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Summary

This master’s thesis studies heuristic optimization methods for solving a large and
complex Location Routing Problem (LRP) with stochastic customer presence in col-
laboration with Oda, a Norwegian online grocery company. To deliver groceries to
thousands of customers daily, Oda needs to solve a very large multi-depot capaci-
tated Vehicle Routing Problem (VRP) with time windows, a heterogeneous fleet and
tour duration constraints. When entering a new market with uncertainty related to
which customers place an order, or customer presence, they must determine where
the depots that vehicles drive from should be located. To find good depot locations
in such situations, we model a two-stage stochastic LRP. The first stage considers
locating depots, and the second stage handles routing from depots to customers
for a realization of the customer presence. LRPs with stochastic customer presence
of this size and complexity have not been researched before. We propose solution
methods consisting of three parts: a depot location search algorithm, a scenario
generation method, and a routing algorithm. These are tested on realistic problem
instances with 20 possible depot locations and thousands of customers in Berlin.

For searching through first-stage solutions, a Greedy Randomized Adaptive Search
Procedure (GRASP) and Constructive Adaptive Tabu Search (CATS), which first
finds a promising number of open depots and then performs a local search with
an adaptive neighborhood, are used. CATS performs more consistently, but both
methods find solutions within 12 hours with cost gaps of less than 0.2% of the best
known solutions. CATS achieves solutions within a 1% cost gap after only 2 hours.
Since evaluating solutions is time-consuming, the extensions in CATS are necessary
to find good solutions quickly. Stochasticity is handled by generating scenarios
with different numbers of customers that are weighted from the likelihood of similar
scenarios based on historical distributions of demand. Out-of-sample stability tests
show that using 16 scenarios is sufficient to ensure stability, especially when it comes
to ranking solutions correctly. The calculation of routing costs follows a three-
phase approach. First, customers are assigned to depots, then similar customers
are clustered, before a Hybrid Genetic Search solver creates routes. Compared to
benchmarks from Oda’s operational solver, this method demonstrates satisfactory
results as it achieves a stable ranking of solutions solving the problems 20 times
faster than Oda’s solver.

In a case study, we use the CATS algorithm to gain insights for Oda. We find that
opening depots is first profitable when exceeding an average of 3000 customers per
shift, and that the fleet size and composition are important attributes in determining
a depot’s attractiveness.
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Sammendrag

Denne oppgaven presenterer en studie av heuristiske optimeringsmetoder for å løse
et stort og komplekst “location-routing”-problem (LRP) med stokastisk kundetilst-
edeværelse, i samarbeid med det norske nettbaserte dagligvareselskapet Oda. For
å levere matvarer og andre produkter til tusenvis av kunder, løser de daglig store
“vehicle-routing”-problemer (VRP) med flere depoter, kapasitets- og varighetsbe-
grensninger, tidsvinduer og heterogene kjøretøy. Ved utvidelse til nye markeder må
de først beslutte hvor depotene som kjøretøyene starter rutene sine fra skal lokalis-
eres, som er utfordrende med usikkerhet knyttet til hvilke kunder som vil bestille,
ogs̊a kalt kundetilstedeværelse. Vi modellerer et stokastisk, to-stegs LRP for å finne
gode depotlokasjoner i slike situasjoner. I første steg besluttes depotlokasjonene,
mens andre steg finner kostnaden til kjøretøysrutene for ulike realiseringer av kun-
detilstedeværelse. LRP av denne størrelsen og kompleksiteten med stokastisk kun-
detilstedeværelse er ikke forsket p̊a tidligere. De foresl̊atte løsningsmetodene best̊ar
av en algoritme for å søke gjennom ulike depotlokasjoner, en scenariogenereringsme-
tode og en rutingalgoritme. Disse testes p̊a realistiske probleminstanser med 20
mulige depotlokasjoner og tusenvis av kunder i Berlin.

Søket gjennom førstestegsløsningene gjøres med en “Greedy Randomized Adaptive
Search Procedure” (GRASP), samt “Constructive Adaptive Tabu Search” (CATS),
som først finner et lovende antall åpne depoter og deretter utfører lokalsøk med
et adaptivt nabolag. CATS presterer mest konsistent, men begge metodene finner
løsninger i løpet av 12 timer med under 0.2% kostnadsavvik til den beste kjente
løsningen. CATS finner løsninger med under 1% avvik etter bare 2 timer. Siden
løsningsevalueringen er tidkrevende, er utvidelsene i CATS viktige for å finne gode
løsninger fort nok. Stokastisiteten h̊andteres ved å generere scenarioer med ulikt
antall kunder, som vektes etter sannsynligheten for lignende scenarioer basert p̊a
historiske etterspørselsfordelinger. “Out-of-sample”-tester viser at bruk av 16 sce-
narioer er nok for å oppn̊a stabilitet, spesielt n̊ar det kommer til å rangere løsningene
riktig. Utregningen av rutekostnader er tredelt. Først tildeles kundene et depot, s̊a
grupperes lignende kunder sammen, før en “Hybrid Genetic Search”-løsningsmetode
konstruerer rutene. Sammenlignet med løsninger fra Odas operasjonelle ruteplan-
legger, viser denne metoden tilfredsstillende resultater ved å oppn̊a stabil rangering
av løsninger selv om problemene løses 20 ganger raskere enn Odas ruteplanlegger.

Vi anvender CATS i en case-studie for å gi innsikt til Oda. Her finner vi at åpning
av depoter først er lønnsomt n̊ar man har et gjennomsnitt p̊a 3000 kunder per skift.
Vi ser ogs̊a at størrelsen p̊a kjøretøysflaten og hvordan den er sammensatt er viktige
faktorer n̊ar man skal vurdere lønnsomheten ved å åpne ulike depoter.
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Chapter 1

Introduction

The market for online groceries is having a boom in many European cities. Revenue
increased by 70% in the European online grocery market from 2019 to 2022 and now
accounts for 6.1% of the total European grocery market (McKinsey & Company
and Eurocommerce, 2023). Many online grocery retailers offer home delivery to the
customers, and since food should be kept fresh it raises more complex distribution
challenges than with many other products. Thousands of customers should be served
in a short time, with very varying demand from day to day. Coordination is necessary
to ensure that the customers are home to receive the food when it is delivered. With
low margins and a highly competitive market, creating distribution networks that
serve these customers with their demand in an effective way is important to succeed.

Which vehicle routes that are used to deliver the groceries to the customers are
dependent on the location of depots where the vehicles are loaded. Still, depot lo-
cation and routing decisions are rarely taken in conjunction with each other. This
observation has led to research on a problem called the Location Routing Problem
(LRP). The LRP is a computationally massive problem, as it involves finding the
cheapest locations of depots, which are determined by the cost of routing to cus-
tomers from them. Obviously, it is easier to consider locating depots and routing to
customers as separate problems, but research has shown that this leads to subopti-
mal solutions (Salhi and Rand, 1989). Consequently, there is an incentive for online
grocery retailers to model and solve the problem of locating depots as an LRP.

This thesis is motivated by a real-world problem faced by the online grocery retailer
Oda. With recent expansions to Berlin, Oda is in a situation where future growth
requires new depots. However, solving an LRP of the kind needed by Oda raises
three challenges. First, as several depots may be opened, and with many potential
locations, there are too many different combinations of open depots to evaluate all
of them. Smart ways must therefore be found to search through and select which
combinations of depots, or depot configurations, should be evaluated. Second, the
Vehicle Routing Problem (VRP) in itself is considered a complex problem but still
has to be solved quickly. Such VRPs, with thousands of customers as in Oda’s case,
also correspond to some of the largest problem instances solved in the literature
(Arnold et al., 2019). The VRP is complex because it addresses constraints such
as time windows, implying that customers can only be served within specific time
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Chapter 1. Introduction

slots. While the literature may use hours or even days to solve such VRPs, we
want to solve it within minutes to be able to evaluate as many depot configurations
as possible. Third, the demand varies from day to day in terms of the number of
customers, the quantity they demand and their location. This uncertainty must
somehow be handled when solving the problem.

To solve this large and complex LRP we adapt methods from recent literature and
extend these with new components for our specific application. In the model, we
take into account uncertainty related to which customers place an order, also called
customer presence. The aim is to answer to what degree the proposed solution
methods are able to efficiently find high-quality solutions for this problem, and how
the stochastic customer presence can be modeled. We can then apply the most
promising solution method to give insights to Oda regarding the location of depots
in Berlin. Furthermore, we hope this research can lay a good foundation for how to
decompose and solve complex real-world challenges as LRPs.

Through the literature review, we have found little research on solving LRPs with
the exact same challenges as in this thesis. However, parts of the challenges have
been researched for themselves. Mara et al. (2021) present a survey with different
approaches researched to solve the LRP and shows that heuristics and metaheuris-
tics account for 87% of the proposed solution methods in literature from 2014 to
2019. For the stochastic LRP, local search based metaheuristics seem to be the most
promising methods. To deal with uncertainty related to customer demand, fuzzy
logic, robust optimization and stochastic programming are commonly used (Mara
et al., 2021; Prodhon and Prins, 2014). However, how to model the stochastic cus-
tomer presence in problems similar to Oda’s is barely discussed in the literature.
When using stochastic programming it becomes increasingly important to evaluate
the routing problem fast to be able to consider several scenarios. This introduces
a trade-off between computational time and accuracy in the cost estimates. The
project report (Gulaker et al., 2022) focuses on this specific trade-off, where a so-
lution method is proposed in which problem decomposition and state-of-the-art
routing metaheuristics are combined. This solution method is able to rank depot
configurations in problems with 2000 customers consistently with Oda’s routing
solver, Navegante, in 95% less computational time.

In light of the research in the literature on the LRP, this thesis contributes in several
ways. Based on stochastic programming, it contributes with a two-stage model and
associated solution methods for the LRP with stochastic customer presence, where
depot locations are decided in the first stage and the routing is performed in the
second stage. To close the gap in the literature regarding stochastic customer pres-
ence, a new scenario generation method is proposed and tested. Using this method,
we show that 16 scenarios are sufficient to achieve stability. For the depot location
search in the first stage, we implement two different metaheuristics and compare
their behavior on real-world problem instances provided by Oda. We propose a
first-improvement Tabu Search, called Constructive Adaptive Tabu Search (CATS),
where we explore different neighborhoods and strategies for balancing diversification
and intensification in the search. Moreover, we propose an approach not tested on
the LRP with stochastic customer presence before, based on a Greedy Randomized
Adaptive Search Procedure (GRASP). In experiments performed in this thesis, they
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both demonstrate their ability to find good solutions fast, and CATS finds a 1% gap
to the best known solution within 2 hours. Regarding the routing in the second
stage, we use a three-phase routing algorithm, based on Gulaker et al. (2022). Here,
we first convert the multi-depot problem into a set of single-depot problems by us-
ing the parallel assignment algorithm proposed by Giosa et al. (2002), then cluster
similar customers into super-customers by using the algorithm by Dondo and Cerdá
(2007), and finally solve the routing problems with the Hybrid Genetic Search solver
proposed by Kool et al. (2022). We show that this routing algorithm ranks depot
configurations consistently compared to solutions from Navegante.

We want to emphasize that the focus of this thesis is not to contribute with a routing
solver that minimizes the gap to a benchmark solution. As already described, there is
a trade-off between solution quality and the time used to solve the routing problem in
each scenario. The longer the time spent on creating good routes, the fewer solutions
can be evaluated in a given time. We assume that it is sufficient to give good enough
estimates of the costs as long as the relative ranking of depot configurations is
consistent with a benchmark solution. Hence, lower solution quality can be allowed
as long as the ranking is preserved. This assumption is reflected in how we measure
the performance of the solution methods. Rather than only comparing the final cost
gap to the benchmark solution, we also assess the ability to reach good solutions
fast. Rather than using only the final cost to assess the impact different drawings of
scenarios have, we also consider how the ranking is affected. To increase confidence
in the applicability of our approach, we use solutions from Navegante to benchmark
the solution methods.

The rest of the thesis is structured the following way. Chapter 2 describes details
about Oda’s market situation, operations and considerations during expansion. In
Chapter 3, we review literature that is relevant to this problem, with an emphasis on
how stochastic customer presence is modeled. The two-stage stochastic model for the
LRP is defined mathematically in Chapter 4. In Chapter 5, we describe the proposed
solution methods, including the details of the used algorithms. Different methods
of searching through possible depot configurations are presented and we describe
the three-phase routing algorithm. In Chapter 6, we explain the distribution that is
used to represent the stochastic customer presence and how scenarios are generated.
Chapter 7 contains an overview of the experiments performed and their results. It
provides a test of stability related to scenarios, an evaluation of the routing algorithm
with a comparison to Gulaker et al. (2022), an evaluation of how CATS and GRASP
perform, and an analysis of solution attributes influencing costs. It finishes with a
case study for Oda where we look into questions that provide insights related to
locating depots in Berlin. Finally, Chapter 8 concludes the thesis by extracting the
main findings, and Chapter 9 suggests where new research could focus its attention
to expand the literature on the field.

3



Chapter 2

Background

In 2013, Oda was started by a group of entrepreneurs with one goal in mind: making
everyday grocery shopping easier and more accessible to people. They wanted to
achieve this by opening an online grocery store with a highly optimized value chain.
In 2021, Oda received the status of a unicorn company after being valued at more
than one billion dollars (Finansavisen, 2021), confirming both their success and that
the online grocery market has a lot of potential. They have now expanded to Finland
and Germany, while still retaining the position as the market leader in Norway (E24,
2022).

This chapter presents background information that is relevant to understand Oda’s
business and the market they work in. A brief introduction to the online grocery
market with recent developments is first given in Section 2.1. Section 2.2 provides
an overview of Oda’s operations. Relevant strategic decisions related to Oda’s ex-
pansion are described in Section 2.3.

2.1 The Online Grocery Market

In Simmons et al. (2022), online grocery is framed as the next S-curve of growth.
They explain that technology is in the process of disrupting several parts of the value
chain, from user experience to order preparation and last-mile delivery. Furthermore,
they expect that technological advancements could enable grocers to have lower
prices online, which can create a boom for the online grocery market. Because of
these trends, the online grocery market has been flooded with new companies in the
last few years.

This thesis focuses on Oda’s expansion to Germany, and hence the German online
grocery market. Germany’s grocery retail sector has annual sales volumes between
220 and 300 billion euros, which makes it the largest grocery retail market in Eu-
rope (Thedens and Hachibiti, 2022). However, Germany is just catching up on the
online grocery market trend compared to leading European countries such as UK
and France (Simmons et al., 2022), meaning that there is still a great potential for
innovation in this market. Because of this, several brands have made their entry in
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Chapter 2. Background

Berlin and Munich to test their concepts. At the same time, some of the largest su-
permarkets in Germany, like Rewe and Edeka, have already opened online platforms
with home delivery. Oda might therefore experience considerably more competition
in Germany compared to Norway, making value chain optimization perhaps more
important than ever.

2.2 Operations in Oda

A deeper look into Oda’s operations is required to understand what processes are a
part of an online grocery store, and how optimization is embedded in this system.
Oda’s customers can choose from thousands of products. Most of the products are
groceries, but they also offer an increasing selection of non-grocery products such
as books, toys and appliances. Customers place their orders on a digital platform.
In addition to the option to buy different products, Oda provides a wide range of
recipes so that customers easily can set up a menu for the week and order all the
products needed. When customers check out, they are offered several time slots
during the day to get the products delivered, with different transportation costs for
each of them. In general, it is cheaper to choose time slots with a wide time range
than a narrow time range. Factors such as order size, transportation distance and
time slot popularity are also considered when Oda chooses which time slots to offer,
and what they cost. Delivering orders happens in two shifts each day, one in the
morning and one in the afternoon. The morning shift lasts from 06:00 to 14:00, and
the afternoon shift lasts from 14:00 to 22:00. Orders delivered in the morning must
be placed by 20:00 on the day before, whereas orders delivered in the afternoon can
be placed until midnight the day before. Delivery on the same day is also possible
if the order is placed in the morning but at a greater cost.

The logistics for distributing the products are complex. An overview of the pro-
cesses that takes place on a daily basis is presented in Figure 2.1. At the fulfillment
center (FC), it is made sure that the products placed by the customers are avail-
able, and that products are picked and stacked in boxes according to the orders.
Oda’s route planner Navegante decides the routes to drive. When the route plan-
ner is terminated and the boxes are prepared, line-haul trucks transport them to
the distribution points (DIPs), which are small buildings or temporary structures
strategically located close to customers.

Figure 2.1: Daily operations in Oda.
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At DIPs, the boxes are unloaded and then loaded again into smaller last-mile ve-
hicles. Figure 2.2 shows the difference between a last-mile vehicle and a line-haul
truck. A last-mile vehicle can typically hold 70-100 boxes, depending on the boxes’
weight and volume, and can have different cost structures, while a line-haul truck
can hold around 600 boxes. The number of loading ramps at the DIPs is typically
lower than the number of last-mile vehicles, so they must be loaded in different time
slots. Additionally, there is only a limited number of vehicles located at each DIP,
and the same last-mile vehicles are used for both shifts. The last-mile vehicles can
start their route to the customers when they are finished loading.

Figure 2.2: Example of a last-mile vehicle (left) and a line-haul truck (right).
Photos by Oda (2022) and GPS 56 (2017).

The creation of the routes used for delivery is of special interest to this thesis. Route
planning consists of creating routes from the FC to the DIPs, in addition to the
routes to the customers. This routing process is illustrated in Figure 2.3. Line-haul
trucks transport the packed boxes from the FC to the DIPs. Here, the boxes are
stored temporarily until they are picked up by the last-mile vehicles and transported
to the customers’ doorsteps. Boxes to each customer are always transported together
so that each customer is visited by only one vehicle. As can be seen in Figure 2.3,
there are some last-mile vehicles that drive directly from the FC to the customers.
Thus, the FC in practice serves the role of both a central warehouse and a DIP, and
is therefore referred to as the warehouse in this thesis.

Figure 2.3: Routing in Oda.
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2.3 Strategic Planning during Expansion

Several strategic decisions must be taken when expanding to new countries, some of
which have an impact on the daily operations in Oda. Because of limited resources,
for instance in terms of fleet size, Oda must decide where they should deliver in
order to maximize their profit. This is a central part of what is called revenue
management. Not only must they decide in which city to open for delivery, but it
could also be necessary to decide what areas in the city to serve. All these decisions
affect where Oda should open the FC and potentially new DIPs. The locations of
the FC and DIPs are furthermore connected to the vehicle routes, as the locations
determine the start and end point of routes for the line-haul trucks and the last-
mile vehicles. This chain of decisions shows how daily operations can be affected by
strategic decisions, and are therefore interrelated.

As decisions on a strategic and operational level affect each other, this should be
an incentive for making them simultaneously. This way, the information about the
consequences becomes more accurate, which can be used to increase the efficiency of
the value chain even more. With an expansion to new countries, and in particular
Germany, this information might therefore be valuable for Oda. They have already
decided to start delivery in Berlin, where they also have opened an FC, but have yet
to open any DIP. To enable future growth, deciding where to open these DIPs must
be taken in the near future. Consequently, this is a great opportunity to combine
the decision of locating DIPs in Berlin with routing decisions.
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Related Literature

In this chapter, we present the literature related to our work. First, the literature
search strategy is described in Section 3.1. Then, a brief overview of the Facil-
ity Location Problem (FLP) and the Vehicle Routing Problem (VRP) is given in
Section 3.2 and 3.3, respectively. In Section 3.4, we define the Location Routing
Problem (LRP) and explain the most prominent solution methods. Section 3.5 goes
more into detail on the modeling and solution methods for LRPs with stochastic
customer presence. Finally, a description of our contribution to the literature follows
in Section 3.6.

3.1 Literature Search Strategy

For the literature search, Google Scholar, Elsevier and NTNU Oria are used as the
literature search engines, complemented by surveys on the LRP. Table 3.1 displays
the surveys we use and what time period they cover. The preceding surveys are
referred to as previous works in later surveys. Together, the surveys cover the
literature on the LRP from its beginning in 1964 until 2019. For describing the FLP
and VRP, we use the survey Klose and Drexl (2005) and the literature review from
the project report (Gulaker et al., 2022).

Table 3.1: Surveys used in the literature review for the Location Routing Problem.

Period Survey

- 2006 Nagy and Salhi (2007)
2007 - 2013 Prodhon and Prins (2014)
2014 - 2019 Mara et al. (2021)

In order to identify relevant literature, the search in the search engines and the
survey references follows a three-stage search strategy. In the first stage, general
keywords referring to the LRP are used to guide the search. All papers which
contain at least one of the first-stage keywords are included. In the second stage,
more specific keywords are used to search through papers that passed the first stage.
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To capture the uncertainty that is present in our problem, the problem in the papers
must either be stochastic or two-stage. Additionally, as we are dealing with a large
problem, either the terms “heuristic” or “large” must be used for the problem. All
keywords used in the literature search are listed in Table 3.2.

Table 3.2: Keywords for the literature search. Included papers must contain at
least one term from each column.

First-stage keywords Second-stage keywords

Problem type Problem variant Additional terms

Location Routing Problem Stochastic Heuristic
Location-Routing Problem Two-stage Large
LRP

In the third stage, a more detailed reading of the papers that passed the first two
stages is conducted. As a part of this reading, the papers are evaluated based on
a set of inclusion criteria, shown in Table 3.3. They define the key features of
the target papers. Inclusion criteria IC1 more specifically determines that we are
only interested in LRPs that optimize distribution in a single distribution echelon.
This means we are only interested in the routing of last-mile vehicles to customers,
and not the routing of line-haul trucks to depots. Many types of uncertainty might
occur in an LRP, and hence we use IC2 to state that we include papers that consider
uncertainty related to the customers. We have also chosen to narrow down solution
methods to those who use a stochastic programming approach. Therefore, IC3
excludes papers that handle uncertainty with either fuzzy or robust optimization.
The inclusion criteria are applied to sort out only the relevant papers, ultimately
leading to 7 papers. These papers are presented in Section 3.5 of the literature
review and used to define our contribution in Section 3.6.

Table 3.3: Inclusion criteria used on candidate papers.

IC# Inclusion criteria

IC1 The Location Routing Problem is only single-echelon
IC2 Uncertain customer demand is considered
IC3 Not using fuzzy or robust optimization

3.2 The Facility Location Problem

The FLP origins from the Weber problem, which is defined in 1909 (Klose and Drexl,
2005). This problem formulates a model in which a single facility is to be located so
that the sum of distances to all the demand points is minimized. When including
multiple potential facilities, possible questions to be answered in the FLP are which
facilities to open and which facilities each customer should be served from. A facility
is in this setting a general term that can take different forms based on the specific
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application. In the context of Chapter 2, we use the term depot to refer to what
Oda calls distribution points and what is called a facility in the literature. Hence, a
depot in this thesis refers to a place where goods are stored temporarily before they
are packed into vehicles and transported to the customers.

Because of its applicability for the construction of distribution systems and supply
chain management, the FLP has become a well-known problem in the operations
research domain, and several extensions have been defined (Klose and Drexl, 2005).
Relevant extensions for our problem are listed in Table 3.4. The standard FLP is
represented with a discrete location space. This is related to the fact that decision-
makers in real-world location problems rarely have the freedom to build facilities
wherever they want. Furthermore, a common extension of the FLP is to make the
facility capacitated, meaning that they have a constraint on the maximum demand
they are able to cover. Since the late 1900s and until today, the effort has been on
including more complex real-world aspects in the models. One of these branches is
research on the FLP with stochastic data, often in the form of uncertain customer
demand.

Table 3.4: Relevant extensions of the standard Facility Location Problem.

Characteristic Standard Extension

Location space Discrete Continuous
Depot capacity Uncapacitated Capacitated
Data Deterministic Stochastic

3.3 The Vehicle Routing Problem

Dantzig and Ramser (1959) introduce the problem that today is known as the VRP.
In this formulation, which they call the Truck Dispatching Problem, they try to
make cost-effective routes between customers in order to fulfill their demand. Ve-
hicles start and end their routes at a depot. The total capacity of each vehicle is
normally restricted by using some measure of quantity like volume, weight or both.
If the vehicles have restricted capacity they are commonly called capacitated, and
otherwise uncapacitated. The canonical form of the VRP is the capacitated VRP
(CVRP). A range of different extensions can be added to this formulation to close the
gap to the logistic problems as they appear in the real world. The VRP extensions
that are most relevant to our problem are listed in Table 3.5. First, the vehicles
do not necessarily need to be equal to each other, or homogeneous. This might
be due to different capacities or cost structures. A fleet that consists of different
types of vehicles is called heterogeneous. Second, it is possible to extend the VRP
to take into account more than one depot, called multi-depot. Third, several time
constraints are introduced in the literature, the most relevant being time windows
for customers and depots, and duration constraints for how long each vehicle can be
used before it must return to the depot. Time windows give an interval of time in
which customers can be serviced by vehicles or vehicles are available to use.
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Table 3.5: Relevant extensions of the standard Vehicle Routing Problem.

Characteristic Standard Extension(s)

Vehicle fleet Homogeneous Heterogeneous
Number of depots Single-depot Multi-depot
Time constraints None Time windows, tour duration

In order to cope with the scale of real-world problems and the complexity intro-
duced by the extensions in Table 3.5, Gulaker et al. (2022) identify that much of
the literature has focused on combining problem decomposition with fast solution
methods. Research on decomposition distinguishes between clustering and district-
ing. Clustering groups customers based on similarities whereas districting partitions
the geographical space into smaller zones, or districts, that contain only one depot.
Moreover, they find that nearest neighbor algorithms are popular for clustering,
which in its simplest form just groups customers with their closest neighbors. Dondo
and Cerdá (2007) propose a nearest neighbor algorithm that respects constraints on
vehicle capacity, heterogeneous fleet and time windows. Regarding districting, the
literature is more deficient. Gulaker et al. (2022) find, however, that the parallel as-
signment algorithm proposed by Giosa et al. (2002) handles large problem instances
with up to 1000 customers in 2 seconds. In comparison with 6 other algorithms
for districting, parallel assignment seems to be the best trade-off between computa-
tional time and performance. Based on these findings, Gulaker et al. (2022) propose
to first use the parallel assignment algorithm by Giosa et al. (2002) for districting
and then the clustering algorithm by Dondo and Cerdá (2007) on the customers in
each district to create super-customers.

To find the routes in large and complex VRPs, several algorithms are worth men-
tioning. We adopt the terms from Arnold et al. (2019) to describe the VRP scale,
where instances with between 100 and 1000 customers are considered large, and
instances with more than 1000 customers are considered very large. To quickly find
good routes in very large VRPs, Arnold et al. (2019) develop a knowledge-guided
local search (KGLS) that can efficiently solve VRP instances of up to 30,000 cus-
tomers. It uses both the heuristic by Lin and Kernighan (1973) and the savings
heuristic by Clarke and Wright (1964) to construct initial solutions, before running
a local search that perturbs solutions and penalizes bad routes based on knowledge of
bad routes found in Arnold and Sörensen (2019). KGLS is benchmarked against the
Lin-Kernighan-Helsgaun version 3 (LKH-3) heuristic, which is a much-used heuristic
capable of solving VRPs, including VRPs with time windows (VRPTW) (Helsgaun,
2017). It works by transforming a VRPTW into many multi-traveling salesperson
problems and minimizes both the routing time and the penalty for violating con-
straints. According to Arnold et al. (2019), LKH-3 targets high solution quality
instead of fast solution times, and is therefore used to benchmark solution quality.

However, for solving CVRPs, the Hybrid Genetic Search for capacitated vehicle
routing problems (HGS-CVRP) proposed by Vidal (2022) is considered state-of-the-
art in terms of solution quality and convergence on CVRP instances of up to 1000
customers. HGS-CVRP outperforms among others the aforementioned KGLS and
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LKH-3 algorithms (Vidal, 2022). It is a specialized implementation for the CVRP
based on the HGS algorithm by Vidal et al. (2012). The HGS algorithm found
in Vidal et al. (2012) is made to solve the periodic VRPs, the multi-depot VRP
and the multi-depot periodic VRP. The principle of a hybrid genetic search is to
combine a genetic algorithm with a local search algorithm. It works by keeping two
pools of solutions, one feasible and one infeasible. In each iteration of the algorithm,
parents are selected by a binary tournament. An ordered crossover operator is used
to create offspring, which is further improved (educated) by a local search algorithm.
The offspring is placed according to its feasibility in the feasible or infeasible pool
of solutions. When the size of a solution pool reaches its maximum size, the best
solutions and the solutions that contribute most to diversity are selected for survival.
There are also measures to diversify if the best solution does not improve for a given
number of iterations. The algorithm runs for a specified time or until reaching a
specified number of non-improving iterations.

HGS has been extended to solve the VRPTW, where it also has made its claim as one
of the best-performing solution methods. One such implementation is proposed by
Vidal et al. (2013), and is called HGS with Adaptive Diversity Control (HGSADC).
Another HGS for VRPTW implementation is the solver created by Kool et al.
(2022), which won the VRPTW track of the 12th DIMACS implementation challenge
(DIMACS, 2022). This solver is called Router, but to indicate its connection to the
HGS algorithm we refer to it as HGS Router (HGSR) in this thesis. HGSR includes
additional construction heuristics, a new crossover operator called Selective Route
Exchange and an intensified local search procedure. Contrary to HGSADC, an
open-source routing software for HGSR exists (PyVRP, 2023).

HGSADC, HGSR and LKH-3 have all been tested in the literature on the VRPTW
benchmark instances by Gehring and Homberger (1999) with 1000 customers (see
Appendix A). Table 3.6 compares the average, maximum and minimum percentage
gap to the best known solution on these benchmarks. The runtime limit used in
the test for HGSADC and HGSR is 120 minutes, whereas LKH-3 is not specified.
HGSR finds a much lower gap compared to the other solvers. Additionally, the gaps
for HGSADC and LKH-3 have larger ranges between maximum and minimum gaps,
indicating that they are less consistent than HGSR.

Table 3.6: Comparison between Hybrid Genetic Search with Adaptive Diversity
Control (HGSADC), Lin-Kernighan-Helsgaun 3 (LKH-3) and Hybrid Genetic Search
Router (HGSR) by using average, maximum and minimum gap (%) to best known
solution values on the large Gehring and Homberger (1999) Vehicle Routing Problem
with time windows instances and 1000 customers.

HGSADC LKH-3 HGSR

Average 2.51 2.23 0.32
Maximum 14.74 14.39 1.02
Minimum 0.08 0.08 0.00
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3.4 The Location Routing Problem

Maranzana (1964) describes an algorithm that takes into account transport costs
from routes when deciding the location of distribution points. This paper is by many
considered the first publication on the LRP, which more generally can be defined as
location planning with tour planning aspects taken into account (Nagy and Salhi,
2007). With a hierarchical view, the LRP is a compound problem consisting of the
FLP as the master problem and the VRP as the subproblem. As shown in Figure 3.1,
while the FLP only needs to answer what facilities to open and the assignment of
customers to facilities, the LRP must both decide facility locations and the routes to
serve customers from these facilities. The most common version of the LRP is the
capacitated LRP (Prodhon and Prins, 2014), meaning that facilities and vehicles
have a maximum capacity. This assumption is implicit when we refer to the LRP
throughout this thesis.

Figure 3.1: Connection between the Facility Location Problem and the Location
Routing Problem.

Salhi and Rand (1989) show that the classical strategy of solving the FLP and the
VRP separately often leads to suboptimal solutions. One can therefore ask why
these two problems are not always solved simultaneously as an LRP. They elaborate
on a few possible reasons for this. First, an obvious reason is that not all location
problems have a routing aspect. Second, many researchers have claimed that it is
inappropriate to combine location and route planning because the former is typically
a strategic decision whereas the latter is a tactical or operational decision. Third,
the LRP is NP-hard as it can be reduced to the FLP and the VRP, both of which are
NP-hard. Hence, the LRP is a complex and computationally demanding problem
to solve. These reasons could explain why the LRP has received less attention than
the FLP and VRP since Maranzana (1964), especially early on when the technology
did not satisfy the computational requirements for the LRP. In a survey examining
publications from 2007 to 2019, Mara et al. (2021) identify a shift regarding the
research on LRP. Particularly, they show that the LRP has received increasingly
more attention towards the end of this time period.
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To solve LRPs, many solution methods have been used. Exact solution methods,
such as branch-and-cut (Belenguer et al., 2011) and branch-and-price with column
generation (Baldacci et al., 2011), are possible on relatively small problems. The
largest problem solved with exact methods, according to Prodhon and Prins (2014),
is up to 200 customers and 14 depots. For larger problems, it is more common to
solve the LRP by using heuristics and metaheuristics. There are numerous variants,
but the most common metaheuristics for solving single-objective LRPs are Simulated
Annealing or Genetic Algorithm (Mara et al., 2021). Simulated Annealing is a local
search based metaheuristic that accepts non-improving solutions with a probability
that is regulated during the search, whereas genetic algorithms evolve a population
(a set of solutions) by using concepts inspired by biology.

The popularity of Simulated Annealing and Genetic Algorithms is likely connected to
their ability to balance diversification and intensification. In a Simulated Annealing
algorithm proposed by Ferreira and de Queiroz (2018), a diversification procedure is
used that opens and closes a depot, both randomly chosen. The component analysis
shows that this particular procedure has a significant impact on the average gap
when tested on benchmark problems. Yu et al. (2019) utilize the ability Genetic
Algorithm has to intensify the search on promising parts of the solution space.
They keep two populations, one with infeasible solutions and another with feasible
solutions, and use crossover operators to mix them when producing new solutions,
called reproduction. The motivation for this procedure is that the best solution
often is found to be close to the boundary between feasible and infeasible solutions.
Diversifying the search has a great impact in Ferreira and de Queiroz (2018), while
Yu et al. (2019) show how intensification can be utilized based on the knowledge
we have about the solution space. Nevertheless, the right balance between the two
seems to be important when solving the LRP.

There are also solution methods that combine Simulated Annealing and Genetic
Algorithms, among other components. Voigt et al. (2022) propose a hybrid between
Adaptive Large Neighborhood Search and Genetic Algorithm with a range of other
components such as Tabu Search and Simulated Annealing. The Genetic Algorithm
is the main algorithm, whereas the Adaptive Large Neighborhood Search is a sub-
routine used to locally improve child solutions, a process referred to as education.
In the neighborhood search, they adaptively change the probability of selecting a
neighborhood operator based on observed performance, which is a method originally
proposed by Pisinger and Ropke (2007). They perform detailed component analysis
that shows how adaptively deciding the neighborhood helps to find high-quality so-
lutions in less computational time, and that Simulated Annealing has a high impact
on the overall performance.

Another metaheuristic that is mentioned in the literature is the Greedy Randomized
Adaptive Search Procedure (GRASP). This metaheuristic consists of an initial phase
where a solution is found by using a greedy algorithm with some randomness, and a
second phase that improves this solution. Hence, the initial phase can be viewed as a
diversification phase, whereas the second phase can be viewed as an intensification
phase. GRASP has a wide variety of applications. It can be used together with
different metaheuristics, such as Evolutionary Local Search (Duhamel et al., 2010).
It can also be used as an initial phase to construct good starting solutions (Contardo
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et al., 2014). Prodhon and Prins (2014) compare the performance of metaheuristics
on LRP benchmark problems in the period from 2007 to 2013, where GRASP is
used in one of the best-performing metaheuristics on LRP benchmark problems in
the period from 2007 to 2013. Mara et al. (2021) show that GRASP has been used
in the literature from 2014 to 2019, but not to the same extent as before.

3.5 The Location Routing Problem with Stochas-

tic Customer Presence

Of particular interest to this thesis are papers that solve problems where the pres-
ence of customers is stochastic. By stochastic customer presence, we mean that
potential customer locations are known, but it is uncertain whether they demand
service or not. Therefore, depots must be located to minimize the cost of serving
many different realizations of customer presence, which we call different customer
sets. This resembles real-life situations where not every potential customer orders
each day. However, this should not be confused with multi-period problems in which
demand can accumulate between periods. Below follow descriptions of how prob-
lems with stochastic customer presence are modeled as a stochastic program in the
literature and what solution methods are used.

3.5.1 Modeling

Some papers in the literature split the routing part of the LRP with stochastic
customer presence into a priori and a posteriori routes. The a priori routes are
created before the customer presence is revealed but can be altered afterward in
an a posteriori route in exchange for a penalty or additional cost. In this thesis,
we refer to this modeling approach as corrective routing. Albareda-Sambola et al.
(2007) handle stochastic customer presence by using this approach, where customer
presence is modeled by a Bernoulli random variable. In the first stage, a set of open
depots is chosen to satisfy all customer service requests with a specified probability.
Then, customers are assigned to depots and a priori routes connecting all customers
are designed. In the second stage, customer presence is revealed, and the routes
must be altered to only visit present customers. It is also possible that there are
not enough open depots to satisfy the observed customer demand, in which case a
penalty is incurred. The objective is to minimize the cost of opening depots, the
expected penalty costs and a posteriori routing costs. Tordecilla et al. (2020) take
into account safety stock and different depot sizes when creating the a priori routes.
Safety stock corresponds to empty space in the vehicles when creating a priori routes
in case the demand in the assigned route is revealed to be higher than expected. The
a posteriori routes are then constructed by making corrective changes to the a priori
routes where there is excess demand, either by forcing vehicles to make detours back
to the depot or extending routes of vehicles that are not full.

Another modeling approach is to take only decisions connected to the locating of de-
pots in the first stage, and then routing in the second stage. This modeling approach
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is referred to as post routing in this thesis. Corredor-Montenegro et al. (2021) follow
this approach to handle the uncertainty connected to customer presence, or active
clients in their terms. By understanding the statistical properties of the historical
demand, they generate demand observations that replicate the historical properties.
Further, a mixed integer programming model is used to select a small subset of
scenarios that represent the variability in demand. They emphasize the need for
simulating demand instead of basing their model only on historical observations
to handle cases where future demand is greater than previously observed demand.
Post routing is also used by Klibi et al. (2010), but they consider a scenario as the
daily demand over a time period of several days. Monte Carlo simulation is used to
generate the scenarios. In this respect, it is a multi-period problem. However, after
the scenarios have been generated, they solve routing problems for each day in the
scenario independently of other days. They report that they need 6 scenarios, each
spanning over 200 days, to achieve sufficient solution accuracy without increasing
solution times too much. De Maio et al. (2022) present another example of a two-
stage stochastic program with post routing, but their model differs from the other
papers in how they represent the uncertainty. They argue against deterministic
models using sample means for demand as this fails to provide good solutions in the
face of variability. However, they do not model future uncertainty with an explicit
probability distribution. Instead, they use only historic realizations of demand and
solve for these realizations, contrary to Corredor-Montenegro et al. (2021).

3.5.2 Methods

Nagy and Salhi (2007) propose a classification of solution methods to the LRP. They
propose four different categories: sequential, cluster-based, iterative and hierarchi-
cal. The sequential methods solve the LRP by first locating the depots and then
computing the routing costs. Due to the lack of an integrated view, these methods
are not considered to solve an LRP. In the cluster-based methods, clusters of cus-
tomers are created for each potential depot or route, which reduces the complexity
of the problem. Iterative methods solve the location and routing problem many
times in succession, each time passing feedback between the two phases. Finally,
hierarchical methods view the LRP as different decisions at different levels, where
the location decisions are considered the main task and the routing is a subordi-
nate problem used to calculate the costs of the location decisions. We use the same
categories to describe the following methods.

The most common heuristic solution framework in our review is an iterative frame-
work. Javid and Azad (2010), Albareda-Sambola et al. (2007), Zhang et al. (2019)
and Tordecilla et al. (2020) use local search based methods in the iterative framework
to improve an initial solution. The operators that are used, both for routing and
depot locations, are dynamically updated throughout the search in order to guide
the search toward more promising parts of the solution space. For depot locations,
operators that are commonly used in the papers are to open a depot, close a depot
and both open and close simultaneously. Javid and Azad (2010) use a combination
of Tabu Search and Simulated Annealing, whereas Albareda-Sambola et al. (2007)
use a Variable Neighborhood Search that sequentially applies a local search for each
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operator. Zhang et al. (2019) also use Variable Neighborhood Search, but only to
improve the best particle (solution) in Particle Swarm Optimization. The heuristics
proposed by Tordecilla et al. (2020) use Iterated Local Search, which restarts the
local search from a different initial solution whenever a local optimum is reached.
In contrast to the other papers in the literature review, they use simulations to
estimate the costs of the location decisions.

Klibi et al. (2010) use a metaheuristic solution method with Tabu Search. It com-
ments on the temporal hierarchical nature of their problem, a stochastic multi-period
location transportation problem, where location decisions occur before and with a
longer time horizon than the daily routing decisions. Therefore, a hierarchical frame-
work is used. At the upper level, the distribution network that should serve the
customers is designed, while the daily routes to serve customers are created at the
lower level. The routing is solved by a modification of the Clarke and Wright (1964)
Savings algorithm and the network design problem is solved using Tabu Search.

There are also papers that attempt to solve the LRP with stochastic customer
presence using exact methods. Both Corredor-Montenegro et al. (2021) and De Maio
et al. (2022) implement a two-stage stochastic model where the expected routing cost
is found by using scenarios. Of particular interest is how these papers facilitate the
usage of exact methods in such a complex problem as the LRP. Corredor-Montenegro
et al. (2021) use valid inequalities to reduce the size of the solution space, and
they reuse routes from previous solutions to construct high-quality initial solutions
in later iterations. De Maio et al. (2022) use a ranking and selection method in
which they assume that the decision maker is indifferent to selecting an alternative
to the current best solution if the difference in solution values is smaller than an
indifference zone. They use a confidence interval to decide how many scenarios they
need to solve before being indifferent between two solutions, which greatly reduces
the computational time.

3.6 Our Contribution

The contribution of this thesis is summarized in Table 3.7 by comparing our thesis
with the papers presented in Section 3.5. Now that the FLP and VRP are defined,
we classify Oda’s situation by using the literature. Recall from Chapter 2 that
the last-mile trucks can hold 70-100 boxes, transportation happens in two shifts,
there are several depots, and the customers can make orders within specific time
slots. The depots also have a limited number of vehicles available, and the customer
presence is uncertain. Depots cannot be located anywhere in a city either, there
are some potential locations to consider. This translates to an FLP with discrete
location space and capacitated depots as the facilities. Stochastic customer presence
means that there is stochastic data in the problem. The vehicle delivery routines
translate to a VRP with capacitated vehicles, a heterogeneous fleet, multiple depots,
time windows and tour duration constraints. Together, the FLP and VRP form a
stochastic LRP because decisions in the FLP affect the VRP, and vice versa. On top
of this, the problem at hand is very large because the number of possible customers
in Berlin is in the magnitude of thousands.
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Table 3.7: Contribution of our thesis compared to included papers for the Location
Routing Problem with stochastic customer presence. ILS, VNS, GRASP and PSO
are abbreviations for Iterated Local Search, Variable Neighborhood Search, Greedy
Randomized Adaptive Search Procedure and Particle Swarm Optimization, respec-
tively. Very large indicates problem sizes with at least 1000 customers.
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De Maio et al. (2022) x x x x
Corredor-Montenegro et al. (2021) x x x x x x
Tordecilla et al. (2020) x x x x
Zhang et al. (2019) x x x x x
Javid and Azad (2010) x x x x x
Klibi et al. (2010) x x x x x
Albareda-Sambola et al. (2007) x x x x

Sum 7 7 0 1 1 1 5 2 2 1 2 0 2 1 1

This thesis x x x x x x x x x

To solve the LRP with stochastic customer presence we propose a two-stage stochas-
tic solution method. In our view, corrective routing is best suited for problems where
the customer locations are known or relatively certain before the demand is revealed,
thus being able to make a priori routes that only need small corrections in the sec-
ond stage. In contrast, the problem in this thesis needs to handle large variations in
where customers are located in each scenario. Therefore, we choose the post rout-
ing modeling approach. Additionally, our thesis proposes a new scenario generation
method. Few of the papers in the literature review mention how the scenarios are
generated and, in general, it seems that there is little agreement on how stochastic
customer presence is best represented. We fill this research gap by putting more
emphasis on how the scenarios are generated and on testing the solution quality on
realistic problems.

We implement and compare two different location search algorithms. These weigh
diversification and intensification differently, which seems to be an important fea-
ture in the methods that are presented in the literature review. Comparing two
different algorithms might also make us more aware of potential weaknesses and
strengths, helping us to decide which one is the most promising for our applica-
tion. The location search algorithms that are implemented are an extended Tabu
Search and GRASP. This comparison of algorithms for our application is in itself
an interesting contribution to the literature. In addition, the extensions proposed
to the Tabu Search are important contributions of this thesis. Compared to most of
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the literature, our algorithms have time to evaluate relatively few solutions in total,
meaning that they need to intensify the search more, especially in the beginning
of the search. Hence, we need to find good solutions fast. Inspired by Klibi et al.
(2010), we add tabu lists based on which moves have been made earlier. We use
three different neighborhoods, which are explored differently in two phases of the
search. First, in the constructive phase, we quickly find a solution with a reason-
able number of open depots. This solution is the starting point for the adaptive
phase, where the neighborhoods are explored with different probabilities that are
adjusted throughout the search, inspired by Voigt et al. (2022). These constructive
and adaptive phases are why the algorithm is referred to as Constructive Adap-
tive Tabu Search (CATS). GRASP, the other solution method, is implemented as a
much simpler method with only the initial diversification phase. Hence, by design,
GRASP represents a different approach to solving the problem.

The routing algorithm for the second-stage problem is based on the implementation
in the project report (Gulaker et al., 2022). In particular, we reuse the decomposition
method where the customers are assigned to districts and then clustered. Gulaker
et al. (2022) use LKH-3 for constructing routes. However, recent research results
and the comparison of the VRP solvers in Section 3.3 shows that HGSR produces
lower gaps and also is more consistent than LKH-3. Therefore, we incorporate the
open-source version of HGSR for routing. This way, the goal is to make the routing
algorithm from the project report more scalable and accurate. As stated in the
literature review, the VRP that is solved by Gulaker et al. (2022) takes into account
the same extensions as in this thesis. To the best of our knowledge, this VRP is
more complex than any of the VRPs solved as a part of a stochastic LRP in the
literature.
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Chapter 4

Problem Description and
Mathematical Model

This chapter describes the LRP this thesis aims to solve. Gulaker et al. (2022) formu-
late the VRP that describes the real-world routing problem Oda’s solver Navegante
solves for each shift. In this thesis, an extension of this model to solve the LRP is
proposed: a two-stage stochastic mixed integer program, with the depot location
decision in the first stage and the vehicle routing decision in the second stage. The
stochastic aspect regards the stochastic customer presence, where the second stage is
solved for a realization of the stochastic parameters in the first stage. The two stages
of the problem are described in Section 4.1 and 4.2, respectively. A mathematical
model of the problem is then presented in Section 4.3.

4.1 Description of the First-Stage Problem

Food boxes should be delivered from one of several depots given in the set ND.
The first depot in ND, with index 0, corresponds to the warehouse. As mentioned
in Chapter 2, the warehouse takes on two different roles: delivery of food boxes to
the depots with line-haul trucks and delivery of food boxes to the customers with
last-mile vehicles. However, in this thesis, we are not interested in the routing of
line-haul trucks, meaning that the warehouse can be viewed as a larger depot that
must be open.

The binary variable δi takes the value 1 if depot i ∈ ND is open, and 0 otherwise.
Each depot can either be open or closed, except for the warehouse which is always
open. Thus, the vector δ contains all binary variables δi that specify which depots in
ND that are open or closed, which is referred to as a depot configuration. Further-
more, several alternative depots at the same location can be considered. These are
mutually exclusive options, meaning that alternative depots at the same location
cannot be opened together. To enforce this decision, the parameter Kij must be 1
for all pairs of depots i ∈ ND and j ∈ ND\{i} that can be opened at the same time,
and 0 if they cannot. A fleet size γ, being the total number of last-mile vehicles
across all open depots, is also decided.

20



Chapter 4. Problem Description and Mathematical Model

The objective of the first-stage problem is to open the depots that minimize the cost
of the depot configuration, which consists of the costs of opening the depots, the
fleet costs and the expected operational costs of the routes to serve the customers.
For each depot i ∈ ND, the opening cost Gi consists of depot leasing costs and
line-haul costs. The depot leasing costs are the costs to lease the depot, and the
line-haul costs are the costs for transporting the food boxes with line-haul trucks to
the depot. Ongoing expenses incurred from opening the depot, like electricity and
cleaning, are also included in the depot leasing costs. The fleet cost GF is the cost
that is incurred for having the vehicles available in the fleet, such as vehicle leasing
and services. Finally, the expected operational costs are the expected routing costs
from the second-stage problem for the depot configuration δ, the fleet size γ and the
uncertain set of customers ξ. All these costs are scaled to a cost per shift in order
to make them comparable to each other.

4.2 Description of the Second-Stage Problem

In this section, the second-stage VRP is described, and all the notation that is
relevant is defined.

4.2.1 Customers

The set of all possible customers is denoted NC . However, for a given shift only a
subset of these customers actually place an order. Thus, the set of customers that
have ordered food boxes for delivery is uncertain. To describe this uncertainty, we
define Fi to be a stochastic binary parameter that is 1 if customer i ∈ NC places an
order, and otherwise 0. Let ξ be the collection of the stochastic parameters, that is
ξ = (F0, ..., F|NC |). We assume that the probability distributions of the parameters

in ξ are known. A specific realization ξ̃ of ξ contains realizations of all the stochastic
parameters, each denoted as F̃i. Note that all attributes connected to each customer,
being location, demand and time window, are deterministic. All possible locations
(both depots and customers) are given in the set N , whereas individual locations
are denoted by indices i, j and k.

4.2.2 Vehicles and Depot Loading

Each depot i ∈ ND has a set of vehicles available, denoted by Vi. We assume that the
number of vehicles available at the warehouse is large enough to cover the demand
for all possible realizations ξ̃ of ξ, and hence that we never need to decide whether
a customer should not be served. The set of all vehicles is denoted by V , and is
equivalent to

⋃
i∈ND Vi. Since a vehicle v ∈ Vi belonging to a depot i ∈ ND cannot

visit other depots, we also introduce the set Nv containing all locations reachable by
the vehicle, which includes the set of customers and only the depot i. More formally,
it can be defined as Nv = NC ∪ {i} for all i ∈ ND and v ∈ Vi. Each vehicle must
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serve the whole demand of each customer it visits. The demand of customer i ∈ NC

is given by Di. At the same time, a vehicle v ∈ V has a maximum capacity HV
v .

Each depot also has a given number of loading docks, limiting how many vehicles
that can be loaded simultaneously. This maximum number of vehicles is denoted by
Li for depot i ∈ ND. To better represent time and simultaneity, we introduce a set
of time intervals T where each interval τ ∈ T has a start time T I

τ and an end time

T
I

τ . There could for instance be a time interval for every five minutes. We introduce
the three variables kvτ , evτ and dvτ to indicate whether vehicle v ∈ V starts loading
during timeslot τ ∈ T , ends loading during the timeslot, or is loading during the
whole timeslot, respectively.

4.2.3 Time, Availability and Overtime

The time it takes to drive between location i ∈ N and location j ∈ N is denoted by
Tij. Each location i ∈ N has a service time given as T S

i . This is the time it takes for
the vehicle to serve the customer, or to load goods at the depot. When the customers
place orders, they also choose a time window in which their order shall be delivered.
The lower bound of the time window for customer j ∈ NC is denoted as TN

j , and the

upper bound as T
N

j . Time windows are also set for vehicles, as they have start and

end times for when they are available. These are denoted by T V
v and T

V

v respectively
for vehicle v ∈ V . In addition to the vehicle time windows, a working shift has a
maximum duration for v ∈ V , given by TD

v . It also has a maximum duration for
ordinary work time denoted by TO

v , which works as a threshold for when overtime
is counted. All time in shifts that surpasses this overtime threshold is counted as
overtime.

4.2.4 Break Times

If a shift lasts longer than a given time, drivers need to be given a break. This break
threshold time is given by TB

v . Breaks are represented by the variable bijv, which
should be set to 1 if vehicle v ∈ V has a break between visiting location i ∈ Nv

and j ∈ Nv. Furthermore, a break should have a duration of BD, and be placed in
the middle part of the shift. A break center coefficient BC

v is given for each vehicle
v ∈ V to indicate the length of the time interval that the break is allowed to start
in. For instance, if BC

v is equal to 0.2, the break must start in the middle 20% of
the shift.

4.2.5 Routes

Every customer should be visited by a vehicle that brings the demanded food boxes.
To do this, each vehicle in use at a depot should be scheduled a route to drive,
originating in the depot for loading, visiting some customers, and ending in the
depot at the end of the shift. We use the variable xijv to indicate that vehicle v ∈ V
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drives directly from location i ∈ Nv to location j ∈ Nv. To keep track of whether
a vehicle is in use, the binary variable yv is used. Some vehicles are mandatory
to use because of contracts, which is indicated by Rv that is 1 if vehicle v ∈ V is
mandatory. To denote when a vehicle v ∈ V should arrive at a location i ∈ Nv, we
use the variable tiv. Note that for depots, which are visited both at the start and
end of a shift, this variable denotes arrival on the first visit, and thus the start time
of the shift. To also keep track of the end time of the shift for vehicle v ∈ V we use
the variable tEv .

4.2.6 Costs

For the vehicle routes, the costs consist of fixed costs of using vehicles, costs per
distance unit driven, costs per time unit a vehicle is in use and overtime costs.
Fixed costs are paid when using a vehicle during a shift, and include costs given in
contracts with drivers and costs for loading the vehicle at the beginning of the shift.
These fixed costs are denoted by CF

v for vehicle v ∈ V . There are also costs related
to the distance that is driven by vehicles, which can include fuel costs and cost of
maintenance. Costs per distance unit are denoted by CD

v for each vehicle v ∈ V .
The distance between two locations i ∈ N and j ∈ N is given by the parameter Aij.
The driver’s wages and other time-based costs for driving a vehicle v ∈ V is given in
CT

v . Finally, a driver who works overtime should be compensated for the overtime.
Extra hourly costs for overtime for the driver of vehicle v ∈ V is given by CO

v . The
total overtime for vehicle v ∈ V in the shift is represented by the variable av.

4.3 Mathematical Model

In this section, the mathematical model for the problem is presented, using the
mathematical notation presented in Section 4.1 and 4.2. The structure of a stochas-
tic program with recourse is used. First, we introduce the first-stage problem with
respective constraints. Next, we present the second-stage problem that takes into ac-
count the first-stage decisions and a realization of the stochastic customer presence.
An overview of the mathematical model can also be found in Appendix B.

4.3.1 First-Stage Problem

min z =
∑

i∈ND\{0}

Giδi (4.1a)

+GFγ (4.1b)

+ Eξ [Q(δ, γ, ξ)] (4.1c)

The objective function of the first-stage problem is defined by three terms. The
costs for each depot is defined by term (4.1a), and term (4.1b) defines the costs of
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the vehicle fleet size for the depot configuration. Term (4.1c) models the expected
operational costs described by the expected value of the recourse function Q. The
recourse function Q is the objective value of the solution of the second-stage problem
given the depot configuration δ, the fleet size γ and a customer set specified by a
realization ξ̃ of ξ.

δi + δj ≤ 1 +Kij i ∈ ND, j ∈ ND \ {i} (4.2)

δ0 = 1 (4.3)

δi ∈ {0, 1} i ∈ ND (4.4)

γ ∈ Z≥0 (4.5)

To assure that two alternative depots at the same location cannot be opened si-
multaneously, constraints (4.2) are used. By defining these constraints for all pairs
of different depots, the number of alternative depots at the same location is not
restricted. Constraint (4.3) makes sure that the warehouse is always open. Finally,
constraints (4.4) restrict the depot opening decision to be binary, and constraint (4.5)
forces the fleet size γ to be a non-negative integer.

4.3.2 Second-Stage Problem

The second-stage problem is called by the recourse function in the first-stage prob-
lem. It is defined for a given depot configuration δ, a given fleet size γ and a specific
realization ξ̃ of ξ. The second-stage problem is similar to the mathematical model
from the project report (Gulaker et al., 2022), extended with compatibility for δ,
γ and ξ̃. Note that some constraints are formulated non-linearly. This is done to
enhance readability and does not affect the implementation of the model as it is not
implemented with a commercial solver. All these constraints are possible to linearize
using big-M notation, however.

Objective Function

Q(δ, γ, ξ̃) = min
∑
v∈V

CF
v yv (4.6a)

+
∑
v∈V

∑
i∈Nv

∑
j∈Nv\{i}

CD
v Aijxijv (4.6b)

+
∑
i∈ND

∑
v∈Vi

CT
v (t

E
v − tiv) (4.6c)

+
∑
v∈V

CO
v av (4.6d)

Term (4.6a) models the fixed costs of using a vehicle. Term (4.6b) is the cost
per distance unit driven. Time-based costs are handled by term (4.6c), where the
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duration of a shift for vehicle v ∈ Vi belonging to depot i ∈ ND is found by
subtracting the start time of the shift tiv from the end time tEv . Finally, term (4.6d)
gives the overtime costs.

Flow Constraints

∑
v∈V

∑
i∈Nv\{j}

xijv = F̃j j ∈ NC (4.7)

∑
j∈NC

xijv − δiyv = 0 i ∈ ND, v ∈ Vi (4.8)

∑
j∈Nv\{i}

xjiv −
∑

j∈Nv\{i}

xijv = 0 v ∈ V , i ∈ Nv (4.9)

Constraints (4.7) ensure that all customers that should be visited are visited once.
By using F̃j, no vehicle is allowed to travel to customer j if this customer is not
contained in the customer set specified by the realization ξ̃ of ξ. If a vehicle is used,
constraints (4.8) make sure it drives out from its depot. The first-stage decision
δi is used in this constraint to prevent any vehicle from a closed depot to be used.
Constraints (4.9) handle that when a vehicle drives to a location, it also drives away
from it. Since this includes depot locations, it also makes sure a vehicle returns to
the depot if it has driven out from it.

Vehicle Capacity and Usage

∑
i∈NC

∑
j∈Nv\{i}

Dixijv ≤ HV
v v ∈ V (4.10)

∑
v∈V

yv ≤ γ (4.11)

yv ≥ Rvδi i ∈ ND, v ∈ Vi (4.12)

Constraints (4.10) ensure that the total demand of the customers that a vehicle
visits does not exceed the capacity of the vehicle. Constraint (4.11) enforces that
the total vehicle fleet size is not exceeded. To make sure that mandatory vehicles
are used, constraints (4.12) is in place.
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Break Time Constraints

(tEv −tkv)(1−
∑
i∈Nv

∑
j∈Nv\{i}

bijv) ≤TB
v k∈ND, v∈Vk (4.13)

bijv − xijv ≤ 0 v∈V , i∈Nv, j∈Nv\{i} (4.14)

1−BC
v

2
(tEv −tkv)bijv ≤ tiv k∈ND, v∈Vk, i∈Nv, j∈Nv\{i} (4.15)

1 +BC
v

2
(tEv −tkv)bijv ≥ tjv k∈ND, v∈Vk, i∈Nv, j∈Nv\{i} (4.16)

Constraints (4.13) impose a break if the shift duration exceeds the break threshold
and constraints (4.14) ensure that a break is only allowed to be set at a distance
that the vehicle drives. Constraints (4.15) enforce that any break starts after the
lower limit of the break time interval, whereas constraints (4.16) enforce the upper
limit of the break time interval.

Time Constraints

(tiv + T S
i +BDbijv + Tij − tjv)xijv ≤ 0 v∈V , i∈Nv, j∈NC\{i} (4.17)

(tiv + T S
i +BDbijv + Tij − tEv )xijv ≤ 0 i∈NC , j∈ND\{i}, v∈Vj (4.18)

Constraints (4.17) make sure that the start time of successive customers is set with
enough time in between for servicing the customer, driving to the next customer and
taking a break if this should be done. Constraints (4.18) do the same for setting the
end time of the shift.

TN
j ≤ tjv ≤ T

N

j i ∈ ND, v ∈ Vi, j ∈ Nv\{i} (4.19)

tiv ≥ T V
v i ∈ ND, v ∈ Vi (4.20)

tEv ≤ T
V

v v ∈ V (4.21)

Constraints (4.19) ensure all location time windows are respected. Vehicle availabil-
ity time windows are handled by constraints (4.20) and constraints (4.21).

tEv − tiv ≤ TD
v i ∈ ND, v ∈ Vi (4.22)

tEv − tiv − av ≤ TO
v i ∈ ND, v ∈ Vi (4.23)

The maximum working shift duration is enforced by constraints (4.22). To count
overtime correctly, constraints (4.23) are in place.
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Dispatch Constraints

∑
τ∈T

T I
τkvτ − tiv ≤ 0 i ∈ ND, v ∈ Vi (4.24)

(tiv + T S
iv −

∑
τ∈T

T
I

τevτ )yv ≤ 0 i ∈ ND, v ∈ Vi (4.25)∑
τ∈T

kvτ − yv = 0 v ∈ V (4.26)∑
τ∈T

evτ − yv = 0 v ∈ V (4.27)

kvτ + dvτ − dv(τ+1) − ev(τ+1) = 0 v ∈ V , τ ∈ T \{|T |} (4.28)∑
v∈Vi

(kvτ + dvτ + evτ ) ≤ Li i ∈ ND, τ ∈ T (4.29)

Constraints (4.24) set kvτ to 1 if loading in depot i ∈ ND of vehicle v ∈ Vi starts
within time interval τ ∈ T . Constraints (4.25) set evτ to 1 if loading on depot
i ∈ ND of vehicle v ∈ Vi ends within time interval τ ∈ T and the vehicle is used.
Constraints (4.26) ensure that only one start timeslot is set if vehicle v ∈ V is
in use, while constraints (4.27) ensure that only one end timeslot is set if vehicle
v ∈ V is in use. If loading of vehicle v ∈ Vi happens during the whole interval,
constraints (4.28) set dvτ to 1. By summing all kvτ , dvτ and evτ for each timeslot
τ ∈ T on a depot i ∈ ND, constraints (4.29) restrict the number of vehicles that
can be loaded simultaneously.

Binary and Non-Negativity Constraints

xijv ∈ {0, 1} v ∈ V , i ∈ Nv, j ∈ Nv\{i} (4.30)

yv ∈ {0, 1} v ∈ V (4.31)

bijv ∈ {0, 1} v ∈ V , i ∈ Nv, j ∈ Nv\{i} (4.32)

tiv ≥ 0 v ∈ V , i ∈ Nv (4.33)

av ≥ 0 v ∈ V (4.34)

kvτ ∈ {0, 1} v ∈ V , τ ∈ T (4.35)

evτ ∈ {0, 1} v ∈ V , τ ∈ T (4.36)

dvτ ∈ {0, 1} v ∈ V , τ ∈ T (4.37)

At last, we ensure the binary and non-negative properties of variables with con-
straints (4.30) to (4.37).
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Solution Methods

This chapter explains the solution methods we suggest to solve the LRP. We first give
an overview of the solution methods, including how the stochastic parameters are
handled. The explanation of the solution methods is divided into two sections, one
for each stage of the problem. The depot location search in the first stage is explained
in Section 5.1, whereas the routing algorithm in the second stage is explained in
Section 5.2. For the second-stage problem, we start by defining simplifications to
the mathematical problem that are used by the routing algorithm in Section 5.2.1.

We discretize the probability distribution of the stochastic customer presence ξ using
scenarios. For each scenario s ∈ S, we define the realization ξ̃s of ξ, with probability
ps. The expectation in the first-stage objective function can then be written as in
equation (5.1). The stochastic parameters contained in ξ̃s are reformulated to F̃is

for all customers i ∈ NC and scenarios s ∈ S. More details on how the scenarios
are generated and tested are presented in Chapter 6 and Section 7.1, respectively.

Eξ [Q(δ, γ, ξ)] =
∑
s∈S

psQ(δ, γ, ξ̃s) (5.1)

The solution methods use a combination of heuristics and decomposition to find
solutions to the problem. A solution to the LRP means finding values for variables
in the first-stage and second-stage problems. However, the depot configuration δ and
fleet size γ in the first-stage problem are the most interesting parts of the solution
as they answer the strategic questions. Solutions to the second-stage problem found
in this location are not used in actual operational planning. Figure 5.1 gives an
overview of the solution methods. To start the search, an initial depot configuration
must be provided. The selected depot configuration and the customer realizations
from the scenarios are used to create a set of routing problems. Each of these routing
problems is solved by first decomposing the problem into single-depot problems by
creating districts for each depot, then clustering the customers in each district to
super-customers, and finally using HGSR to construct the routes. After solving
each single-depot problem separately, the results are merged into a solution to the
original problem. The routing cost of the depot configuration is computed according
to equation (5.1). The state of the search and the solution is updated based on
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the total cost of the depot configuration. The search continues until the stopping
criterion is met.

Figure 5.1: Overview of the solution methods.

5.1 The Depot Location Search

Because the possible combinations of depots grow O(2|δ|), testing all possible depot
combinations quickly becomes intractable. Therefore, a heuristic search through de-
pot configurations is necessary. We start by explaining how candidate configurations
are made through neighborhood generation in Section 5.1.1. Then, we define the
search algorithms CATS and GRASP in Section 5.1.2 and Section 5.1.3, respectively.

5.1.1 Neighborhood

The process of searching through depot configurations relies on the concept of neigh-
borhood operators. When a neighborhood operator is applied to a selected depot
configuration, a set of candidate configurations is generated. This set is called a
neighborhood of the selected depot configuration, and each candidate configuration
is called a neighbor. Going from one selected depot configuration to selecting one
of its neighbors instead is referred to as a move. We say that a configuration is
“explored” when it is evaluated in order to decide whether to move to it or not.
An explored configuration that the search decides to move to is called a “visited”
configuration. In our problem, the search space for the depot location search is all
possible depot configurations.

Recall from Section 4.1 that a depot configuration is a set of open and closed de-
pots described by the vector of binary variables δ. For the depot location search,
we consider the neighborhood operators in Table 5.1, which are inspired by Klibi
et al. (2010). The Open operator opens a closed depot. Likewise, the Close operator
closes an open depot. The Open and Close operators are commonly known as flip
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moves, and assure that the search space is connected as all possible depot config-
urations can be reached by using these two neighborhood operators. We also use
a Swap operator, where one depot closes and another opens simultaneously. This
allows better exploration at the same number of depots, as it reduces the number of
local optima. Figure 5.2 shows the effect of each neighborhood operator on a depot
configuration. With only Open and Close operators, there might be situations where
it is neither improving to use the Open nor the Close operator, indicating that the
search has found a local optimum using these operators. However, there could be
improving configurations with the same number of depots open found in the Swap
neighborhood. By introducing the Swap operator, the previous depot configuration
would therefore no longer be a local optimum, allowing the search algorithm to con-
tinue finding improving solutions. However, introducing the Swap operator comes
at the cost of increasing the size of the neighborhood from O(|δ|) to O(|δ|2). To
limit the neighborhood size, no additional operators that change two or more depots
simultaneously are used.

Table 5.1: Neighborhood operators for the depot location search.

Operator name Description

Open Open a depot
Close Close a depot
Swap Both open a depot and close a depot

Figure 5.2: Possible effects of the neighborhood operators on a depot configuration.

We define a neighborhood generator to be a function N(δ) that returns a neighbor-
hood of δ, and which can use either of the neighborhood operators depending on the
underlying strategy of the generator. A naive way of generating neighborhoods is
to apply all three operators and randomly choose a neighbor from the total neigh-
borhood, which we refer to as the random neighborhood generator NR(δ). This
generator has some obvious weaknesses. First, we might know that some operators
are less likely to make an improvement dependent on which operators have been
tried before and how many depots are open. Second, the probability of picking a
neighbor that has been generated by using Swap is much larger than that of Open
and Close because the number of combinations of changing two depots grows much
faster than the number of combinations from changing only one depot. Therefore, to
improve the efficiency and effectiveness of the search through depot configurations
we propose an alternative that consists of three alternative neighborhood genera-
tors: the constructive NC(δ), the adaptive NA(δ), and finally the combination of
the constructive and adaptive NCA(δ).
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The constructive neighborhood generator NC(δ) has three consecutive phases, each
one using only one neighborhood operator. In each phase, neighbors in the neigh-
borhood generated by the operator are explored, moving to the neighbor if it is
improving. The parameter φC limits the number of neighbors that can be explored
without any improvement before going to the next phase. Whenever an improving
neighbor is found before reaching the limit, the counter is reset and φC new neigh-
bors can be explored using the same operator as before. In the first phase, neighbors
are explored by opening depots using the Open operator. When φC non-improving
neighbors have been explored, the generator uses the Close operator to try to close
depots. Again, when the limit is reached, the generator enters its final phase where
only the Swap operator is used to generate new neighbors. The intuition is that the
constructive neighborhood generator first finds the correct number of open depots
in phases 1 and 2, after which the task is only to find which depots at this number
should be open.

The adaptive neighborhood generator NA(δ) is based on Pisinger and Ropke (2007).
They implement a scoring system that gives each operator a reward of ωh based on
the result h of applying the operator. Operators receive the reward of ω1 when
they find a global best solution and ω2 when they find a locally improved solution.
Otherwise, they do not receive a reward. ω0 = 0 is used for these cases. We use
a decay rate θ that reduces the score of the operator each time it is used. The
score of operator M for usage number i, denoted sMi , is thus updated according to
equation (5.2) when it receives reward ωh. The probability of choosing an operator
is calculated by dividing each operator’s score by the sum of the scores. When
using an operator does not lead to a move, decaying its score effectively increases
the probability of using the other two operators. All operators start with a score
s0. Whenever NA(δ) is used, an operator is drawn randomly with this probability
of being chosen. If all neighbors in an operator neighborhood have been explored,
the probability of choosing this operator is set to 0. Neighbors are then drawn from
neighborhoods generated by the other operators until all neighborhoods have been
explored or a move is made to another solution. If a move is made, the probabilities
are again based on each operator’s score.

sMi = θ(sMi−1 + ωh) (5.2)

Both the constructive and the adaptive neighborhood generators make some assump-
tions about the search space. NC(δ) assumes that there exists a path of improving
moves from the starting depot configuration through the search space to a config-
uration with the correct number of open depots by using only Open and Close for
a limited number of tries. This is a strong assumption, as local optima might exist
which traps the search at the wrong number of open depots, and the number of tries
might be too few. NA(δ) assumes that successful and unsuccessful operators in the
past can be used to determine which operators to use in the future. However, if
the starting configuration has too few or too many open depots, the search could
be heavily biased towards trying the Open and Close operators when reaching the
number of open depots that is optimal, although Swap should optimally be used.
To use the strengths of NA(δ) and mitigate this bias, we combine NC(δ) and NA(δ)
into the combined neighborhood generator NCA(δ), which is the neighborhood gen-
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erator used by the proposed CATS algorithm. NCA(δ) starts by using the Open
phase of NC(δ) and then switches to NA(δ) after the Open phase has finished. This
means the adaptive generator can start to search around a promising number of
open depots without being influenced by the path through the solution space to
get there. NCA(δ) is more flexible and can potentially correct situations such as if
NC(δ) has found four depots to be the correct number, but only because it did not
discover the best depot configuration with three depots. In the adaptive phase, we
bias towards Swap by adding a bias sB to the start score of Swap. A possible path
between the depot configurations found in the search space for NCA(δ) is illustrated
in Figure 5.3.

Figure 5.3: A possible path between the best solutions found with the combined
neighborhood generator NCA(δ) and maximum opening failures equal to 2.

It is beneficial that the most promising neighbor solutions are investigated first.
This increases the chance for the constructive neighborhood generator to successfully
reach a good level of open depots with a lower number of tries φC , and it might
speed up the learning process of the adaptive neighborhood generator. We assume
that depot configurations with open depots in close proximity to the customers are
more promising. For each depot configuration δ in the neighborhood we therefore
calculate the mean depot distance AD

s (δ) for each scenario s ∈ S, which is the
average distance from the customers in the scenario to their closest open depot in δ.
When using any of the neighborhood generators except for the random approach, the
neighbor depot configurations are then sorted by the lowest expected mean depot
distance E(AD(δ)), as defined in equation (5.3). This is the weighted average of
AD

s (δ) for all scenarios s ∈ S, weighted by the scenario weight ps.

E(AD(δ)) =
∑
s∈S

psA
D
s (δ) (5.3)
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5.1.2 Tabu Search

As described in Chapter 3, Tabu Search is a much-used metaheuristic based on local
search for solving LRPs. Tabu Search is introduced in Glover (1986) and uses the
concept of a tabu list to guide the search when a local optimum has been found.
The tabu list describes forbidden solutions that cannot be visited, either because
they have been visited before or because a component of the solution has been used
before. Usually, Tabu Search is a best-improvement search, where moves are made
to the best improving neighbor (Gendreau and Potvin, 2019). However, when Tabu
Search finds a local optimum, a non-improving move to a neighboring solution that
is not tabu is allowed. To prevent immediately returning to the previous solution,
the tabu list is required. A tabu tenure decides how long a solution should be in
the tabu list before it is removed, for example after a number of search iterations.
The search can be stopped when reaching a time limit or a predetermined number
of iterations without improvement.

To curb computational time, a first-improvement Tabu Search is implemented. In a
first-improvement search, the first non-tabu neighbor explored that is better than the
current solution is moved to immediately. This is contrary to the best-improvement
search, where all neighbors are evaluated and the best one is picked, which usually
leads to longer computational times. There are several reasons why we use the first-
improvement version of the tabu search. First, the search space in our problem is
very large as it grows exponentially with the number of depots and linearly with the
number of scenarios. Second, given the complexity of the problem, the evaluation
of each solution takes some time. Evaluating all neighbors would therefore be very
time-consuming. To ensure that the search terminates, a time limit is used to
stop the search. Because the algorithm should preferably explore many different
neighborhoods before hitting the time limit, it is beneficial to move to the first
improving neighbor.

Algorithm 1 contains pseudocode for the first-improvement tabu search metaheuris-
tic. A set of tabu solutions X, a starting solution and a neighborhood generator
are required by the algorithm. The objective function z, defined in Section 4.3.1,
is used to evaluate the quality of a solution. In line 7, a counter is defined for the
number of solutions δw that are explored. The search itself starts with the loop in
line 8. For each iteration, a new neighbor solution in N(δ′) is explored until either
an improving solution is found or all neighbors are evaluated. The expected routing
cost is computed in line 10. The |S| routing problems that must be solved are inde-
pendent of each other and are therefore solved in parallel. In line 11, the fleet size
γw is set to the maximum number of vehicles required by the depot configuration
for all scenarios. The total depot cost is computed in line 12. Lines 13 and 14 check
whether the solution is non-tabu and improves the current best solution. If this
is the case, the current solution is updated in line 15. The best solution found so
far is updated in lines 16 to 17. When the search reaches a local optimum because
no neighboring solution improves the current solution, and there is still time left,
a jump to a random non-tabu solution with the same number of open depots is
performed. This jump is done to allow the search to reach an unseen configuration
and remains at the same number of open depots because no improving move to more
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or fewer depots has been found. Before the next iteration, the set of tabu solutions
must be updated in line 20. When the stopping criterion is met, the best solution
found, (δ∗, γ∗), is returned.

Algorithm 1 First-Improvement Tabu Search

1: X ← set of tabu solutions, initially containing the starting solution

2: (δ′, γ′)← current solution with objective value z′, initially starting solution

3: (δ∗, γ∗)← best solution found with objective value z∗, initially starting solution

4: N ← neighborhood generator

5:

6: function TabuSearch

7: w ← 0

8: while stopping criterion not met do

9: δw ← neighbor solution from N(δ′) that has not been explored

10: Ew ←
∑

s∈S ps· Routing(δw, ξ̃s)

11: γw ← maximum number of vehicles required by δw over all scenarios

12: zw ←
∑

i∈ND\{0}Giδ
w
i +GFγw + Ew

13: if δw /∈ X then

14: if zw ≤ z′ then

15: update current solution, setting (δ′, γ′) = (δw, γw) and z′ = zw

16: if zw < z∗ then

17: update best solution, setting (δ∗, γ∗) = (δw, γw) and z∗ = zw

18: if explored all neighbors in N(δ′) without any improving move then

19: (δ′, γ′)← random δ /∈ X with same number of open depots as δ′

20: update tabu solutions in X

21: w ← w + 1

22: return (δ∗, γ∗) with z∗

We implement three tabu lists based on Klibi et al. (2010). The set of tabu solutions
X in Algorithm 1 contains all solutions that are present in any of the tabu lists.
One of the tabu lists contains all previously visited depot configurations. When a
move is made to a depot configuration, the search prohibits further visits to this
configuration by having no tabu tenure for the visit tabu list. The two other lists
are short-term as they both have their own tabu tenures. These lists are based on
the moves that recently have been used to explore a new neighbor, and we therefore
call them the flip and swap tabu list. When δw is a neighbor in N(δ′) that has been
generated using a flip operator (Open or Close), the depot δwi that has been flipped
cannot be flipped again in α iterations. Hence, all depot configurations δ with δi not
equal to δwi are added to the flip tabu list and removed in iteration w + α. On the
other hand, when Swap is used, the pair of depots i and j that has been swapped
(δwi , δ

w
j ) is prohibited to be swapped again in β iterations. Note that swaps do not
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add any configurations to the flip tabu list. We set α and β by using the number of
depots that are open in the depot configuration the neighbor was generated from,
as described in equations (5.4), which is based on Nagy and Salhi (1996) and Klibi
et al. (2010).

α = ⌊ 1
2

∑
i∈ND

δ′i ⌋ and β = 2
∑
i∈ND

δ′i (5.4)

We define CATS to be the first-improvement Tabu Search with the combined neigh-
borhood generator NCA(δ), neighborhood sorting and all the proposed tabu lists.
We expect that the combined neighborhood generator together with neighborhood
sorting enables good solutions with a promising number of open depots to be found
fast in the constructive phase, and that the adaptive phase contributes to a bal-
ance between diversification and intensification further on in the search. The visit
tabu list prevents the same depot configuration from being visited again later, thus
avoiding parts of the solution space that have already been explored. If the flip of
a specific depot recently has been tried, we do not want to flip this depot again for
some time. This is because depots that recently resulted in an improvement are
probably also good in nearby solutions, and the opposite is also probable. The same
reasoning holds for swaps. Using the flip and swap tabu lists assures this. To assess
the impact of the different components of CATS in Section 7.4, we add the option
to disable each of them. As shown in Table 5.2, the first-improvement Tabu Search
with all components disabled except the visit tabu list is referred to as Basic Tabu
Search (BTS), which is used as a baseline algorithm for comparison.

Table 5.2: Differences between the Basic Tabu Search (BTS) and Constructive
Adaptive Tabu Search (CATS). NR(δ) and NCA(δ) are the random and combined
neighborhood generator, respectively.

Component BTS CATS

Neighborhood generator NR(δ) NCA(δ)
Neighborhood sorting ✗ ✓

Visit tabu list ✓ ✓

Flip and swap tabu lists ✗ ✓

5.1.3 Greedy Randomized Adaptive Search Procedure

Our implementation of GRASP, based on Feo and Resende (1995), is shown in
Algorithm 2. In line 1, the scenario that is used for the single-scenario evaluation is
chosen. This could be any of the scenarios, but for the procedure to be most efficient,
it should be chosen so that the costs are a consistent proxy for the full evaluation
in lines 24 to 26. Therefore, we use the one with the number of customers closest
to what is expected. In line 2, we define (δ∗, γ∗) with objective value z∗ as the best
solution found. For simplicity, we define a helper function SingleEval(δ) in lines
4 to 8, which returns the single-scenario objective value ẑ of a depot configuration
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δ. The function for GRASP is defined in lines 10 to 29, which starts by the outer
loop in line 11 that is controlled by a stopping criterion, either in terms of a number
of iterations or a maximum running time. In each iteration of this outer loop,
the GRASP restarts its search. In lines 12 to 14, a counter w is initialized and
is used when referring to the candidate depot configuration δw with single-scenario
evaluation ẑw. The current depot configuration δ′ with corresponding single-scenario
evaluation ẑ′ are initialized in line 15. ẑ′ is set to infinity to start the loop in line
16.

In the inner loop in lines 16 to 23, GRASP searches for a new candidate depot
configuration δw that improves the current depot configuration δ′. The inner loop is
repeated until the new candidate depot configuration is not an improvement of the
current depot configuration. In line 17, δ′ and ẑ′ are updated because δw is better.
Then, in lines 18 to 21, the next candidate depot configuration δw+1 is determined.
At this point, GRASP is first greedy by generating a candidate list containing the
open neighbors of δ′ in line 18, all of which are evaluated in line 19 with the single
scenario, and reduced to a restricted candidate list R in line 20 based on some
criteria. We use the criterion that it should include the configurations with a cost
no higher than α% of the best evaluation in Leval, also called a value restriction
(Feo and Resende, 1995). Afterward, GRASP is random in line 21 by choosing δw+1

to be a random depot configuration of R. In line 22, the single-scenario evaluation
ẑw+1 of δw+1 is retrieved from Leval. The counter is incremented in line 23.

When the candidate depot configuration no longer is an improvement of the current
depot configuration, δ′ must be the best configuration in this iteration. In lines
24 to 26, δ′ is evaluated with respect to all the scenarios. This includes finding
the expected routing cost E ′, determining the vehicle fleet γ′ based on the routing
solutions and finally computing the solution value z′. The solution value in this
iteration z′ is compared with the best solution value over all previous iterations z∗

in line 27, and the best solution is updated in line 28. When the stopping criterion
in line 11 is met, the best solution found, (δ∗, γ∗), is returned in line 29.

Recall from Section 3.4 that GRASP usually involves two phases. The initial phase
creates diverse promising solutions and the second phase, or intensification phase, is
used to improve this solution. We do not include the intensification phase because
we do not use a local search around configuration δ′ in each iteration. This local
search takes time, which would have reduced the number of new solutions explored.
In our implementation of GRASP, we prioritize diversification to explore more of the
solution space, thus distinguishing it further from the Tabu Search. Furthermore,
using only one scenario enables GRASP to efficiently consider many different depot
configurations as the new candidate δw+1 because the evaluation in line 19 can be
run in parallel.
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Algorithm 2 GRASP

1: ŝ← scenario to use for single-scenario evaluation

2: (δ∗, γ∗)← best solution found with objective value z∗, initially none with z∗ =∞
3:

4: function SingleEval(δ)

5: Ê ← Routing(δ, ξ̃ŝ)

6: γ̂ ← maximum number of vehicles required by δ in scenario ŝ

7: ẑ ←
∑

i∈ND\{0}Giδi +GF γ̂ + Ê

8: return ẑ

9:

10: function GRASP

11: while stopping criterion not met do

12: w ← 0

13: δw ← candidate depot configuration, initially with no open depots

14: ẑw ← SingleEval(δw)

15: δ′, ẑ′ ← δw,∞
16: while ẑw < ẑ′ do

17: update current depot configuration, setting δ′ = δw and ẑ′ = ẑw

18: L← candidate list containing all open neighbors of δ′

19: Leval ← {SingleEval(δ) | δ ∈ L}
20: R← restricted candidate list of L based on criterion and Leval

21: δw+1 ← randomly chosen depot configuration of R

22: ẑw+1 ← single-scenario evaluation from Leval corresponding to δw+1

23: w ← w + 1

24: E ′ ←
∑

s∈S ps· Routing(δ′, ξ̃s)

25: γ′ ← maximum number of vehicles required by δ′ over all scenarios

26: z′ ←
∑

i∈ND\{0}Giδ
′
i +GFγ′ + E ′

27: if z′ < z∗ then

28: update best solution, setting (δ∗, γ∗) = (δ′, γ′) and z∗ = z′

29: return (δ∗, γ∗) with z∗

5.2 The Routing Algorithm

To estimate the cost of a depot location, we are solving the second-stage routing
problem for a set of scenarios. For doing this efficiently, we use a routing algorithm
based on the algorithm proposed by Gulaker et al. (2022) to find estimates for the
routing costs. This algorithm divides the routing process into three phases: dis-
tricting, clustering and routing. An overview of these phases is shown in Figure 5.4.
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By districting, each customer is assigned to a depot, thus splitting the multi-depot
VRP into a set of single-depot VRPs called districts. Similar customers in each
district are then clustered into super-customers. Finally, routes are created between
these super-customers. The districting, clustering and routing are explained in more
detail in Section 5.2.2, 5.2.3 and 5.2.4, respectively.

Figure 5.4: Overview of the phases in the routing algorithm.

Algorithm 3 gives a high-level pseudocode of the routing algorithm. Phase-specific
parameters are given in lines 1 to 3. The routing algorithm takes as input a depot
configuration δw and a scenario ξ̃s. To simplify the notation when explaining the
routing algorithm in this section, N̂C is the set of customers that are present in
the realization ξ̃s, and N̂D is the set of open depots in configuration δw. These
are defined in lines 8 and 9. Customers are first partitioned into districts by using
Algorithm 4 in line 10. Then, for each district, customers are clustered by using
Algorithm 5 in line 12. In line 13, the routing cost for each single-depot problem j
is assigned to Qj. The total cost is calculated in line 14 and then returned in line
15.

Algorithm 3 The Routing Algorithm

1: ρ← minimum rest capacity

2: lmax ← max distance

3: tmax ← max waiting time

4:

5: function Routing(δw, ξ̃s)

6: input: δ ← depot configuration w

7: input: ξ̃s ← scenario containing stochastic parameters F̃is

8: N̂C ← {i ∈ NC | F̃is = 1}
9: N̂D ← {j ∈ ND | δwj = 1}

10: Wj ← customers in district j∈N̂D returned from Districting(ρ, N̂C , N̂D)

11: for district j∈N̂D do

12: W ′
j ← clustered Wj returned from Clustering(lmax, tmax,Wj)

13: Qj ← routing cost for single-depot problem j with customers W ′
j

14: Q←
∑

j∈N̂D Qj

15: return Q
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5.2.1 Simplifications of the Vehicle Routing Problem

The VRP that is defined as the second-stage problem in Chapter 4 represents op-
erational decisions made on a daily basis. In contrast, the depot location decision
in the first-stage problem is a strategic decision. Therefore, there are certain as-
pects of the VRP that are not that relevant when the decision we are interested in is
strategic. Furthermore, each constraint that the operational VRP takes into account
adds a new layer of complexity. This leads to a trade-off between computational
time and accuracy, which is of particular interest in this thesis as we need to solve
the second-stage problem fast while still retaining reliable estimates of the routing
costs. This section outlines some simplifications of the mathematical model from
Chapter 4. Based on the simplifications, a transition from the operational problem
to the strategic problem solved by the solution methods is defined. The simplifica-
tions are summarized in Table 5.3. In addition to the simplifications shown in the
table, we also add a penalty to avoid infeasibility.

Table 5.3: Simplifications of the operational mathematical model.

Constraints Description Operational Strategic

(4.7), (4.8), (4.9) Flow constraints ✓ ✓

(4.10) Vehicle capacity Heterogeneous Homogeneous
(4.11) Fleet size ✓ ✓

(4.12) Mandatory vehicles ✓ ✗

(4.13), (4.14), (4.15), (4.16) Break time constraints ✓ ✗

(4.17), (4.18), (4.19) Time windows ✓ ✓

(4.20), (4.21) Vehicle availability time ✓ ✗

(4.22), (4.23) Tour duration and overtime ✓ ✓

(4.24), (4.25), (4.26), (4.27), (4.28), (4.29) Dispatch constraints ✓ ✗

Because the vehicle fleet that is available in a given depot configuration is limited, it
can cause the problem to be infeasible when there are not enough vehicles to serve
all customers. This is inconvenient for several reasons. First, local search based
methods do not handle infeasible solutions well. For instance, we could represent
infeasible solutions with an infinite cost, but then the search cannot tell by how
much a solution is infeasible. Second, a hard limit of vehicles is not necessarily
a good representation of reality. In the long run, it would be possible to acquire
more vehicles. In the short term, an external car could be hired at a higher cost,
or a storage worker could drive a car if the number of drivers was limited. Third,
if the vehicle fleet was in fact limited, one could cancel some customer orders or
deliver them late. Taking into account all these possibilities would make our problem
too complex to solve quickly enough. Consequently, in order to avoid infeasibility
in a simpler way, we add the ability to extend the vehicle fleet at an extra cost.
This is done by extending the warehouse fleet and adding a penalty cost for using
more vehicles than it has available in the original problem. Specifically, we define
a parameter V0 as the number of vehicles originally available at the warehouse,
and extend the list V0 of vehicles available there until the warehouse can serve all
customers in every scenario. Hence, all solutions will be feasible. A fixed penalty
of CP is added to the objective function of the routing problem for the number
of vehicles used that exceeds V0. This penalty represents the additional costs of
extending the warehouse fleet with one vehicle in a specific shift.
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According to the mathematical model in Chapter 4, the vehicles are heterogeneous
with respect to vehicle capacity, availability time windows and cost structures. It is
assumed that a fleet with homogeneous capacity is a sufficient representation when
considering decisions in the long term. One can also argue that this is beneficial be-
cause a fleet with different vehicle models might cause higher maintenance costs and
less flexibility for redistribution between depots. With this simplification, the vehi-
cle capacity HV

v is considered as a constant HV for all vehicles v ∈ V . Furthermore,
on a daily basis, some vehicles are set mandatory to assure that the employed drivers
are assigned to a route. There are also non-mandatory vehicles that can be assigned
to a route on short notice if necessary. Setting this specific threshold between the
amount of mandatory and non-mandatory vehicles is harder in the long run. Also,
this is a decision that is yet to be made, meaning that this threshold is more flexible
in the long run. We therefore make all vehicles in the fleet non-mandatory by setting
the right-hand side of constraints (4.12) to zero.

To reduce complexity, we assume that the constraints on vehicle availability can
be relaxed. In daily operations at Oda, the vehicle availability time windows are
set with some differences to make the shifts predictable for drivers. However, these
variations are so small and of practically no significance in the long term, therefore we
disregard them. Consequently, constraints (4.20) and (4.21) are made non-binding

by changing T V
v and T

V

v to the start and end of the time window for the depot in
which vehicle v belongs.

The operational routing problem includes constraints to ensure that the drivers
receive their breaks during the shifts. We interpret these regulations as more sig-
nificant for the day-to-day operation, and not that important when estimating the
costs at a strategic level. Therefore, the break time constraints (4.13), (4.14), (4.15)
and (4.16) are not considered by the solution methods. This means that the vehicles
have some more time to utilize within the shift and that the payment during the
breaks is not apparent in the estimated routing costs.

The dispatch constraints control how much time each vehicle needs at the depot,
either in a queue to be loaded or at the loading dock, before the route can start.
The exact prioritization for dispatch is interconnected to several other features of
the problem, making this a complex decision in itself. Furthermore, as with the
vehicle availability constraints, we assume that the time added to the routes from
the dispatch constraints is small compared to the total duration of the routes. These
small adjustments in loading time for vehicles should therefore have little impact on
the total costs. To disregard the dispatch constraints, the number of loading docks
Li is set equal to |Vi| for all depots i ∈ ND, meaning that all vehicles can be loaded
simultaneously.

5.2.2 Districting

The parallel assignment algorithm proposed by Giosa et al. (2002) is used for dis-
tricting. Customers are assigned to the closest available depot, in the order of a
measure called urgency. Urgency defines a precedence relationship between the cus-
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tomers, where customers with higher urgency are assigned to a depot first. The
urgency is calculated as shown in equations (5.5). An assignment cost Cij from
each customer i to each depot j is calculated, which is the cost of traveling directly
from the customer to the depot including both time and distance costs. From these,
the urgency µi for each customer i is found by comparing the cost of assigning the
customer to its closest depot with the cost of assigning it to any other depot.

µi =
∑
j∈N̂D

Cij − min
j∈N̂D

(Cij) i ∈ N̂C (5.5)

A pseudocode for the districting algorithm is shown in Algorithm 4. The parameter
ρ in line 2 defines the minimum share of capacity that each depot should remain
after districting. This is to ensure that the routing solver can create feasible routes
to serve all customer demand in a district. The list of customers LC in line 3
corresponds to all present customers, while the list of depots LD in line 4 is all open
depots. In line 5, an empty list for each open depot is created to keep track of the
customers that are assigned to the districts. Line 6 calculates the maximum demand
that the district can serve by summing all vehicle capacities and multiplying with
(1−ρ). The loop starting in line 7 assigns the customers to the districts in the order
of most urgent customer first. The most urgent customer i′ and its preferred depot
j′ that still has remaining capacity to cover the demand are found in lines 8 and 9,
respectively. In line 10, i′ is assigned to the district Wj′ and removed from the list of
customers LC . After assignment, the rest capacity of depot j′ is decremented by the
customer demand in line 11. Whenever a depot gets full, the urgency is recalculated
using only the depots that have capacity left, which is assured in lines 12 to 13.
Finally, all the districts with assigned customers is returned in line 14.

Algorithm 4 Parallel Assignment (Giosa et al., 2002)

1: function Districting(ρ, LC , LD)

2: input: ρ← minimum rest capacity

3: input: LC ← list of customers

4: input: LD ← list of depots

5: Wj ← list for each depot j ∈ LD, initially empty

6: HW
j ← (1− ρ) · |Vj| ·HV

7: while |LC | > 0 do

8: i′ ← argmax
i∈LC

(µi)

9: j′ ← argmin
j∈LD

(Ci′j | HW
j −Di′ >= 0)

10: append i′ to district Wj′ and remove it from LC

11: HW
j′ ← HW

j′ −Di′

12: if depot j′ has no capacity left then

13: recalculate µi using depots {j ∈ LD | j has capacity}

14: return Wj for each depot j ∈ LD

41



Chapter 5. Solution Methods

5.2.3 Clustering

To effectively reduce the number of customers that the routing algorithm needs to
route between, we use a clustering approach that clusters similar customers into
super-customers with an aggregated demand and service time. We use the near-
est neighbor algorithm proposed by Dondo and Cerdá (2007) to create the super-
customers. Algorithm 5 shows the pseudocode for our implementation of the clus-
tering algorithm. The input parameters lmax and tmax in lines 2 and 3 specify the
maximum allowed distance and waiting time that is allowed in order for a customer
to be accepted in a cluster. LC in line 4 is the list of all customers to be clustered,
sorted by the earliest start of their time windows. PC

i in line 5 contains the time
window and demand attributes for each of these customers. The loop that starts in
line 7 is the clustering process. For each iteration, the sets containing information
for cluster n are first defined in lines 8 to 11. Kn contains the customers, while PK

n ,
AK

n and TK
n hold the aggregated time window and demand, distance and service

time, respectively. A new customer is picked in line 12 and then used to initialize
cluster n in line 13. Recall from Chapter 4 that T S

i is the service time of customer
i. The customers that are yet to be clustered are copied to a new list L′ in line 14.
Iteratively, in priority of the closest customer first, all the customers in L′ are tested
for the inclusion criteria in lines 15 to 20, being time windows, lmax, tmax and the
vehicle capacity HV . Customers that satisfy all these criteria are added to cluster n
in lines 18 to 20. When all customers in L′ are tested, but there are still customers
in LC that are not clustered, the loop starts over with cluster n+ 1.

In line 22, after all customers in LC are clustered, the coordinates of the clusters are
set to the mean of all coordinates in the super-customer. Additionally, the time and
distance from the new super-customers to any other customer are updated by using
the customer that is closest to this center. This is different from Gulaker et al. (2022),
where the time and distance to all customers outside the cluster are updated by using
the closest customer in the cluster. As this closest customer strategy represents the
lower bound on time and distance, it is expected to underestimate the actual time
and distance. On the other hand, we expect that our new strategy overestimates
the actual time and distance because the route to and from the cluster originates in
the center. One would assume that an optimal route would drive to customers in
the cluster that is closer to the preceding customer first, but as we do not expect the
clusters to contain many customers, this should not impact the total solution quality
too much. However, using this center customer strategy reduces computing time
substantially compared to the closest customer approach, as it avoids computing all
nearest neighbors each time. This makes the new strategy more attractive. Finally,
the set of clusters, or super-customers, and the corresponding aggregated attributes
are generated in line 23 and returned in line 24.

5.2.4 Routing

This thesis uses the HGSR solver (Kool et al., 2022) to create routes in the final
phase, in contrast to Gulaker et al. (2022) where LKH-3 was used. As discussed in
Section 3.3, the reason for changing from LKH-3 is that HGSR seems to perform
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Algorithm 5 Heuristic Clustering (Dondo and Cerdá, 2007)

1: function Clustering(lmax, tmax, LC)

2: input: lmax ← max distance between new and closest customer in cluster

3: input: tmax ← max waiting time for the earliest possible arrival

4: input: LC ← list of customers sorted by earliest time window first

5: PC
i ← attributes (time window and demand) for each customer i ∈ LC

6: n← 0

7: while |LC | > 0 do

8: Kn ← list of customers in cluster n, initially empty

9: PK
n ← attributes (time window and demand) for cluster n

10: AK
n ← internal distance for cluster n

11: TK
n ← internal service time for cluster n

12: remove the first customer i from LC and append i to Kn

13: initialize PK
n = PC

i , A
K
n = 0 and TK

n = T S
i

14: L′ ← copy of list LC

15: for customer j in L′ do

16: ı̂← the closest customer to j in Kn

17: if visiting j after ı̂ satisfies time windows, lmax, tmax and HV then

18: append customer j to Kn and remove it from LC

19: update cluster attributes PK
n according to PC

j

20: update AK
n = AK

n + Aı̂j and TK
n = TK

n + Tı̂j + T S
j

21: n← n+ 1

22: Update cluster locations

23: W ← set with all n clusters corresponding to Kn with PK
n , AK

n and TK
n

24: return W

better than LKH-3 in the literature. HGSR is available at GitHub (PyVRP, 2023)
and is capable of solving single-depot VRPs with homogeneous vehicles and time
windows. It minimizes the total duration that the vehicles use, similar to LKH-3,
and therefore equation (5.6) is the objective function that is used for the routing. By
adjusting the vehicle availability time windows, the tour duration constraints (4.22)
are also respected. We terminate the solver by using an adaptive time limit. The
time limit is based on how much time is used on clustering; more time on clustering
means less time on routing, and vice versa. It is a design decision that the entire
routing process should be quick to enable fast evaluation of depot configurations.
After termination, we calculate the actual routing costs according to the objective
function defined in Section 4.3.2. The aim of this approach is not to find close to
optimal costs, but rather that the cost of solutions rank similarly to a long evaluation
of the routing problem.
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z = min
∑
i∈ND

∑
v∈Vi

(tEv − tiv) (5.6)

In essence, the constraints considered by HGSR are the same as in the strategic
column of Table 5.3, except for the overtime constraints which are handled by the
post-processing step. The objective function, equation (5.6), used by HGSR is
another significant simplification of the real routing costs described in Section 4.3.2,
which includes fixed costs for using vehicles, the distance costs and the overtime
costs. HGSR does not account for heterogeneous costs, either. To ensure that
the overtime constraints are satisfied, and allow for heterogeneous costs, we add a
post-processing step after HGSR has terminated. This post-processing step follows
a regret measure, where we compare the differences in costs of assigning a route
to the two cheapest alternative vehicles. Vehicles are given routes in order of the
largest cost difference between the two alternatives, as the larger the difference, the
more important it is that the cheapest vehicle gets the route.
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Scenario Generation

As described at the beginning of Chapter 5, the distribution of the stochastic cus-
tomer presence is estimated by using scenarios. Because the scenarios put into the
model is not a full description of the true distribution, there is a need to assess
whether the set of scenarios, or scenario tree, represents the underlying distribution
well. In this chapter, we first explain how the customer distributions for each shift
are created in Section 6.1, and then describe the scenario generation method in
Section 6.2. The scenario generation method is tested in Section 7.2 of the compu-
tational study.

6.1 Distribution of the Stochastic Parameters

The stochastic part of the problem is customer presence. In Section 4.2, this is
defined as a collection of stochastic parameters ξ = (F0, ..., F|NC |) where Fi is equal
to 1 if customer i ∈ NC places an order, and 0 otherwise. We assume that Fi is
independent and identically distributed with a Bernoulli distribution, and that the
probability of being present is equal for each customer. Because of these properties,
and since the Bernoulli distribution is a special case of the binomial distribution
with a single trial (Walpole et al., 2012), we argue that ξ can be constructed by first
drawing the number of customers from a binomial distribution with |NC | trials and
then draw the customers with corresponding attributes. Furthermore, according to
the central limit theorem, the binomial distribution is approximately equal to the
normal distribution when the number of trials is large (Walpole et al., 2012), which
is the case in this problem.

When modeling the customer presence, we want to take into account the variation
in customer presence for different shifts during the week. We define µ to be the
average shift demand. For each shift in a week, a normal distribution is constructed
to draw the number of customers. The mean demand for each of these distribu-
tions is expressed as percentages of µ, which are retrieved from historical data. For
instance, Monday afternoon could be 140% of µ while Sunday morning could be
70%. Over one week, these percentages must average to 100%. All distributions
use the same standard deviation σ. To avoid the endless tails of the normal distri-
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butions, the extreme 1% values are removed at each end of the distributions. For
instance, the lower 1% contains a negative number of customers, and the upper 1%
contains billions of customers, none of which are relevant cases when considering
depot locations.

After the number of customers for a scenario s has been determined based on these
distributions, the present customers i are sampled from the set of possible customers,
NC . For each scenario s ∈ S, this decides the value of F̃is in realization ξ̃s. Each
customer is connected to a set of attributes, being location, demand, service time
and time window. It is important to notice that, for modeling reasons, the attributes
for each customer are deterministic, meaning that if a specific customer is sampled
in two different scenarios they always have the same set of attributes. However, by
sampling from a big enough pool of customers, variation in these attributes can also
be represented. For instance, different sampled customers with different demands in
the same location may represent one customer with varying demands or customers
living in the same building.

6.2 Scenario Generation Method

Having one distribution for each shift is impractical in terms of sampling. First,
being able to represent several distributions in a good way requires more scenarios
than just drawing from one distribution. Second, shift distributions that are over-
lapping can lead to redundant (similar) scenarios in the scenario tree, which could
rather be modeled as one scenario with a higher probability in order to save com-
putational time. Figure 6.1 shows the shift distributions used in our experiments,
with µ equal to 2000 and σ equal to 1.5%. Note that since the demand for the
morning and afternoon shifts are highly correlated in Oda’s case, we assume the
same distribution for the morning and afternoon shifts of a weekday. This allows
for using only one distribution per weekday. Furthermore, it can be observed from
Figure 6.1 that shifts on certain days are highly overlapping. We therefore propose
that the shift distributions can be merged into a single distribution.

This merged distribution is constructed by doing a very large sampling from each
distribution and adding the samples together to a big sample of customer numbers.
In our experiments, we draw 200,000 customer numbers from each of the 7 distribu-
tions, which results in one large set of 1,400,000 numbers. This sample is then split
up into N ranges, and each range is given a weight based on the share of numbers
that are in that range. A scenario tree can then be generated by drawing x customer
numbers from each of the N ranges, resulting in Nx = |S| different scenarios. Each
of these scenarios s ∈ S is given the weight ps of the range they are drawn from, with
all weights scaled so that they sum to 1. These weights are later used to calculate
the expected costs of the routing problems based on the calculated routing cost of
each scenario, according to equation (5.1).

We use the value N = 8 as this seems like a small enough increment when testing
different numbers of scenarios in Section 7.2, while being large enough for dividing
the distribution in ranges of a reasonable size. The size of the ranges is set manually,
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Figure 6.1: Stacked shift distributions for each day with µ = 2000, σ = 1.5%, and
200,000 samples.

with a focus on that the ranges on the outer edges of the distribution are not very
wide. This ensures that the extreme scenarios are represented when drawing from
each range. The merged distribution with the used ranges and their weights is shown
in Figure 6.2.

Figure 6.2: Merged distribution of the shift distributions with µ = 2000, σ = 1.5%,
and 200,000 samples. The ranges used and their percentage weights are shown to
the right in the legend.
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Computational Study

In order to evaluate the proposed solution methods, we analyze the results of our
computational study in this chapter. Several experiments are designed to investigate
how the solution methods behave when tested on different problem instances and
to provide insights into business-related questions.

This chapter begins by describing the experimental setup in Section 7.1. The stabil-
ity of the scenario generation method is then tested in Section 7.2. In Section 7.3,
the routing algorithm is compared with Gulaker et al. (2022) to evaluate the impact
of using HGSR instead of LKH-3 and the new way of updating time and distance
to the customer clusters. Afterward, we move on to the evaluation of the location
search algorithms in Section 7.4, where we focus on describing how BTS, CATS
and GRASP perform. To get more knowledge about the solutions, we analyze the
costs in more detail and how they are affected by solution attributes in Section 7.5.
Finally, we provide some insights specific to Oda’s case in Section 7.6.

7.1 Experimental Setup

In this section, an overview of the data that is provided by Oda and the problem
instances that are used in the experiments are first given. Next, we present the
parameters and corresponding values, followed by an explanation of the experiments
and measures used in these. Experiments are run on computing servers with two
Intel Xeon Gold 5115 CPUs with a total of 20 cores running at a nominal speed of 2.4
GHz, and 96 GB of RAM. The servers are running the Linux distribution CentOS
7. Evaluating scenarios is done in parallel when evaluating a depot configuration
in CATS and BTS. When evaluating only one scenario per depot configuration in
GRASP, the evaluation of depot configurations is run in parallel instead.
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7.1.1 Overview of the Data

The customer data is sampled from different sources. Customer locations are sam-
pled from 8618 unique locations in the Berlin area in Germany, which have been
generated by Oda’s customer simulator that takes into account the demography in
the area and the ordering probability for different customer segments. As other
attributes are sampled independently, we allow several customers to have the same
location, as this can be seen as customers living in the same building. Hence, the
number of customers is not limited by the number of unique locations. The unique
customer locations are distributed according to Figure 7.1, where the color scale
indicates how many are located within a given hexagonal area. The colors indicate
higher density towards the center of Berlin. There are also some smaller concen-
trations of customers on the outskirts of the city, like in Potsdam. According to
the data, the driving distance between a customer in the middle of Potsdam and
the center of Berlin is 39 km, and it takes approximately 39 minutes to drive this
distance during the morning shift. This shows that the customers are distributed
over large areas, both in terms of spatial distance and driving time.

Figure 7.1: Heatmap of possible customer locations.

The customers’ demand is sampled from a uniform distribution between 10 and
50 kilograms. A vehicle, which has a maximum capacity of 1000 kilograms, can
therefore serve 33 customers with an average demand. A customer’s service time is
set equal to 180 · (1 +Di/Di) + r, where Di is the demand of customer i, Di is the
average demand and r is random noise sampled from a uniform distribution between
-30 and 30. This results in service times in the range between 3.5 and 8.5 minutes,
with 6.0 minutes on average. The time windows of the customers are sampled from
an ordinary weekday in Oda, and either have a short duration of 2 hours or a long
duration of 5 hours. For each problem instance we either sample all time windows
from the morning shift or the afternoon shift, which shift is chosen randomly with
0.5 probability for each. In Figure 7.2, the number of customers with open time
windows at different times of the day is shown to get an overview of which periods
are most busy during the day. The peak of open customer time windows occurs
during the middle of the shifts. The morning shift is not as busy in the beginning
compared to the afternoon shift. Furthermore, there are few time windows open in
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the last hours of the afternoon shift.

Figure 7.2: Percentage of all customers whose time windows are open for delivery
throughout each shift. Shifts are separate, with no time windows overlapping be-
tween the shifts.

There are 20 unique depot locations provided in the data. These are shown in
Figure 7.3, in addition to the warehouse location. The depot locations are evenly
spread across Berlin, and there are also some depots located in Potsdam. When
compared to the customer distribution in Figure 7.1, some depots are located close
to the city center where most customers are, whereas others are located on the
outskirts of Berlin. The warehouse, which also functions as a large depot, is located
far south of the customers and hence has a longer driving distance to customers on
average compared to the depots.

Figure 7.3: Potential depot locations.

Recall from Chapter 4 that the cost for a solution is the sum of the opening cost
Gi for each open depot i, the fleet cost GF for each vehicle in the fleet, and the
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expected routing costs. The opening cost Gi consists of line-haul cost and leasing
cost. The line-haul cost is calculated with an estimated time cost of 800 per hour,
using the time of a round-trip between the warehouse and the depot. Each depot
requires enough line hauls to fill the capacity of all available last-mile vehicles at
the depot, and in our case, a line haul can fill the capacity of 6 last-mile vehicles.
The leasing cost is the estimated cost to open, rent, maintain and operate a depot,
and is derived from a cost between 50,000 and 100,000 per month dependent on the
centrality of the location and number of vehicles that are available at the depot.
The used line-haul cost and leasing cost for each depot can be found in Table C.2 in
Appendix C. Additionally, the fleet cost GF is set to 333 per vehicle for all depots
and is found by dividing the monthly vehicle leasing and service costs, estimated to
20,000 per vehicle, with the number of shifts each month, which is 60.

Regarding the routing costs, we consider the fixed cost CF
v , distance cost CD

v , time
cost CT

v and overtime cost CO
v , shown in Table 7.1. The vehicle fleet consists of

two types of vehicles. The vehicle type with a high fixed cost and no time cost is
referred to as fixed-cost vehicles, whereas the other type is referred to as time-cost
vehicles. A fixed-cost vehicle must be used for a minimum of 6.9 hours before it is
cheaper than a time-cost vehicle. Both types have the same capacity of 1000 kg.
The mix of vehicle types that are available at each depot can be found in Table C.2
in Appendix C.

Table 7.1: The capacity HV , fixed cost CF
v , time cost CT

v (per hour), distance cost
CD

v (per km) and overtime cost CO
v (per hour) for the vehicle types in the fleet.

Vehicle type HV CF
v CT

v CD
v CO

v

Fixed-cost vehicle 1000 3240 0 3.5 180
Time-cost vehicle 1000 760 360 3.5 180

7.1.2 Description of the Problem Instances

For our experiments, 7 problem instances are generated. The number of depot
locations, alternative depot sizes at each location and the scenario tree that is used
in each problem instance are given in Table 7.2. Each scenario tree is given a name
to indicate when the same realizations are reused, and we also show the average
shift demand µ and standard deviation σ used in the scenario generation method
described in Chapter 6, in addition to the minimum (min) and maximum (max)
number of customers in the scenarios. We generate three problem instances that
use the same scenario tree, S1. These are generated by using a µ of 2000 and σ of
1.5%. Problem instances A, B and C contain different numbers of depot locations
and alternative depot sizes at each location, with specific depots that are included in
each of these problem instance as shown in Table C.2 in Appendix C. This enables
us to observe how well the solution methods scale to larger solution spaces and also
to compare the difference when having alternative depot sizes.

In Section 7.6, we perform a case study with problem instances that are more closely
related to the problem that Oda faces in Berlin. For this case study, we define
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problem instances O2, O3, O4 and O5 with depots and scenario trees as shown in
Table 7.2. The depot locations that are used in the O problem instances are depot
D17, D10, D12 and D6. As shown in Figure 7.3, depot D17 is located in the eastern
part of Berlin, D10 in the north, D12 in the center, and finally D6 on the border
between Berlin and Potsdam. The 4 alternative depot sizes at each location have
6, 12, 18 and 24 vehicles available. For example, D17-6 indicates depot D17 with
6 available vehicles. Various scenario trees are used for the O problem instances
because we want to analyze how the solution is affected when the average shift
demand µ is changed. More specific details regarding the depots in the O problem
instances can be found in Table C.1 in Appendix C.

Table 7.2: Problem instances with number of depot locations, number of alterna-
tive depot sizes at each location and the scenario tree that is used, including the
average shift demand µ, standard deviation σ (%), minimum (min) number of cus-
tomers and maximum (max).

Instance Depots Scenario tree

Locations Sizes Name µ σ min max

A 20 1 S1 2000 1.5 950 3090
B 10 2 S1 2000 1.5 950 3090
C 10 1 S1 2000 1.5 950 3090

O2 4 4 S2 2000 1.5 967 3111
O3 4 4 S3 3000 1.5 1334 4772
O4 4 4 S4 4000 1.5 2006 6133
O5 4 4 S5 5000 1.5 2222 7561

As discussed in Section 5.2.1, a penalty is incurred per excessive vehicle that must
be added to the warehouse fleet to ensure that all customers are served. What
magnitude of the penalty cost represents reality the best would vary much from
case to case. Based on discussions with Oda, a penalty cost of CP = 500 when
exceeding V0 = 120 vehicles at the warehouse is found to be realistic in their case.
These are the values we use in the O problem instances run in the case study
for Oda in Section 7.6. In order to test the performance of our location search
algorithms, we want to ensure that opening several depots is profitable. This way
we can observe how the algorithms search through different numbers of depots and
the larger neighborhoods of bigger depot configurations. We know that Oda has a
relatively large warehouse and flexible vehicle agreements, and preliminary testing
shows that a higher CP and lower V0 than realistic for Oda is needed to achieve this.
For problem instances A, B and C we therefore consider a case with less warehouse
capacity and a higher cost of acquiring extra vehicles. Here we use a penalty cost
of CP = 1000 and an initial capacity of V0 = 30 vehicles at the warehouse.

7.1.3 Presentation of the Algorithmic Parameters

The parameters that are used in the computational study are presented in Table 7.3.
The number of consecutive non-improving explorations φC in the constructive neigh-
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borhood generator is set to 5. This value is based on a trade-off between time used
for diversification and intensification, and since neighbors are already sorted by their
expected mean depot distance it is assumed that the value of 5 is sufficient to reach
the correct number of depots. Parameters for the adaptive neighborhood generator
are based on the parameters that are used by Pisinger and Ropke (2007). As stated
in that paper, these parameters should be quite forgiving as the weight given to
each operator is adjusted automatically throughout the search. The bias towards
one particular neighborhood in the combined neighborhood generator is a difference
from Pisinger and Ropke (2007). We assume, however, that swap is more impor-
tant in the combined neighborhood generator as the adaptive phase starts with an
already promising number of open depots. The parameters used for districting and
clustering are set to be the same as in Gulaker et al. (2022), where these are tuned
for the same VRP as solved in this thesis. For HGSR, we use the default parameters
in the solver.

Table 7.3: Parameters used in the computational study.

Parameter Description Value

Constructive neighborhood generator
φC Limit on non-improving explorations 5

Adaptive neighborhood generator
θ Decay rate of neighborhood operator scores 0.9
ω1 Reward for finding new best solution 10
ω2 Reward for finding an improving solution 5
s0 Start score of the operators 10
sB Swap bias in the combined neighborhood generator 20

Districting
ρ Minimum rest capacity at depots 0.01

Clustering
lmax Maximum distance (meters) between customers 2000
tmax Maximum waiting time (seconds) at visit 0

The starting solution for all solution methods is chosen to be zero open depots. This
represents a real-world situation, where no depots are initially open. The task is
therefore to find how many and which depots should be open. Although starting at
zero open depots is not the only possibility, both GRASP and CATS are designed
to start at the lowest feasible number of open depots. With the extended warehouse
capacity, the solution with no open depots is always feasible. Moreover, the idea
is to have many more depot options than what should eventually be opened. For
instance, it could be reasonable to consider 20 options, even though at most 5 of
these should actually open. Having a starting solution with all possible depots open
would therefore be more inefficient as finding a realistic number of open depots would
take longer. Starting somewhere in the middle is also possible, but that requires
domain knowledge to determine a good starting solution. Although it is possible to
use domain knowledge to find a good starting solution, we have instead opted for
algorithm designs that can quickly move to a good number of open depots.
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7.1.4 Stability Testing

A common way to assess the scenario generation method is to test stability. Wal-
lace and King (2012) introduce in-sample stability and out-of-sample stability as
evaluation criteria to measure stability. In-sample stability is achieved when the
objective values corresponding to the optimal solutions for different scenario trees
are approximately the same. Hence, with in-sample stability, the objective value is
not affected by the scenario generation method in itself. When testing for out-of-
sample stability, the first-stage solutions are fixed and then evaluated using the true
distribution ξ. This reveals whether the generated scenario trees really are good
representations of the true distribution.

One of the problems with the stability tests defined by Wallace and King (2012)
is that they assume the optimal solution can be found. Using heuristics we can
not guarantee that the solution we find is optimal. Furthermore, there are random
components in the routing solver that can create noise. Because it is impossible to
determine exactly whether the noise comes from the scenario generation method or
the heuristics, in-sample stability cannot be tested. However, we can still test out-
of-sample stability and identify the required number of scenarios to assure the noise
from the scenario generation method is lower than the noise from the heuristics. At
this point, we know that it does not help to increase the number of scenarios further,
which is valuable insight as we want to keep the number of scenarios low in order
to reduce the computing time from solving a VRP in each scenario.

We use a weak out-of-sample test for heuristics as proposed by Guo et al. (2019)
to find the required number of scenarios. First, we generate 5 scenario trees, each
containing the same number of scenarios with a µ of 2000 and σ of 1.5%. We pick 5
first-stage solutions that seem promising from preliminary testing to be evaluated,
as described in Table D.1 of Appendix D. Next, with each of these first-stage
solutions fixed, we find the objective values for all the scenario trees and compute
the relative difference between the largest and smallest objective value. This results
in 5 relative difference values, one for each first-stage solution. The stability for the
chosen number of scenarios is defined to be the largest relative difference between
objective values, and the aim is to minimize this measure. As stated by Wallace
and King (2012), unless the scenario generation method is deterministic, increasing
the number of scenarios results in better stability. If the opposite happens, it can
be assumed that the noise from the heuristic dominates the noise from the scenario
generation. By repeatedly running the weak out-of-sample test for 8, 16, 24 and 32
scenarios we can identify this best stability.

Furthermore, we want to assess how the ranking of depot configurations is affected
by stability and whether an increase in the number of scenarios leads to a more
consistent ranking. If a new scenario tree is used and this leads to exactly the
same percentage increase or decrease in costs for all depot configurations, then the
ranking must also be the same, and we can assure that the ranking is independent
of which scenario tree is used. To do this, we generate 5 scenario trees with the
same number of scenarios and then create all possible pairs of these scenario trees,
resulting in 10 pairs. For each scenario tree in each pair, we evaluate 10 depot
configurations, as described in Table D.2 in Appendix D, and rank them by ascending
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costs. Kendall’s τ correlation coefficient, proposed by Kendall (1938), is used to
evaluate the correlation between the rankings in each pair. This coefficient ranges
between -1 and 1, where -1 indicates total disagreement by having the opposite
ranking and 1 indicates the exact same ranking of depot configurations. This test
is repeated for 8, 16, 24 and 32 scenarios, and we compare the minimum, maximum
and average τ to say how the ranking is affected.

7.1.5 Evaluation of the Routing Algorithm

To evaluate the routing algorithm, and particularly the changes from Gulaker et al.
(2022), we compare the solution costs with benchmark costs from Oda’s routing
solver, Navegante. The first change is how distance and time in the clustering algo-
rithm are updated. The second change is implementing HGSR as the routing solver
instead of LKH-3. The differences between the solution costs and the benchmark
costs can be viewed as an error in our estimates. Therefore, for this type of com-
parison, we use the mean absolute percentage error (MAPE) to evaluate accuracy.
To assess the ability to rank depot configurations correctly, we compute Kendall’s
τ correlation coefficient, between the ranking implied by the routing algorithm and
the ranking according to the solutions from Navegante. We also investigate how the
clustering algorithm is affected by comparing the computational time. 23 routing
problems of varying sizes are used as benchmarks. These are named T1 to T23 and
are described in Table C.3 of Appendix C.

In Section 7.6 we consider a case study for Oda, and we therefore wish to make the
estimated routing costs more similar to Oda’s actual routing costs. We do this by
defining an adjustment constant that is multiplied by the estimated routing cost. To
find the best adjustment constant, we compare constants found by three different
methods and use the one that yields the lowest average gap using cross-validation
techniques with 5 folds. Cross-validation is performed to examine the methods’ bias
toward the data available. The three methods are a mean squared error (MSE)
optimization, finding the mean gap and finding the median gap. For each fold, the
constants are found by using 4/5 of the data, which afterward is evaluated on the
remaining 1/5 of the data. Hence, the former is the training data, and the latter
is the test data. With the MSE method, the adjustment constant C is found by
minimizing

∑Ti

t=1(z
ODA
t −C × zt)

2, where zt is the cost found by our algorithm and
zODA
t is the cost found by Navegante for all routing problems t in training set Ti

for fold i ∈ {1, 2, 3, 4, 5}. With the median and mean methods, the adjustment
constant is 1 minus the percentage median and mean gap respectively. MAPE is
used to compare the error of the estimated costs before and after adjustment.

7.1.6 Evaluation of the Location Search Algorithms

When evaluating the location search algorithms, we record the best found objective
value z̃(t) at time t, and define zBKS as the best known solution value for the problem
instance. From these two values, we define the gap to best known solution value
gBKS(t) at time t as in equation (7.1). That is, the relative gap between z̃(t) and
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zBKS. The best known solution and associated objective value for problem instances
A, B and C are found during testing.

gBKS(t) =
z̃(t)− zBKS

zBKS
(7.1)

The primal integral, defined in Berthold (2013) as the integral of the primal gap,
is also used as an evaluation metric. In equation (7.2), the primal gap gPRIM(t) is
defined, and will be a number between 0 and 1 describing the size of the cost gap
between z̃(t) and zBKS when a solution is found at time t, and 1 if a solution is
not found. When having discrete measurements, as in our case, the primal integral
gPI(t) is equal to the sum of the primal gaps multiplied by the share of the time
they stay in the primal gaps. Thus, given the time points ti as fractions between 0
and 1 where a new best solution is found for i ∈ 1, ..., I − 1, the primal integral is
defined as in equation (7.3).

gPRIM(t) =

{
z̃(t)−zBKS

z̃(t)
, if a solution is found

1, otherwise
(7.2)

gPI(t) =

∫ 1

t=0

gPRIM(t) dt =
I∑

i=1

gPRIM(ti−1) · (ti − ti−1) (7.3)

Berthold (2013) argues that certain metrics do not reflect a correct assessment of
the trade-off between speed and solution quality. For instance, the time needed to
find the best known solution underestimates algorithms that can find solutions that
are close to the best known solution in a short amount of time. This is more evident
in the primal integral, where finding good solutions early is rewarded. Therefore, we
use both the primal integral gPI(t) and the gap to the best known solution gBKS(t)
to evaluate the performance of the solution methods.

7.2 Stability Testing

We use the weak out-of-sample test as defined in Section 7.1.4 to find the minimal
number of scenarios that achieves acceptable stability. We use the average objective
value (AOV) and the relative difference (RD) between the largest and smallest
objective value to evaluate the results. The largest RD for each number of scenarios
is called the stability level. The results are shown in Table 7.4.

The stability is affected by the noise from the heuristic, but an increase in the
number of scenarios helps to some degree. With an exact solution method, RD is
expected to decrease as the number of scenarios increases. When using 8 scenarios,
the stability becomes 8.43%. Therefore, we could expect that the objective value
changes by approximately 8.43% whenever a new scenario tree is generated from the
scenario generation method. Increasing the number of scenarios to 16 improves the
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Table 7.4: Average objective value (AOV) and percentage relative difference (RD
%) for the weak out-of-sample stability test with different numbers of scenarios.

Number of Scenarios 8 16 24 32

Solution 1 AOV 242,562 245,674 245,768 246,603
RD % 3.21 2.91 3.43 2.73

Solution 2 AOV 243,665 243,996 242,158 244,287
RD % 3.36 3.46 2.72 3.27

Solution 3 AOV 239,541 241,724 242,844 242,772
RD % 6.77 2.91 3.17 3.11

Solution 4 AOV 245,622 248,544 248,934 248,364
RD % 8.43 3.31 4.49 3.35

Solution 5 AOV 238,911 238,962 240,155 242,159
RD % 5.86 0.99 3.51 1.62

Stability level % 8.43 3.46 4.49 3.35

stability to 3.46%, which is a significant improvement. However, when increasing the
number of scenarios further to 24 and 32, the stability level is more fluctuating. This
is contradictory to what we would expect from an exact solution method, because
increasing the number of scenarios should lead to lower RD and better stability.
What this out-of-sample test shows is that after this point, the noise from the
heuristic is larger than the noise from the scenario generation method. Therefore,
increasing the number of scenarios further from 16 is not necessary, as the best
stability we can achieve with this solution method has been reached.

Kendall’s τ correlation coefficient is used to evaluate how the ranking of 10 depot
configurations is affected by the noise from the scenario generation method and the
heuristic. The results in Table 7.5 show that in the best case, the τ is equal to 0.96,
which means that only two consecutive depot configurations switch their ranking
when a new scenario tree is used. Since a τ of 1.00 is not found for any number of
scenarios and scenario trees, it seems like this misplacement is a consequence of errors
in the estimated costs rather than the scenario generation method. Scenario trees
with 8 scenarios have a lower minimum τ compared to a higher number of scenarios.
This also holds on average, even though the values are closer to each other. There
is no indication that increasing the number of scenarios above 16 results in a more
consistent ranking. It might even look like the noise from the heuristics exceeds the
noise from the scenario generation method at a point because using 32 scenarios
has a lower minimum and average τ compared to 16 and 24. By using 16 scenarios
we can expect a τ between 0.82 and 0.96. Results for one pair of scenario trees
with 16 scenarios and τ equal to 0.82 is shown in Table 7.6. Depot configurations
1, 2 and 4 are ranked differently between scenario tree 1 and scenario tree 2, while
the remaining depot configurations obtain the same rankings. However, the absolute
differences in cost from depot configuration 1 for the misplaced depot configurations
in scenario tree 2 is under 0.5%, which is much lower than the rest of the cost
differences. In fact, the relative difference between depot configurations 1 to 4, where
the differences in rankings occur, is on average 0.32% over the scenario trees used for
the ranking test. The relative differences between depot configurations 5 to 10, which
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are always consistently ranked, is on average 5.12%. This indicates that the noise
from the scenario generation method and the heuristic with 16 scenarios can lead
to inconsistent ranking when the differences in costs are very small. Furthermore,
with a relative difference this small, it also means that the expected impact of this
inconsistency is insignificant.

Table 7.5: Kendall’s τ correlation coefficient between the rankings of 10 depot
configurations according to 5 different scenario trees.

8 16 24 32

Maximum 0.96 0.96 0.96 0.96
Minimum 0.69 0.82 0.82 0.73
Average 0.85 0.89 0.88 0.86

Table 7.6: Ranking of depot configurations δi by two different scenario trees with
16 scenarios and Kendall’s τ correlation coefficient of 0.82. The difference (diff) in
cost from δ1 is shown.

Scenario tree 1 Scenario tree 2

i Rank Diff Diff (%) Rank Diff Diff (%)

1 1 0 0.00 4 0 0.00
2 2 146 0.06 1 -615 -0.26
3 3 434 0.18 3 -76 -0.03
4 4 995 0.42 2 -390 -0.16
5 5 5,542 2.32 5 3,957 1.67
6 6 6,487 2.71 6 4,886 2.07
7 7 9,214 3.85 7 7,201 3.05
8 8 10,840 4.53 8 8,975 3.80
9 9 11,815 4.94 9 9,748 4.12
10 10 19,798 8.28 10 17,757 7.51

7.3 Evaluation of the Routing Algorithm

Without the routing costs being calculated well and quickly enough, the whole
solution method collapses. The quick calculation is ensured by putting the same
time limit of 90 seconds as Gulaker et al. (2022) on the routing algorithm, but
we still need to evaluate the solution quality. The goal is that the costs found by
our routing algorithm are close to the cost of a benchmark solution. In particular,
the most important aspect is that our routing algorithm ranks the solutions the
same way as the benchmark. This section therefore goes more into detail on the
performance of the routing algorithm.

Compared to Gulaker et al. (2022), who experienced clustering times of up to 80
seconds on 1808 customers, we have improved the algorithm so that up to 2991
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customers are clustered in under 41 seconds. Figure 7.4 shows the computational
time spent on districting, clustering and routing. The bars are ordered by the largest
maximum district size. T3 has the largest share spent on clustering, but it is also
the biggest problem with 2991 customers in one district. After clustering T3, only
586 super-customers remain, which makes the routing itself more manageable.

Figure 7.4: Computational time spent on districting, clustering and routing with
Hybrid Genetic Search Router (HGSR) for routing problems T ordered by increasing
maximum district size.

To assess the effect of using HGSR instead of LKH-3, we compare their MAPE and
Kendall’s τ correlation coefficient on routing problems T. In Figure 7.5, we show
the routing costs found by our routing algorithm using both LKH-3 and HGSR
compared to the costs found by Navegante. The results are ordered by increasing
routing costs for Oda. First, we observe that HGSR’s costs generally lie closer to
Navegante’s costs than LKH-3’s costs do, although some of the costs found by our
algorithms are so close that only one data point is visible, such as for T14 and
T21. The MAPE is 11.26% for LKH-3 and 9.07% for HGSR. LKH-3 obtains a
Kendall’s τ correlation coefficient of 0.921, and HGSR obtains a τ of 0.937 when
using Navegante’s solutions as the correct ranking.

Another interesting observation is that when the cost of LKH-3 and HGSR are most
similar, the number of customers per open depot is the lowest. Because LKH-3 and
HGSR only work on single-depot VRPs after clustering and districting, it is the
number of super-customers after this process that should be investigated. When
there are few customers to route between, LKH-3 and HGSR perform relatively
similarly. When the number of customers is large, however, HGSR performs better.
This is illustrated in Figure 7.6 by showing the routing cost difference between LKH-
3 and HGSR as a function of average problem size in the single-depot VRPs. The
difference is positive when LKH-3 has a higher gap than HGSR. To the left in the
plot, the average number of customers to route between is relatively small, as low
as 41, due to a large number of districts. With a low number of customers, there
are only small differences between the solvers. As the number of average customers
in districts increases because the number of districts decreases, the cost difference
between HGSR and LKH-3 increases. This means that HGSR finds at least as good
or better solutions than LKH-3. When costs are similar, it is because the districting
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Figure 7.5: Comparison of the routing costs found by Oda’s operational routing
solver, Navegante, and our routing algorithm using Hybrid Genetic Search Router
(HGSR) and Lin-Kernighan-Helsgaun 3 (LKH-3) in the routing phase.

and clustering algorithms have created small routing problems that are relatively
easy for both solvers to create good routes in.

Figure 7.6: Cost difference between solutions found by Hybrid Genetic Search
Router (HGSR) and Lin-Kernighan-Helsgaun 3 (LKH-3) plotted against average
number of customers after districting and clustering. A positive difference is caused
by LKH-3 having a higher gap than HGSR. The number of districts is indicated by
the marker.
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Furthermore, we observe that our routing algorithms find routing costs above Nave-
gante’s routing costs except for T11. Consistently overestimating the cost is advan-
tageous, if it means the ranking of solutions remain the same. However, the routing
costs found by our algorithms are not monotonically increasing with Navegante’s
routing costs. For example, Navegante finds the routing cost of T15 to be higher
than that of T14, but our algorithms find the opposite. Nevertheless, as explored in
Gulaker et al. (2022), individual differences between two scenarios do not have as
big of an impact when averaging over many scenarios. When ranking depot configu-
rations by the average over scenarios, both routing solvers rank depot configurations
consistently with the ranking from using Navegante.

7.4 Evaluation of the Location Search Algorithms

In this section, we evaluate the solution methods using different measures in or-
der to identify the most promising method. Additionally, we discuss the strengths
and weaknesses of the different methods. The three location search algorithms are
assessed. First, the performance of these are evaluated. Then, the differences in
performance are discussed by analyzing diversification and intensification. Finally,
CATS is analyzed further by assessing the performance impact of its components.

As explained in Section 7.1.6, we measure the performance relative to the best
known solution (BKS) for each problem. Since our problem instances have not been
researched earlier, the BKS is set to the best found solution in the experiments
performed in this thesis. These solutions are presented in Table 7.7.

Table 7.7: The best known solution (BKS) and associated objective value (zBKS)
during the experiments for problem instance A, B and C.

Instance Open depots in BKS zBKS

A D9, D10, D18 239,039
B D5, D13, D17 240,110
C D5, D13, D17 240,104

7.4.1 Evaluation of Performance

Figure 7.7 shows the gap from the best found solution to the best known solution
during the runs for the three location search algorithms, for problem instances A, B
and C defined in Section 7.1.2. The curves in the figures indicate the convergence
profile for BTS, CATS and GRASP. When looking at problem instance A, which is
the largest problem instance in terms of possible depot configurations, the results
indicate that BTS and GRASP perform better than CATS. CATS eventually man-
ages to explore a solution close to the best known solution, but is stuck at a gap of
approximately 0.5% for a long time. On the other hand, CATS seems to perform
better on problem instances B and C. From the convergence profile, we can see that
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CATS manages to find a good solution within 3 hours on problem instance B, which
is only beaten by GRASP after approximately 11 hours of runtime. On problem in-
stance C, CATS is the best-performing algorithm within 2 hours, but GRASP finds
the best known solution approximately 1 hour before CATS finds a gap of 0.013%.
Thus, it seems like CATS is very efficient in the beginning of the search, especially
on problem instances B and C, but that GRASP eventually finds the lowest gap if
given enough time.

Figure 7.7: Convergence profiles for Basic Tabu Search (BTS), Constructive Adap-
tive Tabu Search (CATS) and Greedy Randomized Adaptive Serach Procedure
(GRASP) on problem instance A, B and C, showing percentage gap to the best
known solution over time.

What is also interesting is that all three location search algorithms find solutions
within 0.5% of the best known solution within a few hours. In problem instances A
and C, they also seem to converge to the same solution given enough time. Whether
this final solution they agree on is actually the best solution or just a local optimum,
is hard to tell. But the fact that these distinctive search methods seem to agree on
the best solution is a strong indication that the best known solution is indeed a good
solution.

Recall from Section 7.1.6 that there is a trade-off between speed and solution quality.
This trade-off is better captured by using the primal integral gPI in addition to
the gap to the best known solution gBKS. The solution methods are compared in
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Table 7.8 with respect to these evaluation metrics. Except for problem instance A,
CATS has the lowest primal integral up until 8 hours of runtime. At termination
after 12 hours, BTS and GRASP perform best on problem instances A and B,
respectively. On problem instance C, GRASP finds the best known solution quite
fast but is punished for a slow start, finding its first solution after around 30 minutes.
CATS and BTS find their first solution value after around 5 minutes. Due to the
definition of gPI , which is 100% until a solution is found, GRASP consequently
obtains a much higher gPI than the other two searches. As the convergence profile
of CATS in Figure 7.7 also shows, these results indicate that CATS is fast at the
beginning of the search, but that improving solutions are hard to come by after 8
hours. GRASP, which relies more on randomness, cannot guarantee to find a good
solution fast but tend to perform well in the long run. In general, both CATS and
GRASP manage the trade-off between speed and solution quality better than BTS.

Table 7.8: Comparison of final gap (gBKS) and primal integral (gPI) for Basic Tabu
Search (BTS), Constructive Adaptive Tabu Search (CATS) and Greedy Randomized
Adaptive Search Procedure (GRASP) on problem instances A, B and C.

2 hours 8 hours 12 hours

Instance Algorithm gBKS(%) gPI(%) gBKS(%) gPI(%) gBKS(%) gPI(%)

A BTS 0.039 3.372 0.039 0.873 0.000 0.589
CATS 0.451 2.520 0.368 0.949 0.038 0.679
GRASP 0.021 24.749 0.014 6.199 0.014 4.137

B BTS 0.845 3.061 0.342 1.085 0.342 0.837
CATS 0.528 2.760 0.137 0.827 0.137 0.597
GRASP 0.824 25.381 0.413 6.674 0.000 4.549

C BTS 0.588 3.100 0.020 1.010 0.020 0.680
CATS 0.714 3.006 0.013 0.882 0.013 0.592
GRASP 1.070 33.405 0.000 8.485 0.000 5.657

7.4.2 Assessment of Diversification and Intensification

One challenge in the location search algorithms is to balance diversification and
intensification. First, it is important not to waste too much time on parts of the
solution space with a suboptimal number of open depots. The algorithms seem to
find approximately the right number of open depots in all problem instances, but
there is some difference in how much effort that is put into exploring the number
of open depots in proximity to the apparently best one. In Figure 7.8 we show
this on problem instance C, indicated by the number of depots that are open in
all explored solutions and the best found solutions during the search. After only a
few evaluations, CATS and GRASP find their best solutions, where they agree that
around 3 depots should open. Even though they agree on this, GRASP concen-
trates on exploring depot configurations with 3 to 4 depots, while CATS explores
1 to 5 depots. This indicates that the adaptive neighborhood generator in CATS
directs the search towards more diversification compared to the random component
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in GRASP. The adaptive neighborhood generator uses the Open and Close operator
more often because the probability of choosing Swap decays when it cannot find
any improvement for a period of time. Hence, the range of the number of open
depots explored increases. As shown in Table 7.8, CATS never finds the best known
solution in problem instance C, which according to Figure 7.8 could be a result from
spending too much time on diversification. Consequently, it seems like GRASP per-
forms better on problem instances where there are no alternative depot sizes and
there is a number of open depots that seems very promising.

Figure 7.8: Number of open depots in all explored and best found solutions during
the search on problem instance C for Constructive Adaptive Tabu Search (CATS)
and Greedy Randomized Adaptive Search Procedure (GRASP).

Another aspect, which is only relevant in problem instance B, is how much time
is used to explore alternative sizes versus new locations. In Figure 7.9 it becomes
apparent that GRASP has depot D17 open in all depot configurations that are fully
evaluated, indicating that D17 is an attractive depot. This is also true because
alternative 1 for depot D17 is open in the best known solution for problem instance
B. However, our experiments also show that CATS find the other alternative for
D17 to be good, as it use alternative 2 to reach a gap to the best known solution
of approximately 0.25% in under 3 hours. Still, GRASP never evaluates alternative
2 for depot D17. The same reasoning holds for D11, D12 and D14 as well, where
the other alternative never is evaluated. Additionally, D16 is never evaluated by
GRASP. This is a weakness of the GRASP algorithm, as it might ignore some
alternative depot sizes if they are not good to open when only one depot should
be opened. The reason why this happens is that GRASP relies only on the Open
operator. Opening one depot prevents alternatives at the same location from being
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explored later in the same iteration because changing to the alternative is a Swap
move. In other words, if one of the depot sizes is so good it always opens early
on, the alternative depot size is never explored later on. Conceivably, a depot size
that is not good to open alone, could nevertheless be good to open together with
other depots. GRASP cannot find this solution, and this weakness can explain why
CATS has a better performance than GRASP on problem instance B, where there
are alternative depot sizes.

Figure 7.9: Share of evaluated depot configurations including each alternative
depot for Constructive Adaptive Tabu Search (CATS) and Greedy Randomized
Adaptive Search Procedure (GRASP) on problem instance B.

7.4.3 Impact of Components in Tabu Search

CATS uses a number of different heuristic components. This raises the question of
how the overall performance is affected by these components. Three components
that are assumed to have a big impact on the performance are the use of swap and
flip tabu lists, the neighborhood sorting, as well as which neighborhood generator
is used. To test the impact of these components, we individually disable or change
the usage of each of them, and compare the results with CATS.

Table 7.9 presents the impact on the final gap and primal integral after 2, 8 and 12
hours when disabling the swap and flip tabu lists and the neighborhood sorting by
expected mean distance to the closest depot. By disabling the neighborhood sorting,
the neighbor in the neighborhood to visit next is randomly chosen. The increase
in both gap and primal integral indicates that the neighborhood sorting helps to
identify more promising solutions earlier in the search. However, neighborhood
sorting is not a perfect measure of promising solutions, because CATS without
neighborhood sorting has after 12 hours found a solution that is closer to the best
known solution. This might be because more randomness is involved in choosing
the next neighbor, and while this results in evaluating more poor solutions, at this
point it found a better one. Less severe is the impact we see from disabling the
swap and flip tabu lists. As this allows more neighbors to be visited, it seems from
the results that it takes longer to find the best solutions. This implies that the
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solutions prohibited from these tabu lists are indeed solutions not worth evaluating.
However, the low marginal difference from disabling this component shows that the
most important impact comes from other components.

Table 7.9: Analysis of the final gap (gF ) and primal integral (gPI) of Constructive
Adaptive Tabu Search (CATS) on problem instance A when disabling one compo-
nent at a time.

2 hours 8 hours 12 hours

Disabled component gBKS(%) gPI(%) gBKS(%) gPI(%) gBKS(%) gPI(%)

None 0.451 2.520 0.368 0.949 0.038 0.679
Swap and flip tabu lists 0.451 2.541 0.404 0.963 0.039 0.691
Neighborhood sorting 1.214 3.133 0.820 1.530 0.017 1.081

Another central component is the neighborhood generator. Recall from Section 5.1.1
that the neighborhood generator that is used in CATS, NCA(δ), is a combination
of two other neighborhood generators: the constructive neighborhood generator,
NC(δ), is used to find a reasonable number of open depots, before the adaptive
neighborhood generator, NA(δ) is used in the rest of the search. To assess whether
this combination works well, CATS has been run using each of these neighborhood
generators alone on problem instances A, B and C.

In Table 7.10, the resulting final gaps and primal integrals are compared for these
runs. For the first 2 hours, the constructive neighborhood generator NC(δ) obtains
the lowest gap to the best known solution. The combined generator NCA(δ) clearly
inherits some of the benefits from the constructive generator as they both have a
lower gap than adaptive generator NA(δ). The combined generator also has the low-
est primal integral on all problem instances so far, meaning it finds good solutions
fastest. After 8 hours, the combined generator outperforms the other neighborhood
generators on problem instances A and C. On problem instance B, it also has the
lowest primal integral, but the adaptive generator performs better in terms of the
gap to the best known solution. We know that the adaptive phase of the combined
generator is less biased toward opening and closing depots than the adaptive gen-
erator. This is because the adaptive generator learns from the positive experience
of opening depots at the beginning of the search when starting at no open depots.
However, this experience comes at the cost of taking longer to reach good solu-
tions, as shown by the higher primal integral. All in all, these results indicate that
the combined neighborhood generator NCA(δ) performs better than the other ones
overall, especially when it comes to finding good solutions fast. However, due to
randomness and different behavior in the generators, Table 7.10 shows that NCA(δ)
is not the highest-performing strategy at all points of the search.
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Table 7.10: Final gap (gBKS) and primal integral (gPI) for the Constructive Adap-
tive Tabu Search (CATS) with combined NCA(δ), constructive NC(δ) and adaptive
NA(δ) neighborhood generators.

2 hours 8 hours 12 hours

Instance N gBKS(%) gPI(%) gBKS(%) gPI(%) gBKS(%) gPI(%)

A NC(δ) 0.448 2.546 0.404 0.959 0.039 0.667
NA(δ) 0.454 2.527 0.404 0.961 0.039 0.731
NCA(δ) 0.451 2.520 0.368 0.949 0.038 0.679

B NC(δ) 0.520 3.808 0.195 1.111 0.195 0.805
NA(δ) 0.620 4.563 0.000 1.491 0.000 0.994
NCA(δ) 0.528 2.760 0.137 0.827 0.137 0.597

C NC(δ) 0.420 4.904 0.420 1.540 0.420 1.166
NA(δ) 1.158 5.868 0.015 1.714 0.015 1.148
NCA(δ) 0.714 3.006 0.013 0.882 0.013 0.592

7.5 Analysis of Attributes Influencing Costs

As well as analyzing how we find the depot configurations with the lowest cost, we
are interested in what affects the costs. In the following section, we analyze how the
total costs and the cost components relate to solution attributes such as the number
of depots open and which depots are included in the solution. Subsequently, an
in-detail analysis of some specific solutions is performed. To keep figures displaying
depots compact, we use problem instance C, which has the fewest number of possible
depots, for the analysis in this section. The trends are, however, the same in the
other datasets as well.

7.5.1 Impact from the Number of Open Depots

Some of the neighborhood generators that are used in the search, like the construc-
tive neighborhood generator, are based on a hypothesis that the best solutions have
the same number of open depots. Figure 7.10 shows that the best solutions are
indeed centered around three open depots. However, we also see that there are big
overlaps in the costs of different numbers of depots. For instance, there are solu-
tions with only 1 open depot that have lower costs than some solutions with 3 open
depots. From the colors in the plot, we see that another factor that seems just as
important as the number of open depots is the number of vehicles available in the
depots, or the depot capacity. 8 of the 10 best solutions found in problem instance C
have 36 vehicles available in the depot, and within the same number of open depots,
the solution cost seems to be highly correlated with the number of vehicles available.

Figure 7.11 shows how the number of open depots affects the cost components in the
best solutions found. We see that, as expected, the depot opening costs increase as
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Figure 7.10: The relation between costs and the number of open depots in the
best solutions, as well as the number of vehicles available in the open depots (shown
by colors). Each dot represents an evaluated solution in problem instance C.

more depots open. More interesting is that the fleet cost remains about the same,
meaning that the number of vehicles used in total is almost independent of how
many depots are used. This might be affected by a skew in the objective of the
HGSR solver compared to our problem, as it minimizes the time used and does not
take into account the number of vehicles itself. But the fact that it changes so little,
even though many solutions have been considered by our search algorithms, is a
strong indication that there is not much to save when it comes to the number of
vehicles itself.

Figure 7.11: Cost components in the best solution found for each number of open
depots in problem instance C.

However, by increasing the number of depots, it is possible to reduce vehicle costs.
With more depots, the routes become shorter, resulting in lower distance and time
used, when depots are closer to the customers. This has a direct impact on the costs
of driving the routes. Furthermore, we also see a shift in which type of vehicles that
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is used. The warehouse predominantly has time-cost vehicles, whereas the depots
have a more moderate mix of fixed and time-cost vehicles (see Appendix C). When
no depots are open, the warehouse supplies all customers and it seems like the time-
cost vehicle is the most attractive type. However, when increasing the number of
depots the vehicle fixed costs increase while time costs decrease. In this case, a fleet
mix with more fixed-cost vehicles becomes better. It is also worth noting that the
vehicle overtime cost is so small that it is negligible.

At last, there is the warehouse penalty cost. We see that without this cost, the
solution with 0 open depots would be the best found. In other words, the reduction
in vehicle costs with an increasing number of depots is less significant than the
increase in depot opening costs. This penalty is, as discussed in Section 5.2.1,
modeled to reflect restrictions in capacity at the warehouse, so by this, we show
that the warehouse capacity is very important in deciding how many depots that
should open. As its impact on the results is so important, this penalty must be
modeled as realistically as possible when applied to specific business contexts.

7.5.2 Impact from the Depot Attributes

In addition to how many depots are open, which depots are open is also important.
Figure 7.12 shows for each depot the cost of all evaluated depot configurations in
which this depot is open. The minimum costs vary from depot to depot, which must
be seen as a result of the combination of depot attributes.

Figure 7.12: The cost of all evaluated depot configurations in which each depot
is open. Colors indicate whether the open depots in the depot configuration have
time-cost vehicles available or not.

One attribute that shows strong indications of having a big influence on the cost
is the number of time-cost vehicles available. In Figure 7.12 we see that all the
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highest-cost solutions only include open depots without time-cost vehicles available.
This is further highlighted by Figure 7.13, which shows the correlation between
the solution costs and the percentage of time-cost vehicles that are available in the
open depots. There is a tendency that more time-cost vehicles available mean lower
solution costs, as shorter routes are cheaper when driven by a time-cost vehicle.
Because the number of customers with open time windows is not constant during a
shift, shorter routes are beneficial to handle the busiest part of the shift. However,
fixed-cost vehicles are useful as well, and the best solutions found often include
one depot that has only fixed-cost vehicles. For example, D13 has only fixed-cost
vehicles and is open in the best solution to problem instance C. This indicates that
other depot attributes might be important as well.

Figure 7.13: The percentage of time-cost vehicles that are available in the open
depots for all solutions found in problem instance C compared to the cost.

Figure 7.14: The open depots in the 3 best solutions found for problem instance
C. The best solution is to the left.

Another indication of an important attribute can be seen on the maps of the open
depots in the 3 best found solutions for problem instance C in Figure 7.14. We
see that the best found depot locations vary, but have a certain spread across the
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city; the depots are not too close to each other. They also seem to be placed in
the suburbs of the city rather than the city center. It is hard to say whether this
is because of higher leasing costs in the city center, or that the location better
allows them to serve the suburban customers that are the furthest away from the
warehouse, but it might be thought that both are important factors.

7.6 Case Study for Oda

In this section, we answer three main questions for Oda. First, at how many cus-
tomers does opening depots become viable? Second, what effect does the vehicle
fleet composition have on finding the best depots? Third, what could make opening
depots more attractive?

To answer these questions, we start by establishing a base case for how many cus-
tomers are needed to make depots necessary. Next, analysis is performed to deter-
mine the impact of the initial vehicle fleet and cost estimates for depots. Finally,
an analysis of what the results mean for Oda is performed. To achieve this, we use
different parameters for the penalty function as mentioned in Section 7.1, 500 for
every vehicle above 120 that the warehouse dispatches. This represents the large
capacity that Oda has at the main warehouse. The O problem instances used in
this section are designed to give Oda information on both the number of depots and
what size they should be. We also want the results to give an estimate of the actual
costs to Oda. Therefore, we start by finding a constant that makes our algorithm
yield costs that are very close to Navegante’s costs in Section 7.6.1.

7.6.1 Adjustment of the Routing Costs

To make the analysis even more relevant for Oda, we find an adjustment constant
that minimizes the average gap between the costs found by our algorithm and bench-
marks from Navegante. Routing problems T1-T23 are used, which vary in the num-
ber of depots and the number of customers as shown in Table C.3 in Appendix C.

The results for the cross-validation test is shown in Table 7.11. AVG is the average
of the gap values on all 5 splits. The minimum MSE method results in the average
lowest gap in the cross-validation test. Therefore, we select the minimum MSE
method when choosing how to calculate the adjustment constant. This gives an
adjustment constant of 0.917. This gives a MAPE of 3.88% after adjustment. In
comparison with the estimated costs before adjustment, presented in Section 7.3,
the adjustment leads to a reduction in MAPE of 5.19%. We show the effect of
adjusting our routing costs with the constant on the routing problems T1-T23 in
Figure 7.15. As can be observed, some larger errors occur for T4, T11, T20 and T21,
but in general the errors are small. Seen in conjunction with Section 7.3, where it
is shown that HGSR has a Kendall’s τ correlation coefficient of 0.937, the estimates
are considered accurate.
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Table 7.11: Cross validation of adjusted routing cost with 5 folds. The constant
that minimizes the mean squared error (MSE), the mean gap and the median gap
of the training fold are tested as adjustment constants (C). The gap is the mean
percentage gap for the solutions in the test folds. Average gap (AVG) of the 5 folds
are shown.

Minimum MSE Mean Median

Split Gap (%) C Gap (%) C Gap (%) C

1 1.121 0.917 0.648 0.913 2.241 0.928
2 3.963 0.926 3.220 0.919 4.479 0.930
3 -2.490 0.912 -3.420 0.904 -0.544 0.931
4 -2.325 0.913 -3.195 0.905 -1.055 0.925
5 -0.969 0.915 -1.763 0.908 -0.676 0.931

AVG -0.140 -0.902 1.159

Figure 7.15: Routing cost from Oda’s solver, Navegante, compared with the esti-
mated routing cost from our solution method using Hybrid Genetic Search Router
(HGSR) after adjustment by 0.917.

72



Chapter 7. Computational Study

7.6.2 The Effect of Increasing Number of Customers

With problem instance O2, although the largest scenarios would benefit from open-
ing a depot, it would not be beneficial on average because of the scenarios with
fewer customers. Hence, as long as Oda considers what is best over many different
realizations of customer presence, they should not open depots if they expect that
an average of 2000 customers place orders. Figure 7.16a shows how the lowest cost
found does not change during the search, as the first solution checked is opening no
depots.

When expecting around 3000 customers, opening a depot becomes economically
viable. As we can see from Table 7.12, opening D17-6 is the cheapest alternative
with O3. This alternative is found within an hour after starting the search, and no
better solution is found during the next 11 hours, as illustrated in Figure 7.16b.

When expecting 4000 customers on average in O4, depot D10-24 becomes the cheap-
est alternative. However, opening the depot D17-24 instead increases the objective
value by only 200, or 0.05%. This solution could be advantageous if they already
purchased the D17-6 depot when expecting 3000 customers, as it requires only an
upgrade to an already owned location. If D17-6 was already acquired, additionally
opening D10-24 with 4000 customers would yield a worse solution. For this prob-
lem, Figure 7.16c shows that the search progresses to better solutions several times
during the 12 hours.

Finally, when expecting an average of 5000 customers in O5, opening D17-24 and
D10-18 together gives the lowest distribution costs. If Oda expects to have this
many customers, they could acquire the two locations D10 and D17 and potentially
upgrade them later. Up to 233 vehicles are required to serve the largest scenarios
of 7500 customers. This makes using only the main warehouse impractical, and
Figure 7.16d shows how the search quickly finds better solutions, in which vehicles
are distributed at different depot locations.

Table 7.12: Overview of the best solutions for problem instances O2, O3, O4
and O5, whose average shift demands are 2000, 3000, 4000 and 5000 customers,
respectively.

Problem instance Expected shift cost Open depots

O2 206,078 None
O3 304,275 D17-6
O4 403,935 D10-24
O5 509,491 D10-18, D17-24

When exceeding 3000 customers on average, the original capacity at the main ware-
house is too low to serve all customer demand. Even with the possibility to extend
the warehouse fleet with a penalty cost, as described in 5.2.1, this makes opening
depots necessary to distribute vehicle loading. The main insight from varying the
average number of customers is that depots should be opened when the capacity at
the main warehouse is exceeded. Then, it is valuable to investigate how the required
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number of vehicles should be distributed at different depot locations so that costs
are minimized.

Figure 7.16: Convergence profiles for problem instances O2, O3, O4 and O5, whose
average shift demands are 2000, 3000, 4000 and 5000 customers, respectively.

7.6.3 The Effect of Changing the Fleet Composition

In the problem instances used so far, there has been a mix of fixed-cost vehicles
and time-cost vehicles at the depots and the warehouse. Some depots have only
fixed-cost vehicles, whereas others have a mix between fixed-cost vehicles and time-
cost vehicles. The main warehouse has mostly time-cost vehicles. To analyze what
effect the vehicle type has, we run two tests with a fleet consisting of only fixed-cost
vehicles with high fixed costs in the first test and a fleet consisting of only time-cost
vehicles with higher variable costs in the second test.

Interestingly, both using only time-cost vehicles and only fixed-cost vehicles are more
expensive than the reference split. Table 7.13, which shows solutions for different
splits of time-cost vehicles and fixed-cost vehicles, indicates two points. First, it
implies that the duration of most routes is shorter than a shift because the routing
costs are significantly higher for the 100/0. As discovered in Section 7.1, a fixed-
cost vehicle must drive for 6.9 hours before being cheaper than a time-cost vehicle.
Therefore, if route durations matched the 8-hour shifts, one would expect that using
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Table 7.13: Costs for problem instance O3 with varying fleet composition, indi-
cated by split between percentage of fixed-cost vehicles and time-cost vehicles in the
fleet.

Split Solution

Fixed-cost/Time-cost Cost Best depot

100/0 325,890 None
Reference 304,275 D17-6
0/100 306,548 D10-12

only fixed-cost vehicles would be better. However, because the case with only time-
cost vehicles is also more expensive than the reference case, it shows that there are
some routes long enough that fixed-cost vehicles become the cheaper option. This
indicates that there is a trade-off between paying a large fixed price for having a
vehicle for an entire shift and paying a cost that increases with the duration of a
vehicle route. Exactly where this balance lies depends on the relative cost levels of
the two types of vehicles.

7.6.4 Determinants of Depot Attractiveness

Given the costs used in the previous tests, routing costs do not offset the increased
costs from opening depots. As mentioned, the argument for opening depots is mainly
to move vehicles away from the main warehouse. However, we shift the focus toward
what cost changes that would make opening depots more attractive. We introduce
an assumption that for each scenario it is possible to either operate depots or use
only the main warehouse. When using only the main warehouse, leasing costs for the
closed depots must still be paid. Then, depots should be open only on shifts with
sufficient customers, which could potentially make larger depots more attractive.

Here, fixed costs and time costs for the vehicles are added together into a salary
category. Salary accounts for the vast majority of costs, as illustrated in Table 7.14.
The figure shows the normal depot cost for problem instance O3, which according
to Table 7.12 corresponds to having D17-6 open, and flexible depot costs, which
means that D17-6 can be closed when not needed. Although there is a reduction
in time cost and an increase in fixed costs when opening D17-6 only when needed,
when the differences in time costs and fixed costs are added together as salary, the
net difference is negligible. One way that using depots can lower salary costs is by
having a higher ratio of time-cost vehicles to fixed-cost vehicles. When depots are
closer to the customers, the total driving times of the vehicles are shorter. As long as
the number of vehicles in use stays the same, only time-cost vehicles become cheaper
when the driving time is shorter. Although using fixed-cost vehicles at depots may
improve the solution if they require fewer total vehicles, this is likely not the case as
depots usually serve total demand close to the capacity of their vehicles. Therefore,
any savings due to shorter routes are achieved by time-cost vehicles. As described
in Section 7.5, having time-cost vehicles at the depots is found to be beneficial, and
the fact that opening depots give access to more time-cost vehicles makes opening
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depots valuable. Interestingly, both depots opened in Table 7.12 have high ratios of
time-cost vehicles. The depots that are not open in any of the best solutions, D12
and D13, have no time-cost vehicles.

Table 7.14: Change in cost composition when allowing flexible opening of depots
for problem instance O3. This corresponds to having the option to open and close
depot D17-6 when profitable. Bold marks where the cost is the cheapest.

Cost type Normal depot cost Flexible depot cost

Depot opening cost 3,978 3,282
Fleet cost 49,617 49,617
Salary to drivers 219,113 219,230
Vehicle distance cost 30,053 30,313
Vehicle overtime cost 574 586
Warehouse penalty 940 940

Total 304,275 303,968

When testing flexibly opening depots in scenarios with sufficient customers on all O
problem instances, there is no change in which depots are best to open. Nevertheless,
there are cost savings of between 0.1% to 0.36% when closing depots when they are
not needed, as Table 7.15 shows. These cost savings arise mainly from saving the cost
of driving line-haul trucks to the depots, which is included in the depot opening costs.
When there are not enough customers, the extra cost of a line haul overshadows the
routing costs saved from driving from depots instead of the warehouse. On the other
hand, there is a small increase in driver salary, overtime cost and distance cost, as
more trips must be made from the warehouse. Although the difference in total cost
for O3 seems small, NOK 307 saved for 60 shifts each month for 12 months is over
NOK 200,000 saved yearly. The same calculation for O5 yields over NOK 1.3 million
saved yearly.

Table 7.15: Effect of flexibly operating depots only in scenarios with a sufficient
number of customers for problem instances O3, O4 and O5, whose average shift
demands are 3000, 4000 and 5000 customers, respectively.

Problem Cost with Cost with
instance normal depots flexible depots Change (%)

O3 304,275 303,968 -0.10
O4 403,935 402,761 -0.16
O5 509,491 507,637 -0.36
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Concluding Remarks

To survive in the online grocery market it is necessary to develop highly efficient
distribution networks. The research in this thesis is motivated by the problem faced
by the online grocery retailer Oda. They face a problem of where to locate depots,
from which last-mile delivery vehicles are driven to customers, to minimize both
depot opening costs and vehicle routing costs. Additionally, there is uncertainty
related to which customers place an order on a given day, also called stochastic
customer presence. The problem can therefore be categorized as a Location Routing
Problem (LRP) with stochastic customer presence. To find the routing costs, a very
large multi-depot capacitated Vehicle Routing Problem (VRP) with time windows,
heterogeneous fleet and tour duration constraints is solved.

Even though some literature has considered aspects of our problem, we observe that
the complexity of the LRP, especially with respect to the VRP solved to compute the
routing costs, surpasses previous research. To close this gap, this thesis contributes
with a two-stage stochastic solution method for the LRP with stochastic customer
presence, including a scenario generation method. For the first-stage problem of
searching through combinations of open depots, or depot configurations, we propose
two different solution methods. One of these is a Constructive Adaptive Tabu Search
(CATS) that first finds a promising number of open depots, and then performs
a local search with adaptive neighborhood probabilities. The other is a Greedy
Randomized Adaptive Search Procedure (GRASP) which evaluates only one scenario
per depot configuration in a construction phase, enabling high efficiency through
parallel computing, before fully evaluating the most promising solutions. For the
second-stage VRP, the contribution is a three-phase algorithm that first decomposes
the multi-depot problem into several single-depot problems, then clusters customers
to super-customers, and finally creates routes with a state-of-the-art Hybrid Genetic
Search algorithm.

The solution methods are tested on real-world problem instances in Berlin with 12
hours of computational time. Additionally, the second-stage routing algorithm is
separately benchmarked against Oda’s routing solver, Navegante. The results show
that the proposed solution methods find solutions with a gap of less than 1% to
the best known solutions in under 2 hours on all problem instances. The estimated
routing costs are found to have a mean absolute percentage error of 3.88% to Nave-
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gante after adjustment by a constant factor of 0.917, making it highly accurate on
average. This is promising considering that our routing algorithm uses 95% less
time than Navegante. Stability testing of our approach to handling stochastic cus-
tomer presence indicates that a scenario tree with 16 scenarios is sufficient to obtain
stability. At this number of scenarios, we observe that generating a new scenario
tree can change the objective value by 3.46%. Nevertheless, Kendall’s τ correlation
coefficient when comparing the ranking of depot configurations across two scenario
trees is at least 0.82. On average, the relative difference in costs between misplaced
depot configurations is only 0.32%, indicating that the scenario generation has little
impact on the solution quality. By using CATS on a problem with 4 locations and 4
alternative sizes at each location, we identify that Oda should open their first depot
when exceeding an average of 3000 customer orders in a shift, but that vehicle fleet
size and composition have a considerable effect on this decision.

The aim of this thesis is to answer to what degree the proposed solution methods
are able to efficiently find high-quality solutions for this problem, and how the
stochastic customer presence can be modeled. Both of our solution methods are
promising, but have different applications. CATS is found to perform better on
problem instances with alternative depot sizes at each location and is found to have
a good performance overall. GRASP achieves good results in some cases, especially
where there are no alternative depot sizes, but is somewhat less reliable in terms of
how fast good solutions are found. Regarding the scenario generation method, we
interpret our results as an important step towards putting more emphasis on how
stochastic customer presence can be modeled. We learned that testing stability is
not straightforward when using heuristics with random components as increasing the
number of scenarios only improves stability up to a point. By introducing the test
of ranking using τ , we are however still able to conclude that the scenario generation
method is stable enough for our application. Furthermore, because the model finds
good results in just a few hours, and strategic decision processes may take weeks,
this model can be run repeatedly with different input data to give highly valued
insight for making the best decisions.
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Future Research

There are several opportunities for future research within the field of LRPs with
stochastic customer presence, both with respect to how the problem is modeled
and how it is solved. Based on the experience from the research in this thesis, we
suggest that the focus should be on fleet decisions as part of stochastic programming,
revenue management and scalability.

The literature review in Chapter 3 shows that there are few papers that use stochas-
tic programming for the LRP. In this thesis, we modeled the LRP with stochastic
customer presence as a two-stage model. We show that fleet composition and size of
depots are important contributors to the best solution. Therefore, a proposition for
future research is to include more detailed decisions regarding fleet size and possibly
fleet mix in the first stage. Potentially, the introduction of electric vehicles could
present new considerations as a part of the fleet. Moreover, a more granular inves-
tigation of the number of vehicles at each depot, and conceivably the allocation of
a fixed-size fleet across depots could be insightful.

A closely related extension is to consider revenue management, where it is decided
what areas to serve in addition to locating the depots and deciding their size. An
underlying assumption of the LRP is that the supply is at least as high as the total
demand of customers. However, in the real world, decision-makers must maximize
the profit from only a limited amount of resources. For this reason, both Oda
and Mara et al. (2021) emphasize this extension. In connection to our problem,
this means that the online grocery retailer is forced to not serve certain customers
because of limited resources, for instance in terms of the fleet size. To achieve this,
a notion of profit, the decision to not serve a customer and the consequence of this
decision must be added to the model. In our view, this is a decision that would
have been especially interesting to take in conjunction with the fleet size, because
this would introduce a trade-off between fleet size and which customers to serve.

One of the main contributions of this thesis is to solve very large VRPs as the
subproblem of the LRP. A challenge with such a complex problem is the trade-off
between solution quality and computational time. To reduce computational time,
we suggest three directions: techniques for pruning the solution space, prioritizing
which solution to evaluate and machine learning. Techniques for pruning the solution
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space can be to use a simpler mathematical model to find a bound on the number
of depots that should open or discard solutions that are determined to be worse
by a confidence level. The latter is most applicable when the differences in the
best objective values are greater than in this thesis. Prioritizing which solution to
evaluate includes sorting the neighboring solutions by some metric. Our solution
methods use the average distance between customers and their nearest depot, but a
rough evaluation of the cost by a function or a very simple heuristic might also be
possible. Several sorting methods could also be used interchangeably depending on
when they work best, which might lead to even more efficiency in the search. A final
way to manage the trade-off could be to use machine learning to estimate the costs
of the VRP and not create any routes, as solving the VRP in this problem is only
performed to estimate the cost of a depot configuration. The analysis of attributes
influencing costs in Section 7.5 indicates a strong correlation between costs and
features like the number of open depots, number of customers and available vehicle
types, all of which could have been used as features for machine learning. Future
research in any of these directions could enable even more complex and realistic
LRPs to be solvable in a reasonable time.
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Appendix A

Benchmarking of Routing Solvers

Literature benchmarks of routing solvers from Chapter 3. Table A.1 shows the best
known solution values of the large Gehring and Homberger (1999) problem instances
with 1000 customers, and is included to give context to the results in Table A.2. R1,
R2, C1, C2, RC1 and RC2 are different problem instances using different customer
distributions. The values used to compute the gaps in Table A.2 for HGSADC,
HGSR and LKH-3 are retrieved from Vidal et al. (2013), the results from DIMACS
(2022) and the computational results available from Helsgaun (2022), respectively.

Table A.1: Benchmark for the vehicle routing problem with time windows. Best
known solution values on the large Gehring and Homberger (1999) problem instances
with 1000 customers. Retrieved 4th of May 2023 from CVRPLIB (2023).

R1 R2 C1 C2 RC1 RC2

1 53,046.5 36,881.0 42,444.8 16,841.1 45,790.8 28,122.6
2 48,263.1 31,241.9 41,337.8 16,462.6 43,678.3 24,248.6
3 44,677.1 24,399.0 40,064.4 16,036.5 42,122.0 19,618.1
4 42,440.7 17,811.5 39,434.1 15,459.5 41,357.4 15,657.0
5 50,406.7 34,132.8 42,434.8 16,521.3 45,028.1 25,797.5
6 46,930.3 29,124.7 42,437.0 16,290.7 44,903.6 25,782.5
7 43,997.4 23,102.2 42,420.4 16,378.4 44,417.1 24,395.8
8 42,279.3 17,403.8 41,652.1 16,029.1 43,916.5 23,280.2
9 49,162.8 31,990.6 40,288.4 16,075.4 43,858.1 22,731.6
10 47,364.6 29,840.5 39,816.8 15,728.6 43,533.7 21,736.1
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Appendix A. Benchmarking of Routing Solvers

Table A.2: Percentage gap to the best known solution values, shown in Table A.1,
for Hybrid Genetic Search with Advanced Diversity Control (HGSADC) by Vidal
et al. (2013), Hybrid Genetic Search Router (HGSR) by Kool et al. (2022) and Lin-
Kernighan-Helsgaun version 3 (LKH-3) by Helsgaun (2017). The lowest gap to the
best known solution is indicated in boldface. Maximum runtime is 120 minutes for
HGSADC and HGSR, and is not specified for LKH-3.

HGSADC HGSR LKH-3

R1 R2 C1 R1 R2 C1 R1 R2 C1

1 1.15 14.74 0.08 0.56 0.03 0.00 0.80 14.39 0.08
2 1.74 7.45 2.33 0.52 0.46 0.12 1.70 7.10 2.20
3 1.25 2.68 0.44 0.72 0.13 0.38 1.06 2.21 0.09
4 0.95 1.28 0.17 0.44 0.33 0.23 0.68 0.39 0.09
5 2.90 6.78 0.08 0.38 0.18 0.00 1.45 6.15 0.08
6 1.98 3.77 0.08 0.74 0.19 0.00 1.50 3.26 3.28
7 1.20 1.52 1.07 0.40 0.88 0.00 0.97 0.66 2.44
8 0.75 1.14 1.36 0.41 0.34 0.60 0.49 0.22 3.31
9 2.70 3.88 0.70 0.52 0.21 0.34 1.70 3.16 0.18
10 2.56 2.54 0.29 0.69 0.14 0.84 1.62 1.26 0.11

C2 RC1 RC2 C2 RC1 RC2 C2 RC1 RC2

1 0.23 1.05 7.90 0.00 0.56 0.25 0.22 0.76 7.67
2 4.06 1.03 8.58 0.00 0.49 0.08 4.03 0.67 8.58
3 5.30 0.87 2.22 0.00 0.45 0.24 5.29 0.57 2.00
4 1.28 0.62 0.58 0.03 0.53 0.38 1.28 0.41 0.54
5 0.24 1.19 5.58 0.00 0.71 0.25 0.24 0.70 5.21
6 4.06 0.89 4.67 0.00 1.02 0.16 3.86 0.46 3.94
7 10.89 1.10 3.69 0.00 0.54 0.25 9.18 0.61 2.94
8 3.42 1.02 2.18 0.00 0.52 0.12 3.42 0.36 1.84
9 2.22 0.96 1.69 0.00 0.52 0.28 1.84 0.48 1.30
10 1.37 0.83 1.57 0.00 0.23 0.58 1.37 0.55 0.80
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Appendix B

Mathematical Model

This appendix contains the complete mathematical model from Chapter 4. It is
included to give an overview without the explanations of Chapter 4.

Sets

N The set of all nodes, depots and customers

Nv The set of nodes reachable by vehicle v

ND The set of depots

NC The set of customers

T The set of time intervals in which loading can occur

V The set of all vehicles

Vi The set of vehicles available at depot i

Indices

i A node, either customer or depot

j A node, either customer or depot

k A depot

v A vehicle

τ A time interval

Parameters

Gi Depot opening costs for depot i

GF Fleet cost per vehicle

ξ The stochastic parameter representing customer presence

ξ̃ A realization of the stochastic parameter ξ

87



Appendix B. Mathematical Model

F̃j 1 if customer i has placed an order in ξ̃, 0 otherwise

Kij 1 if depot option i and j can be open simultaneously, 0 otherwise

Aij The distance between node i and j

BD Break duration

BC
v The break center coefficient of vehicle v

CT
v Costs per unit time for vehicle v

CO
v Costs per time unit of overtime for vehicle v

CD
v Costs per unit distance for vehicle v

CF
v Fixed costs for vehicle v

HV
v Capacity for vehicle v

Rv 1 if vehicle v is mandatory to use, 0 otherwise

Li The maximum number of vehicles that can load simultaneously at depot i

Di The demand of customer i

T S
i The time that vehicle v uses to load or unload at node i

TB
v Maximum driving duration before vehicle v must take a break

TD
v Maximum duration for a shift, including overtime, for vehicle v

TO
v Maximum duration for ordinary work time for the driver of vehicle v

Tij Driving duration between nodes i and j

T I
τ Start of loading interval

T
I

τ End of loading interval

TN
j Start of service time window for customer j

T
N

j End of service time window for customer j

T V
v Start of vehicle availability time window for vehicle v

T
V

v End of vehicle availability time window for vehicle v

Variables

γ The vehicle fleet size

δi 1 if depot i is open, 0 otherwise. δ is the vector of all δi

xijv 1 if a vehicle v drives directly from node i to j, 0 otherwise

yv 1 if a vehicle v is used to drive at all, 0 otherwise

av Time units of overtime for vehicle v

bijv 1 if vehicle v has a break when driving between nodes i and j, 0 otherwise

dvτ 1 if vehicle v loads in time interval τ , 0 otherwise

kvτ 1 if vehicle v starts loading in time interval τ , 0 otherwise

evτ 1 if vehicle v ends loading in time interval τ , 0 otherwise
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tiv The time at which vehicle v arrives at node i

tEv The time at which vehicle v ends its shift

First-stage problem

min z =
∑

i∈ND\{0}

Giδi (B.1a)

+GFγ (B.1b)

+ Eξ [Q(δ, γ, ξ)] (B.1c)

δi + δj ≤ 1 +Kij i ∈ ND, j ∈ ND \ {i} (B.2)

δ0 = 1 (B.3)

δi ∈ {0, 1} i ∈ ND (B.4)

γ ∈ Z≥0 (B.5)

Second-stage problem

Q(δ, γ, ξ̃) = min
∑
v∈V

CF
v yv (B.6a)

+
∑
v∈V

∑
i∈Nv

∑
j∈Nv\{i}

CD
v Aijxijv (B.6b)

+
∑
i∈ND

∑
v∈Vi

CT
v (t

E
v − tiv) (B.6c)

+
∑
v∈V

CO
v av (B.6d)

∑
v∈V

∑
i∈Nv\{j}

xijv = F̃j j ∈ NC (B.7)

∑
j∈NC

xijv − δiyv = 0 i ∈ ND, v ∈ Vi (B.8)

∑
j∈Nv\{i}

xjiv −
∑

j∈Nv\{i}

xijv = 0 v ∈ V , i ∈ Nv (B.9)

∑
i∈NC

∑
j∈Nv\{i}

Dixijv ≤ HV
v v ∈ V (B.10)

∑
v∈V

yv ≤ γ (B.11)

yv ≥ Rvδi i ∈ ND, v ∈ Vi (B.12)
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(tEv −tkv)(1−
∑
i∈Nv

∑
j∈Nv\{i}

bijv) ≤TB
v k∈ND, v∈Vk (B.13)

bijv − xijv ≤ 0 v∈V , i∈Nv, j∈Nv\{i} (B.14)

1−BC
v

2
(tEv −tkv)bijv ≤ tiv k∈ND, v∈Vk, i∈Nv, j∈Nv\{i} (B.15)

1 +BC
v

2
(tEv −tkv)bijv ≥ tjv k∈ND, v∈Vk, i∈Nv, j∈Nv\{i} (B.16)

(tiv + T S
i +BDbijv + Tij − tjv)xijv ≤ 0 v∈V , i∈Nv, j∈NC\{i} (B.17)

(tiv + T S
i +BDbijv + Tij − tEv )xijv ≤ 0 i∈NC , j∈ND\{i}, v∈Vj (B.18)

TN
j ≤ tjv ≤ T

N

j i ∈ ND, v ∈ Vi, j ∈ Nv\{i} (B.19)

tiv ≥ T V
v i ∈ ND, v ∈ Vi (B.20)

tEv ≤ T
V

v v ∈ V (B.21)

tEv − tiv ≤ TD
v i ∈ ND, v ∈ Vi (B.22)

tEv − tiv − av ≤ TO
v i ∈ ND, v ∈ Vi (B.23)∑

τ∈T

T I
τkvτ − tiv ≤ 0 i ∈ ND, v ∈ Vi (B.24)

(tiv + T S
iv −

∑
τ∈T

T
I

τevτ )yv ≤ 0 i ∈ ND, v ∈ Vi (B.25)∑
τ∈T

kvτ − yv = 0 v ∈ V (B.26)∑
τ∈T

evτ − yv = 0 v ∈ V (B.27)

kvτ + dvτ − dv(τ+1) − ev(τ+1) = 0 v ∈ V , τ ∈ T \{|T |} (B.28)∑
v∈Vi

(kvτ + dvτ + evτ ) ≤ Li i ∈ ND, τ ∈ T (B.29)

xijv ∈ {0, 1} v ∈ V , i ∈ Nv, j ∈ Nv\{i} (B.30)

yv ∈ {0, 1} v ∈ V (B.31)

bijv ∈ {0, 1} v ∈ V , i ∈ Nv, j ∈ Nv\{i} (B.32)

tiv ≥ 0 v ∈ V , i ∈ Nv (B.33)

av ≥ 0 v ∈ V (B.34)

kvτ ∈ {0, 1} v ∈ V , τ ∈ T (B.35)

evτ ∈ {0, 1} v ∈ V , τ ∈ T (B.36)

dvτ ∈ {0, 1} v ∈ V , τ ∈ T (B.37)
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Appendix C

Details of the Problem Instances

The attributes for the depots used in the case study and the other experiments are
presented in Table C.1 and Table C.2, respectively. Table C.3 shows the routing
problems used to compare the routing algorithms and adjust the routing costs.

Table C.1: Depots in problem instances O2, O3, O4 and O5 in the case study for
Oda. The Warehouse driving time is the round trip driving time that the line haul
trucks must drive to restock depots. The costs are per shift.

Name Transport Cost
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e

L
in
e
h
au

l
cost

L
easin

g
cost

D6-6 6 0 1 3787 842 818
D6-12 12 0 2 3787 1683 1103
D6-18 18 0 3 3787 2525 1388
D6-24 24 0 4 3787 3366 1673
D10-6 3 3 1 6182 1374 952
D10-12 6 6 2 6182 2748 1237
D10-18 9 9 3 6182 4121 1522
D10-24 12 12 4 6182 5495 1807
D12-6 6 0 1 3224 716 1085
D12-12 12 0 2 3224 1433 1370
D12-18 18 0 3 3224 2149 1655
D12-24 24 0 4 3224 2866 1940
D17-6 3 3 1 4501 1000 818
D17-12 6 6 2 4501 2000 1103
D17-18 9 9 3 4501 3001 1388
D17-24 12 12 4 4501 4001 1673
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Table C.2: Depots in problem instances A, B and C. The Warehouse driving time
is the round trip driving time that the line haul trucks must drive to restock depots.
The costs is per shift.

Name Problem instances Transport Cost

F
ix
ed
-cost

veh
icles

T
im
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Warehouse A,B,C 160 800 0 0 0 0
D1 A 6 6 2 4315 1918 1237
D2 A 6 6 2 6986 3105 1103
D3 A 6 6 2 3855 1713 1170
D4 A,B,C 6 0 1 4644 1032 685
D4-Alternative B 12 0 2 4644 2064 970
D5 A,B,C 6 6 2 5792 2574 1237
D5-Alternative B 3 3 1 5792 1287 952
D6 A 6 0 1 3787 842 818
D7 A 6 0 1 4746 1055 885
D8 A 6 0 1 4751 1056 818
D9 A 6 6 2 4162 1850 1303
D10 A,B,C 6 6 2 6182 2748 1237
D10-Alternative B 9 9 3 6182 4121 1522
D11 A,B,C 6 0 1 5429 1206 1218
D11-Alternative B 6 6 2 5429 2413 1503
D12 A,B,C 6 0 1 3224 716 1085
D12-Alternative B 12 0 2 3224 1433 1370
D13 A,B,C 6 0 1 2961 658 952
D13-Alternative B 12 0 2 2961 1316 1237
D14 A,B,C 6 0 1 3723 827 1285
D14-Alternative B 6 6 2 3723 1655 1570
D15 A 6 0 1 5079 1129 818
D16 A,B,C 6 0 1 5531 1229 885
D16-Alternative B 12 0 2 5531 2458 1170
D17 A,B,C 9 9 3 4501 3001 1388
D17-Alternative B 6 6 2 4501 2000 1103
D18 A,B,C 6 6 2 2428 1079 1170
D18-Alternative B 3 3 1 2428 540 885
D19 A 6 6 2 4272 1899 970
D20 A 6 6 2 4571 2032 1103
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Table C.3: Overview of the routing problems used to calibrate the routing costs
and when evaluating the routing algorithm, with depot configurations, number of
open depots (D), number of present customers (C) and cost computed by Oda’s
solver Navegante with 30 minutes runtime.

Name Depot configuration D C Cost

T1 Warehouse, D14 1 1027 97,241
T2 Warehouse, D14 1 2639 229,124
T3 Warehouse 0 2991 259,103
T4 Warehouse, D18, C, D7, D20, D13, D11, D9, D5, D16, D4 10 2991 262,471
T5 Warehouse, D18, D17, D11, D9, D5 5 2991 242,754
T6 Warehouse, D14 1 2991 257,844
T7 Warehouse, D17, D20, D9, D3 5 2991 244,163
T8 Warehouse, D9, D15 2 2991 253,680
T9 Warehouse, D14 1 3090 264,909
T10 Warehouse 0 950 89,479
T11 Warehouse, D18, C, D7, D20, D13, D11, D9, D5, D16, D4 10 950 237,821
T12 Warehouse, D18, D17, D11, D9, D5 5 950 160,413
T13 Warehouse, D17, D20, D9, D3 4 950 143,472
T14 Warehouse, D9, D15 2 950 100,679
T15 Warehouse, D14 1 1111 104,080
T16 Warehouse, D14 1 1429 130,938
T17 Warehouse, D14 1 2003 177,337
T18 Warehouse 0 2076 187,454
T19 Warehouse, D18, C, D7, D20, D13, D11, D9, D5, D16, D4 10 2076 241,410
T20 Warehouse, D18, D17, D11, D9, D5 5 2076 185,149
T21 Warehouse, D17, D20, D9, D3 4 2076 182,355
T22 Warehouse, D9, D15 1 2076 182,060
T23 Warehouse, D14 1 2403 211,169
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Details of the Stability Tests

A selection of depot configurations are used in the stability testing. Table D.1
describes the 5 solutions used in the out-of-sample stability testing, and Table D.2
describes the 10 depot configurations used for testing the ranking stability.

Table D.1: Overview of the 5 routing problems used for out-of-sample stability
testing with the depot configurations and the number of open depots in the problem.

Solution no Depot configuration Open depots

1 Warehouse, D18, D14, D17, D9, D5 5
2 Warehouse, D9, D5 2
3 Warehouse, D18, D14, D1 3
4 Warehouse, D18 1
5 Warehouse, D18, D20, D9, D5 4

Table D.2: Overview of the 10 routing problems used for evaluating ranking in the
stability testing with the depot configurations and number of open depots in the
problem.

Depot configuration Open depots

Warehouse 0
Warehouse, D18 1
Warehouse, D17 1
Warehouse, D20 1
Warehouse, D17, D9 2
Warehouse, D5, D16 2
Warehouse, D17, D9, D5 3
Warehouse, D20, D10, D9 3
Warehouse, D18, D10, D9 3
Warehouse, D18, D10, D16 3
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