includ-

ing uncertainty for a subset of days during the planning horizon are investigated. Overall, the

computational results successfully demonstrate a high potential of planning with uncertainty and

emphasize the value of further development and investigation of systems that enables farmers to

do so in practice.

Lastly, the third goal is to study the trade-off between cost and quality and develop a model that

allows the decision-maker to prioritize between the two. This is achieved by incorporating the two

objectives through a weighted sum approach, whereas the weighting factor represents the relative

importance of the two objectives. The trade-off is analyzed by performing a Pareto-front analysis,

as well as a detailed examination of the solutions and the decisions obtained by the model when the

objectives are prioritized differently. The analysis reveals a significant trade-off between cost and

quality, where the weighing of the objectives has a particularly large impact on the second-stage

decisions. These findings provide valuable insights into the trade-offs between cost and quality,

emphasizing the importance of carefully considering this trade-off when developing feeding plans

for dairy cattle.

In conclusion, this thesis successfully achieves its purpose of investigating the value of using math-

ematical optimization to address key challenges farmers face when determining a feeding plan. By

working towards three specific goals, the thesis develops a solution method that more effectively

handles the complexity of the SCFPP, demonstrates the value of tactical planning with uncer-

tainty, and investigates the trade-off between cost and quality. While the model requires further

modifications for practical implementation, the findings from this thesis illustrate a significant

potential of using mathematical optimization to help farmers make improved decisions for their

feeding plans.

9.2 Future Research

In this section, future research opportunities for the SCFPP are presented. Section 9.2.1 discusses

potential areas of research to improve the real-life applicability of the SCFPP. This involves de-

veloping input data that more accurately reflects reality, addressing simplifying assumptions that

have been made in the CFPP, and expanding the model to also handle waste concerns. Further-

more, although the solution method presented in this thesis performs significantly better than the

original Gurobi solver, it is only able to solve for a limited length of the planning horizon. There-

fore, Section 9.2.2 presents possible future research to further improve the solution method of the

SCFPP, enabling it to solve the model for a longer planning horizon.
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9.2.1 Improving the Real-Life Applicability of the SCFPP

As previously addressed, this thesis relies on a generated data set, which does not fully reflect

real life. This is likely to have an impact on the results and may reduce the accuracy of the

findings. Therefore, one suggested area of future research involves improving the data foundation

for the problem. This may involve improving the data related to the feeding requirements by

including a wider set of requirements, as well as accounting for individual differences between

animals in the animal groups. Additionally, this thesis describes the uncertainty in the silage

bales using a triangular distribution, which is a simplification of reality. Conducting a more

comprehensive analysis of the variation in the actual quality of silage bales, and developing a more

correct distribution would improve the accuracy of the model, and possibly have an effect on the

results.

Furthermore, throughout this thesis, assumptions have been made to simplify the problem. For

instance, we assume that all ingredients are loaded into the mixing machine at the same time.

However, as described in Section 2.2, silage bales are often loaded sequentially, which complicates

the mixing problem. A possible way to extend the SCFPP is therefore to incorporate the sequencing

of silage bales during the mixing. This puts further limitations on the combination of ingredients

that can be used in the feed compositions, which may have an impact on the final composition

and nutritional value of the feed. Including this in the model would improve the credibility of the

model and make the solutions more relevant in real-life.

Lastly, as the results from the computational study show, the model presented in this report

accounts for the uncertainty by transporting additional silage bales. Although this leads to lower

costs and better quality of the feed composition, it may also lead to a higher degree of waste in

situations where the silage bales are of sufficient quality. As this is not desirable in real-life, a

suggestion for future research is to modify and extend the model to also handle concerns regarding

waste. For instance, dynamic re-planning can be explored as a strategy to adapt the feeding plan

based on unexpected events. Furthermore, advancing the inventory aspects of the SCFPP model

can contribute to minimizing waste and optimizing resource utilization. A possible modification is

to allow silage bales that are transported on a given day, but not used, to be stored in the kitchen

storage and used the next day. Incorporating such features to improve resource utilization and

reduce waste would improve the applicability of the model.

9.2.2 Develop Solution Methods for Extended Planning Horizons

Although the accelerated L-shaped method proves to be significantly more effective than the stand-

ard Gurobi solver, it is only able to solve instances with a planning horizon of up to 20 days while

keeping the gap relatively small. However, this thesis demonstrates the advantages of a longer plan-

ning horizon, primarily because it leads to a more even distribution of limited resources. Therefore,

we suggest further research related to the solution method of the SCFPP, focusing on methods

that are capable of solving the problem for a longer planning horizon.

One possibility is to utilize the rolling horizon method with deterministic forecasting sections.

Findings from Section 8.6 suggest an approach where the uncertainty is only incorporated on a

subset of days, thereby reducing the computational complexity of the model. However, to be able

to both address uncertainty throughout the entire horizon and consider a longer planning horizon,

we suggest employing a rolling horizon framework. This method can involve shorter central sections

taking uncertainty into account, accompanied by longer and deterministic forecasting sections to
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ensure an even distribution of the limited resources. This can enable the model to solve the model

accurately for longer periods by reducing the complexity in each solution process, making it an

interesting potential for future research.
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Appendix A

Compressed Model

Sets and Indices

A Set of animal groups, a ∈ A

D Set of days in the planning horizon, d ∈ D

I Set of silage bale batches, i ∈ I

F Set of feed concentrate types, f ∈ F

K Set of kitchens, k ∈ K

N Set of nutrients, n ∈ N

S Set of possible scenarios, s ∈ S

Bi Set of silage bales from batch i

Di Set of days when silage bale batch i is available, Di ⊆ D

Id Set of silage bale batches available on day d, Id ⊆ I

86



Parameters

CB
di Cost per silage bale from batch i on day d

CR Cost of using reserve silage

CF
f Cost per kg used of feed concentrate type f

DA
i The day silage bale batch i becomes available

FB
bdis Amount (kg) dry matter in silage bale b from batch i in scenario s on day d

FF
f Fraction of dry matter in feed concentrate type f

FMAX
a Maximum fraction of dry matter from feed concentrate in the feed composition for

animal group a

Kk Daily storage capacity in kitchen k

NB
bdins Nutritional density of nutrient n (per kg dry matter) in silage bale b from batch i in

scenario s on day d

NF
fn Nutritional density of nutrient n (per kg dry matter) in feed concentrate type f

NR
n Nutritional density of of nutrient n (per kg dry matter) in reserve silage bale

LM
ad Minimum dry matter (kg) for animal group a on day d

UM
ad Maximum dry matter (kg) for animal group a on day d

TM
ad Target dry matter (kg) for animal group a on day d

LN
adn Minimum amount (per kg dry matter) of nutrient n for animal group a on day d

UN
adn Maximum amount (per kg dry matter) of nutrient n for animal group a on day d

TN
adn Target amount (per kg dry matter) of nutrient n for animal group a on day d

Ps Probability of scenario s

PM Penalty for deviating from dry matter target

P IN Penalty for deviating from nutrient target when the content is between target and

minimum or maximum value

PON Penalty for deviating from nutrient target when the content is outside the minimum

or maximum limit

RM
a Relative deviation from dry matter target for animal a on the last day before planning

horizon start

RN
an Relative deviation from target for nutrient n for animal a on the last day before

planning horizon start
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Decision Variables

xabdkis Amount (kg) dry matter from silage bale b from silage bale batch i used in the feed

composition for animal group a on day d in kitchen k in scenario s

rads Dry matter (kg) from reserve bale used in feed composition for animal group a on

day d in scenario s

yadfs Amount (kg) of feed concentrate type f used in feed composition for animal group

a on day d in scenario s

dM
ads Deviation in dry matter content in feed composition for animal group a on day d

in scenario s

dN
adns Deviation in nutritional content of nutrient n for animal group a on day d in scenario

s

pM
ads Penalty related to deviation from dry matter target in feed composition for animal

a on day d in scenario s

pN
adns Penalty related to deviation from target for nutrient n in feed composition for

animal a on day d in scenario s

vM
a(d−1)ds Variation in deviation from target for dry matter content in two consecutive feed

compositions, from day (d − 1 ) to day d for animal group a

vN
a(d−1)dns Variation in deviation from target for nutrient n in two consecutive feed composi-

tions, from day (d − 1 ) to day d for animal group a in scenario s

mbdik 1 if silage bale b from batch i is transported to kitchen k on day d, 0 otherwise

wadk 1 if the feed composition for animal group a on day d is produced in kitchen k, 0

otherwise

Weight Parameters

α Weight of quality objective

Quality Objective

fQ = min
∑
s∈S

Ps(
∑
a∈A

∑
d∈D

((pMads +
∑
n∈N

pNadns) + (vMa(d−1)ds +
∑
n∈N

vNa(d−1)dns)) (A.1)

Cost Objective

fC = min
∑
d∈D

∑
i∈Id

∑
b∈Bi

∑
k∈K

CB
dimbdik +

∑
s∈S

Ps(
∑
a∈A

∑
d∈D

(
∑
f∈F

CF
f yadfs + CRrads)) (A.2)

Weighted Sum Objective

Z = min αfQ + (1− α)fC (A.3)
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Constraints

∑
k∈K

wadk = 1 a ∈ A, d ∈ D (A.4)

∑
d∈Di

∑
k∈K

mbdik ≤ 1 i ∈ I, b ∈ Bi (A.5)

d∑
d′=1

∑
k∈K

(m(b−1)d′ik −mbd′ik) ≥ 0 d ∈ D, i ∈ Id, b ∈ Bi \ {1} (A.6)

∑
i∈Id

∑
b∈Bi

mbdik ≤ Kk d ∈ D, k ∈ K (A.7)

xabdiks ≤ min{UM
ad , F

B
bdis}wadk a ∈ A, d ∈ D, i ∈ Id, b ∈ Bi, k ∈ K, s ∈ S (A.8)

∑
a∈A

xabdiks ≤ FB
bdismbdik d ∈ D, i ∈ Id, b ∈ Bi, k ∈ K, s ∈ S (A.9)

∑
k∈K

∑
i∈Id

∑
b∈Bi

xabdiks +
∑
f∈F

FF
f yadfs + rads = TM

ad + dMads a ∈ A, d ∈ D, s ∈ S (A.10)

LM
ad ≤ TM

ad + dMads ≤ UM
ad a ∈ A, d ∈ D, s ∈ S (A.11)

∑
k∈K

∑
i∈Id

∑
b∈Bi

NB
bdnsxabdiks +

∑
f∈F

NF
fnF

F
f yadfs +NR

n rads = TN
adn + dNadns a ∈ A, d ∈ D, n ∈ N , s ∈ S

(A.12)

∑
f∈F

FF
f yadfs ≤ FMAX

a TM
ad a ∈ A, d ∈ D, s ∈ S (A.13)

pMads ≥
PMdMads

UM
ad − TM

ad

a ∈ A, d ∈ D, s ∈ S (A.14)

pMads ≥
PMdMads
LM
ad − TM

ad

a ∈ A, d ∈ D, s ∈ S (A.15)

pNadns ≥
P INdNadns

UN
adn − TN

adn

a ∈ A, d ∈ D, n ∈ N s ∈ S (A.16)

pNadns ≥
P INdNadns

LN
adn − TN

adn

a ∈ A, d ∈ D, n ∈ N , s ∈ S (A.17)

pNadns ≥ P IN + PON (TN
adn + dNadns − UN

adn) a ∈ A, d ∈ D, n ∈ N , s ∈ S (A.18)
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pNadns ≥ P IN − PON (TN
adn + dNadns − LN

adn) a ∈ A, d ∈ D, n ∈ N , s ∈ S (A.19)

vMa(d−1)ds ≥
dMads
TM
ad

−
dMa(d−1)s

TM
a(d−1)

a ∈ A, d ∈ D \ {1}, s ∈ S (A.20)

vMa(d−1)ds ≥
dMa(d−1)s

TM
a(d−1)

− dMads
TM
ad

a ∈ A, d ∈ D \ {1}, s ∈ S (A.21)

vNa(d−1)dns ≥
dNadns
TN
adn

−
dNa(d−1)ns

TN
a(d−1)n

a ∈ A, d ∈ D \ {1}, n ∈ N , s ∈ S (A.22)

vNa(d−1)dns ≥
dNa(d−1)ns

TN
a(d−1)n

− dNadns
TN
adn

a ∈ A, d ∈ D \ {1}, n ∈ N , s ∈ S (A.23)

vMa01s ≥
dMa1s
TM
a1

−RM
a a ∈ A, s ∈ S (A.24)

vMa01s ≥ RM
a −

dMa1s
TM
a1

a ∈ A, s ∈ S (A.25)

vNa01ns ≥
dNa1ns
TN
a1n

−RN
an a ∈ A, n ∈ N , s ∈ S (A.26)

vNa01ns ≥ RN
an −

dNa1ns
TN
a1n

a ∈ A, n ∈ N , s ∈ S (A.27)

xabdiks ≥ 0 a ∈ A, d ∈ Di, i ∈ Id, b ∈ Bi, k ∈ K, s ∈ S (A.28)

yadfs ≥ 0 a ∈ A, d ∈ D, f ∈ F , s ∈ S (A.29)

rads, p
M
ads, v

M
a(d−1)ds ≥ 0 a ∈ A, d ∈ D, s ∈ S (A.30)

pNadns, v
N
a(d−1)dns ≥ 0 a ∈ A, d ∈ D, n ∈ N , s ∈ S (A.31)

mbdik ∈ {0, 1} i ∈ I, b ∈ Bi, d ∈ D⟩, k ∈ K (A.32)

wadk ∈ {0, 1} a ∈ A, d ∈ D, k ∈ K (A.33)

dMads free a ∈ A, d ∈ D, s ∈ S (A.34)

dNadns free a ∈ A, d ∈ D, n ∈ N , s ∈ S (A.35)
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Appendix B

Feeding Requirements

The feeding requirements for NDF is presented in Table B.1 . Figure B.1 and Figure B.2 illustrate

the feeding requirements for the three animal groups in this thesis. The yellow, blue and green

line in each plot represent the upper limit, target and lower limit, respectively.

Table B.1: NDF requirements for all three animal groups.

Minimum (% of dry

matter)

Target (% of dry matter) Maximum (% of dry

matter)

30 40 51

91



100 200 300
3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Day

D
ry

m
at
te
r

Lower limit Target Upper limit

(a) Growing animals

100 200 300

13.00

15.00

17.00

19.00

21.00

23.00

25.00

27.00

Day

D
ry

m
at
te
r

Lower limit Target Upper limit

(b) Lactating animals

100 200 300

14.00

15.00

16.00

17.00

18.00

Day

D
ry

m
at
te
r

Lower limit Target Upper limit

(c) Maintained animals.

Figure B.1: Dry matter requirements for each animal group. The yellow line represents the upper

bound, the blue line represents the target and the green line represents the lower bound.

92



100 200 300

13.00

14.00

15.00

16.00

17.00

18.00

Day

P
ro
te
in

Lower limit Target Upper limit

(a) Growing animals

100 200 300

11.00

13.00

15.00

17.00

19.00

Day

P
ro
te
in

Lower limit Target Upper limit

(b) Lactating animals

100 200 300

11.00

13.00

15.00

17.00

19.00

Day

P
ro
te
in

Lower limit Target Upper limit

(c) Maintained animals.

Figure B.2: Protein requirements for each animal group. The yellow line represents the upper

bound, the blue line represents the target and the green line represents the lower bound.
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Appendix C

Data from TINE

Table C.1: Silage batch quality analysis

Batch ID Dry matter (g/kg) Protein (g/kg dry

matter)

NDF (g/kg dry

matter)

Batch 1 369 145 505

Batch 2 328 162 477

Batch 3 441 160 435

Batch 4 290 154 526

Batch 5 397 183 434

Batch 6 279 169 514

Table C.2: Feed concentrate types

Type Dry matter

(g/kg)

Protein (g/kg dry

matter)

NDF (g/kg dry

matter)

FormelProtein32FKA 884 362 186

FormelEliteNormalFKA 873.9 178 210

FormelSolidNormalFKA 871 184 192

NaturaProteinFKA 907 470 124

FormelFiberEliteFKA 878 174 271

NaturaFiberFKA 889 150 600
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Appendix D

Model Performance

Table D.1: Complete results from solving the problem instances using the standard Gurobi solver.

Instance 5 days 10 days 15 days 20 days

time gap time gap time gap time gap

xD2S 2.72s 0.52% 1576.15s 1.00% -* 2.16% -* 8.43%

xD10S 54.83s 0.00% -* 3.95% -* 16.98% -* 32.03%

xD20S 453.75s 0.71% -* 16.18% -* 28.65% -* 32.14%

xD60S 251.68s 0.00% -* 34.21% -* 61.73% -* 100.00%

xD100S 722.34s 0.00% -* 99.99% -* 50.05% -* 100.00%

* timed out (runtime > 10 800s)

Table D.2: Complete results from solving the problem instances using the single-cut version of the

L-shaped method.

Instance 5 days 10 days 15 days 20 days

time gap time gap time gap time gap

xD2S 195.93s 0.99% -* 12.47% -* 91.87% -* 99.43%

xD10S -* 15.73% -* 96.21% -* 98.02% -* 96.71%

xD20S -* 75.49% -* 83.93% -* 96.99% -* 98.85%

xD60S -* 68.43% -* 96.80% -* 98.90% -* 98.06%

xD100S -* 69.17% -* 96.77% -* 96.28% -* 95.67%

* timed out (runtime > 10 800s)
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Table D.3: Complete results from solving the problem instances using the multi-cut version of the

L-shaped method.

Instance 5 days 10 days 15 days 20 days

time gap time gap time gap time gap

xD2S 62.04s 0.96% -* 10.02% -* 92.52% -* 95.91%

xD10S 162.79s 0.94% -* 13.26% -* 29.67% -* 96.91%

xD20S 2225.56s 1.00% -* 13.44% -* 24.89% -* 98.93%

xD60S -* 1.41% -* 15.92% -* 98.77% -* 97.76%

xD100S -* 2.10% -* 18.35% -* 93.81% -* 95.85%

* timed out (runtime > 10 800s)

Table D.4: Complete results from solving test instances with the Robust Warm start method added

to the Base Case.

Instance 5 days 10 days 15 days 20 days

time gap time gap time gap time gap

xD2S 72.77s 0.99% -* 9.66% -* 91.87% -* 92.72%

xD10S 278.34s 0.94% -* 12.58% -* 50.92% -* 95.86%

xD20S 2783.91s 0.96% -* 14.68% -* 42.21% -* 99.01%

xD60S -* 2.01% -* 19.52% -* 98.90% -* 97.93 %

xD100S -* 3.31% -* 26.02% -* 96.27% -* 96.67%

* timed out (runtime > 10 800s)

Table D.5: Complete results from solving test instances with the Initializing Warm start method

added to the Base Case.

Instance 5 days 10 days 15 days 20 days

time gap time gap time gap time gap

xD2S 131.02s 0.00% -* 12.29% -* 91.87% -* 92.72%

xD10S 572.28s 0.71% -* 15.19% -* 50.39% -* 96.95%

xD20S 9563.87s 0.58% -* 18.53% -* 46.16% -* 98.85%

xD60S -* 4.81% -* 18.43% -* 98.90% -* 97.94%

xD100S -* 75.08% -* 25.25% -* 96.27% -* 96.35%

* timed out (runtime > 10 800s)
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Table D.6: Complete results from solving test instances with the Two-Phase approach added to

the Base Case.

Instance 5 days 10 days 15 days 20 days

time gap time gap time gap time gap

xD2S 103.14s 0.00% -* 20.38% -* 23.57% -* 29.33%

xD10S 350.50s 0.56% -* 18.17% -* 47.09% -* 94.91%

xD20S 7193.22s 0.76% -* 18.71% -* 76.50% -* 87.45%

xD60S -* 4.48% -* 53.37% -* 64.17% -* 30.66%

xD100S -* 5.15% -* 63.38% -* 31.71% -* 67.60%

* timed out (runtime > 10 800s)

Table D.7: Complete results from solving the problem instances with the Magnanti-Wong method

added to the Base Case.

Instance 5 days 10 days 15 days 20 days

time gap time gap time gap time gap

xD2S 6.48s 0.26% 7495.755 0.24% -* 16.52% -* 11.72%

xD10S 20.94s 0.81% -* 4.02% -* 10.25% -* 61.32%

xD20S 42.56s 0.30% -* 4.25% -* 15.01% -* 81.93%

xD60S 380.60 0.85% -* 6.64% -* 28.88% -* 70.54%

xD100S 443.87s 0.96% -* 26.06% -* 78.52% -* 61.54%

* timed out (runtime > 10 800s)

Table D.8: Complete results from solving the problem instances with the LB-stop method added

to the Base Case.

Instance 5 days 10 days 15 days 20 days

time gap time gap time gap time gap

xD2S 7.20s 0.26% 6063.50s 0.24% -* 4.31% -* 11.36%

xD10S 25.44s 0.88% 3908.23s 0.82% -* 11.84% -* 14.67%

xD20S 72.18s 0.99% -* 3.91% -* 10.16% -* 69.43%

xD60S 178.64s 0.81% -* 7.31% -* 39.59% -* 60.55%

xD100S 451.80s 0.96% -* 8.20% -* 49.12% -* 38.38%

* timed out (runtime > 10 800s)
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Table D.9: Complete results from solving the problem instances with the ϵ-approach added to the

Base Case.

Instance 5 days 10 days 15 days 20 days

time gap time gap time gap time gap

xD2S 6.64s 0.94% -* 1.22% -* 5.25% -* 17.89%

xD10S 23.70s 0.83% -* 6.04% -* 8.04% -* 40.65%

xD20S 39.04s 0.96% -* 5.12% -* 9.32% -* 69.33%

xD60S 142.77s 0.86% -* 6.04% -* 58.25% -* 59.89%

xD100S -* 2.21% -* 25.48% -* 11.21% -* 65.68%

* timed out (runtime > 10 800s)

Table D.10: Complete results from solving the problem instances with the SolNum approach added

to the Base Case.

Instance 5 days 10 days 15 days 20 days

time gap time gap time gap time gap

xD2S 7.05s 0.26% 7301.76s 0.24% -* 1.27% -* 15.31%

xD10S 25.35s 0.88% -* 4.02% -* 1.57% -* 10.23%

xD20S 39.58s 0.73% -* 4.29% -* 4.35% -* 9.85%

xD60S 171.85s 0.72% 3151.38s 0.79% -* 7.26% -* 7.94%

xD100S 133.09s 0.66% -* 3.68% -* 5.58% -* 9.47%

* timed out (runtime > 10 800s)
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Appendix E

Simulated Value of Uncertainty

Table E.1: EEV SIM and RPSIM for test instance 5D30S for all the simulated scenarios.

Simulation number EEVSIM RPSIM VSSSIM

1 1.243 1.053 0.190

2 1.170 0.993 0.177

3 1.335 0.906 0.430

4 0.992 0.852 0.141

5 1.637 0.961 0.676

Average 1.276 0.953 0.323

Table E.2: EEV SIM and RPSIM for test instance 10D30S for all the simulated scenarios.

Simulation number EEVSIM RPSIM VSSSIM

1 2.209 1.854 0.355

2 2.411 1.895 0.516

3 3.001 2.223 0.778

4 2.873 2.063 0.809

5 2.234 1.894 0.340

Average 2.546 1.986 0.560
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Table E.3: EEV SIM and RPSIM for test instance 15D30S for all the simulated scenarios.

Simulation number EEVSIM RPSIM VSSSIM

1 4.105 3.085 1.020

2 3.616 2.919 0.697

3 3.780 2.970 0.811

4 3.428 3.1433 0.285

5 3.520 3.131 0.389

Average 3.690 3.049 0.640
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