2
2
=
2

o
o
cC

c
o

~

el
cC
©
]
[}
C
2L
(%4

%]

[
o

2
(%]
o
[

=
C

]
cC

R
o
%
o

z

-
c
9]
£
9]
)
©
c
]

=

o
c
©
%]

9
£
1)
c
o
o

w

Y=
$)

2
S
)
©

[N

o
c
9]
S
9]
80
©
c
]

=

o
o
c

<
]

'—

ke
c
IS
%]

S
S
o
c
o
(v

w

©
f—

=]
%]
>

o

c

G

S)
o
Q
]

[a)]

Jacob Nitter
Shusheng Yang

The Static Ridesharing Routing
Problem with Flexible Locations

An Adaptive Large Neighborhood Search
Heuristic

Master’s thesis in Industrial Economics and Technology
Management

Supervisor: Kjetil Fagerholt

Co-supervisor: Andreas Breivik Ormevik

June 2023

@ NTNU

Norwegian University of
Science and Technology

Jacob Nitter
Shusheng Yang

The Static Ridesharing Routing
Problem with Flexible Locations

An Adaptive Large Neighborhood Search Heuristic

Master’s thesis in Industrial Economics and Technology Management
Supervisor: Kjetil Fagerholt

Co-supervisor: Andreas Breivik Ormevik

June 2023

Norwegian University of Science and Technology
Faculty of Economics and Management
Dept. of Industrial Economics and Technology Management

@ NTNU

Norwegian University of
Science and Technology

Preface

This master’s thesis represents the culmination of our Master of Science program at the
Norwegian University of Science and Technology (NTNU), Department of Industrial Eco-
nomics and Technology Management. The research work was conducted during the spring
of 2023 and serves as a continuation of our specialization project in T1()4500 Managerial
Economics and Operations Research, which took place in the fall of 2022 (Nitter & Yang
(2022)).

We would like to express our sincere appreciation to our supervisor, Professor Kjetil Fager-
holt, and our co-supervisor, Ph.D. student Andreas Breivik Ormevik, for their invaluable
guidance and advice throughout this endeavor. Additionally, we extend our gratitude to
Telia and their Crowd Insights service for providing us with valuable data.

Jacob Nitter, Shusheng Yang

Trondheim, 5th June 2023

ii

Abstract

Ridesharing has emerged as a promising solution to the transportation challenges faced by
suburban and rural areas. At its core, it aims to reduce traffic congestion, decrease carbon
emissions, and foster a sense of community by sharing travel expenses among participants.
This potential is particularly pronounced in regions like Sotra and the greater Bergen area
in Norway, where geographical and demographic characteristics result in an increased
reliance on private vehicles. One notable area of congestion is Sotrabroen, the primary
bridge connecting Sotra to Bergen, which experiences high traffic volumes, increasing the
negative environmental impacts. Despite these advantages, ridesharing has not yet become
a mainstream alternative due to challenges such as schedule coordination and convenience
issues.

This thesis addresses these challenges by developing a coordination method for a rideshar-
ing system, identified as the Static Ridesharing Routing Problem with Flexible Locations
(SRRPFL). The primary objective of this method is to design efficient routes. By en-
abling vehicles to pick up and deliver passengers at various flexible locations, the method
primarily aims to maximize passenger participation and, secondarily, to minimize the total
travel time for drivers. The SRRPFL takes into account individual travel needs, such as
origin and destination locations, along with preferences including maximum travel time
and arrival time window.

To solve the SRRPFL, an exact mathematical arc-flow mixed integer programming model
is formulated. However, for realistic and large-scale problem instances, using a commer-
cial solver proves too time-consuming. Therefore, an adaptive large neighborhood search
(ALNS) heuristic, including extensions of local search and a set-partitioning formulation,
is implemented. This heuristic approach is tailored for the SRRPFL, and designed to
deliver solutions quickly while still ensuring a high level of solution quality.

Tests on instances, based on real data provided by Telia, reveal that the ALNS heuristic
produces high-quality solutions. These tests also demonstrate that the use of flexible loca-
tions notably increases passenger participation in the ridesharing scheme, thereby reducing
the need for individual car usage and alleviating traffic congestion. By adapting to the
needs and preferences of potential participants, the flexibility of locations reduces travel
distance and travel time for drivers, subsequently resulting in lower CO4 emissions. When
comparing models, the one featuring flexible locations outperforms its inflexible counter-
part not just in terms of the number of passengers participating, but also in operational
metrics like reduced travel distance and travel time.

iii

Sammendrag

Samkjgring fremstar som en lovende lgsning pa trafikkutfordringene man mgter i forsteder
og landlige omrader. Hovedpoenget er a redusere trafikkbelastningen og karbonutslippene,
og fremme fellesskapsfolelsen ved a dele reisekostnadene blant deltakerne. Potensialet for
disse effektene er seerlig uttalt i regioner som Sotra og omradet rundt Bergen, hvor bade
geografien og demografien forer til en gkt avhengighet av private kjoretgy. Et omrade
med en stor trafikkbelastning er Sotrabroen, broen som forbinder Sotra og Bergen. Til
tross for de uttalte fordelene med samkjgring har dette ikke blitt et utbredt alternativ.
Dette skyldes muligens utfordringer knyttet til koordrinering og hvordan man kan gjore
samkjgring lettvint for alle de involverte.

I denne masteroppgaven addresser vi disse utfordringene ved & utvikle en koordinerings-
metode for et samkjoringssystem, kalt Static Ridesharing Routing Problem with Flexible
Locations (SRRPFL). Hovedmalet med denne metoden er a bestemme effektive ruter.
Ved & legge opp til at passasjerer kan bli plukket opp og levert pa fleksible lokasjoner
har SRRPFL som sitt primaere mal & maksimere antall passasjerer som blir plukket opp
og levert, mens det sekundsere malet er & minimere den totale reisetiden for sjafgrene.
SRRPFL tar hensyn til individuelle reisebehov, som start- og sluttlokasjoner, maksimal
reisetid for sjafgrer og passsasjerer og ankomstvinduet til sjafgrer og passasjerer.

For a lgse SRRPFL introduseres en eksakt matematisk modell. Imidlertid, for realistiske
probleminstanser blir denne modellen for tidkrevende a lgse. Derfor er en adaptive large
neighborhood search (ALNS) heuristikk, inkludert utvidelser med lokalgsk og settpartis-
jonsformulering, blitt implementert. Denne heuristikken er skreddersydd for SRRPFL
og designet for & produsere lgsninger raskt, samtidig som den sikrer hgy kvalitet pa
lgsnningene.

Etter at ALNS-heuristikken er testet pa probleminstanser generert pa ekte data fra Telia,
kan man observere at ALNS-heuristikken produserer lgsninger av hgy kvalitet. Disse
testene viser ogsa at bruken av fleksible lokasjoner kan gke antaller passasjerer som blir
plukket opp merkbart. Dette vil igjen kunne redusere behovet for individuell bilbruk
og avlaster derfor trafikkbelastningen. Ved & tilpasse seg behovene og preferansene til
sjafgrene og passasjerene vil fleksible lokasjoner kunne bidra til & redusere antall kilometer
kjgrt, som igjen vil resultere i lavere COq-utslipp. Hvis man sammenligner de to scenariene
med fleksible lokasjoner og uten fleksible lokasjoner, observerer man at scenariet med
fleksible lokasjoner overgar sin motpart bade i form av antall opplukkede passasjerer, men
ogsa i redusert reiseavstand og reisetid.

v

Table of Contents

Abstract

Sammendrag

List of Figures

List of Tables

Abbreviations and Frequently Used Terms
1 Introduction

2 Literature Review

2.1 Ridesharing

2.2 Dial-A-Ride Problems and Pick-Up and Delivery Problems

2.2.1 Dial-A-Ride Problems

2.2.2 Pick-Up and Delivery Problems

3 Problem Definition

4 Mathematical Model

4.1.2 Parameters o
4.1.3 Decision Variables
4.2 Model Formulation Lo
4.2.1 Objective functions

4.2.2 Routing Constraints L.

iii

iv

ix

xi

XV

13
13

15

18

21

4.2.3 Coupling and Precedence Constraints 28

4.24 Time Constraints 28
4.2.,5 Capacity Constraintso 30
4.2.6 Binary, Continuous and Non-Negativity Constraints 30

5 Adaptive Large Neighborhood Search 31
5.1 Overview of ALNS 31
5.2 Solution Representation oL 35
5.3 Construction of Initial Solution, 35
5.4 Large Neighborhood Search 37
5.4.1 Destroy Operators 37
5.4.2 Repair Operators e 39
5.4.3 Choosing Destroy and Repair Operators 41

5.5 Acceptance Criterion 42
5.5.1 General Acceptance Criterion 42
5.5.2 Simulated Annealing oL oL 43

5.6 Local Neighborhood Search 44
5.6.1 Local Neighborhood Search Strategy 44
5.6.2 Local Neighborhood Search Operators 45

5.7 The Route Combination Problem, 47
6 Case Study and Test Instances 49
6.1 The Sotra Case 49
6.1.1 Overview e 49

6.1.2 Input Data 50

6.2 Candidate Locations 52
6.3 Test Instance Generation oL 53
6.3.1 Procedure 53
6.3.2 Ridesharing and Instance Generation Assumptions 54

6.4 Test Instances 55
6.4.1 Parameter Tuning Instances 95
6.4.2 Performance Instances oL 55

vi

7 Computational Study
7.1 Test Environment and Stopping Criterion
7.2 Configurations of the ALNS heuristic.
7.2.1 Parameter Tuning o
7.2.2 Comparing ALNSand LNS
7.2.3 Performance Testing of the ALNS and Its Extensions

7.3 Comparing ALNS to the Commercial Solver

8 Managerial Insights
8.1 The Value of Ridesharing
8.2 The Value of Maximum Travel Time

8.3 The Value of Candidate Locations

9 Concluding Remarks

10 Future Research

Bibliography

A Mathematical Model

B Zones and Location Names
Bl Zonel e e
B2 Zone?2
B3 Zoned

B4 Zoned e

C Origin and Destination Location Coordinates
C.1 Zone 1 Coordinates
C.2 Zone 2 Coordinates
C.3 Zone 3 Coordinates

C.4 Zone 4 Coordinates o

D Test Instances

E Parameter Tuning

57
o7
99
99
61
64

70

72
72
75
78

84

86

88

92

96
96
97
98
99

101
101
102
102

103

104

106

vil

E.1 Percentage Removals of Passengers Parameter (y) 106

E.2 Adaptive Weight Score Parameters (o), 108
E.3 Percentage Factor (0) 110
E.4 Reaction Factor (r) 112
F Adaptive Weights Development 114
G Comparing ALNS to the Construction Heuristic 116

viii

List of Figures

3.1

4.1
4.2
4.3
4.4

5.1

5.2

5.3

5.4

9.5

6.1

6.2

Illustration of an example SRRPFL problem featuring one driver and two
passengers, with location names based on the case study (Chapter 6). The
driver picks up and delivers passengers at specified locations before reaching
their final destination 20

Visual illustration of N*, NP and NB 22
Visual illustration of MZP and MZD . Here, we have passenger ¢ =1 and ¢ = 2 23
Visual representation of nodes and Tgn 24
Visual representation of decision variables xfim, Tkimjns xkEjn, and ng ... 26
Flowchart representing the processes in the ALNS heuristic. LS = Local

search. RCP = Route combination problem 32

Solution representation of an instance with two drivers and five passengers.
The leftmost numbers represent the drivers. Driver DI picks up two pas-
senger and driver D2 picks up three passengers. 35

Example of Intra-Passenger Swap where Passenger 1 and Passenger 2 swaps
the order of when they are pickedup, 45

Example of Inter-Passenger Relocate where Passenger 3 in Driver 2’s route
is transferred to Driver I’'sroute, 46

Illustration of the candidate location shift operator, showcasing the replace-
ment of a passenger’s pick-up location within a driver’s route with a new
candidate pick-up location from the set MZP 46

Map of Sotra and Bergen, highlighting the location of Sotrabroen (green
marker), the bridge connecting the island to the mainland 50

Map of the Sotra region, showing the origin (red markers) and destination
(blue markers) locations in their respective zones. The origin locations
are divided into three zones, while all destination locations are within a
single zone. This figure builds upon the work of Nitter & Yang (2022) by
considering 43 origin locations and 20 destination locations. 51

ib'e

8.1

8.2

8.3

8.4

B.1

B.2

B.3

B4

F.1

F.2

The average extra travel time for drivers in each instance group with ride-
sharing L

The average extra travel time for drivers in each instance group with ride-
sharing L

Driver’s route without candidate locations for InstancelD S1-1D-4P-1, de-
picting the driver starting from Agotnes and picking up passengers from
Straume, Brattholmen, and Arefjord

Driver’s route with candidate locations for InstancelD S1-1D-4P-1, illus-
trating the driver’s ability to pick up all passengers by utilizing candidate
locations in Bildgy and Knarrevik

Map of Zone 1 in the Sotra region, with origin locations marked by red
markers and labeled as O1, O2,etc.

Map of Zone 2 in the Sotra region, with origin locations marked by red
markers and labeled as O15, O16,etc.

Map of Zone 3 in the Sotra region, with origin locations marked by red
markers and labeled as O35, O36,etc.

Map of Zone 4 in the Bergen region, with destination locations marked by
blue markers and labeled as D1, D2, etc.

Development of weights for the destroy operators over the duration of the
ALNS process for instance M3-16D-42P-1. ”shaw removal” represents Re-
latedness Removal operator,

Development of weights for the repair operators over the duration of the
ALNS process for instance M3-16D-42P-1

List of Tables

2.1 Reviewed literature table. RS = Ridesharing, CP = Car pooling, VP =
Vanpooling, Org. = Organic ridesharing, Inorg. = Inorganic ridesharing,
Stat. = Static, dyn. = dynamic, Con. = Constraints, FL = Flexible
locations, Cap = Minimum capacity constraint, MD = Maximum detour
constraint, MW = Maximum waiting time, TW = Time window constraint,
TT = Travel time constraint, MP = Maximum number of preferred pas-
sengers, CS = Minimize cost savings, CO2 = Minimize CO emissions, RC
= Minimize routing cost, AR = Maximize assigned riders, US = User sat-
isfaction, WT = Minimize waiting time

3.1 Four sets of decisions involved in the SRRPFL

4.1 All sets defined for the mathematical formulation of the SRRPFL
4.2 All parameters defined for the mathematical formulation of the model
4.3 All decision variables defined for the mathematical formulation of the SR-

RPFL . .

6.1 Parameter tuning instances with Instance ID format: InstanceNumber-
Drivers-Passengers (e.g., 1-5D-18P represents instance 1 with 5 drivers and
I8 passengers)o Lo

6.2 Summary of instance groups and corresponding Instance IDs

7.1 Hardware and software used for parameter tuning
7.2 Hardware and software used for performance testing

7.3 Summary of un-tuned parameters with their values and descriptions used
in the ALNS heuristic

7.4 Summary of tuned parameters, their initial and final values, and descrip-
tions. Param. = Parameter

xi

7.5

7.6

7.7

7.8

7.9

8.1

8.2

Comparison of results for the ALNS and LNS heuristics. Obj. 1 and
Obj. 2 represent the average objective values for Objectives 1 and 2 for
each instance group, respectively. CVO%1 and C'VO%2 represent the aver-
age coefficient of variation for Objectives 1 and 2 for each instance group,
respectively. Gap©®! and Gap®%? represent the average gap for Object-
ives 1 and 2 for each instance group across the ALNS and LNS heuristics,
respectively. Time [s] represents the average time for the runs in each in-

stance group, measured in seconds

1. Comparison of results for the ALNS heuristic and its extensions. C'V 91
and CVO%?2 represent the average coefficient of variation for Objectives 1
and 2 for each instance group, respectively. Gap©?! and Gap©?? represent
the average gap for Objectives 1 and 2 for each instance group across all
ALNS configurations (ALNS, ALNS + LS, ALNS + RCP, ALNS + LS +
RCP), respectively. Time [s] represents the average time for the runs in
each instance group, measured in seconds

2. Comparison of results for the ALNS heuristic and its extensions. C'V i1
and CVO%2 represent the average coefficient of variation for Objectives 1
and 2 for each instance group, respectively. Gap©%! and Gap©%? represent
the average gap for Objectives 1 and 2 for each instance group across all
ALNS configurations (ALNS, ALNS + LS, ALNS + RCP, ALNS + LS +
RCP), respectively. Time [s] represents the average time for the runs in
each instance group, measured in seconds

Comparison of results between the ALNS extensions. Gap®%! and Gap©??
represent the average gap for Objectives 1 and 2 for each instance group
across the ALNS extension, respectively. Time [s] represents the average

time for the runs in each instance group, measured in seconds

Comparison of results for Gurobi and the ALNS heuristic with LS and RCP.
The column Instance Group shows the instance groups with the number
of passengers in each instance group. Obj. 1 and Obj. 2 represent the
average objective values for Objectives 1 and 2 for each instance group,
respectively. Time [s] represents the average time for the runs in each
instance group, measured in seconds. Gap®O¥! and Gap©P? represent
the average gap for Objectives 1 and 2 for each instance group across the
commercial solver and the ALNS heuristic

Overview of the number of cars reduced implementing the solutions from
the ALNS heuristic. Obj. 1 represents the average objective values for
Objectives 1. Cars Red. is the average percentage of cars that will be

reduced in ridesharing for an instance group, produced by the ALNS heuristic 74

Overview of the average number of kilometers traveled for each driver and
passenger in each test instance with and without ridesharing. The column
Instance Group shows the instance groups with the number of passengers
in each instance group. w/o RS is the average number of kilometers driven
in each test instance without ridesharing. w RS states the average number
of kilometers driven in each test instance with ridesharing. Reduction
is the percentage reduction in kilometers that comes from implementing
ridesharing solutions

xil

8.3

8.4

8.5

B.1
B.2
B.3
B4

C.1
C.2
C.3
C4

D1

E.1

Comparison of results for different values of maximum travel time multi-
plier. Obj. 1 and Obj. 2 represent the average objective values for Ob-
jectives 1 and 2 for each instance group, respectively. Time [s] represents
the average time for the runs in each instance group, measured in seconds.
The ALNS heuristic was configured with a multiplier set at 1.7x for the
computational study conducted in Chapter 7 77

Comparison of results for the ALNS heuristic with LS and RCP, with and
without candidate locations. Obj. 1 and Obj. 2 represent the average
objective values for Objectives 1 and 2 for each instance group, respectively.
Time [s] represents the average time for the runs in each instance group,
measured in seconds. CP denotes the average percentage of picked up
passengers who use a candidate location other than its origin. TT [min]
refers to the average travel time it takes for passengers who are picked up at
a candidate location, to travel to that specific candidate location, measured
Inminutes L e e 79

Comparison of results for different values of 8, where 6 represent the max-
imum number of candidate locations a passenger can have. Obj. 1 and
Obj. 2 represent the average objective values for Objectives 1 and 2 for
each instance group, respectively. Time [s] represents the average time for
the runs in each instance group, measured in seconds. The ALNS heur-
istic was configured with 8 = 3 for the computational study conducted in

Chapter 7 e 83
Corresponding location names for origin locations in Zone 1 (In Norwegian) 97
Corresponding location names for origin locations in Zone 2 (In Norwegian) 98

Corresponding location names for origin locations in Zone 3 (In Norwegian) 99

Corresponding location names for destination locations in Zone 4 (In Nor-

WEZIAN) 100
Coordinates of Origin Locations in Zone 1 101
Coordinates of Origin Locations in Zone 2 102
Coordinates of Origin Locations in Zone 3 102
Coordinates of Destination Locations in Zone 4 103
Summary of all instances 105

Results from tuning the v parameter. Each instance was run five times
for each setting of v. Obj. 1 and Obj. 2 represent the average objective
values for Objectives 1 and 2 for each instance group, respectively. Time [s]
represents the average time for the runs in each instance group, measured
inseconds e e e 107

xiii

E.2

E.3

EA4

G.1

Results from tuning the o parameters. Each instance was run five times
for each setting of . Obj. 1 and Obj. 2 represent the average objective
values for Objectives 1 and 2 for each instance group, respectively. Time [s]
represents the average time for the runs in each instance group, measured
inseconds e e e e

Results from tuning the § parameter. Each instance was run five times
for each setting of . Obj. 1 and Obj. 2 represent the average objective
values for Objectives 1 and 2 for each instance group, respectively. Time [s]
represents the average time for the runs in each instance group, measured
inseconds

Results from tuning the r parameter. Each instance was run five times
for each setting of r. Obj. 1 and Obj. 2 represent the average objective
values for Objectives 1 and 2 for each instance group, respectively. Time [s]
represents the average time for the runs in each instance group, measured
inseconds e e e

Comparison of results for the construction heuristic and the ALNS heur-
istic with LS and RCP. Obj. 1 and Obj. 2 represent the average objective
values for Objectives 1 and 2 for each instance group, respectively. C'V b1
and CVO%2 represent the average coefficient of variation for Objectives 1
and 2 for each instance group, respectively. Gap®®! and Gap®%? repres-
ent the average gap for Objectives 1 and 2 for each instance group across
the construction heuristic and the ALNS heuristic, respectively. Time [s]
represents the average time for the runs in each instance group, measured
inseconds e e e

Xiv

Abbreviations and Frequently
Used Terms

Abbreviations

SRRPFL Static Ridesharing Routing Problem with Flexible Locations

ALNS Adaptive large neighborhood search

LNS Large neighborhood search
LS Local search
RCP Route combination problem

Definition of frequently used terms
Origin location A starting location for a driver or a passenger, e.g. their home
Destination location An ending location for a driver or a passenger, e.g. their workplace

Candidate location A location a passenger can either be picked up at, or delivered at

XV

Chapter 1

Introduction

Ridesharing is a transportation mode in which individual travelers share a vehicle, follow-
ing similar itineraries and time schedules. At its core, ridesharing involves one or more
passengers sharing a vehicle with a driver as they travel from their starting points to
their respective destinations. The advantages of ridesharing include the sharing of travel
expenses such as fuel, tolls, and parking fees among participants, the reduction of conges-
tion and pollution for the general public, and the fostering of a sense of community among
travelers. Moreover, ridesharing can contribute to a more sustainable transportation sys-
tem by reducing the number of single-occupancy vehicles on the road, thereby decreasing
traffic congestion and carbon emissions. However, despite these benefits, ridesharing has
not yet become a mainstream transportation alternative due to the lack of efficient meth-
ods for coordinating schedules, as well as concerns surrounding trust and convenience.

In the case of Norway, the need for efficient and sustainable transportation solutions is
further emphasized by the country’s unique geographical and demographic characteristics.
A considerable portion of the population resides in suburban areas and on the outskirts of
cities and towns, often requiring long-distance commutes to urban centers for work or other
activities. The Norwegian landscape, with its numerous fjords and islands, adds complex-
ity to transportation networks and can lead to a reliance on ferries or bottleneck bridges
for commuting between regions. This situation results in a higher dependency on private
vehicles, leading to increased traffic congestion and associated negative environmental im-
pacts. Additionally, public transportation options may be limited or inconvenient for these
commuters.

One particular region that highlights these challenges is the island of Sotra and the Bergen
municipality on the west coast of Norway. Sotra, situated just outside of Bergen, exem-
plifies a region that faces transportation difficulties due to its bottleneck bridge called
Sotrabroen connecting the island to the mainland. With nearly 30,000 car movements
crossing the bridge daily (Statens Vegvesen, 2023), traffic congestion is a common occur-
rence, causing delays and frustration for commuters. A majority of residents on Sotra who
work in Bergen must rely on this bridge to access their workplaces.

A successful implementation of a ridesharing system in Sotra could alleviate some of
the pressure on the bridge, reduce the number of vehicles on the road, and ultimately
decrease traffic congestion. By optimizing the use of available resources and promoting
a culture of shared mobility, ridesharing has the potential to create a more efficient and
sustainable transportation network for the residents of Sotra and the greater Bergen area.
Furthermore, a well-designed ridesharing system could serve as a model for other similar

regions facing similar transportation challenges, both in Norway and beyond. Ridesharing
has the potential to offer a viable solution to these challenges by connecting individuals
with similar travel needs and enabling them to share resources, thereby reducing the
number of cars on the road and mitigating environmental impacts. Moreover, ridesharing
can help bridge the gap in public transportation services, providing a more convenient,
cost-effective, and sustainable alternative for commuters living in suburban or rural areas.

Despite the potential benefits of ridesharing, implementing a successful system in regions
such as Sotra and the greater Bergen area presents several challenges that must be ad-
dressed. One key challenge is the coordination of passengers and drivers, which requires an
effective platform that can match individuals with similar travel needs while considering
factors such as timing, pick-up and delivery locations, and vehicle capacity. Additionally,
fostering trust among users is crucial in encouraging widespread adoption, as individuals
may be hesitant to share rides with strangers due to concerns about reliability. Another
challenge lies in overcoming the deeply ingrained car-centric culture and mindset, which
may lead individuals to prefer the privacy and convenience of their private vehicles over
participating in ridesharing initiatives. Public awareness campaigns and incentives may be
necessary to shift attitudes and promote the adoption of shared mobility options. Lastly,
addressing the potential for unintended consequences, such as increased vehicle distance
traveled due to additional trips generated by ridesharing services or the cannibalization of
public transit commuters, is essential to ensure that ridesharing contributes positively to
the overall transportation system.

Recognizing the need for innovative transportation solutions, the Bergen municipality has
recently engaged in discussions with local administration to explore potential strategies
for addressing these challenges. Consequently, a pilot project for ridesharing in the region
is planned to be announced for tender soon. This development is taking place in real-time
while this thesis is being written, underlining the urgency and relevance of the topic.

This thesis aims to address the challenge of effectively coordinating passengers and drivers
in a ridesharing system by developing an approach that takes into account the various
factors influencing the ridesharing experience. Through the consideration of individual
travel needs, preferences, and constraints, the thesis seeks to create a more efficient trans-
portation in regions such as Sotra and the greater Bergen area. The approach taken in
this thesis acknowledges the importance of flexible pick-up and delivery locations, allow-
ing for a greater degree of adaptability and customization in ridesharing arrangements.
This flexibility involves passengers not necessarily being picked up directly at their homes;
instead, they can travel a short distance to another pick-up location. Similarly, passengers
do not have to be delivered right at their destination, but can be delivered at a nearby
location from which they can travel to their final destination. This flexibility is important
in improving the overall efficiency of the system, enabling better matches between drivers
and passengers, and accommodating diverse travel requirements.

The Static Ridesharing Routing Problem with Flexible Locations (SRRPFL) is a trans-
portation optimization problem, aiming to design efficient routes for a set of drivers to
pick-up and deliver passengers at different, flexible locations. The SRRPFL addresses the
challenge of coordinating multiple drivers and passengers in a ridesharing system, while
considering each participant’s individual preferences and constraints. The SRRPFL aims
to optimize the ridesharing experience by maximizing the number of participating passen-
gers and minimizing the total travel time for all drivers. By incorporating flexible pick-up
and delivery locations, the SRRPFL allows for a higher degree of adaptability and cus-
tomization, enabling better matches between drivers and passengers. The solution takes

into account the participants’ travel information, such as origin and destination locations,
time windows, maximum travel times, and vehicle capacities. The output generated by
the SRRPFL is an optimized set of routes and schedules for each driver and passenger,
ensuring that the objectives are met while adhering to the underlying assumptions and
operational constraints of the problem.

In solving the SRRPFL, we first formulate an arc-flow mixed integer programming model.
This model is solved using an exact method with a commercial solver for small-sized
instances. For tackling larger and more realistic problem instances, we implement an
adaptive large neighborhood search (ALNS) heuristic. To further enhance the performance
of the ALNS, we integrate local search extensions and a set partitioning formulation. We
put this ALNS heuristic to the test on instances that are based on real-world data supplied
by Telia, and it proves to deliver high-quality solutions.

Thus, this thesis aims to investigate how ridesharing can contribute to reducing traffic con-
gestion in Sotra and the greater Bergen area. The main contributions of this report are: 1)
the introduction of a ridesharing optimization problem that incorporates both pick-up and
delivery of passengers with the utilization of flexible pick-up and delivery locations, 2) the
presentation of an adaptive large neighborhood search (ALNS) as a solution methodology
for our proposed ridesharing problem, which includes local neighborhood search heuristics
and a set-partitioning approach, and 3) the application of a real-world case study to reveal
the effects of flexible locations.

Chapter 2 reviews related literature on ridesharing. The problem is described in Chapter 3.
Chapter 4 presents the mathematical formulation of the problem. Furthermore, Chapter
5 presents the adaptive large neighborhood search (ALNS) heuristic. Chapter 6 details
the case study considered in this thesis and test instance generation. The computational
study of the ALNS heuristic performance is detailed in Chapter 7. Chapter 8 discusses
the managerial insights gained from the computational study. Chapter 9 concludes this
thesis, and Chapter 10 provides suggestions for future work.

Chapter 2

Literature Review

This chapter reviews existing literature found relevant for the Static Ridesharing Routing
Problem with Flexible Locations (SRRPFL), building on the review presented by Nitter
& Yang (2022). Section 2.1 presents literature on ridesharing optimization problems.
Section 2.2 presents literature on Dial-A-Ride problems (DARP) and Pick-Up and Delivery
problems (PDP) relevant to ridesharing.

2.1 Ridesharing

The field of ridesharing research can benefit from a more precise classification of its scen-
arios. In our study, we propose two distinct categories, coined as organic and inorganic
ridesharing, based on the degree of structure and formal organization present in the ride-
sharing arrangements. It is important to clarify that this classification is our proposition
and, to our knowledge, has not been explicitly stated in the existing literature. Inorganic
ridesharing represents scenarios where an entity such as a company or workplace coordin-
ates and manages the ridesharing service for its customers, employees and members. These
arrangements typically involve predetermined drivers and passengers, where the sole pur-
pose of a driver is to pick-up and deliver passengers. Examples of inorganic ridesharing
includes Uber, taxis and arrangements made by companies for its employees. On the other
hand, organic ridesharing represents a more flexible, decentralized approach where indi-
viduals independently rideshare based on their personal schedules and preferences. In this
case, there is no prearranged plan or designated driver decided by a company or workplace.
Instead, an individual, such as an employee, may decide to pick up colleagues on their way
to work, requiring a more structured decision-making process to determine which drivers
will pick up which passengers. An example of organic ridesharing is colleagues with a
common workplace deciding to rideshare. Understanding these differences is essential as
we delve further into the literature, as each type of ridesharing has unique characteristics,
challenges, and objectives.

Ridesharing, as a relatively recent transportation mode, has gained attention in both re-
search and practice due to its potential to reduce traffic congestion, lower emissions, and
offer a more cost-effective alternative to traditional transportation options. Agatz et al.
(2012) provide a comprehensive review of various types of ridesharing optimization prob-
lems, each with distinct characteristics and challenges. One key aspect of ridesharing
systems is the underlying network structure, which determines the relationships between
pick-up and delivery locations, as well as the routes that drivers can take. The authors

discuss the use of both static and dynamic network representations, noting that dynamic
networks better capture the real-time nature of ridesharing services. The degree of dynam-
ism in problem settings is another important aspect highlighted by the authors, which can
range from fully static (all information is known beforehand) to highly dynamic (informa-
tion about riders and drivers becomes available over time). Agatz et al. (2012) emphasize
that dynamic problem settings present greater computational challenges. Their review
also explores various optimization objectives that can be pursued in ridesharing prob-
lems, such as minimizing travel time, reducing the number of vehicles on the road, or
maximizing the overall system utility. These objectives often involve trade-offs, which
can be addressed using single or multi-objective optimization approaches. Furthermore,
Agatz et al. (2012) explore different algorithmic techniques employed in ridesharing op-
timization research, including exact methods, heuristics, and metaheuristics, such as ge-
netic algorithms, simulated annealing, and ant colony optimization. Each method has its
strengths and limitations, making it important to choose the appropriate approach based
on the specific problem characteristics and computational requirements.

Carpooling, as a specific form of ridesharing, has been the subject of various optimization
approaches aimed at improving its efficiency and attractiveness. Baldacci et al. (2004)
present an exact method for solving the carpooling problem using a Lagrangean column
generation approach. Their research focuses on matching passengers with drivers organ-
ized by companies that encourage their employees to pick up colleagues while driving to
and from work in an inorganic setting. The objective is to minimize the sum of the costs
of the paths used to reach the workplace and the cost of deriving from the penalties of the
unserviced clients, while taking into account constraints such as vehicle capacities, time
windows, and maximum travel times for each participant. The authors formulate both an
mixed integer formulation and a set-partitioning formulation. Baldacci et al. (2004) pro-
pose both an exact and a heuristic method to solve this problem. The exact method uses
a bounding procedure that involves different Lagrangian relaxations of the problem. For
the heuristic method, the authors propose a set-partitioning formulation for the problem,
employing the column generation approach. Baldacci et al. (2004) demonstrate that their
approach can provide high-quality solutions within reasonable computational times. Their
research contributes to the development of exact methods for carpooling optimization and
provides insights into the use of column generation and Lagrangean relaxation techniques
in transportation problems.

The vanpool assignment problem, a specific form of ridesharing, has been studied by Kaan
& Olinick (2013). In their paper, the authors focus on inorganically assigning passengers
to vanpools, which are larger capacity vehicles typically provided by employers or public
transportation agencies to facilitate commuting among groups of individuals with similar
travel patterns. Kaan & Olinick (2013) take various constraints into consideration such
as vehicle capacities, time windows, and alternative meeting locations. The inclusion of
alternative meeting points for passengers, called park-and-ride locations, allows for more
flexible arrangements that can accommodate a wider range of passenger preferences, po-
tentially increasing the adoption of vanpooling as a sustainable transportation alternative.
The objective is minimizing total travel cost. Kaan & Olinick (2013) propose three heur-
istics to solve the vanpool assignment problem, referred to as the restricted allowance
heuristic (RAH), the relaxed restricted allowance heuristic (RRAH), and the greedy cover
heuristic (GCH). The RAH reduces the number of possible park-and-ride combinations
by eliminating those unlikely to be used in an optimal solution. The RRAH relaxes the
vanpool assignment problem into a linear program (LP), using the LP solution to identify
the most useful park-and-ride locations. The GCH selects a minimal set of park-and-
ride combinations that cover all passengers that can be covered. Kaan & Olinick (2013)

demonstrate the effectiveness of their approach in producing high-quality solutions within
reasonable computational times.

He et al. (2023) address a transportation problem to intercity transportation hubs such
as railway stations and airports. Recognizing the need for reliable and cost-effective solu-
tions, the authors propose a ridesharing approach using a mixed integer linear program-
ming (MILP) model. In this study, the focus is on first-mile ridesharing to intercity
transportation hubs (FMRITH), offering services within a defined radius from the hub.
This is under the consideration that passengers can book these services based on their
specific travel requirements. The authors use a rolling horizon method to dynamically
group requests based on their arrival times and constraints such as the presence of large
luggage, specific arrival time windows and maximum travel time requirements, and travel
time uncertainties. The proposed MILP model aims to minimize the total transportation
cost for ridesharing service providers. For small-scale cases, the FMRITH problem can
be solved using commercial solvers like CPLEX and Gurobi. However, solving large-scale
instances is time-consuming. To address this, He et al. (2023) design an algorithm based
on the adaptive large neighborhood search by Ropke & Pisinger (2006) for a more efficient
solution to large-scale FMRITH problems. The quality of the solution is assessed using a
column generation algorithm and a greedy algorithm. Moreover, the authors emphasizes
the need to consider large luggage and travel time uncertainty when planning ridesharing
services to intercity transportation hubs. The models and algorithms proposed by the
authors are shown to effectively tackle the FMRITH problem.

Auad-Perez & Hentenryck (2022) explore the concept of on-demand multimodal transit
systems (ODMTS), which integrate bus or rail routes between transit hubs with on-
demand shuttles. The study specifically targets the development of an ODMTS network
design aimed at minimizing total travel costs, bus operation costs, and travel times. This
allows potential passengers passengers to share shuttle trips, potentially leading to a re-
duction in the number of shuttles and the total variable cost associated with shuttle rides.
The authors extend the traditional ODMTS by incorporating ridesharing into shuttle rides
and introduce new fleet-sizing algorithms to determine the necessary number of shuttles
to transport a set of passengers. Auad-Perez & Hentenryck (2022) propose a mixed in-
teger programming (MIP) model in which the ODMTS incorporates pick-up and delivery
routes, encapsulating ridesharing by grouping riders traveling to and from the same hub.
The fleet-sizing optimization is framed as a minimum flow problem with covering con-
straints. To overcome computational issues brought about by the dense graph in the
natural formulation, a reformulation operates on a sparse graph. The study is validated
through a real case study of the public transit system in Michigan. When compared to
the existing system, the proposed ODMTS design reduces costs by 35% and transit times
by 38%.

Zheng & Pantuso (2023) focus on a ridesharing problem, which involves determining op-
timal routes for a fleet of vehicles to inorganically transport customers to a common
destination via shared trips. The objective functions aim to minimize transportation costs
and maximize service rates. Constraints include vehicles to leave their current positions at
most once, each journey terminates at the station, and each customer is picked up at most
once. Zheng & Pantuso (2023) present an evolutionary algorithm (EA) based on Pareto
dominance to solve this problem. The algorithm simulates the evolution of species and op-
erates with a population of individuals, where each individual represents a solution to the
problem. The algorithm works iteratively, with each iteration referred to as a generation.
In each generation, appropriate measures of fitness are used to select individuals that will
reproduce and survive to the next generation. Then, an initialization phase is carried out,

which involves generating an initial population using a semi-random procedure. During
the evolution phase, the algorithm generates offspring by applying crossover and mutation
operators. The resulting offspring undergo a route rearrangement process to ensure that
each vehicle takes the shortest distance to the destination. The evaluation step involves
assessing the fitness of each individual in the population and offspring. Finally, the al-
gorithm performs elite and survival selection. After testing the algorithm on real-life data,
the results indicate that the algorithm is capable of delivering high-quality Pareto fronts.

On-demand ridesharing services have gained popularity in recent years, presenting new
challenges and opportunities for optimization. Fielbaum et al. (2021) focus on optimizing
pick-up and delivery locations in on-demand ridesharing systems in an inorganic way. They
define an on-demand ridesharing service in which passengers with similar routes can share
a vehicle. In their paper, they consider a system in which users might be requested to walk
to and from nearby pick-up and delivery points. Their objective is to minimize routing
cost, passenger walking cost and maximize passenger participation. Their consideration
of alternative pick-up and delivery locations provides additional flexibility for both drivers
and passengers. Fielbaum et al. (2021) develop specialized heuristics with local search to
solve their MILP model. They propose four heuristics to accelerate the computation of the
graph structure called groups-vehicles (GV). The first heuristic, called ”optimization of
the sequence and the pick-up and delivery (PUDO) points,” employ an insertion heuristic,
which inserts requests one by one into the vehicle in an arbitrary order. The second
heuristic, ”filtering vehicles,” discards some feasible arcs in the GV-graph, reducing the
number of trips. The third heuristic, ”limiting sequences,” uses a local search approach to
decide the sequence of pick-ups and deliveries, limiting the number of sequences. Finally,
the fourth heuristic, ”searching for PUDO nodes,” performs a local search to find a limited
set of candidate PUDO points rather than an exhaustive computation over all possible
points. To evaluate the effectiveness of their proposed method, Fielbaum et al. (2021)
conduct computational experiments, comparing the performance of their approach to a
baseline method without optimized walking locations. The results demonstrate that the
proposed method can achieve reductions in passenger walking distances while maintaining
comparable route efficiency for drivers.

Ghandeharioun & Kouvelas (2023) explore on-demand ridesharing by creating a real-time
simulation framework and an optimization algorithm aimed at enhancing ridesharing op-
erations. Their objective is to develop a matching algorithm to address the on-demand
ridesharing task in a real-time setting. The model seeks to solve the problem of assigning
requests to shuttles in a manner that satisfies both the operator’s and passengers’ needs.
Each request is characterized by three crucial variables: desired pick-up time, desired
pick-up location, and delivery location. Their approach incorporates dynamic congestion,
ensuring that travel times on road segments are consistently updated throughout the sim-
ulation period. The study’s contributions include the development of a modular real-time
simulation framework, the framing of the ridesharing problem as a dynamic deterministic
on-demand matching issue, the implementation of dynamic congestion, and the consid-
eration of multiple stakeholders’ objectives. By using a New York City taxi dataset, the
authors demonstrate that their algorithm outperforms the current taxi fleet in terms of
service rate. Moreover, the developed simulation framework provides insights into cost
functions and operational policies.

Pelzer et al. (2015) present a partition-based matchmaking algorithm for dynamic rideshar-
ing, to match passengers and drivers in real-time. The objective is to maximize mileage
savings by sharing rides. The partition-based matchmaking algorithm divides the service
area into smaller regions, enabling a more efficient search for feasible matches between pas-

sengers and drivers. Pelzer et al. (2015) also employ a two-phase approach to solve this
problem. The first phase involves clustering the requests and vehicles in the partitions,
while the second phase focuses on finding the optimal matches within each partition. The
authors develop a heuristic algorithm based on local search and insertion techniques to
find feasible matches. Their results demonstrate that the partition-based matchmaking
algorithm is capable of providing high-quality solutions in a relatively short amount of
time, highlighting its effectiveness and potential for application in dynamic ridesharing
systems.

In a compelling response to the ongoing challenges of optimizing ridesharing, Lin et al.
(2019) explore a probabilistic, demand-aware approach. The central issue in ridesharing
optimization, as identified by the authors, lies in the joint optimization of request-vehicle
assignment and routing. Traditional methodologies typically fail to consider the probab-
ilities of future demands, leading to sub-optimal solutions. To address this, the authors
suggest a probabilistic performance index intended to improve ride-sharing optimization
by incorporating the probabilities of future requests. Lin et al. (2019) propose a non-
linear and combinatorial optimization problem geared towards maximizing the expected
number of new or ridesharing passenger pickups, considering the probability distributions
of future requests. The optimization problem is subject to several constraints, such as
vehicle capacity, passenger waiting time limits, and passenger time windows. To address
the complexity of the problem, the authors propose a dual-subgradient heuristic approach.
To handle the inherent complexity of the problem, the authors adapt an approach of re-
formulating the original problem into a linear-combinatorial one, which despite still being
NP-hard, can produce an approximate solution with an approximation ratio of 1 — %
In terms of the heuristic, the authors provide conditions under which it generates an
optimal solution to the reformulated problem, and thus an approximate solution to the
original problem. To evaluate the efficiency of their proposed approach, they conduct
numerical experiments based on real-world travel request traces in Manhattan. The res-
ults indicate that their demand-aware solution substantially outperforms a conventional
demand-oblivious scheme, boosting total passenger pickups by up to 46%. Furthermore,
joint optimization at the fleet level led to 19% more pickups than individual vehicles op-
timizing separately.

Sun et al. (2020) provide insights and algorithmic solutions for optimization problems re-
lated to nonprofit peer-to-peer (P2P) ridesharing services. The authors aim to augment
the societal benefits and cost-saving opportunities by enhancing ridesharing optimiza-
tion. These services, particularly government or non-profit organization-run matching
agencies, are becoming increasingly popular due to their efficiency over solo driving and
public transit. The study examines two versions of the nonprofit ridesharing problem.
The static version has all driver offers and rider requests received in advance, while the
dynamic version accommodates real-time requests. The authors identify the main dif-
ferences between these problems and pick-up and delivery problems with time windows
(PDPTW), which include differences in vehicles and requests, divergent objectives, and
the scale of the problem. The authors propose an exact solution algorithm for the static
problem, which utilizes route-based variables in a set packing formulation. By leveraging
the specific characteristics of the problem, they present an efficient graph-based approach
to quickly generate all necessary vehicle routes. For larger problem instances, a column
generation based heuristic approach is suggested. The dynamic version of the problem is
tackled with two dynamic dispatching policies. These strategies are designed to generate
near-optimal solutions quickly, which is particularly useful in a real-time context. The
algorithms proposed by Sun et al. (2020) are found to solve very large problem instances
optimally, even up to 600 drivers and 1,800 passengers in the case of the static problem.

The authors’ dynamic dispatching policies produce near-optimal solutions for the dynamic
problem.

In an attempt to address the underutilization of ridesharing, Hsieh (2020) propose a mon-
etary incentive optimization approach. The study frames ridesharing underutilization as
an issue of insufficient motivation, with prior literature typically focusing on non-monetary
performance indices, such as travel distance and successful matches, which may not provide
strong enough incentives for widespread adoption of ridesharing. To resolve this, the au-
thor suggest a monetary incentive performance indicator intended to increase ridesharing
incentives. Hsieh (2020) propose a non-linear integer programming optimization problem
to optimize monetary incentives in ridesharing systems. The monetary incentive optimiz-
ation problem involves finding the set of passengers and drivers that maximize the ratio
between the cost savings and the original costs. This problem is subject to various con-
straints, including capacity constraints for each vehicle, cost-saving constraints for each
user, and the winning bid constraint for each driver. The author introduce several dis-
crete metaheuristic algorithms including discrete variants of particle swarm optimization
algorithms, differential evolution algorithms, and the firefly algorithm. In handling the
constraints, the authors adopted a method based on biasing feasible solutions over in-
feasible ones. To assess the effectiveness of their proposed metaheuristic algorithms, they
conducted experiments on several real-world test cases. The results indicated that the
discrete variant of the cooperative, co-evolving particle swarm optimization algorithm was
significantly more effective than the other metaheuristic algorithms in solving a constrained
optimization problem with a non-linear objective function and binary decision variables.
Hsieh (2020) provides insights into incentivizing ridesharing through monetary rewards.
This approach represents an innovative direction in ridesharing research, focusing on eco-
nomic incentives as a key driver of user behavior.

Li et al. (2023) explore urban traffic management in terms of ridesharing. They approach
this by developing a generalized stochastic user equilibrium model, which formulates travel-
ers’ mode and route choice behavior. Recognizing the impact of ridesharing compensation
on individual travel choices and, subsequently, the authors emphasize the importance of
compensation pricing in ridesharing services as a strategic approach to alleviating traffic
congestion. In particular, they tackle the decision-making problem of ridesharing com-
pensation from the perspective of traffic managers and policy-makers who aim to minim-
ize total travel cost and COy emissions. Li et al. (2023) provide a mathematical model
that addresses travelers’ mode and route choice behavior based on the average occupancy
rate of each ridesharing vehicle. Notably, the constraints on the number of ridesharing
drivers and riders are formulated in terms of path flow, thereby avoiding the issue of one
ridesharing rider having to switch between multiple vehicles for a single trip. In addition,
they incorporate the waiting time caused by excessive passengers and the limited capa-
city of public transit vehicles into their modeling, demonstrating a more comprehensive
understanding of the real-world transportation network. The model integrates travelers’
mode and route choice behavior, allowing for endogenous determination of the number of
travelers choosing each travel mode and each path based on stochastic user equilibrium
principle. The model employ the non-dominated sorting genetic algorithm to generate a
set of Pareto-optimal solutions for policy-makers.

Minimizing CO4 emissions has become a vital concern in various sectors, including trans-
portation. Bruck et al. (2017) explore this issue in the context of carpooling by focusing on
reducing COs emissions in a practical daily organic carpooling problem, used by compan-
ies to organize carpooling for its employees on a daily basis to reach a common destination.
Their study aims to provide an environmentally friendly approach to carpooling, emphas-

izing the importance of reducing the carbon footprint of transportation activities. The
authors propose a MILP model that takes into account several constraints, vehicle capa-
cities, maximum detour restriction, and alternative meeting locations. The objective is
to minimize total COy emissions by optimizing carpooling assignments, route selection,
and meeting point choices. Bruck et al. (2017) also incorporate a flexible user preference
structure, allowing for the customization of different user preferences, such as detour tol-
erance, preferred vehicle types, and preferred meeting locations. To solve the problem,
the authors suggest the use of a construction heuristic based on capacitated minimum
spanning trees to find an initial solution. Then, the initial solution is passed to two local
search algorithms: a swap operator that interchanges pairs of vertices and a move oper-
ator that moves vertices to any other position in any route. Lastly, another heuristic is
invoked to verify that each step in the construction heuristics and the two local search
algorithms maintains direct routes. The results indicate that the proposed approach can
substantially reduce COsg emissions compared to individual commuting, demonstrating
the environmental benefits of carpooling.

Stiglic et al. (2015) investigate the advantages of incorporating meeting points in rideshar-
ing systems, highlighting their potential benefits in improving overall efficiency and user
satisfaction. The authors recognize that traditional door-to-door ride-sharing systems can
result in significant detours for drivers and increased travel times for passengers. Stiglic
et al. (2015) propose the concept of meeting points, which serve as intermediate pick-up
and delivery locations, facilitating more efficient routes and minimizing detours for drivers.
The authors develop a MILP model to create organic ridesharing assignments and routing
while considering the use of meeting points. The model takes into account constraints
such as vehicle capacities, time windows, and maximum travel times for passengers. The
objective is to maximize number of matched participants and driving distance savings. To
solve this model, the authors create insertion heuristics where, for each driver, they try
to match a compatible passenger to that driver’s route. To demonstrate the benefits of
meeting points, Stiglic et al. (2015) compare the results of their meeting point-based ap-
proach to a scenario without meeting points. The results show that incorporating meeting
points in ridesharing systems leads to substantial reductions in travel times and detours
for drivers, as well as improved user satisfaction due to shorter and more direct routes.
Furthermore, the use of meeting points also contributes to lower fuel consumption and
emissions, supporting the environmental objectives of ridesharing systems.

Hou et al. (2018) investigate a ridesharing problem concerning the matching of passengers
to drivers and the selection of optimal routes for each vehicle. They address this issue by
proposing both models and a heuristic approach for optimizing ride-matching and routing
in ridesharing systems. The objective is to optimize the assignment of passengers to
vehicles and the routing of the vehicles in order to minimize total travelling distance for
both drivers and passengers. To efficiently solve the problem, Hou et al. (2018) propose a
large neighborhood search (LNS) heuristic. The algorithm destroys the current solution by
removing some demands from the routes of selected drivers. Then, it repairs the solution
by finding appropriate drivers and inserting the unserved demands back into their routes.
The motivation to use the LNS in their problem is its capability in searching a large
scale of neighborhood in each iteration. This implies that the LNS has the potential to
return a better local optimal solution and hence is more efficient than other neighborhood
search methods. The authors evaluate the effectiveness of their proposed method through
computational experiments on a set of randomly generated instances and real-world data
sets. The results demonstrate that the LNS heuristic can provide high-quality solutions
within reasonable computational times.

10

Smet (2021) explores a large-scale organic ridesharing problem involving flexible drivers
and the use of alternate locations, proposing a metaheuristic approach to address this
challenge. In this study, the flexibility of drivers is considered. A flexible driver is con-
sidered one who can drive their own car but is also willing to be a passenger and ride
in another car. The consideration of alternate locations plays a significant role in the
optimization process, providing additional options for pick-up and delivery points, and
enabling more efficient and convenient solutions for both passengers and drivers. After
generating an initial solution using a construction heuristic, Smet (2021) proposes the
late acceptance hill climbing (LAHC) algorithm as a metaheuristic approach. This LAHC
differs from the classic hill climbing algorithm in its acceptance criterion: rather than
comparing the neighboring solution to the previous solution, it is compared against the
solution of several iterations before. Smet (2021) introduces a direct solution represent-
ation defined by two data structures: a set of unassigned users and, for each driver, an
ordered list of tuples representing the different stops in the driver’s route. The algorithm
uses a combination of intra-route and inter-route local neighborhood search operators to
explore the solution space. These operators include change order, change location, delete
user, add user, replace user, move user, and swap users. Smet (2021) conclude that the
use of flexible drivers can notably reduce costs. However, extensive use of flexible drivers
show diminishing returns.

In this thesis, our contribution lies in addressing certain aspects of ridesharing, which
we comprehensively review and compare with existing literature in the field. Key points
of our study include organic ridesharing, static conditions, constraints like time windows
and maximum travel time, as well as objectives such as maximizing assigned riders and
minimizing routing costs. We also introduce a unique real-life case study. The ridesharing
literature is summarized in Table 2.1. Our specific contribution is highlighted in the final
row of the table.

11

¢l

Table 2.1: Reviewed literature table. RS = Ridesharing, CP = Car pooling, VP = Vanpooling, Org. = Organic ridesharing, Inorg. = Inorganic ridesharing,
Stat. = Static, dyn. = dynamic, Con. = Constraints, FL. = Flexible locations, Cap = Minimum capacity constraint, MD = Maximum detour constraint, MW
= Maximum waiting time, TW = Time window constraint, TT = Travel time constraint, MP = Maximum number of preferred passengers, CS = Minimize cost
savings, COy = Minimize CO5 emissions, RC = Minimize routing cost, AR = Maximize assigned riders, US = User satisfaction, WT = Minimize waiting time

Article Problem Org. vs. | Stat. vs. Con. FL | Objective Case Solution method
inorg. dyn. study
Agatz et al. (2012) Review: RS | Org., inorg. | Stat., dyn. Multiple v Multiple Multiple
Baldacci et al. (2004) RS/CP Inorganic Static ™, TT RC, AR Lagrangean column generation
Kaan & Olinick (2013) RS/VP Inorganic Static ™ v RC v Insertion heuristics
He et al. (2023) RS Inorganic Static TW, TT, Cap RC v ALNS
Auad-Perez & Hentenryck (2022) RS Inorganic Static ™, TT RC v Graph reformulation
Zheng & Pantuso (2023) RS Inorganic Static T™W RC, AR v Evolutionary algorithm
Fielbaum et al. (2021) RS Inorganic Static v | RC, WT, AR v Graph heuristics
Ghandeharioun & Kouvelas (2023) RS Inorganic Dynamic ™ Us v Simulation
Pelzer et al. (2015) RS Inorganic Dynamic RC v Partition-based
Lin et al. (2019) RS Inorganic Static T™W, MT AR v Probabilistic approach
Sun et al. (2020) RS Inorganic Stat., dyn. TW, MP RC, CS v Column generation
Hsieh (2020) RS Inorganic Static RC v Swarm, evolutionary and firefly algorithms
Li et al. (2023) RS Inorganic Static RC, CO; Genetic algorithm
Bruck et al. (2017) RS/CP Organic Static MD v CO2 v Insertion heuristic and local search
Stiglic et al. (2015) RS Organic Static T™W v RC, AR v Insertion heuristic
Hou et al. (2018) RS Organic Static ™ RC LNS
Smet (2021) RS Organic Static ™ v RC, AR v Late acceptance hill climbing
Our contribution RS Organic Static TW, TT v RC, AR v ALNS

2.2 Dial-A-Ride Problems and Pick-Up and Delivery Prob-
lems

Pelzer et al. (2015) provide a unique perspective on the relationship between rideshar-
ing, dial-a-ride problems (DARP) and pick-up and delivery problems (PDP). They note
that ridesharing can be viewed as an extension of both dial-a-ride and pick-up and deliv-
ery problems. In the context of transportation and logistics, dial-a-ride problems involve
serving passengers who request transportation between specific origin and destination
pairs, while pick-up and delivery problems deal with transporting goods from one location
to another. In both cases, the challenge is to efficiently route the vehicles while satisfying
various constraints, such as time windows, vehicle capacities, and service quality. Ride-
sharing extends these concepts by allowing multiple passengers with different origin and
destination pairs to share the same vehicle, thus reducing the overall transportation costs
and environmental impact. The connection between these three problems highlights the
potential for adapting solution approaches and techniques from one domain to another.

2.2.1 Dial-A-Ride Problems

Ho et al. (2018) provide a comprehensive review of the dial-a-ride problem (DARP) liter-
ature and discuss recent developments in the field. The authors focus on various aspects
of the problem, including problem features, objective functions, problem classification and
solution methods. In the problem description, the authors outline the typical features
of DARP, such as visit, time window, depot(s), trip, vehicle capacity, travel time, and
route duration. These features are crucial for understanding the problem’s constraints
and requirements. The objective functions of DARPs are discussed in detail, with the
most popular objectives being minimizing the service provider’s operating costs and users’
inconvenience metrics. Other more problem-specific objectives are also considered, such as
optimizing passenger occupancy rate, cost-effectiveness, operator’s profit, staff workload,
and the reliability of the system. The authors also highlight the different approaches to
addressing multiple objectives, including the weighted sum, lexicographic objective func-
tions, and Pareto frontier approaches. The problem classification section divides DARPs
into four categories based on the availability of information (static vs. dynamic) and the
certainty of the information (deterministic vs. stochastic). The authors describe the dif-
ferences between these categories and provide examples of how these classifications apply
to various DARPs. Solution methods for the DARP and its variants have been categorized
into several techniques. Exact methods, which are mainly focused on deterministic and
static problems, include branch-and-cut, branch-and-price, and branch-and-price-and-cut
algorithms. These methods provide high-quality solutions but may not be suitable for
dynamic or stochastic problems. In contrast, heuristic and metaheuristic methods are
more efficient for solving larger, more complex problems. Some popular techniques in this
category are construction insertion heuristics, tabu search, simulated annealing, variable
neighborhood search, large neighborhood search, and genetic algorithms. Each of these
methods has its own strengths and weaknesses, but they all aim to find good quality solu-
tions within a reasonable time frame.

Psaraftis (1980) present an exact dynamic programming solution to a specific variant of
the DARP, known as the single vehicle many-to-many immediate request dial-a-ride prob-
lem. In this problem, a single vehicle is tasked with providing transportation services
for a set of passengers between multiple pick-up and delivery points. The immediate re-
quest aspect of the problem implies that passenger requests are made in real-time, and

13

the vehicle must respond to these requests without prior knowledge of future demand. In
addressing this problem, Psaraftis (1980) propose a dynamic programming approach that
takes into account various practical constraints, such as vehicle capacity, time windows,
and passenger waiting times. The objective is to minimize the total travel time or dis-
tance of the vehicle while providing satisfactory service to the passengers. The dynamic
programming algorithm developed by Psaraftis (1980) computes the optimal solution by
recursively solving subproblems, showing that the dynamic programming approach can
solve the problem optimally within reasonable computational times. Psaraftis (1980) also
discusses the potential extensions and limitations of the proposed method, suggesting that
the dynamic programming approach could be adapted for other variations of the dial-a-
ride problem or used in conjunction with other optimization techniques.

Madsen et al. (1995) investigate a DARP that includes time windows, multiple vehicle
capacities, and multiple objectives. In this variant, capacitated vehicles must be routed to
satisfy a set of transportation requests, each involving the pick-up of passengers from an
origin location and their delivery to a destination location within specified time windows.
The problem aims to simultaneously minimize multiple objectives, such as total travel
distance, number of vehicles, total waiting time, and deviation from promised service.
To solve this problem, Madsen et al. (1995) propose the REBUS heuristic algorithm,
which is an insertion algorithm. The algorithm starts by considering the next unallocated
passenger in a set of passengers and then examines each vehicle in a set of vehicles. For
every vehicle, the algorithm generates all feasible insertions of the passenger in the schedule
and calculates the change in the objective function. If a feasible insertion exists, the one
with the minimum change in the objective function is chosen, and the passenger is inserted
into the schedule and removed from the set of passengers. If no feasible insertion exists for
the passenger, it is returned to a list of passenger that cannot be served. The algorithm
continues until all passengers in the set have been considered.

Parragh et al. (2010) address a DARP with an objective of minimizing the total routing
cost, while taking into consideration constraints such as duration limits, time windows
and maximum travel times. In their study, Parragh et al. (2010) develop a variable
neighborhood search (VNS) heuristic. The VNS algorithm begins with constructing an
initial solution and iteratively improves it by exploring the neighborhoods and applying
local search procedures. If the new solution improves upon the incumbent solution, it
replaces the incumbent, and the search continues in the first neighborhood. If the new
solution is worse, the incumbent remains unchanged, and the next neighborhood is used
in the subsequent iteration. The algorithm proceeds until a stopping criterion, such as a
maximum number of iterations or a time limit, is reached. Parragh et al. (2010) validate
the effectiveness of their VNS heuristic through computational experiments on various
benchmark instances of the DARP. The authors report new best results for 16 out of 20
benchmark instances, demonstrating the competitive performance of the proposed VNS
algorithm.

Cordeau & Laporte (2003) address the static multiple-vehicle DARP. The DARP is charac-
terized by the need to satisfy multiple requests using a fleet of vehicles, while considering
constraints such as vehicle capacities, time windows, and travel time limitations. The
objective is to minimize the total travel distance. To tackle the static multiple-vehicle
DARP, Cordeau & Laporte (2003) propose a tabu search heuristic. The tabu search al-
gorithm developed by the authors is based on three main components: a neighborhood
search strategy, a tabu list to store recently visited solutions and prevent cycling, and
an aspiration criterion to override the tabu status of a solution if it shows potential for
improvement. The neighborhood search strategy uses different types of moves, such as in-

14

sertions, exchanges, and relocations, to generate new candidate solutions from the current
solution. The results indicate that the proposed algorithm is effective in finding high-
quality solutions for the static multiple-vehicle DARP within reasonable computational
times. Furthermore, the authors demonstrate that their tabu search heuristic outperforms
other existing heuristics and optimization algorithms in terms of solution quality and com-
putational efficiency.

2.2.2 Pick-Up and Delivery Problems

Parragh et al. (2008) provide a comprehensive survey of the various aspects and challenges
of pick-up and delivery problems (PDP). In their survey, Parragh et al. (2008) highlight
the various constraints and objectives typically encountered in pick-up and delivery prob-
lems, such as vehicle capacities, time windows, route length, and service quality. They also
emphasize the importance of considering both static and dynamic aspects of these prob-
lems, as real-world transportation and logistics scenarios often involve changing demand
patterns and evolving operational conditions. The authors present a thorough review of
solution methods for pick-up and delivery problems, ranging from exact algorithms, such as
branch-and-bound and dynamic programming, to heuristic and metaheuristic approaches,
including local search, tabu search, simulated annealing, and genetic algorithms. Parragh
et al. (2008) provide an analysis of the strengths and weaknesses of each method, as well
as their suitability for specific problem types and settings.

Ropke & Pisinger (2006) focus on the pick-up and delivery problem with time windows
(PDPTW), a variant of the classic pickup and delivery problem where each transportation
request involves picking up goods or passengers from an origin location and delivering them
to a destination location within specified time windows. The objective of the PDPTW is
to minimize the total travel distance or time while adhering to constraints such as vehicle
capacities and time windows. In their research, Ropke & Pisinger (2006) propose an ad-
aptive large neighborhood search (ALNS) heuristic to solve the PDPTW. The ALNS is a
metaheuristic that has shown promising results in solving various combinatorial optimiz-
ation problems. The ALNS heuristic developed by the authors is based on a combination
of several destroy and repair operators. The adaptive nature of the ALNS lies in its ability
to dynamically adjust the selection probabilities of these operators based on their recent
performance, guiding the search process towards more promising areas of the solution
space. The computational results show that the ALNS is capable of finding high-quality
solutions. Furthermore, the authors highlight the versatility of the ALNS, suggesting that
it can be easily adapted to address other variants of the pickup and delivery problem, like
ridesharing problems.

Lu & Dessouky (2004) present an exact algorithm for solving the multiple vehicle pick-
up and delivery problem without time windows (MVPDP), and the problem with time
windows (MVPDPTW), which are variants of the classic pick-up and delivery problem
in which multiple vehicles are available to serve a set of transportation requests. In the
MVPDP, each request consists of picking up goods or passengers from an origin location
and delivering them to a destination location. The problem entails assigning requests to
vehicles, determining the route of each vehicle, and scheduling the pick-up and delivery
activities to minimize the total travel cost and the fixed vehicle cost, while considering
various constraints such as vehicle capacities and time windows. To address the MVPDP,
Lu & Dessouky (2004) propose a branch-and-cut heuristic. In their approach, they employ
bounding and branching strategies to effectively tackle the problem. At each node of the
search tree, a linear relaxation is defined, and they treat certain constraints iteratively,

15

only adding them to the problem if they are violated when not included. This iterative
procedure reduces the solution time for solving the LP-relaxation. Lu & Dessouky (2004)
demonstrate the effectiveness of their branch-and-cut heuristic through computational
experiments. The results show that the proposed method can find high-quality solutions
for small to medium-sized instances within reasonable computational times. The authors
also discuss potential extensions and limitations of their approach, suggesting that their
heuristic could be adapted for other variants of the pick-up and delivery problem.

Ropke et al. (2006) investigate the pick-up and delivery problem with time windows
(PDPTW). The objective is to minimize the total travel distance or time. The authors
make three contributions in their paper. First, they propose two formulations for the
PDPTW and the closely related DARP, which impose a limit on the elapsed time between
pick-up and delivery of a request. Second, Ropke et al. (2006) introduce new valid inequal-
ities that combine the pick-up and delivery structure of the problem with either vehicle
capacity constraints or time window constraints. These inequalities are used to strengthen
the formulations, making them more effective in solving the problem. Finally, the authors
develop branch-and-cut algorithms that incorporate the new formulations and valid in-
equalities to solve the PDPTW and the DARP. The branch-and-cut algorithms merge the
branch-and-bound method with cutting plane techniques, generating valid inequalities or
cuts to enhance the linear programming relaxation. Through computational experiments
on various test instance sets, Ropke et al. (2006) demonstrate the effectiveness of their
approach. The results indicate that their algorithms can optimally solve instances with
up to eight vehicles and 96 requests (194 nodes), showcasing the potential of the new for-
mulations, valid inequalities, and branch-and-cut algorithms for addressing the PDPTW
and the DARP.

Lu & Dessouky (2006) address the pick-up and delivery problem with time windows
(PDPTW) by presenting a insertion-based construction heuristic to solve the problem.
In the PDPTW, capacitated vehicles must be routed to satisfy a set of transportation re-
quests, each involving the pickup of goods or passengers from an origin location and their
delivery to a destination location within specified time windows. The objective is to minim-
ize the total travel distance and fixed vehicle cost. The authors’ proposed insertion-based
construction heuristic consists of two main components: a parallel insertion procedure and
a sequential insertion procedure. The parallel insertion procedure is employed to build
initial solutions by iteratively inserting requests into the routes of multiple vehicles simul-
taneously. The requests are inserted according to a cost-based criterion, which prioritizes
those with the least increase in the total cost of the solution. The sequential insertion pro-
cedure refines the initial solution by examining each request in sequence and reinserting it
into the best position within the existing routes. This process continues until no further
improvement in the solution can be achieved.

Dahle et al. (2019) focus on the pick-up and delivery problem with time windows and
occasional drivers (PDPTW-OD), an extension of the classic PDPTW. In this variant, a
company not only has its own fleet of vehicles to service requests but may also use the
services of occasional drivers. These drivers are willing to take a detour to serve one or
more transportation requests for a small compensation. The objective is to minimize the
routing costs of the regular vehicles plus the compensation given to the ODs. Further-
more, the model incorporates different compensation schemes for occasional drivers and
personal threshold constraints that reflect the minimum acceptable compensation for each
occasional driver. Dahle et al. (2019) discuss the impact of occasional drivers and different
ways of compensating them. The authors present two mathematical formulations of the
problem: reduction tests and symmetry-breaking constraints. They also propose a model

16

for optimizing the parameters in the compensation schemes. The computational study
conducted by the authors shows that utilizing occasional drivers may lead to large cost
savings, with the model yielding cost savings of about 10-15%. Additionally, they discuss
the effects of different compensation schemes and the role of personal threshold constraints
in reflecting the expectations of occasional drivers.

Wang et al. (2020) present a multi-objective version of the multitrip pickup and deliv-
ery problem with time windows and manpower planning (MTPDPTW-MP) to describe
a real-life healthcare problem that originated from the application of public hospitals in
Hong Kong, China. These transportation services are provided to disabled or elderly pa-
tients between their residences and clinics. The problem requires designing ambulance
routes that satisfy a series of constraints, as well as staff assignment. The authors intro-
duce a multi-objective MTPDPTW-MP (MO-MTPDPTW-MP) with three objectives to
be minimized: the number of unserved requests, the total traveling cost, and the workload
deviation. These objectives take into account the interests of customers, the hospital, and
the staff. Constraints include vehicle capacity, time windows, maximum travel times, and
a staff break time constraint, where each staff member must take a 30-minute break after
each trip. To solve the MO-MTPDPTW-MP, Wang et al. (2020) propose a multi-objective
iterated local search algorithm with adaptive neighborhood selection (MOILS-ANS). The
algorithm generates a diverse set of alternative solutions for decision-makers to meet their
requirements. MOILS-ANS employs problem-specific neighborhood structures and an ad-
aptive neighborhood selection strategy to explore the search space. The experimental res-
ults show that the proposed MOILS-ANS substantially outperforms other multi-objective
algorithms. The authors also analyze the nature of objective functions and the properties
of the problem. In addition, the study compares the proposed MOILS-ANS with the pre-
vious single-objective algorithm, highlighting the benefits of multi-objective optimization.

17

Chapter 3

Problem Definition

In this chapter, the Static Ridesharing Routing Problem with Flexible Locations (SR-
RPFL) is introduced. The SRRPFL involves multiple individuals participating in a ride-
sharing system, taking on one of two roles: a driver or a passenger. A driver is a participant
who drives their own car and is willing to pick up and deliver passengers. A passenger, on
the other hand, is a participant who does not drive a car and therefore needs to be picked
up and delivered by a driver. If no drivers are available to pick up the passenger, they
must find alternative ways to reach their destination.

The SRRPFL is solved daily in a static setting. Each day, all drivers and passengers
submit their travel information, which is used as the input to the SRRPFL. The travel
information for passengers includes an origin and a destination location, a time window
and a maximum travel time. Furthermore, passengers submit how far they are willing to
travel to/from alternative pick-up/delivery locations, which are referred to as candidate
locations. The same travel information is included for the drivers, except for candidate
locations, but the capacity of their car is added. The origin location for both drivers and
passengers is considered their residence, while the destination location is considered their
workplace. Ridesharing can occur from a passenger’s home to their workplace or on a
portion of this route between two candidate locations.

The set of candidate locations is split into candidate pick-up locations and candidate
delivery locations. Each passenger has an individual set of candidate pick-up and delivery
locations. Candidate pick-up locations are locations that a passenger can travel to and be
picked up by a driver. Candidate delivery locations are locations where a driver can deliver
a passenger before the passenger travels to their destination. These candidate locations are
used to reduce the total travel time for drivers, increase the degree of ridesharing, provide
more flexibility, and create additional possible solutions or combinations of ridesharing
routes. Each time window includes the earliest and the latest time a driver or passenger
can be at their destination location. The maximum travel time is the maximum time
each driver or passenger is willing to spend traveling from their origin location to their
destination location. If a passenger is either picked up or delivered at a candidate location,
the time it takes to travel to or from the candidate location is included in the calculation
of the total travel time. For drivers, the capacity is the number of free seats they have in
their car or the number of passengers they are willing to pick up.

The SRRPFL determines the optimal route for each driver and passenger. This process
involves making four sets of decisions displayed in Table 3.1:

18

Table 3.1: Four sets of decisions involved in the SRRPFL

1. Determine which passengers to be assigned to a suitable driver or, alternatively,
establish that no driver is available to pick them up

2. Determine the pick-up location for each designated passenger and inform the re-
spective driver

3. Determine the delivery locations for each driver and passenger

4. Determine the order of pick-up and delivery for each passenger

The SRRPFL makes all decisions while keeping in mind its two primary objectives. The
first objective is to maximize the number of passengers participating in ridesharing. This
is achieved by measuring the number of passengers picked up by each driver, ultimately
reducing the number of cars on the road. The second objective is to minimize the total
travel time for all drivers. This ensures that the most effective route is chosen, with the
same number of passengers being picked up.

The rational for the second objective, minimizing drivers’ travel time, is the expectation
that it will also indirectly benefit passengers’ experience. By reducing travel time for
drivers, the overall system becomes more efficient, which can lead to a decrease in passen-
gers’ travel time as well. As drivers spend less time on the road, passengers’ overall travel
time may be reduced as a consequence. In this way, minimizing the total travel time for
drivers inherently contributes to the minimization of travel time for passengers.

There are also several underlying assumptions for the SRRPFL. Firstly, it operates in a
static manner where drivers and passengers submit their travel information ahead of time,
and the SRRPFL determines the optimal solution for a specific time interval. The solution
remains fixed for that time interval. Secondly, a trip is split into two distinct phases: a
pick-up phase and a delivery phase. During the pick-up phase, all the pick-ups are made,
and all deliveries are made during the delivery phase. This means that all pick-ups are
made before the first delivery, and after the first delivery, there can be no more pick-ups.

Figure 3.1 illustrates an example problem of the SRRPFL with a corresponding possible
solution. This example problem considers the problem with one driver and two passengers.
Driver 1 starts driving from its own origin in OD1 in Blomvag. Driver 1 picks up Passenger
1 before picking up Passenger 2. The SRRPFL dictates that both passengers must travel to
one of their candidate locations. Passenger 1 travels to CP2P1 in Agotnes from Sollsvika,
while Passenger 2 travels to CP3P2 in Tellnes from Skogsvag. After the pick-up phase,
Passenger 2 is the first to be delivered. Passenger 2 is delivered at CD1P2 in Fyllingsdalen,
before it travels to its destination, DP2 in Bgnes. Further, Passenger 1 is delivered at its
destination, DP1 in Laksevag. Lastly, Driver 1 travels to its destination, DD1 in Bergen
sentrum.

19

Blomvag

oD1 _ - —_ -~~~ ~< Bergen sentrum
. -~ ~ DD1 '
’ <" pi . . . i ODk — Origin node for !
‘ ick-up locations Delivery locations ™ [!
\ // 1{ 'y \\ /. i driver k :
\ / A 7 e T / : ;
/ o 7 Soleim N \\ e i DDk — Destination node |
\. . Sollsvika . K cpir1 O \\ - ! for dri k !
\ / . . , . X 1 for driver :
/ PP1 Vindenes ; L ' ;
g / ’ . J Laksevig — \ \ H . . H
L crim ! op1 | \ i PPn — Pick-up location |
| ~ Agomes ,°) ! \ for passenger n ;
l ! cp2p1 | Flingsdalen ! | : . :
| . \ Tellnes | | co2 Loddefjord ! : DPn - Delivery :
' — | ! location for passenger !
\ ' N\ cPP2 | Ay CD2P2 / 'n :
\ \‘ Trengereid %’7 K b / / i E
\ \ cr2p2 Skogsvg ' Bl:’:f / CPiPn— Candidate pick- |
\ \ oy / 1 up location i for ;
\\ .k - o // | passenger n !
*. Hammarslan / AN . ' :
N .. 7 !) '
< e S Pid | CDiPn— Candidate |
S P i delivery location i for
ey - _ - - | passenger n !
— H '

~~ — -_— e

Figure 3.1: Illustration of an example SRRPFL problem featuring one driver and two passengers,
with location names based on the case study (Chapter 6). The driver picks up and delivers
passengers at specified locations before reaching their final destination

20

Chapter 4

Mathematical Model

This chapter presents the mathematical model of SRRPFL presented in this thesis, and
is formulated as a mixed integer programming (MIP) model. Section 4.1 provides the
mathematical notations used, including sets, parameters, and decision variables. Section
4.2 presents descriptions of the objective functions and constraints of the SRRPFL.

4.1 Mathematical Notation

The following section presents the notation used in our mathematical model. We introduce
the sets in Subsection 4.1.1. The parameters are introduced in Subsection 4.1.2. The
decision variables are introduced in Subsection 4.1.3.

4.1.1 Sets

The set of drivers is defined as D, where |D| is the total number of drivers. This set
also represents drivers’ origin locations, i.e., their residencies. The set of passengers is
represented as the set of different passenger origin locations, P, i.e., the residency of
each passenger. Each passenger also has a designated destination location, e.g., their
workplace, and this is represented as the set PP. The size of the set PF is equal to
the size of PP, and represents the total number of passengers N. Each passenger has
a set of candidate pick-up locations and a set of candidate delivery locations. The set
of candidate pick-up locations is represented as MZP and the set of candidate delivery
locations is represented as ./\/IZD for passenger i € PF.

Each node in the model is represented as a combination of an origin/destination location
for a driver/passenger and a candidate pick up/delivery location. The set of passenger pick-
up nodes is represented as (i,m) € N'*', where i € PP and m € Mf . The representation
of the origin of a passenger i € P' as a pick-up node is (7,0). The set of passenger
delivery nodes is represented as (j,n) € NP, where j € PP and n € MiD , where 7 is the
corresponding origin location to j. The representation of the destination of a passenger
j € PP as a delivery node is (j,0). Furthermore, the set N'% represents all ridesharing
nodes where a passenger is either picked up or delivered. Note that the origin node o(k)
and destination node d(k) for driver k € D is not a part of this set, thus, Nt = NPUNP.
o(k) and d(k) are described in more detail in Subsection 4.1.2. Lastly, Ay is defined as

the set of all possible arcs driver k € D can travel. An arc for a specific driver k is defined

21

as the direct travel between two nodes (i,m) and (j,n), where (i,m) € N* U {o(k)} to
node (j,n) € N U {d(k)}. Table 4.1 summarizes all sets used in the SRRPFL.

Table 4.1: All sets defined for the mathematical formulation of the SRRPFL

Notation Explanation

D Set of drivers k € {0, 1, ..., |D|}

PP Set of passenger origin locations i € {1,2,..., N}

pPD Set of passenger destination locations j € {N +1,N +2,...,2N}

MP Set of candidate pick-up locations m € {0,1,...,|MZF|} for passengers
i€ PP

MP Set of candidate delivery locations n € {0,1,...,|[MP|} for passengers
ie PP

NP Set of passenger pick-up nodes N € {(i,m)|i € P¥,m € MF}

NP Set of passenger delivery nodes NP € {(j,n)|j € PP, n € Mf}

NE Set of all ridesharing nodes Nt = NP U NP

N Set of all nodes N' = NB U {o(k)} U {d(k)}

Ay Set of possible arcs driver k € D can travel. An arc represents the direct

travel from node (i,m) € N U {o(k)} to node (j,n) € NRuU {d(k)}

Figure 4.1, inspired by Figure 3.1 from Chapter 3, visually demonstrates the sets N'°,
NP and NE. In this illustration, the set N encompasses all pick-up nodes a driver
k, originating from o(k), can visit. Subsequently, after collecting all passengers from
the nodes in NP, the driver delivers them to their respective delivery nodes in the set
NP . Finally, the set N all ridesharing nodes of the process of picking up and delivering
passengers.

oy e
‘ - - =< g d(k) e,
~ ~ . i o(k) — Origin node for
/// NP ND \\\ { driver k |
4 T T N | 4(k) - Destination node |
/ d ‘ © \\ { for driver k :
@ : i
// \\ i NE_All the ridesharing |
4 ! nodes, i.e., pick-up and !
i \ i delivery nodes for :
' | | passengers
o~ o | ;
\\ [)] NP~ All pick-up nodes
/ : :
\\ / { NP—All delivery nodes |
, / : :
\ . / @ - Origin/destination !
\\ ’ // ! node :
N ~ 1
N _ { O — Candidate pick-
~No - ' up/delivery node
~ —_ H

Figure 4.1: Visual illustration of N, NP, and N'F

Figure 4.2 visually illustrates the sets /\/lf and /\/liD . In this example, when the driver is en

22

route to pick up the first passenger, the driver has three distinct candidate pick-up nodes
(M) to choose from: one node representing the passenger’s origin and two candidate
nodes. For the second passenger, the driver has the option to pick up at four different
nodes (/\/lé3): the origin node or at any of the three other candidate pick-up nodes. When
it comes to the first delivery, the driver can choose between the destination node and two
candidate delivery nodes (Mf). Lastly, for the final delivery, the driver can either deliver
at the destination location or at one candidate delivery node (MP).

oy e

- =< d(k)
o -~ ~
- ~
e N .
// D > N
7 P Ml N
/ My Jo \
/ { ® X
/ \

4 \

I \

| \ !

|

A N «)

\ /

\ / / [mmmmemmmmmmmsmmmseeo—eeooeoo ooy
\ { / i MP- Candidate pick-up !
\\ / locations for passenger i
S b / : !
N ~ M, Pid i MP - Candidate delivery |
N ~ 7 i locations for passengeri
~< /// e

Figure 4.2: Visual illustration of MZ and MP. Here, we have passenger i = 1 and i = 2

4.1.2 Parameters

As mentioned in Subsection 4.1.1, we define the origin node and destination node as o(k)
and d(k) for driver k € D, respectively. Drivers will start their ride at their origin and
end the ride at their destination node. Thus, drivers will not have any other candidate
locations.

Tfnjn is defined as the direct travel time between node (i,m) € N% U {o(k)} and node
(j,n) € NEU {d(k)}. TS, is defined as the travel time between a passenger’s ori-
gin/destination i € P¥ U PP and a candidate pick up/delivery location m € M U MP.
TZ(;:L is zero minutes for passengers picked up at their origin location ((7,0),7 € pr), or
delivered at their destination location ((j,0),7 € PP). TM is defined as the maximum
travel time driver/passenger k € D U P is willing to spend from their origin to their

destination locations.

Each driver/passenger has a time window for when they can arrive at their destination
location. The earliest and latest arrival time for driver/passenger k € DUPYF is represented
as A, and Ay, respectively. Finally, Q. represents the number of passengers each driver
k € D can transport. Table 4.2 summarizes all parameters.

Figure 4.3 provides a closer look at Figure 4.2, focusing on the second and third nodes
the driver visits. In Figure 4.3, a node is depicted with parentheses (i, m) for readability
purposes. Additionally, the node representations are displayed. The origin node for pas-
senger 2 is depicted as node (2,0), and the candidate pick-up nodes {(2,1), (2,2),(2,3)}.
Moreover, the destination node for passenger 2 is represented as node (3,0), and the can-
didate delivery nodes {(3,1),(3,2)}. T(%,:s) denotes the time it takes for passenger 2 to

23

Table 4.2: All parameters defined for the mathematical formulation of the model

Notation Explanation

o(k) Origin node for driver k € D

d(k) Destination node for driver k € D

Tiﬁjn Direct travel time from node (i,m) € N U {o(k)} to node (j,n) €
NFU {d(k)}

Tl(;Yn Direct travel time between origin/destination location for passenger i €

PP and its candidate pick up/delivery location (i,m) € N UNP

Té\/[Maximum travel time for driver/passenger k € D U PF
A, Earliest arrival time at destination for driver/passenger k € DU PF
Ay, Latest arrival time at the destination for driver/passenger k € DU P¥
Qr Maximum capacity for driver k € D
@3.1) 32)
@3)
C \\
@2 ; Tao '«

/
1
II T(CZ“?,)
‘ (3,0) L
' TS, — The distance from |
@) i the origin/destination
i node of passenger i to
(2,0) i candidate node (i, m)

Figure 4.3: Visual representation of nodes and TS,

travel from their origin location to the candidate location (2, 3). T(C signifies the time

3’1)
it takes for passenger 2 to travel from the candidate delivery location (3,1) to their des-

tination location.

24

4.1.3 Decision Variables

The binary variable 2y, jn, called the ridesharing arc, is 1 if driver k& € D travels directly
from node (i,m) € N® to node (j,n) € N, and 0 otherwise. Note that this variable
is only for ridesharing nodes, N'®. The binary variable a:fim, called the start arc, is 1 if
driver k € D drives from its origin o(k) to a candidate pick up node (i,m) € N7, and
0 otherwise. The binary variable xkEjn, called the end arc, is 1 if driver k € D travels

from candidate delivery node (j,n) € NP to its destination node, d(k), and 0 otherwise.
The binary variable kaD is 1 if driver k € D travels directly from its origin, o(k), to its
destination, d(k), and 0 otherwise. In other words, if ng = 1, it means that driver k € D
does not pick up any passengers. The binary variable v, is 1 if passenger i € P is picked
up/delivered at candidate location (i,m) € N, and 0 otherwise. The binary variable zj;
is 1 if driver k € D picks up passenger i € PP, and 0 otherwise. The continuous variable

trim defines the time when driver k € D leaves node (i,m) € N.

Based on the defined variables, particularly the ridesharing arc, start arc, and end arc
variables, the SRRPFL is characterized as an arc-flow model. Table 4.3 summarizes all
variables in this problem.

Table 4.3: All decision variables defined for the mathematical formulation of the SRRPFL

Notation Explanation

mfm 1 if driver k € D travels from its origin location o(k) to a pick up node
(i,m) € NT, 0 otherwise

Tkimgn 1 if driver k € D travels directly between ridesharing nodes (i,m) € N
and (j,n) € NE, 0 otherwise

xkEjn 1 if driver k € D travels from a delivery node (j,n) € NP to its destina-
tion location d(k), 0 otherwise

QP 1 if driver k£ € D travels directly from its origin location o(k) to its
destination location d(k), 0 otherwise

Ykim 1 if driver k& € D picks up/delivers passenger i € P at node (i,m) €
NP UNP, 0 otherwise

Zki 1 if driver k € D picks up passenger i € P¥, 0 otherwise

thim The time driver/passenger k € DU PP leaves node (i,m) € N

Figure 4.4 illustrates the variables xfim, Thimgn xfjn, and ng. In this figure, the use
of commas and parentheses to represent nodes is used for readability purposes. In this
example, driver 1 can either choose to pick up passengers and participate in rideshar-
ing (:cf (1) = 1) or drive directly to its destination without picking up any passengers
(a:loD = 1). If the driver decides to pick up passengers, the Ty, variables are set to 1
(:1:17(171)7(2’3) = T1,(2,3),3,1) = T1,(3,1),(4,0) = 1). After all passengers have been delivered, the
driver exits the ridesharing and travels directly to their destination location from the last
delivery node (mf (4,0 = 1). This representation helps to demonstrate the decision-making
process and the different choices available to the driver within the ridesharing model.

25

X1
o(1) _o---tTTTTTTTTTTT T e -
‘ —_—_— T —~ - o ™ d(l)
- - o~ ~
‘\\ e - g =~ A AN
AN Ve N
< \\ / N\ xE
X . \ 1,(4,0)
L) Sy \
N \
'/ DR %1,(3,1),(4,0) \‘
\ X1,(1,1),(2.3) /’
\ X1,(2,3),(3,1) //
\
N /
N /
N /
N s
~N ~ P <
~ ~ — - -

— ————

Figure 4.4: Visual representation of decision variables xfim, Thimjn, xkEjn, and ng
4.2 Model Formulation

This section presents the mathematical formulation of the SRRPFL. We start by intro-
ducing the objective functions in Subsection 4.2.1. Then, we introduce the constraints in
the model in the proceeding subsections.

4.2.1 Objective functions

The model is formulated as a multi-objective optimization problem with two objective
functions, which is solved using the lexicographic method. Lexicographic ordering is a
method for ranking solutions in multi-objective optimization based on a predefined order
of importance of the objectives. The objectives are first sorted based on the values of
the objectives in that order, such that the most important objective is considered first,
and ties are broken based on the second most important objective, and so on. The first
objective aims to maximize the number of passengers that are picked up by drivers, and
is formulated in Objective (4.1).

max 71 = Z Z Zhi (4.1)

keD icpP

The second objective aims to minimize the total travel time for drivers, and is formulated
in Objective (4.2). This considers the time drivers leave their origin location and arrive
at their destination location.

min Zp = Z(tk,d(k) —tho(k)) (4.2)
keD

26

4.2.2 Routing Constraints

Constraints (4.3) ensure that each driver must leave its origin exactly once.

Yo ap,tafP =1, keD (4.3)
(i,m)eNP

Next, Constraints (4.4) ensure that each driver arrives at its destination node exactly once.

> af,+aP =1, keD (4.4)
(j,n)eEND

Constraints (4.5) ensure that if a node, (i,m), is visited either as the first ridesharing
node or following any arbitrary pick-up node, then driver k& must also depart from the
node (i,m).

Tim + Z Thjnim = Z Tkimjn, k € D, (i,m) € N (4.5)
(Gm)eN” (m)ENE

Constraints (4.6) ensure that the final delivery node, (j,n), to be visited prior to the
driver’s destination node, d(k), is indeed traversed following another arbitrary ridesharing
node, (i,m). Together, Constraints (4.5) and (4.6) guarantee that a driver who visits a
ridesharing node subsequently departs from that node.

mkE]n + Z Tkinim = Z Tkimgn, k € D, (], TL) (S ND (46)
(i,m)eND (i,m)eNE

Constraints (4.7) ensure that each passenger is picked up by a maximum of one driver.
If a passenger, i, does not participate in the ridesharing, it will not be picked up by any
driver, k.

xgjn + Z LEkimgn — Ykjn = 07 ke Dv (]v 7’L) € NP (47)
(i,m)eNF

Constraints (4.8) ensure that each passenger is delivered by at most one driver. Con-
sequently, a passenger, ¢, who does not participate in ridesharing, will not be delivered by
a driver, k.

(i,m)eND

Constraints (4.9) ensure that each passenger is picked up or delivered at no more than
one candidate location.

S Y kim <1, ieP” (4.9)

keD mGMZPU./VliD

27

Constraints (4.10) ensure that the variable z; is equal to 1 if driver k picks up passenger
i.

%i= Y Ykim» k€DicP (4.10)
mGMZP

4.2.3 Coupling and Precedence Constraints

The Coupling Constraints (4.11) ensure that any driver who picks up a passenger also
delivers the passenger to one of their candidate delivery nodes.

> Ykim= Y UkNtin, k€D,iePF (4.11)
meMFP neMP

The Precedence Constraints (4.12) ensure that no deliveries are allowed to occur before
pickups.

tkim + Tif)m,N—&-i,nZki — tk,NJri,n < O, ke D, (i, m) S NP, n e MZD (4.12)

4.2.4 Time Constraints

Constraints (4.13) ensure that the departure time at node (j,n) is not earlier than the
sum of the departure time from the preceding node (i,m) and the travel time between the
nodes. The combination of Constraints (4.13) and (4.14) prohibits drivers from waiting
at any of these node. My, j, is the big-M, representing a large value.

tim + T’z?n]n - tk]n - Mkzmyn(]- - xkzmjn) < 07 ke D7 (,Lv m) € NRa (.]7 n) € NR (413)

tkim + T%?an - tkjn + Mkzmjn(l - xkimjn) Z 07 ke D7 (Z, m) € NR7 (]7 TL) € NR (414)

Constraints (4.15) ensure that the departure time at node (i,m) is not earlier than the
sum of the departure time from the preceding node o(k) and the travel time between the
nodes. The combination of Constraints (4.15) and (4.16) prohibits drivers from waiting
at any of these node. My, ,()i,m is the big-M, representing a large value.

tk,o(k) + Tol()k%@m — tkim — Mk,o(k),i,m(l - xgzm) < 07 k€ D7 (i7 m) € NP (4‘15>

thoo(k) + Tagky im — thim + M o(k),im(1 = 23in) > 0, k € D, (i,m) e N7 (4.16)

Constraints (4.17) ensure that the departure time at node d(k) is not earlier than the
sum of the departure time from the preceding node (i,m) and the travel time between the

28

nodes. The combination of Constraints (4.17) and (4.18) prohibits drivers from waiting
at any of these node. My ;,, qx) 1s the big-M, representing a large value.

thim + Ty) — thd(k) = Miima) (1 = Thim) <0, k€D, (i;m) e NP (4.17)

Ukim + Tz?m,d(k) - tk,d(k) + Mk,i,m,d(k’)<1 - xkEzm) >0, keD, (Zv m) S ND (418)

Constraints (4.19) ensure that the departure time at node d(k) is not earlier than the sum
of the departure time from the preceding node o(k) and the travel time between the nodes.
The combination of Constraints (4.19) and (4.20) prohibits drivers from waiting at any of
these node. My, 1) q(x) is the big-M, representing a large value.

totk) + Tatky.dek) — Tty — Mio(yde) (1 — 27) <0, keD (4.19)
t + T2 —t + M, 1—z¢P)>0, keD (4.20)
ko(k) + Tok)ack) — th.dik) k,o(k),d(k) k)20,

Constraints (4.21) ensure that all drivers arrive within their predefined time windows,
while Constraints (4.22) ensure the same condition for all passengers.

Aizi < teN4i0 + T8 vinYkim < Aizii, k€ D,i e PP ne MP (4.22)

Constraints (4.23) ensure that the total travel time does not exceed the maximum travel
time for drivers, while Constraints (4.24) ensure the same for passengers. My ;o is the
big-M, representing a large value.

Ukd(k) — tk,o(k) < M, keD (4.23)

tentio — thio < TM + My io(1 — 21i), keD,iePP (4.24)

Constraints (4.25) ensure that if a passenger is picked up at node (i, m), the time of pickup
at node (i,m) is equal to or later than the departure time for a passenger from its origin
node (¢,0), plus the travel time between the nodes. Constraints (4.26) ensure that if a
passenger is delivered at node (j,n), the arrival time at its destination node (7, 0) is equal
to or later than the time the passenger is delivered at node (j,n), plus the time between
the nodes.

thio < thim — TonYkim, &k €D, (i,m) € N (4.25)

thjo = tejn + Tinlkjn, k € D, (j,n) € NP (4.26)

29

4.2.5 Capacity Constraints

Constraints (4.27) ensure that the total number of passengers in a driver’s car never

exceeds the driver’s maximum capacity.

> i <Qr keD

iePP

4.2.6 Binary, Continuous and Non-Negativity Constraints

x5, €{0,1}, keD,(i,m)eNT
Thimin € {0,1}, k€D, (i,m) e N (j,n) e NI
o, €10,1}, ke D,(jn) e NP
9P €{0,1}, keD
Yeim € {0,1}, ke D, (i,m) e NP UNP
2z €{0,1}, keD,iePP

thim >0, keDUPE (i,m)eN

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

30

Chapter 5

Adaptive Large Neighborhood
Search

This section introduces an adaptive large neighborhood search (ALNS) approach to solve
the SRRPFL. Section 5.1 provides an overview of the ALNS for the SRRPFL. In Section
5.2, the representation of a solution to the problem is presented. Following that, Section
5.3 presents the construction heuristic used to create an initial solution. Section 5.4
covers the destroy and repair operators, and operator selection. Section 5.5 describes the
acceptance criterions, including the simulated annealing acceptance criterion. Section 5.6
details the local neighborhood search (LS) heuristic and its integration with the ALNS.
Finally, Section 5.7 describes a set-partitioning formulation of SRRPFL and its integration
with the ALNS.

5.1 Overview of ALNS

The choice of using an adaptive large neighborhood search (ALNS) heuristic is motivated
by several factors. Firstly, the SRRPFL is a highly constrained combinatorial optimization
problem with large solution spaces, rendering exact methods computationally infeasible
for real-world instances. Metaheuristics, such as ALNS, offer an effective approach to
exploring the solution space, handling complex constraints, and providing high-quality
solutions within reasonable computation times. Secondly, ALNS has a proven track record
in successfully solving similar problems, such as vehicle routing problems and pick-up and
delivery problems. The flexibility of ALNS allows for the development of tailored destroy
and repair operators specific to the SRRPFL, enabling the exploration of diverse areas of
the solution space and promoting the discovery of better solutions. Lastly, the adaptivity
of the ALNS enables the algorithm to autonomously adjust the selection probabilities
of the operators throughout the search process, ensuring a more effective exploration of
the solution space. Consequently, the ALNS is a well-suited solution approach for the
SRRPFL, considering its flexibility, adaptivity, and ability to handle complex constraints
while delivering high-quality solutions.

The proposed ALNS heuristic is inspired by the research of Ropke & Pisinger (2006), who
developed an ALNS for the pick-up and delivery problem with time windows. Building
upon their foundational work, this chapter presents a solution technique that incorporates
both destroy and repair operators tailored for the SRRPFL. This method explores the

31

solution space by iteratively destroying and repairing solutions. An acceptance criterion is
used to determine whether to accept a repaired solution or not. In addition, once a solution
is accepted, a local search (LS) heuristic is integrated within the ALNS to help refine and
improve the solutions generated by the ALNS. The LS allows for exploring a broader
solution space while also exploiting local improvements in the vicinity of a solution. The
integration of a set-partitioning formulation, hereby referred to as the route combination
problem (RCP), within the ALNS serves to enhance its effectiveness in discovering superior
solutions. The RCP is later described in Section 5.7. The proposed solution method is
illustrated in Figure 5.1.

After IR iterations Apply RCP on the
T, |
accepted solution
s Create new solution Accept
t initial . . Y .
Con:gl?;iolsl S T using destroy and repair —» new s » Update new solution
operators solution?
No Apply LS on the
If new global accepted solution
best/promising found
No Stop
ALNS?
‘ Yes

Return best solution

Figure 5.1: Flowchart representing the processes in the ALNS heuristic. LS = Local search.
RCP = Route combination problem

The ALNS algorithm is outlined in Algorithm 1. Initially, the algorithm sets the current
solution = by first constructing a feasible intial solution, further described in Section 5.3.
This is followed by setting the global best solution, z*, to the current solution z. It
also initializes the destroy and repair operators €2; and Qj and their associated operator
weights in segment m, Pim and p:m, further described in Section 5.4.

In each iteration, the algorithm selects a destroy and a repair operator. It then generates a
candidate solution z’ by applying the selected destroy and repair operators to the current
solution x. The acceptance probability P54 is computed using the simulated annealing
criterion, further described in Section 5.5.

If the candidate solution z’ is accepted as the new global best solution, a local search is
applied to explore locally optimal solutions involving z’, further described in Section 5.6.
This step investigates the immediate neighborhood of the accepted solution to identify
potential improvements and further refine the solution quality. Then, the current solution
x and global best solution x* are updated accordingly, along with their objective values.

If the candidate solution z’ is better than the current solution z, but worse than the
global best solution z*, a local search is applied if 2’ is considered a promising solution.
A promising solution x’ is one with an objective value within a predefined threshold, 6%,
of the current best global solution’s objective value, later explained in Section 5.6. If the
candidate solution z’ is accepted as the new global best solution after the local search,
both the current solution « and the global best solution #* are updated accordingly, along

32

with their objective values. Otherwise, the current solution x is updated to the candidate
solution z’.

If the candidate solution z’ is worse than the current solution x but is accepted by the
acceptance criterion, then the current solution z is updated to the candidate solution z’.
Otherwise, the candidate solution 2’ is rejected.

Based on how the candidate solution z’ is accepted or rejected, the accumulated scores of
the employed destroy operator s;” and repair operator sj are updated. After completing
a set of iterations, the algorithm updates the destroy and repair operator weights for the
next segment, p; .., and p;rm 41~ The destroy and repair operators are chosen based on
their previous performances. If a specific operator repeatedly results in new and better
solutions, it is used more frequently. After every I°CF iterations, the algorithm solves the
RCP on 2 to potentially find a new global best solution, further described in Section 5.7.
The ALNS algorithm terminates after all iterations are completed, and the global best

solution z* is returned as the output.

33

Algorithm 1 ALNS

Input: Total number of ALNS iterations (I4ZV9), number of segment iterations (I°),

O B W N =

N

number of set-partition iterations (

: Set current solution x by construction of a feasible solution (Section 5.3)

: Set global best solution, z* <+ =z

. Set global best objective, f(z*)< f(x)

: Set current segment, m < 1

. Initialize destroy operators €, , operator weights p; . and operator scores s; (Subsec-
tion 5.4.3) 7

. Initialize repair operators Q;r, operator weights pifm and operator scores s;r (Subsection
5.4.3)

. for iteration = 1 to ILNS do

IRCP)

Select destroy and repair operators d € €2, and r € Qj using p; ,, and p;-fm (Sub-

section 5.4.3)

9: Generate a candidate solution # from the current solution x using d and r
10: Generate acceptance probability P54 by simulated annealing (SA) (Section 5.5)
11: if 2’ is accepted as the new global best solution then
12: Apply local search for improving candidate solution z (Section 5.6)
13: T
14: T —

15: fla*) « f(a)

16: Reward operators d and r and update s; and s;r

17: else if f(z) < f(z') < f(z*) then

18: Apply local search for improving candidate solution % if promising (Section
5.6)

19: if local search finds a new global best solution then

20: Tz

21: o a

2, @) « f(@)

23: else

24: T < x/

25: end if

26: Reward operators d and r and update s; and s;-'r

27: else if f(z') < f(x) and accepted by SA through P54 then

28: x4

29: Reward operators d and r and update s; and s;r

30: else if f(z') < f(z) and rejected by SA through P°4 then

31: Penalize operators d and r and update s; and sj

32: end if

33: if I° iterations have passed since last weight update then

34: Update weights Pim+1 and p;-fm 41 to be used in segment m + 1

35: Update current segment, m < m + 1

36: end if

37 if TRCP jterations have passed then

38: Solve RCP on z to find a new global best solution (Section 5.7)

39: end if

40: end for

Output: z*

34

5.2 Solution Representation

A solution to the SRRPFL is depicted using a matrix-like structure. The matrix comprises
|D| rows, one for each driver/vehicle. The columns’ indices indicate the sequence in which
nodes are visited within a particular driver route. The leftmost node in a row is the driver
origin node, which is the first node in a specific route. Further, the rightmost node in a
row is the driver destination node.

Figure 5.2 illustrates a solution representation for a case involving two drivers and five
passengers. Each cell consists of a tuple, (i,m), representing a node (i,m) € N. The
sequence of nodes for each driver represents the driver’s route. All nodes are assigned
positions, s, to illustrate the visiting order. The nodes between a driver origin and the
midpoint of the route (excluding the driver origin node) are pick-up nodes, marked with
the color green. The nodes between the midpoint of the route and the driver destination
node (excluding the driver destination node) are delivery nodes, marked with the color
orange. For example, for driver D1, nodes (3,1) and (5,3) are pick-up nodes, as they are
positioned between the driver origin node (1,0) and the midpoint of the route. Nodes
(8,0) and (10,4) are the delivery nodes, as they are situated between the midpoint of the
route and the driver destination node (13,0).

Dl 1,00 — B3, 1) — (5,3 — 6,00 — (10,4) — (13,0

s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8

D2 2,00 — (6,2) — (7,00 — &5 — (1L,2) — O, 1) — (12,3) — (14,0)

Figure 5.2: Solution representation of an instance with two drivers and five passengers. The
leftmost numbers represent the drivers. Driver D1 picks up two passenger and driver D2 picks up
three passengers.

5.3 Construction of Initial Solution

This section presents the insertion heuristic used for the construction of the initial solution.
The pseudocode of the heuristic is illustrated in Algorithm 2. This construction heuristic
provides a structured approach to generating initial feasible solutions by systematically
exploring potential passenger assignments to drivers.

The algorithm takes the set of all drivers and the set of all passengers as input and aims
to construct routes for the drivers by iteratively assigning passengers to them. Thus, the
algorithm starts with an initial solution, which consists of empty driver routes where no
passengers are picked up, and modifies it to create the initial solution.

The algorithm processes each passenger one by one and tries to find the best driver route in
which the passenger can be inserted at the lowest additional cost. It does this by examin-
ing all possible positions for the pick-up and delivery nodes of the passenger into each
driver’s route, while ensuring the feasibility constraints, i.e., driver capacity, maximum
travel times, and time windows, are met. Then, the algorithm calculates the cost increase
between the new route with the inserted pick-up and delivery nodes, and the current route
of the driver. This cost increase is used to compare different passenger assignments and

35

to determine the most cost-effective way of accommodating the passenger in the driver’s
route while maintaining feasibility.

If a feasible insertion is found for a passenger, the relevant driver’s route is updated with
the new pick-up and delivery nodes. If no feasible insertion is found, the passenger is added
to the set of unassigned passengers. The algorithm repeats this process for all passengers,
and once completed, it outputs the final routes for each driver and the set of unassigned
passengers.

Algorithm 2 Insertion Construction Heuristic

Input: Set of all drivers (D), set of all passengers (PF)
1: Initialize set of unassigned passengers, L
2: Initialize all drivers routes, R
3: for i € P¥ do

4: Set lowest cost increase, ¢* < oo
5: Set best driver, k* < None
6: Set best route, r*<— None
7 for k € D do
8: for all candidate pick-up locations for i do
9: Initialize all pick-up positions in R(k)
10: for all pick-up positions in R(k) do
11: if feasible pick-up node insertion then
12: Create a temporary route with inserted pick-up node
13: Initialize all delivery positions in the temporary route
14: for all candidate delivery locations for ¢ do
15: for all delivery positions in the temporary route do
16: if feasible delivery node insertion then
17: Create a final route with the pick-up and delivery node
18: Calculate cost increase ¢ between r and R(k)
19: if ¢ < ¢* then
20: ¢ c
21: k* «— k
22: 1
23: if k* is None then
24: Addito L
25: else
26: Update R(k*) with r*

Output: R and L

36

5.4 Large Neighborhood Search

In an adaptive large neighborhood search (ALNS) approach, a collection of both destroy
and repair opertors are utilized to explore the solution space efficiently. During each it-
eration of the algorithm, one destroy operator and one repair operator are selected and
applied to the current solution. The selection process is guided by a roulette wheel mech-
anism, which is determined by adaptive weights that are dynamically updated throughout
the search process. Further details on the implementation of this approach, along with the
selection and updating of heuristic weights, are provided in the subsequent subsections.

Subsection 5.4.1 details the destroy operators that destroy portions of the current solution
to explore alternative paths. Next, Subsection 5.4.2 details the repair operators that
reconstruct partial solutions. Subsection 5.4.3 describes the probabilistic approach for
selecting destroy and repair operators based on adaptively updated weights.

5.4.1 Destroy Operators

In this subsection, we introduce a variety of operators in the set €2, designed to destroy
portions of the current solution, thereby creating opportunities for the exploration of
alternative solution paths. These operators contribute to breaking free from local optima
and facilitate the discovery of potentially better solutions. Each destroy operator employs
a distinct strategy for removing elements from the solution, offering a diverse range of
approaches for perturbing the current state.

The number of passengers removed during each destruction phase is determined by a
random factor, calculated using a specific function. This function computes the removal
quantity based on a random value within a predefined range (7), which is then multiplied
by the total number of passengers. The selection of this range is further explained in
Subsection 7.2.1. The result is rounded up to the nearest integer to ensure that at least
one passenger is removed. This approach allows for a variable number of passengers to be
removed, providing flexibility and adaptability in the search process. Furthermore, each
destroy operator returns updated driver routes and a list of unassigned passengers.

Random Removal

The random removal operator operates by removing a specified number of passengers to
remove from the driver routes. This iterates through the desired number of removals, ran-
domly selecting a driver and a passenger within that driver’s route. The chosen passenger,
along with its pick-up and delivery nodes, is removed from the driver’s route.

Worst Deviation Removal

The worst deviation removal operator aims to identify and remove passengers that cause
the highest additional cost in the solution by evaluating the impact they have on their
respective driver’s route. The operator calculates the deviation for each passenger by
comparing the objective values of the driver’s route with and without the passenger. The
passengers causing the greatest deviation are considered to have the most impact on the
solution quality. The deviation values for each passenger are sorted, and the passengers
with the highest impact on the solution quality are identified. These passengers are then
removed from their respective driver’s route.

37

Relatedness Removal

The relatedness removal operator aims to identify and remove passengers that have a high
degree of relatedness in terms of their impact on a driver’s route. The general idea behind
this operator is that by removing passengers with a higher degree of relatedness, it becomes
easier to rearrange them when reintegrating them into the solution, potentially leading to
an improved solution. On the contrary, passengers that are very different from each other
in terms of their impact on a driver’s route might be difficult to reorganize, which may
result in them being reinserted into their initial positions through a repair operator.

The process begins by selecting a random driver from the list of available drivers. For
the selected driver, a random seed passenger is chosen in the driver’s route, and the
relatedness between this seed passenger and all other passengers in the route is calculated.
The relatedness between a seed passenger, i, and another passenger, j, is defined using a
relatedness measure R(7,j). The relatedness measure consists of finding passengers that
have close pick-up and delivery nodes to the seed passenger’s pick-up and delivery nodes.
Thus, calculating the total travel time difference between the seed passenger’s pick-up
and delivery nodes and the other passenger’s pick-up and delivery nodes. The relatedness
measure is given by Equation (5.1).

R(i,5) =T in + T NmjeNm (5.1)

T:i?njn
ﬂ3N7m7j+N7n is the direct travel time between delivery nodes (i + N,m) and (j + N,n).
Once the relatedness values for all passengers have been calculated, the passengers are
sorted based on their relatedness to the seed passenger, from least to most related. The
operator then removes a specified number of passengers with the lowest relatedness values.

is the direct travel time between pick up nodes (i, m) and (j,n) (Subsection 4.1.2).

Spread Removal

The spread removal operator identifies and removes passengers whose pick-up locations
have the greatest minimum distance to other passengers within a driver’s route. To achieve
this, the operator starts by selecting a random driver and then calculates the minimum
distance between the pick-up location of each passenger in the selected driver’s route and
the pick-up locations of all other passengers in the same route. The passenger with the
greatest minimum distance is removed from the driver’s route.

The motivation behind the spread removal operator lies in its ability to diversify the search
process by targeting passengers with spatially distant pick-up locations. By removing
passengers with the greatest minimum distance to other passengers within a driver’s route,
the operator encourages the exploration of alternative route configurations that may lead
to more efficient solutions. Furthermore, by focusing on spatially distant passengers, the
spread removal operator may indirectly contribute to the reduction of total travel time.

Cluster Removal

The cluster removal operator finds and removes clusters of passengers in a driver’s route
who are in close geographical proximity. This is similar to relatedness removal which also
focuses on close geographical proximity. The algorithm of the cluster removal is described
in Algorithm 3. The cluster removal operator employs the k-means clustering algorithm,
with k set to 2, to divide the passengers on a driver’s route into two distinct groups based on
their geographical locations. This process is executed for each driver individually. At the
outset, the algorithm initializes the positions of two centroids (the centers of each cluster).

38

Each passenger is then assigned to the nearest centroid. After the initial assignment, an
iterative process begins. During each iteration, every passenger is reassigned to the closest
centroid, and then the positions of the centroids are updated based on the newly assigned
passengers. This cycle repeats until the assignments of passengers to centroids remain
constant between iterations, indicating that the optimal clustering (with the least total
distance from passengers to their respective centroids) has been achieved.

Upon establishing the passenger clusters, the operator randomly selects one cluster and
removes all passengers within that cluster from the driver’s route, including their associ-
ated delivery nodes. This operation is performed for each driver, ensuring that the total
number of passengers removed does not exceed the predefined number of removals. By re-
moving entire clusters, the cluster removal operator reduces the probability of passengers
being reinserted into their initial positions during the repair phase.

Algorithm 3 Cluster Removal

Input: Set of routes, number of centroids, k

1: for d € D do
2: Initialize the position of each of the k centroids (c1, ¢2 ... cx)
3: Assign each passenger to the centroid closest to them
4: repeat
5: for passenger 7 in d’s route do
6: Assign i to the centroid closest to them
7 end for
8: Update the position of each centroid based on the assigned passengers
9: until assignments of passengers to centroids do not change
10: Select one of the k clusters randomly and remove it
11: end for

Output: Destroyed routes and list of unassigned passengers

5.4.2 Repair Operators

In this subsection, we present repair operators in the set Qj which serve as an essential
component in the process of reconstructing and enhancing the partial solutions generated
by the destroy operators. The primary function of a repair operator is to systematically
reintroduce the unassigned passengers back into the solution. Each repair operator uses a
unique approach for rebuilding the solution, allowing for the exploration of various solution
paths and the potential identification of more improved solutions.

Insertion Repair

The insertion repair operator is an adaptation of the construction heuristic, incorporating
a degree of randomization to facilitate a more diverse exploration of the solution space.

Like the construction heuristic, this repair operator is responsible for reintroducing re-
moved passengers into the driver’s routes by iteratively assigning passengers to them. The
removed passengers are first shuffled randomly to introduce variation in the order of inser-
tion. For each passenger, the operator then iterates over all drivers and possible pick-up
locations, but with a randomized order of evaluation. For each feasible pick-up insertion,
a temporary route is created, and the operator proceeds to examine all possible delivery
locations, once again in a randomized order.

For each feasible delivery insertion, the operator calculates the cost increase associated

39

with the insertion of the passenger at the given pick-up and delivery positions. It then
selects the insertion with the lowest cost increase, updating the driver’s route accordingly.
If no feasible insertion is found for a passenger, they are added to the list of unassigned
passengers.

By incorporating randomization into the passenger order, pick-up positions, and delivery
positions, the insertion repair operator might create a search process that explores a wider
range of potential solutions, increasing the likelihood of finding better-quality routes.

Regret-k Repair

The regret-k repair operator is a repair method that takes into account the regret value
associated with different insertion options when reintroducing removed passengers into
the driver’s routes. The regret value represents the ”lost opportunity” or "regret” of not
choosing those alternative positions.

In the regret-k repair process, for each unassigned passenger, the algorithm first identifies
the top k insertion positions that result in the lowest cost increase for the route. It then
calculates the regret value for these positions by summing the cost differences between
the best insertion position and the subsequent k — 1 alternatives. The goal is to find the
passenger with the maximum regret value and reinsert them into the route. The higher
the regret value, the more important it is to choose the best insertion position for that
passenger, as it implies that alternative positions would result in higher costs. This process
continues until all unassigned passengers are considered for reinsertion. By calculating the
regret value, this method prioritizes the reinsertion of passengers that have the greatest
impact on overall solution quality.

In mathematical terms, the regret value of the insertion is given by Equation (5.2).

k—1
maa{) (ci = ciys)} (5.2)
j=1

Here, k denotes the number of insertion positions considered, ¢; signifies the cost increase
for the best insertion position (ith position) for the passenger, and c;4; refers to the cost
increase for the subsequent jth alternative insertion position.

Maximum Capacity Insertion Repair

The maximum capacity insertion repair operator aims to insert passengers into vehicles
with the highest remaining capacity. In this process, drivers are organized in descending
order based on their remaining capacity. Starting with the driver possessing the largest
remaining capacity, the operator attempts to insert passengers previously removed by
destroy operators into that current vehicle. If none of the removed passengers can be
accommodated, the procedure moves on to the driver with the next largest remaining
capacity and repeats the process. Once a passenger is successfully inserted into a route,
the route is updated, and the process starts again with the updated capacities. This
approach continues until either all removed passengers have been inserted or no driver can
accommodate the remaining passengers.

40

5.4.3 Choosing Destroy and Repair Operators

During the adaptive large neighborhood search, one destroy operator and one repair oper-
ator need to be chosen for each iteration. Ropke & Pisinger (2006) employed a probabilistic
approach to select the destroy and repair operators, in which this thesis uses the same
procedure. This selection process is based on adaptively updating the weights of these
operators throughout the search.

Initially, all destroy operators €2, and repair operators Qj are assigned equal and non-zero
weights Dim and p;fm for the initial segment m. Then, the i¢th operators are selected by
the roulette wheel selection mechanism. This mechanism calculates the probability ¢; of
choosing the ith operator. Equation (5.3) illustrates the probability ¢, of choosing the
ith destroy operator, and Equation (5.4) illustrates the probability gb:r of choosing the
ith repair operator. For both equations, Pim and p;fm are the weights for operator 4 in
segment m.

Pim
b = = — (5.3)
Zkeﬂf pkz,m
+
Dim
gf)j =" (5.4)
> kea+ pk+7m

After the selection, the destroy and repair operators are applied to the current solution.
The weights of these operators are updated after each iteration based on their performance.
Inspired by Ropke & Pisinger (2006), a scoring mechanism is employed to either reward
or penalize the operators, with the score calculated based on the improvement in solution
quality achieved by each operator. To do this, four different parameters (o;) are defined
to reward or penalize the destroy and repair operators based on their performance. These
parameters signify varying levels of rewards or penalties, contingent on the outcome of the
operators’ application in the current iteration:

o1 : Reward given to both destroy and repair operators when the new candidate solution
is the best global solution found so far.

o2 : Reward given to both destroy and repair operators when the new candidate solution
has not been accepted before and is better than the current solution, but not better
than the best global solution found so far.

o3 : Reward given to both destroy and repair operators when the new candidate solution
has not been accepted before and is worse than the current solution, but is accepted
by the simulated annealing acceptance criterion.

o4 : Penalty given to both destroy and repair operators when the new candidate solution
is worse than the current solution and is rejected based on the simulated annealing
acceptance criterion.

The rationale behind these parameters is to promote the selection of operators that con-
tribute to finding improved solutions. Operators that consistently result in solution quality
improvements receive higher rewards and are selected more often, while those that do not
contribute to improvements are penalized and selected less frequently.

41

The weights of the destroy and repair operators are then updated after each segment,
taking into account both past performance and the most recent score. As mentioned, let
Pim and p:m represent the weights of the ith destroy and repair operators in segment m,

respectively. After each iteration, the updated weights for the next segment, Pim+1 and
p;rm 41, can be calculated using the following equations:

_ _ S,
Pimi1 =1 =7)p, + T, (5.5)

K3

+ + st
Pims1 = (L= 1)pim + 75, (5.6)

(2

where r is the reaction factor (ranging from 0 to 1) that determines the influence of the
scores from the current segment on the weight update. It controls the balance between
past performance and the most recent score: a larger value of r places greater importance
on the recent score, while a smaller value of r emphasizes past performance. s, and sj are
the accumulated scores over the last segment of the ith destroy and repair operators, and
a; and aj are the number of times the ith destroy and repair operators have been selected
over the last segment, respectively. The updated weights are then used to calculate the
probabilities for selecting destroy and repair operators in the next iteration in the next
segment, as shown in Equations (5.3) and Equation (5.4).

The adaptive method for selecting destroy and repair operators in the ALNS heuristic
enables it to explore various search trajectories and converge on high-quality solutions.
By updating the operator weights, the algorithm adapts to the performance of the oper-
ators, focusing on those that have shown better results in recent iterations. This adaptive
weight adjustment mechanism ensures that well-performing operators are selected more
frequently, guiding the search towards promising regions of the solution space and focusing
on operators more likely to yield better solutions.

5.5 Acceptance Criterion

In this section, we discuss the acceptance criterion used for evaluating and accepting
solutions in the ALNS heuristic. Subsection 5.5.1 explains the general acceptance criterion
based on the lexicographic objective functions of the SRRPFL. Subsection 5.5.2 explains
the acceptance criterion based on simulated annealing, which is employed when a candidate
solution is not accepted as the new global best solution.

5.5.1 General Acceptance Criterion

Asintroduced in Chapter 4, the lexicographic objective functions of the SRRPFL prioritize
maximizing the number of passengers picked up by a driver and subsequently minimizing
the total travel time for all drivers. In the ALNS heuristic, we accept a candidate solution
2’ as the new global best solution if the number of passengers picked up is higher. If the
number of picked-up passengers is equal to the current global best’s, we accept a candidate
solution 7’ as the new global best solution only if its total travel time is lower than the
current global best solution’s total travel time.

42

Therefore, a candidate solution z’ is considered better than another solution z if 2’ has
picked up more passengers than x, or if they have an equal number of picked-up passengers
and z’ has a lower total travel time for drivers than z.

5.5.2 Simulated Annealing

An acceptance criterion based on simulated annealing (SA) is employed for the ALNS
heuristic, similar to the acceptance criterion Ropke & Pisinger (2006) employed, when a
candidate solution 2z’ is not accepted as the new global best solution. The SA algorithm
is outlined in Algorithm 4.

Algorithm 4 Simulated Annealing

Input: Candidate solution z’, current solution z, cooling factor &, initial temperature
Tsta'rt
1: Set temperature, T < Tsqrt
2: Compute the objective difference for both objectives, AObjective; < f(z')1 — f(x)1,
AObjectivey < f(x')a — f(x)2
3: Compute the objective difference between both objectives, A <+ AObjective; —
AObjectives

4: if AObjective; > 0 then

5: Set acceptance probability, P54 « 1

6: else if AObjective; = 0 and AObjectives < 0 then
7 Set acceptance probability, P54 « 1

8: else

9: Calculate acceptance probability, P54 « eT

10: end if

11: Update temperature: T < T - &
Output: P54 and T

The simulated annealing acceptance criterion involves evaluating a candidate solution z’
obtained after applying the selected removal and repair operators. The objective values of
the candidate solution, f(z’), and the current solution, f(z), are compared. The accept-
ance criterion is similar to the one described in Subsection 5.5.1. We accept the candidate
solution z’ if there is an improvement in the first objective of maximizing the number
of passengers picked up. If the number of passengers picked up remains unchanged, we
accept the candidate solution z’ only if there is an improvement in the second objective
of minimizing the total travel time for drivers. Otherwise, the candidate solution ' may
still be accepted as the current solution x with a probability calculated using the following
formula:

—(f@)—f(=)
p4 T (5.7)

=e
where T' > 0 is referred to as the temperature. The temperature is initially set to a value
Tsiart and is updated at each iteration by scaling the current temperature with a cooling
rate, £ € (0,1), such that 7'=T x £. This allows for more exploration in the early stages
of the search when the temperature is higher and more exploitation towards the final
stages as the temperature decreases. The selection of the initial temperature T+ and
the cooling rate £ is explained in Subsection 7.2.1.

43

5.6 Local Neighborhood Search

In this section, we introduce a local neighborhood search (LS) to enhance the performance
of the ALNS heuristic in finding high-quality solutions more efficiently. The local neigh-
borhood search employs local search operators (LSOs) that work in conjunction with the
ALNS heuristic to refine the solutions obtained. The main idea behind the local neigh-
borhood search is to explore the neighboring solutions of a candidate solution found by
applying minor modifications through the use of LSOs.

Integrating a local neighborhood search within the ALNS framework is beneficial and ap-
propriate for several reasons. Firstly, it allows for a more fine-grained exploration of the
solution space by examining the vicinity of the current candidate solution. This com-
plementary approach combines the strengths of both ALNS, which explores the broader
solution landscape, and local search, which focuses on exploiting local improvements. The
result is an enhanced ability to discover high-quality solutions that might have been over-
looked by the ALNS alone. Secondly, incorporating a local neighborhood search can help
accelerate convergence towards optimal or near-optimal solutions by continuously refining
the candidate solutions generated by the ALNS heuristic. This can lead to a more efficient
search process, as local search operators can quickly identify and exploit improvements in
the solution, thus contributing to faster convergence and better solution quality. Lastly,
the integration of a local neighborhood search within the ALNS framework provides a more
versatile solution method. The combination of global exploration and local exploitation
enables the heuristic to adapt more effectively to various problem instances and search
scenarios, increasing the overall performance and adaptability of the proposed solution
method.

Subsection 5.6.1 describes the integration of the LS with the ALNS heuristic, the process
of applying LSOs to optimize candidate solutions, and the conditions for initiating the
local search. Subsection 5.6.2 presents the local search operators (LSOs) used for the local
search.

5.6.1 Local Neighborhood Search Strategy

In our approach, we integrate local neighborhood search with the ALNS heuristic to en-
hance the discovery of improved solutions. As outlined in Algorithm 1, the local neighbor-
hood search is initiated if the candidate solution 2’ becomes the new global best solution,
in order to potentially explore even better solutions in its vicinity. If the candidate solu-
tion ' is not as good as the current global best solution x*, but is better than the current
solution x, the local search is initiated under specific conditions. The candidate solu-
tion #’ must pick up the same number of passengers as the current global best solution,
and its total travel time should be within a predefined threshold, 6%, of the current best
global solution’s total travel time. If these conditions are met, the candidate solution 2’ is
considered a promising solution. Consequently, the local search is conducted, which may
result in finding a new global best solution, an improved solution to z’, or no change at
all. If 2/ is not considered a promising solution, the local search is not initiated, and the
current solution x is set as the candidate solution 2.

When the local search is initiated, the LSOs are applied one after another in a predefined
order, with the output of one LSO serving as the input to the next. Each LSO explores
different route configurations according to the rules of first-improvement. If a change leads
to an improvement of the input solution, that change is made. If the input solution is not

44

improved by a given LSO, it is passed unaltered to the subsequent LSO. If one or more
LSOs find an improved solution, a new iteration of applying all the LSOs is initiated once
the current iteration is finished. If no LSO succeeds in finding an improved solution, the
output from the local search remains the same as the candidate solution provided by the
ALNS iteration.

5.6.2 Local Neighborhood Search Operators

This section presents various local neighborhood search operators used to explore the
solution space and improve the quality of the solution. Each operator considers assigning
unassigned passengers to drivers whose routes have been modified, in order to explore
potential improvements for each solution.

Intra-Passenger Swap

This operator modifies the order of passenger pick-ups and deliveries for all driver routes.
It consists of two separate sequential procedures: Firstly, the passenger pick-up swap.
Then, the passenger delivery swap.

Passenger pick-up swap modifies the order of passenger pick-ups within a driver’s route.
For each driver route, it iterates through all possible pairs of pick-up nodes and swaps
their positions. The new route is then evaluated in terms of objectives, and if the new
route shows improvement, it is accepted as the best route. Figure 5.3 shows an example
of swapping node (7,0) with node (6,2). To further explore the solution space, the op-
erator also considers all candidate pick-up locations for the swapped nodes, based on the
information available in the MZP set.

Passenger delivery swap modifies the order of passenger deliveries within a driver’s route.
Similar to the pick-up swap, it iterates through all possible pairs of delivery nodes and
swaps their positions. The operator also considers all candidate delivery locations for the
swapped nodes, based on the information available in the ./\/liD set. The new route is then
evaluated in terms of objectives, and if the new route shows improvement, it is accepted
as the best route.

e ———

D2 2,00 — (6,2) — (7,0) — &5 — (11,2) — O,1) — (12,3) — (14,0)

D2 2,00 — (7,00 — (6,2) — &5 — (11,2) — O,1) — (12,3) — (14,0)

Figure 5.3: Example of Intra-Passenger Swap where Passenger 1 and Passenger 2 swaps the order
of when they are picked up

Inter-Passenger Relocate

This operator performs a relocate of pick-up and delivery nodes between two different
drivers’ routes. It starts by filtering out the available drivers’ routes based on their capa-

45

city. Then, for each driver, it iterates through their pick-up nodes and their corresponding
delivery nodes. Next, it selects another driver and iterates through their pick-up nodes
and corresponding delivery nodes as well. The pick-up and delivery nodes from the first
driver’s route are swapped with those from the second driver’s route. During this process,
for each candidate location, if no constraints are violated, it calculates the new objective
values for both objectives. If the new solution is accepted as the the new global best solu-
tion, the new routes are accepted as the best routes, and the process continues iterating.
Otherwise, the operator moves on to the next passenger. The inter-passenger swap oper-
ator continues iterating until no further improvements can be found. Figure 5.4 illustrates
an example of this LSO.

s=3 s=4 =
H G,3) H (8,0) i 1(10,4)1 {(13,0)‘
s=3 s=4
D2 | a0 b— 6> —f a0 —f @9 — an | - 12,3 —— (4.0

[——
.

s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8
D1 | a0 —en ey @y @0 — ey —FEH— 10
s=1 s=2 s=3 s=4 s=5 s=6
D2 ’ (1,0) H (6,2) }—-{ (7,0) }—-{ (11,2)I 1(12,3)I {(14,0)‘

Figure 5.4: Example of Inter-Passenger Relocate where Passenger 3 in Driver 2’s route is trans-
ferred to Driver 1’s route

Candidate Location Shift

This operator shifts the candidate location for a passenger’s pick-up and delivery location
within a driver’s route. For each driver route, the function iterates through all pick-
up nodes and modifies the candidate location of the chosen pick-up node with all other
candidate locations for the same passenger from the set Mf . The function then constructs
a new driver route by inserting the new candidate location and updating the original driver
route. Once all passenger pick-up nodes have been considered in a route, the operator
does the same with the delivery nodes, using the ./\/liD set. Figure 5.5 illustrates this by
shifting the candidate location of node (7,0) to (7,2).

D2 | 2.0 — 6,2 — (7.0 — 45 — (11,2) —f ©.1) —1 (12,3) — (14,0)
A

s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8

D2 2,0) —i (6,2) — (1,2) — (4.5 —1 (11,2) —f 9.1) —1 (12.3) — (14,0)
A

I

Figure 5.5: Illustration of the candidate location shift operator, showcasing the replacement of
a passenger’s pick-up location within a driver’s route with a new candidate pick-up location from
the set MY

46

5.7 The Route Combination Problem

As explained in Section 5.2, each driver has a route in the complete solution generated
by the ALNS heuristic. However, while some routes may perform well for certain drivers,
the overall solution may be suboptimal. To address this issue and enhance the solutions
provided by the ALNS, we introduce the route combination problem (RCP). This is a
set-partitioning problem, with the same objectives as the SRRPFL.

Transitioning from the arc-flow model to the route combination problem (RCP) formu-
lation, we now utilize a path-flow model. This shift represents the flow of drivers and
passengers along entire paths (routes) instead of individual arcs, providing an alternative
perspective for solving the SRRPFL and enhancing the overall solution quality.

The set-partitioning formulation of the problem is incorporated within the ALNS to en-
hance its effectiveness in finding better solutions. By transforming the problem into a
set-partitioning representation, the ALNS is able to exploit the inherent structure and
characteristics of the SRRPFL, thereby enabling more efficient exploration and identific-
ation of high-quality solutions. Additionally, the set-partitioning formulation provides a
systematic and compact representation of feasible solutions, which contributes to improv-
ing the overall performance and solution quality of the ALNS.

We solve the RCP every ITCF iterations of the ALNS, and accept the solution based on
the same criteria as finding a new global best solution. To formulate the RCP, we use
the notation presented in Section 4.1 along with additional notation relevant to the RCP,
which we introduce below.

Sets
R - set of all routes previously identified as available for driver £ € D during
the ALNS search
Parameters
Ny - number of passengers picked up by driver k € D on route r € Ry,
Tir - travel time for driver £ € D on route r € Ry,
Ay - 1 if passenger i € PP is picked up by driver k& € D on route r € Ry, 0

otherwise

Decision Variable
Thr - 1 if driver k travels route r, 0 otherwise

Objective Functions

Similar to the objective functions described in Subsection 4.2.1, the RCP is also formu-
lated as a multi-objective optimization problem with two objective functions. These two

47

objective functions are solved in a lexicographic method, similar to the objective functions
presented in Subsection 4.2.1. Objective (5.8) aims to maximize the number of passengers
that is picked up, while Objective (5.9) minimizes the total travel time for drivers.

max Zy = » Y N (5.8)

keDreRy

min Zy = Y > Thypr (5.9)

k€D reRy
Constraints

Constraints (5.10) ensure that each passenger is a part of maximum one route that is
chosen by the RCP. Further, Constraints (5.11) ensure that the RCP selects exactly one
route for every driver. Lastly, Constraints (5.12) put a binary requirement on the use of
routes.

YN Az <1, iePF (5.10)

keEeDreRy
> ape=1, keD (5.11)
reRy

xpr € {0,1}, keD,r e Ry (5.12)

48

Chapter 6

Case Study and Test Instances

This chapter provides a description of the case study used in this thesis, along with the test
instances generated to evaluate the proposed algorithms. Section 6.1 presents the Sotra
case with an overview of the region, its geographical location, and a brief introduction
to the data used in this thesis. Section 6.2 explains the methods employed to determine
the candidate locations (sets MY and MP). Section 6.3 presents an overview of the test
instance generation process. Section 6.4 presents the test instances generated.

6.1 The Sotra Case

This section presents the Sotra case. Subsection 6.1.1 presents an overview of the Sotra
region and its geographical location. Subsection 6.1.2 presents an introduction to the
data used in this thesis, and detail of the various zones in the Sotra region and their
corresponding origin and destination locations.

6.1.1 Overview

Sotra is an island archipelago located off the coast of Bergen, Norway’s second-largest
city. One of the distinguishing features of Sotra is the single bridge, known as Sotrabroen,
that connects the island to the greater Bergen area. This connection is vital for the
daily lives of Sotra’s 40,000 inhabitants (@ygarden kommune, 2023), as many of them
commute to Bergen for work, education, and other essential services. Due to the limited
public transportation options available on Sotra, a substantial number of residents rely
on private vehicles for their daily commute. This heavy dependence on cars has led to a
considerable increase in traffic, particularly on Sotrabroen, which connects Sotra to the
greater Bergen area. The resulting congestion has become a major concern for both local
authorities and residents, as it affects the efficiency of the transportation system, the
environment, and the overall quality of life. A map of Sotra and the greater Bergen area
is displayed in Figure 6.1. Sotra is located on the west coast, while Bergen is situated on
the mainland. The green marker indicates the location of Sotrabroen.

49

Bergen

Sotra

Figure 6.1: Map of Sotra and Bergen, highlighting the location of Sotrabroen (green marker),
the bridge connecting the island to the mainland

6.1.2 Input Data

The input data received for this thesis is accredited to Telia, a Nordic telecom company,
which provided trip data sets for the Sotra region (Telia, 2022). These data sets contain
information on the travel patterns of residents in the area. The trip data sets encompass
origin-destination matrices at various levels of detail and different time periods to cater
to a broad range of use cases. Trips are defined using a dynamic break parameter that
represents the minimum duration of stationary dwelling, which is an activity that breaks
an ongoing trip and initiates a new trip when the individual starts moving again. The
break parameter, in essence, determines whether a trip is split into two parts based on the
distance traveled, the duration of the stop, and the directional change. The trip data is
aggregated into hourly intervals, providing hourly trip counts for each calendar day within
the data collection period, which spans from 3rd October 2022 to 30th October 2022. The
data set contains information on various aspects of the trips, such as the starting and
ending locations, postal codes, Grid IDs, and the total number of trips. In addition, the
data is classified into weekdays and weekends, as well as trips originating from the island
and trips heading to the island.

50

The data provided by Telia enables us to pinpoint the origin and destination locations for
each trip when people travel from Sotra to the greater Bergen area. Figure 6.2 illustrates
the various zones of origin and destination locations. The red markers represent origin
locations, while the blue markers indicate destination locations. The origin locations are
divided into three distinct zones, whereas all the destination locations are contained within
a single zone. In total, there are 43 origin locations and 20 destination locations. This
represents an extension of the work presented in Nitter & Yang (2022), where the authors
considered 24 origin locations and only four destination locations. Zone 1 consists of
thirteen locations, Zone 2 consists of 20 locations, and Zone 3 consists of nine locations.
Zone 4, the destination zone, consists of 20 locations. A more detailed description of the

zones with location names and labels is presented in Appendix B, and the exact coordinates
for all origin and destination locations can be found in Appendix C.

%0 .
/O A
I \
1 \
I \
1 \
'|| o . Zone 1
\ \\
‘\ o \\
\ \
\ o N
A A Zone 4
\ [o) \‘ pos "
\\ o \ //’ \\\
\ N
\\ ‘| ,// (o] A
\ o'
K (o B ‘l I/I o \\
1
\\\ o : I’ o ‘\\
e oo ; h o
i o/ » \
N /== o~] BEMXEN .
o, P ~ 1
) % L) |
) V! @'
& e o B ,'
1 (o) | !
Zone2 . (o0 ©, T A4N T/ g ‘
X o O,’I \\ o I'
\\ -, \ /
\~:=:?’/ \\o o //
//’ le) ‘\\ \ /
,’o (o) \\ \\\ o ///
/ \ V'~ -
1 \ s
1 \
1 (o] 1
Zone 3 0o ,
\ 7
‘\\ o 09//

Figure 6.2: Map of the Sotra region, showing the origin (red markers) and destination (blue
markers) locations in their respective zones. The origin locations are divided into three zones,
while all destination locations are within a single zone. This figure builds upon the work of Nitter
& Yang (2022) by considering 43 origin locations and 20 destination locations.

o1

6.2 Candidate Locations

A candidate location is defined as a location where a passenger can travel to and be picked
up by a driver, or a location where a driver can deliver a passenger before the passenger
travels to its destination, as described in Chapter 3. Candidate locations are divided into
candidate pick-up (M) and candidate delivery locations (MP), as described in Chapter
4.

Various methods can determine the sets M and MP, depending on the input data. In
this thesis, the set M! includes the origin location of passenger i as well as other nearby
possible origin locations. These additional origin locations are determined by a parameter
p, which represents the maximum distance from the origin location of passenger ¢ to other
origin locations. If other origin locations are within the distance defined by p, we select
the 0 closest origin locations and include them in the MP set for passenger i. In this
chapter, 0 will be set to 3, as it represents a feasible number of locations that a passenger
might reasonably travel to for pick-up.

Apart from the distance-based approach, other methods to determine the sets MZP and
MZD could include using density-based clustering algorithms, such as DBSCAN, which
identifies regions with a high density of points as clusters. These clusters could represent
areas with high demand for pick-up or delivery locations. Another approach might involve
incorporating historical data of frequently used pick-up and delivery locations, which could
help identify areas with high demand for shared rides. Additionally, leveraging real-time
data, such as traffic conditions and public transit schedules, could enable dynamic determ-
ination of candidate locations that optimize travel time and efficiency for both passengers
and drivers. Finally, considering passengers’ preferences and individual constraints, such
as accessibility requirements or preferred walking distances, could also contribute to the
determination of the sets MP and MP, allowing for a more personalized and inclusive
shared ride experience.

For the set MZD , the determination can also be based on a similar p parameter describing
how far away other destination locations are. However, in this thesis, we intentionally
choose not to include other destination locations in the MZD set. Consequently, the only
delivery locations for passengers is their respective destination locations, with no other
candidate delivery locations considered. This decision is based on the rationale that people
may be willing to travel to another location for pick-up, thus justifying the inclusion of
multiple locations in the MY set. On the other hand, when being delivered from their
homes to their workplaces, people generally prefer to arrive at their exact destination
location rather than a different one.

People might prefer arriving at their exact destination for several reasons, including sav-
ing time and effort, familiarity with the area, time sensitivity, and reducing inconvenience.
However, certain scenarios may benefit from multiple candidate delivery locations, such
as urban settings with high population density, areas with well-developed public trans-
portation networks, and when addressing environmental concerns. In this thesis, we focus
on cases where the set of delivery locations is limited to passengers’ exact destinations.
Expanding this set could be advantageous in various real-world situations, such as faster
shared rides in urban settings, better integration with public transit networks, and sup-
porting sustainable urban transportation. Additionally, carpooling scenarios could benefit
from multiple delivery points, enhancing efficiency and attractiveness of shared transport-
ation modes. For instance, in large workplace campuses, having multiple delivery locations
allows for more convenient and efficient carpooling systems.

52

6.3 Test Instance Generation

This section provides an overview of the test instance generation process, which aims
to create representative instances of travel demands and preferences for Sotra’s residents
during specific hours of the day. The procedure for test instance generation is outlined in
Subsection 6.3.1, and the assumptions made is discussed in Subsection 6.3.2.

6.3.1 Procedure

The test instance generation is a three-step process that starts with the raw data, as
described in Section 6.1. First, in order to preprocess this data, we counted the number
of trips taken from each origin to each destination, specifically focusing on cases where
people traveled from Sotra to the greater Bergen area. It is important to note that the
data also includes movement of people between locations within Sotra and locations within
Bergen. Second, after counting the trips from origin to destination, we obtained a matrix
representing the total number of travel occurrences during specific hours for each route in
a month. In other words, matrices of total travel occurrences were created for the following
time intervals during a day: 6-7, 7-8, 8-9, and 9-10 am. These matrices are referred to as
”occurrences” matrices. These occurrence matrices are subsequently aggregated to create
a single occurrence matrix. Third, from the aggregated occurrences matrix, we generate
test instances by calculating the probability of selecting each route from an origin to a
destination. This is accomplished by dividing the number of occurrences of a specific route
by the total number of routes. We can then compute a distribution, called F, based on
these routes.

During the creation of the occurrence matrix, there were routes with very negligible num-
bers of trips from certain origins to destinations in Bergen. In certain instances, there
were no recorded travels from a specific origin to a particular destination within a spe-
cific hour throughout a given month. To refine our data, these origins were filtered out.
Additionally, the data contained origins and destination where some people traveled from
Sotra to locations other than locations in the greater Bergen area, such as Oslo. These
occurrences were also filtered out.

Algorithm 5 is used to create test instances. This algorithm takes as input the filtered
travel data for Sotra’s residents from 06:00 to 10:00 between October 3rd, 2022, and Octo-
ber 30th, 2022, obtained from Telia, along with the number of drivers |D| and passengers
|P| to be included in an instance. The algorithm starts by computing the number of
occurrences between each origin and destination, N. Based on these occurrences, the
probability of choosing an origin and destination to create a particular route, PTout¢
computed by dividing N by the total number of trips recorded in the input data. Then,
a distribution F' is created. This distribution is obtained by using the calculated prob-
abilities P"°%® to determine the likelihood of each route being chosen. Further, driver
origin and destination locations are generated. The algorithm iterates over the number
of drivers, choosing an origin and destination for each driver based on the distribution
F. A similar purpose is served for passengers. The algorithm iterates over the number
of passengers, selecting an origin and destination for each passenger according to the dis-
tribution F. Finally, the instance I is returned as output. Each driver and passenger
in the instance I has a maximum travel time and a time window. The time window is
randomly chosen from four possible windows within the hour the instances are generated.
These are [0X:00, 0X:30], [0X:15, 0X:45], [0X:30, 0X+1:00], and [0X:45, 0X+1:15], where

is

93

X represents a given hour between 6 and 9. The maximum travel time determination is
further explained in Subsection 6.3.2.

Algorithm 5 Test Instance Generation

Input: Filtered travel data for Sotra’s residents from 06:00 to 10:00 between October 3rd
2022, and October 30th 2022, obtained from Telia. Number of drivers, |D|. Number
of passengers, |P”|

1: Compute the number of occurrences between origins and destinations, NV

2: Compute the probability of assigning origins and destinations to create a route, Pout
3: Compute the distribution of assigning origins and destinations, F'

4: for k in range |D| do

5: Choose an origin and destination for a driver based on distribution F'

6: end for

7: for i in range |P”| do

8 Choose an origin and destination for a passenger based on distribution F’

9: end for

Output: Instance I

6.3.2 Ridesharing and Instance Generation Assumptions

The input data revealed that few people reside on the fringes of Sotra, specifically to the
north of Zone 1 and south of Zone 3 (Figure 6.2). As a result, only a handful of drivers
would likely be assigned to these areas based on the distribution. However, positioning
drivers in these sparsely populated areas could potentially lead to more people participat-
ing in ridesharing in Sotra, aligning with our objective to promote such a practice. This
is because drivers starting from the edge of Sotra would likely pass numerous other origin
locations before reaching Sotrabroen. In reality, according to the occurrence matrix, a
substantial number of people are traveling from Zone 2 (Figure 6.2).

This data pattern suggests a higher likelihood of assigning drivers and passengers with
origins in Zone 2 when employing Algorithm 5 for instance generation. In this context, the
generated drivers might not be willing to travel to Zones 1 and 3 to pick up passengers.
This problem becomes particularly pronounced when generating smaller instances, where
the origins of the generated drivers predominantly lie in Zone 2, leading to test instances
that might not accurately reflect potential ridesharing scenarios. However, this issue
is somewhat mitigated in larger instances due to the increased availability of drivers,
thus enhancing the chances of drivers originating from or passing through Zones 1 and
3. Consequently, the coverage of all zones is more likely to be comprehensive in larger
instances compared to smaller ones, yielding a distribution of drivers and passengers that
is more realistic and representative of potential ridesharing scenarios in Sotra.

To address the issue highlighted for smaller and some medium-sized instances, we adopted
a specific approach for instance generation. After creating the instances using Algorithm
5, we run the instances in the ALNS heuristic to assess the early ride-sharing effectiveness.
Specifically, we focus on whether over 75% of passengers can be picked up during the initial
iterations of the ALNS, starting from the result provided by the construction heuristic.
This check will be referred to as the 75% ridesharing check. If an instance achieves this
threshold, we accept it as a valid test instance; if not, a new test instance using Algorithm
5 is generated. This validation process is applied exclusively for the small instance groups
and the smallest medium instance group, as later presented in Subsection 6.4.2. For the

54

two largest medium instances and all large instances, we abstain from performing the
75% ridesharing check. This decision is based on the reasoning outlined in the previous
paragraph, which highlights how the increased availability of drivers in larger instances
reduces the potential for spatial bias, rendering the distribution of drivers and passengers
more representative of potential ridesharing scenarios in Sotra.

The maximum time a passenger is willing to travel to reach a candidate pick-up location
is set to 10 minutes (p = 10 min). This value was chosen based on the assumption that
passengers would generally be willing to travel a short distance to their pick-up locations
to ensure a more efficient and cost-effective shared transportation service. Furthermore,
inspired by the work of Nitter & Yang (2022), we define the maximum travel time para-
meter T, é\/[for each driver and passenger as a multiplier of the direct travel time from
their origin to their destination, (T:%k),d(k)’ k € D) and (Tﬁljn, (i,m) € N¥,(j,n) € NP),
respectively. This multiplier is set at 1.7x, implying that both drivers and passengers are
willing to tolerate longer car journeys in exchange for the benefits of ridesharing. Further-
more, the maximum capacity for drivers, Qg, is set to four for all drivers. This implies
that each driver can pick up a maximum of four passengers.

6.4 Test Instances

This section presents the test instances used for evaluating the performance of the ALNS
algorithm and its extensions, which will be discussed in detail in Chapter 7. Subsec-
tion 6.4.1 describes the parameter tuning instances, which are specifically created for the
purpose of tuning the parameters in the ALNS heuristic. Subsection 6.4.2 describes the
performance instances, designed to assess the overall performance of the ALNS algorithm
and its extensions under various conditions.

6.4.1 Parameter Tuning Instances

Parameter tuning instances are created for the purpose of tuning the parameters in
the ALNS. These instances are solely used for tuning purposes and are generated us-
ing Algorithm 5, without doing the 75% ridesharing check presented in Subsection 6.3.2.
Chapter 7 presents which parameters are tuned using the parameter tuning instances.
These instances are displayed in Table 6.1. The Instance ID indicates the instance size,
number of drivers, and number of passengers. For example, M1-5D-18P refers to medium
instance 1, with 5 drivers and 18 passengers.

6.4.2 Performance Instances

The performance instances are generated using Algorithm 5. All instances are divided
into instance groups. There are nine instance groups in total, with each instance group
consisting of five instances, resulting in 45 instances overall. The instances within each
instance group share the same number of drivers and passengers. Dividing the instances
into instance groups and generating unique instances within each group is beneficial when
testing the ALNS algorithm for several reasons. First, this approach provides a diverse
range of scenarios, allowing the algorithm to be tested on varying conditions. Second,
by having different generated instances within each group, we can assess the algorithm’s
adaptability and flexibility in handling changes in origin and destination locations. This

95

Table 6.1:

Parameter tuning instances with Instance ID format: InstanceNumber-Drivers-
Passengers (e.g., 1-5D-18P represents instance 1 with 5 drivers and 18 passengers)

Instance ID Drivers Passengers
1-5D-18P 5 18
2-6D-20P 6 20
3-8D-25P 8 25
4-9D-28P 9 28
5-10D-30P 10 30
6-12D-36P 12 36
7-13D-41P 13 41
8-14D-46P 14 46

is crucial, as real-world scenarios often involve unpredictable changes. Lastly, this division
and variation in instances contribute to a more comprehensive evaluation of the ALNS
algorithm’s performance, increasing the reliability of the results and their potential ap-

plicability in practical settings.

The instance groups are summarized in Table 6.2. Here, the letters S, M and L stands
for small, medium and large. Instance IDs column displays how the different instances in
each instance group are identified, where X indicates unique instances. As mentioned in
Subsection 6.3.2, the 75% ridesharing check has been employed for instance groups S1,
S2, S3, and M1. All instances are summarized in Appendix D. These instance groups are
used in Chapter 7 to test the performance of ALNS heuristic and its extensions.

Table 6.2: Summary of instance groups and corresponding Instance IDs

Instance Group Drivers

Passengers Instance ID

S1
S2
S3
M1
M2
M3
L1
L2
L3

1

o =N

16
20
25
35

4

6
10
20
30
42
60
75
100

S1-1D-4P-X
S2-2D-6P-X
S3-4D-10P-X
M1-8D-20P-X
M2-12D-30P-X
M3-16D-42P-X
L1-20D-60P-X
L2-25D-75P-X
L3-35D-100P-X

o6

Chapter 7

Computational Study

This chapter presents the computational study of the adaptive large neighborhood search’s
(ALNS) performance when solving the Static Ridesharing Routing Problem with Flexible
Locations (SRRPFL).

Section 7.1 outlines the test environment used for the computational study. Section 7.2
details the process of parameter tuning and presents comparisons between large neighbor-
hood search (LNS), ALNS, and its respective extensions. Finally, Section 7.3 compares
the performance of the heuristic with that of the commercial solver.

7.1 Test Environment and Stopping Criterion

In this section, we describe the test environments used for the computational study. Two
different test environments were employed for parameter tuning and performance testing
of the ALNS heuristic.

The parameter tuning of the ALNS heuristic, later detailed in Section 7.2.1, was conducted
on a Dell OptiPlex 7780 AIO, equipped with an Intel Core i7-10700 processor running at
2.90 GHz and 16 GB of RAM. The operating system installed on the machine is Windows
10. The ALNS, instance generation, and local search extension were run in Python v3.8.8.
The arc-flow model and the model of the route combination problem (RCP) were run using
Gurobi v10.0. Table 7.1 provides a summary of the hardware and software components
utilized in the parameter tuning process

Table 7.1: Hardware and software used for parameter tuning

Computer type Dell OptiPlex 7780 AIO

Processor Intel Core i7-10700, 2.90 GHz (8 cores)
RAM 16 GB

Operating system Windows 10

Commercial solver Gurobi v10.0

Programming language Python v3.8.8

For the performance testing of the ALNS heuristic, the tests were run on a computing node

57

in the Solstorm computing cluster at the Norwegian University of Science and Technology.
The computing node is a HP bl685c G7 computer, running on Linux CentOS version 7. It
has four 2.2GHz AMD Opteron 6274 processors with 16 cores each and 128GB of RAM.
The ALNS, instance generation, and local search extension were run in Python v3.9.6. The
arc-flow model and the model of the route combination problem (RCP) were run using
Gurobi v9.5. Table 7.2 provides a summary of the hardware and software components
utilized for performance testing of the ALNS heuristic.

Table 7.2: Hardware and software used for performance testing

Computing node HP bl685¢c G7

Processors Four 2.2GHz AMD Opteron 6274 (16 cores each)
RAM 128 GB

Operating system Linux CentOS, version 7

Commercial solver Gurobi v9.5

Programming language Python v3.9.6

In our case study, the SRRPFL is supposed to be solved daily, generating routes in a static
setting. As a result, the ALNS heuristic has two stopping criteria: (1) a predetermined
number of T45V9 iterations have been performed, or (2) the runtime reaches 3600 seconds.
The second stopping criterion where runtime reaches 3600 seconds is considered reasonable
for our case study. Since the ridesharing routes need to be generated and communicated to
the drivers and passengers before their daily commute - by setting the maximum runtime
to 3600 seconds, we ensure that the ALNS heuristic provides a timely solution that can
be effectively implemented in the real-world context. Similarly, the maximum runtime for
the commercial solver is set to 3600 seconds.

Owing to the inherent randomness of the ALNS heuristic, each test instance is run mul-
tiple times to obtain a reliable estimate of the algorithm’s average performance. When
presenting the results from running the ALNS heuristic on a test instance, we report the
average results from five independent runs. In the process of tuning parameters, five runs
are conducted per test instance and parameter setting, which will be discussed in detail
in Section 7.2.1. The commercial solver’s results are deterministic; therefore, a single run
per instance is sufficient.

o8

7.2 Configurations of the ALNS heuristic

This section describes the parameter tuning process and performance testing for various
configurations of the ALNS heuristic. Subsection 7.2.1 describes the tuning process for the
parameters and provides details on the un-tuned parameters. Subsection 7.2.2 discusses
the impact of using adaptive weights in the ALNS heuristic. Subsection 7.2.3 investigates
the extensions of the ALNS and evaluates their influence on the heuristic’s performance.

7.2.1 Parameter Tuning

Parameter tuning is an important aspect of designing and implementing an ALNS. The
performance of an ALNS-based algorithm is affected by the choice of parameters, which
control the balance between exploration and exploitation within the search process. Se-
lecting suitable parameter values ensures that the algorithm can efficiently navigate the
solution space and converge to high-quality solutions.

In this thesis, we refer to un-tuned parameters as those that have not been systematically
adjusted throughout the development of the ALNS heuristic. These parameters were
mainly determined by a trial-and-error process during the creation of the ALNS heuristic.
These parameters were given less focus because they were assumed to have less impact
on the solutions compared to other factors. An illustration of the un-tuned parameters,
along with their associated values and descriptions, is presented in Table 7.3.

Table 7.3: Summary of un-tuned parameters with their values and descriptions used in the ALNS
heuristic

Parameter Value Description

JTALNS 5000 Number of ALNS iterations

I8 100 Number of segments between each operator weight update
IRCP 300 Number of iterations between each time the route combina-

tion problem (RCP) (Section 5.7) is solved

Tstart - Simulated annealing temperature, set so that the probabil-
ity of accepting a candidate solution is 50% if the candidate
solution is less than 5% worse than the current solution

& 0.97 The cooling rate for the simulated annealing acceptance cri-
terion (Section 5.5)

k 3 Regret-k parameter (Section 5.4.1)

We chose 5000 iterations for the ALNS (I4XN9) to balance the trade-off between solution
quality and computational time. The number of segments between each operator weight
update (I°) was set to 100. This value was chosen to allow the algorithm to respond
to changes in the search landscape while avoiding excessive oscillations in the operator
weights, which could negatively affect the search process. We scheduled the RCP to be
solved every 300 iterations (I7“F) (Section 5.7). This frequency ensured that the problem
was solved often enough to take advantage of new information from the ALNS heuristic.
The initial simulated annealing temperature (Tsqrt) Was set such that the probability of
accepting a candidate solution is 50% if the candidate solution is less than 5% worse than

99

the current solution, inspired by Liu et al. (2019). The cooling rate for the simulated
annealing acceptance criterion (§) was set to 0.97 (Section 5.4.1). This value was chosen
to gradually decrease the temperature and, consequently, the likelihood of accepting worse
solutions as the search progresses. For the regret-k destroy operator (Section 5.4.1), we
set the parameter k to 3.

For tuning purposes, eight tuning instances are generated, as described in Section 6.4.1.
The systematically tuned parameters, listed in Table 7.4, play crucial roles in the ALNS
heuristic. The parameter + represents the percentage range of passenger removals for
destroy operators. The parameters o1, o2, and o3 are rewards given to operators for
adaptive weight adjustment, while o4 is the penalty applied to operators. The parameter
0 is a percentage factor that determines whether a candidate solution’s second objective
value is within §% of the global best’s second objective value (a promising solution).
Lastly, r is the reaction factor used in adaptive weight adjustment.

In the tuning process, we systematically adjust each parameter in the order presented
in Table 7.4. The configuration of the ALNS during parameter tuning is ALNS with
local search and solves the path-flow model RCP (ALNS + LS 4+ RCP). We begin by
tuning ~. For each value of 7, we conduct tests and identify the best result that provides
the best performance. Once we have determined the best value for ~, we fix it and
move on to the next parameter in the table. We follow the same procedure for each
subsequent parameter, ensuring that all previously tuned parameters remain fixed while
tuning the current one. This sequential approach allows us to fine-tune the ALNS heuristic
systematically and efficiently, ultimately resulting in a well-tuned algorithm. This tuning
process is performed using the un-tuned parameters displayed in Table 7.3. For each tuning
instance, we run five tests for each parameter setting and calculate the average objective
values and computational times. We evaluate five different settings for each parameter to
find the best setting. The best parameter setting is determined by comparing the average
objective values and computational times.

Table 7.4 presents the tuned parameters along with their initial and final values, as well
as their descriptions. Upon inspecting Table 7.4, it is evident that many parameters
have retained their initial values. The only parameter that has undergone a change is the
percentage factor ¢, which has increased from 85% to 90%. As a result, we observe a slight
improvement, highlighting the benefit of tuning parameters to enhance the performance
of the ALNS heuristic. The details of each parameter’s tuning process are provided in
Appendix E.

60

Table 7.4: Summary of tuned parameters, their initial and final values, and descriptions. Param.
= Parameter

Param. Initial Final Description
Value Value
0% [5%,15%] [5%,15%] Percentage range of number of removals of pas-
sengers for destroy operators
o1 100 100 ALNS reward for finding a new global best solu-

tion (Subsection 5.4.3)

092 30 30 ALNS reward for finding a candidate solution
that is better than the current solution, but not
better than the global best solution (Subsection

5.4.8)

o3 10 10 ALNS reward for finding a candidate solution
that is worse than the current solution, but ac-

cepted by the simulated annealing criterion (Sub-
section 5.4.3)

o4 -5 -5 ALNS penalty for finding a candidate solution
that is worse than the current solution, and re-
jected by the simulated annealing criterion (Sub-
section 5.4.3)

0 85% 90% Percentage factor that determines if a candidate
solution is a promising solution, where its second
objective value is within 6% of the global best’s
second objective value (Subsection 5.6.1)

r 0.10 0.10 ALNS reaction factor for operator weights update
(Subsection 5.4.3)

7.2.2 Comparing ALNS and LNS

In this section, we compare the performance of the adaptive large neighborhood search
(ALNS) heuristic to the large neighborhood search (LNS) heuristic. Both ALNS and LNS
are metaheuristics that iteratively explore the solution space by applying a combination
of destroy and repair heuristics. However, the main difference between them lies in the
way they select the destroy and repair operators.

In ALNS, the selection of operators is guided by the use of adaptive weights, as described
in Subsection 5.4.3. The adaptive weights allow the algorithm to dynamically adjust the
probability of choosing a specific destroy and repair operator based on its past performance.
On the other hand, LNS does not employ adaptive weights and selects destroy and repair
operators randomly in each iteration. By comparing the performance of ALNS and LNS,
we alm to investigate the effects of using adaptive weights in the search process and
assess the contribution of this feature in finding high-quality solutions. In the proceeding
sections, we refer the primary objective of maximizing number of passengers picked up
as Objective 1, and the secondary objective of minimizing total travel time for drivers as
Objective 2.

61

To evaluate the performance of the LNS, and ALNS heuristic and its extensions, we
introduce a ”Gap” metric. This serves as an indicator of the solution quality relative to
the best-known solution for both objectives. For performance testing, we run the LNS,
and ALNS heuristic and its extensions five times for each instance. To compute Gap'9*
for Objective 1 and Gap?9® for Objective 2 for each instance x in instance group g, we
calculate the average performance and compare this to the best performance across the
heuristic configurations that are compared. Gap'9® for each instance z in instance group
g is defined as the difference between the best performance and the average performance,
expressed as a percentage, because Objective 1 is maximized. On the other hand, Gap?9®
for each instance in instance group g is defined as the difference between the average
performance and the best performance, expressed as a percentage, because Objective 2 is
minimized. The gaps for each instance group, Gap®?! and Gap®®?, are calculated as the
average gaps for all instances in the instance group. These metrics provide a meaningful
measure for assessing the effectiveness of the ALNS heuristic and its extensions across
different instances, allowing for a comprehensive comparison and analysis. This definition
of gap is used throughout the rest of this chapter.

In addition to the ”Gap” metric, we also make use of the average coeflicient of variation
(CV) for both objectives, termed as CV %! and CV%2. The CV is a useful statistic that
describes the level of variability in relation to the mean of the population. To compute
CV19% for Objective 1 and CV29% for Objective 2 for each instance z in instance group g,
we calculate the ratio of the standard deviation to the mean of the objective value. The
coefficient of variation for each instance group, CVO%! and CVO%2 is calculated as the
average CV for all instances in the instance group. We compute CV %1 and CVO%?2 for
each objective to capture the relative variability in our data. For instance, a low coefficient
of variation indicates that the data points are very close to the mean, and hence to each
other, suggesting a more consistent and reliable heuristic. On the other hand, a high
coeflicient of variation indicates that the data points are spread out over a large range
of values. In the context of the LNS, and ALNS heuristic and its extensions, the CV is
important for measuring the consistency of the performance. It helps evaluate not just the
quality of the solutions (which is indicated by the ”Gap” metric), but also the reliability
of the heuristic. This definition of CV is used throughout the rest of this chapter.

62

€9

Table 7.5: Comparison of results for the ALNS and LNS heuristics. Obj. 1 and Obj. 2 represent the average objective values for Objectives 1 and 2 for
each instance group, respectively. CV %1 and CV %2 represent the average coefficient of variation for Objectives 1 and 2 for each instance group, respectively.
Gap®®! and Gap®%? represent the average gap for Objectives 1 and 2 for each instance group across the ALNS and LNS heuristics, respectively. Time [s]
represents the average time for the runs in each instance group, measured in seconds

Instance LNS ALNS

Group | Obj. 1 Obj. 2 CVOl Vo2 GapOhl Gap®? Time [s] | Obj. 1 Obj. 2 CVO9L (Vo952 GapO%' Gap®? Time [s]
S1 3.6 4250 0.00% 0.00% 0.00% 0.00% 55.8 3.6 4250 0.00% 0.00% 0.00% 0.00% 51.3
S2 5.6 67.88 0.00% 523% 0.00% = 2.20% 59.2 5.6 68.60 0.00% 5.32% 0.00% 2.30% 75.3
S3 9.0 131.63 4.10% 3.19% 3.95% 3.54% 188.8 9.0 131.01 4.10% 3.20% 3.95% 3.40% 193.6
M1 187 266.28 1.10% 1.20% 0.00% 0.14% 1224.1 18.8 26545 1.21% 1.12% 0.00% 0.13% 1176.0
M2 27.0 37538 0.00% 0.71% 0.00% 0.33% 2553.3 27.0 37522 0.00% 0.68% 0.00% 0.45% 24574
M3 414 52057 0.35% 1.93% 0.10% 0.33% 31259 414 517.06 0.32% 1.86% 0.00% 0.42% 3344.9
L1 58.1 63593 045% 1.88% 1.19% 1.72% 3600.0 58.3 630.89 0.30% 1.67% = 0.98% 1.54% 3600.0
L2 711 74612 1.20% 3.02% 0.45% 2.37% 3600.0 711 74169 1.21% 3.21% 049% 2.21% 3600.0
L3 98.4 1079.44 0.68% 3.21% 0.41% 2.50% 3600.0 98.5 107431 0.65% 2.99% = 0.45% 2.67% 3600.0

Average | 37.0 42953 0.88% 1.92% 0.68% 1.46% 2000.8 37.0 42741 0.87% 2.23% 0.65% 1.46% 2011.0

Upon close examination of the data displayed in Table 7.5, it is evident that the ALNS
and LNS heuristics exhibit comparable performance. Minor differences, however, are ob-
servable in some specific areas. For instance, the average value of Objective 1, denoted
as Obj. 1, reveals that the ALNS heuristic surpasses its LNS counterpart marginally for
the M1, L1, and L3 instance groups. Nonetheless, the average Obj. 1 across all instance
groups for both the ALNS and LNS remains the same. In relation to the average value
of Objective 2, Obj. 2, across all instance groups, the data exhibits a small difference
between the ALNS and LNS heuristics, with the ALNS trailing by a marginal value of
2.12. Furthermore, the average coefficient of variation for Objective 1, CVO%! indicates a
comparative performance between the ALNS and LNS. The average coefficient of variation
for Objective 2, represented as CVO%2 shows that the LNS heuristic scores lower than
the ALNS. Lastly, a notable observation lies in the average gaps for both objectives. The
ALNS heuristic exhibits lower average value of Gap®®! compared to the LNS, by 0.03%.
In terms of the average value of Gap®®?, the ALNS and LNS have equal values. These
observations suggests that the ALNS, on average, is capable of identifying solutions of
marginally superior quality.

The observation that the ALNS is capable of finding only marginally superior solutions
compared to the LNS is consistent with the findings of Turkes et al. (2021). In their meta-
analysis on the importance of the adaptive layer in adaptive large neighborhood search
(ALNS), Turkes et al. (2021) found that on average, the addition of an adaptive layer
to an ALNS algorithm improves the objective function value by only 0.14% (with a 95%
confidence interval of 0.06-0.21%). While the adaptive layer can add value (and indeed
does so in a limited number of studies), it also adds complexity.

Upon examining the performance of the destroy and repair operators, a subtle pattern
emerges. For the destroy operators, all perform almost equally. However, the worst
deviation destroy operator consistently shows a preference or outperforms the others.
While the rest of the destroy operators also perform at a similar level, there is no discernible
pattern suggesting that any one of these operators is consistently preferred or outperforms
the others. This holds true across all instance groups. In contrast, for the repair operators,
one operator consistently underperforms or is less preferred, namely the regret-k Repair
operator. The insertion and maximum capacity insertion repairs perform on par with each
other, whereas the regret-k repair fails to match their performance. This pattern remains
consistent across all instance groups, indicating that the insertion and maximum capacity
insertion repairs are consistently preferred over the regret-k repair operator. The weight
evolution graphs illustrating these findings can be found in Appendix F.

7.2.3 Performance Testing of the ALNS and Its Extensions

This section presents the performance testing of the ALNS heuristic and its extensions,
namely local search (LS) and the route combination problem (RCP). The performance
instances used to produce the results are the ones presented in Subsection 6.4.2. The first
extension to the ALNS heuristic introduced in this thesis is the integration of local search
(ALNS + LS). As described in Section 5.6, the local search explore neighboring solutions
to improve the candidate solution found in an ALNS iteration. The second extension is
solving the RCP in the ALNS heuristic (ALNS + RCP), which is detailed in Section 5.7.
The RCP utilizes routes from solutions found in previous iterations of the ALNS heuristic,
combining them to discover new and improved solutions for the SRRPFL.

The data in Tables 7.6 and 7.7 provide a detailed comparison of the performance of the

64

ALNS heuristic and its extensions across the instance groups (S1 to L3). Each extension’s
effectiveness is evaluated based on these parameters: the average coefficient of variation
for Objectives 1 and 2 (CVO%! and CVO%2), the average gap for Objectives 1 and 2
(Gap®®! and Gap©¥7?), and the average computational time.

Table 7.6 provides a comparative performance analysis of the basic ALNS heuristic and
ALNS + LS. Local search is employed whenever a new global best solution is discovered or
when a candidate solution is identified as a promising solution, as outlined in Subsection
5.6.1. A review of the data in Table 7.6 reveals that the ALNS 4 LS outperforms the
basic ALNS in terms of average gap for both objectives. More specifically, the ALNS +
LS reports an average gap of 0.54% for Objective 1 and 1.78% for Objective 2, which is
lower than the basic ALNS. Moreover, the coefficient of variation, which is indicative of the
heuristic’s reliability, also displays improvement for both objectives with the incorporation
of local search. For Objective 1, it falls from 0.87% to 0.64%, and for Objective 2, it falls
from 2.23% to 1.71%. However, the integration of local search does come with an increase
in average computational time. The average solution time witnesses a rise from 2011.0
seconds for the basic ALNS to 2097.4 seconds for ALNS + LS. Despite this slight increase,
the superior performance metrics substantiate the value added by the local search, making
it a worthwhile trade-off.

The inclusion of local search in the ALNS heuristic yields improvements in average ob-
jective values, most notably in the M1-M3 and L1-L3 instance groups. This observation is
confirmed by the lower average gaps detailed in Table 7.6 for ALNS + LS. For the small
instance groups (S1, S2, S3), the addition of local search leads to a great reduction in the
CV for Objective 2, especially for S2. This suggests that local search can enhance the
stability of the results, especially in situations with fewer drivers and passengers, where
small differences can have a larger impact. For the large instance groups (L1, L2, L3), the
CV for Objective 1 and Objective 2 is generally lower with ALNS + LS than with ALNS
alone across all instances.

We observe that the ALNS + LS tends to discover new global best solutions more rapidly
compared to the standalone ALNS. This rapid convergence enhances the chances of gen-
erating high-quality solutions, even under computational restrictions. Furthermore, this
suggests that in this problem domain, new global solutions are often located close to a
current solution. It has been noticed that once a local search is triggered, the local search
operators that frequently lead to the discovery of a new global best solution are primarily
the Intra-Passenger Swap and Candidate Location Shift, as presented in Subsection 5.6.2.

As for the computational time, larger instances (L1, L2, L3) seem to reach the ALNS
stopping criteria of 3600 seconds, indicating a considerable increase in computational
time with the enlargement of the instance group size. This observation suggests that the
problem complexity influences the computational time required by the heuristic.

The application of the local search generally improves the performance of the ALNS heur-
istic. This improvement can be seen through the decrease in both the CV and the average
gaps for Objectives 1 and 2. Notably, the average gaps in all instance groups are lower in
the ALNS + LS method than in the standard ALNS, indicating that adding local search
helps the ALNS heuristic to find higher quality solutions. Thus, we can conclude that
local search indeed enhances the performance of the ALNS heuristic.

65

Table 7.6: 1. Comparison of results for the ALNS heuristic and its extensions. CV%! and
CVOb2 represent the average coefficient of variation for Objectives 1 and 2 for each instance
group, respectively. Gap®®! and Gap®®? represent the average gap for Objectives 1 and 2 for
each instance group across all ALNS configurations (ALNS, ALNS + LS, ALNS + RCP, ALNS
+ LS + RCP), respectively. Time [s] represents the average time for the runs in each instance
group, measured in seconds

Instance ALNS ALNS + LS
Group | CVONl (CVON2 GapOhil GapO%2? Time [s] | CVOUL CVO2 GapOhl GapO%? Time [s]

S1 0.00% 0.00% 0.00% 0.00% 51.5 0.00% 0.00% 0.00% 0.00% 47.7
52 0.00% 5.32% 0.00% 3.19% 75.3 0.00% 2.86% 0.00% 2.09% 98.8
S3 4.10% 3.20% 3.95% 3.23% 193.6 3.59% 3.04% 3.10% 2.53% 256.4
M1 1.21% 1.21% 0.68% 1.25% 1176.0 0.59% 1.00% 0.43% 1.26% 1272.4
M2 0.00% 0.68% 0.00% 0.32% 2457.4 0.00% 0.41% 0.00% 0.36% 2949.8
M3 0.32% 1.86% 0.15% 2.45% 3344.9 0.21% 1.34% 0.10% 2.01% 3451.8
L1 0.30% 1.67% 0.20% 1.82% 3600.0 0.18% 1.54% 0.13% 1.76% 3600.0
L2 1.21% 3.21% 0.89% 3.67% 3600.0 0.84% 2.49% 0.70% 3.13% 3600.0
L3 0.65% 2.99% 0.46% 2.95% 3600.0 0.36% 2.75% 0.37% 2.84% 3600.0

Average | 0.87% 2.23% 0.70% 2.10% 2011.0 0.64% 1.71% 0.54% 1.78% 20974

As described in Subsection 7.2.1, the route combination problem (RCP) is solved every
300 iterations (I"“F) of the ALNS heuristic. Table 7.7 presents the results for the ALNS
heuristic with the RCP. Comparing the performance of ALNS + RCP against ALNS +
LS, as shown in Table 7.6, we observe that ALNS + RCP demonstrates superior perform-
ance. The average coefficient of variation for Objective 1, under ALNS + RCP, stands
at 0.17%, substantially lower than the 0.64% observed with ALNS + LS. Similarly, the
average coefficient of variation for Objective 2 is also reduced to 0.82% in ALNS + RCP,
a notable improvement from the 1.71% recorded under ALNS + LS. In addition to these
metrics, the average gap observed for both objectives under ALNS 4+ RCP also sees not-
able improvement, with Objective 1 and Objective 2 recording gaps of 0.10% and 0.86%,
respectively. This performance edge is reinforced when we examine the average compu-
tational time, where ALNS + RCP outperforms ALNS + LS. Based on this preliminary
data analysis, it can be inferred that the ALNS algorithm, when paired with the RCP,
offers more consistent results, higher accuracy in meeting objectives, and superior compu-
tational efficiency compared to when it is combined with local search.

Upon examining Table 7.7, it becomes clear that ALNS + RCP substantially improves the
coefficient of variation for both objectives across all instance groups. In certain instance
groups, the coefficient of variation (CV) for Objective 1 has been entirely eliminated,
dropping to 0.00%, which constitutes a notable enhancement compared to ALNS + LS.
We also observe a similar reduction in the gaps; instance groups have experienced gaps
reduced to 0.00% for Objective 1. The same degree of improvement is observed across
all instances for the gap in Objective 2. Every instance group has seen reductions in the
gap, thereby emphasizing the effectiveness of ALNS + RCP in overall performance. Upon
examination of the generated solutions, it becomes apparent that ALNS + RCP is highly
effective in identifying new global best solutions. Based on these findings, we conclude
that the introduction of RCP improves the ALNS heuristic performance, performing better

66

than the ALNS and ALNS + LS.

The reason for the superior performance of a set-partitioning formulation (Section 5.7),
over the local search formulation (Section 5.6) likely stems from the inherent character-
istics of the routing problem itself. The SRRPFL is combinatorial in nature, meaning
that it involve the arrangement of elements within a set in some specific order. Local
search formulations typically perform well on such problems by iteratively searching the
nearby solution space for improvements. However, this can also limit their performance,
as they might be prone to local optima and may not explore the broader solution space
effectively. This is a point of divergence for the RCP, enabling it to exploit the problem’s
inherent combinatorial structure more efficiently. The set-partitioning approach taken by
the RCP in the ALNS allows for the aggregation and simultaneous examination of various
routes discovered over the course of the algorithm’s execution. By doing so, it allows the
identification of combinations of routes that yield an overall better solution, even if those
routes individually might not have been the best ones. The ALNS collects a vast pool
of discovered routes for each iteration, and after every 300 iterations, the RCP is solved.
This process lets the ALNS 4+ RCP identify and exploit synergies between routes that
might not be evident when considering routes independently, as is the case in local search.
Furthermore, the RCP provides a systematic and compact representation of feasible solu-
tions, taking into consideration the entire path or route of drivers and passengers, rather
than individual arcs. This path-flow model provides an alternative perspective, enabling
a broader and more holistic view of the problem, enhancing the overall solution quality.
In conclusion, the reasons for the superior performance of ALNS + RCP likely lie in its
capacity to exploit the combinatorial nature of the routing problem and its systematic
consideration of route combinations.

Table 7.7: 2. Comparison of results for the ALNS heuristic and its extensions. CV%! and
CVO%2 represent the average coefficient of variation for Objectives 1 and 2 for each instance
group, respectively. Gap®®! and Gap®? represent the average gap for Objectives 1 and 2 for
each instance group across all ALNS configurations (ALNS, ALNS + LS, ALNS + RCP, ALNS
+ LS + RCP), respectively. Time [s] represents the average time for the runs in each instance
group, measured in seconds

Instance ALNS + RCP ALNS + LS + RCP

Group | CVONl (CVON2 GapObl GapO%? Time [s] | CVOUl CVOM2 GapO¥l Gap©%? Time [s]
S1 0.00% 0.00% 0.00% 0.00% 58.0 0.00% 0.00% 0.00% 0.00% 53.5
52 0.00% 2.79% 0.00% 2.04% 94.3 0.00% 0.00% 0.00% 0.00% 109.7
S3 1.02% 1.41% 0.45% 2.43% 197.1 0.00% 0.08% 0.00% 0.04% 274.6
M1 0.00% 0.08% 0.00% 0.06% 1158.4 0.00% 0.07% 0.00% 0.03% 1408.9
M2 0.00% 0.06% 0.00% 0.06% 2451.8 0.00% 0.05% 0.00% 0.10% 2990.2
M3 0.21% 1.00% 0.10% 1.35% 3289.0 0.21% 0.78% 0.10% 1.23% 3400.2
L1 0.00% 0.40% 0.00% 0.38% 3600.0 0.00% 0.18% 0.00% 0.19% 3600.0
L2 0.16% 0.68% 0.17% 0.57% 3600.0 0.00% 0.49% 0.00% 0.38% 3600.0
L3 0.18% 0.99% 0.21% 0.83% 3600.0 0.18% 0.75% 0.21% 0.99% 3600.0

Average | 0.17% 0.82% 0.10% 0.86% 2005.4 0.04% 0.27% 0.03% 0.33% 2115.2

67

Finally, in Table 7.7, we present the outcomes of our exploration into the performance
of the ALNS configuration that includes both local search and the RCP (ALNS + LS +
RCP). Our findings suggest that this configuration yields the lowest average coefficient of
variation across all examined scenarios: 0.04% for Objective 1 and 0.27% for Objective 2.
The average gaps for this configuration, standing at 0.03% for Objective 1 and 0.33% for
Objective 2, also outperform those observed in the other configurations (ALNS, ALNS +
LS, ALNS + RCP). Although the average computational time of 2115.2 seconds mirrors
that of ALNS + LS, the superior outcomes demonstrate the value of integrating both local
search and RCP in the ALNS framework.

As compared to the ALNS 4+ RCP configuration, the ALNS + LS 4+ RCP configuration
either matches or improves the coefficient of variation across all instance groups. Spe-
cifically, for Objective 1, the enhancement is particularly pronounced for the L2 instance
group, where the CV %1 reduces from 0.16% to 0.00%. As for Objective 2, the ALNS +
LS + RCP configuration produces several reductions in the CVO%2 indicating decreased
variation in solution outcomes. The most notable decrease is observed in the S2 instance
group, with the CVO%2 plummeting from 2.79% to 0.00%. Examining the gaps reveals
similar improvements, with the ALNS + LS 4+ RCP configuration either matches or im-
proves the gap for most of the instance group. The instance group that does not follow
this pattern is L3, where the gap increasea from 0.83% to 0.99% compared to ALNS +
RCP. Overall, these observations highlight the added value that the simultaneous inclu-
sion of local search and RCP brings to the ALNS heuristic, supporting its effectiveness in
generating high-quality solutions for the routing problem at hand.

Based on the findings presented in this subsection, we observe that the ALNS configuration
that includes both local search and the RCP produces the best average performance, and
conclude that this is the best ALNS configuration. Thus, this configuration will be used
in the proceeding analysis and chapters, and is referred to as the ALNS heuristic.

A comparative analysis between the ALNS and the construction heuristic, examining
their respective performances and convergence tendencies, has been carried out for a more
comprehensive understanding of their efficiency. This analysis can be found in Appendix
G. The summarized comparison between the ALNS extensions is displayed in Table 7.8.

68

69

Table 7.8: Comparison of results between the ALNS extensions. Gap®®! and Gap©®? represent the average gap for Objectives 1 and 2 for each instance group

across the ALNS extension, respectively. Time [s] represents the average time for the runs in each instance group, measured in seconds

Instance ALNS ALNS + LS ALNS 4+ RCP ALNS + LS + RCP

Group | Gap©bl Gap©ri? m GapPhil Gap©bi? m GapPhil Gap©hi? m GapPil Gap©bi? m
S1 0.00% 0.00% 51.5 0.00% 0.00% 47.7 0.00% 0.00% 58.0 0.00% 0.00% 53.5
S2 0.00% 3.19% 75.3 0.00% 2.09% 98.8 0.00% 2.04% 94.3 0.00% 0.00% 109.7
S3 3.95% 3.23% 193.6 3.10% 2.53% 256.4 0.45% 2.43% 197.1 0.00% 0.04% 274.6
M1 0.68% 1.25% 1176.0 0.43% 1.26% 1272.4 0.00% 0.06% 1158.4 0.00% 0.03% 1408.9
M2 0.00% 0.32% 24574 0.00% 0.36% 2949.8 0.00% 0.06% 2451.8 0.00% 0.10% 2990.2
M3 0.15% 2.45% 3344.9 0.10% 2.01% 3451.8 0.10% 1.35% 3289.0 0.10% 1.23% 3400.2
L1 0.20% 1.82% 3600.0 0.13% 1.76% 3600.0 0.00% 0.38% 3600.0 0.00% 0.19% 3600.0
L2 0.89% 3.67% 3600.0 0.70% 3.13% 3600.0 0.17% 0.57% 3600.0 0.00% 0.38% 3600.0
L3 0.46% 2.95% 3600.0 0.37% 2.84% 3600.0 0.21% 0.83% 3600.0 0.21% 0.99% 3600.0

Average | 0.70% 2.10% 2011.0 0.54% 1.78% 2097.4 0.10% 0.86% 2005.4 0.03% 0.33% 2115.2

7.3 Comparing ALNS to the Commercial Solver

This section provides a comparison of the solutions produced by the adaptive large neigh-
borhood search (ALNS) heuristic and the commercial solver, Gurobi. As outlined in
Section 7.1, the commercial solver has a predefined stopping criterion. If Gurobi does not
find a solution within the allocated time frame of 3600 seconds for any given instance,
the solver will cease its operation. By comparing the results of the ALNS heuristic with
those of Gurobi, we can evaluate the heuristic’s quality. The ultimate goal is not merely
to match the performance of established commercial solvers but to investigate potential
scenarios where the ALNS heuristic might offer unique advantages, such as superior per-
formance on specific types of problems or quicker solution times under certain conditions.

Since the SRRPFL is a multi-objective optimization problem, the current version of Gurobi
cannot produce the gap, upper, and lower bounds for both objectives. Additionally, Gurobi
is deterministic, and therefore only one run of each instance is required. The gaps, referred
to as Gap®Olil and Gap©O2, represent the discrepancy between the average objective
value of the instance group found by the ALNS heuristic and that found by the commercial
solver. This is calculated by taking the difference between the average objective values for
each instance group as determined by Gurobi and the average objective values for each
instance group as found by the ALNS heuristic, then dividing by the average objective
values for each instance group as determined by Gurobi.

Table 7.9 presents the results from Gurobi and the ALNS heuristic. As can be observed, the
commercial solver achieves optimality for instance groups S1, S2, and S3. Comparatively,
the ALNS heuristic finds the same objective values for instance groups S1 and S2, but
not for S3. In S3, the ALNS heuristic finds a lower Objective 1 than Gurobi in only two
runs of a single instance. For the instance group M1, the commercial solver reaches its
time limit of 3600 seconds without achieving optimality. In this instance group, the ALNS
heuristic outperforms the commercial solver, resulting in negative values for Gap@Ob!
and Gap©O2. For Gap©©t! we can observe that it reaches a negative value of -28.76%,
which is a noteworthy result. It demonstrates that the ALNS heuristic produces solutions
of substantially higher quality than the commercial solver within the 3600 seconds time
limit. We can also observe an increase in the average time used by the commercial solver
between instance groups S1 to M1. For the subsequent instance groups, the commercial
solver is unable to find solutions within the 3600 seconds time limit as the problem size
increases. For these instance groups, the commercial solver ran for over 48 hours without
showing any indication of initialization of solving the instances.

By comparing the ALNS heuristic with the commercial solver, it becomes evident that
the commercial solver struggles with real-sized instances of the SRRPFL. In contrast, the
ALNS heuristic demonstrates its capability to find potential high-quality solutions for these
more demanding, real-sized instances. Based on our comparative analysis with Gurobi,
the ALNS heuristic demonstrates promising capabilities, potentially offering high-quality
solutions even for complex and large-scale instances. However, we acknowledge that the
actual quality of these solutions can only be definitively assessed in the context of real-
world applications or through comparison with other established solvers. As a conclusion,
the ALNS heuristic may be a valuable alternative to the existing commercial solvers for
tackling the SRRPFL.

70

Table 7.9: Comparison of results for Gurobi and the ALNS heuristic with LS and RCP. The
column Instance Group shows the instance groups with the number of passengers in each instance

group. Obj. 1 and Obj. 2 represent the average objective values for Objectives 1 and 2 for each
instance group, respectively. Time [s] represents the average time for the runs in each instance

group, measured in seconds. Gap

GObj1

and Gap

GObj2

represent the average gap for Objectives 1

and 2 for each instance group across the commercial solver and the ALNS heuristic

Instance Gurobi ALNS + LS + RCP
Group | Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Gap®O! Gap©? Time [s]
S1 (4) 3.6 42.50 3.8 3.6 42.50 0.00% 0.00% 53.5
S2 (6) 5.6 66.42 101.2 5.6 66.42 0.00% 0.00% 109.7
S3 (10) 9.5 13326 638.1 9.4 13242 1.05% -0.63% 274.6
M1 (20) 146 290.88 3600.0 18.8 265.96 -28.76% = -8.57% 1408.9
M2 (30) - - - 27.0 374.20 - - 2990.2
M3 (42) - - - 414 507.91 - - 3400.2
L1 (60) - - - 59.0 616.53 - - 3600.0
L2 (75) - - - 718 721.01 - - 3600.0
L3 (100) - - - 99.0 1039.19 - - 3600.0
Average - - - 37.3 418.46 - - 2115.2

71

Chapter 8

Managerial Insights

Chapter 7 outlines the results derived from applying the ALNS heuristic (ALNS + LS
+ RCP) to a variety of test instances. A close examination of these results allows us
to highlight the potential impacts of ridesharing. In Section 8.1, we demonstrate the
benefits of ridesharing, particularly in terms of potential reductions in traffic congestion
and COg emissions. Section 8.2 discusses the effects of changing maximum travel times for
drivers and passengers. Following this, Section 8.3 discusses the benefits of incorporating
candidate locations.

8.1 The Value of Ridesharing

Reducing Traffic Congestion

One of the main challenges faced by people traveling from Sotra to the greater Bergen area
during morning hours is the traffic congestion caused by Sotrabroen. The results presented
in Table 7.9 clearly show that the ALNS heuristic with local search (LS) and the route
combination problem (RCP) produces solutions where a majority of potential passengers
are picked up. Upon analyzing the three larger instances (L1, L2, and L3), it is observed
that, on average, over 95.0% of potential passengers are picked up and delivered. Although
the largest instance group only represents approximately 15.0% of the actual number of
drivers and passengers traveling from Sotra to the greater Bergen area every hour between
06:00 and 10:00 (Telia, 2022), the results indicate that ridesharing can reduce the number
of cars on the road, given that the participants are willing to participate.

Before investigating the implications of reduced traffic congestion on total travel time, it
is important to compare the variations in travel time between scenarios with and without
ridesharing, while making the initial assumption that the number of cars on the road does
not influence the waiting time in potential traffic. The scenario without ridesharing refers
to a situation where each driver and passenger drives directly from their origin location
to their destination locations, without any additional stops to pick up or deliver other
passengers. Figure 8.1 illustrates the average additional travel time incurred through
the scenario with ridesharing, under the aforementioned assumption, as compared to the
scenario without ridesharing. The results show that the average extra travel time remains
relatively stable, hovering between 30.0% and 40.0%, across all the small and medium
instance groups. Upon examining the three large instance groups, it becomes evident
that the average extra travel time incurred through ridesharing decreases. The difference

72

in travel time with and without ridesharing is approximately 10.0% for instance group
L3. This marked decrease in extra travel time in larger instance groups suggests that
ridesharing becomes more efficient as the system scales up. As the number of drivers
and passengers increases, the opportunity for convenient pairing also increases, thereby
reducing the extra travel time for each individual.

40 %

35%

30 %
25%
20%
15%
109 I I
0%
S1 52 S3 M1 M2 M3 L1 L2 L3

Figure 8.1: The average extra travel time for drivers in each instance group with ridesharing

R

R

wn
R

o

Although Figure 8.1 indicates that ridesharing can cause an approximate increase in total
travel time of 10.0% for instance group L3, it is crucial to note that this is in comparison to
a scenario without any ridesharing. To get a broader understanding, one should consider
the potential additional waiting times due to queuing on the roads (or Sotrabroen) that
would be incurred by all drivers and passengers if they each had to drive their own cars.
Considering this, the results could look different. According to a study by the Norwegian
Automobile Federation (NAF), reducing the number of cars in congested areas in Norway
by 15.0% could largely alleviate traffic congestion (NAF, 2015). Table 8.1 illustrates the
impact on the number of cars reduced through ridesharing. The Cars Red. column
describes the average percentage of cars reduced with ridesharing. For example, in the L3
instance group consisting of 35 drivers and 100 passengers, the ALNS heuristic produced
a solution where an average of 99.0 passengers are picked up in that instance group.
Comparing this to the situation without any ridesharing, the number of cars on the road
is reduced by 73.3%. This reduction should not be underestimated. As highlighted by
the NAF study, even a 15.0% reduction in the number of cars in congested areas could
largely alleviate traffic congestion. Therefore, a reduction of over 70.0%, as seen in most
instance groups in Table 8.1, points towards potential improvements in traffic low and
considerable reductions in travel times, benefiting both individuals and society as a whole.

73

Table 8.1: Overview of the number of cars reduced implementing the solutions from the ALNS
heuristic. Obj. 1 represents the average objective values for Objectives 1. Cars Red. is the
average percentage of cars that will be reduced in ridesharing for an instance group, produced by
the ALNS heuristic

Instance Group | Obj. 1 Cars Red.
S1 3.6 72.0%
S2 5.6 70.0%
S3 94 67.1%
M1 18.8 67.1%
M2 27.0 64.3%
M3 41.4 71.4%
L1 59.0 73.7%
L2 71.8 71.8%
L3 99.0 73.3%

Reducing CO5 Emissions

Besides the possibility of reducing traffic congestion, the implementation of ridesharing
also offers an opportunity for substantial environmental impact. By pooling drivers and
passengers into shared vehicles, the total distance driven can be reduced, addressing not
only congestion issues, but also reduction of COy emissions. Thus, ridesharing can make
a contribution to preserving the environment.

By conducting a comparison between scenarios with and without ridesharing, it becomes
possible to quantify the extent of savings that can be achieved through the implementation
of ridesharing. Table 8.2 presents an overview of the average distance traveled in all test
instances, considering both scenarios with and without ridesharing, along with the percent-
age reduction in kilometers between the two variations. After examining the Reduction
column, it becomes clear that the largest test instances exhibit the most substantial re-
duction in kilometers driven. Note that a reduction in total kilometers driven directly
translates to a decrease in CO9 emissions. As mentioned, the largest test instance only
covers approximately 15.0% of the total number of travelers passing Sotrabroen every
weekday in the morning hours. As a result, the potential reduction in COy emissions
greatly surpasses the values presented in this thesis.

74

Table 8.2: Overview of the average number of kilometers traveled for each driver and passenger in
each test instance with and without ridesharing. The column Instance Group shows the instance
groups with the number of passengers in each instance group. w/o RS is the average number of
kilometers driven in each test instance without ridesharing. w RS states the average number of
kilometers driven in each test instance with ridesharing. Reduction is the percentage reduction
in kilometers that comes from implementing ridesharing solutions

Instance | Total Kilometers Traveled

Group | w/o RS w RS Reduction

S1 (4) 96.22 65.87 31.5%
S2 (6) 151.11 68.50 54.7%
S3(10) | 268.37 150.84 43.8%
(20) | 679.47 32209 52.6%
M2 (30) | 1029.45 41242 59.9%
(42) | 1160.65 530.61 54.3%
(60) | 1598.22 554.22 65.3%
L2 (75) | 2102.06 690.36 67.2%
L3 (100) | 2934.00 926.53 68.3%

8.2 The Value of Maximum Travel Time

In the context of the SRRPFL, the parameter for maximum travel time (T,ﬁw) represents a
critical factor in determining the attractiveness and efficiency of the system. As described
in Subsection 6.3.2, this parameter is determined for each driver and passenger as a mul-
tiplier of their direct travel time from origin to destination location. The ALNS heuristic
was configured with a multiplier set at 1.7x for the computational study conducted in
Chapter 7, implying that both drivers and passengers are willing to tolerate travel times
up to 70% longer than their direct route.

However, the value of this maximum travel time is subject to variation, depending on
the tolerances and preferences of individual drivers and passengers. To account for this
variation and to understand its impact on our model, we undertake an investigation into
the effects of altering the maximum travel time multiplier. We adjust the multiplier from
its base case of 1.7x to other values such as 1.1x, 1.3x, 1.5x, and 1.9x. The goal of this
exploration is to observe and analyze the effects these changes have on the overall utility
of the ridesharing, total travel time, and the computation time of the ALNS heuristic.

Table 8.3 illustrates the impact of varying maximum travel time multipliers on the average
number of passengers picked up, the average total travel time for all drivers, and the
average computation time for the ALNS heuristic. As we can observe, changes in maximum
travel times notably affect the number of picked up passengers (Obj. 1). For instance,
when comparing the 1.7x and 1.9x multipliers, all instance groups exhibit a higher number
of passengers picked up with the 1.9x multiplier than with the 1.7x. Additionally, the
lowest multiplier, 1.1x, results in a considerable decrease in the number of passengers
picked up compared to the larger multipliers. Despite these changes, the computational
time of the ALNS heuristic for each multiplier configuration shows minor variation.

75

Furthermore, the investigation into varying this parameter illuminates its notable impact
on the number of passengers picked up. As the multiplier increases, we see a correspond-
ing increase in the number of passengers served, indicating a more efficient system. The
increase in the maximum travel time essentially broadens the pool of feasible rideshare
matches by allowing for longer detours. It can accommodate a larger number of passen-
gers that might otherwise be discarded due to exceeding the initial maximum travel time
constraint. However, the willingness to accept longer travel times (higher multipliers) is
heavily dependent on individual user preferences, balancing convenience, and the benefits
offered by ridesharing. Conversely, a lower multiplier could potentially limit the system’s
capacity to serve more passengers, limiting the system’s overall efficiency and effectiveness.

76

L.

Table 8.3: Comparison of results for different values of maximum travel time multiplier.

Obj. 1 and Obj. 2 represent the average objective values for

Objectives 1 and 2 for each instance group, respectively. Time [s] represents the average time for the runs in each instance group, measured in seconds. The
ALNS heuristic was configured with a multiplier set at 1.7x for the computational study conducted in Chapter 7

Instance 1.1x 1.3x 1.5x 1.7x 1.9x

Group | Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Time [s]
S1 14 32.17 21.3 2.8 37.29 36.2 3.4 39.36 60.1 3.6 42.50 53.5 3.8 45.70 62.4
S2 2.0 53.55 41.2 4.8 59.91 72.5 5.4 62.36 99.3 5.6 66.42 109.7 5.8 73.20 110.7
S3 4.1 103.54 162.5 7.4 114.05 262.9 8.6 122.12 219.2 9.4 132.42 274.6 9.8 142.21 271.7
M1 8.8 203.10 1157.7 12.4 203.10 1242.0 16.0 236.19 1274.9 18.8 265.96 1408.9 19.5 274.43 1203.7
M2 17.6 313.50 2976.7 21.8 313.50 2268.4 25.6 365.66 2294.7 27.0 374.20 2990.2 28.6 415.35 2527.7
M3 25.2 435.30 3600.0 35.7 435.30 3350.1 39.4 475.62 3513.7 41.4 507.91 3400.2 41.6 501.54 3546.2
L1 43.2 523.79 3600.0 53.0 556.75 3600.0 57.9 601.44 3600.0 59.0 616.53 3600.0 59.2 621.99 3600.0
L2 50.4 594.84 3600.0 61.4 627.15 3600.0 68.1 690.27 3600.0 71.8 721.01 3600.0 73.8 755.31 3600.0
L3 75.9 895.39 3600.0 90.2 938.22 3600.0 96.3 1003.37 3600.0 99.0 1039.19 3600.0 99.8 1060.72 3600.0

Average 25.4 350.58 2085.4 32.2 365.04 1999.6 35.6 399.42 2030.3 37.3 418.46 2115.2 38.0 432.72 2059.2

8.3 The Value of Candidate Locations

Comparing Ridesharing With and Without Candidate Locations

Incorporating candidate locations into a ridesharing system enhances the flexibility for
both drivers and passengers. This additional element allows the SRRPFL to discover
solutions that can accommodate more passengers while maintaining or even reducing total
travel time for drivers. Table 8.4 provides a comparison of results for the ALNS heuristic
with LS and RCP, with (p = 10 min) and without (p = 0 min) candidate locations. As
recalled from Subsection 6.3.2, p is denoted as the maximum time a passenger is willing
to travel to reach a candidate pick-up location. Here, p = 0 min implies that the only
pick-up location for passengers is their origin location.

The results in Table 8.4 clearly illustrate the impact of introducing candidate locations.
There is an average increase in the number of passengers picked up, with the average value
of Obj. 1 across all instance groups rising from 35.1 without candidate locations to 37.3
with them. Furthermore, candidate locations contribute to shorter average travel times
for drivers, with the average value of Obj. 2 across all instance groups decreasing from
477.25 without candidate locations to 418.46 with them.

The inclusion of candidate locations does not substantially compromise passenger conveni-
ence. This conclusion is based on the observation that candidate locations, when available,
are frequently used, as indicated by the high average CP value at 82.82%. In addition,
the average travel time for a passenger to reach a candidate location is not excessively
long at 4.15 minutes (and in any case no longer than 10 minutes for any passenger (p =
10 min), indicating that candidate locations do not impose undue travel burdens on the
passengers. On the other hand, the introduction of candidate locations does impact the
average computational time of the ALNS heuristic. With candidate locations, the aver-
age computational time, Time [s], nearly doubles from 1154.6 seconds to 2115.2 seconds.
This increase can be attributed to the additional possibilities that the ALNS heuristic
needs to consider, leading to a generally higher computational time.

Despite the increased computational time, this analysis highlights the utility of candidate
locations in ridesharing scenarios. Their use presents an effective strategy for balancing
the dual objectives of maximizing passenger pick-ups and minimizing driver travel time.
Hence, the incorporation of candidate locations into a ridesharing model could greatly
enhance its practical applicability.

78

Table 8.4: Comparison of results for the ALNS heuristic with LS and RCP, with and without
candidate locations. Obj. 1 and Obj. 2 represent the average objective values for Objectives 1
and 2 for each instance group, respectively. Time [s] represents the average time for the runs
in each instance group, measured in seconds. CP denotes the average percentage of picked up
passengers who use a candidate location other than its origin. T'T [min] refers to the average
travel time it takes for passengers who are picked up at a candidate location, to travel to that
specific candidate location, measured in minutes

Instance | Without Candidate Locations With Candidate Locations

Group | Obj. 1 Obj. 2 Time [s] Obj. 1 Obj. 2 CP TT [min] Time [s]
S1 2.6 50.35 15.9 3.6 42.50 100.00% 4.01 53.5
52 4.0 89.30 31.2 5.6 66.42 69.67% 4.22 109.7
S3 8.0 149.89 87.2 9.4 13242 77.85% 4.10 274.6
M1 16.2 299.40 121.1 18.8 265.96 82.30% 4.87 1408.9
M2 25.0 436.89 262.4 27.0 374.20 86.57% 4.63 2990.2
M3 39.0 553.60 462.0 41.4 507.91 81.04% 3.96 3400.2
L1 57.7 717.68 2221.5 59.0 616.53 80.82% 3.90 3600.0
L2 67.3 806.10 3588.3 71.8 721.01 84.15% 4.03 3600.0
L3 97.9 1173.89 3600.0 99.0 1039.19 83.00% 3.66 3600.0

Average 35.1 477.25 1154.6 37.3 418.46 82.82% 4.15 2115.2

Figure 8.2 extends the information presented in Figure 8.1. It shows how much additional
travel time is needed for each instance group, comparing the cases with and without
candidate locations. The findings presented in Table 8.4 are mirrored in these results.
Essentially, it is clear that by employing candidate locations, the overall travel time for
all drivers can be decreased.

S1 S2 S3 M1 M2 M3 L1 L2 L3

m With candidate locations

80 %
80 %
70 %
60 %
50 %
40 %
30 %
20 %
10%

0%

m Without candidate locations

Figure 8.2: The average extra travel time for drivers in each instance group with ridesharing

Figure 8.3 and Figure 8.4 provide an illustration of the utilization of candidate locations.
These figures depict the results obtained from running instance S1-1D-4P-1 from the
instance group S1, both with and without candidate locations. This particular instance
consists of a single driver and four passengers.

79

Figure 8.3 presents the route that the driver takes without the consideration of candidate
locations. The driver embarks on their journey from the origin location at Agotnes and
proceeds to pick up three passengers from their respective origin locations in Straume,
Brattholmen, and Arefjord. It is apparent that the driver has to traverse each origin
location to collect the passengers. Upon delivering the passengers, two are destined for
Solheim, while the remaining passenger, as well as the driver, head towards Bergen sen-
trum.

Figure 8.4 presents the driver’s route when candidate locations are taken into account.
In this scenario, the driver is capable of accommodating all four passengers. To achieve
this, the passenger from Foldnes navigates to a candidate location in Bildgy, and a similar
approach is taken by the passenger from Straume. Consequently, the driver picks up both
passengers at Bildgy. Subsequently, the passengers from Arefjord and Brattholmen move
to their respective candidate location at Knarrevik, where they are picked up by the driver.
The passenger from Foldnes, whose destination is Loddefjord, is the first to be delivered.
The remaining passengers are delivered in a similar fashion. It is likely that the inability
of the driver to pick up the passenger from Foldnes in the scenario without candidate
locations is due to exceeding the driver’s maximum travel time. Moreover, as depicted
in Figure 8.4, the driver’s route with candidate locations is notably shorter than the one
without candidate locations.

In conclusion, the utilization of candidate locations clearly illustrates an increase in the
overall efficiency of the ridesharing system. Not only does it enable the driver to ac-
commodate more passengers, thereby maximizing ride-sharing potential and reducing in-
dividual vehicle usage, it also notably reduces the driver’s total travel distance, thereby
minimizing fuel consumption. Additionally, by offering passengers the option to navigate
to nearby candidate locations, ridesharing systems can better distribute pickup points,
leading to better route planning and lesser chances of overburdening certain routes or
locations.

Agotnes

Bergen sentrum

Arefjord
Solheim

Brattholmen

Figure 8.3: Driver’s route without candidate locations for InstancelD S1-1D-4P-1, depicting the
driver starting from Agotnes and picking up passengers from Straume, Brattholmen, and Arefjord

80

Agotnes Bergen sentrum

Foldnes
m b \

Knarrevik

Loddefjord

7.
1
fh4refore Solheim

Straume
Brattholmen
Bildey

Figure 8.4: Driver’s route with candidate locations for InstancelD S1-1D-4P-1, illustrating the
driver’s ability to pick up all passengers by utilizing candidate locations in Bildgy and Knarrevik

Comparing Varying Numbers of Candidate Locations for Passengers

The evaluation of the value of candidate locations may also take into account the quantity
of candidate locations per passenger. As outlined in Section 6.2, the # parameter describes
the 6 closest origin locations to be included as candidate locations for each passenger.
The ALNS heuristic was configured with 8 = 3 for the computational study conducted in
Chapter 7. The tested values of 6 in this subsection include: 6§ = 1, # = 3, § = 6, and
0 =9, where 6 = 1 includes only the nearest candidate location, § = 3 includes the three
nearest candidate locations, and so on.

Table 8.5 shows how changing 6 values affects the average number of passengers picked
up, the average total travel time for all drivers, and the average computation time for
the ALNS heuristic. The Obj. 1 column shows that as € increases, so does the average
number of passengers picked up across all instance groups. For example, when 6§ = 1, the
average value of Obj. 1 across all instance groups is 36.3. This average value increases as
we increase 0. For instance, when 6 = 9, the average value of Obj. 1 across all instance
groups becomes 37.8. This observation suggests that when passengers have more candidate
locations to choose from, more of them get picked up.

Furthermore, it appears that as 6 increases, the average total travel time for drivers,
shown in the Obj. 2 column, tends to decrease. For the same values of Obj. 1 across the
instance groups, a larger 6 value generally results in either the same or reduced total travel
time for all drivers compared to smaller 8 values. However, this is not always the case. For
example, in the instance group L3, the Obj. 2 is 1030.94 for § = 6, which is lower than
the value of 1046.66 at § = 9. This observation aligns with the lexicographic objective
functions described in Subsection 4.2.1, because the ALNS heuristic finds solutions where
more passengers are picked up when 6 = 9. Lastly, the computational time of the ALNS
heuristic, displayed in the Time [s]| column, increases with the values of §. For example,
the average computational time for instance group M1 with 6 = 3 is 1408.9 seconds,
and with 8 = 9 it is 2628.2 seconds. This notable increase of computational time with
increasing values of 0 is likely due to the greater number of candidate locations that the

ALNS heuristic needs to process.

In conclusion, the value of 6 can considerably influence the effectiveness of the ridesharing
model. By enabling a greater number of candidate locations for each passenger to choose
from, the system can accommodate more passengers while potentially reducing the total

81

travel time for drivers. However, varying values of 6 have less notable impact on Obj. 1
in comparison to varying maximum travel times from Section 8.2. Furthermore, this does
come with the trade-off of increased computation time due to the additional candidate
locations the ALNS heuristic must process. Therefore, in deploying this model, a balance
must be sought between optimizing rideshare success and travel efficiency, and managing
computational resources. This emphasizes the need for ridesharing systems to be adapt-
able, enabling them to adjust parameters such as 6 to suit specific operational contexts
or objectives, whether it’s maximizing passenger service, minimizing driver travel time, or
optimizing computational efficiency.

82

€8

Table 8.5: Comparison of results for different values of 6, where 6 represent the maximum number of candidate locations a passenger can have. Obj. 1 and
Obj. 2 represent the average objective values for Objectives 1 and 2 for each instance group, respectively. Time [s] represents the average time for the runs in
each instance group, measured in seconds. The ALNS heuristic was configured with § = 3 for the computational study conducted in Chapter 7

Instance =1 0=3 =6 =09

Group | Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Time [s]
S1 3.2 43.61 31.8 3.6 42.50 53.5 3.6 42.50 94.5 3.6 42.50 153.8
S2 5.2 70.07 50.0 5.6 66.42 109.7 5.6 66.42 118.9 5.6 66.42 148.8
S3 8.8 142.03 134.1 9.4 132.42 274.6 9.4 132.42 314.9 9.4 132.42 377.6
M1 174 293.82 622.6 18.8 265.96 1408.9 19.2 255.60 1700.3 19.2 252.08 2628.2
M2 26.6 416.52 1239.4 27.0 374.20 2990.2 28.2 384.77 3059.6 28.2 381.15 3472.7
M3 40.4 529.91 2019.1 414 507.91 3400.2 41.6 489.96 3562.7 41.6 486.93 3600.0
L1 58.2 665.35 3453.7 59.0 616.53 3600.0 59.0 599.23 3600.0 59.2 604.74 3600.0
L2 69.8 771.97 3600.0 71.8 721.01 3600.0 73.1 724.31 3600.0 73.5 724.90 3600.0
L3 97.6 1077.25 3600.0 99.0 1039.19 3600.0 99.4 1030.94 3600.0 99.5 1046.66 3600.0

Average 36.3 445.62 1639.3 37.3 418.46 2115.2 37.7 414.08 2184.6 37.8 415.25 2355.3

Chapter 9

Concluding Remarks

This thesis presents a potential solution to the unique transportation challenges faced by
regions like Sotra and the greater Bergen area in Norway, namely, ridesharing. Recognizing
the need for sustainable and efficient commuting alternatives, the thesis aimed to develop
a method of coordinating passengers and drivers within a ridesharing system. With this
focus, the Static Ridesharing Routing Problem with Flexible Locations (SRRPFL) was
formulated, aiming to design optimized routes for a set of drivers to pick-up and deliver
passengers at flexible locations.

Emphasizing the importance of individual travel needs, preferences, and constraints, the
SRRPFL sought to maximize passenger participation and minimize total travel time for
all drivers, creating an efficient transportation network that could alleviate traffic con-
gestion and contribute to sustainability goals. The introduction of flexible locations in
the SRRPFL model elevated the concept of ridesharing by adding a layer of convenience
and customization to the system. This feature allowed passengers to choose from a set of
candidate pick-up locations (and potentially also candidate delivery locations), increasing
their participation by accommodating individual travel plans and constraints.

An arc-flow mixed integer programming model was developed to solve the SRRPFL using
a commercial solver. However, since the commercial solver was only able to solve tiny
instances of the problem, an adaptive large neighborhood search (ALNS) heuristic was
proposed. This heuristic, grounded in the work of Ropke & Pisinger (2006), was adapted
to fit the unique requirements of the SRRPFL. The ALNS heuristic presented in this
thesis includes both the destroy and repair operators introduced by Ropke & Pisinger
(2006), alongside new operators specifically devised for the SRRPFL. Furthermore, a local
search (LS) component was integrated to enhance the solutions generated by the ALNS,
resulting in frequent improvements of the global best solution. The ALNS heuristic also
incorporates a set-partitioning problem, known as the route combination problem (RCP),
which optimizes the utilization and combination of routes previously encountered in the
search.

A real-world dataset, provided by Telia, was employed to accurately represent the trans-
portation landscape of Sotra and the greater Bergen area. This dataset detailed travel
patterns of residents in the region, including detailed information on trip origin and des-
tination and the frequency of trips. Utilizing the data provided by Telia allowed us to
incorporate specific geographic and demographic details. In total, 43 origin locations
and 20 destination locations were considered, an extension of previous work by Nitter &
Yang (2022). These locations were divided into four distinct zones, providing a rich test-

84

ing ground for the SRRPFL. This dataset formed the basis for generating the 45 unique
performance test instances used to evaluate the ALNS heuristic. These test instances, rep-
resentative of the diversity and complexity inherent in the transportation network, were
methodically categorized based on their size into instance groups. A thorough analysis of
the heuristic’s performance on these instances revealed that the best results were achieved
when both the local search and the RCP components were included in the ALNS config-
uration.

The results generated show that the ALNS heuristic finds solutions that demonstrates
benefits of ridesharing. Using the ALNS heuristic with LS and the RCP, over 95% of po-
tential passengers were picked up and delivered in larger instances, leading to a substantial
reduction in the number of individual cars on the road. The possibility of reducing traffic
congestion with ridesharing could have an important impact on the overall travel time and
commuting experience. In addition, ridesharing has environmental benefits by reducing
CO4 emissions. By pooling passengers, the total distance driven is reduced, thus reducing
the overall carbon footprint. This can contribute to environmental conservation efforts.

The study on the value of maximum travel time (T}) revealed its crucial role in the
ridesharing system. It shows that an increase in the maximum travel time multiplier
essentially expands the potential ridesharing matches, enabling the accommodation of a
larger number of passenger requests. The versatility of this parameter allows ridesharing
systems to better cater to user preferences and tolerances, balancing convenience with the
benefits of shared commuting. Despite the associated increase in overall travel time, the
potential for enhancing overall system efficiency by serving a greater number of passengers
underscores its importance.

Furthermore, candidate locations were found to be a valuable addition to the ridesharing
model. They introduced greater flexibility and efficiency to the system. Incorporating
candidate locations led to an increase in the average number of passengers picked up and
a decrease in the average total travel time for drivers. While a higher € value (representing
more candidate locations) can lead to more passengers being picked up and potentially
lower total travel time for drivers, it also leads to a notable increase in computational
time. The insights highlight the crucial role that candidate locations play in enhancing the
performance of such systems, indicating that ridesharing models that consider candidate
locations could see more success in implementation.

The ALNS heuristic, along with the proposed extensions, demonstrates its potential by
providing high-quality solutions for all generated test instances within the 3600 seconds
time limit. Consequently, the heuristic shows its capability to address the SRRPFL for the
actual case considered in this study. Therefore, it exhibits strong potential as a practical
and efficient tool for the ridesharing challenges faced by the Sotra region and the greater
Bergen area.

85

Chapter 10

Future Research

An evaluation of the work conducted on the Static Ridesharing Routing Problem with
Flexible Locations (SRRPFL) reveals several promising areas for future investigation.
This chapter is organized around three key areas of potential advancement. First, we
explore potential extensions to the mathematical model. Second, we consider how the
adaptive large neighborhood search (ALNS) heuristic might be improved. Finally, we
explore alternative approaches to analyze and understand the behavior of actors within
the ridesharing systems.

First, there are several interesting extensions to the SRRPFL. One potential area of ex-
tension is incorporating traffic and travel time uncertainties to reflect fluctuating traffic
conditions better. In such scenarios, the optimization problem becomes stochastic, provid-
ing a more realistic modeling of real-world ridesharing operations. In addition to these,
the concept of "flexible drivers” could be integrated into the model. In the SRRPFL,
roles are defined a priori - users are either drivers or passengers. With flexible drivers, a
new subset of users is introduced who own a car but are also open to being passengers
in another car. This flexibility potentially introduces additional layers of solution spaces
and opportunities for increased ridesharing efficiency. Furthermore, another compelling
extension could address the issue of reverse commuting in ridesharing - from the workplace
to the homes of the participants. Currently, the SRRPFL mainly focuses on ridesharing
from home to the workplace. The addition of a reverse commute perspective would not
only increase the scope of the model but also the realism, as it takes into account the
complete daily commuting cycle.

The second opportunity for further research involves enhancing the efficiency of the ad-
aptive large neighborhood search (ALNS) heuristic, particularly through preprocessing
and the creation of ”compatibility subsets”. Omne identified improvement relates to the
preliminary assignment of passengers to drivers. In the current approach, the heuristic
does not preclude any passenger-driver pairings, even those that may be logistically in-
feasible due to spatial constraints or other factors. This lack of preprocessing means that
the ALNS heuristic may spend considerable computational resources exploring unlikely or
impossible assignments. In light of this, one proposed enhancement to the ALNS heuristic
is to identify and eliminate these infeasible pairings. Passengers that are evidently out
of a driver’s reach could then be excluded from that driver’s potential assignments. This
”compatibility preprocessing” could result in the creation of compatibility subsets, where
each subset contains only those passengers that a given driver could feasibly pick up. By
excluding infeasible options in the initial phase, the ALNS heuristic would be streamlined
and better able to focus on the exploration of viable solutions.

86

The third direction for future research lies in the exploration of alternative approaches
to analyzing ridesharing systems, especially focusing on understanding and modeling the
behavior of actors within the system. This research could involve choice models, a set
of methods frequently used in transportation and logistics research to predict how indi-
viduals react to various incentives or policy measures. Choice models, including discrete
choice models and stochastic choice models, capture individual decision-making processes
under conditions of uncertainty. These models could be utilized to estimate how potential
passengers and drivers might respond to different aspects of a ridesharing scheme. For
instance, one could study how fare prices, waiting times, detour lengths, or environmental
considerations might influence the choice of a passenger to participate in ridesharing.
Similarly, drivers’ willingness to share rides might be modeled considering factors such as
compensation, detour lengths, or passenger compatibility. One of the main advantages of
choice models is that they can take into account the heterogeneity of actors, acknowledging
that different individuals may have different preferences and react differently to the same
conditions. These models, thus, have a high potential to enrich our understanding of ride-
sharing systems and improve their design and operation. This kind of behavioral modeling
could complement the analysis based on the SRRPFL, providing insights on how to make
ridesharing schemes more attractive to potential users and increase their participation
rate. It might also help in assessing the potential impacts of policy measures aimed at
promoting ridesharing.

87

Bibliography

Agatz, N., Erera, A., Savelsbergh, M., & Wang, X. (2012). Optimization for dynamic
ride-sharing: A review. Furopean Journal of Operational Research, 223, 295-303.
URL: https://www.sciencedirect.com/science/article/pii/S0377221712003864. doi:https:
//doi.org/10.1016/j.ejor.2012.05.028.

Auad-Perez, R., & Hentenryck, P. V. (2022). Ridesharing and fleet sizing for
on-demand multimodal transit systems. Transportation Research Part C: Emer-
ging Technologies, 138, 103594. URL: https://www.sciencedirect.com/science/article/pii/
S0968090X22000407. doihttps://doi.org/10.1016/j.trc.2022.103594.

Baldacci, R., Maniezzo, V., & Mingozzi, A. (2004). An exact method for the car pooling
problem based on lagrangean column generation. Operations Research, 52, 422-439.
URL: http://www.jstor.org/stable/30036593.

Bruck, B. P., Incerti, V., Tori, M., & Vignoli, M. (2017). Minimizing co2 emis-
sions in a practical daily carpooling problem. Computers € Operations Research,
81, 40-50. URL: https://www.sciencedirect.com /science/article/pii/S030505481630301X.
doi:https://doi.org/10.1016/j.cor.2016.12.003.

Cordeau, J.-F., & Laporte, G. (2003). A tabu search heuristic for the static multi-vehicle
dial-a-ride problem. Transportation Research Part B: Methodological, 37, 579-594.
URL: https://www.sciencedirect.com/science/article/pii/S0191261502000450. doi:https:
//doi.org/10.1016/350191-2615(02)00045-0.

Dahle, L., Andersson, H., Christiansen, M., & Speranza, M. G. (2019). The pickup
and delivery problem with time windows and occasional drivers. Computers & Oper-
ations Research, 109, 122-133. URL: https://www.sciencedirect.com /science/article/pii/
S0305054819301066. doihttps://doi.org/10.1016/j.cor.2019.04.023.

Fielbaum, A., Bai, X., & Alonso-Mora, J. (2021). On-demand ridesharing with optim-
ized pick-up and drop-off walking locations. Transportation Research Part C: Emer-
ging Technologies, 126, 103061. URL: https://www.sciencedirect.com/science/article/pii/
S0968090X21000887. doi:https://doi.org/10.1016/j.trc.2021.103061.

Ghandeharioun, Z., & Kouvelas, A. (2023). Real-time ridesharing operations for on-
demand capacitated systems considering dynamic travel time information. Trans-
portation Research Part C: Emerging Technologies, 151, 104115. URL: https://
www.sciencedirect.com/science/article/pii/S0968090X23001043. doi:https://doi.org/
10.1016/j.trc.2023.104115.

He, P., Jin, J. G., Schulte, F., & Trépanier, M. (2023). Optimizing first-mile ride-
sharing services to intercity transit hubs. Transportation Research Part C: Emer-
ging Technologies, 150, 104082. URL: https://www.sciencedirect.com/science/article/pii/
S50968090X23000712. doihttps://doi.org/10.1016/j.trc.2023.104082.

88

https://www.sciencedirect.com/science/article/pii/S0377221712003864
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2012.05.028
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2012.05.028
https://www.sciencedirect.com/science/article/pii/S0968090X22000407
https://www.sciencedirect.com/science/article/pii/S0968090X22000407
http://dx.doi.org/https://doi.org/10.1016/j.trc.2022.103594
http://www.jstor.org/stable/30036593
https://www.sciencedirect.com/science/article/pii/S030505481630301X
http://dx.doi.org/https://doi.org/10.1016/j.cor.2016.12.003
https://www.sciencedirect.com/science/article/pii/S0191261502000450
http://dx.doi.org/https://doi.org/10.1016/S0191-2615(02)00045-0
http://dx.doi.org/https://doi.org/10.1016/S0191-2615(02)00045-0
https://www.sciencedirect.com/science/article/pii/S0305054819301066
https://www.sciencedirect.com/science/article/pii/S0305054819301066
http://dx.doi.org/https://doi.org/10.1016/j.cor.2019.04.023
https://www.sciencedirect.com/science/article/pii/S0968090X21000887
https://www.sciencedirect.com/science/article/pii/S0968090X21000887
http://dx.doi.org/https://doi.org/10.1016/j.trc.2021.103061
https://www.sciencedirect.com/science/article/pii/S0968090X23001043
https://www.sciencedirect.com/science/article/pii/S0968090X23001043
http://dx.doi.org/https://doi.org/10.1016/j.trc.2023.104115
http://dx.doi.org/https://doi.org/10.1016/j.trc.2023.104115
https://www.sciencedirect.com/science/article/pii/S0968090X23000712
https://www.sciencedirect.com/science/article/pii/S0968090X23000712
http://dx.doi.org/https://doi.org/10.1016/j.trc.2023.104082

Ho, S. C., Szeto, W., Kuo, Y.-H., Leung, J. M., Petering, M., & Tou, T. W.
(2018). A survey of dial-a-ride problems: Literature review and recent de-
velopments. Transportation Research Part B: Methodological, 111, 395-421.
URL: https://www.sciencedirect.com/science/article/pii/S0191261517304484. doi:https:
//doi .org/10.1016/j.trb.2018.02.001

Hou, L., Li, D., & Zhang, D. (2018). Ride-matching and routing optimisation: Models
and a large neighbourhood search heuristic. Transportation Research Part E: Logistics
and Transportation Review, 118,143-162. URL: https://www.sciencedirect.com/science/
article/pii/S1366554517310050. doi:https://doi.org/10.1016/j.tre.2018.07.003.

Hsieh, F.-S. (2020). A comparative study of several metaheuristic algorithms to optim-
ize monetary incentive in ridesharing systems. ISPRS International Journal of Geo-
Information, 9. URL: https://www.mdpi.com/2220-9964/9,/10/590.

Kaan, L., & Olinick, E. V. (2013). The vanpool assignment problem: Optimization
models and solution algorithms. Computers & Industrial Engineering, 66, 24—40.
URL: https://www.sciencedirect.com/science/article/pii/S0360835213001824. doi:https:
//doi.org/10.1016/j.cie.2013.05.020.

Oygarden kommune (2023). Om oss. URL: https://www.oygarden.kommune.no/
politikk-og-organisasjon /organisasjon /om-oss/ .

Li, T., Xu, M., Sun, H., Xiong, J., & Dou, X. (2023). Stochastic ridesharing equilibrium
problem with compensation optimization. Transportation Research Part E: Logistics
and Transportation Review, 170, 102999. URL: https://www.sciencedirect.com/science/
article/pii/S1366554522003763. doi:https://doi.org/10.1016/j.tre.2022.102999.

Lin, Q., Xu, W., Chen, M., & Lin, X. (2019). A probabilistic approach for demand-
aware ride-sharing optimization, . (p. 141-150). URL: https://doi.org/10.1145/3323679.
3326512. doi:10.1145/3323679.3326512.

Liu, R., Tao, Y., & Xie, X. (2019). An adaptive large neighborhood search heuristic for the
vehicle routing problem with time windows and synchronized visits. Computers € Oper-
ations Research, 101, 250-262. URL: https://www.sciencedirect.com/science/article/pii/
S030505481830220X. doi:https://doi.org/10.1016/j.cor.2018.08.002.

Lu, Q., & Dessouky, M. (2004). An exact algorithm for the multiple vehicle pickup and
delivery problem. Transportation Science, 38, 503-514. URL: http://www.jstor.org/
stable/25769222.

Lu, Q., & Dessouky, M. M. (2006). A new insertion-based construction heuristic for
solving the pickup and delivery problem with time windows. European Journal of Op-
erational Research, 175, 672-687. URL: https://www.sciencedirect.com/science/article/
pii/S0377221705004698. doi:https://doi.org/10.1016/j.ejor.2005.05.012.

Madsen, O. B. G., Ravn, H. F., & Rygaard, J. M. (1995). A heuristic algorithm
for a dial-a-ride problem with time windows, multiple capacities, and multiple ob-
jectives. URL: https://link.springer.com/article/10.1007 /BF02031946+citeas. doi:https:
//doi.org/10.1007/BF02031946.

NAF (2015). Kun 600 biler ekstra skaper kgen pa E18.

Nitter, J., & Yang, S. (2022). Reducing traffic congestion through ridesharing: Case of
sotra. project thesis, norwegian university of science and technology (ntnu).

89

https://www.sciencedirect.com/science/article/pii/S0191261517304484
http://dx.doi.org/https://doi.org/10.1016/j.trb.2018.02.001
http://dx.doi.org/https://doi.org/10.1016/j.trb.2018.02.001
https://www.sciencedirect.com/science/article/pii/S1366554517310050
https://www.sciencedirect.com/science/article/pii/S1366554517310050
http://dx.doi.org/https://doi.org/10.1016/j.tre.2018.07.003
https://www.mdpi.com/2220-9964/9/10/590
https://www.sciencedirect.com/science/article/pii/S0360835213001824
http://dx.doi.org/https://doi.org/10.1016/j.cie.2013.05.020
http://dx.doi.org/https://doi.org/10.1016/j.cie.2013.05.020
https://www.oygarden.kommune.no/politikk-og-organisasjon/organisasjon/om-oss/
https://www.oygarden.kommune.no/politikk-og-organisasjon/organisasjon/om-oss/
https://www.sciencedirect.com/science/article/pii/S1366554522003763
https://www.sciencedirect.com/science/article/pii/S1366554522003763
http://dx.doi.org/https://doi.org/10.1016/j.tre.2022.102999
https://doi.org/10.1145/3323679.3326512
https://doi.org/10.1145/3323679.3326512
http://dx.doi.org/10.1145/3323679.3326512
https://www.sciencedirect.com/science/article/pii/S030505481830220X
https://www.sciencedirect.com/science/article/pii/S030505481830220X
http://dx.doi.org/https://doi.org/10.1016/j.cor.2018.08.002
http://www.jstor.org/stable/25769222
http://www.jstor.org/stable/25769222
https://www.sciencedirect.com/science/article/pii/S0377221705004698
https://www.sciencedirect.com/science/article/pii/S0377221705004698
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2005.05.012
https://link.springer.com/article/10.1007/BF02031946#citeas
http://dx.doi.org/https://doi.org/10.1007/BF02031946
http://dx.doi.org/https://doi.org/10.1007/BF02031946

Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2008). A survey on pickup and delivery
problems. Journal fiir Betriebswirtschaft, 58, 81-117. URL: https://doi.org/10.1007%
2Fs11301-008-0036-4. do0i:10.1007/s11301-008-0036-4.

Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2010). Variable neighborhood search for the
dial-a-ride problem. Computers €& Operations Research, 37, 1129-1138. URL: https://
www.sciencedirect.com/science/article/pii/S030505480900241X. doi:https://doi.org/
10.1016/j.cor.2009.10.003.

Pelzer, D., Xiao, J., Zehe, D., Lees, M. H., Knoll, A. C., & Aydt, H. (2015). A partition-
based match making algorithm for dynamic ridesharing. IEEE Transactions on Intelli-
gent Transportation Systems, 16, 2587-2598. doi:10.1109/TITS.2015.2413453.

Psaraftis, H. N. (1980). A dynamic programming solution to the single vehicle many-
to-many immediate request dial-a-ride problem. Transportation Science, 14, 130-154.
URL: http://www.jstor.org/stable/25767975.

Ropke, S., Cordeau, J. F.,; & Laporte, G. (2006). Models and branch-and-cut algorithms
for pickup and delivery problems with time windows.

Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation Science, 40, 455—472.
URL: http://www.jstor.org/stable/25769321.

Smet, P. (2021). Ride sharing with flexible participants: a metaheuristic approach for
large-scale problems. Int. Trans. Oper. Res., 28, 91-118.

Statens Vegvesen (2023). Sotrabrua. URL: https://www.vegvesen.
no/trafikkdata/start/utforsk?datatype=volume&display=chart&fbclid=
IwAR1CpddOT71mkRUIM8zvsulvtiYyuPGi8HWmDrOFYabGej6jdeakWqxHScY &from=
2023-05-30#trpids=29614V805708.

Stiglic, M., Agatz, N., Savelsbergh, M., & Gradisar, M. (2015). The benefits of meet-
ing points in ride-sharing systems. Transportation Research Part B: Methodological,
82, 36-53. URL: https://www.sciencedirect.com/science/article/pii/S0191261515002088.
doihttps://doi.org/10.1016/j.trb.2015.07.025.

Sun, Y., Chen, Z.-L., & Zhang, L. (2020). Nonprofit peer-to-peer ridesharing optimization.
Transportation Research Part E: Logistics and Transportation Review, 142, 102053.
URL: https://www.sciencedirect.com/science/article/pii/S1366554520307043. doi:https:
//doi.org/10.1016/j.tre.2020.102053.

Telia (2022). Trafikkdata Qygarden bergen uke 39-43 2022, crowd insights (tom henriksen),
. URL: https://www.sciencedirect.com/science/article/pii/S0968090X21000887.

Turkes, R., Sorensen, K., & Hvattum, L. M. (2021). Meta-analysis of metaheuristics:
Quantifying the effect of adaptiveness in adaptive large neighborhood search. Furopean
Journal of Operational Research, 292, 423-442. URL: https://www.sciencedirect.com/
science/article/pii/S037722172030936X. doi:https://doi.org/10.1016/j.ejor.2020.
10.045.

Wang, J., Sun, Y., Zhang, Z., & Gao, S. (2020). Solving multitrip pickup and de-
livery problem with time windows and manpower planning using multiobjective al-
gorithms. IEEE/CAA Journal of Automatica Sinica, 7, 1134-1153. doi:10.1109/JAS.
2020.1003204.

90

https://doi.org/10.1007%2Fs11301-008-0036-4
https://doi.org/10.1007%2Fs11301-008-0036-4
http://dx.doi.org/10.1007/s11301-008-0036-4
https://www.sciencedirect.com/science/article/pii/S030505480900241X
https://www.sciencedirect.com/science/article/pii/S030505480900241X
http://dx.doi.org/https://doi.org/10.1016/j.cor.2009.10.003
http://dx.doi.org/https://doi.org/10.1016/j.cor.2009.10.003
http://dx.doi.org/10.1109/TITS.2015.2413453
http://www.jstor.org/stable/25767975
http://www.jstor.org/stable/25769321
https://www.vegvesen.no/trafikkdata/start/utforsk?datatype=volume&display=chart&fbclid=IwAR1Cpdd0T71mkRUlm8zvsu1vtiYyuPGi8HWmDr0FYabGej6jdeakWqxHScY&from=2023-05-30#trpids=29614V805708
https://www.vegvesen.no/trafikkdata/start/utforsk?datatype=volume&display=chart&fbclid=IwAR1Cpdd0T71mkRUlm8zvsu1vtiYyuPGi8HWmDr0FYabGej6jdeakWqxHScY&from=2023-05-30#trpids=29614V805708
https://www.vegvesen.no/trafikkdata/start/utforsk?datatype=volume&display=chart&fbclid=IwAR1Cpdd0T71mkRUlm8zvsu1vtiYyuPGi8HWmDr0FYabGej6jdeakWqxHScY&from=2023-05-30#trpids=29614V805708
https://www.vegvesen.no/trafikkdata/start/utforsk?datatype=volume&display=chart&fbclid=IwAR1Cpdd0T71mkRUlm8zvsu1vtiYyuPGi8HWmDr0FYabGej6jdeakWqxHScY&from=2023-05-30#trpids=29614V805708
https://www.sciencedirect.com/science/article/pii/S0191261515002088
http://dx.doi.org/https://doi.org/10.1016/j.trb.2015.07.025
https://www.sciencedirect.com/science/article/pii/S1366554520307043
http://dx.doi.org/https://doi.org/10.1016/j.tre.2020.102053
http://dx.doi.org/https://doi.org/10.1016/j.tre.2020.102053
https://www.sciencedirect.com/science/article/pii/S0968090X21000887
https://www.sciencedirect.com/science/article/pii/S037722172030936X
https://www.sciencedirect.com/science/article/pii/S037722172030936X
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2020.10.045
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2020.10.045
http://dx.doi.org/10.1109/JAS.2020.1003204
http://dx.doi.org/10.1109/JAS.2020.1003204

Zheng, M., & Pantuso, G. (2023). Trading off costs and service rates in a first-mile
ride-sharing service. Transportation Research Part C: Emerging Technologies, 150,
104099. URL: https://www.sciencedirect.com/science/article/pii/S0968090X23000888.
doishttps://doi.org/10.1016/3.trc.2023.104099.

91

https://www.sciencedirect.com/science/article/pii/S0968090X23000888
http://dx.doi.org/https://doi.org/10.1016/j.trc.2023.104099

Appendix A

Mathematical Model

Sets

set of drivers k

set of passenger origin locations 4

set of passenger destination locations j

set of candidate pick-up locations for passenger 7
set of candidate delivery locations for passenger %
set of pick-up nodes

set of delivery nodes

set of ridesharing nodes

set of all nodes

set of arcs driver k£ can traverse

origin node for driver k
destination node for driver k

direct travel time from node (i,m) € N® U {o(k)} to node (j,n) € NEU

{d(k)}

direct travel time between origin/destination location for passenger i € PF
and its candidate pick up/delivery location (i,m) € N UNP

maximum travel time for driver/passenger k € DU PP
earliest arrival time at destination for driver/passenger k € D U PF
latest arrival time at destination for driver/passenger k € DU PF

maximum capacity for driver k

92

Decision Variables

S
Llim

Thimgn
E
xkjn

oD
L,

Ykim

2k

tkim

1 if driver k € D travels from its origin location o(k) to a pick up node
(i,m) € NF, 0 otherwise

1 if driver k € D travels directly between ridesharing nodes (i,m) € N'?
and (j,n) € N'®, 0 otherwise

1 if driver k € D travels from a delivery node (4,n) € N'P to its destination
location d(k), 0 otherwise

1 if driver k € D travels directly from its origin location o(k) to its destin-
ation location d(k), 0 otherwise

1 if driver k& € D picks up/delivers passenger i € PF at node (i,m) €
NP UNDP, 0 otherwise

1 if driver k € D picks up passenger i € P¥, 0 otherwise

The time driver/passenger & € D U PP leaves node (i,m) € N

Objective Functions

Constraints

max z; = Z Z Zki (A.1)

keD icPP
min z9 = Z(tkvd(k) — tk,o(k)) (AQ)
keD
Z o + 2P =1, keD (A.3)
(i,m)eNP
> 2, +a" =1, keD (A.4)
(Jm)eNP
Tim + D Tkjnim = D Tkimjn: k€D, (i,m) e NF (A.5)
(j,n)ENF (j,n)eENR
xkEjn + Z Thjnim = Z Tkimjn, k€D, (j,n) € NP (A.6)
(i,m)eND (i,m)eNE
xfjn + Z Thimjn — Ykjn = 0, k€D, (j,n) e N (A.7)
(i,m)eNP
xkE]n + Z Thjnim — Ykjn = 0, keD, (], n) € ND (Ag)
(i,m)eND

93

Y Y. wkm <1, ieP’

keD mGMZPUMiD

§ : . P
Zki = Ykim, k€D7ZE7D
meMF

P
> Ykim= Y YkNyim» kEDIEP
memP nemMP

D . P D
tkim + Ti,m,N—i—i,nzki —teNtin <0, ke D,(i,m) € N ne M;

tkim + ngwn - tkjn - Mkimjn(l - l'kimjn) < 07 ke Dv (ia m) € NR7 (]7 n) € NR

thim + Z?n]n - tkjn + Mk'imjn(l - xkimjn) > 07 ke D7 (27 m) € NR7 (.77 TL) € NR

S

tk,o(k) + Tlfk)yi,m = Lgim — Mk,o(k),i,m(l B xkzm) <0, keD, (iv m) e NF
D s . P
tk,o(k) + To(k),i,m — teim + Mk,o(k),i,m(l — $lmm) >0, keD, (’L, m) eN
teim + TP —t — M, 1—2E)y<0, keD,(NP
kim t L4 o d(k) — Uh,d(k) k,z,m,d(k)(Thim) <0, €D, (i,m) €

thim + T ag) = that) + Miimae)(1 = @him) >0, k€D, (i,m) e NP

tko(k) T T(f()k),d(k) — tra) — Mio()amy (1 —287) <0, k€D
tro(k) T Tf()k),d(k) — tea) + Myogr)ary(1 —257) >0, keD

Ay, <tgawy < Ap, keD
Aizii < tinrio + TN pinVkim < Aizgi, k€D,i€ PP neMp

thdky — thomy < T, keD

thN4i0 = thio < T 4+ Myio(1— 21i), keD,iePl

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

94

thio < thim — ToYkims Kk € D, (i,m) € N
0> tein + TS ypin, keD,(NP
tk,],O = tk‘]n + jnyk‘]na € 7(])”) €
Y i< Qr keD
iePP

zym € 40,1}, keD,(i,m)e NP

Tkimgn € {O) 1}7 ke D7 (Z7m) € NR> (J? TL) € NR

Thm €{0,1}, ke D,(jn) e NP
9P €{0,1}, keD
Yeim € {0,1}, ke D, (i,m) e NEUNP
2z €{0,1}, keD,iePP

teim >0, ke DUPEY (i,m) e N

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

95

Appendix B

Zones and Location Names

B.1 Zonel

Figure B.1 illustrates the origin locations in Zone 1, where each location is represented by
a label such as ”01” for origin location 1. The corresponding place or location names for
these origin locations are listed in Table B.1.

01
o

02 o

09
08 © o

010 o 011
o

012 o
o 013

014 o

Figure B.1: Map of Zone 1 in the Sotra region, with origin locations marked by red markers and
labeled as O1, 02, etc.

96

Table B.1: Corresponding location names for origin locations in Zone 1 (In Norwegian)

Origin location Location name | Origin location Location name
01 Hellesay 011 Vindesnes
02 Selgyna 012 Ongeltveit
03 Tjeldstg 013 Agotnes
04 Ogy 014 Kartveit
05 Blomvag
06 Ronggyna
o7 Torsteinsvik
08 Turgyna
09 Misje
010 Sollsvika

B.2 Zone 2

Figure B.2 illustrates the origin locations in Zone 2. The corresponding place or location
names for these origin locations are listed in Table B.2.

032
015 O o
033
(o]
031
025
016 © 029 ®
O Stragyn o 030
026 o O o)
o @'\ 028
017
021
019 o (o) P o
Ol8 g ©O 024
020 © 023 O
022 ©

Figure B.2: Map of Zone 2 in the Sotra region, with origin locations marked by red markers and
labeled as O15, O16, etc.

97

Table B.2: Corresponding location names for origin locations in Zone 2 (In Norwegian)

Origin location Location name | Origin location Location name

015 Knappskog 025 Morland

016 Sekkingstad 026 Kolltveit

017 Algergyna 027 Bildgy

018 Mgvik 028 Brattholmen

019 Ulveset 029 Straume

020 Nessjgen 030 Arefjord

021 Fjell 031 Knarrevik

022 Tellnes 032 Vagen

023 Liaskjeret 033 Foldnes

024 Hovden 034 Ebbesvik
B.3 Zone 3

Figure B.3 illustrates the origin locations in Zone 3. The corresponding place or location
names for these origin locations are listed in Table B.3.

085
036 037
o o
038 ©
0390 o 041
042 o
040 O o
043

Figure B.3: Map of Zone 3 in the Sotra region, with origin locations marked by red markers and

labeled as O35, 036, etc.

98

Table B.3: Corresponding location names for origin locations in Zone 3 (In Norwegian)

Origin location Location name

035 Trengereid
036 Telavag
037 Skogsvag
038 Kausland
039 Glesveer
040 Treelevika
041 Berge

042 Forland
043 Fardalen

B.4 Zone 4

Figure B.4 illustrates the destination locations in Zone 4, where each location is represented
by a label such as ”D1” for destination location 1. The corresponding place or location
names for these destination locations are listed in Table B.4.

99

D16 D17 \
o
D18
o
D15
DI9 o
D70
D2 BEFQEN
o D6
D8
DO1 @ D20
D9 o o
o
D10
D3O
D4
O D11
(o)
D12
D5 D13
o (o)
o
D14

Figure B.4: Map of Zone 4 in the Bergen region, with destination locations marked by blue
markers and labeled as D1, D2, etc.

Table B.4: Corresponding location names for destination locations in Zone 4 (In Norwegian)

Destination Location name Destination Location name
location location

D1 Loddefjord D11 Landas-sadalen
D2 Laksevag D12 Nesttun

D3 Fyllingsdalen D13 Kaland

D4 Bgnes D14 Fana

D5 Ytrebygda D15 Eidsvag

D6 Bergen sentrum D16 Tertnes-salhus
D7 Sandviken D17 Asane

D8 Lone D18 Ytre arna

D9 Solheim D19 Indre arna

D10 Arstad D20 Fridalen-slettebakken

100

Appendix C

Origin and Destination Location

Coordinates

C.1 Zone 1 Coordinates

Table C.1: Coordinates of Origin Locations in Zone 1

Location Latitude Longitude | Location Latitude Longitude
O1: Hellesgy 60.653579 4.796694 O11: Vindesnes 60.422644 5.000645
02: Selgyna 60.640977 4.803140 012: Ongeltveit 60.411782 4.982625
03: Tjeldstg 60.589538 4.840584 013: Agotnes 60.404263 5.002809
04: Ogy 60.563607 4.861620 014: Kartveit 60.390493 4.994399
O5: Blomvag 60.536478 4.874959

06: Ronggyna 60.507616 4.915516

O7: Torsteinsvik 60.494483 4.943608

08: Turgyna 60.451152 4.919396

09: Misje 60.450161 4.960451

010: Sollsvika 60.431002 4.966409

101

C.2 Zone 2 Coordinates

Table C.2: Coordinates of Origin Locations in Zone 2

Location Latitude Longitude | Location Latitude Longitude
015: Knappskog 60.382878 5.055929 025: Morland 60.366201 5.064647
016: Sekkingstad 60.359700 4.985472 026: Kolltveit 60.351225 5.092105
O17: Algergyna 60.351787 4.967791 027: Bildgy 60.353390 5.107026
018: Mgvik 60.326007 5.009692 028: Brattholmen 60.354616 5.152274
019: Ulveset 60.327046 5.035510 029: Straume 60.356937 5.125721
020: Nessjoen 60.309361 5.037209 030: Arefjord 60.358846 5.145409
021: Fjell 60.330735 5.076383 031: Knarrevik 60.368049 5.151220
022: Tellnes 60.296214 5.083010 032: Vagen 60.385109 5.119060
023: Liaskjeret 60.306928 5.130726 033: Foldnes 60.376362 5.107050
024: Hovden 60.333400 5.121158 034: Ebbesvik 60.336068 5.140128

C.3 Zone 3 Coordinates

Table C.3: Coordinates of Origin Locations in Zone 3

Location Latitude Longitude
035: Trengereid 60.273042 5.060527
036: Telavag 60.262097 4.984143
037: Skogsvag 60.25994 5.097186
038: Kausland 60.225919 5.046943
039: Glesveer 60.211953 5.041804
040: Trelevika 60.183544 5.047290
0O41: Berge 60.208794 5.078852
042: Forland 60.194402 5.103127
043: Fardalen 60.186358 5.128284

102

C.4 Zone 4 Coordinates

Table C.4: Coordinates of Destination Locations in Zone 4

Location Latitude Longitude | Location Latitude Longitude
D1: Loddefjord 60.366936 5.234154 D11: Landas- 60.322493 5.370700
seedalen
D2: Laksevag 60.359700 5.271280 D12: Nesttun 60.312429 5.354703
D3: Fyllingsdalen 60.348946 5.287026 D13: Kaland 60.292324 5.380563
D4: Bgnes 60.326543 5.301184 D14: Fana 60.263706 5.344979
D5: Ytrebygda 60.288845 5.264713 D15: Eidsvag 60.436380 5.319374
D6: Bergen sentrum 60.395409 5.326163 D16: Tertnes-salhus 60.456868 5.307458
D7: Sandviken 60.408271 5.322390 D17: Asane 60.473474 5.333811
D8: Lone 60.371778 5.359552 D18: Ytre arna 60.460644 5.427381
D9: Solheim 60.362707 5.342976 D19: Indre arna 60.415280 5.466286
D10: Arstad 60.356113 5.350348 D20: Fridalen- 60.361881 5.454060
slettebakken

103

Appendix D

Test Instances

Table D.1 presents a list of all performance instances in this thesis.

104

Table D.1: Summary of all instances

Instance ID Instance Group Drivers Passengers
S1-1D-4P-1 S1 1 4
S1-1D-4P-2 S1 1 4
S1-1D-4P-3 S1 1 4
S1-1D-4P-4 S1 1 4
S1-1D-4P-5 S1 1 4
S2-2D-6P-1 S2 2 6
S2-2D-6P-2 S2 2 6
S2-2D-6P-3 S2 2 6
S2-2D-6P-4 S2 2 6
S2-2D-6P-5 S2 2 6
S3-4D-10P-1 S3 4 10
S3-4D-10P-2 S3 4 10
S3-4D-10P-3 S3 4 10
S3-4D-10P-4 S3 4 10
S3-4D-10P-5 S3 4 10
M1-8D-20P-1 M1 8 20
M1-8D-20P-2 M1 8 20
M1-8D-20P-3 M1 8 20
M1-8D-20P-4 M1 8 20
M1-8D-20P-5 M1 8 20
M2-12D-30P-1 M2 12 30
M2-12D-30P-2 M2 12 30
M2-12D-30P-3 M2 12 30
M2-12D-30P-4 M2 12 30
M2-12D-30P-5 M2 12 30
M3-16D-42P-1 M3 16 42
M3-16D-42P-2 M3 16 42
M3-16D-42P-3 M3 16 42
M3-16D-42P-4 M3 16 42
M3-16D-42P-5 M3 16 42
L1-20D-60P-1 L1 20 60
L1-20D-60P-2 L1 20 60
L1-20D-60P-3 L1 20 60
L1-20D-60P-4 L1 20 60
L1-20D-60P-5 L1 20 60
L2-25D-75P-1 L2 25 75
L2-25D-75P-2 L2 25 75
L2-25D-75P-3 L2 25 75
L2-25D-75P-4 L2 25 75
L2-25D-75P-5 L2 25 75
L3-35D-100P-1 L3 35 100
L3-35D-100P-2 L3 35 100
L3-35D-100P-3 L3 35 100
L3-35D-100P-4 L3 35 100
L3-35D-100P-5 L3 35 100

105

Appendix E

Parameter Tuning

E.1 Percentage Removals of Passengers Parameter ()

Modifying the « parameter influences how many passengers are destroyed in each iteration
of the ALNS heuristic. The tested v parameter include: v € [5%, 15%], v € [10%, 20%),
v € [15%,25%], v € [20%, 35%)], and v € [35%,50%]. The results of this tuning process
are displayed in Table E.1.

The objective values and times presented in Table E.3 are the averages obtained from
running each instance five times under each setting. The number of ALNS iterations
(IALNS) was fixed at 5000. The results showed a high degree of similarity in both the
average objective values. However, the runtimes increases significantly across the different
settings. Therefore, the chosen value for the v parameter is v € [5%, 15%)].

106

201

Table E.1: Results from tuning the v parameter. Each instance was run five times for each setting of v. Obj. 1 and Obj. 2 represent the average objective
values for Objectives 1 and 2 for each instance group, respectively. Time [s] represents the average time for the runs in each instance group, measured in

seconds

Instances € [5%, 15%)] ~ € [10%, 20%) ~ € [15%, 25%) v € [20%, 35%) + € [35%, 50%)

Obj. 1 Obj. 2 Time[s] | Obj. 1 Obj. 2 Time[s] | Obj. 1 Obj. 2 Time |s] | Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Time [s]
1-5D-18P 10.0 123.37 224.6 10.0 123.37 305.3 10.0 123.40 310.0 10.0 123.37 340.3 10.0 123.40 675.4
2-6D-20P 18.0 248.10 334.7 18.0 248.10 460.5 18.0 248.10 440.0 18.0 248.10 523.1 18.0 248.10 805.7
3-8D-25P 23.0 344.53 579.3 23.0 345.23 713.2 23.0 344.20 826.4 23.0 344.53 903.5 23.0 346.27 1497.8
4-9D-28P 26.0 326.90 639.7 26.0 326.90 927.7 26.0 326.90 1023.4 26.0 326.90 1150.6 26.0 326.90 1605.7
5-10D-30P 30.0 355.10 500.5 30.0 354.53 984.0 30.0 355.03 1226.7 30.0 355.10 1123.7 30.0 354.57 1704.6
6-12D-36P 30.0 384.20 1084.7 30.0 384.20 1585.4 30.0 384.20 1550.5 30.0 384.20 1704.3 30.0 384.90 2534.3
7-13D-41P 37.0 396.90 1387.1 37.0 396.90 1702.3 37.0 397.23 1853.3 37.0 396.90 1905.7 37.0 396.90 2805.3
8-13D-46P 37.0 456.70 1354.8 37.0 456.70 1734.2 37.0 456.70 2213.3 37.0 456.70 2296.3 37.0 456.70 3304.2
Average 26.4 329.48 763.1 26.4 329.49 1051.6 26.4 329.47 1180.4 26.4 329.48 1243.4 26.4 329.72 1866.6

E.2 Adaptive Weight Score Parameters (o)

Adjusting the adaptive weights used in the ALNS heuristic is done through the use of score
parameters. o is the reward for finding a new global best solution. o is the reward for
finding a new candidate solution that is better than the current solution, but not better
than the best global solution found so far. o3 is the reward for finding a new candidate
solution that is worse than the current solution, but is accepted by the simulated annealing
acceptance criterion. o4 is the penalty for finding a new candidate solution that is worse
than the current solution, and is rejected by the simulated annealing acceptance criterion.
These are collectively denoted by o = [01, 09, 03, 04]. The score parameters tested include:
o = [100,30,10,-5], ¢ = [90, 50,20, —20], ¢ = [80,20,10,—5], o = [50,10,5, —2], and
o = [30,5,3,0]. The results of this tuning process are presented in Table E.2.

The objective values and times presented in Table E.2 are the averages obtained from
running each instance five times under each setting. The number of ALNS iterations
(IALNS) was fixed at 5000. The results showed a high degree of similarity in both the
average objective values and runtimes across different settings. However, the parameter
set o = [100, 30, 10, —5] yielded the best overall average values for both Objective 1 and
Objective 2. As such, o = [100, 30, 10, —5] was chosen, owing to its superior performance
in terms of average objective values.

108

60T

Table E.2: Results from tuning the o parameters. Each instance was run five times for each setting of 0. Obj. 1 and Obj. 2 represent the average objective
values for Objectives 1 and 2 for each instance group, respectively. Time [s] represents the average time for the runs in each instance group, measured in

seconds

Instances o = [100, 30, 10, —5] o = [90, 50,20, —20] o = [80,20, 10, —5] o = [50,10,5, —2] o =[30,5,3,0]

Obj. 1 Obj. 2 Time[s] | Obj. 1 Obj. 2 Time[s] | Obj. 1 Obj. 2 Time |s] | Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Time [s]
1-5D-18P 10.0 123.37 224.6 10.0 123.40 215.3 10.0 123.40 262.6 9.7 118.93 207.0 10.0 123.40 214.4
2-6D-20P 18.0 248.10 334.7 18.0 250.30 334.5 18.0 248.10 396.1 18.0 248.10 386.2 18.0 248.10 315.3
3-8D-25P 23.0 344.53 579.3 23.0 346.50 453.0 23.0 346.00 633.0 23.0 346.00 504.7 23.0 356.27 465.7
4-9D-28P 26.0 326.90 639.7 26.0 326.90 644.3 26.0 326.90 756.1 26.0 326.90 595.1 26.0 326.90 670.8
5-10D-30P 30.0 355.10 500.5 30.0 359.10 454.9 30.0 354.77 671.1 30.0 357.03 560.5 30.0 354.57 601.7
6-12D-36P 30.0 384.20 1084.7 30.0 387.30 977.7 30.0 385.60 1276.3 30.0 384.20 1077.7 30.0 384.90 1127.7
7-13D-41P 37.0 387.90 1387.1 37.0 396.90 1086.2 37.0 396.90 1364.2 37.0 396.90 1148.8 37.0 396.90 1256.0
8-13D-46P 37.0 456.70 1354.8 37.0 456.70 1259.8 37.0 456.87 1737.5 37.0 441.10 1414.0 37.0 456.70 1634.9
Average 26.4 328.35 763.1 26.4 330.89 678.2 26.4 329.82 885.8 26.3 327.40 727.8 26.4 329.72 785.3

E.3 Percentage Factor ()

Modifying the § parameter influences how the ALNS heuristic determines whether a can-
didate solution is promising. The tested § parameters include: 6 = 80%, 6 = 85%,
0 = 90%, and § = 95%. The results of this tuning process are displayed in Table E.3.

The objective values and times presented in Table E.3 are the averages obtained from
running each instance five times under each setting. The number of ALNS iterations
(IAENS) was fixed at 5000. The results showed a high degree of similarity in both the
average objective values and runtimes across different settings. However, the parameter
set 0 = 90% yielded the best overall average values for both Objective 1 and Objective
2. As such, 6 = 90% was chosen, owing to its superior performance in terms of average
objective values.

110

TTT

Table E.3: Results from tuning the § parameter. Each instance was run five times for each setting of §. Obj. 1 and Obj. 2 represent the average objective
values for Objectives 1 and 2 for each instance group, respectively. Time [s] represents the average time for the runs in each instance group, measured in

seconds

Instances 6 =80% 5 =285% 5 =90% d=95%

Obj. 1 Obj. 2 Times] | Obj. 1 Obj. 2 Time[s] | Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Time [s]
1-5D-18P 10.0 123.40 235.7 10.0 123.40 213.1 10.0 123.40 224.6 10.0 123.40 272.0
2-6D-20P 18.0 252.50 296.7 18.0 250.30 363.1 18.0 248.10 334.7 18.0 248.10 332.9
3-8D-25P 23.0 345.13 545.3 23.0 345.13 605.1 23.0 344.53 579.3 23.0 344.67 486.5
4-9D-28P 26.0 326.90 579.0 26.0 326.90 589.5 26.0 326.90 639.7 26.0 327.20 591.9
5-10D-30P 30.0 354.83 600.5 30.0 354.83 534.0 30.0 355.10 500.5 30.0 355.10 533.6
6-12D-36P 30.0 388.30 1080.5 30.0 384.90 1120.7 30.0 384.20 1084.7 30.0 384.90 1108.2
7-13D-41P 37.0 397.57 1480.5 37.0 396.90 1210.6 37.0 396.90 1387.1 37.0 397.23 1225.4
8-13D-46P 37.0 456.70 1871.8 37.0 456.70 1393.7 37.0 456.70 1354.8 37.0 456.70 1326.6
Average 26.4 330.67 836.24 26.4 329.88 753.73 26.4 329.48 763.18 26.4 329.66 734.64

E.4 Reaction Factor (r)

Modifying the reaction factor r parameter influences how the ALNS heuristic updates its
adaptive weights. The tested r parameters include: » = 0.10, r = 0.20, r = 0.30, » = 0.50
and r = 1.00. The results of this tuning process are displayed in Table E.4.

The objective values and times presented in Table E.4 are the averages obtained from
running each instance five times under each setting. The number of ALNS iterations
(IAENS) was fixed at 5000. The results showed a high degree of similarity in both the
average objective values and runtimes across different settings. However, the parameter
set 7 = 0.10 yielded the best overall average values for both Objective 1 and Objective
2. As such, » = 0.10 was chosen, owing to its superior performance in terms of average
objective values.

112

€Tl

Table E.4: Results from tuning the r parameter. Each instance was run five times for each setting of . Obj. 1 and Obj. 2 represent the average objective
values for Objectives 1 and 2 for each instance group, respectively. Time [s] represents the average time for the runs in each instance group, measured in

seconds

Instances r=0.10 r=0.20 r=0.30 r =0.50 r = 1.00

Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Time [s] | Obj. 1 Obj. 2 Time [s]
1-5D-18P 10.0 123.40 218.3 10.0 123.40 209.7 9.7 118.97 206.5 9.7 118.93 209.7 10.0 123.40 219.9
2-6D-20P 18.0 248.10 318.0 18.0 248.10 312.2 18.0 248.10 330.4 18.0 248.33 332.5 18.0 251.47 3314
3-8D-25P 23.0 344.77 567.0 23.0 345.57 480.7 23.0 344.23 650.1 23.0 344.67 551.5 23.0 344.67 545.3
4-9D-28P 26.0 326.90 639.7 26.0 326.90 665.5 26.0 326.90 704.1 26.0 326.90 612.7 26.0 326.90 575.0
5-10D-30P 30.0 355.10 500.5 30.0 355.73 477.6 30.0 355.10 597.5 30.0 354.83 542.9 30.0 354.83 567.9
6-12D-36P 30.0 384.20 1084.7 30.0 384.20 1190.5 30.0 384.90 1018.0 30.0 384.20 1109.4 30.0 386.60 960.0
7-13D-41P 37.0 387.90 1387.1 37.0 396.90 1096.3 37.0 396.90 1115.3 37.0 396.90 1092.4 37.0 396.90 1233.5
8-13D-46P 37.0 456.70 1354.8 37.0 456.70 1305.7 37.0 456.70 1715.9 37.0 456.70 1308.7 37.0 456.70 1389.4
Average 26.4 329.51 758.77 26.4 329.70 717.26 26.3 328.98 792.22 26.3 328.93 719.97 26.4 330.18 727.80

Appendix F

Adaptive Weights Development

In this appendix, we demonstrate the development of weights for the destroy and repair
operators within the ALNS heuristic (ALNS + LS 4+ RCP). As the development of weights
exhibits a similar pattern for all instances across all instance groups, we only display the
development for a single instance, specifically, M3-16D-42P-1 (Refer to Appendix D).
The weight development for destroy and repair operators are depicted in Figure F.1 and
Figure F.2, respectively. Please note that in Figure F.1, "shaw removal” represents the
Relatedness Removal operator from Subsection 5.4.1.

Destroy Operator Weights Evolution

25 1 —— random_removal

——— shaw_removal

—— worst_deviation_removal
—— cluster_removal
20 4 —— spread_removal

15 1

10 ~

Destroy Operator Weights

0 1000 2000 3000 4000 5000
lterations

Figure F.1: Development of weights for the destroy operators over the duration of the ALNS
process for instance M3-16D-42P-1. ”shaw removal” represents Relatedness Removal operator

114

Repair Operator Weights Evolution

251 — insertion_repair
—— regret_k_repair
—— maximum_capacity_insertion

201
i}
L
=]
2 15
—
]
o
[
Q.
o
|
.a 10_
Qo
(7]
4

5 4

0-

0 1000 2000 3000 4000 5000
lterations

Figure F.2: Development of weights for the repair operators over the duration of the ALNS
process for instance M3-16D-42P-1

115

Appendix G

Comparing ALNS to the
Construction Heuristic

In this appendix, we aim to investigate the convergence of the ALNS algorithm towards
solutions with satisfactory objective values by comparing the results of the best config-
uration of the ALNS heuristic (ALNS + LS + RCP) to the initial solutions provided by
the construction heuristic (Section 5.3). This allows us to evaluate the effectiveness of
the ALNS algorithm in solving the problem at hand and its ability to improve upon the
solutions generated by the construction heuristic. Moreover, this comparative analysis
provides valuable insights into the overall performance exhibited by both methods, under-
scoring their individual strengths and potential areas for improvement. It is noteworthy
that the construction heuristic operates on a deterministic basis; hence, the coefficient
of variation registers as 0.00% across all instance groups. This is due to the fact that
each instance necessitates a single run due to the deterministic nature of the construction
heuristic.

Table G.1 demonstrates a significant improvement in average objective values for all in-
stance groups when using the ALNS heuristic. The construction heuristic identifies op-
timal solutions for the S1 instance group. For other instances, the construction heuristic
generates objective values comparable to those found by the ALNS heuristic for smaller
instance groups. However, it is unable to replicate the superior solutions generated by the
ALNS heuristic. As the instance group size increases, the construction heuristic’s ability
to find high-quality objective values compared to the ALNS heuristic begins to diminish.
For instance, the average gap for Objective 1, Gap®®?, stands at 6.87% for the construc-
tion heuristic as compared to a minimal 0.03% for the ALNS heuristic, a difference that is
statistically significant. This suggests that the construction heuristic falls short in finding
solutions where more passengers are picked up. Furthermore, the average gap for Object-
ive 2, Gap®%?, stands at 3.85% for the construction heuristic, indicating that, in addition
to picking up fewer passengers, it also tends to follow a longer average route.

In conclusion, while the construction heuristic provides a reasonable starting point for
smaller instances, it evidently struggles as the instance group size increases, failing to find
high-quality solutions consistently. This can be attributed to the simple and deterministic
nature of the construction heuristic. As the complexity of the problem increases with the
size of the instance groups, the heuristic’s inability to adapt and explore various solution
spaces becomes apparent. The ALNS heuristic, on the other hand, demonstrates greater
performance, delivering superior solutions across all instance groups. In light of this, we

116

deduce that a simple greedy insertion construction heuristic is inadequate for tackling
larger instances, and more sophisticated, adaptive algorithms like the ALNS are more
equipped for such challenges.

117

STT

Table G.1: Comparison of results for the construction heuristic and the ALNS heuristic with LS and RCP. Obj. 1 and Obj. 2 represent the average objective
values for Objectives 1 and 2 for each instance group, respectively. CV%1 and CVO%? represent the average coefficient of variation for Objectives 1 and 2

for each instance group, respectively. Gap

Obj1

and Gap®®? represent the average gap for Objectives 1 and 2 for each instance group across the construction

heuristic and the ALNS heuristic, respectively. Time [s] represents the average time for the runs in each instance group, measured in seconds

Instance Construction Heuristic ALNS + LS + RCP

Group | Obj. 1 Obj. 2 CVOl Vo2 GapOhl Gap®? Time [s] | Obj. 1 Obj. 2 CVO9L (Vo952 GapO%' Gap®? Time [s]
S1 3.6 4250 0.00% 0.00% 0.00% 0.00% 0.0 3.6 4250 0.00% 0.00% 0.00% 0.00% 53.5
S2 5.0 63.11 0.00% 0.00% 13.00% 4.37% 0.0 5.6 66.42 0.00% 0.00% 0.00% 0.00% 109.7
S3 8.8 12861 0.00% 0.00% 6.94% 4.82% 0.0 9.4 13242 0.00% 0.08% 0.00% 0.04% 274.6
M1 182 266.32 0.00% 0.00% 3.60% 3.58% 0.0 18.8 265.96 0.00% 0.07% 0.00% 0.03% 1408.9
M2 25.8 37537 0.00% 0.00% 4.81% 3.05% 0.0 27.0 37420 0.00% 0.05% 0.00% 0.10% 2990.2
M3 386 50245 0.00% 0.00% 7.32% 3.27% 0.0 414 50791 021% 0.78% 0.10% 1.23% 3400.2
L1 55.0 627.55 0.00% 0.00% 7.41% 5.86% 0.0 59.0 616.53 0.00% 0.18% 0.00% 0.19% 3600.0
L2 644 71651 0.00% 0.00% 12.06% 4.85% 0.0 71.8 721.01 0.00% 0.49% 0.00% 0.38% 3600.0
L3 92.8 1029.83 0.00% 0.00% 6.73% 4.80% 0.0 99.0 1039.19 0.18% 0.75% 021% 0.99% 3600.0

Average | 34.7 41692 0.00% 0.00% 6.87% 3.85% 0.0 37.3 41846 0.04% 027% 0.03% 0.33% 2115.2

@ NTNU

Norwegian University of
Science and Technology

	Abstract
	Sammendrag
	List of Figures
	List of Tables
	Abbreviations and Frequently Used Terms
	Introduction
	Literature Review
	Ridesharing
	Dial-A-Ride Problems and Pick-Up and Delivery Problems
	Dial-A-Ride Problems
	Pick-Up and Delivery Problems

	Problem Definition
	Mathematical Model
	Mathematical Notation
	Sets
	Parameters
	Decision Variables

	Model Formulation
	Objective functions
	Routing Constraints
	Coupling and Precedence Constraints
	Time Constraints
	Capacity Constraints
	Binary, Continuous and Non-Negativity Constraints

	Adaptive Large Neighborhood Search
	Overview of ALNS
	Solution Representation
	Construction of Initial Solution
	Large Neighborhood Search
	Destroy Operators
	Repair Operators
	Choosing Destroy and Repair Operators

	Acceptance Criterion
	General Acceptance Criterion
	Simulated Annealing

	Local Neighborhood Search
	Local Neighborhood Search Strategy
	Local Neighborhood Search Operators

	The Route Combination Problem

	Case Study and Test Instances
	The Sotra Case
	Overview
	Input Data

	Candidate Locations
	Test Instance Generation
	Procedure
	Ridesharing and Instance Generation Assumptions

	Test Instances
	Parameter Tuning Instances
	Performance Instances

	Computational Study
	Test Environment and Stopping Criterion
	Configurations of the ALNS heuristic
	Parameter Tuning
	Comparing ALNS and LNS
	Performance Testing of the ALNS and Its Extensions

	Comparing ALNS to the Commercial Solver

	Managerial Insights
	The Value of Ridesharing
	The Value of Maximum Travel Time
	The Value of Candidate Locations

	Concluding Remarks
	Future Research
	Bibliography
	Mathematical Model
	Zones and Location Names
	Zone 1
	Zone 2
	Zone 3
	Zone 4

	Origin and Destination Location Coordinates
	Zone 1 Coordinates
	Zone 2 Coordinates
	Zone 3 Coordinates
	Zone 4 Coordinates

	Test Instances
	Parameter Tuning
	Percentage Removals of Passengers Parameter ()
	Adaptive Weight Score Parameters ()
	Percentage Factor ()
	Reaction Factor (r)

	Adaptive Weights Development
	Comparing ALNS to the Construction Heuristic

