
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

co
no

m
ic

s 
an

d 
M

an
ag

em
en

t 
D

ep
t. 

of
 In

du
st

ria
l E

co
no

m
ic

s 
an

d 
Te

ch
no

lo
gy

 M
an

ag
em

en
t

M
as

te
r’s

 th
es

is

Quorum Software

Helle Villmones Haug
Sigrid Hallem Solum
Sanna Baug Warholm

Planning Annual Delivery Programs
in the Liquefied Natural Gas Industry

Extending current models to handle multiple
loading ports and speed optimization

Master’s thesis in Industrial Economics and Technology
Management
Supervisor: Kjetil Fagerholt
Co-supervisor: Mingyu Li and Inge Norstad
June 2023





Helle Villmones Haug
Sigrid Hallem Solum
Sanna Baug Warholm

Planning Annual Delivery Programs in
the Liquefied Natural Gas Industry

Extending current models to handle multiple loading
ports and speed optimization

Master’s thesis in Industrial Economics and Technology Management
Supervisor: Kjetil Fagerholt
Co-supervisor: Mingyu Li and Inge Norstad
June 2023

Norwegian University of Science and Technology
Faculty of Economics and Management
Dept. of Industrial Economics and Technology Management





Department of Industrial Economics &
Technology Management

TIØ4905 - Managerial Economics and Operations

Research, Master Thesis

Planning Annual Delivery Programs in
the Liquefied Natural Gas Industry

Extending current models to handle multiple loading ports and
speed optimization

Authors:
Helle Villmones Haug
Sigrid Hallem Solum
Sanna Baug Warholm

Supervisor:
Kjetil Fagerholt

Co-supervisors:
Mingyu Li

Inge Norstad

June, 2023



Preface

This master’s thesis concludes our Master of Science at the Norwegian University of Science and

Technology, Department of Industrial Economics and Technology Management. The work has

been conducted in the course of the spring of 2023 and is a continuation of the specialization

project in TIØ4500 - Managerial Economics and Operations Research, Specialization Project in

the fall of 2022 (Haug et al., 2022). Given the similarity of the problem addressed in this mas-

ter’s thesis, certain chapters are revised versions of the corresponding chapters in the project thesis.

We would like to thank our supervisor, Professor Kjetil Fagerholt, and our co-supervisors, Dr.

Mingyu Li and Dr. Inge Norstad, for valuable guidance and interesting discussions. We would

also like to express our gratitude to our industry partner Quorum Software for providing us with

real-world data and insight into the industry.

Helle Villmones Haug, Sigrid Hallem Solum & Sanna Baug Warholm

Trondheim, June 2023

i



Abstract

Planning long-distance transportation of liquefied natural gas (LNG) is a complex process faced by
the LNG producers. This includes setting up a so-called Annual Delivery Program (ADP), a plan
for the delivery of LNG from a producer over a period of one year. The ADP typically includes
the scheduling of deliveries to different locations/customers, inventory control at the liquefaction
plant(s), and the allocation and optimization of LNG vessel routes to minimize costs. By creating
an LNG-ADP, LNG producers can more efficiently manage their supply chains and ensure that
customers receive their LNG deliveries in a timely and cost-effective manner. In this thesis, we
define and solve the Liquefied Natural Gas Annual Delivery Program Planning Problem with Speed
Optimization and Multiple Loading Ports (LNG-ADP-SO-MLP).

The LNG-ADP-SO-MLP is a special version of the LNG-ADP, where we extend existing models
for the LNG-ADP problem found in the literature by handling multiple loading ports (or liquefac-
tion plants), optimizing vessel speeds, selling LNG in the spot market, varying production rates,
and having the option of chartering out the producer’s vessels. We propose a novel model for the
LNG-ADP-SO-MLP, formulated as a mixed-integer linear program (MILP) based on a time-space
network structure with a discrete-time representation. Due to the scale and complexity of the
problem, it is challenging, if not impossible, to find optimal solutions using a commercial solver
for real-world cases.

Consequently, we develop a rolling horizon heuristic (RHH) to solve the model. The RHH divides
the planning horizon into sub-horizons and solves them iteratively using a commercial solver to
obtain a complete solution. Our industry partner Quorum Software provided a number of realistic
test instances, varying in the number of loading ports, number of vessels, customer demands, and
the length of the planning horizons to test the RHH as a solution method. The computational
results show that the RHH is able to find feasible and good solutions for planning horizons of 12
months within a reasonable amount of time. We also show that the application of the RHH to
solve the LNG-ADP-SO-MLP yields valuable managerial insights that can inform both strategic
and tactical decision-making for the producer, e.g., for evaluating the value of investing in larger
storages at the liquefaction plant(s) and for having a shared fleet across the liquefaction plants
instead of separate ones.

ii



Sammendrag

Å planlegge langdistansetransport av flytende naturgass (LNG) er en kompleks prosess for LNG
produsenter å h̊andtere. Dette innebærer å sette opp et s̊akalt årlig leveringsprogram (ADP), som
er en plan for levering av LNG for en produsent over en periode p̊a ett år. En ADP inkluderer van-
ligvis planlegging av leveranser til forskjellige kunder og lokasjoner, lagerkontroll for én eller flere
produksjonsanlegg, og optimal allokering av sjøruter for LNG-skipene slik at produsentens kost-
nader minimeres. Ved å sette opp en LNG-ADP kan LNG-produsenten mer effektivt administrere
verdikjeden sin og sikre at kundene f̊ar LNG-leveransene sine i tide og p̊a en kostnadseffektiv m̊ate.
I denne masteroppgaven skal vi definere og løse ”LNG-ADP med optimering av seilingshastighet
og flere lastehaver”-problemet (LNG-ADP-SO-MLP).

LNG-ADP-SO-MLP er en spesialversjon av LNG-ADP-problemet, hvor vi utvider eksisterende
modeller som finnes i litteraturen ved å h̊andtere flere lastehavner, optimere skipenes seiling-
shastighet, variere produksjonsrater, og gi produsenten muligheten til å leie ut sine egne skip.
Vi foresl̊ar videre en ny matematisk modell for LNG-ADP-SO-MLP-problemet, formulert som
en blandet lineær heltallsmodell (MILP) med diskret tid. P̊a grunn av problemets størrelse og
kompleksitet er det nærmest umulig å finne optimale løsninger ved bruk av en kommersiell MILP-
problemløser for å løse modellen for et helt år.

Som følge av dette implementerer vi et heuristisk rammeverk med rullende horisont (RHH) for
å løse modellen. RHHen deler opp planleggingshorisonten i flere mindre subhorisonter, og løser
dem iterativt ved hjelp av en kommersiell problemløser for å finne en komplett løsning. V̊ar in-
dustripartner Quorum Software ga oss et sett med realistiske testinstanser, som varierer i antall
lastehavner, skip, etterspørsel fra kunder og lengde p̊a planleggingshorisonten for å teste RHHen
som løsningsmetode. Resultatene fra beregningsstudien viser at RHHen finner lovlige og gode
løsninger for planleggingshorisonter p̊a opp til 12 m̊aneder, innenfor rimelige løsningstider. Vi
viser ogs̊a at RHHen kan brukes til å gi verdifull strategisk innsikt, som kan brukes til å informere
b̊ade taktiske- og strategiske beslutninger for produsenten, for eksempel for å vurdere verdien av
å investere i mer lagerkapasitet p̊a lastehavnen(ene), og av å ha en delt flate for lastehavnene, i
stedet for å ha separate flater.
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Chapter 1

Introduction

Although the earth holds vast reserves of natural gas, they are often located far from where they
are in high demand. There exist comprehensive pipeline systems for transporting Natural Gas
(NG) on land and shorter distances in the sea. In areas without connecting pipelines and long
distances from production sites, natural gas must be transported by road or sea. In order to make
transportation volume-efficient and safer, the natural gas is condensed to its liquid form before
being loaded onto trucks or tank ships specifically designed for transporting Liquefied Natural Gas
(LNG). After the LNG has reached its destination, it is boiled to natural gas at a regasification
port. The natural gas is then ready to be used as fuel for commercial vehicles, to generate electricity
for homes, or for heating. It can also be used for industrial purposes, e.g., to make products like
paint and medicine (MET Group, 2020).

Today, liquefaction and regasification ports used for shipping of LNG are well-established in large
parts of the world. Figure 1.1 shows the global distribution of LNG liquefaction and regasification
ports, illustrating, by the size of a circle, the number of ports located in the respective area. A
clear trend emerges as certain regions, notably the Middle East, USA, and Australia, serve as net
exporters of LNG, while regions such as China, Japan, and Europe rely on LNG imports. The
considerable geographical distances between suppliers and customers create a high demand for
shipping of LNG by sea. Notably, a prevailing pattern in the LNG market is the export of liquefied
natural gas to areas with higher gas prices, particularly Asia and Europe. Furthermore, there
exists a significant difference between the number of regasification ports and liquefaction ports,
with regasification ports outnumbering the latter. However, it is worth noting that the number of
liquefaction ports is steadily increasing (GIIGNL, 2022).

Figure 1.1: Global distribution of LNG liquefaction and regasification ports (GIIGNL, 2022).
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The escalating global energy demand, driven by rising living standards, faces a critical challenge
with the green transition. This transition necessitates a shift towards low-carbon solutions to meet
energy needs. In this context, the LNG industry stands to benefit from both trends in the coming
years. LNG serves as an energy source with lower emissions compared to conventional options like
oil and coal. Figure 1.2 indicates a notable increasing trend in the traded volume of LNG on the
global market. Moreover, with the delivery of 68 new LNG ships in 2021, the total number of
operational LNG vessels reached 700 globally, representing a 9% increase in cargo capacity from
the previous year (GIIGNL, 2022). This growth is primarily driven by the increasing demand for
LNG, which again is driven by the overall increase in global energy consumption and a preference
for low-emission energy alternatives.

Figure 1.2: Global LNG trade for the last two decades, retrieved from GIIGNL (n.d.)

In 2021, 36.6% of the LNG volumes were imported through spot or short-term arrangements, as
depicted in Figure 1.2. As demand outpaces LNG production, spot LNG prices have experienced
a prominent increase. Additionally, the average spot charter rate for a 160 000 cubic meter LNG
vessel rose to approximately USD 89 000 per day in 2021, compared to around USD 59 300 per
day in 2020. However, due to political tensions, such as Russia’s involvement in a war leading to
the cutoff of gas supplies to Europe, along with the sabotage of two pipelines in the Baltic Sea
(FreightWaves, 2022), the spot charter rate skyrocketed to USD 400 000 per day in 2022. While
these incidents are exceptional and may be one-time occurrences, they underscore the pressing
need to optimize LNG transportation for maximizing fleet utilization among producers (GIIGNL,
2022).

In this thesis, we study a special case of the Maritime Inventory Routing Problem (MIRP) for
an LNG producer. The producer must fulfill a series of long-term contracts with customers all
over the world while also having the option to sell LNG in the spot market. The producer is in
charge of the inventory of LNG at the liquefaction plant, the loading ports with a limited number
of berths, and the routing and scheduling of a heterogeneous fleet of LNG vessels. LNG producers
tend to create an Annual Delivery Program (ADP) every year. The ADP describes the delivery
and receipt of LNG cargoes for the next 12 months within the boundaries that the context and
the stakeholders inflict. We expand previous formulations of the problem of creating an ADP by
including speed optimization of the vessels’ sailing speeds. Our model also allows for multiple
loading ports, which is becoming relevant for some producers as the industry develops. Hence, we
refer to the problem as an Liquefied Natural Gas Annual Delivery Program Planning Problem with
Speed Optimization and Multiple Loading Ports (LNG-ADP-SO-MLP). The LNG-ADP-SO-MLP
aims to maximize the profits from the sale of LNG, taking revenue from several contract types
into account, as well as sailing and chartering costs. Thus, the model can provide decision support
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for the producer when planning an ADP facing a real-world problem. Furthermore, we extend
the LNG-ADP-SO-MLP by including two additional features, involving the producer’s option of
varying production, and chartering out its own vessels. Based on this, a Mixed Integer Linear
Programming (MILP) model for the LNG-ADP-SO-MLP problem is formulated.

This thesis builds upon our specialization project (Haug et al., 2022), which includes primarily two
contributions to the LNG-ADP research. Firstly, compared to related research, we have provided
a rich formulation of the LNG-ADP Planning Problem. Our model is a complex mathematical
model for the LNG-ADP Planning Problem, which contributes explicitly to the LNG-ADP research
by including speed optimization and the possibility to have more than one loading port for a
producer. The model is designed to handle each leg of a voyage separately, rather than as a round
trip. This allows for multiple loading ports, as well as efficient modeling of maintenance since
the vessel can sail directly to a maintenance port after unloading without returning to a loading
port. Additionally, we have included both relevant spot contract types in the same model which is
not done before, to the best of our knowledge. The spot contract types are called Free-On-Board
(FOB) and Delivered Ex-Ship (DES), which is further elaborated upon in Background, Chapter 2.
Apart from the contribution made by the specialization project Haug et al. (2022), this thesis
explores two other aspects of the LNG-ADP research. Firstly, it considers the production rate as
a decision variable, which makes the model more realistic as there is no guarantee of selling excess
production on the spot market. Secondly, the model allows for producers to charter their own
vessels, as there in reality is a possibility for the producers of chartering out vessels from their own
fleet.

The MILP model is formulated and solved, based on a priori generation of all possible sailings of a
vessel. Finding an optimal solution to an ADP for a producer is a complex problem, especially given
the necessary level of detail. Furthermore, the LNG-ADP-SO-MLP model presented challenges for
Haug et al. (2022) in terms of computational efficiency for a full planning horizon when solving
with a commercial solver. This motivates the use of a heuristic solution approach, and a Rolling
Horizon Heuristic (RHH) is therefore implemented and used for solving the MILP model in this
thesis. The general idea with RHH is to solve shorter sub-horizons of the MILP model using a
commercial solver, by splitting the full horizon and fixing variables for each iteration.

Our main findings reveal that utilizing the RHH to solve the LNG-ADP-SO-MLP effectively gen-
erates solutions for instances encompassing a full 12-month planning horizon, considering cases
with one and two loading ports. Importantly, the deviation between results obtained from the
commercial solver and the RHH is minimal, highlighting the RHH’s ability to produce both feas-
ible and high quality solutions with low optimality gaps. Additionally, the results indicate that
incorporating speed optimization in the model enhances planning flexibility.

This report is organized as follows: Firstly, Chapter 2 presents a general overview of the LNG in-
dustry. Chapter 3 discusses the related literature to the problem, while Chapter 4 describes the
problem we are solving. The mathematical model is described in Chapter 5, and Chapter 6 de-
scribes our solution method in detail. Chapter 7 presents the test instances and how the model
is implemented. In Chapter 8 a computational study is presented, in addition to the managerial
insights gained from running the heuristic on various test instances. Lastly, our concluding remarks
and suggestions for future research are presented in Chapter 9 and Chapter 10, respectively.
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Chapter 2

Background

In this chapter, a general overview of the LNG industry’s development and characteristics is presen-
ted and related to the need for optimization. This chapter is retrieved from the specialization pro-
ject Haug et al. (2022). Section 2.1 provides an overview of the LNG value chain, while Section 2.2
introduces the ADP for LNG shipping. Section 2.3 describes the LNG Industry’s historical devel-
opment, as well as some recent trends that might change the development of the industry going
forward.

2.1 The Value Chain

The LNG value chain, illustrated in Figure 2.1, includes extraction and production of natural gas,
liquefaction, long-distance transportation, and regasification prior to being sent to the end-users
(Dobrota et al., 2013). The process is described here to introduce the reader to the industry’s
dynamics and characteristics.

Figure 2.1: The LNG value chain

Production

The first stage in the supply chain is the extraction of natural gas from offshore or onshore wells and
the transportation of the gas via pipelines to a processing facility. Natural gas is processed in the
processing facility to remove impurities and regulate the gas mixture, making the gas acceptable for
usage and liquefaction. To prevent corrosion and freezing issues during the liquefaction process, the
gas must be clean, dry, and impurity-free prior to liquefaction. To do this, components that would
freeze during liquefaction, components that must be removed to fulfill LNG product standards,
corrosive and erosive components, inert components, and oil are removed. The clean natural gas
is then transported through pipes to the liquefaction site, located in large areas by the sea.

Liquefaction

The core objectives of the liquefaction process are maintaining constant composition and com-
bustion properties of natural gas while cooling the gas to a cryogenic liquid state and loading it
as LNG onto specialized means of transport to be delivered to the end consumers. By cryogenic
liquid, we mean a liquid at a temperature below its boiling point at near atmospheric pressure.
The natural gas is condensed by chilling it to about -162 °C, reducing its volume by 600 times.
LNG is then stored as a cryogenic liquid in special storage tanks, designed to maintain safety and
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minimize the heat ingress into the tanks to prevent evaporation of LNG. Producers normally have
multiple storage tanks, with the volume of each tank typically ranging between 80 000 and 160
000 m3. (Dobrota et al., 2013)

Transportation

By sea, LNG is transported by specialized double-hull tank ships called LNG carriers or vessels.
The double-hulled design minimizes the risk of leakage in case of collision or grounding. LNG vessels
have temperature-controlled tanks inside the hull that enables transportation of LNG under the
temperature of -162 °C. LNG vessels have a hybrid of conventional ship design (Dobrota et al.,
2013). The most common cargo-tank designs are membrane cargo tanks, supported by the vessel’s
hull, and type B spherical (Moss) tanks, which are self-supporting, both illustrated in Figure 2.2
(Cameron LNG, n.d.). LNG vessels vary in cargo capacity, but the majority of modern deep-sea
vessels have a capacity between 125 000 and 150 000 m3. The size of a typical modern LNG
vessel is approximately 300 meters long, 43 meters wide, and has a draft of about 12 meters. The
largest vessel existing today, Q-max, has a capacity of 260 000 to 270 000 m3. This means that an
LNG vessel with a large capacity can empty several storage tanks at the liquefaction plant during
loading one cargo. Some small LNG vessels with 1 000-25 000 m3 in capacity, also operate in some
areas, such as Norway and Japan. The standard loading and unloading rate of LNG is 10 000 to
12 000 m3 per hour, which means that LNG vessels can load or unload 125 000-270 000 m3 within
12-18 hours (Dobrota et al., 2013).

(a) Membrane LNG vessel, illustration cour-
tesy of Cameron LNG

(b) Moss LNG vessel, illustration courtesy
of Cameron LNG

Figure 2.2: Illustrations of the two most typical LNG vessel cargo-tank designs

Boil-Off

At temperatures over its boiling point, LNG evaporates like other liquids and produces boil-off
gas. Although the tanks are insulated, some heat ingress will occur and evaporate some of the
LNG as it reaches its boiling point. The main reason for boil-off under maritime transportation
is the infiltration of heat into cargo tanks as a consequence of temperature differences with the
environment outside the tanks. Other processes that increase the quantity of boil-off gas are
cooling of a vessel’s tank during ballast voyages, and sloshing of cargo in partially full tanks as a
result of rough seas. Based on this, the amount of boil-off gas in the tank fluctuates during sailing
as ambient temperatures, sea temperature, sea roughness, and the amount of LNG on board
change. The amount of boil-off gas generated is typically regarded to be lost cargo in maritime
transportation. This is because the boil-off gas must be removed to maintain correct pressure in
the tanks. The boil-off rate, expressed as a percentage of the total volume of liquid cargo during
a single day, is used to assess the quantity of cargo lost during a voyage. (Dobrota et al., 2013).

Even though the boil-off gas is presented as loss, the gas is not pure waste. LNG vessels, unlike
conventional tankers, use a natural gas-powered propulsion system, which releases less greenhouse
gasses. Estimates say that boil-off gas equals 80-90% of the energy needed for the LNG vessel at
full power output in laden voyage (full tanks), and 40-50% in ballast voyage (almost empty tanks).
Therefore, additional fuel is also required. Forcing the vaporization of LNG or using fuel is thus
an economical decision as it affects the amount and quality of the LNG delivered to the customer.
The boil-off gas can also be cooled down and put back in the tank as LNG. (Dobrota et al., 2013)
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Cool-down Procedure

Due to the low temperatures that are required for transporting LNG, an LNG vessel with empty
tanks must always go through a purge and cool-down procedure before it starts loading LNG.
An empty LNG vessel is called gas-free, meaning tanks are full of air. When a tank is gas-free,
the vessel can go through maintenance on the tanks and pumps. In this state, LNG cannot be
loaded directly into the tank as a rapid temperature change caused by loading LNG at -162°C
could damage the tanks. First, the oxygen in the tanks is replaced by CO2 to remove the risk of
explosion that could occur if LNG gets in contact with oxygen. Second, boiled LNG is sprayed into
the tanks to replace the CO2, leaving the tanks gassed up and warm. The last procedure before
loading is cool-down, which makes the tanks reach a temperature of -140°C (Bai and Jin, 2016).
LNG is then pumped from the storage tanks into the LNG tanks until at least 98% of the capacity
is reached. The last 2% allows for thermal expansion/contraction of cargo. The vessels should not
sail with partially filled tanks as sloshing and the free surface effect would reduce fatigue resistance
and stability. The purge and cool-down procedure must be performed every time an LNG vessel
empties its tanks, e.g., after maintenance and after voyages of considerable length. In these cases,
the loading time is longer than normal. To avoid empty tanks, a share of the total vessel capacity
of LNG is kept in the tank after unloading to keep the tanks cold by spraying the walls in the
tank with the remaining LNG. The remaining LNG is also used as fuel during the ballast voyage
(Dobrota et al., 2013).

Regasification

At the destination port, the LNG is transferred to a regasification plant, where it is heated and
thereby converted back into its natural gaseous state. The gas is then transported to the end
customer through a natural gas pipeline system.

Consumption

LNG demand comes from private consumers, using gas for e.g. heating and cooking, as well as
from businesses and industrial facilities, using it for e.g. electricity production and manufacturing.

2.2 An Annual Delivery Program

The setup of an Annual Delivery Program (ADP) is an important problem on a tactical level in
the liquefied natural gas supply chain. Each year, LNG suppliers and buyers agree on an ADP
for the coming 12 months. The ADP plans the timely and efficient delivery and receipt of LNG
cargoes within the boundaries that the context and the stakeholders inflict. Usually, the suppliers
and buyers agree on an Annual Contracted Quantity (ACQ) and a specified pattern of deliveries
throughout the year, with more or less flexibility. The ADPs build on long-term contracts with
customers that last around 14 years on average (GIIGNL, 2022).

A producer in the liquefied natural gas supply chain is contractually committed to meeting customer
demands through long-term contracts. By controlling the inventory at the liquefaction plant, the
loading ports with a limited number of berths, and the routing and scheduling of a heterogeneous
fleet of LNG vessels, the producer can set up an annual delivery program. As illustrated in
Figure 2.3, an ADP includes the whole sailing schedule for each vessel as well as the operation to
which the vessel is assigned. The upper part of Figure 2.3 illustrates the sailing schedule of each
vessel. The lower part illustrates how the loading of the vessels affects the inventory level at the
loading port. The producer is responsible for creating and presenting the ADP to the customers,
who will either accept the plan or come up with changes. The most common adjustments are
associated with the delivery time window. This is an iterative process in which the customer
usually gets the last say.

The contractual customer pays for the actual quantity of LNG delivered at the customer’s re-
gasification plant. This means that the producer is accountable for the delivery and the volume
supplied that may be impacted by boil-off. We say that the cargo is Delivered Ex-Ship (DES). The
delivery ex-ship trade phrase requires the seller to deliver the cargo to the buyer at a predefined
port of arrival. Thus, the seller bears the whole risk and cost of transporting the goods to the
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port. A customer contract may also specify that the customer picks up LNG from the liquefaction
plant using its own vessels, called delivered Free-On-Board (FOB). In this case, the customer is
responsible for transportation, risks, and costs that may be incurred. The term ”free-on-board”
refers to a purchase made at the liquefaction facility, in which the customer organizes shipment
to the destination. Whenever the producer has a surplus of LNG, while satisfying the long-term
contracts, the producer can sell LNG in the spot market. The LNG spot market is based on
short-term contracts which can be delivered FOB or DES.

Figure 2.3: Illustration of an ADP. The ADP contains the entire sailing schedule for each vessel.
Here, the inventory level at the loading port is also included to show how the ADP affects the
inventory level.

2.3 Development of the Industry

2.3.1 Historical Development

Figure 2.4 shows that the global number of LNG vessels has grown with a compound annual growth
rate close to 8% since 2016, reflecting a general growth in the global trade of natural gas transported
on vessels (GIIGNL, 2016, 2017, 2018, 2019, 2020, 2021, 2022). This growth is primarily driven
by an increase in LNG demand, which again is driven by an overall increase in global energy
consumption, as well as a preference for low-emission energy alternatives. The potential impact
of LNG shipping optimization generally grows with the industry, even if the increased market
complexity presents a challenge.

An increasing diversification on the supply side has long coincided with the rising natural gas
demand, laying the groundwork for healthy growth with relatively small price fluctuations (In-
ternational Energy Agency, 2019). However, since the third quarter of 2021, the demand started
outgrowing the supply, resulting in a hike in the LNG price (Nasdaq Inc., 2023). This was fur-
ther accelerated in 2022, partly by the 2022 Russian invasion of Ukraine. Appendix A shows the
development in the natural gas price index (Nasdaq Inc., 2023).

2.3.2 Projected Development

The LNG industry grows with the continuation of current large-scale trends. The global population
is facing increasing energy demands as global living standards increase. The increased energy
demand is challenged by the green transition, which requires switching to low-carbon solutions to
fulfill energy needs. The LNG industry might benefit from both trends in the coming years as LNG
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Figure 2.4: Development in the global number of LNG vessels

provides a source of energy with lower emissions than many other energy sources that are widely
used today, like oil and coal. However, it should be mentioned that there exist other energy sources
that produce less harmful emissions than LNG, so in the future, LNG too might be considered
relatively polluting.

The LNG demand will remain artificially high in many years to come due to the Russia-Ukrainian
conflict. The Russia-Ukrainian conflict is likely to have long-lasting effects on the global energy
system (BP Plc., 2023). Therefore, Europe is expected to keep reducing its dependency on Russian
gas imports in the years to come, keeping the LNG demand artificially high until at least 2026
(BloombergNEF, 2022).

The supply of natural gas is expected to lag behind demand in the current decade, which might
increase the need for LNG shipping optimization. The overall market growth is likely to be con-
strained by lagging supply since the ability to add new gas supply infrastructure before 2026 is
somewhat limited due to time consuming construction. However, some supply ramp-ups are ex-
pected, for example in the USA (BloombergNEF, 2022). The main mode of long-distance natural
gas transportation, for example from the USA to Europe and Asia, is through LNG shipping (Pet-
roleum Economist, n.d.). In other words, the gas Europe previously got from Russian pipelines
might to some degree be replaced by LNG shipments going forward, resulting in a larger demand
for LNG vessels. This means that in the time coming, optimization of LNG shipping will also
contribute to the handling of the demanding transition away from dependency on Russian gas that
Europe is currently facing.

Producers are expected to increase flexible supply. Due to the supply and demand discrepancies,
prices are expected to stay above the recent historical average. A consequence of this is that LNG
suppliers are expected to ramp up flexible supply (increasing the spot volume) since selling LNG
in the spot market is more profitable when the prices have increased recently (BloombergNEF,
2022).
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Literature Review

This chapter provides a comprehensive review of the existing literature pertinent to the LNG-
ADP-SO-MLP. Significant parts of this chapter are based on the specialization project Haug et al.
(2022).

A systematic search was conducted using the academic search engine Google Scholar, primarily
focusing on the key phrases ”LNG Annual Delivery Program”, ”LNG Supply Chain Planning
Problem”, and ”LNG Inventory Routing Problem”. Both searches yielded a substantial number
of papers relevant to the problem. A two-stage selection process was employed, first filtering for
relevance, followed by a further selection based on titles and abstracts of the most pertinent articles
for each search term. Additionally, Connected Papers (Connected Papers, n.d.) was utilized as a
visualization tool to generate a graph illustrating relevant papers and their interconnections, as
depicted in Appendix B. A total of 32 articles were deemed highly relevant and selected for an
in-depth review.

Section 3.1 synthesizes the existing literature regarding the planning of the LNG Annual Delivery
Program. In Section 3.2, we investigate papers addressing the relevant literature from the broader
field of LNG Supply Chain Planning, concurrently situating the LNG-ADP within this more general
domain. Lastly, Section 3.3 outlines our contribution to the literature.

3.1 The LNG Annual Delivery Program Planning Problem

The LNG-ADP problem combines ship routing and scheduling with inventory management and can
thus be considered a subclass to the category of the Maritime Inventory Routing Problem (MIRP).
MIRPs address the general problem of inventory routing in maritime transportation, which can
be applied to various industries and commodities. The LNG-ADP problem distinguishes from the
general MIRP by the requirement of a long planning horizon and specific challenges associated
with the nature of liquefied natural gas. These challenges include handling cryogenic cargoes and
addressing transportation considerations due to boil-off. These unique aspects of LNG make the
problem more complex than the general MIRP. Compared to MIRPs, LNG-ADP problems are
often featuring a simple network structure including only one production port. Moreover, MIRPs
have been extensively studied in the literature and a comprehensive MIRP survey was recently
provided by Fagerholt et al. (2023).

The LNG Annual Delivery Program Planning Problem has obtained research interest over the past
decade, with Rakke et al. (2011) being a seminal early paper. In this section, we systematically
examine the existing literature on the LNG-ADP Planning Problem, focusing on the various fea-
tures researchers have incorporated into their models. Table 3.1 summarizes the most pertinent
papers for our project, each of which is elaborated upon in this literature review. The primary
features of the problems studied in each article are highlighted.

Rakke et al. (2011) were among the pioneering papers addressing the problem of devising an ADP.
The problem encompasses limited berth and inventory capacities, a heterogeneous fleet of vessels,
vessel maintenance, the option to charter vessels, and selling LNG in the spot market. The LNG
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Objective Speed Loading FOB&DES Time-space Charter Split Boil Var.
Study function Time Opt. ports spot cargoes network vessels deliveries -off prod.

Rakke et al. (2011) Min costs Discrete No 1 No No In No Yes No
Halvorsen-Weare and
Fagerholt (2010)

Min costs Discrete No 1 No No - No No No

St̊alhane et al. (2012) Min costs Discrete No 1 No No In No Yes No
Halvorsen-Weare et al.
(2013)

Min costs Discrete No 1 No No In No No No

Mutlu et al. (2016) Min costs Discrete No 1 No No - Yes No Yes
Al-Haidous et al.
(2016)

Min fleet size Discrete No 1 No Yes In No Yes No

Andersson et al. (2017) Min costs Discrete No 1 No No In No Yes No
Li and Schütz (2020) Min costs Continuous No 1 No No In No Yes No
Li et al. (2022) Min costs Discrete No 1 No No In No Yes No
This work Max profit Discrete Yes Multiple Yes Yes In, Out* No Yes Yes*

Table 3.1: Summary of the most relevant papers for the LNG-ADP Planning Problem. The last
row summarizes the main features of our model. Charter vessels: ”In” means chartering in vessels
is permitted, ”Out” means chartering out own vessels is permitted. *Included as extensions of the
basic version of the model.

spot market has gained prominence in recent years, as outlined in Chapter 2, necessitating its
inclusion in the modeling of LNG-ADP problems. Both Rakke et al. (2011) and St̊alhane et al.
(2012) tackle the challenge of constructing a cost-effective ADP while considering the opportunity
to sell LNG in the spot market, an aspect further investigated in subsequent studies, as indicated in
Table 3.1. Additionally, Rakke et al. (2011) introduce penalty costs for under and over-delivery of
long-term contracts into the objective function, penalizing the objective value when exceeding the
upper and lower bounds of customer demand. The problem formulations of Rakke et al. (2011) and
St̊alhane et al. (2012) are time-discrete and feature predefined sailing times, allowing for periodic
changes in sailing conditions. This formulation does not qualify as speed optimization since sailing
speeds are implicitly predefined through the given sailing times and are not modeled as decisions.
Moreover, Rakke et al. (2011) incorporate time partitions, enabling variations in the size and
placement of the time windows for LNG customer demand specifications. We have also adopted
the formulation with time partitions in this work. Rakke et al. (2011) propose a rolling horizon
heuristic (RHH) that iterates through sub-problems with shorter planning horizons. St̊alhane et al.
(2012) employ a construction and improvement heuristic (CIH) that generates a set of solutions
using a greedy insertion procedure, refining them with a first-descent neighborhood search and/or
branch-and-bound on a mathematical formulation.

In contrast to penalizing under- and over-delivery, Halvorsen-Weare and Fagerholt (2010) impose
penalties for violating customers’ delivery time windows. As outlined in Table 3.1, this problem
diverges from Rakke et al. (2011), St̊alhane et al. (2012), and our model by neither including the
possibility of chartering vessels nor accepting contracts in the spot market. Halvorsen-Weare and
Fagerholt (2010) present an arc-flow model wherein binary flow variables directly depict the flow of
vessels. Conversely, Halvorsen-Weare et al. (2013) address the same problem as Halvorsen-Weare
and Fagerholt (2010) while reducing the number of variables in the model by formulating a cargo-
based assignment model. This formulation portrays the transportation of a specific cargo rather
than the flow of individual vessels. The problem structure permits Halvorsen-Weare et al. (2013)
to solve the model with a decomposition scheme, wherein routing and scheduling decisions are
considered separately.

Mutlu et al. (2016) distinguishes itself by incorporating three different extensions. The first treats
the production rate at the production port as a decision variable in the model in a similar way as we
do in this study. Their problem definition also includes the possibility of splitting cargoes, meaning
that a vessel can unload partial cargoes at more than one unloading port. Most LNG-related papers
only permit full shiploads due to the effects of sloshing and the free surface effect. Consequently,
Mutlu et al. (2016) deviate from other papers, including ours, by allowing split-deliveries in LNG-
ADP planning. The final extension entails flexibility by permitting a vessel to wait outside a port
by adding a waiting port adjacent to each port. Our model addresses waiting differently. It is
worth noting that Mutlu et al. (2016) only allow maintenance to be performed at a specific port
and models it as a round trip from the loading port, meaning it cannot be executed as a detour
from an unloading port as in our model. Unlike Rakke et al. (2011) and St̊alhane et al. (2012),
Mutlu et al. (2016) assume only one sailing time between two ports, without periodically different
ones, and does not provide for charter vessel usage. Mutlu et al. (2016) model the possibility of
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selling LNG in the spot market whenever excess production capacity arises but does not consider
the revenues spot contracts can generate. Mutlu et al. (2016) contend that estimating the amount
and price of spot sales is challenging, hence excluding the parameter, which sets their study apart
from most LNG-ADP problems, including our work. The problem is solved using a heuristic that
swiftly constructs multiple solutions that can serve as starting solutions for commercial solvers.

One of the major concerns when preparing ADPs is managing excess production after fulfilling
demand from long-term contracts. In our basic version of the model, as in most previous studies,
the production rate is a given parameter, and excess production is assumed to be sold on the
spot market. This assumption, however, may not be valid if there is insufficient spot demand or
available shipping (vessel) capacity (Mutlu et al., 2016). Furthermore, a lack of available storage
space combined with a lack of available vessel capacity can result in negative LNG prices, as seen in
the LNG market fall 2022 (SMM, 2022). As a result, there is no guarantee that excess production
can be sold on the spot market. Being able to reduce the production rate can thus be advantageous.
To the best of our knowledge, Mutlu et al. (2016) and our work presented in this report are the
only contributions to the LNG-ADP research that treat the production rate as a decision variable.
However, in the short term LNG-IRP literature there exist several papers that incorporate variable
production including Cho et al. (2018), Andersson et al. (2015) and Sheikhtajian et al. (2020).

Al-Haidous et al. (2016) base their model on the same assumptions as Rakke et al. (2011) but
specifically examine the case of using a homogeneous fleet of LNG-delivery vessels with the goal
of minimizing fleet size. Additionally, their study incorporates bunkering restrictions. Compared
to previous LNG-ADP problem studies, Al-Haidous et al. (2016) introduce a MIP model that can
be regarded as a restricted alternative to the general model delineated by Rakke et al. (2011)
and St̊alhane et al. (2012). Al-Haidous et al. (2016) construct a time-space graph that enables
a compact mixed-integer programming formulation with a polynomial number of variables and
constraints, accounting for all problem features and restrictions. This compact model allows for
optimal solutions to large-scale, realistic cases, which has typically been a limitation of similar
studies.

Andersson et al. (2017) model the LNG-ADP problem similarly to Rakke et al. (2011) but incor-
porate four families of valid inequalities to enhance the lower bounds on the problem’s optimal
value. One family is concerned with the penalty pricing of over- and under-delivery, another with
the quantity of LNG delivered, the third with delivery timing, and the last with symmetry-breaking
constraints. The problem is solved using a branch-and-cut algorithm.

Li and Schütz (2020) are the first to include transshipment in the LNG-ADP problem, motivated by
the Yamal LNG case with ice-breaking ships. In the case of Li and Schütz (2020), a transshipment
port helps the producer avoid longer-than-necessary voyages with ice-breaking LNG vessels, as
regular LNG vessels can take over the LNG and deliver it to customers, lowering sailing costs by
reducing the use of ice-breaking vessels. Li and Schütz (2020) consider one production port, one
transshipment port, and multiple customer ports divided into groups depending on how a customer
port can be reached from the production port. Their work includes two types of vessels, differing
in size, cost, and operation area. One ice-breaking vessel type is dedicated to loading LNG at the
loading port and transporting it to the transshipment port and customers near the loading port.
The other type operates between the transshipment port and customers that can only be reached
through the transshipment port due to long distances. While continuous-time formulations have
been modeled for quite some time in maritime inventory and routing problems (MIRP), Li and
Schütz (2020) introduce the first continuous-time formulation for an LNG-ADP problem. In a
discrete-time formulation, the link between decisions and time is strong, while continuous-time
formulations provide weaker links between decisions and time. To connect routing and inventory
management with time, big-M restrictions are necessary, which makes the formulations weaker and
the linear relaxations worse. The problem is solved with a rolling horizon heuristic.

Li et al. (2022) present a novel discrete-time formulation for the LNG-ADP problem with trans-
shipment and waiting at customer ports. The waiting time at the customer port is limited. Li
et al. (2022) model the waiting by adding a decision variable with two time indices. The two time
indices denote loading time and unloading time. The result is multiple decision variables for all
delivery voyages that start on the same day but deliver on different days. In our model, waiting
is modeled differently, without the separate decision variable. The problem of Li et al. (2022) is
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solved with different rolling horizon configurations.

Uncertainty plays a significant role in the LNG-ADP Planning Problem, as is the case for most
maritime transportation issues. However, for the LNG-ADP problem, uncertainties are frequently
disregarded in the literature or modeled robustly. Halvorsen-Weare et al. (2013) take into account
the uncertainty of sailing times and daily LNG production. To render the cargo-based assign-
ment model more robust concerning uncertainties, Halvorsen-Weare et al. (2013) introduce four
robustness strategies.

3.2 Additional Relevant LNG Supply Chain Planning prob-
lems

The LNG-ADP typically serves as a decision support model at a tactical level. In this section,
we examine relevant papers from the LNG industry at the operational and strategic planning
levels. Also, Fagerholt et al. (2023) provide a comprehensive review that covers several segments
of the literature on routing problems that are considered tightly related to the LNG routing and
scheduling problem.

3.2.1 The Operational Planning Level

Various types of LNG supply chain planning problems are studied at the operational level. Peña-
Zarzuelo et al. (2020) classify the LNG operational supply chain planning field into two primary
categories: the LNG Routing and Scheduling Problem (RSP) and the LNG Inventory and Schedul-
ing Problem (ISP). LNG-ADP may consider all three factors (routing, inventory, and scheduling)
and can thus be seen as a specific instance of an LNG inventory routing and scheduling problem,
commonly referred to as an Inventory Routing Problem (IRP) (scheduling is usually included).
Even though the LNG-ADP is a special case of the LNG-IRP, there are some notable differences.
The most distinguishing factor of the LNG-ADP from the LNG-IRP is the requirement of a long
planning horizon. The LNG-ADP is typically modeled in a less complex manner to account for
the long planning horizon and potentially a large fleet of vessels while maintaining a reasonable
solution time.

The LNG-IRP was to our knowledge first studied by Grønhaug and Christiansen (2009). Their
problem includes several features in addition to the primary inventory management, routing, and
scheduling of LNG vessels. It incorporates decision variables determining both sale quantities and
production volumes of LNG, allowing for partial unloading of LNG and accounting for boil-off.
This problem instance has been further developed by several authors, for example, by Fodstad
et al. (2010), who differentiate their problem from Grønhaug and Christiansen (2009) by including
the sale of spot cargoes and having multiple contract requirements. Andersson et al. (2015) build
on Grønhaug and Christiansen (2009) by exploiting the characteristics of LNG transportation,
reformulating the routes and schedules into duties, each duty having a set of visited nodes and a
start time. To solve the problem, duties are generated a priori, and the formulation is strengthened
by valid inequalities.

At a tactical and operational level, Ghiami et al. (2019) investigate an LNG deteriorating inventory
routing problem (LNG-DIRP) for an inland LNG distribution network. While most LNG papers
consider boil-off LNG during transportation, Ghiami et al. (2019) consider boil-off at all facilities
in the distribution network. Thus, inventory levels are also affected by the boil-off, as they regard
the boil-off as a loss. Ghiami et al. (2019) introduce a matheuristic that combines the mixed integer
programming formulation with an adaptive large neighborhood search.

Msakni and Haouari (2018) were the first to address speed optimization in the context of LNG
delivery planning. The paper investigates speed control decisions in the design of short-term
delivery plans of LNG for a typical horizon of three months. This study considers both mandatory
long-term contracts and spot contracts for a heterogeneous fleet of vessels, with the possibility of
varying speeds for deliveries of both contract types. This paper extends the time-space network
formulation of Al-Haidous et al. (2016) to integrate a heterogeneous fleet of vessels and the ability
to control sailing speeds while retaining a polynomial-sized MIP model. The problem of Msakni
and Haouari (2018) is represented as a graph where two nodes are linked with multiple arcs, each
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corresponding to a vessel sailing at a specific speed. The problem is solved using an optimization-
based variable neighborhood search procedure.

Optimizing vessel speed significantly impacts operational efficiency in planning maritime trans-
portation (Msakni and Haouari, 2018). It is easy to justify that for short-term planning, varying
speeds can improve the flexibility of the planning problem and enable better utilization of spot
contract opportunities. For long-term planning, the goal is to present a feasible, low-detailed plan
with the most relevant problem requirements, which may explain why, to the best of our know-
ledge, no paper has yet been published that studies speed optimization in the context of long-term
LNG-ADP Planning Problems.

In examples such as Grønhaug and Christiansen (2009) and Fodstad et al. (2010), the LNG-IRP
allows for multiple loading and unloading ports. Typically, LNG-ADPs have been modeled with
one loading port, but as the industry evolves, modeling the LNG-ADP with multiple loading
ports is realistic (confirmed by industry partner). In this project, we explore the effects of the
multiple-loading port formulation on the LNG-ADP.

Nikhalat-Jahromi et al. (2016) contribute to the research on LNG-IRP at an operational level by
proposing a novel MIP model from a corporate finance perspective. The model aims to suggest
a short-term trade policy for Middle Eastern LNG producers regarding the option to sell LNG
in the spot market of either Japan or the UK. Specifically, they propose that producers dispatch
their product to whichever market has the higher current spot price, regardless of the variability
of transport expenses. Nikhalat-Jahromi et al. (2016) introduce an optimization model that helps
decide when and where to deliver LNG by coordinating various factors such as tanker type, as-
signment and routing, inventory management, contract obligations, arbitrage, and uncommitted
LNG. In addition, their work also includes the possibility of chartering out the producer’s vessels,
which we also have included as an extension to our model.

Maritime planning problems are inherently uncertain. According to Christiansen et al. (2007), the
most significant uncertainties in the maritime sector on the tactical planning level are most likely
related to weather and port conditions. Some LNG-ADP and LNG-IRP papers address uncertainty
using robust optimization, and a few LNG supply chain papers explicitly handle uncertainties
stochastically. Examples include Cho et al. (2018), who consider the uncertain event of bad weather
that may disrupt LNG production, storage, and shipping. They use a two-stage MIP model to
maximize the expected revenue and minimize the disruption cost. Khalilpour and Karimi (2012)
handle the LNG buyer’s contract selection problem under demand and price uncertainty. They use
a two-stage MIP model to minimize total procurement costs. Sheikhtajian et al. (2020) compare
shipping cost of split and non-split delivery in deterministic and uncertain settings by building
on the LNG-ADP model by Mutlu et al. (2016). Vessel speed is considered a fuzzy parameter,
meaning that the parameter refers to a connected set of possible, weighted speed values instead
of just one value. They aim to minimize total costs and solve the problem with the algorithm
proposed by Mutlu et al. (2016) combined with a genetic algorithm (GA). C. Zhang et al. (2018)
study a Maritime Inventory Routing Problem with Time Windows (MIRPTW) for deliveries with
uncertain disruptions that increase travel times between ports. C. Zhang et al. (2018) want to
identify flexible solutions that can accommodate unforeseen disturbances and solve the problem
by proposing a Lagrangian heuristic algorithm and soft constraints incorporated in the objective
functions with Lagrange multipliers.

3.2.2 The Strategic Planning Level

Several strategic decisions on smaller-scale LNG supply chains have been considered with MIP
models. Jokinen et al. (2015) consider a supply chain consisting of a distribution terminal, smaller
satellite terminals, and a customer network, with the distribution involving vessels and trucks. A
slightly different problem was considered by Koza et al. (2017), where LNG vessels supply LNG-
fueled container vessels, and strategic decisions regarding investments are to be made, as both
investment cost and operational costs are to be considered.

Goel et al. (2012) present an LNG-IRP for developing LNG vessel schedules for supply chain design
analysis. Goel et al. (2015) address the scalability issues of the Goel et al. (2012) MIP model by
introducing a constraint programming (CP) approach based on disjunctive scheduling. Since the
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LNG-IRP contains precedence relations between tasks and time windows, CP can be efficient for
larger instances, as it depends on the number of tasks and resources rather than the number
of time points. In this case, the approach finds better solutions faster. Shao et al. (2015) also
build on the LNG-IRP by Goel et al. (2012), but suggest a hybrid heuristic strategy combining
mathematical programming with Greedy Randomized Adaptive Search Procedure (GRASP). The
studies by Papageorgiou et al. (2018) and Munguıa et al. (2019) investigate solution techniques for
long-horizon strategic LNG-IRP problems with relatively few constraints compared to most MIRP
models. The characteristics of the instances tested by these authors are similar to those examined
by Goel et al. (2015) and Shao et al. (2015), but with some notable distinctions.

Eriksen et al. (2022) consider the design of a mid-scale LNG supply chain that includes an overseas
sourcing location, coastal storage facilities, and land transportation to industrial customers. The
model helps strategic decision-making regarding the import of LNG, investments in floating storage
units, and customer distribution systems. The demand uncertainty is captured by a multi-stage
stochastic programming model, and the solution turns out to have a significant Value of Stochastic
Solution. Scenario trees are approximated with Monte Carlo sampling techniques, and the problem
is solved with a commercial MIP-solver.

Other papers handling uncertainty in the LNG supply chain at a strategic level are H. Zhang et al.
(2017) and Cardin et al. (2015). H. Zhang et al. (2017) study a supply chain along the Yangtze
River in China and create a multi-scenario MIP formulation that they perform sensitivity analysis
on to see the effect of different LNG prices. They exemplify the use of their analysis by considering
the long-term deployment of liquefied natural gas (LNG) technology to supply the transportation
market. Cardin et al. (2015) consider the value of the ability to adapt to changes in the market
due to realizations of uncertainties. The paper considers large-scale capital-intensive projects.

3.3 Our Contribution

In this thesis, we present a comprehensive model that stands apart from existing literature due
to its incorporation of several new features. The last line in Table 3.1 sums up the main features
included in the problem definition and modeling of the LNG-ADP-SO-MLP.

Our primary contributions to LNG-ADP research can be summarized as follows. Firstly, compared
to related research, we have provided a rich formulation of the LNG-ADP Planning Problem, which
contributes explicitly to the LNG-ADP research by including speed optimization and the possibility
to have more than one loading port for a producer. By formulating a time-space network, we can
handle each voyage leg separately, allowing for efficient management of sailing between various
loading ports and maintenance. This enables the inclusion of multiple loading ports and facilitates
direct sailing to maintenance ports after unloading, without the need to return to a loading port
first. Additionally, we have included both relevant spot contract types (FOB and DES) in the
same model which is, to the best of our knowledge, not done before.

Furthermore, we introduce two extensions that enhance the model’s realism. The first extension
involves treating the production rate at the production port as a decision variable, inspired by
the work of Mutlu et al. (2016). To the best of our knowledge, Mutlu et al. (2016) is the only
study in the LNG-ADP field that incorporates this feature. The second extension explores the
option of chartering out the producer’s vessels, a concept not explored in previous studies. This
extension offers several potential benefits, such as generating additional revenue, optimizing vessel
utilization, accessing new markets, and mitigating market risk by diversifying revenue streams to
include shipping services.

To summarize, the LNG-ADP-SO-MLP is, to the best of our knowledge, the first model in the
LNG-ADP planning scope including all the following five features:

1. Sailing speed optimization

2. The handling of multiple loading ports

3. Two types of spot contracts (FOB and DES)

4. The option of chartering out the producer’s own vessels

5. The option of varying production rates
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Problem Description

The Liquefied Natural Gas Annual Delivery Program Planning Problem with Speed Optimization
and Multiple Loading Ports (LNG-ADP-SO-MLP) refers to the challenge faced by LNG producers
in planning the supply of LNG to customers over a 12-month planning period, using a given fleet of
LNG vessels. While this chapter builds upon the specialization project Haug et al. (2022), it also
explores additional aspects of the LNG-ADP-SO-MLP that this thesis aims to study in greater
detail. These include the opportunity to adjust production rates and charter out the producer’s
vessels.

The LNG producer has one or multiple loading ports. Each loading port has a set of berths from
which LNG vessels can load. The number of available berths may change during the planning
horizon due to maintenance. Each loading port also has storage tanks with given maximum and
minimum capacities for holding LNG.

LNG producers offer customers two types of contracts - Delivered Ex-Ship (DES) and Free-On-
Board (FOB). Under DES, the producer delivers the cargo to a designated unloading port with a
vessel from its own fleet, while under FOB, the customer picks up the cargo at a designated loading
port using their own vessel. Each contract has specific partitions defined by the customer for the
time of delivery or pick-up. A customer can for example have annual, quarterly, and/or monthly
partitions with a given delivery requirement, which can be fulfilled by one or several deliveries or
pick-ups of cargoes. For DES contracts, a minimum demand over the 12-month period must be
met, and a pre-defined revenue is associated with deliveries above this minimum up to a specified
maximum demand. Also, each DES contract can only receive cargoes from a pre-defined loading
port. For FOB contracts, each delivery must be of the size of the picking-up vessel. Optional
one-time deliveries of spot cargoes with associated customer destinations and revenues can also be
made, which must be delivered as either DES or FOB cargo. Each customer specifies how often
a delivery can be made at its port. e.g., a minimum number of days between each delivery. It is
assumed that the unloading ports always have available inventory and berth capacities.

The LNG producer’s heterogeneous fleet of vessels remains constant throughout the planning
horizon, with each vessel having a specific fuel cost that is determined by factors including fuel
consumption, distance traveled, bunker cost per ton, and speed. The speed of each vessel must fall
within specified upper and lower limits. All other costs, such as crew costs and time-charter costs of
the vessels, are assumed sunk. If the producer needs additional vessels, they can be chartered at a
predefined daily rate. Each vessel has a unique loading capacity and is always loaded up to capacity
due to physical limitations. Additionally, each vessel must unload its entire cargo at the unloading
port, except for a minimum tank volume share that is needed to maintain cool temperatures in the
tanks. Therefore, the actual delivery volume is determined by the vessel’s capacity, as well as the
boil-off effect and sailing distance. Each vessel has an individual starting position in a port at the
beginning of the planning horizon and becomes available for a new voyage only when it returns to
a loading port. As a result, vessels may become available at different locations and times in the
beginning of the planning period.

In addition, some vessels may require maintenance during the planning horizon. When a vessel is
scheduled for maintenance, a specific time window and maintenance port are designated for the
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maintenance to begin and take place. Due to the varied needs of each vessel in the heterogeneous
fleet, a given maintenance duration is assigned for each vessel scheduled for maintenance. After
maintenance is completed, the vessel must undergo a purge and cool-down process before embarking
on the next voyage. This process is assumed to take a specific amount of time and must be carried
out at a loading port. All vessels in the fleet are subject to the same operational time for loading,
unloading, and possibly purging and cool-down at each port.

The LNG-ADP-SO-MLP is responsible for determining the optimal allocation of vessels to ports
i.e., where to send each vessel at what times and at what speeds. These decisions are made while
taking into account several constraints. Some vessels are unable to visit certain ports or serve
specific customers due to port incompatibility. Additionally, some vessels are restricted to serving
a subset of contracts and unloading ports. Furthermore, since each loading port has a limited
number of berths, the number of vessels that can load on any given day cannot exceed the number
of available berths. Due to the upper and lower limits of LNG storage tanks at the loading ports,
there may be waiting time before a vessel can pick up a cargo.

The LNG-ADP-SO-MLP also determines the number of spot cargoes to sell FOB and DES, with
specific demand and revenue. Spot cargoes can only be sold if LNG production exceeds the total
contractual minimum demand. The producer is aware beforehand of the potential spot contracts
available, including details such as associated customers, time periods, revenues, and amounts.
The FOB spot cargoes impact berth capacity and inventory constraints, while DES cargoes also
affect the number of available vessels.

Two additional features are added to the LNG-ADP-SO-MLP, referred to as extensions. The first
extension, Extension 1, includes that each loading port has a specific daily production rate that
can be adjusted on a daily basis. The second extension, Extension 2, allows the producer to charter
out their own vessels at a predetermined daily rate when there is surplus capacity. Within the
planning horizon, the producer can only charter out each vessel for a single uninterrupted period,
and this period must exceed a given number of days.

The objective of the model is to maximize the gross margin, which is the total revenue minus
the transportation costs in the planning period, hereby referred to as ”profit”. Revenue comes
from spot cargoes transported FOB and DES, long-term contracted LNG deliveries, chartering
out vessels, and the remaining LNG’s value at the end of the planning period. The costs are the
transportation costs from the producer’s fleet during the planning period, as well as chartering
costs. The resulting plan is an Annual Delivery Program that outlines the fleet’s schedules, routes,
and deliveries to customers for the coming year.
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Mathematical Model

The LNG-ADP-SO-MLP is mathematically formulated as a time-discrete Mixed Integer Linear
Programming (MILP) model based on a time-space network structure. Before running the MILP
model, an arc-generation procedure generates feasible arcs with respect to some of the problem’s
constraints and our modeling assumptions. These arcs and their associated data points are input
data to the MILP model. Furthermore, the MILP model finds the most profitable combination
of arcs while satisfying the constraints that the arc generation procedure does not account for.
In Section 5.1, we present the modeling assumptions. Section 5.2 outlines the network structure
that forms the foundation of the mathematical model. Section 5.3 explains how arcs, nodes,
and corresponding discrete data are generated. The notation used in the mathematical model is
described in Section 5.4, and a basic version of the mathematical model is presented and explained
in Section 5.5.

The content in sections 5.1 through 5.5 is based on the specialization project Haug et al. (2022).
The basic version of the model presented in Section 5.5 is based on the same model as in Haug
et al. (2022), with the addition of new constraints that spread the deliveries to each customer to
make the model more realistic. Section 5.6 and Section 5.7 present new extensions to the basic
version of the model. These extensions involve the producer’s options of varying the production
and chartering out its own vessels.

5.1 Modeling Assumptions

This section introduces the fundamental assumptions for modeling the LNG-ADP-SO-MLP, which
is based on an arc structure where each arc represents a one-way sailing between two nodes. On
the contrary, a node represents a port at a specific moment in time.

5.1.1 Discrete Time

In the model, time is discretized with uniform time steps, meaning that the planning horizon of the
ADP is partitioned into a sequence of successive time intervals. A time-discrete model facilitates
the easy handling of time-dependent decisions and parameters, such as varying production rates
and sailing speeds. The precision and effectiveness of the model are influenced by the duration
of the time periods. Long time intervals would lead to less precise modeling of vessel activities,
reducing the overall model accuracy. Conversely, very short time intervals would result in a large
number of constraints and variables, making the model considerably more challenging to solve.
For the LNG-ADP, a time period of one day is deemed sufficiently accurate.

Continuous-time models often assume constant parameters due to the added complexity involved
in accounting for variations, which may require the use of additional variables and Big-M con-
straints. Consequently, this approach may result in weaker linear relaxations and a larger problem
size. Nevertheless, continuous-time models are generally smaller compared to their discrete-time
counterparts. However, the advantage of a smaller formulation is somewhat offset by the growing
intricacy of time-dependent parameters (Li et al., 2022).
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5.1.2 Waiting

It is possible to model short-term waiting because of the time-space structure described in Sec-
tion 5.2. The vessels are permitted to wait outside all ports for a predetermined number of days
before proceeding with port operations. This significantly expands the model’s opportunity space
but could increase the solution time.

5.1.3 Length of Planning Horizon

Demanding that all vessels stop sailing at the end of the planning horizon is assumed to be bad
fleet utilization. To avoid this, vessels are allowed to sail beyond the planning horizon, which is
extended over multiple time periods. The planning horizon is based on the producer’s perspective,
requiring all customer demand to be picked up within this horizon, called loading days. LNG can
still be delivered during the extended unloading days. If planning for 365 days, vessels can pick up
LNG before day 365 and deliver during the unloading days. Loading and unloading days comprise
the total number of days the model plan for, denoted all days.

5.1.4 Handling FOB and DES Contract Types

As explained in Chapter 4, LNG can be sold through different types of contracts. These contracts
can be short-term (spot) or long-term, delivered by the producer (DES) or picked up by the
customer (FOB). Since no papers within the scope of LNG-ADP appear to have included all
contract types yet, as presented in Chapter 3, an overview of the different contracts is presented
in Table 5.1

Short-term Long-term Vessel that can serve

DES DES spot contract long-term DES contract Producer’s and chartered vessels

FOB FOB spot contract long-term FOB contract Customer’s vessels

Table 5.1: Overview of the contract types and which vessels can be used to serve the contracts

A long-term DES contract specifies an Annual Contracted Quantity (ACQ), which is the amount
of LNG that the producer must deliver to the customer’s port. The contract specifies the port’s
demand within upper and lower limits, allowing for flexibility. The ACQ is split into smaller de-
mand quantities with delivery time requirements specified as subsets of the planning horizon (Time
partitions). However, the time partitions can vary, and anything from quarterly or semi-annual
delivery windows to completely custom delivery windows is handled by the model. One customer
can also have several types of time partitions within one contract, for example by specifying an
ACQ between 7 and 10 cargoes, and also specifying that at least 3 cargoes must be delivered in
Q1 (the first quarter of a year). The producer also has the opportunity to accept or decline DES
contracts in the spot market, which are similar to long-term contracts but only require one delivery.
Additional vessels can be chartered for a predefined daily rate if needed.

Transport of FOB contracts is the customer’s responsibility and are not linked to a customer’s port,
so they only impact inventory and berth availability at a loading port. It is important to highlight
that, in contrast to DES contracts, each FOB contract comprises a single cargo. Therefore, if
a customer intends to collect multiple FOB cargoes during the planning horizon, each cargo is
handled as an entirely independent contract. A customer can have both DES and FOB contracts,
but they are treated as separate contracts.

5.1.5 Chartering Vessels

In cases where the producer has insufficient vessels to fulfill the demand of DES contracts, addi-
tional vessels may be chartered at a fixed daily charter rate. It is assumed that there is always a
charter vessel available at each loading port, capable of carrying the cargo size within an upper
and lower capacity limit. Charter vessels have a predetermined speed, and fuel costs are already
included in the daily charter rate. In the model, we only consider the voyage from the loading port
to the customer port for a charter vessel, as we are not concerned with its activities beyond that.
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Given that the vessels must travel to the producer’s loading port, the cost of chartering a vessel
for a single voyage is estimated by doubling the one-way cost.

5.1.6 Artificial Spot FOB Contracts

Given the LNG producer’s ability to either halt production or accept additional spot contracts
throughout the year, an assumption about defining an artificial spot FOB contract is made. The
artificial spot FOB contract is characterized by zero revenue, a default demand equivalent to the
average cargo size, and is applicable across all time periods, thus enabling the potential sale of
surplus LNG throughout the planning period. Every cargo loaded through the artificial spot FOB
contract in the final ADP is viewed as a potential opportunity for the LNG producer to identify
a corresponding real-life spot contract for the specific cargo’s pick-up time interval. The aim of
this strategy is to prevent the upper inventory level from being treated as a hard constraint. By
incorporating the option of selling surplus inventory beyond the predefined demands, the model
may require the LNG producer to embrace an artificial spot FOB contract in the event of the
inventory level exceeding its upper inventory limit, thereby expanding the feasible solution space.

5.1.7 Maximizing Gross Margin Less Production Costs

The objective of the model is to optimize the relevant contribution margin obtained from the sale
of LNG, which is referred to as ”profit” in this thesis. The contribution margin only takes into
account variable transportation costs, while other variable costs, such as LNG production costs
and labor, are disregarded. Production costs are considered sunk costs, as the production levels are
assumed predefined and not handled as decision variables. Similarly, some vessel operating costs,
such as onboard labor and consumables, are also assumed to be sunk costs since the vessels must
remain operational throughout the planning horizon, regardless of their transportation missions.
Additionally, all fixed costs, including overhead costs, cost of capital, insurance, maintenance,
and others, are also considered sunk. Based on the assumption that berth costs are negligible,
the model aims to maximize revenue minus transportation costs. This is a reasonable approach
assuming fixed production because the producer prefers to undertake any mission that yields a pos-
itive contribution margin, unless it affects a more profitable mission (assuming profit-maximizing
behavior).

5.2 Definition of Node and Arc Structure

The model is based on a time-space network where nodes represent locations and times, while arcs
connect them.

5.2.1 Adapting Physical Ports and Associated Customer Contracts to
Model Ports

In our MILP model, a physical port can serve multiple customers who receive LNG cargoes at the
same location. To represent this scenario, we associate each customer with a distinct model port as
illustrated in Figure 5.1. A model port in our model comprises a physical location and a flag that
designates it as a customer port, producer port, or maintenance port. If a physical location has
multiple customers, it is represented by several model ports, one for each customer, even though it
corresponds to a single physical location. As illustrated in the figure, if the Port of Brazil has three
contracts requiring deliveries, our set of customer model ports includes three different ports, each
with the same distance data associated with the physical Port of Brazil. The differences between
these customer model ports are the customers’ delivery requirements and associated revenues. It
is important to note that each physical loading port only has one corresponding model port in our
model.

In the remainder of this thesis, we use the term port to refer to a model port and the term location
to refer to a physical port.
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Figure 5.1: Illustration of the difference between physical ports and model ports.

5.2.2 Nodes

A node in the time-space network is a port that a vessel can visit at a specific time period, which
is one of the time periods in the planning horizon (e.g., one day out of 365). We denote a node as
(i, t) or (j, t′), where i and j denote ports, and t and t′ denote time periods. Each port represents
one of the following five port types:

• Loading port: producer operated port where LNG is liquefied and loaded onto vessels before
transportation, represented by l1 and l2 in Figure 5.2

• Unloading port: LNG is unloaded from the vessel and regasified here before being transported
to the customer of the unloading port, exemplified by u3 to u6 in Figure 5.2

• Maintenance port: vessels that require maintenance can dry-dock and perform maintenance
here, represented by m7 in Figure 5.2

• Spot unloading port: similar to an unloading port, except only optional cargoes can be
unloaded here

• Artificial initialization and destination port: only defined in t = 0 and t = |T |+1, represented
by i0 in Figure 5.2 and given more detail in Section 5.2.4

If a single port serves multiple functions (e.g., unloading and maintenance), the port is represented
in the time-space network by one individual port for each port type. Figure 5.2 presents the
structure for a scenario with an artificial port (i0, only defined in (i0,t0) and (i0,t9+1)) two loading
ports (l1 and l2), four unloading ports (u3 to u6) and one maintenance port (m7) in a planning
horizon of nine time periods.
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Figure 5.2: Example of a time-space network and a possible vessel itinerary.

5.2.3 Arcs

Every arc connects two nodes and is defined by the start and end nodes, which are denoted as
((i, t), (j, t′)). The distance traveled is calculated using a given distance matrix between each port
i and j. The point in time when the vessel begins sailing from the start port defines the start time
of an arc. The end time of an arc is the arc’s start time plus the time required to complete four
vessel activities:

1. Sailing

2. Potential waiting

3. Potential purge- and cool down procedure

4. Operational time (docking and the relevant port process, as well as preparation for the next
journey)

The blue arc in Figure 5.3 represents the arc ((i, t), (j, t′)), and the pink lines represent the actual
processes that the arc implies. The first dotted line corresponds to potential waiting time, and the
second to the purge and cool down procedure.

Figure 5.3: Illustration of an arc ((i, t), (j, t′)) and the vessel activities it represents.
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Waiting becomes necessary if the distance and time required to sail a voyage imply a speed that
is less than the vessel’s minimum speed. In this case, the vessel sails at its slowest speed and
waits outside the port until the required time is reached. Waiting for berth availability is only
relevant when the destination node is classified as a loading port, because we always assume berth
availability at unloading and maintenance ports.

The process of purging and cooling down is only applicable if a vessel has recently visited a
maintenance port.

Figure 5.3 shows how the arcs are structured such that sailing occurs prior to waiting and oper-
ations. This modeling decision was made to simplify berth constraints at the loading port and
reduce symmetry. Following a maintenance visit, vessels require additional time in the loading port
due to the purge and cool-down process. The arcs provide information on the type of node from
which a vessel has departed (the i in ((i, t), (j, t′))), allowing us to determine whether a purge-and-
cool-down process is required and the duration for which the berth will be occupied. In contrast,
if the arcs were defined such that operational time preceded sailing, knowledge about the previous
arc would be necessary to determine the appropriate operation for the vessel at the port and the
duration required before it could set sail again.

5.2.4 Artificial Nodes and Arcs

Artificial nodes and their associated arcs are included for two purposes:

1. A vessel can only start one journey

2. A vessel is not necessarily used at all

The first is to ensure that each vessel departs only on one voyage. The single electable arc between
the artificial origin node and the time and place the vessel first becomes available is used for this
purpose. The location of the artificial origin node is (i, t) = (0, 0). There are no associated expenses
for the arcs from the artificial origin node. Using this modeling approach, we are able to remove
a number of restrictions that would have otherwise prevented any vessel from being in more than
one place at any given time.

The second reason is that the model allows for not using a vessel at all. For each vessel, there is
an arc going from the artificial origin node in (i, t) = (0, 0) to the artificial destination node in
(i, t) = (0,|T |+ 1). These arcs have 0 associated costs.

Figure 5.4 illustrates the artificial nodes and their associated arcs for initialization and for not using
a vessel in a time-space network. The example includes two vessels represented by two different
colors. The solid lines illustrate the possible initialization arcs the MILP model can choose for
each vessel. The dotted lines illustrate possible arc choices for the MILP model after a vessel is
initialized and chosen to be used.
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Figure 5.4: Illustration of the artificial nodes, denoted A, and the initialization arcs, as well as the
arcs that represent not using a vessel, illustrated for two example vessels in the time-space network
described in Section 5.2. Step 1 for the MILP model is to choose if the vessel is to be used or not
(solid lines). If it is decided to use the vessel, the MILP model’s second step is to select additional
arcs (dotted lines). In this case, the first example vessel first becomes available at location u6 at
time t1 (pink) and the second example vessel first becomes available at location u6 at time t4 (blue).

5.3 Data Preparation Procedure

The input to the MILP model is generated through an arc-generation procedure, thus reducing
the number of problem constraints the model has to take into account. The following subsections
describe how the data is prepared and what constraints are considered while doing so.

5.3.1 Arc-Generation Procedure

All feasible arcs for each vessel are generated in the arc generation procedure. The vessels that
receive arcs include all the vessels that the LNG producer operates and the charter vessels. The
feasible arcs are the input to the mathematical model of the LNG-ADP-SO-MLP, which is re-
sponsible for selecting the profit-maximizing combination of arcs, implicitly optimizing the speed.
The algorithm that generates the arcs is described in Algorithm 1.

Some waiting- and speed terms used in the pseudo-code:

• Arc sailing+waiting time: The total duration of the arc minus the associated arc operational
time, i.e., t’-t-operational time

• Arc sailing time: Arc sailing+waiting time minus waiting time, i.e.,
t’-t-operational time-waiting time

• Arc speed: The arc speed, including sailing time and waiting time, i.e., distance(i,j)
arc sailing+waiting time

• Arc sailing speed: The arc sailing speed, only including sailing time, i.e. either vessel
minimum speed, or arc speed.
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Algorithm 1 Arc Generation Procedure

Input: A vessel and its associated sets and parameters, fuel prices, length of planning horizon,
and allowed waiting time

Output: Set of feasible arcs for the vessel
1: initialize the vessel’s set of arcs as an empty set
2: create and add arcs from the artificial start node to the vessel’s start position from day 0 to

the first available day for the vessel
3: create and add arcs from the artificial start node to itself from day 0 to the last day
4: if the vessel needs maintenance during the planning period then
5: create and add arcs associated with the vessel’s planned maintenance port
6: end if
7: initialize vessel’s port alternatives as an empty dictionary, and set port alternatives for first

time period to the vessel’s start position
8: for t in vessel’s set of available time periods do
9: for i in vessel’s set of port alternatives do

10: for j in vessel’s set of compatible ports do
11: if moving from i to j is not allowed then
12: continue to next j
13: end if
14: for t′ in vessel’s set of available days, starting from t+1, do
15: if j is a loading port and t

′
is after the last loading day + 1 then

16: continue to next t′

17: end if
18: if j is a customer port and t

′
is not in the customers’ unloading days then

19: continue to next t′

20: end if
21: create arc (i,t,j,t′)
22: calculate distance between port i and j
23: calculate arc sailing+waiting time and arc speed
24: if arc sailing+waiting time and arc speed is feasible then
25: initialize exit arc for port j
26: if arc speed is larger than the vessel’s minimum speed then
27: set arc sailing speed as arc speed
28: set arc waiting time to zero
29: calculate the arc cost given i, arc sailing speed and speed profile
30: add arc to vessel’s set of arcs
31: if j is not a loading port then
32: add exit arc to vessel’s feasible arcs
33: set exit arc’s sailing costs and sailing time to zero
34: end if
35: else
36: calculate arc waiting time for arc
37: if arc waiting time is less than maximum allowed waiting time then
38: set arc sailing speed as vessel’s minimum speed
39: calculate the arc cost given i, arc sailing speed and speed profile
40: add arc to vessel’s set of arcs
41: if j is not a loading port then
42: add exit arc to vessel’s feasible arcs
43: set exit arc’s sailing costs and sailing time to zero
44: end if
45: end if
46: end if
47: if t′ is in loading days then
48: add j as a port alternative for t′ in port alternatives
49: end if
50: end if
51: end for
52: end for
53: end for
54: end for
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The arc-generating procedure handles several constraints, summarized in the list that follows.

• Line 2 generates the initialization arcs, which ensure only one journey is started for each
vessel, as described in Section 5.2.4.

• A vessel can only be assigned to a mission after it has finished the missions it was assigned to
in the previous planning horizon. This is handled with only generating arcs from the artificial
start node in t=0 to the first available day for the vessel in line 2, and no time periods before
that.

• Line 3 generates the arcs that represent not using a vessel, as described in Section 5.2.4.

• Each vessel can only visit compatible ports. This is handled in lines 8 and 9.

• We only consider full shiploads, and the vessel must be empty when going into maintenance.
A vessel must therefore travel in the following order: Loading - Unloading - (Maintenance)
- Loading, meaning arcs between two loading ports or two unloading ports, as well as arcs
from a loading port to a maintenance port, are not permitted. This is handled in line 11.

• The sailing speeds must be less than or equal to the actual vessel’s maximum sailing speed
limit. This is handled in line 21.

• The time difference of t and t’ in the arcs must be long enough to account for the operational
times of the different ports in addition to the sailing. Only the arcs that fulfill this requirement
are generated. The operational time is longer if the arc starts in a maintenance node or if
the distance is longer than a defined limit because the vessel then sails warm and needs to
perform a purge and cool-down procedure in port before loading. This is handled in line 21.

• Vessels are not allowed to have a loading port as the final location. This is handled in line
25.

• Vessels are not allowed to wait more than a specified number of days. This is handled in line
35.

• The model can choose not to use a vessel for the rest of the planning period at any time,
by sending it to the artificial destination node. This is handled by adding an exit arc to the
artificial destination node from port j if an arc to port j is added to the vessel’s set of feasible
arcs. This is handled in lines 18, 30, and 41.

5.3.2 Cost Calculations

Prior to executing the LNG-ADP-SO-MLP, the cost calculations are performed. The cost assigned
to each arc is based solely on fuel consumption, while disregarding other expenses that are deemed
insignificant. There are numerous arcs that connect every possible port combination i-j, and each
arc corresponds to a distinct time period, as depicted in Figure 5.5. As outlined in Section 5.3.1,
an arc is not generated if the speed at which a vessel sails exceeds the maximum speed of the
corresponding vessel. If the implied speed is lower than the minimum speed of the vessel, the
minimum speed of the vessel is employed in the cost function, along with the sailing time implied
at that speed, and the remaining time units are regarded as waiting days. Since only sunk costs
are linked with these waiting days, they do not result in any additional expenses being added to
the total cost of the arc.
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Figure 5.5: A vessel can sail at different speeds from port i to j.

The fuel consumption of each arc depends on the sailing speed that the time and distance of each arc
imply, as illustrated in Figure 5.6. Fuel consumption is found from a non-linear fuel consumption
approximation as the curve in Figure 5.6, but in the model this has been made discrete. The cost
generation function assumes that the arc is sailed at the lowest possible speed, with sailing time
calculated as the difference between the start and finish times of the arc minus the time required
for port operations. The resulting speed in knots (kn) is then calculated by dividing the distance
between ports i and j in nautical miles (NM) by the number of hours in the sailing time. To
calculate fuel consumption for a given arc, Algorithm 2 is used, which takes into account the arc’s
start location and sailing speed, as well as the vessel’s speed profile. If the vessel is loaded and
starts sailing from port i, then the laden speed profile is used, whereas if the vessel is empty, the
ballast speed profile is used.

Figure 5.6: A general illustration of fuel consumption as a function of speed. Costs increase with
higher speed, but the graph also shows that costs begin to rise as speed falls below a certain threshold.
The example in Figure 5.5 with two possible speeds, low and high speed, shows that the choice of
speed results in significant differences in sailing costs.
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Algorithm 2 Fuel Consumption Calculation

Input: the arc’s start location and sailing speed, and the vessel’s speed profile
Output: the arc’s daily fuel consumption

if start location of the arc is a loading port then
set lower speed and lower fuel consumption based on vessel’s laden speed profile
for s in the vessel’s set of laden speeds do

if arc sailing speed is larger than s then
set lower speed to s

else if arc sailing speed is equal to s then
return fuel consumption associated with s

else
calculating fuel consumption associated with arc sailing speed based on interpolation
return interpolated fuel consumption

end if
end for

else
set lower speed and lower fuel consumption based on vessel’s ballast speed profile
for s in the vessel’s set of ballast speeds do

if arc sailing speed is larger than s then
set lower speed to s

else if arc sailing speed is equal to s then
return fuel consumption associated with s

else
calculating fuel consumption associated with arc sailing speed based on interpolation
return interpolated fuel consumption

end if
end for

end if

5.4 Notation

The notation used in this project is mostly based on the existing model from the specialization
project Haug et al. (2022). However, a new parameter denoted PMIN

j has been added to the model
and allows for setting a minimum number of days between each delivery at a customer’s port. The
complete MILP-model is presented in Appendix C.

Sets and Indices

V Set of producer-operated vessels that are available during the planning horizon, each
vessel indexed by v

VM Set of vessels that require maintenance during the planning horizon, VM ⊂ V

Vi Set of vessels that can serve node i, Vi ⊂ V

All vessels operated by the producer that is used to transport LNG are included in the set V.
Furthermore, all producer vessels that need maintenance are included in the set VM which is a
subset of V. Not all vessels are compatible with all ports, therefore the sets Vi contain all vessels
that can serve node i. The set Vi is a subset of V.
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N Set of ports, each port indexed by i, j

NL Set of loading ports, NL ⊂ N

NU Set of unloading ports, NU ⊂ N

N S Set of spot unloading ports, N S ⊂ N

NM Set of maintenance ports, NM ⊂ N

The set N contains all of the model’s ports. All loading, unloading, spot unloading, and mainten-
ance ports are included here. Furthermore, for each port type, there exists a set that is a subset
of N . The subset NL is a set that contains all of the producer’s loading ports. NU contains
all of the contractual customers’ unloading ports, and NM contains all ports where maintenance
can be performed. The set N S contains all ports with a spot DES contract, which means that
the producer is responsible for transporting the LNG to the port if the producer accepts the
contract. A FOB cargo, on the other hand, must be picked up by the customer at the loading
port. The sets N S and NM can, as mentioned in Section 5.2.1, include the same physical ports as
the customer ports in the set NU , but they are defined as independent ports for modeling purposes.

Av Set of feasible arcs vessel v can sail, each arc indexed by ((i, t), (j, t′))

AM
v Set of feasible maintenance arcs vessel v can sail to start maintenance, AM

v ⊂ Av

AU
v Set of feasible arcs vessel v can sail to deliver a DES long-term contracted cargo, AU

v ⊂ Av

AS
v Set of feasible arcs vessel v can sail to deliver a DES spot cargo, AS

v ⊂ Av

All predefined feasible arcs that vessel v can sail are included in the set Av. The set AM
v is a subset

of Av and includes all arcs vessel v, in the set VM , can start sailing to perform maintenance. AU
v

contains all the arcs that vessel v can sail to deliver a long-term contracted DES cargo. There is
also a set AS

v with all the arcs that a vessel v can sail to carry out a spot DES contract.

Fi Set of FOB cargoes of LNG that want to be picked up at loading port i, indexed by f

FU
i Set of long-term contracted FOB cargoes of LNG that must be picked up at

loading port i, indexed by f , FU
i ⊂ Fi

FS
i Set of Spot FOB cargoes whose load can be picked up by a FOB vessel at loading

port i, indexed by f , also including the artificial spot FOB cargo, FS
i ⊂ Fi

The set Fi contains all LNG cargoes that can or shall be picked up at the loading ports. FU
i

contains the long-term FOB contract cargoes that must be picked up. FS
i contains all FOB spot

cargoes that can be picked up by a customer’s vessel at loading port i, including the artificial spot
FOB cargo.
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Pj Set of time partitions where customer j has DES contracts, each partition indexed by p.

T Set of time periods in all days, each time period, indexed by t, T = {1, 2, ..., |T |}
where |T | is the last time period in the planning horizon.

T L Set of time periods in loading days, where the vessels can lift LNG from a loading port,
each time period indexed by t, T L ⊂ T

T U Set of time periods in unloading days, where vessels can deliver LNG to a customer,
each time period indexed by t, T U ⊂ T

Tjp Set of time periods within partition p for customer j, Tjp ⊂ T

T FOB
f Set of time periods where FOB cargo f can be picked up, T FOB

f ⊂ T

Tv Set of time periods where vessel v is available to be scheduled, Tv ⊂ T

T M
v The time period where maintenance of vessel v is scheduled to start, T M

v ⊂ Tv

The set T contains all time periods in the planning horizon (loading days) T L, and the time periods
in the unloading days T U : T = T L ∪ TU . The planning horizon is divided into partitions of time
periods. Each customer has a demand of DES cargoes specified for a partition (e.g., quarterly, semi-
annually, yearly). The set Pj contains the partitions, and the set Tpj contains the time periods in
a partition for a DES customer j. The FOB contracts, like the DES contracts, have time windows
for when they can be picked up. Therefore, the set T FOB

f contains time periods during which a
FOB cargo can be picked up. A vessel can be unavailable at the start of the planning horizon,
therefore the time periods for when a vessel is available have a set Tv. Lastly, the set T M

v contains
the time periods where a vessel must start maintenance.
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Parameters

CS
vitjt′ Sailing cost of each feasible arc ((i, t), (j, t′)) for vessel v, ((i, t), (j, t′)) ∈ Av, v ∈ V

CC
itj Costs of using a charter vessel to deliver a cargo at port j, loading the cargo at

loading port i at time t, i ∈ NL, t ∈ T , i ∈ NU

N START
v Start port of vessel v, v ∈ V

TSTART
v First time period where vessel v is available to be scheduled, v ∈ V, TSTART

v ⊂ Tv

TO
vij Operational time associated with sailing from port location i to port location j for

vessel v, i, j ∈ N , v ∈ V

TC
ij Sailing time for a charter vessel sailing from loading port i to unloading port j,

i ∈ NL, j ∈ NU

TOFOB
fi Operational time associated to port location i for FOB cargo f , f ∈ Fi, i ∈ NL

T charter
ij Sailing time for a charter vessel between port i and j, i ∈ NL, j ∈ NU

Lv Capacity of vessel v, v ∈ V

L
C

Upper limit for capacity of a charter vessel

LC Lower limit for capacity of a charter vessel

LFOB
f Loading quantity of FOB cargo f , f ∈ Fi, i ∈ NL

Djp Maximum demand of unloading port j in partition p, j ∈ NU , p ∈ Pj

Djp Minimum demand of unloading port j in partition p, j ∈ NU , p ∈ Pj

RSFOB
f Revenue per volume unit of LNG loaded for FOB spot contract f , f ∈ FS

i , i ∈ NL

RUFOB
f Revenue per volume unit of LNG loaded for long-term FOB contract f , f ∈ FS

i , i ∈ NL

RDES
jt′ Revenue per volume unit of LNG for delivering DES contract to customer j at

time t′, j ∈ NU , t′ ∈ T

REND
i Unit value of LNG left in storage tanks at loading port i at the end of the planning

horizon, i ∈ NL

Bjt′ Berth capacity at port j at time t′, j ∈ NL, t′ ∈ T

QP
it Produced quantity of LNG in loading port i in time period t, i ∈ NL, t ∈ T

Si Maximum storage level of LNG at loading port i, i ∈ NL

Si Minimum storage level of LNG at loading port i, i ∈ NL

Si Initial storage level of LNG at the start of the planning horizon at loading port i, i ∈ NL

E Boil-off rate in percent of total vessel capacity

PMIN
j Minimum number of time periods between deliveries for customer j, j ∈ NU
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Variables

xvitjt′ 1 if vessel v sail arc ((i, t), (j, t′)), and 0 otherwise

zft′ 1 if FOB cargo f is done loading in time period t′, and 0 otherwise

witj 1 if a charter vessel starts sailing from loading port i at time t to deliver a cargo at j,
and 0 otherwise

gitj Amount loaded by a charter vessel in loading port i at time t to deliver in
unloading port j

sit Remaining storage at loading port i at the end of time period t
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5.5 Basic Version of the Mathematical Model

We formulate our model using the notation described in Section 5.4. The objective function is
introduced in Section 5.5.1, where each term is explained. Section 5.5.2 presents the constraints in
the model. All constraints are presented mathematically and explained. The following mathem-
atical model is based on our specialization project Haug et al. (2022), except for constraints (5.9)
which are new.

5.5.1 Objective Function

maxz =
∑
v∈V

∑
((i,t),(j,t′))∈AU

v

RDES
jt′ Lv(1− (t′ − t)E)xvitjt′ +

∑
i∈NL

∑
t∈T L

∑
j∈NU

RDES
j,t+TC

ij
(1− TC

ijE)gitj

+
∑
v∈V

∑
((i,t),(j,t′))∈AS

v

RDES
jt′ Lv(1− (t′ − t)E)xvitjt′ +

∑
i∈NL

∑
t∈T L

∑
j∈NS

RDES
j,t+TC

ij
(1− TC

ijE)gitj

+
∑
i∈NL

∑
f∈FU

i

∑
t′∈T

RUFOB
f LFOB

f zft′ +
∑
i∈NL

∑
f∈FS

i

∑
t′∈T

RSFOB
f LFOB

f zft′ +
∑
i∈NL

REND
i si,|T |

−
∑
v∈V

∑
((i,t),(j,t′))∈Av

CS
vitjt′xvitjt′ −

∑
i∈NL

∑
t∈T

∑
j∈NU

CC
itjwitj

(5.1)

The objective function (5.1) aims to maximize profit, which is represented by revenue less vessel
sailing costs. The first seven terms are all revenue terms. The first two terms represent the revenue
from the long-term DES contracts. The first term is the revenue from long-term DES contract
shipments shipped by own vessels, and the second term is the revenue from long-term DES contract
shipments shipped by charter vessels. The next two terms are revenue from DES spot contracts,
formulated in the same way as for the long-term DES contracts. Since there must be a certain
amount of LNG in the vessel’s tanks after unloading at a customer port, the boil-off effect affects
the amount of LNG in the tanks at both laden and ballast voyages. In terms one to four this is
accounted for by including the total boil-off for both voyages in the boil-off rate E. The next two
revenue terms, number five and number six, are the revenue from the FOB sale of LNG. Term
five is the revenue from the long-term FOB contracts while term six is the revenue from the spot
FOB contracts. The last revenue term is term seven, which represents the value of remaining LNG
in the storage tanks at the end of the planning horizon. The last two terms are the cost terms.
The first cost term is the cost of sailing the producer-operated vessels. Fuel and bunker costs are
included in the total sailing costs while other operating costs are ignored as they are considered
sunk. The cost of using charter vessels is the ninth and final term. The daily charter rate and
sailing costs from the entire round trip of the charter vessel are included.

5.5.2 Constraints

Inventory Constraints

Constraints (5.2) to (5.4) handle the inventory at the loading ports. The inventory control con-
straints (5.2) and (5.3) ensure that the inventory level left at a given day is the inventory level
from the day before plus quantity produced that day, minus LNG picked up that day both with
the producer’s vessels, charter vessels, and FOB, including the artificial spot FOB contract. Con-
straints (5.2) initialize the constraint for each loading node, while constraints (5.3) make sure the
inventory requirement is fulfilled for each day afterward. Constraints (5.4) ensure the inventory
level is within its upper and lower storage capacity bounds at all times.

si1 = Si +QP
i1 −

∑
j∈NU

∑
t′∈T

∑
v∈Vi

Lvxvi1jt′ −
∑

j∈NU∪NS

gi1j −
∑
f∈Fi

LFOB
f zf1, i ∈ NL

(5.2)
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sit = si,t−1 +QP
it −

∑
j∈NU

∑
t′∈T

∑
v∈Vi

Lvxvitjt′ −
∑

j∈NU∪NS

gitj −
∑
f∈Fi

∑
t′∈T FOB

f

LFOB
f zft′ ,

i ∈ NL, t ∈ T L\{1}
(5.3)

Si ≤ sit ≤ Si, i ∈ NL, t ∈ T L (5.4)

Maintenance Constraints

Constraints (5.5) state that all the maintenance vessels need to perform maintenance exactly one
time.

∑
((i,t),(j,t′))∈AM

v

xvitjt′ = 1, v ∈ VM

(5.5)

Flow Constraints

Constraints (5.6) ensure that each vessel either starts at its start position at its first available day,
or is not used at all during the planning period.

xv,0,0,NSTART
v ,TSTART

v
+ xv,0,0,0,|T |+1 = 1, v ∈ V (5.6)

Constraints (5.7) are flow constraints, ensuring that if a vessel sails to a port j, it must subsequently
sail from the same port j.

∑
i∈N

t′−1∑
t=0

xvitjt′ =
∑
i∈N

|T |∑
t=t′+1

xvjt′it, v ∈ V, j ∈ N , t′ ∈ T (5.7)

Demand Constraints

Constraints (5.8) are demand constraints ensuring that demand is satisfied for each DES contract,
both long-term and spot, in each time partition. The constraints account for the difference in
loading and unloading volumes by subtracting the boil-off.

Djp ≤
∑
v∈Vi

∑
i∈NL

∑
t∈Tv

∑
t′∈Tjp

Lv(1− (t′ − t)E)xvitjt′ +
∑
i∈NL

∑
t∈(Tjp−TC

ij )

gitj(1− TC
ijE) ≤ Djp,

j ∈ NU ∪N S , p ∈ Pj

(5.8)

Constraints (5.9) ensure that the deliveries of cargoes to an unloading port are spread throughout
the planning horizon.
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∑
v∈Vi

∑
i∈NL

∑
t∈Tv

t′+PMIN
j∑

τ=t′

xvitjτ +
∑
i∈NL

t′−T charter
ij +PMIN

j∑
τ=t′−T charter

ij

wiτj ≤ 1,

j ∈ NU ∪N S , t′ ∈ T U\{|T U | − PMIN
j }

(5.9)

Constraints (5.10) and (5.11) are the FOB contract constraints. Constraints (5.10) make sure
each long-term FOB cargo contract is fulfilled once in the relevant time window, while constraints
(5.11) make sure each spot FOB cargo contract is fulfilled at most once in the relevant time window,
except for the artificial spot FOB contracts (contract 1), which can be fulfilled as many times as
wanted.

∑
t′∈T FOB

f

zft′ = 1, j ∈ NL, f ∈ FU
j (5.10)

∑
t′∈T FOB

f

zft′ ≤ 1, j ∈ NL, f ∈ FS
j \{1} (5.11)

Berth Constraints

Constraints (5.12) are berth constraints, ensuring that each loading port does not have more docked
vessels than available berths. The constraints sum over all the future time points where an arrival
would imply that the berth is occupied in t′.

∑
v∈VP

∑
i∈N

∑
t∈T

t′+TO
vij∑

τ=t′+1

xvitjτ +
∑

j′∈NU∪NS

wjt′j′ +
∑
f∈Fj

t′+TOFOB
fj∑

τ=t′+1

zfτ ≤ Bjt′ , j ∈ NL, t′ ∈ T U

(5.12)

Charter Constraints

Constraints (5.13) ensure that if a charter vessel loads a cargo, the amount loaded is bounded with
an upper and a lower limit. This allows flexibility in the capacities of the charter vessels.

LCwitj ≤ gitj ≤ L
C
witj , i ∈ NL, t ∈ T L, j ∈ NU ∪N S (5.13)

Variable Constraints

Constraints (5.14) to (5.18) specify the domains of our three binary variables xvitjt′ , zft′ and witj

as well as our two continuous variables gitj and sit. zft′ is only defined for loading ports and the
relevant time periods so that the variable cannot take values outside this domain. Note that witj ,
the decision variable for using a charter vessel, is only defined for arcs that go from a loading node
to an unloading node.

xvitjt′ ∈ {0, 1}, v ∈ V, ((i, t), (j, t′)) ∈ Av (5.14)
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zft′ ∈ {0, 1}, j ∈ NL, f ∈ Fj , t
′ ∈ T FOB

f (5.15)

witj ∈ {0, 1}, i ∈ NL, t ∈ T L, j ∈ NU ∪N S (5.16)

gitj ≥ 0, i ∈ NL, t ∈ T L, j ∈ NU ∪N S (5.17)

sit ≥ 0, i ∈ N , t ∈ T L (5.18)

5.6 Extension 1: Variable Production

As touched upon in Chapter 3, one major concern in preparing ADPs is managing excess production
after fulfilling long-term contracts. In our basic model, excess production is assumed to be sold
on the spot market through artificial spot FOB contracts generated by the model. However, this
assumption may not be valid if spot demand or shipping (vessel) capacity is insufficient (Mutlu
et al., 2016). Therefore, reducing the production rate could be beneficial as there is no guarantee
of selling excess production on the spot market.

We extend the model for the basic version of the LNG-ADP-SO-MLP, inspired by Mutlu et al.
(2016), to include variable production, minimizing the number of artificial spot FOB contracts and
thus making the model more realistic. The production rate is constrained by an upper and lower
limit, and production decisions can be made for each time period.

5.6.1 Changes to Notation

Parameters

QMIN
it Minimum production rate at production port i in time period t, i ∈ NL, t ∈ T L

QMAX
it Maximum production rate at production port i in time period t, i ∈ NL, t ∈ T L

Variables

qit Production rate at production port i at time period t

5.6.2 Changes to Mathematical Model

As production costs are considered sunk, the variable production extension has no effect on the
objective function, only the model’s constraints.

Constraints

In the inventory constraints (5.2) and (5.3) from the basic version of the model, the production
rate parameter, QP

it, is replaced by the production rate variable qit, resulting in the constraints
(5.19) and (5.20).
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si1 = Si + qi1 −
∑

j∈NU

∑
t′∈T

∑
v∈Vi

Lvxvi1jt′ −
∑

j∈NU

gi1j −
∑
f∈Fi

∑
t′∈T FOB

f

LFOB
f zft′ , i ∈ NL

(5.19)

sit = si,t−1 + qit −
∑

j∈NU

∑
t′∈T

∑
v∈Vi

Lvxvitjt′ −
∑

j∈NU∪NS

gitj −
∑
f∈Fi

LFOB
f zft,

i ∈ NL, t ∈ T L\{1}
(5.20)

Constraints (5.21) ensures that the production rate at each loading port i must lie within the limits
at all times t, while constraints (5.22) specify the domain of the new continuous decision variables,
qit.

QMIN
i ≤ qit ≤ QMAX

i , i ∈ NL, t ∈ T L (5.21)

qit ≥ 0, i ∈ NL, t ∈ T L (5.22)

5.7 Extension 2: Chartering Out Own Vessels

In reality, as mentioned in Chapter 2, producers can always charter out their own vessels. As a
result, the model must account for this option in order to provide more profitable annual delivery
programs in practice. To keep the model efficient, the extended model only allows for one chartering
out term, of at least a given number of time periods, per vessel in each planning horizon. According
to our industry partner, this is also a reasonable assumption.

5.7.1 Changes to Arc and Node Structure

In each time period, every unloading and maintenance port has an arc that goes to the artificial
node in the same time period. This implies that a vessel can choose to be chartered out after
unloading or after maintenance. If the model chooses this arc, it implies that the vessel is chartered
out for at least a minimum number of days. In Figure 5.7 a vessel sails from an unloading port
to an artificial node, and is chartered out from time period t2 to t6, before returning to a loading
port and is ready for a new voyage on behalf of the LNG producer.

Figure 5.7: A producer vessel can be chartered out for a minimum number of time periods, here
from t2 to t6. After being chartered out, the vessel must return to a loading port.
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5.7.2 Changes to Notation

Parameters

RCharter
vt Daily revenue of chartering out vessel v on day t, v ∈ V, t ∈ T L

M Minimum number of time periods the vessel can be chartered out for

Variables

yv 1 if vessel v is chartered out during the planning horizon, 0 otherwise

5.7.3 Changes to Mathematical Model

Objective Function

As chartering out a vessel is a potential source of income, a term (marked in red) considering the
revenue from chartering out is added to the objective function (5.23).

maxz =
∑
v∈V

∑
((i,t),(j,t′))∈AU

v

RDES
jt′ Lv(1− (t′ − t)E)xvitjt′ +

∑
i∈NL

∑
t∈T L

∑
j∈NU

RDES
j,t+TC

ij
(1− TC

ijE)gitj

+
∑
v∈V

∑
((i,t),(j,t′))∈AS

v

RDES
jt′ Lv(1− (t′ − t)E)xvitjt′ +

∑
i∈NL

∑
t∈T L

∑
j∈NS

RDES
j,t+TC

ij
(1− TC

ijE)gitj

+
∑
i∈NL

∑
f∈FU

i

∑
t′∈T

RUFOB
f LFOB

f zft′ +
∑
i∈NL

∑
f∈FS

i

∑
t′∈T

RSFOB
f LFOB

f zft′ +
∑
i∈NL

REND
i si,|T |

+
∑
v∈V

∑
t∈T L

RCharter
vt xv0t0,t+1

−
∑
v∈V

∑
((i,t),(j,t′))∈Av

CS
vitjt′xvitjt′ −

∑
i∈NL

∑
t∈T

∑
j∈NU

CC
itjwitj

(5.23)

Constraints

Charter Out Constraints

Constraints (5.24) ensure that each vessel can only be chartered out one term during the planning
horizon.

∑
i∈N

|T L|∑
t=0

xvit0t ≤ yv, v ∈ V (5.24)

Constraints (5.25) ensures that if a vessel is chartered out, it must be chartered out for at least a
certain number of time periods, here denoted M .

|T L|∑
t=0

xv0t0,t+1 ≥Myv, v ∈ V (5.25)
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Flow Constraints

Constraints (5.26) show the changes (marked in red) made to flow constraints (5.7) from the basic
version of the model presented in Section 5.5, which ensure that if a vessel sails to a port j, then
the vessel must sail from the very same port j afterward. The changes make sure a vessel can
go directly from an artificial node in time t to the next artificial node in the next time period,
skipping port operations which is not relevant in an artificial port.

∑
i∈N

t′��−1∑
t=0

xvitjt′ =
∑
i∈N

|T |∑
t=t′��+1

xvjt′it, v ∈ V, j ∈ N , t′ ∈ T (5.26)

Constraints (5.27) are based on the initialization constraints (5.6) from the basic version of the
LNG-ADP model. Constraints (5.27) ensure that each vessel either starts at its start position on
its first available day or starts being chartered out (marked in red).

xv,0,0,NSTART
v ,TSTART

v
+ xv,0,0,0,TSTART

v
= 1, v ∈ V (5.27)

Constraints (5.28) are necessary to ensure that vessels that go to the artificial node start their
journey at a loading port after the chartering out period. This is to ensure that the model does
not move the vessels freely after chartering out.

xvit0t =

|T L|∑
τ=t

∑
j∈NL

xv0τjτ , v ∈ V, i ∈ N , t ∈ T L (5.28)

Variable Constraints

Constraints (5.29) specify the domains of the new binary variables yv.

yv ∈ {0, 1}, v ∈ V (5.29)
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Rolling Horizon Heuristic (RHH)

The objective of our industry partner is to find the best possible solution to the LNG-ADP-SO-
MLP within a practical amount of time. In practice, this means that the solution time can not
surpass 12 hours and should ideally be less than 3 hours. In our project thesis Haug et al. (2022)
we showed that the commercial solver Gurobi alone is an insufficient solution method for full-
sized instances with a planning horizon of 12 months within the time limits required. Therefore
we propose a new solution method involving a version of a rolling horizon heuristic (RHH). In
addition, we present a customized construction heuristic that warm-starts the RHH with a feasible
solution.

The RHH has previously proven useful for solving problem instances where the complexity increases
with a longer planning horizon. LNG ADP-specific examples include Rakke et al., 2011 and Li
et al., 2022. In both papers, the RHH is applied to an ADP model, but their mathematical models
differ notably from ours by not including hard demand constraints and speed optimization. These
differences have implications for the application of a rolling horizon heuristic. They are discussed
in this chapter.

Section 6.1 presents a general overview of the main features of the RHH heuristic. Section 6.2
dives deeper into the features of the different horizons, while Section 6.3 explains the necessary
constraint relaxations in each iteration of the RHH and their implications. Finally, Section 6.4
describes a construction heuristic that finds an initial feasible solution that allows for a warm start.

6.1 Overview of the Rolling Horizon Heuristic

The general idea of the RHH is to solve shorter sub-horizons (subproblems) of the MILP using a
commercial solver. This is done by splitting the entire planning horizon into several parts, solving
the subproblems iteratively until a complete solution is generated, as illustrated in Figure 6.1. A
forecast horizon (FH) is included in each subproblem to make the current central horizon (CH)
influenced by what is to come, as illustrated with a dotted line in each iteration k in Figure 6.1.
When the algorithm moves from one sub-horizon to the next (iteration k to k+1), some variables
from the central horizon CHk are frozen, while the sub-horizon shift so that the whole or the first
part of FHk becomes CHk+1.

Please note that in previous literature, e.g., in Rakke et al. (2011), the following terminology
has been used to describe the sub-horizons; the central period, the forecasting period, and the
frozen period. However, as periods is used to describe the time increments in the mathematical
formulation of the LNG-ADP-SO-MLP, we avoid the dual use of the word ”period” by using the
following terminology instead; the central horizon, the forecasting horizon, and the frozen horizon,
respectively.
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Figure 6.1: The rolling horizon heuristic.

Due to the problem characteristics, three additional features are included in the RHH to avoid
infeasibility and far-from-optimal solutions: a relaxation of the demand- and berth constraints
an extension of the very last forecast horizon, and an extension of the very last central horizon.
These features are elaborated upon in the coming section. The RHH algorithm is described in
pseudo-code in Algorithm 3. Please note that in the pseudo-code, the ”overlap” denotes the time
in the central horizon that is not a part of the freezing horizon, and the ”central horizon” in the
pseudo-code only encapsulates the freezing horizon.

The Rolling Horizon Heuristic (RHH) detailed in Algorithm 3 solves the problem iteratively over
a sequence of horizons. The algorithm starts by initializing the model for the first central horizon
and forecast horizon. The variables, horizon extension (β), stop status (δ), iteration count (ι), and
constraints stop time (υ) are all initialized at the outset.

During each iteration of the algorithm, the model is solved using a commercial solver. If the stop
status (δ) has been set to True, the while loop is terminated. The stop time for the constraints
(υ) is updated to reflect the current iteration’s time limit. The optimized decision variables for
the central horizon are frozen, and the forecast horizon variables are removed. When the next
iteration’s central horizon would reach near the end of the loading days, β is updated to reflect
the remaining length of the loading days after the next central horizon, ensuring that the central
horizon is extended if there is less than half a forecast horizon left. Subsequently, the model
variables for the next central horizon are added. These variables represent the days in the next
central horizon, the overlap, and the possible extension. If there is still room for a forecast horizon
(implying that β is zero), the β is updated to reflect the remaining length of the loading days
after the next central horizon, overlap, and forecast horizon. Subsequently, the forecast horizon
variables are added to the model. The extended horizon (β) is then reset to zero in preparation
for the next iteration.
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Algorithm 3 Rolling Horizon Heuristic

Input: Length of loading days, length of all days, central horizon length |CH|, forecast horizon
length |FH|, overlap length, |O|

Output: Best solution
1: Initialise model for the first central horizon and forecast horizon
2: Initialise variable horizon extension, β ← 0
3: Initialise stop status, δ ← False
4: Initialise variable iteration count, ι ← 0
5: Initialise variable for constraints stop time, υ
6: while entire horizon not covered do
7: optimize model with commercial solver
8: if δ = True then
9: end while

10: end if
11: υ ← |CH| · (ι+2) + |FH| if |CH| · (ι+2)+|FH| < length of loading days else υ ← length

of all days
12: Freeze central horizon variables
13: Remove forecast horizon variables
14: if |CH| · (ι+2) >= length of loading days - (|FH| / 2) and |CH| · (ι+2) < length of

loading days then
15: β = length of loading days - (|CH| · (ι+2))
16: end if
17: Add variables for days from |CH| · (ι+1) to |CH| · (ι+2) + |O| + β
18: if |CH| · (ι+2) + β < length of loading days then
19: if |CH| · (ι+2) + |FH| >= length of loading days - |FH| and |CH| · (ι+2) + |FH| <

length of loading days then
20: β = length of loading days - (|CH| · (ι+2) + |FH|)
21: end if
22: Add variables for days from |CH| · (ι+2) + |O| to |CH| · (ι+2) + |O| + |FH| + β
23: β = 0
24: end if
25: Remove constraints
26: Re-initialise constraints based on new variables and υ
27: ι += 1
28: if |CH| · (ι+1)+β >= length of loading days then
29: δ = True
30: end if
31: end while

Please note that the variable β, representing the horizon extension, does not have a value for the
forecast horizon if it has a value for the central horizon. This is because β is only modified if there
is room for a forecast horizon, and if the central horizon β is activated, it automatically covers
the rest of the loading days. Therefore, these two horizons (central and forecast) never share an
extension value within the same iteration.

All the constraints from the previous iteration are subsequently removed. These constraints are
then reinitialized based on the newly added variables and the updated stop time for constraints
(υ). The iteration count (ι) is incremented at the end of each cycle. If the next central horizon
(including any possible extension) would surpass the total length of the loading days, the stop
status (δ) is set to True. This indicates that the entire horizon has been covered, signaling the end
of the iterations in the next cycle.

6.2 The RHH iteration horizons

As explained in Section 6.1, each iteration of the algorithm has three horizons; the central horizon,
the forecasting horizon, and the frozen horizon. The characteristics of each horizon type and how
they affect the decision variables are elaborated upon in the following sections.
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6.2.1 The Central Horizon

The x, z, and w variables are treated as binary in the entire central horizon. Variables defined
in the mathematical model as continuous, like the g- and s-variables, remain continuous. All
variables in the freezing horizon will be frozen in the next iteration and thereby be a part of the
final solution. For all horizons except the first, the commercial solver starts every central horizon
with variable hints from the past forecast horizon. This means that the model is initialized with a
near-feasible solution, which speeds up the simplex algorithm prior to the branch and bound.

6.2.2 The Forecasting Horizon

To increase the likelihood of solutions that are both feasible and have high objective values in the
central horizon, a forecasting horizon is applied. This way solutions that are obviously sub-optimal
beyond the central horizon are to a larger extent avoided. The forecasting horizon is relaxed by
making the binary variables continuous since it could make the problem easier to solve as it could
limit the computational time for the branch & bound in the Gurobi solver. Below is an overview
of the relaxed variables in this period, and the expected effects of relaxing them.

• The x-variables: As the number of x-variables outnumbers the other variables by far, the
relaxation of the x-variables is likely the most effective relaxation. In effect, this allows
that one vessel can follow several arcs out of one node and deliver parts of the loads in the
forecasting horizon.

• The z-variables: The z-variables are also relaxed. In effect, this relaxation allows a FOB
cargo to pick up part of the loads.

• The w-variables: The w-variables are relaxed, enabling partial charter cargo loads. The
relaxation allows the g-variable to freely accommodate loads ranging in size from 0 to the
upper capacity limit when it is constrained in constraints (5.13).

6.2.3 The Frozen Horizon

When the algorithm reaches the computational time limit, finds the optimal solution within a
given horizon, or finds a feasible solution within the pre-defined optimality gap limit, the variables
within the central horizon are subject to a freezing strategy before proceeding to the next iteration.
Various freezing strategies have been examined in the literature, with Rakke et al. (2011) high-
lighting two of them: freezing all decision variables from the preceding central horizons, or solely
freezing some of them. In the context of the multi-item capacitated lot-sizing problem introduced
by Mercé and Fontan (2003), the latter strategy has demonstrated superior efficiency. However,
Rakke et al. (2011) argue that implementing this freezing strategy in the LNG-ADP Planning
Problem becomes impractical due to the problem’s size, thereby opting for the first strategy.

Unlike Rakke et al. (2011), who are also addressing the LNG-ADP problem, we have adopted
a freezing strategy that incorporates different lengths for the freezing horizon and the central
horizon. By doing so, we maintain binary variables for the initial days of the forecast horizon,
thereby reducing the chances of encountering infeasible solutions. This approach also allows us to
avoid suboptimal solutions by not relaxing all of the time periods past the freezing horizons.

6.3 Constraint Relaxations

The direct application of the RHH heuristic used by Rakke et al. (2011) on the mathematical
model for the LNG-ADP-SO-MLP is not always feasible. In Rakke et al. (2011), the demand that
is not fulfilled in the partitions overarching the horizons is transferred to the next horizon. This
is possible because Rakke et al. (2011)’s mathematical model contains a relaxation of the demand
constraint, where over-and under-delivery is permitted, but punished in the objective function.
With hard upper and lower demand constraints, the model risks having a very small delivery
window at the end of each horizon to fulfill the upper and lower demand limits, especially if the
minimum spread constraint stops tight delivery schedules. The problem is illustrated in Figure 6.2,
where a demand partition is only barely present in the current horizons. To avoid this issue, we
apply a demand relaxation of the partitions that have an ending period far outside the current
forecast horizon.
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Figure 6.2: The figure illustrates a partition that is only partially present in the horizon and gets
too tight as a consequence

Constraints that sum over time partitions into the future are relaxed if the end of the partition is
too far outside of the current forecast horizon. Figure 6.3 shows one iteration of the RHH with
three examples of demand constraints that all sum over time periods within a partition. ”Demand
partition example 1” in Figure 6.3 exemplifies a constraint that is relaxed because its ending point
is outside of the current forecast horizon. ”Demand partition example 2” exemplifies an active
constraint with its ending point inside the current central and forecast horizons.

An advantagee of this relaxation strategy compared to Rakke et al. (2011) is that the objective
function is kept free of non-monetary ”punishing” terms. A disadvantage is that the relaxation
strategy sets certain boundaries on the RHH parameters. Two consequences of the constraint
relaxation if we want to ensure feasibility are:

• The central horizon must be longer than the longest partition

• The forecast horizon must be longer than the longest partition plus the longest sailing arc

”Demand partition example 3” in Figure 6.3 is longer than the current central horizon and illus-
trates the issue. In the previous iteration, the constraint summing over the partition would have
been relaxed since it ends outside of the forecast horizon. In the current iteration, the constraint
is activated, but some variables from the previous central horizon have been frozen without this
constraint being active. Since the constraint was not active before these variables were frozen, the
likelihood of infeasibility and poor solutions is large. This is particularly a problem if the horizon
is significantly smaller than the partition. This is handled in the RHH by making sure the number
of time periods in the central horizon and forecasting horizon is similar in size or greater than the
number of time periods in the largest partition in the model. The problem also to applies to the
sum of future periods that happens in the berth constraints.

Figure 6.3: The figure illustrates why the central horizon must be larger than the largest partition
to minimize the likelihood of infeasibilities
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Both the demand and berth constraints are affected by the issue exemplified in ”Demand partition
example 3” in Figure 6.3. The demand constraints (5.8) and (5.10) sum over the time periods in
the demand partitions of the DES long-term contracts and the FOB long-term contracts. This
means that horizons shorter than the demand partitions and FOB time windows might lead to
infeasibility and/or worse solutions. The berth constraints (5.12) sum over all future time periods
where an arrival implies that the berth is occupied in the current time period. This implies that
the horizon size should be larger than the longest sailing arc or at least similar in size.

Due to the constraint relaxations described above, a dynamic extension of the last forecasting
horizon is performed for the second to last iteration. This is illustrated in Figure 6.4. If this was
not performed, some constraints would only be active for a short period at the end which often
leads to infeasibility. In addition, a dynamic extension of the last central horizon is performed for
the last iteration to increase the model efficiency.

Figure 6.4: A dynamic extension of the last forecasting horizon is performed for the second to last
iteration to avoid infeasibility, and the last central horizon is extended for model efficiency.

6.4 Incorporating Warm Start into the RHH

As mentioned in Section 6.2, the first iteration of the RHH algorithm is not started warm since
there is no previous forecast horizon to base the warm start on. This will typically lead to a
higher solution time than compared to the succeeding iterations. To test how a warm start for
the first iteration affects the performance of the RHH, we, therefore, devised a greedy construction
heuristic, outlined in Algorithm 4, to generate an initial solution for the problem.

The greedy construction heuristic takes advantage of that the mathematical model always assumes
there is an available charter vessel for a given cargo, described in Section 5.1.5, and that load-
ing ports can ship a pre-defined amount of LNG every day to an artificial FOB spot customer,
mentioned in Section 5.1.6. Consequently, the initial solution obtained through this heuristic in-
volves the non-utilization of any vessel, except those requiring maintenance, while the producer
exclusively relies on charter vessels to meet the demand specified in the DES contract.
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Algorithm 4 Greedy Randomized Construction Heuristic

Input: Decision variables, and sets and parameters
Output: Decisions variables with updated values
1: for vessel in set of vessels do
2: if vessel requires maintenance then
3: find shortest feasible route for vessel, set all other arcs to 0
4: else
5: set exit arc to 1, and all other arcs to 0
6: end if
7: end for
8: for g,w,z in sets of g-, w- and z-variables do
9: set g, w and z to 0

10: end for
11: for i,t in set of s-variables’ keys do
12: s[i,t ] = s[i,t-1] + lng produced at day t at loading port i
13: end for
14: all demand satisfied = False
15: allocate a random pick-up day for each FOB contract f in FOB contract IDs
16: for loading day t in all loading days do ▷ satisfy DES- and FOB-demand
17: for loading port l in all loading ports do
18: for b in range(0, number of berths for loading port i) do
19: check if inventory and berth availability is feasible at day t for loading port l
20: for FOB contract f in FOB contract IDs do
21: if pick-up for FOB contract f is scheduled at day t at l then
22: if allocating f is feasible then
23: z[f, t ] = 1 and update inventory for l
24: else
25: schedule pick-up for f to t+1 and continue
26: end if
27: end if
28: end for
29: best partition, contract = Find Best Partition (Algorithm 5)
30: missing demand = lower demand for best partition - amount chartered [best partition]
31: if ⌈ missing demand

lower charter amount⌉ == ⌈ missing demand
upper charter amount⌉ then

32: amount = lower charter amount
33: else
34: amount = ⌈ missing demand

⌈ missing demand
upper charter amount ⌉

⌉
35: end if
36: if chartering amount to best partiton from loading port l on day t is feasible then
37: g[l, t, contract ] = amount and w[l, t, contract ] = 1
38: Update inventory for l and amount chartered for best partition
39: if demand is satisfied for contract c then
40: remove c from DES-contract ids
41: end if
42: if all demand is satisfied then
43: all demand satisfied = True
44: break
45: end if
46: end if
47: end for
48: if inventory for l in day t > upper inventory limit then
49: z[artificial FOB for l, t ] = 1 and update inventory for l
50: end if
51: end for
52: end for
53: if not all demand satisfied then ▷ try to satisfy leftover DES-demand
54: Satisfy Leftover Demand (Algorithm 6)
55: end if
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As implied in line 15, FOB contracts get allocated random pick-up dates from their pre-defined
set of feasible pick-up dates. More specifically, each FOB contract f is assigned a pick-up day
randomly selected from f ’s pick-up days[⌈µ2 ⌉:µ − α], where µ is the length of f ’s pick-up days. In
practice, this means that the algorithm tries to create solutions where FOB contracts get picked
up relatively late. This intuitively makes sense since LNG sent to a FOB contract f on day t also
satisfies demand on day t, while LNG sent to DES contracts on day t satisfies demand on day t +
the corresponding charter sailing time. Note that α is subtracted from the end-point of the pick-up
range to ensure that the pick-up date can be postponed with α days if the original allocation is
infeasible.

Lines 30-34 define the charter amount for a chosen best partition from line 29. This is done by
trying to satisfy the partition’s lower demand by sending as little LNG and as few cargoes as
possible. In line 53-54 the algorithm tries to satisfy leftover demand if not all the contracts are
satisfied, by calling Algorithm 6, presented in the Appendix D.

Algorithm 5 presents the greedy element of the Algorithm 4 (line 29), where the partition with
the highest amount missing from satisfying minimum required demand to the number of days left
of delivery-ratio, referred to as score in the pseudo-code, gets prioritized when allocating charter
cargoes.

Algorithm 5 Find Best Partition

Input: loading day t, loading port l
Output: the best partition and the corresponding contract c
1: best partition = None
2: best score = 0
3: charter amount = upper charter amount
4: for c in set of DES-contracts do
5: if minimum spread is infeasible for contract c then
6: Continue
7: end if
8: for p in set of partitions for contract c do
9: last day = last element in p’s set of partition days

10: amount missing = p’s lower partition demand - amount chartered to p
11: days left = last day - charter sailing time from l to c - t
12: score = amount missing

days left
13: if chartering charter amount to partition p from l is feasible then
14: if score > best score then
15: best partition = p
16: best score = score
17: end if
18: end if
19: end for
20: end for

Note that this greedy assumption not always finds a feasible solution. This is because the problem
does not hold the ”Greedy Property”, which means being globally solvable optimally by making
optimal decisions locally. Due to close bounds between upper- and lower partition demand and
inventory constraints, allocating a charter cargo to a partition on a given day can in practice
prevent a later partition from satisfying its demand within its partition days.

In some special cases, there can a surplus of either FOB or DES demands for the algorithm to
satisfy, where Algorithm 4 is insufficient in finding a feasible initial solution to use for warm start.
Because of this, an alternative greedy construction heuristic, Algorithm 8, was implemented, where
both FOB- and DES contracts get assigned scores and are scored against each other for each loading
day. This algorithm is presented and elaborated upon in Appendix E.
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Data and Test Instances

This chapter presents the characteristics and modifications of the data sets used to test the model.
Section 7.1 and Section 7.2 present the two real-life producer cases the test instances are based on
and their relevant data, including loading and customer ports and vessels. Section 7.3 describes
how the data was modified based on the mathematical extensions described in Chapter 5. Lastly,
Section 7.4 presents the test instances and how they are generated.

7.1 The Nigeria Case

Nigeria LNG Limited (NLNG) is one of the world’s top suppliers of LNG. NLNG was incorporated
as a Limited Liability Company on May 17, 1989, to harness Nigeria’s vast natural gas resources
and produce Liquefied Natural Gas and Natural Gas Liquids for export. Today, NLNG has a total
production capacity of 22 Million Tons Per Annum (mtpa) of LNG and 5 mtpa of Natural Gas
Liquids from its six-train plant complex (Nigeria LNG Ltd., 2023).

7.1.1 NLNG’s Loading Ports and Customer Ports

Data from NLNG is used to create instances with one loading port. This loading port, referred to
as ’NGBON’, is located at Bonny Island in Nigeria, and is marked with a pink dot in Figure 7.1.

Figure 7.1: Map of Nigeria LNG’s loading port.

47



Chapter 7 Data and Test Instances

In all the test instances based on the NLNG case, NGBON produces 127 250 m3 of LNG daily and
has minimum- and maximum inventory limits of 40 000 and 336 000, respectively. The loading
port also operates two berths, meaning a maximum of two vessels can be docked on the same day.
This information is summarized in Table 7.1.

Loading port Production Min inventory Max inventory Number of

rate limit limit berths

[m3 of LNG] [m3 of LNG] [m3 of LNG] [berths]

NGBON 127 250 40 000 336 000 2

Table 7.1: NLNG loading port properties: Production rate, minimum- and maximum inventory
limit, and number of berths.

NLNG has a total of 22 potential customers, serving the European, South American, Middle East,
and Far East markets. These customers have the flexibility to engage in both ordinary- and spot
DES- and FOB contracts. Furthermore, NLNG’s fleet of vessels undergoes maintenance at a port
located in Singapore. A summary of this information is presented in Table 7.2, and a visualization
of all the ports on a world map is presented in Figure 7.2.

Port ID Location Port type

NGBON Nigeria Loading port

AE United Arab Emirates Unloading port

AR Argentina Unloading port

BD Bangladesh Unloading port

BE Belgium Unloading port

BR Brazil Unloading port

CN China Unloading port

ES Spain Unloading port

FR France Unloading port

GB Great Britain Unloading port

IN India Unloading port

IT Italia Unloading port

JP Japan Unloading port

KR South Korea Unloading port

KW Kuwait Unloading port

MX Mexico Unloading port

NL Netherlands Unloading port

PT Portugal Unloading port

TH Thailand Unloading port

TR Turkey Unloading port

TW Taiwan Unloading port

US USA Unloading port

SG Singapore Maintenance port

Table 7.2: Overview of all ports in the NLNG-case.
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Figure 7.2: Map of Nigeria LNG’s loading-, customer- and maintenance ports.

All data describing customers’ locations, partitions, and demands are provided for each test in-
stance. Due to confidentiality requirements regarding contracts between the producer and cus-
tomers, modified (but still realistic) LNG prices were used in the instances, ranging from 60 - 155
USD/m3 for ordinary DES- and FOB contracts, dependent on the customer and time period. For
DES- and FOB spot contracts, prices range from 90 - 200 USD/m3.

Sailing distances among all loading and unloading ports are provided, as well as distances to and
from the maintenance port. The longest distance between two ports in the NLNG data is 13
088 nautical miles (or 24 239 kilometers), which is the distance between the unloading port in
the United States and the maintenance port in Singapore. The lowest possible sailing speed is
nine knots, which makes the maximum travel time in the instances 60 sailing days each way. All
distances between ports are presented in Appendix F.

Data describing the artificial spot contract mentioned in Section 5.1.6 is created manually for each
instance, and typical values are presented in Table 7.3. Each loading port has a default loading
quantity, corresponding to the size of a typical cargo of LNG, and this is used as the demand
input for the artificial spot contracts. The artificial spot contract revenue is set conservatively to
0 USD/m3 since the producers are uncertain whether or not they can actually sell the LNG in the
spot market or must handle the excess inventory by cutting production.

Customer type Demand Price

[m3 of LNG] [1000 USD/day]

Artificial spot FOB 150 000 0

Table 7.3: Artificial spot properties: demand and price.

7.1.2 NLNG’s Vessels

Producer vessels

The complete list of NLNG’s 23 vessels is presented in Table 7.4. These correspond to actual
vessels operated by the producer in real life. A majority of the vessels have different capacities,
which makes the fleet heterogeneous. Furthermore, most of the vessels have different speed profiles,
with varying minimum and maximum speeds, in addition to a service speed, which is the vessel’s
default sailing speed.
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Vessel Name Capacity Min speed Max speed Service speed

[m3 of LNG] [knots] [knots] [knots]

LNG Bayelsa 137 000 10 20 17

LNG Sokoto 137 000 10 20 17

LNG Rivers 137 000 10 20 17

LNG Cross River 141 000 12 20 16

LNG River Niger 141 000 12 20 16

LNG Adamawa 141 000 12 20 16

LNG Akwa Ibom 141 000 12 20 16

LNG Abalamabie 175 000 9 20 16

LNG Abuja II 175 000 9 20 16

LNG Finima II 175 000 9 20 16

LNG Port Harcourt II 175 000 9 20 16

LNG Bonny II 177 000 9 20 16

LNG Lagos II 177 000 9 20 16

LNG Borno 150 000 14 20 16

LNG Ogun 150 000 14 20 16

LNG Benue 146 000 14 20 16

LNG Enugu 146 000 14 20 16

LNG Oyo 146 000 14 20 16

LNG River Orashi 146 000 14 20 16

LNG Imo 148 000 14 20 16

LNG Kano 148 000 14 20 16

LNG Lokoja 148 000 14 20 16

LNG Ondo 148 000 14 20 16

Table 7.4: The complete lists of NLNG’s LNG vessels, with different capacities, and minimum-,
maximum-, and service speeds.

Data describing the vessels’ start location, availability throughout the planning period, boil-off rate,
and compatible ports were all given for each NLNG test instance by Quorum and corresponded to
real-life information about the vessels. Information about which vessels require maintenance and
the corresponding start times, locations, and durations is also given in each NLNG test instance.
There is normally one ship per instance that require maintenance.

Charter vessels

As mentioned in Section 5.1, we assume that there is an available charter vessel with the same
capacity as the cargo the producer wants to be transported, as long as it is within the bounds. This
is implemented by defining upper and lower capacity limits for charter vessels, ranging from the
smallest to the largest possible cargo of LNG in the data sets. All other charter vessel attributes
are specified directly in the instances. The daily cost of chartering a vessel can vary significantly
throughout the year. The producer’s charter price assumptions are included in the test instances
and are based on real-life data from the industry. Fuel costs for charter vessels are included in the
daily charter rate, and therefore the charter vessels sail at a given default sailing speed. Typical
values for charter vessels for a given instance are presented in Table 7.5.

Vessel type Capacity Price range Default speed

[m3 of LNG] [1000 USD/day] [knots]

Charter vessel 100 000 - 180 000 60 - 80 17.5

Table 7.5: Charter vessel properties: Capacity, price range, and default speed.
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The vessels have different ballast- and laden fuel consumption rates, based on their given ballast-
and laden speed profile. A summary of the range of different ballast- and laden fuel consumptions
is given by Table 7.6 and Table 7.7. The fuel consumption for ballast speed is lower than for
laden speed because the vessel is lighter without cargo. The fuel consumption rates are used to
calculate the costs of the arcs in the network based on the given sailing speed, by multiplying the
corresponding fuel consumption per day by the number of days and the fuel price. The fuel price
is also given and is 350 USD for all instances, as suggested in the data provided by our industry
partner.

Ballast speed Fuel consumption range

[knots] [tonnes/day]

9 24.0 - 28.0

10 33.0 - 57.8

11 34.0 - 64.2

12 36.0 - 72.8

13 51.0 - 81.9

14 63.0 - 103.0

15 72.0 - 107.1

16 85.0 - 119.0

17 98.0 - 133.0

18 104.0 - 144.9

19 107.9 - 159.6

20 120.0 - 183.0

Table 7.6: Ballast speed consumption NLNG

Laden speed Fuel consumption range

[knots] [tonnes/day]

9 28.0 - 33.0

10 34.0 - 66.3

11 43.0 - 73.8

12 39.0 - 82.4

13 51.0 - 91.0

14 60.0 - 105.0

15 71.0 - 112.4

16 90.0 - 125.2

17 97.0 - 139.1

18 106.0 - 155.2

19 115.0 - 173.3

20 122.0 - 192.6

Table 7.7: Laden speed consumption NLNG

Vessel operational time

For each loading-, unloading- and maintenance operation there is an associated operational time,
describing the time needed for loading-, unloading- and maintenance operations in the ports,
respectively. This is normally computed by using data describing vessels’ and ports’ loading- and
unloading rates, which is provided in the test instances. Since the operational times vary only
slightly from vessel to vessel in the test instances, and the length of our time periods is relatively
long (1 day), a simplification was made by fixing the operational time in each port. As presented
in Table 7.8, all unloading and loading operations are set to take 24 hours, i.e., one time period. As
for maintenance, when a vessel returns to a loading port after performing maintenance, it has to
cool down for an extra time period making the operational time 48 hours instead, i.e., two time
periods. Lastly, operational time corresponding to maintenance duration varies a lot from vessel
to vessel, so this is an input parameter that comes directly from the data in the instances.

From To Operational time

port port [days]

Loading port Unloading port 1

Unloading port Loading port 1

Maintenance port Loading port 2

Unloading port Maintenance port pre-defined

Table 7.8: Different port combinations and corresponding operational times for the operation per-
formed in the port in the To-column, if you sail from the port in the From-column.

As described in Section 5.1.2, the vessels are allowed to wait for a number of days outside all ports,
increasing the flexibility of the model. The maximum allowed number of waiting time periods is
set to seven for all test instances, i.e., a week.
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7.2 The Abu Dhabi Case

Abu Dhabi National Oil Company LNG (ADNOC LNG) is a subsidiary of Abu Dhabi National Oil
Company, which is wholly owned by the Abu Dhabi Government. The company operates as an oil
and gas company that produces and markets LNG and LPG gas products (Offshore Technology,
2023).

All assumptions regarding available data for ports and vessels for NLNG made in Section 7.1 applies
for the ADNOC LNG case as well. This section only presents data that differ from the NLNG case.

7.2.1 ADNOC LNG’s Loading Ports and Customer Ports

Data from ADNOC LNG is used to create test instances with two loading ports. These loading
ports, referred to as ’DI’ and ’FU’, are located at Das Island and Fujairah respectively, both
locations in the United Arab Emirates. Das Island is an island and is marked with the leftmost
green dot in Figure 7.3, while Fujairah is marked with the rightmost dot.

Figure 7.3: Map of ADNOC LNG’s loading ports.

FU and DI have individual production rates, minimum- and maximum inventory limits, and num-
ber of berths. This information is summarized in Table 7.9.

Loading port Production Min inventor Max inventory limit Number of

rate limit limit berths

[m3 of LNG] [m3 of LNG] [m3 of LNG] [berths]

FU 56 000 50 000 300 000 2

DI 34 000 30 000 250 000 1

Table 7.9: ADNOC loading ports’ properties: Production rate, minimum inventory limit, and
maximum inventory limit.

ADNOC LNG has six customer ports, located in European and Far East markets. The mainten-
ance port is the same as for the NLNG case, located in Singapore. A summary of this information
is presented in Table 7.10, and a visualization of all the ports on a world map is presented in
Figure 7.4.
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Port ID Location Port type

DI Das Island Loading port

FU Fujairah Loading port

BE Belgium Unloading port

CN China Unloading port

ES Spain Unloading port

IN India Unloading port

JP Japan Unloading port

KR South Korea Unloading port

SG Singapore Maintenance port

Table 7.10: Overview of all ports in the ADNOC LNG case.

Figure 7.4: Map of ADNOC LNG’s loading-, customer- and maintenance ports.

In the ADNOC LNG case, prices range from 70 - 130 USD/m3 for ordinary DES- and FOB
contracts, and 70 - 200 USD/m3 for DES- and FOB spot contracts.

7.2.2 ADNOC LNG’s Vessels

ADNOC LNG operates a fleet of 15 LNG vessels with different capacities, and minimum- and
maximum- and service speeds. A summary of this data is presented in Table 7.11.

The vessels’ ballast- and laden fuel consumptions vary less than for the NLNG case and are presen-
ted in Table 7.12 and Table 7.13.

Charter capacities, -price range, and -default speeds, as well as vessel operational times, for the
ADNOC LNG case are identical to the NLNG case’s values presented in Table 7.5 and Table 7.8.
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Vessel Name Capacity Min speed Max speed Service speed

[m3 of LNG] [knots] [knots] [knots]

AD-1 137 000 10 20 17

AD-2 137 000 10 20 17

AD-3 137 500 10 20 17

AD-4 137 000 12 20 16

AD-5 136 000 12 20 16

AD-6 137 500 12 20 16

AD-7 137 000 12 20 16

AD-8 165 000 12 20 16

AD-9 168 000 12 20 16

AD-10 168 000 12 20 16

AD-11 168 000 12 20 16

AD-12 156 000 12 20 16

AD-13 168 000 12 20 16

AD-14 168 000 12 20 16

AD-15 170 000 12 20 16

Table 7.11: The complete lists of the ADNOC LNG’s vessels, with different capacities, and min-
imum, maximum, and service speeds.

Ballast speed Fuel consumption range

[knots] [tonnes/day]

10 57.8

11 64.2

12 71.4 - 72.8

13 80.3 - 81.9

14 89.9 - 95.55

15 99.5 - 107.1

16 11.3 - 199.7

17 125.2 - 132.3

18 139.1 - 144.9

19 156.0 - 159.6

20 175.5 - 174.3

Table 7.12: Ballast speed consumption AD-
NOC

Laden speed Fuel consumption range

[knots] [tonnes/day]

10 66.3

11 73.8

12 75.3 - 82.4

13 86.9 - 91.0

14 99.6 - 101.7

15 112.4 - 112.5

16 125.1 - 125.2

17 137.8 - 139.1

18 151.6 - 155.2

19 166.4 - 173.3

20 182.3 - 192.6

Table 7.13: Laden speed consumption AD-
NOC

7.3 Problem Extensions

As described in Section 5.6 and Section 5.7, the mathematical model was extended with the
possibility to both vary production throughout the planning period and charter out the producer’s
vessels. This section presents data and assumptions made for the implementation of the new
extensions.
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7.3.1 Variable Production

We decided that the lower limit for production should be 30% of normal production in collaboration
with our industry partner, based on what they thought would be most realistic. Values for minimum
and maximum production for each loading port for the two cases are presented in Table 7.14

Loading port Production rate Min production Max production

[m3 of LNG] [m3 of LNG] [m3 of LNG]

NGBON 127 250 38 175 127 250

FU 56 000 16 800 56 000

DI 34 000 10 200 34 000

Table 7.14: NGBON’s, FU’s, and DI’s values for minimum- and maximum production rate.

7.3.2 Chartering Out Vessels

We chose the minimum period for a vessel to be chartered to be 60 days. This duration corresponds
to an ordinary roundtrip and is considered to be the most realistic option since customers want to
charter a vessel for some time horizon. Therefore, it is not feasible to charter a vessel for a shorter
period.

Also, we set the daily charter revenue to be 5 % of the charter costs presented in Table 7.5, in
order to prevent the model from chartering out all the producer vessels. As long as the revenue
is positive, the model would incentivize to charter out vessels with a positive contribution to the
objective function, but only if there is surplus fleet capacity.

7.4 Test Instances

Based on the presented data, Quorum Software provided us with six different datasets, three from
each producer case. Table 7.15 presents the eight different datasets, with the corresponding num-
ber of loading- and unloading ports |NL| and |NU |, long-term FOB contracts |FU |, and vessels
|V|. Note that all datasets have a number of time periods equal to 365 days, in other words, a full
year. Dataset A-2L-D and A-2L-E, each marked with a star *, was created based on datasets A-
2L-C andA-2L-B, respectively, by both removing and altering ordinary DES- and FOB contracts.

Dataset ID |NL| |NU | |FU | |V| |T |

N-1L-A 1 16 33 23 365

N-1L-B 1 13 32 23 365

N-1L-C 1 14 40 23 365

A-2L-A 2 6 41 15 365

A-2L-B 2 6 55 15 365

A-2L-C 2 6 23 15 365

A-2L-D* 2 6 22 15 365

A-2L-E* 2 6 51 15 355

Table 7.15: Overview of the different datasets’ problem sizes, differing in the number of loading ports
|NL|, the average number of unloading ports |NU |, average number of long-term FOB contracts
|FU |, average number of vessels |V| and number of time periods |T |.
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The black horizontal line splits the datasets into two different sets, where the upper set of datasets
is based on data from NLNG, and the set at the bottom is based on data from ADNOC LNG. This
is also indicated by the dataset’s name, where datasets based on NLNG start with ’N’ and have
one loading port (1L), while datasets based on ADNOC LNG start with ’A’ and have two loading
ports (2L).

For each dataset, four test instances were created, with 4-, 6-, 8-, and 12- months in the planning ho-
rizon. This was done by shortening down the planning period in the original dataset and removing
contracts extending the new planning horizon. An example of this is provided in Table 7.16, where
dataset A-2L-B has been broken down into four test instances: A-2L-B-4M, A-2L-B-6M, A-
2L-B-8M, and A-2L-B-12M. The observant reader may notice that test instance A-2L-B-12M
corresponds to the dataset A-2L-B ’s original data.

Instance ID |NL| |NU | |FU | |V| |T |

A-2L-B-4M 2 6 20 15 120

A-2L-B-6M 2 6 30 15 280

A-2L-B-8M 2 6 38 15 240

A-2L-B-12M 2 6 55 15 365

Table 7.16: Overview of one dataset’s corresponding instances’ problem sizes, differing in the
number of loading ports |NL|, average number of unloading ports |NU |, average number of long-
term FOB contracts |FU |, average number of vessels |V| and number of time periods |T |.

A full overview of all the test instances is presented in Appendix G. Results from the testing of
different datasets is presented in Chapter 8.

56



Chapter 8

Computational Study

In this chapter, we present the computational study of the RHH heuristic’s performance when
solving instances of the LNG-ADP-SO-MLP. Section 8.1 describes the test environment and tech-
nical implementation details, as well as the test approach. Section 8.2 explains the parameter
tuning procedure which involves studying different sets of RHH parameters as well as the effect
of the warm start algorithm. An in-depth computational description of the best configurations is
presented. Section Section 8.3 presents the performance of the heuristic compared to that of a
commercial solver. Lastly, Section 8.4 presents managerial insights.

8.1 Test Environment and Approach

Table 8.1 presents the hardware and software utilized in the computational study of the LNG-
ADP-SO-MLP. The experiments were performed on uniform hardware with identical processing
power and software configurations. When employing the commercial solver Gurobi, the tests were
executed until either an optimal solution was found or the maximum time limit of 10 800 seconds
was reached, depending on the size of the instance. Conversely, in the case of the RHH, the runs
were conducted until either the time limit of 10 800 seconds per iteration was reached or a solution
within a 1.5% gap relative to the optimal solution was found. For some of the test instances, the
total time for all iterations subsequently ends up above 10 800 seconds. Orientation of the code in
the GitHub repository is presented in Appendix H.

Processor 2 x Intel Xeon Gold 5115 @ 2.40GHz

Memory 96 GB

Commercial Solver Gurobi v9.5.0

Gurobi Licence Type Academic

Python version 3.9.6

Github repository https://github.com/hellevhaug/master-lng-adp

Table 8.1: Description of hardware and software used for the computational study

As mentioned in Chapter 7, a total of eight data sets were supplied by our industry partner. Three
of these were used for parameter tuning of the RHH parameters, while the remaining five were
used to test the RHH and compare it to the Gurobi results.

The complexity of the LNG-ADP-SO-MLP is assumed to be affected by the number of loading
and unloading ports, the number of vessels, and the number of time periods. The test instances
presented in Section 7.4 have different values for these features. The complexity is particularly
sensitive to the number of time periods, so even though the primary objective is to solve for a
full year (365 time periods), test instances with shorter horizons are also included. The ADNOC
LNG test instances have fewer vessels and customers than the Nigeria LNG test instances, shown
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in Chapter 7. Therefore, it is expected that the full-horizon Nigeria LNG cases will stress-test the
solution methods to a larger extent than the shorter horizons and the ADNOC LNG cases.

8.2 Tuning Parameters

Chapter 6 provides an overview of the parameters utilized in the RHH. To determine optimal
values for these parameters, a thorough tuning process is undertaken. The specific parameters that
undergo tuning are presented in Table 8.3. For a comprehensive understanding of each parameter,
including their detailed descriptions, please refer to Section 6.2.

Parameter Description

Central Horizon (CH) Length The number of periods where no relaxation strategy is applied

Forecast Horizon (FH) Length The forecast horizon where the relaxation strategy is applied

Freezing Horizon Length The time periods inside the central horizon which are frozen in

the next horizon

Warm Start Initiation The application of a warm start construction heuristic

Table 8.2: The parameters that underwent tuning.

Some parameters in the model are not selected for tuning but have been set by trial and error while
developing the algorithm as these parameters are less decisive for the end result. These parameters
include the last-horizon central horizon extension decision rule, the second-to-last-horizon forecast
horizon extension rule, and the requirement for a constraint to be relaxed.

8.2.1 Theoretical Lower Limits to the RHH Parameters for Feasibility
Assurance

The parameter values are bounded by certain limits due to data-specific constraints. As explained
in Section 6.3, a partition or a sum of a set of future periods plus the longest arc can not be longer
than the forecast horizon if we want to ensure feasibility. The central horizon must, in turn, be
longer than the longest partition or sum of future periods. This implies the following feasibility
ensuring lower limits for our specific data sets;

Parameter ADNOC LNG NLNG

Central Horizon (CH) 32 days 49 days

Forecast Horizon (FH) 63 days 80 days

Table 8.3: Theoretical lower limits to the RHH parameters for ensuring feasibility for both the
ADNOC LNG case and the Nigeria LNG case .

However, as the chances of infeasibility are quite low when the horizon lengths are only somewhat
shorter, the lower limits required for the feasibility guarantee are not treated as absolute limits in
the parameter tuning. Our preliminary parameter tests showed that significantly longer horizons
than the specific values above are rarely solved within reasonable time limits.

8.2.2 Warm Start Initiation

As mentioned in Section 6.4, the first iteration of the RHH is not started warm, and can therefore
potentially take longer time than the other iterations. Because of this, we included a warm start
in the preliminary testing, and the results showed that it in some cases improved the performance
of the RHH. We, therefore, chose to include warm start as a parameter in the parameter tuning
as well, by using the greedy construction algorithm described in Algorithm 4.

8.2.3 RHH Parameter Configurations

Four RHH parameter configurations were identified through a preliminary rough analysis of diverse
parameters: configurations 1, 1-WS, 2, and 3. These configurations are presented in Table 8.4,
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and shows each configuration’s parameter values for the parameters presented in Table 8.3. Note
that configuration 1-WS is essentially the same as configuration 1, with the addition of using warm
start.

RHH configuration ID 1 1-WS 2 3

Central Horizon Length 85 85 65 90

Forecast Horizon Length 50 50 80 110

Frozen Horizon Length 70 70 50 80

Warm start No Yes No No

Table 8.4: Parameter configurations for parameter tuning of the RHH algorithm. WS is short for
”Warm Start” and denotes that the configuration is used with the warm start algorithm.

8.2.4 Parameter Tuning Results

The parameter tuning process involved evaluating the performance on three specific test instances:
A-2L-D-12M, A-2L-E-12M, and N-1L-A-12M, presented in Section 7.4. The results of the
parameter tuning process, including the objective value, total time, and solver time, are presented
in Table 8.5. The objective value represents the value of the objective when a solution below the
1.5% gap is found in the final iteration of the RHH. Total time indicates the total time required
by the RHH procedure to find a solution, encompassing the initialization time for each iteration
as well as the solution time of the commercial solver. In addition, the table supplies the solver
time, which refers to the time it takes the commercial solver to solve each iteration, summarized
for all iterations. Here, the initialization time for each iteration is excluded. The two different
time measures are included to highlight the difference in solution time that is caused by relatively
slow initializations by the commercial solver.

Configuration 1 Configuration 1-WS Configuration 2 Configuration 3

Instance ID
Obj.

[USD]

Solver

time [s]

Total

time [s]

Obj.

[USD]

Solver

time [s]

Total

time [s]

Obj.

[USD]

Solver

time [s]

Time

time [s]

Obj.

[USD]

Solver

time [s]

Total

time [s]

A-2L-D-12M 3 429 904’ 2 585 13 741 3 475 600’ 2 312 11 650 3 442 164’ 5 750 19 182 na na na

A-2L-E-12M 3 432 439’ 2 720 11 829 3 436 200’ 3 539 12 737 3 444 015’ 1 678 15 891 na na na

N-1L-A-12M 4 679 471’ 1 434 41 150 4 806 700’ 22 005 63 860 na na na na na na

Table 8.5: Total time for each iteration includes solver time and the time needed for reconfiguring
the variables and constraints in-between each iteration. na stands for ”time limit reached”, indic-
ating that the RHH did not find a feasible solution within the given time limit.

The results obtained from tuning parameters demonstrate that configuration 1 outperforms con-
figuration 2 in terms of time. However, Configuration 1 has a slightly lower objective function
value for the instances that Configuration 2 manages to solve. Configuration 1 the RHH achieves
a feasible solution within a 1.5% gap faster than configuration 2, and configuration 2 exceeds the
time limit for N-1L-A-12M. However, configuration 2 adheres to the limits that the feasibility
guarantee requires. Configuration 1 does not, as a fifty-day forecast horizon is too short for both
ADNOC LNG and NLNG. In other words, Configuration 1 is inherently prone to infeasibility while
Configuration 2 is not.

The warm start enhancement is aimed at assisting the RHH in finding a feasible solution by lever-
aging initial starting points. In addition to making it easier to find a feasible solution, configuration
1-WS (with warm start) also finds a slightly higher objective value than configuration 1 (without
warm start) for all test instances. However, the total time and solver time to sub 1.5% gap is
higher with configuration 1-WS compared to configuration 1 in two out of three instances.

Configuration 3 reached the time limit for all tested test instances. This signifies that the horizon
lengths are too long to solve within the preferred time limits of the industry partner and that
shorter horizons must be applied.

We choose configuration 1 and 1-WS to our computational study of the model due to the drawbacks
of configuration 2 where it can not find a feasible solution within the time limits in all cases
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provided for this tuning. As the objective functions of Configuration 1-WS are higher than in
Configuration 1, we are using Configuration 1-WS first. However, in the case of N-1L-A-12M,
Configuration 1 severely outperformed Configuration 1-WS in terms of time. We, therefore, kept
both configurations to use when suitable in the computational study.

Table 8.6 shows an example of a breakdown of the solver times for the iterations of the RHH. The
example is Configuration 1 and 1-WS applied to A-2L-D-12M, which results in 5 iterations. The
table shows that the solver time is highest for the middle iterations, which makes sense considering
that the middle sections have the most variables due to the arc formulation of the problem. We
can see that Configuration 1-WS uses less total time than Configuration 1.

A-2L-D-12M

Configuration 1 Configuration 1-WS

Iteration 1 63 70

Iteration 2 730 174

Iteration 3 662 963

Iteration 4 1082 936

Iteration 5 48 169

Solver time 2 585 2 312

Total time 13 741 11 650

Objective value 3 429 904’ 3 475 600’

Table 8.6: Solver time per iteration for solving the RHH, comparing the configurations with and
without warm start, configuration 1 and 1-WS respectively.

8.3 Comparing the RHH to Gurobi

In this computational study, a comparison is drawn between the efficiency of the commercial solver
Gurobi and the RHH when tackling various LNG-ADP-SO-MLP problems, represented by differ-
ent test instances described in Section 7.4. Both methods were applied to all instances, and the
results offer insights into their performance. Solution times and objective function values are used
to compare the performance of the different instances and solution methods.

8.3.1 Results of Gurobi and RHH

This section presents the results from the commercial solver Gurobi and the RHH solving the
test instances described in Section 7.4, focusing on solution times, objective values and problem
sizes. The results from running the instances are presented in Table 8.7 and the problem sizes are
summarized in Table 8.8.

When subjected to a time limit of 3600 seconds, Gurobi was able to solve specific instances,
particularly N-1L-B-4M, N-1L-D-4M, and A-2L-C-4M, as well as A-2L-B-6M. These results
alone suggest the solver’s strengths in solving these types of instances within a relatively short
duration. However, it reached its time limit without providing solutions for A-2L-A-4M and
A-2L-B-4M, among others, denoted as ”na” (time limit reached).

Upon extending the time limit to 10 800 seconds, Gurobi’s performance improved, solving instances
such as A-2L-A-4M, A-2L-B-4M and N-1L-D-6M, which previously resulted in a time limit
reached. Nevertheless, many problem instances remained unsolved, particularly those with higher
complexity, denoted by longer planning horizons (8M and 12M).

RHH, on the other hand, while subjected to different time constraints, managed to find solutions
for all time horizons for at least four out of five instances. For all solvable instances with the RHH,
all solutions were found with a lower solver time than 10 800 seconds. With the highest solver time
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(the time it takes the commercial solver to solve each iteration, summarized for all iterations) of
7 319 seconds, this is significantly lower than the preferred time limit of 3 hours. The results are
shown in Table 8.7.

Test instance Gurobi RHH

3600 s 10 800 s Solver time Deviation from

Gap Objective [USD] Gap Objective [USD] Config. [s] Objective [USD] com. solv.

N-1L-B-4M 0.33% 1 695 100’ 0.31% 1 695 220’ 1-WS 237 1 700 070’ + 0.29%

N-1L-D-4M 0.28% 1 711 800’ 0.27% 1 712 038’ 1-WS 97 1 664 000’ - 2.80%

A-2L-A-4M na na 0.57% 812 751’ 1 1 152 793 135’ - 2.49%

A-2L-B-4M na na 0.94% 1 022 702’ 1-WS 1 207 1 019 508’ - 0.32%

A-2L-C-4M 0.62% 1 148 166’ 0.57% 1 148 512’ 1-WS 951 1 145 203’ - 0.29%

N-1L-B-6M na na na na 1 inf. inf. -

N-1L-D-6M na na 0.57% 2 551 691’ 1-WS 2 553 2 529 653’ - 0.88%

A-2L-A-6M na na na na 1-WS 1 236 1 259 544’ -

A-2L-B-6M 3.25% 1 498 835’ 0.91% 1 553 663’ 1 2 410 1 522 697’ - 2.05%

A-2L-C-6M na na na na 1-WS 235 1 689 506’ -

N-1L-B-8M na na na na 1 inf. inf. -

N-1L-D-8M na na na na 1 7 319 3 385 896’ -

A-2L-A-8M na na na na 1 1 018 1 896 686’ -

A-2L-B-8M na na na na 1-WS 927 2 188 142’ -

A-2L-C-8M na na na na 1 398 2 349 206’ -

N-1L-B-12M na na na na 1 inf. inf. -

N-1L-D-12M na na na na 1-WS 1 881 5 063 835’ -

A-2L-A-12M na na na na 1-WS 5 048 2 402 100’ -

A-2L-B-12M na na na na 1 3 027 3 365 856’ -

A-2L-C-12M na na na na 1-WS 2 563 3 287 314’ -

Table 8.7: Results from solving the model with a commercial solver and the RHH. ”na” denotes
that the time limit of the respective solution method was reached for the different instances, and
’inf.’ is short for infeasible.

The total time (the time required by the RHH procedure to find a solution, encompassing the
initialization time for each iteration as well as the solution time of the commercial solver) varied
considerably among the instances, reflecting the method’s adaptability to problem complexity,
though at the cost of higher computation time. It is important to note that the RHH required
significantly more time than 10 800 seconds in total time in some cases, but never more than 35
269 seconds, which is within the upper acceptable time limit for the industry partner of 12 hours.
It is worth noticing that solver time and total time differ when solving the problem with Gurobi as
well. For the Nigeria LNG instances N-1L-B-12M and N-1L-D-12M, additional initialization
times of up to 9 000 seconds must be added to total time, summing up to 20 000 seconds, given the
instances were solvable. For the largest Abu Dhabi instances, total time is typically between 13 -
14 000 seconds. An overview of solver time vs total times for both Gurobi and RHH is presented
in Appendix I.

Additionally, the RHH deviates from the objective values found by Gurobi in the range of + 0.29%
to - 2.80%, which proves that the heuristic solution method can find both feasible and also good
solutions with low optimality gaps. This indicates that the RHH constrains the problem enough to
make it solvable, while not heavily at the expense of solution quality. Although, the most valuable
feature of the RHH is that it can solve instances for up to one year, which is the main purpose of
an Annual Delivery Program and has shown to be a challenge in the literature.

Furthermore, instances from the dataset N-1L-B resulted in infeasible solutions for both methods,
marked as ”inf.” in the table. The instances N-1L-B-6M, N-1L-B-8M, and N-1L-B-12M
all reached their time limits with Gurobi, and were proven infeasible with the RHH. This might
signify that the instancesN-1L-B-6M,N-1L-B-8M, andN-1L-B-12M are inherently infeasible.
However, RHH algorithms naturally constrain the opportunity space compared to solving the entire
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horizon at once due to the segmentation of the problem horizon and the sequential decision-making
process. In effect, the application of the algorithm makes global optimization impossible, so if there
are very tight volume intervals in the demand partitions, infeasibilities might arise even if the data
set itself is feasible.

Table 8.8 provides a summary of the average number of variables and constraints associated with
each instance and model type when the problem is solved with a commercial solver. The ”Integer
variables” column specifies the count of integer variables, which are binary variables exclusively
used in our model. The ”Continuous variables” column denotes the number of continuous variables,
while the ”Constraints” column represents the total number of constraints for each test instance.
For detailed values of all instances, please refer to the comprehensive table available in Appendix J.

Instance ID Model Type Integer variables Continuous variables Constraints

N-1L-B-4M Basic 922 369 1 650 66 614

N-1L-B-4M Variable production 922 369 1 774 66 862

N-1L-B-4M Charter out 968 047 1 650 109 647

N-1L-B-4M Combined 968 047 1 774 109 895

N-1L-B-6M Basic 1 597 449 2 535 127 458

N-1L-B-8M Basic 2 273 909 3 413 191 379

N-1L-B-12M Basic 3 648 296 5 183 335 362

A-2L-C-4M Basic 344 022 1 044 31 218

A-2L-C-4M Variable production 344 022 1 290 31 710

A-2L-C-4M Charter out 360 482 1 044 44 729

A-2L-C-4M Combined 360 482 1 290 45 221

A-2L-C-6M Basic 644 818 1 616 54 545

A-2L-C-8M Basic 938 509 2 188 83 361

A-2L-C-12M Basic 1 531 109 3 323 158 996

Table 8.8: Overview of two of the test instances’ number of variables and constraints for each model
type, run with Gurobi.
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8.3.2 Details of an Example Solution

Figure 8.1 presents a Gantt chart for instance A-2L-C-12M, showing delivery dates at customer ports for DES contracts and pick-up dates at the loading port
for FOB contracts. Note that contracts starting with ”98..” corresponds to DES spot contracts.

Figure 8.1: Example of an ADP presented as Gantt chart, showing delivery dates for DES contracts and pick-up dates for FOB contracts

The Gantt chart visually shows LNG delivery schedules for each contract, distinguishing delivery (DES) and pickup (FOB) contracts. A one-day minimum gap
between deliveries prevents multiple deliveries in a single day for a contract.
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8.3.3 Single- vs Multiple Loading Ports

In this section, we investigate the consequences of incorporating multiple loading ports. As indic-
ated in Chapter 3, one of the major contributions of this thesis lies in the possibility of handling
multiple loading ports. It should be noted that none of the LNG producers among Quorom’s
customers utilize more than two loading ports. Consequently, this section is focused on instances
with one and two loading ports.

A comparable analysis was conducted in the specialization project Haug et al. (2022) utilizing a
commercial solver and focusing on instances characterized by shorter planning horizons (2 months).
While the present analysis centers around an RHH applied to larger instances, there are notable
parallels in terms of key findings and conclusions.

Our evaluation of varying numbers of loading ports fulfills two objectives. Firstly, it evaluates the
performance of the RHH in solving the mathematical model, described in Chapter 5, with both
one and two loading ports. Secondly, it examines the increase in complexity tied to an increasing
number of loading ports. To facilitate a precise comparison, we contrast instances A-2L-C-6M
and A-1L-C-6M. The sole differences between these two setups are that in A-1L-C-6M, one
loading port has been removed, while the production rate of the remaining loading port is adjusted
to match the combined production rate of the two loading ports in A-2L-C-6M. The inventory
limits remain the same. The results from running the two instances with one and two loading
ports are presented in Table 8.9.

Instance ID Total time Solver time Objective value

A-1L-C-6M 613 69 1 689 424’

A-2L-C-6M 845 235 1 689 506’

Table 8.9: Results for the RHH on two test instances with one and two loading ports.

By the results from Table 8.9, we observe that the objective values the RHH achieves, 1 689
424’ and 1 689 506’ USD, are by all practical purposes identical, especially when operating with
heuristic solutions. The tiny increase in objective value for A-2L-C-6M can be a result of the two
loading ports increasing the producer’s flexibility through a reduced waiting time at loading ports
due to increased berth capacity, as well as the fact that vessels can sail shorter distances when
they have the option to pick the nearest port. However, it is worth pointing out that the loading
ports are located in close proximity to each other in our test instances, so the last effect might be
limited. Because of the added flexibility, the producer may be able to fulfill more contracts and
reduce sailing costs. In both instances, the contracts remain unchanged, offering an equal chance
to generate the same revenues. This explains why the difference observed in the objective value is
almost insignificant.

The solver time for the one-loading-port instance, denoted as A-1L-C-6M, was recorded at 69
seconds, while the two-loading-ports instance (A-2L-C-6M) required 235 seconds for completion.
Moreover, the total time for solving the instances was 613 seconds and 845 seconds, respectively.
These findings show that the RHH can solve both instances within a 15-minute timeframe. Hence,
the inclusion of an extra loading port does not significantly enhance the problem’s complexity when
considering the given modeling approach and test instances. It is worth mentioning that if we had
chosen to model the problem with only one loading port, we could have modeled the vessel trips
as round trips, reducing the number of variables, as Rakke et al. (2011) have done. But again, this
would exclude the opportunity for optimizing speeds for both legs of the voyage.

Instance ID Loading ports Integer variables Continuous variables Constraints

A-1L-C-6M 1 446 419 1 368 50 603

A-2L-C-6M 2 658 926 1 642 54 267

Table 8.10: Description of the problem sizes for the mathematical model for two test instances with
one and two loading ports. The numbers are from the last iteration of the RHH.
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Table 8.10 includes the same test instances as Table 8.9. The leftmost column indicates the test
instance, and in each column, the number of integer variables, continuous variables, and constraints
are listed for one and two loading ports. The numbers are from the last iteration of the RHH,
which are elaborated upon in Chapter 6. Table 8.10 shows that the instance with one loading
port has 446 419 integer variables and 1 368 continuous variables, whereas the instance with two
loading ports has 658 926 integer variables and 1 642 continuous variables in the last iteration. As
observed, the inclusion of additional loading ports leads to a substantial increase in the number
of variables. This relationship is logical since the addition of a port generates a greater number
of arcs and, consequently, increases the number of integer variables. Particularly, the number of
arcs generated is significantly higher due to the introduction of a loading port, which tends to have
higher traffic compared to customer ports from the producer’s perspective. Furthermore, when
comparing instances with two loading ports to those with just one, the count of continuous variables
increases remarkably. This correlation is expected as the continuous variables are influenced by
the presence of loading ports. Consequently, the increase in loading ports has a significant impact
on the overall complexity of the problem, thus leading to higher solution times for the RHH.

8.3.4 The Effect of Modeling Extensions

In Chapter 5, two new extensions were introduced to the basic version of the LNG-ADP-SO-
MLP. These extensions include enabling variable production rate, denoted Extension 1 and the
option of chartering out own vessels, denoted Extension 2, presented in Section 5.6 and Section 5.7
respectively. The extensions were run with the commercial solver for instance N-1L-B-4M and
A-2L-C-4M. Table 8.11 presents the findings.

Instance ID Model type 300 s 3600 s 10800 s Objective value USD

N-1L-B-4M Basic 1.8% 0.33% 0.31% 1 695 220’

Variable prod. 0.44% 0.32% 0.31% 1 695 537’

Charter out 1.59% 0.41% 0.36% 1 697 338’

Combined 1.59% 0.41% 0.36% 1 697 338’

A-2L-C-4M Basic 0.93% 0.62% 0.57% 1 148 512’

Variable prod. 1.32% 0.71% 0.57% 1 148 557’

Charter out 1.24% 0.56% 0.5% 1 150 797’

Combined 1.24% 0.56% 0.5% 1 150 777’

Table 8.11: Overview of the results from running model extensions with Gurobi.

Effects of Extension 1: Variable production

From Table 8.8 we see that implementing Extension 1, variable production rate, increases the
number of continuous variables and constraints compared to the basic version of the model, which
is natural as a new continuous variable comes with the extension. For both the basic version and
Extension 1 the gaps are the same when reaching the running time limit of 10 800 seconds, with
values of 0.31% and 0.57% for N-1L-B-4M and A-2L-C-4M, respectively. As production costs
are neglected, varying the production rate does not directly affect the profit-maximizing objective
value negatively. Regardless, implementing variable production gives a slightly higher objective
value in these two cases. Figure 8.2 show that for a problem of four months, the model does not
vary the production rate, but maximizes the production capacity for the whole planning horizon
to be able to satisfy demand.

Effects of Extension 2: Chartering out

By incorporating Extension 2, enabling chartering out producer vessels, to the basic version of the
LNG-ADP-SO-MLP model, the complexity of the model increases significantly. This is evident
through the increase in the number of constraints presented in Table 8.8, rising from 66 614 to
109 647 for test instance N-1L-B-4M and 31 218 to 44 729 for test instance A-2L-C-4M. With
Extension 2, the objective value experiences a slight increase compared to the basic version of the
model in these cases, reflecting the higher potential for profit that comes with the option to charter
the producer’s own vessels.
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(a) Production rate for loading port NGBON
with constant production rate.

(b) Production rate for loading port NGBON
with variable production rate.

Figure 8.2: Production rate in solutions, run with Gurobi.

Effects of the combination of extensions

The results in Table 8.11 show that there is no big difference between using extension 2 alone
and using a combination of extensions 1 and 2. This suggests that the extensions do not have
any significant combined benefits. Therefore, exploring the relationship between these extensions
further may not provide very interesting findings.

8.3.5 The Effects of Warm Start

As shown in Table 8.7, configuration 1-WS was used for several of the test instances. To show
how using warm start affects solving the mathematical model, test instances A-2L-B-4M, A-
2L-B-6M, A-2L-B-8M and A-2L-B-12M were run with Gurobi with and without warm start,
to explore how the gap progresses with solution time. This is in practice the same as running
the first iteration of the RHH with and without warm start, only without an optimality gap as a
termination criteria. The results are presented in Table 8.12.

Without warm start With warm start

A-2L-B-4M A-2L-B-6M A-2L-B-8M A-2L-B-12M A-2L-B-4M A-2L-B-6M A-2L-B-8M A-2L-B-12M

[Gap] [Gap] [Gap] [Gap] [Gap] [Gap] [Gap] [Gap]

60 s - - - - 40.8% 39.1% 34.4% 29.6%

300 s - - - - 21.1% 11.0% 12.1% 14.6%

1 800 s - - - - 1.38% 11.0% 12.1% 14.6%

3 600 s - 3.25% - - 1.22% 3.22% 4.98% 14.6%

7 200 s 1.85% 1.04% - - 1.03% 3.22% 4.98% 14.6%

10 800 s 0.94% 0.91% - - 0.98% 3.22% 2.71% 14.6%

Table 8.12: Gurobi gaps with and without warm start

As presented in the table, it seems like including warm start helps the commercial solver find
solutions with low optimality gaps faster than when not using warm start. Meanwhile, when the
solution time is approaching its maximum limit of 10 800 seconds, not using warm start seems to
yield solutions with lower gaps. Since the iterations in the RHH generally aim to find solutions
with gaps lower than the gap limit in the shortest amount of time possible, this motivates the use
of warm start on instances where Gurobi struggles to find a feasible initial solution. Also, note
that the chosen parameter configurations, including warm start, only find a solution within the
gap limit of 1.5% for instance A-2L-B-4M with a planning horizon of four months. Therefore,
the warm start is typically used to find initial feasible solutions for problems with no longer than
a four-month planning horizon in the first iteration.
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8.3.6 Partitions and Infeasibility: Studying N-1L-B

As presented in Table 8.7, test instances N-1L-B-6M, N-1L-B-8M and N-1L-B-12M were
infeasible when solving with the RHH. Meanwhile, when running the instances with a commercial
solver, the model did not find a feasible solution within the time limits.

We suspect that the infeasibility of these test instances is likely due to DES contract partitions
with too tight intervals between lower and upper demand. If, for example, the interval is smaller
than one typical cargo size, the freezing of variables in the RHH could create infeasibilities. For the
commercial solver, tight partitions only make the model hard to find feasible solutions to. In order
to test this theory, we created relaxed versions of the test instances, where all partition intervals
between lower and upper partition demand were at least one typical cargo size, in other words, 150
000 m3 of LNG. The results from running the RHH on the relaxed test instances are presented in
Table 8.13.

Instance ID Solver time Objective value
[s] [USD]

N-1L-B-6M 269 2 589 500’
N-1L-B-8M 4 356 3 509 500’
N-1L-B-12M 4 538 5 231 200’

Table 8.13: Results for running the RHH on a relaxed version of dataset N-1L-B.

As it appears in Table 8.13, all instances were solvable after relaxing the partitions. This confirms
our hypothesis regarding the increased difficulty faced by the RHH in solving test instances with
tight partitions.

8.4 Managerial Insights

This section presents some proposals on how the LNG-ADP-SO-MLP can be used to gain mana-
gerial insights. In particular, how an LNG producer can use the mathematical model as a tool
when looking into the effect of model extensions, speed optimization, and the value of larger storage
among others.

8.4.1 Breakdown of Profit for the LNG Producer

Table 8.14 present a breakdown of the optimal objective value instance A-2L-C-12M.

Value [USD] %

Revenue, FOB contracts 285 800’ 7.99%

Revenue, FOB spot 160 200’ 4.48%

Revenue, DES spot producer vessels 143 469’ 4.01%

Revenue, DES spot charter 114 064’ 3.19%

Revenue, DES contract charter 1 753 056’ 48.99%

Revenue, DES contract producer vessels 1 102 138’ 30.8%

Revenue, tank left-over value 19 360’ 0.54%

Total revenue 3 578 087’ 100 %

Cost, producer vessel sailing costs (86 013’) 29.58%

Cost, charter-in costs (204 760’) 70.42%

Total costs (290 773’) 100%

Total profit 3 287 314’

Table 8.14: Breakdown of profit for instance A-2L-C-12M, showing revenues, costs and profit.

As shown in the table, revenue dominates costs. This signifies that revenue maximization is more
important than cost minimization for the LNG producer. For this test instance, DES contracts
generate the most revenue, while chartering in vessels incurs the highest costs.
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8.4.2 Effect of Extensions

Variable production
As presented in Section 8.3, running A-2L-C-4M and N-1L-B-4M with the modeling extension
of varying production did not affect the production rate, which was shown in Figure 8.4b. This
is not surprising, due to the artificial spot cargoes discussed Section 5.1.6. The model can create
an artificial spot cargo whenever there is excess capacity, resulting in less need of varying the
production rate. To test this theory, instances A-2L-C-4M and N-1L-B-4M were re-run without
the option to generate artificial spot cargoes. Also, as long as there are ordinary spot contracts not
yet satisfied, the model will always gain on satisfying these contracts before lowering the production
rate. Test instance A-2L-A-4M was therefore also re-run with extension 1 and without artificial
spot cargoes since the test instance does not contain spot contracts.

For instances A-2L-C-4M and N-1L-B-4M, excluding the possibility of generating artificial spot
cargoes did not affect the production rates. This is shown in Figure 8.3, where the production
rates for the two loading ports in A-2L-C-4M are presented and appear constant.

(a) Production rate for loading port FU with vari-
able production rate.

(b) Production rate for loading port DI with vari-
able production rate.

Figure 8.3: Effects of varying production rates when running A-2L-C-4M with Gurobi.

For instance A-2L-A-4M, excluding artificial spot cargoes had an effect, which is shown in Fig-
ure 8.4 where the loading port FU’s production rate varies.

(a) Production rate for loading port FU with vari-
able production rate.

(b) Production rate for loading port DI with vari-
able production rate.

Figure 8.4: Effects of varying production rates when running A-2L-A-4M with Gurobi.

Based on these results, it seems suitable to model with variable production in problems without
spot markets. Otherwise, the possibility of varying the production rate is redundant.
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Chartering out

Table 8.15 shows a comparison of the number of vessels the producer charters both out and in,
with and without the model extension of chartering out the producer’s vessel. The comparison is
done with one instance for each of the producer cases, N-1L-B-4M and A-2L-C-4M.

Instance ID Model type
Number of vessels

chartered out

Number of vessels

chartered in

N-1L-B-4M Basic - 53

Charter out 10 54

A-2L-C-4M Basic - 31

Charter out 5 34

Table 8.15: Number of vessels chartered in and chartered out when running instances N-1L-B-4M
and A-2L-C-4M with Gurobi.

Note that each vessel chartered out corresponds to a reduction in the fleet for the chartering-out
period, whereas each vessel chartered in corresponds to a cargo delivered by a charter vessel. As
we can see, in both test instances the model chooses to charter out producer vessels when given the
opportunity. In the Abu Dhabi case, five vessels are chartered out, accounting for approximately
33% of the total fleet, and 10 vessels in the Nigeria case, accounting for roughly 43%. In both
cases, all the vessels are chartered out for the whole planning horizon, and the number of vessels
chartered in increases. This intuitively makes sense since the customer has fewer producer vessels
to use to satisfy the required customer demand.

In the discussion in Section 5.1.5, the daily charter out revenue was set to 5% of the charter in rate,
in order to prevent the model from chartering out all the producer’s vessels. One might argue that
based on this assumption, it can appear odd that the model chooses to charter out producer vessels
when it in return must charter in additional charter vessels. To show that this can be profitable to
do for this model, we show an objective function breakdown in terms of charter costs and revenues
for A-2L-C-4M with and without Extension 2 in Table 8.16.

Revenue/Cost type A-2L-C-4M A-2L-C-4M Difference

Basic Charter out [%]

Revenue, charter out own vessels 0 2 025’

Costs, own vessels 32 309’ 28 924’ - 10.5%

Costs, chartering vessels 46 720’ 52 360’ + 12.7%

Total costs 79 029’ 81 284’ + 0.3%

→ adjusted for charter out revenue 79 029’ 79 259’

Other revenue terms 1 227 542’ 1 230 057’ + 0.2%

Total profit 1 148 512’ 1 150 797’ + 0.2%

Table 8.16: Objective function breakdown comparing the basic version of the model with the charter
out model extension. The instances were run with Gurobi.

As it appears in the table, chartering out vessels leads to higher total profit. However, when we
examine the different profit factors closely, we find that even after accounting for revenue from
chartering, the total costs are slightly higher when vessels are chartered out. This indicates that
the increased profit is rather a result of increased revenue, in other words, the producer is able
to deliver more LNG to customers. Considering the charter modeling assumption presented in
Section 5.1.5, saying that there always is an available charter vessel to charter in, this increase is
logical, because delivering to DES contracts becomes more flexible.

It is clear that the different charter vessel assumptions heavily affect the optimal solution. If, for
example, we remove the assumption that there always is an available vessel to charter in, the effects
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of increased flexibility, and therefore also revenue, would become less significant. Furthermore, if
we do not assume that we can charter out all the producer’s own vessels for the whole planning
horizon, the possibility of only chartering out vessels in cases of excess fleet capacity also somewhat
diminishes in value. Setting the charter-out revenue price low enough is also essential for not
creating an unrealistic high preference for chartering out own vessels and at the same time getting
the increased flexibility with using charter vessels to satisfy DES contracts.

8.4.3 Fleet Analysis: Shared or Separated Fleets?

Introducing the arc-flow model described in Section 5.2 also introduces increased model complexity.
In order to test if modeling with arc flow instead of round trips provides enough flexibility and
value to account for the increased complexity, a version of test instance A-2L-C-4M where the
fleet is split between the two loading ports was created. The splitting of the fleet was done by
allocating more vessels to the loading port with the highest total demand. In combination with
that each DES contract has a pre-defined loading port, this splitting results in the test instance
having two separate loading ports, with both separate fleets and sets of contracts. In this scenario,
using round trips as a modeling alternative could simplify the model and reduce its complexity.
The results from running the modified version of A-2L-C-4M are presented in Table 8.17, and
compared to the original results for the instance.

Shared fleet Separate fleet

Integer variables 344 002 189 379

Continious variables 1 044 1 044

Constraints 31 218 31 218

Upper bound 1 155 082’ 1 154 256’

Objective function value 1 148 512’ 1 148 343’

Gap 0.57% 0.51%

Table 8.17: Results from sharing fleet vs splitting fleet, presenting integer variables, continuous
variables, constraints, upper bound, objective function value, and optimality gap. The instances
were run with Gurobi.

According to the table, the key distinction between sharing and separating the fleet is the number
of integer variables, or in other words - arcs. The value for separate is nearly half of the shared
fleet value, which intuitively aligns with the fact that creating separate port sets roughly reduces
the number of potential ports for each vessel by half. Furthermore, there is a tiny decrease in both
upper bound and objective function values when separating the fleet.

As described in Section 7.2, the loading ports in the Abu Dhabi case are located close to each
other in distance. This is not an optimal producer case when illustrating the value of an arc-flow
model, because the difference in distance for vessels choosing which port to sail to and from is
relatively small. That is to say, in cases where the loading ports are close to each other in distance,
like the Abu Dhabi case, a modeling approach using round trips could be sufficient. However, this
approach would overlook the benefits of speed optimization.

8.4.4 The Value of Larger Storage

In this section, we conduct an analysis that explores the impact of expanding storage capacity at a
loading port on the Annual Delivery Program (ADP). According to the given mathematical model
outlined in Chapter 5, compliance with the storage tank capacities (maximum and minimum) is a
hard constraint. This potential investment aims to increase the available storage capacity, thereby
relaxing the existing constraints (5.4) outlined in Chapter 5 for the cases in this analysis.

In the case of Nigeria LNG (NLNG), one storage tank can hold 68 000 m3 of LNG. For the purpose
of this analysis, we consider this standard storage tank capacity as applicable to both NLNG and
ADNOC LNG cases. When a new storage tank is added to a port, the minimum storage safe limit
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also increases by 10 000 m3. It is important to note that the investment cost is regarded as sunk,
as it is not affecting the operating profits considered in this study.

Table 8.18 showcases the influence of adding an extra storage tank at the NLNG loading port for
instance N-1L-D-6M run with RHH. By investing in this additional storage tank, providing a
capacity of 68 000 m3, NLNG could experience a 0.5% increase in profits. This percentage increase
could indicate a financial gain for the producer, given the significant amounts of money involved
in the LNG industry. However, the increased profit must be evaluated against the increased cost
of adding another storage tank.

Increase of number
of storage tanks

Total volume at
loading port [m3]

Objective value [USD] Change in obj.

0 336 000 2 529 653’ -
+1 404 000 2 542 300’ + 0.5%

Table 8.18: Overview of how larger storage capacity affects the objective value for N-1L-D-6M
solved with the RHH

In our analysis of the ADNOC LNG case, we have examined four scenarios to assess the value of
larger storage capacity for instance A-2L-C-6M, as summarized in Table 8.19.

In the first scenario, referred to as Scenario 1, we considered the original storage capacity at
the loading ports, reflecting the current state. In Scenario 2 and Scenario 3, we introduced an
additional storage tank with a capacity of 68 000 m3 at one of the two loading ports. Finally, in
Scenario 4, we combined the changes from Scenario 2 and Scenario 3, resulting in both loading
ports having an extra storage tank. The objective values corresponding to these different storage
capacity scenarios are summarized in Table 8.19, demonstrating an increase in the objective value
as the storage capacity expands.

Lading port ”DI” Loading port ”FU”

Scenario
Increase of number

of storage tanks

Total storage volume

at loading port [m3]

Increase of number

of storage tanks

Total storage volume

at loading port [m3]

Objective value

[USD]

Scenario 1 0 250 000 0 300 000 1 689 506’

Scenario 2 +1 318 000 0 300 000 1 699 000’

Scenario 3 0 250 000 +1 368 000 1 700 200’

Scenario 4 +1 318 000 +1 368 000 1 704 609’

Table 8.19: Overview of how larger storage capacity affects the objective value for A-2L-C-6M
and ADNOC LNG. The scenarios were run with RHH.

To further examine the impact, we present an objective function breakdown in Table 8.20, focusing
on Scenario 1 (original storage capacity) and Scenario 4 (additional storage tanks at both loading
ports) of ADNOC LNG. The breakdown involves nine terms, as described in the objective function
of the mathematical model presented in Chapter 5.

Referring to Table 8.20, it becomes evident that a larger storage capacity leads to a significant
reduction in the reliance on charter vessels. Specifically, the revenue generated from long-term DES
contracts with charter vessels shows a decline of 21.98%, while the revenue from spot contracts
using chartered vessels experiences a decrease of 40.04%. Simultaneously, the costs associated with
chartering vessels are lowered by 28.98%.

However, despite these revenue reductions, the overall profit of the producers actually increases.
This finding demonstrates that the expansion of storage capacity enables more efficient utilization
of the fleet, resulting in improved profitability. This improvement is further supported by the rise
in revenue derived from contracts utilizing the producer’s own vessels. It is worth noting that there
is a notable increase of 49.47% in the cost of using its own vessels, suggesting a higher level of
utilization for the producer’s fleet. Despite the rise in sailing costs associated with own vessels, the
daily charter rate for external vessels is expected to be so high that utilizing the producer’s own
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Revenue/Cost type [USD] A-2L-C-6M A-2L-C-6M Scenario 4 Difference

Revenue, DES long-term contracts, own vessels 579 857’ 754 74’ + 30.17%

Revenue, DES long-term contracts, chartered 884 810’ 690 491’ - 21.98%

Revenue, DES spot contracts, own vessels 29 421’ 68 034’ + 131.16%

Revenue, DES spot contracts, chartered 97 570’ 58 500’ - 40.08%

Revenue, FOB long-term contracts 139 700’ 139 700’ 0.00%

Revenue, FOB spot contracts 94 550’ 117 440’ + 24.23%

Revenue, tank left-over LNG 3 200’ 4 400’ + 37.50%

Costs, own vessels 37 682’ 56 337’ + 49.47%

Costs, chartering vessels 101 920’ 72 360’ - 28.98%

Total profit 1 689 506’ 1 704 609’ + 0.89%

Table 8.20: Objective function breakdown for the current storage capacity scenario of ADNOC
LNG and a scenario with one extra storage tank at each loading port.

vessels remains advantageous. If charter rates were to increase drastically, larger storage could
turn out even more valuable than for these instances. As seen, larger storage provides greater
flexibility in managing LNG shipments, allowing for improved coordination between production
and transportation schedules. This, in turn, optimizes shipping operations by accumulating LNG
during periods of low demand and loading larger vessels for more efficient transportation.

Expanding the storage capacity not only allows the producer to store more LNG but also opens
up opportunities to engage in a greater number of spot contracts. This becomes evident when
examining the FOB spot revenue term in the objective function breakdown, which experiences a
significant increase from 94 550’ to 117 440’ USD, representing a growth of 24.23%. This trend
highlights the advantage of having expanded storage capacity as it empowers the producer to stra-
tegically time their LNG sales according to favorable market conditions. By effectively managing
their inventory and leveraging the flexibility provided by larger storage, the producer can optimize
profitability and generate higher revenue. This capability is particularly advantageous for timing
the sales of spot contracts, ensuring maximum benefit from market fluctuations, and capturing
increased revenue opportunities.

8.4.5 Exploring DES Contract Loading Port Requirements

As mentioned in Chapter 4, each DES contract has a pre-defined loading port, usually because
different loading ports can produce LNG with different qualities. This requirement is redundant
in the Nigeria case with one loading port, but for the Abu Dhabi case, it constrains the problem
in which contracts each loading port can deliver cargoes to. To explore the effect of relaxing this
requirement, instance A-2L-C-4M was run without DES contract loading port requirements, ab-
breviated as DCLPR. The results are presented in Table 8.21.

With DCLPR Without DCLPR

Integer variables 344 002 460 336

Continuous variables 1 044 1 757

Constraints 31 218 32 644

Upper bound [USD] 1 155 082’ 1 158 456’

Objective function value [USD] 1 148 512’ -

Gap 0.57% -

Table 8.21: Results from running A-2L-C-4M with and without DES contract loading port re-
quirements, presenting integer variables, continuous variables, constraints, upper bound, objective
function value, and optimality gap. The instances were run with Gurobi.

The result from running A-2L-C-4M without DCLPR was that the RHH did not find a feasible
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solution within the time limits. As it appears in the table, the upper bound increases without
DCLPR, but also the number of both variables and constraints. This is reasonable since the
producer now has more options in how to satisfy customer demands. The results may indicate
that the problem becomes too large for the model to solve without DCLPR.

In the Abu Dhabi case, DES contracts loading port requirements are implemented because the two
loading ports produce LNG with different qualities. As a result, the customer contracts need to
specify a loading port, to ensure that they get the contracted LNG quality delivered. The results in
Table 8.21 indicate that there is no need for ADNOC LNG to explore the opportunity to produce
both qualities for LNG at both loading ports, since it increases the model complexity too much.
Also, since the customers still order LNG with a specific quantity, this would require additional
mathematical modeling of variables indicating what quality type each vessel is shipping, which
would cause additional complexity.

8.4.6 Speed Optimization

In order to evaluate the impact of speed optimization, a test was conducted where each instance
is tested with both speed optimization and the service speed only. The test is performed on
instances A-2L-B-6M and A-2L-C-6M and solved with the RHH. The results are summarized
in Table 8.22.

In the specialization project Haug et al. (2022), a similar analysis was performed using a commercial
solver and focusing on instances with shorter planning horizons of up to two months. Although our
current analysis focuses on larger instances and utilizes an RHH approach, there are similarities in
terms of the main findings and conclusions drawn from the study.

A-2L-B-6M A-2L-C-6M

Service speed Speed optimization Service speed Speed optimization

Objective value [USD] 1 501 444’ 1 522 697’ 1 679 000’ 1 689 506’

Solver time [s] 280 2 410 43 235

Total time [s] 1 061 3 011 820 844

Integer variables 311 168 669 069 319 441 658 926

Continuous variables 1 635 1 635 1 642 1 642

Constraints 54 278 54 278 54 267 54 267

Table 8.22: Test results of the performance of speed optimization by running the RHH on test
instance A-2L-B-6M and A-2L-C-6M. The complexity of the problems under consideration is
quantified by the number of variables and constraints.

In Table 8.22 the results from each test instance A-2L-B-6M and A-2L-C-6M are listed in
separate columns. Each column is divided into two with titles ”Service speed” and ”Speed op-
timization”. ”Speed optimization” represents the test results when including speed optimization,
and ”Service speed” represents the test results when each vessel has one sailing speed for laden
and one for ballast, corresponding to their pre-stated default service speed. The results are listed
in rows with the following information: ”Objective value” after termination, ”Solver time”, which
refers to the time it takes the commercial solver to solve each iteration to the first sub 1.5% gap,
summarized for all iterations, and ”Total time” that indicates the total time required by the RHH
procedure to find a solution where each iteration is below the 1.5% gap, encompassing initialization
times. To illustrate problem complexity the number of ”Integer variables”, ”Continuous variables”
and ”Constraints” are also included.

The findings indicate that solving the problem with a fixed speed is quicker and takes less time
compared to solving the problem with speed optimization for the given instances. When speed
optimization is implemented, the number of integer variables in the problem doubles or more,
while the number of continuous variables and constraints remains the same because they are not
dependent on vessel speeds. The substantial increase in the number of integer variables in the
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speed optimization problem suggests that the problem becomes more complex. This complexity is
also related to the time it takes for the RHH to find a solution.

Furthermore, incorporating speed optimization seems to lead to a higher objective value, as presen-
ted in Table 8.22. Specifically, the profits increase by 1.42% and 0.62% for A-2L-B-6M and A-
2L-C-6M, respectively. Speed optimization generates more arcs, as shown in Table 8.22, which
in turn increases the number of integer variables, thus expanding the solution space and providing
opportunities for higher profits. To see what drives the objective value, Table 8.23 presents an
objective value breakdown for instance A-2L-B-6M with and without speed optimization.

Revenue/Cost type With With Difference

[USD] default speed speed optimization [%]

Revenue, DES long-term contracts, own vessels 440 165’ 553 123’ + 25.68%

Revenue, DES long-term contracts, chartered 516 254’ 399 529’ - 22.61%

Revenue, DES spot contracts, chartered 140 250’ 122 485’ - 12.66%

Revenue, DES spot, own vessels 0 0 0.00%

Revenue, FOB long-term contracts 379 300’ 379 300’ 0.00%

Revenue, FOB spot contracts 0 176 370’

Revenue, tank left-over LNG 7 130’ 3 200’ - 55.13%

Costs, own vessels 38 067’ 49 270’ + 29.40%

Costs, chartering vessels 86 360’ 62 040’ - 28.10%

Total profit 1 501 444’ 1 522 697’ + 1.42%

Table 8.23: Objective function breakdown for instance A-2L-B-6M with and without speed optim-
ization.

Referring to Table 8.23, by using speed optimization the producer enables to increase the revenues
from long-term contracts delivered with own vessels by 25.68%, including reducing the charter
costs by 28.10%. This indicates that by using speed optimization the producer achieves better
fleet utilization and is less need of chartering in vessels. Reducing the number of charter vessels
is beneficial as argued upon in Section 8.4.4. The producer is also able to take on FOB spot
contracts in the case of speed optimization, which it was not able to do with only service speed.
This indicates the flexibility choosing sailing speeds brings improves the planning and scheduling
of the ADP, thus resulting in higher amounts of LNG sold and thus higher profits.

Figure 8.5 illustrates the speed distribution of vessels in the optimal solution for instances A-
2L-B-6M and A-2L-C-6M. Each plot includes two violins, representing the two cases: speed
optimization and default speeds. The graphs reveal that the speed optimization model utilizes the
entire range of permitted vessel speeds, displaying a slight concentration around 12 and 18 knots
for both instances. On average, the optimized speeds are slightly lower than the default service
speeds, suggesting a potential reduction in fuel costs per unit of distance traveled.

(a) Instance A-2L-B-6M (b) Instance A-2L-C-6M

Figure 8.5: Distribution of vessel speeds with- and without speed optimization for two instances.
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Concluding Remarks

This master’s thesis explores an operational approach for solving the Liquefied Natural Gas Annual
Delivery Program Planning Problem with Speed Optimization and Multiple Loading Ports (LNG-
ADP-SO-MLP), a tactical-level planning problem faced by LNG producers. Our study focuses on
presenting a comprehensive LNG-ADP Planning Problem that incorporates multiple loading ports,
optimized vessel speeds, and the ability to sell LNG in the spot market. The primary objective of
the LNG-ADP-SO-MLP is to maximize profits, considering both revenue from sales and the costs
associated with vessel sailing.

The LNG market has witnessed consistent growth in sales volumes in recent years, largely at-
tributed to the global surge in energy consumption and the growing demand for environmentally
friendly energy sources. Notably, the share of LNG traded on the spot market has reached one-third
of the total global trade volume, reflecting the increasing significance of this segment. Furthermore,
the price of LNG has experienced an upward trend over the past years. This combination under-
scores the critical need for flexibility among LNG producers, enabling them to allocate capacity for
additional spot sales. Moreover, the rising charter vessel prices further emphasize the importance
of optimizing the utilization of available producer fleets.

To the best of our knowledge, the existing literature on LNG-ADP lacks any inclusion of speed
optimization or the consideration of multiple loading ports. Our research contributes significantly
to this field by presenting a comprehensive formulation of the LNG-ADP Planning Problem as a
mixed-integer linear program (MILP). Notably, our model takes a unique approach by treating each
leg of the voyage separately, accommodating multiple loading ports, rather than assuming a round
trip. This approach allows for different sailing speeds to and from the production ports, which can
be useful to reduce fuel costs and enhance planning flexibility. Additionally, treating the voyage legs
separately allows for efficient modeling of maintenance activities, as vessels can proceed directly to
maintenance ports after unloading, without returning to loading ports. By incorporating multiple
loading ports and speed optimization, our model allows for a more comprehensive representation
than those found in the existing literature on the subject. Also, our model incorporates two
additional features, namely the inclusion of variable production and the option to charter out the
producer’s vessels.

To test the model in a realistic setting, data sets provided by our industry partner Quorum Software
were modified to test different aspects of the problem. In the test instances, we vary the length of
the planning horizon to test how well the model can be solved for different instances up to a realistic
planning horizon of 12 months. We used the commercial solver Gurobi to test and solve our MILP
model. The solver found solutions with small optimality gaps for instances with planning horizons
of up to 120 days. For the larger instances, the solver was not able to find any feasible solutions
within the time limits. Due to the comprehensive modeling of the LNG-ADP-SO-MLP, the exact
solution method developed in this thesis is not sufficient as an operational tool.

In response to this, a rolling horizon heuristic (RHH) was created to be able to solve the LNG-
ADP-SO-MLP for longer planning horizons. The RHH divides the planning horizon into sub
horizons and solves them iteratively using a commercial solver to obtain a complete solution. The
RHH successfully generates solutions for instances spanning a full planning horizon of 12 months
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within the industry partner’s maximum acceptable time limit of 12 hours. As the RHH iterates
through the sub horizons, new constraints must be initialized for each sub horizon. When excluding
initialization time, the solution times remained under three hours for all instances. Notably, the
deviation between the results obtained from the instances the commercial solver solved and the
RHH was minimal, demonstrating that the heuristic method produces both feasible and high-
quality solutions with low optimality gaps. Furthermore, the application of the RHH to solve the
LNG-ADP-SO-MLP yielded valuable managerial insights that can inform strategic and tactical
decision-making for the producer. Consequently, the model and solution method presented in this
thesis serves as a comprehensive framework for decision-making beyond the tactical level.
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Future Research

Upon evaluating the research conducted on the LNG-ADP-SO-MLP, we have identified three
primary areas for future research: extending the current mathematical model, improving the RHH,
and exploring other heuristic solution methods.

Extending the current mathematical model with additional features could make the prob-
lem more realistic. Although our thesis presents a comprehensive formulation and model of the
LNG-ADP Planning Problem, there are certain aspects that we have not considered. One poten-
tial extension of the model is incorporating split deliveries of LNG. In the LNG-ADP-SO-MLP,
vessels are currently required to deliver a full shipload to a customer. Allowing for split deliveries,
where vessels can distribute their capacity across multiple unloading ports, has been shown to
improve solutions, as demonstrated by Mutlu et al. (2016). However, this is not as per now a com-
mon practice in the LNG industry. Additionally, imposing demand partitions as strict constraints
proves to restrict the problem making it hard to find feasible solutions. Alternatively, penalizing
deliveries outside the partitions can provide a more relaxed approach, which is commonly used
in the literature. This would however result in a new challenge with weighting the penalties in
the objective funtion. Furthermore, to improve model realism, we should limit the assumption of
always having a charter vessel available at a loading port to a specific number per day or time
period. By introducing such constraints, we can ensure a more accurate representation of the
practical availability of charter vessels in the model.

Improving the RHH. First, using the test instances to dynamically determine appropriate RHH
parameters could resolve some of the infeasibilities the algorithm encounters for certain instances
and RHH parameter combinations. This dynamic parameter determinant would have to be set
so that the horizon and forecast horizon is longer than the longest sum over time periods in the
problem (longest partition and longest arc length), but otherwise as small as possible. Secondly,
the Gurobi solver requires a re-initialization of the constraints in each iteration, which is shown
to be a time-consuming process. Researching ways of making a commercial solver speed up this
process, or finding a way of pre-initializing and storing all possible constraints before running the
algorithm could have a serious impact on the total solution time.

Exploring other heuristic solution methods. As discussed in Chapter 6, the arc-flow-
implementation and DES contract partitions in LNG-ADP-SO-MLP made the matheurstic sens-
itive to infeasibilities. There are several other heuristic solution methods that hold the potential
for not facing the same difficulties as the RHH, some of them mentioned in Chapter 3. One such
method is the Adaptive Large Neighborhood Search (ALNS) algorithm, which is highly suitable
for this problem due to its capacity to handle complexity, adapt to dynamic environments, and
efficiently explore large solution spaces. This solution method was applied in Ghiami et al. (2019).
In general, other methods that require less domain knowledge for implementation can be suitable
for the proposed mathematical model.
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Appendix

A Development in the LNG Price

Figure 1 shows the development in the LNG price from 2018-2022.

Figure 1: Development in the LNG price (NG:NMX index), retrieved from Nasdaq Inc. (2023)
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Appendix

B Connected Papers

As mentioned in Chapter 3, Connected Papers was used to visualize how the different papers are
connected. Figure 2 is an example of how we created a graph based on Msakni and Haouari (2018).

Figure 2: Graph based on Msakni and Haouari (2018), where node size is number of citations,
node color correlates with publishing year, and connected papers have strong connected lines and
are clustered together.
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C Mathematical Model

C.1 Basic version

Sets and Indices

V Set of producer-operated vessels that are available during the planning horizon, each
vessel indexed by v

VM Set of vessels that require maintenance during the planning horizon, VM ⊂ V

Vi Set of vessels that can serve node i, Vi ⊂ V

N Set of ports, each port indexed by i, j

NL Set of loading ports, NL ⊂ N

NU Set of unloading ports, NU ⊂ N

N S Set of spot unloading ports, N S ⊂ N

NM Set of maintenance ports, NM ⊂ N

Av Set of feasible arcs vessel v can sail, each arc indexed by ((i, t), (j, t′))

AM
v Set of feasible maintenance arcs vessel v can sail to start maintenance, AM

v ⊂ Av

AU
v Set of feasible arcs ship v can sail to deliver a DES long-term contracted cargo, AU

v ⊂ Av

AS
v Set of feasible arcs ship v can sail to deliver a DES spot cargo, AS

v ⊂ Av

Fi Set of FOB cargoes of LNG that want to be picked up at loading port i, indexed by f

FU
i Set of long-term contracted FOB cargoes of LNG that must be picked up at

loading port i, indexed by f , FU
i ⊂ Fi

FS
i Set of Spot FOB cargoes who’s load can be picked up by a FOB vessel at loading

port i, indexed by f , also including the artificial spot FOB-pickup, FS
i ⊂ Fi
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Pj Set of time partitions where customer j has DES contracts, each partition indexed by p.

T Set of time periods in all days, each time period, indexed by t, T = {1, 2, ..., |T |}
where |T | is the last time period in the planning horizon.

T L Set of time periods in loading days, where the vessels can lift LNG from a loading port,
each time period indexed by t, T L ⊂ T

T U Set of time periods in unloading days, where vessels can deliver LNG to a customer,
each time period indexed by t, T U ⊂ T

Tjp Set of time periods within partition p for customer j, Tjp ⊂ T

T FOB
f Set of time periods where FOB cargo f can be picked up, T FOB

f ⊂ T

Tv Set of time periods where vessel v is available to be scheduled, Tv ⊂ T

T M
v The time period where maintenance of vessel v is scheduled to start, T M

v ⊂ Tv
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Parameters

CS
vitjt′ Sailing cost of each feasible arc ((i, t), (j, t′)) for vessel v, ((i, t), (j, t′)) ∈ Av, v ∈ V

CC
itj Costs of using a charter vessel to deliver a cargo at port j, loading the cargo at

loading port i at time t, i ∈ NL, t ∈ T , i ∈ NU

N START
v Start port of vessel v, v ∈ V

TSTART
v First time period where vessel v is available to be scheduled, v ∈ V, TSTART

v ⊂ Tv

TO
vij Operational time associated with sailing from port location i to port location j for

vessel v, i, j ∈ N , v ∈ V

TC
ij Sailing time for a charter vessel sailing from loading port i to unloading port j,

i ∈ NL, j ∈ NU

TOFOB
fi Operational time associated to port location j for FOB cargo f , f ∈ Fj , i ∈ NL

T charter
ij Sailing time for a charter vessel between port i and j, i ∈ NL, j ∈ NU

Lv Capacity of vessel v, v ∈ V

L
C

Upper limit for capacity of a charter vessel

LC Lower limit for capacity of a charter vessel

LFOB
f Loading quantity of FOB cargo f , f ∈ Fi, i ∈ NL

Djp Maximum demand of unloading port j in partition p, j ∈ NU , p ∈ Pj

Djp Minimum demand of unloading port j in partition p, j ∈ NU , p ∈ Pj

RSFOB
f Revenue per volume unit of LNG loaded for FOB spot contract f , f ∈ FS

i , i ∈ NL

RUFOB
f Revenue per volume unit of LNG loaded for long-term FOB contract f , f ∈ FS

i , i ∈ NL

RDES
jt′ Revenue per volume unit of LNG for delivering DES contract to customer j at

time t′, j ∈ NU , t′ ∈ T

REND
i Unit value of LNG left in storage tanks at loading port i at the end of the planning

horizon, i ∈ NL

Bjt′ Berth capacity at port j at time t′, j ∈ NL, t′ ∈ T

QP
it Produced quantity of LNG in loading port i in time period t, i ∈ NL, t ∈ T

Si Maximum storage level of LNG at loading port i, i ∈ NL

Si Minimum storage level of LNG at loading port i, i ∈ NL

Si Initial storage level of LNG at the start of the planning horizon at loading port i, i ∈ NL

E Boil-off rate in percent of total vessel capacity

PMIN
j Minimum number of time periods between deliveries for customer j, j ∈ NU
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Variables

xvitjt′ 1 if vessel v sail arc ((i, t), (j, t′)), and 0 otherwise

zft′ 1 if FOB cargo f is done loading in time period t′, and 0 otherwise

witj 1 if a charter vessel starts sailing from loading port i at time t to deliver a cargo at j,
and 0 otherwise

gitj Amount loaded by a charter vessel in loading port i at time t to deliver in
unloading port j

sit Remaining storage at loading port i at the end of time period t

Objective Function

maxz =
∑
v∈V

∑
((i,t),(j,t′))∈AU

v

RDES
jt′ Lv(1− (t′ − t)E)xvitjt′ +

∑
i∈NL

∑
t∈T L

∑
j∈NU

RDES
j,t+TC

ij
(1− TC

ijE)gitj

+
∑
v∈V

∑
((i,t),(j,t′))∈AS

v

RDES
jt′ Lv(1− (t′ − t)E)xvitjt′ +

∑
i∈NL

∑
t∈T L

∑
j∈NS

RDES
j,t+TC

ij
(1− TC

ijE)gitj

+
∑
i∈NL

∑
f∈FU

i

∑
t′∈T

RUFOB
f LFOB

f zft′ +
∑
i∈NL

∑
f∈FS

i

∑
t′∈T

RSFOB
f LFOB

f zft′ +
∑
i∈NL

REND
i si,|T |

−
∑
v∈V

∑
((i,t),(j,t′))∈Av

CS
vitjt′xvitjt′ −

∑
i∈NL

∑
t∈T

∑
j∈NU

CC
itjwitj

(1)

Constraints

si1 = Si +QP
i1 −

∑
j∈NU

∑
t′∈T

∑
v∈Vi

Lvxvi1jt′ −
∑

j∈NU∪NS

gi1j −
∑
f∈Fi

LFOB
f zf1, i ∈ NL

(2)

sit = si,t−1 +QP
it −

∑
j∈NU

∑
t′∈T

∑
v∈Vi

Lvxvitjt′ −
∑

j∈NU∪NS

gitj −
∑
f∈Fi

∑
t′∈T FOB

f

LFOB
f zft′ ,

i ∈ NL, t ∈ T L\{1}
(3)

Si ≤ sit ≤ Si, i ∈ NL, t ∈ T L (4)

∑
((i,t),(j,t′))∈AM

v

xvitjt′ = 1, v ∈ VM

(5)

xv,0,0,NSTART
v ,TSTART

v
+ xv,0,0,0,|T |+1 = 1, v ∈ V (6)
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∑
i∈N

t′−1∑
t=0

xvitjt′ =
∑
i∈N

|T |∑
t=t′+1

xvjt′it, v ∈ V, j ∈ N , t′ ∈ T (7)

Djp ≤
∑
v∈Vi

∑
i∈NL

∑
t∈Tv

∑
t′∈Tjp

Lv(1− (t′ − t)E)xvitjt′ +
∑
i∈NL

∑
t∈(Tjp−TC

ij )

gitj(1− TC
ijE) ≤ Djp,

j ∈ NU ∪N S , p ∈ Pj

(8)

∑
v∈Vi

∑
i∈NL

∑
t∈Tv

t′+PMIN
j∑

τ=t′

xvitjτ +
∑
i∈NL

t′−T charter
ij +PMIN

j∑
τ=t′−T charter

ij

wiτj ≤ 1,

j ∈ NU ∪N S , t′ ∈ T U\{|T U | − PMIN
j }

(9)

∑
t′∈T FOB

f

zft′ = 1, j ∈ NL, f ∈ FU
j (10)

∑
t′∈T FOB

f

zft′ ≤ 1, j ∈ NL, f ∈ FS
j \{1} (11)

∑
v∈VP

∑
i∈N

∑
t∈T

t′+TO
vij∑

τ=t′+1

xvitjτ +
∑

j′∈NU∪NS

wjt′j′ +
∑
f∈Fj

t′+TOFOB
fj∑

τ=t′+1

zfτ ≤ Bjt′ , j ∈ NL, t′ ∈ T U

(12)

LCwitj ≤ gitj ≤ L
C
witj , i ∈ NL, t ∈ T L, j ∈ NU ∪N S (13)

xvitjt′ ∈ {0, 1}, v ∈ V, ((i, t), (j, t′)) ∈ Av (14)

zft′ ∈ {0, 1}, j ∈ NL, f ∈ Fj , t
′ ∈ T FOB

f (15)

witj ∈ {0, 1}, i ∈ NL, t ∈ T L, j ∈ NU ∪N S (16)

gitj ≥ 0, i ∈ NL, t ∈ T L, j ∈ NU ∪N S (17)
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sit ≥ 0, i ∈ N , t ∈ T L (18)

C.2 Extension 1: Variable Production

Parameters

QMIN
it Minimum production rate at production port i in time period t, i ∈ NL, t ∈ T L

QMAX
it Maximum production rate at production port i in time period t, i ∈ NL, t ∈ T L

Variables

qit Production rate at production port i at time period t

Constraints

si1 = Si + qi1 −
∑

j∈NU

∑
t′∈T

∑
v∈Vi

Lvxvi1jt′ −
∑

j∈NU

gi1j −
∑
f∈Fi

∑
t′∈T FOB

f

LFOB
f zft′ , i ∈ NL

(19)

sit = si,t−1 + qit −
∑

j∈NU

∑
t′∈T

∑
v∈Vi

Lvxvitjt′ −
∑

j∈NU∪NS

gitj −
∑
f∈Fi

LFOB
f zft,

i ∈ NL, t ∈ T L\{1}
(20)

QMIN
i ≤ qit ≤ QMAX

i , i ∈ NL, t ∈ T L (21)

qit ≥ 0, i ∈ NL, t ∈ T L (22)

C.3 Extension 2: Chartering out own vessels

Parameters

RCharter
vt Daily revenue of chartering out ship v on day t, v ∈ V, t ∈ T L

M Minimum number of time periods the vessel can be chartered out for

Variables

yv 1 if vessel v is chartered out during the planning horizon, 0 otherwise

89



Appendix

Objective function

maxz =
∑
v∈V

∑
((i,t),(j,t′))∈AU

v

RDES
jt′ Lv(1− (t′ − t)E)xvitjt′ +

∑
i∈NL

∑
t∈T L

∑
j∈NU

RDES
j,t+TC

ij
(1− TC

ijE)gitj

+
∑
v∈V

∑
((i,t),(j,t′))∈AS

v

RDES
jt′ Lv(1− (t′ − t)E)xvitjt′ +

∑
i∈NL

∑
t∈T L

∑
j∈NS

RDES
j,t+TC

ij
(1− TC

ijE)gitj

+
∑
i∈NL

∑
f∈FU

i

∑
t′∈T

RUFOB
f LFOB

f zft′ +
∑
i∈NL

∑
f∈FS

i

∑
t′∈T

RSFOB
f LFOB

f zft′ +
∑
i∈NL

REND
i si,|T |

+
∑
v∈V

∑
t∈T L

RCharter
vt xv0t0,t+1

−
∑
v∈V

∑
((i,t),(j,t′))∈Av

CS
vitjt′xvitjt′ −

∑
i∈NL

∑
t∈T

∑
j∈NU

CC
itjwitj

(23)

Constraints

∑
i∈N

|T L|∑
t=0

xvit0t ≤ yv, v ∈ V (24)

|T L|∑
t=0

xv0t0,t+1 ≥Myv, v ∈ V (25)

∑
i∈N

t′��−1∑
t=0

xvitjt′ =
∑
i∈N

|T |∑
t=t′��+1

xvjt′it, v ∈ V, j ∈ N , t′ ∈ T (26)

xv,0,0,NSTART
v ,TSTART

v
+ xv,0,0,0,TSTART

v
= 1, v ∈ V (27)

xvit0t =

|T L|∑
τ=t

∑
j∈NL

xv0τjτ , v ∈ V, i ∈ N , t ∈ T L (28)

yv ∈ {0, 1}, v ∈ V (29)
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D Greedy Randomized Construction Support Functions

This Appendix presents the additional support functions and corresponding logic presented in Al-
gorithm 4.

D.1 Satisfy Leftover Demand Pseudo Code

Algorithm 6 is implemented to try to satisfy leftover demand after all cargoes for all loading days
is allocated.

Algorithm 6 Satisfy Leftover Demand

Input: not satisfied partitions
Output:
1: for partition p in all partitions still not satisfied do
2: Calculate missing from satisfying lower demand, missing demand
3: for (i, t, j,) in g-variables’ keys where j is p’s corresponding contract do
4: if missing demand + inventory level for i on day t < upper charter capacity then
5: Try to satisfy p by increasing g[i,t,j ] with missing demand
6: else
7: feasible amount = upper charter capacity − inventory level for i on day t
8: Try to satisfy p by increasing g[i,t,j ] with feasible amount
9: end if

10: end for
11: end for
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E Greedy Score-based Construction Heuristic

As mentioned in Section 6.4, sometimes Algorithm 4 is insufficient in finding a feasible initial
solution to use for warm start. This is usually due to one of three characteristics with the test
instance:

1. Surplus of FOB demand compared to DES demand

2. Surplus of DES demand compared to FOB demand

3. Either DES or FOB contracts having few days to deliver and being high in demand at the
same time

Algorithm 4 is lacking in this context mainly due to the random allocation and prioritization
of FOB cargoes. This both hinders the algorithm from prioritizing DES cargoes, but also from
strategically allocating FOB cargoes to either early pick-up days if FOB contracts are high in
demand, or late days if DES contracts are high in demand. To address this issue, Algorithm 8
was implemented, which shares much of the same logic as the randomized construction algorithm.
The main difference is that instead of randomly allocating FOB cargoes, the algorithm chooses a
best FOB contract in a similar way as it chooses the best DES contract. This logic is shown in
Algorithm 7.

Algorithm 7 Find Best FOB contract

Input: loading day t, loading port l
Output: the best partition
1: best FOB contract = None
2: best score = 0
3: for f in set of FOB-contracts do
4: last day = last element in f ’s set of FOB days
5: amount missing = f ’s contracted FOB amount
6: days left = last day - loading day t
7: score = amount missing

days left
8: if pick-up of amount missing at l is feasible then
9: if score > best score then

10: best FOB contract = f
11: best score = score
12: end if
13: end if
14: end for

As shown in lines 19-21, Algorithm 8 finds the DES- and FOB contracts with the highest scores,
and then scores them against each other to decide which contract to allocate a cargo to. In order
to account for all three demand cases described above, the algorithm is implemented with three
configurations. The main difference between the configurations is the charter amount used to find
the best DES contract, described in line 3 in Algorithm 5.

Prioritizing DES: In order to prioritize DES contracts, the charter amount set in Algorithm 5
is set in the same manner as the amount set in lines 23-26 in Algorithm 8. In simple terms, the
charter amount is set in order to minimize the number of cargoes needed to satisfy lower required
demand, with as little LNG as possible. This gives the allocation of DES contracts the benefit of
being feasible for more loading days, due to the flexibility in regard to the loading ports’ inventory.
In contrast, FOB contracts have a set amount that must be picked up.

Prioritizing FOB: To prioritize FOB, the algorithm runs the Algorithm 5 algorithm in the same
way as Algorithm 4, with charter amount set to upper charter amount. In this way, the algorithm
avoids the effects of DES contracts having a greater number of feasible pick-up dates than FOB
contracts.

Prioritizing least number of feasible delivery days left: In this case, the charter amount
is set in the same manner as when the algorithm prioritizes DES contracts. The main difference
is that the days left term used for scoring DES and FOB scores is squared, to prioritize contracts
with few days left to a greater extent.
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Algorithm 8 Greedy Score-based Construction Heuristic

Input: Decision variables, and sets and parameters
Output: Decisions variables with updated values
1: for vessel in set of vessels do
2: if vessel requires maintenance then
3: find shortest feasible route for vessel, set all other arcs to 0
4: else
5: set exit arc to 1, and all other arcs to 0
6: end if
7: end for
8: for g,w,z in sets of g-, w- and z-variables do
9: set g, w and z to 0

10: end for
11: for i,t in set of s-variables’ keys do
12: s[i,t ] = s[i,t-1] + lng produced at day t at loading port i
13: end for
14: all demand satisfied = False
15: for loading day t in all loading days do ▷ satisfy DES- and FOB-demand
16: for loading port l in all loading ports do
17: for b in range(0, number of berths for loading port i) do
18: check if inventory and berth availability is feasible at day t for loading port l
19: best FOB contract = Find best FOB contract (Algorithm 7)
20: best partition, contract = Find Best Partition (Algorithm 5)
21: if best partition’s score >= best FOB contract ’s score then
22: missing = lower demand for best partition - amount chartered [best partition]
23: if ⌈ missing

lower charter amount⌉ == ⌈ missing
upper charter amount⌉ then

24: amount = lower charter amount
25: else
26: amount = ⌈ missing

⌈ missing
upper charter amount ⌉

⌉
27: end if
28: if chartering amount to best partiton on day t is feasible then
29: g[l, t, contract ] = amount and w[l, t, contract ] = 1
30: Update inventory for l and amount chartered for best partition
31: if demand is satisfied for contract c then
32: remove c from DES-contract ids
33: end if
34: if all demand is satisfied then
35: all demand satisfied = True
36: break
37: end if
38: end if
39: else
40: if allocating best FOB contract is feasible then
41: z[best FOB contract, t ] = 1 and update inventory for l
42: end if
43: end if
44: end for
45: if inventory for l in day t > upper inventory limit then
46: z[artificial FOB for l, t ] = 1 and update inventory for l
47: end if
48: end for
49: end for
50: if not all demand satisfied then ▷ try to satisfy leftover DES-demand
51: Satisfy Leftover Demand (Algorithm 6)
52: end if
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F Distance Between Ports

The table is this Appendix presents all the relevant distances between ports used in the test instances described in Chapter 7. The distance unit is nautical miles.

AE AR BD BE BR CN ES FR GB IN IT JP KR KW MX MY NL PT SG TH TR TW US

NGBON 7308 4650 7928 4414 3584 10600 3700 4000 4400 7000 4200 10500 10300 7600 7000 7935 4420 3304 8054 8794 5051 9440 6200

FU - - - 6560 - 6655 5260 - - 2850 - 6880 6450 - - - - - 3890 - - - -

DI - - - 6210 - 6305 4910 - - 2500 - 6530 6100 - - - - - 3540 - - - -

SG 3430 9417 1517 11689 8896 2230 11000 11330 11693 1586 11547 2896 2552 3807 13014 120 11755 10730 - 810 12484 1621 13088

AE - - - - - - - - - - - - - - - - - - 3430 - - - -

AR - - - - - - - - - - - - - - - - - - 9417 - - - -

BD - - - - - - - - - - - - - - - - - - 1517 - - - -

BE - - - - - - - - - - - - - - - - - - 11689 - - - -

BR - - - - - - - - - - - - - - - - - - 8896 - - - -

CN - - - - - - - - - - - - - - - - - - 2230 - - - -

ES - - - - - - - - - - - - - - - - - - 11000 - - - -

FR - - - - - - - - - - - - - - - - - - 11330 - - - -

GB - - - - - - - - - - - - - - - - - - 11693 - - - -

IN - - - - - - - - - - - - - - - - - - 1586 - - - -

IT - - - - - - - - - - - - - - - - - - 11547 - - - -

JP - - - - - - - - - - - - - - - - - - 2896 - - - -

KR - - - - - - - - - - - - - - - - - - 2552 - - - -

KW - - - - - - - - - - - - - - - - - - 3807 - - - -

MX - - - - - - - - - - - - - - - - - - 13014 - - - -

MY - - - - - - - - - - - - - - - - - - 120 - - - -

NL - - - - - - - - - - - - - - - - - - 11755 - - - -

PT - - - - - - - - - - - - - - - - - - 10730 - - - -

TH - - - - - - - - - - - - - - - - - - 810 - - - -

TR - - - - - - - - - - - - - - - - - - 12484 - - - -

TW - - - - - - - - - - - - - - - - - - 1612 - - - -

US - - - - - - - - - - - - - - - - - - 13088 - - - -

Table 1: Full overview of distances between ports. The distance unit is nautical miles

Note that all the empty cells corresponds to distances that are never used in the model, mainly distances between two customers.
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G Test Instances

Table 2 shows a full overview of the test instances that are used for testing the performances of
the solution methods presented in this thesis. The double horizontal line separates the instances
generated from the Nigeria case from instances created from the Abu Dhabi case. The single ho-
rizontal lines separate test instances with a different number of time periods from each other.

Instance ID |NL| |NU | |FU | |V| |T |

N-1L-B-4M 1 13 10 23 120

N-1L-C-4M 1 14 14 23 120

N-1L-B-6M 1 13 15 23 180

N-1L-C-6M 1 14 21 23 180

N-1L-A-8M 1 16 22 23 240

N-1L-B-8M 1 13 20 23 240

N-1L-C-8M 1 14 27 23 240

N-1L-A-12M 1 16 33 23 365

N-1L-B-12M 1 13 32 23 365

N-1L-C-12M 1 14 40 23 365

A-2L-A-4M 2 6 17 15 120

A-2L-B-4M 2 6 20 15 120

A-2L-C-4M 2 6 8 15 120

A-2L-A-6M 2 6 23 15 180

A-2L-B-6M 2 6 30 15 180

A-2L-C-6M 2 6 11 15 180

A-2L-A-8M 2 6 29 15 240

A-2L-B-8M 2 6 38 15 240

A-2L-C-8M 2 6 15 15 240

A-2L-D-8M 2 6 15 15 240

A-2L-E-8M 2 6 36 15 240

A-2L-A-12M 2 6 41 15 365

A-2L-B-12M 2 6 55 15 365

A-2L-C-12M 2 6 23 15 365

A-2L-D-12M 2 6 22 15 365

A-2L-E-12M 2 6 51 15 365

Table 2: Overview of one configuration’s corresponding instances’ problem sizes, differing in the
number of loading ports |NL|, average number of unloading ports |NU |, average number of long-
term FOB contracts |FU |, average number of vessels |V| and number of time periods |T |.
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H Code and Test Instances

The code and test instances can be found at https://github.com/hellevhaug/master-lng-adp. The
GitHub repository contains two folders:

1. commercial solver: The implementation of the exact model described in Chapter 5.

2. RHH: The implementation of the Rolling Horizion Heuristic.

All test instances described in Chapter 7 are to be found in both folders under the testData folder.
An explanation of the code is also provided in the README.md file in the repository.

H.1 Commercial solver

The code for the arc-flow model presented in Chapter 5 is found in the folder ”commercial solver”.
Code for reading data from is located at ”commercial solver/readData”, and includes reading data
for contracts, ports, vessels, spot and other relevant sets. Code for initializing arcs, constraints and
the Gurobi model is located at ”commercial solver/runModel/”, in addition to files for running
the model. Files for initialzing the greedy construction heuristic described in Section 6.4 is also
located in this folder. Gurobi logfiles is located at ”commercial solver/logFiles”, and model output
files is saved in the ”commercial solver/jsonFiles” folder. Different constants set before running
the model are specified in the file ”commercial solver/supportFiles/constants.py”.

H.2 RHH

The code structure for the Rolling Horizon Heuristic is identical to the commercial solver folder
structure described above. The main difference in located in the ”RHH/runModel” folder, where
the files for both initialization and running is implemented for the RHH instead. Particulary, the
implementation of the different compontents of the Rolling Horizon Heuristic is located in the files
”RHH/runModel/runModel.py” and ”RHH/runModel/initModelRHH.py”
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I Solver Times and Total Times

This appendix presents an overview of solver times and total times for running all test instances
for datasets N-1L-D and A-2L-B for both Gurobi and the RHH.

Solver times and total times for Gurobi

The table below presents initialization time, solver time, total time, and increase in time when
adding initialization time when running the instances with Gurobi.

Test instance Initialization time Solver time Total time Increase in

[s] [s] [s] time

NLNG

N-1L-D-4M 282 10 800 11 082 2.61%

N-1L-D-6M 1009 10 800 11 809 9.34%

N-1L-D-8M 2562 10 800 13 362 23.72%

N-1L-D-12M 8826 10 800 19 626 81.72%

ADNOC LNG

A-2L-B-4M 84 10 800 10 884 0.78%

A-2L-B-6M 258 10 800 11 058 2.39%

A-2L-B-8M 608 10 800 11 408 5.36%

A-2L-B-12M 2318 10 800 13 118 21.46%

Table 3: An overview of initialization time, solver time, total time and increase in time for all test
instances from datasets N-1L-D and A-2L-B when running the instances with the Gurobi.

As shown in the table, the initialization time, and therefore also total time, steadily increases with
problem size when solving the model with Gurobi.

Solver times and total times for the RHH

The table below presents initalization time, solver time, total time and increase in time when
adding initialization time when running the instances with the RHH.

Test instance Initialization time Solver time Total time Increase in

[s] [s] [s] time

NLNG

N-1L-D-4M 697 97 794 718.57%

N-1L-D-6M 2643 2 553 5 196 103.53%

N-1L-D-8M 7 782 7 319 15 101 106.33%

N-1L-D-12M 33 388 1 881 35 269 1 775.01%

ADNOC LNG

A-2L-B-4M 612 1 207 1 819 50.70%

A-2L-B-6M 901 2 410 3 311 2.39%

A-2L-B-8M 4045 927 4 972 37.39%

A-2L-B-12M 12 870 3 027 15 906 425.47%

Table 4: An overview of initialization time, solver time, total time and increase in time for all test
instances from datasets N-1L-D and A-2L-B when running the instances with the RHH.

The table shows that the increase in time caused by initialization is in most cases significantly
higher when solving the model with the RHH.
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J Results

Table 5 presents an overview of integer variables, continuous variables and constraints for all test
instances run with Gurobi, both with and without the model extensions describes in Chapter 5.

Instance ID Model Type Integer variables Continuous variables Constraints

N-1L-B-4M Basic 922 369 1 650 66 614

N-1L-B-4M Variable production 922 369 1 774 66 862

N-1L-B-4M Charter out 968 047 1 650 109 647

N-1L-B-4M Combined 968 047 1 774 109 895

N-1L-B-6M Basic 1 597 449 2 535 127 458

N-1L-B-8M Basic 2 273 909 3 413 191 379

N-1L-B-12M Basic 3 648 296 5 183 335 362

N-1L-D-4M Basic 998 721 1 773 71 041

N-1L-D-6M Basic 1 713 527 2 696 133 681

N-1L-D-8M Basic 234 675 3 505 193 111

N-1L-D-12M Basic 3 531 163 5 109 290 880

A-2L-A-4M Basic 34 196 953 23 071

A-2L-A-6M Basic 625 708 1 470 35 462

A-2L-A-8M Basic 890 579 1 956 46 969

A-2L-A-12M Basic 1 387 751 2 844 64 445

A-2L-B-4M Basic 352 357 1 037 31 220

A-2L-B-6M Basic 654 791 1 609 54 556

A-2L-B-8M Basic 962 091 2 181 83 377

A-2L-B-12M Basic 1 572 631 3 294 158 969

A-2L-C-4M Basic 344 022 1 044 31 218

A-2L-C-4M Variable production 344 022 1 290 31 710

A-2L-C-4M Charter out 360 482 1 044 44 729

A-2L-C-4M Combined 360 482 1 290 45 221

A-2L-C-6M Basic 644 818 1 616 54 545

A-2L-C-8M Basic 938 509 2 188 83 361

A-2L-C-12M Basic 1 531 109 3 323 158 996

Table 5: Overview of test instances’ total number of variables and constraints

As shown in the table, both integer variables, continuous variables and constraints increases with
the length of the planning horizon.
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