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Sammendrag

I en fremtid med høy andel fornybar elektrisitet vil et magasinbasert vannkraftverk med pumpe-

funksjon være etterspurt for å kunne levere mot-syklisk kraft. I denne oppgaven presenterer vi

et beslutningsrammeverk for å beregne optimal tidspunkt for investering i et pumpekraftverk.

Beslutningsrammeverket er støttet av en detaljert produksjonsplanlegger spesifikt utviklet for

pumpekraftverk. Planleggeren bruker en to-trinns stokastisk lineær programmering implementert

med en rullerende intrinsisk metode. Produksjonen planlegges med høy presisjon, der produksjons-

beslutninger tas for alle timer i en ett̊arig planleggingsperiode. Vi formulerer investeringsproblemet

som et optimalt stoppeproblem, med en kostnadsfunksjon avhengig av produksjonskapasitet og en

verdivurdering basert p̊a produksjonsplanleggeren. V̊are resultater indikerer at pumpekraftverk

kan være svært lønnsomme gitt markedsvolatiliteten i moderne kraftmarkeder med åpen handel.
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Abstract

In a future with high shares of renewable electricity sources, the ability of reservoir hydro-

power to provide counter-cyclical power will be in high demand. The inclusion of a pump,

converting a hydropower facility to a pumped storage facility will increase this ability further.

In this thesis, we present a decision framework for calculating the optimal time to invest in

a pumped storage hydropower facility. The framework is supported by a detailed production

scheduler, specifically modelled for pumped storage hydropower. The scheduler is implemen-

ted as a two-stage stochastic linear program in a rolling intrinsic method. Production is

scheduled with high precision, with a production decision for all hours within a one-year plan-

ning period. We formulate the investment problem as an optimal stopping problem, with an

upgrade-dependent cost function and a plant valuation based on the production scheduler.

Our results indicate that, given the market volatility in modern openly traded power markets,

pumped storage facilities could be highly profitable.
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1 Introduction

Hydropower accounts for more energy production globally than any other low-carbon energy source,

and all other renewable production combined (DNV 2022). In the developed economies that rely

heavily on hydropower, the ageing of facilities is becoming an increasing issue (International En-

ergy Agency 2021). Facilities require refurbishment, replacement, or upgrading as they age and

deteriorate to ensure continued functionality and efficiency. With the development of advanced

production models suited for the modern openly traded power markets, upgrading production ca-

pacity could also significantly increase the profitability and value of hydropower plants (Andersson

et al. 2014, Rahi and Chandel 2015). New hydropower investments could also play a key role in

meeting increased electricity demand (International Energy Agency 2021). Given these challenges,

it becomes relevant to develop accurate approaches to discern the optimal way to invest in both

refurbishment of existing, and the development of new, hydropower plants.

Energy production from renewable sources is forecast to be a significantly larger part of the

energy mix by 2050 (DNV 2022). Most renewable energy production has some common character-

istics that constitute potential new challenges for power markets (Stathakis et al. 2021). Production

through wind, photovoltaic and run-of-river hydro sources are highly volatile, as they all rely on

uncontrollable weather conditions (Rodriguez et al. 2017). Hydropower facilities that with reser-

voirs can however help reduce this volatility, as production can be increased or decreased to meet

market demand (Pérez-Dı́az et al. 2015). By allocating water to production only during price

peaks, supply can be somewhat increased to meet the consumers’ varying demand, thus reducing

volatility while increasing the plants’ profits (Bozorg Haddad et al. 2014).

In this thesis, we introduce a method to discern the ideal timing of investment into upgrading a

hydropower facility, and the related ideal production capacity to invest in. Specifically, we study

the effects of installing both a pump and a turbine, a ternary unit as in Koritarov et al. (2013),

which expands the production flexibility and turns the plant into a pumped storage hydropower

facility1. Pumping water back up from a lower to a higher reservoir enables producers to exploit

the price variations in the power market even further than traditional hydropower (Jain and Patel

2014). By purchasing power to pump when the market is in abundance, and producing extra

when power from other sources is scarce, operators increase profits from their facility while helping

reduce the market volatility. This volatility is forecast to increase with the increasing development

of power generated from renewable sources (Moura and Almeida 2010). Pumping water does

however accrue a net loss of total electricity produced by the pumped storage hydropower facility,

usually in the range of 15-30%, which is a consideration operators must incorporate into their

strategy (Deane et al. 2010).

As a case study to test our methods, we consider an upgrade of an existing facility located in

the southern part of Norway, constructing a new penstock and building a new facility. This allows

for ongoing production throughout the construction period, minimizing economic losses caused

by production-halt. We construct a production scheduling model for the proposed facility that

optimises production for different production capacities and combines it with a capacity-dependent

cost function, which serves as input into a real options analysis model.

Hydropower production is mainly dependent on two external factors, electricity price and the

inflow of water (Fosso et al. 1999). We model weekly electricity prices in accordance with the

method of Schwartz and Smith (2000), consisting of both long- and short-term price developments.

This two-factor implementation is considered more realistic than standard price models used in

most other hydropower investment literature (Kleiven et al. 2022). The inflow of water to reservoirs

1Hydropower literature differs between ”conventional” pumped storage, where the upper and lower reservoirs are

in a closed loop, with no inflow. For a plant with inflow into the reservoirs, the precise definition is a ”pump-back”

facility, but we will in the entire thesis refer to the facility as pumped storage hydropower.
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has both yearly and seasonal volatility and is dependent on rain, snow melting during spring and

other climate conditions (Gjelsvik et al. 2010). Our inflow model is an adaption of Helseth et al.

(2013), where we use historical inflow data to produce a set of weighted scenarios.

The product of the price and inflow models function as input to our production scheduling

model, a two-stage stochastic linear programming formulation, implemented with a rolling intrinsic

method. The inclusion of a stochastic forecast period increases the realism of the scheduling model,

allowing for more accurate insights into optimal production patterns while also contributing to find-

ing a more accurate valuation of the investment (Helseth et al. 2018). The plant valuation obtained

from the stochastic linear programming model is used as input into our investment model, a real

options analysis framework adapted from the work of Dixit and Pindyck (1994). We formulate the

investment decision as an optimal stopping problem, where the value of the plant is dependent on

electricity price and production capacity. In contrast to the more generally applied NPV method,

the real options framework allows the investment to consider waiting for further market develop-

ments (McDonald and Siegel 1986). We formulate investment cost as a function of production

capacity, using the industry-standard report from The Norwegian Energy Regulatory Authority

and Norconsult AS (Norconsult AS 2016). Costs are calculated according to the location of our

specific case problem. We then solve the optimal stopping problem semi-analytically to find the

optimal production capacity and price conditions that indicate investment, as in Dangl (1999).

Our main findings indicate that, given the historic and forecast future volatility in the power

market, pumped storage hydropower is a profitable investment for a large range of capacities.

Provided our capacity-dependent cost function with decreasing marginal costs for increasing capa-

city, investment will be carried out at the maximum available capacity and will require a low price

trigger, as demonstrated in a case in Dangl (1999). Larger pumping capabilities will also greatly

increase seasonal production and reservoir level fluctuation. Further, removing intra-weekly price

volatility, restricting production to only exploit seasonal volatility, results in an investment of a

high capacity but with a correspondingly large price trigger. This is also consistent with earlier

literature concerning investment with high demand uncertainty (Dangl 1999, Hagspiel et al. 2016).

The work done in this Master’s thesis is an expansive continuation of the work done in our

project report (Arnstad et al. 2022). While the novelties of our approach constitute the majority

of our work, the structure of our method remains fairly similar.

The rest of the thesis is organised as follows. Section 2 begins with a review of the literature

relevant to the academic topics and methods applied. In Section 3 we give a short description

of the specific problem we aim to solve followed by a presentation of our modelling methods in

Section 4. We then give a thorough explanation of our solution method in Section 5. In the results,

Section 6, we discuss and demonstrate different aspects and effects of our model, and compare its

expansions to the implementation of Kleiven et al. (2022). Finally in Section 7, we make some

concluding remarks on our findings, with a discussion of possibilities for further research.
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2 Literature

In this section we list and explain the literature relevant to our topics of pumped storage hydropower

investment and production scheduling. In sequence, the topics discuss the hierarchical planning

structure, pumped storage hydropower literature, the real options framework, methods of modelling

commodities and some common optimisations methods found in hydropower production scheduling.

The end of the section comprises an explanation of our contributions to the literature.

2.1 Hierarchical planning

To create models and planning methods suited for comprehending the entirety of plant manage-

ment, the hydropower industry has adopted the hierarchical planning structure of Dempster et al.

(1981) (Fosso et al. 1999). Long-, medium- and short-term decisions are sorted into three different

planning horizons, the strategic, tactical and operational sub-problems respectively. By separating

decisions, and allowing decisions at the top of the hierarchy to constrain or influence decisions

below, plant managers are able to more accurately and efficiently model the different aspects of

the facility (Bøckman et al. 2008).

The strategic sub-problem, with the longest horizon of up to multiple decades, includes planning

for market-wide developments and investments into either new facilities or refurbishment/upgrade

projects (Linnerud et al. 2014). Tactical decisions are made for a time period ranging from a few

weeks to between one and three years. The objective of these models is to valuate the availability of

water for each week in its scheduling period, to allocate more water to seasonal peaks and minimise

the risk of spillage (Pereira and Pinto 1991, Schäffer et al. 2022). For the operational sub-problem,

short-term decisions include optimal hourly production and bidding on the open spot market for

the next day (Fleten and Kristoffersen 2008, Avesani et al. 2022). These operational problems

are constrained by the solution to the tactical sub-problem, which gives a marginal water value

as input into a bidding model (Aasgard et al. 2014). The decision framework for the operational

sub-problem can be expanded when considering short-term trading on other electricity markets,

such as the balancing market and the ancillary services market (Braun and Burkhardt 2015, Wen

and David 2002).

2.2 Pumped Storage Hydropower

The construction of pumped storage hydropower increases the operator’s production flexibility

(Yang and Jackson 2011). Given adequate market conditions, flexibility is increased as a result of

having more water available for production, without a significant increase in the risk of spillage

or violating regulations. In general, increased production capacity allows the producer to allocate

water production to periods of high electricity prices (Fertig et al. 2014). Pumped storage enables

the water to be moved from a lower reservoir to a higher one when prices are low, and stored

until production when prices are higher, further increasing profitability (Deane et al. 2010). This

production pattern would also help decrease volatility in the power market (Rodriguez et al. 2017).

A large majority of pumped storage hydropower utilises a reversible Francis turbine for both

production and pumping, known as a pump as a turbine or PAT (Deane et al. 2010, Antal 2014,

Carravetta et al. 2014). This is the economically viable option in most instances, but for facilities

with a significantly large head, the Francis turbine is a less viable option (Norconsult AS 2016).

A solution to this issue is the construction of a ternary unit, as in Koritarov et al. (2013), where

a separate turbine and pump are connected to the same electric generator. A ternary unit allows

for the installation of turbines designed specifically for producing and pumping, increasing the effi-

ciency of both. Another advantage of this design is a reduction of the time required to switch from

3



production to pumping, and vice versa (Nag and Lee 2020). While pump and turbine technology

has become more advanced, there is still a significant loss in total water utilisation, meaning there

is a loss in net energy production when pumping and producing compared to singular production

(Jain and Patel 2014). The energy losses due to efficiency deem the profitability of the pumped

storage hydropower as highly dependent on seasonal, weekly or daily price fluctuations (Pérez-Dı́az

et al. 2015).

2.3 Real Options

When modelling investment decisions, real options analysis has several advantages over the more

widely used net present value method (Farzin et al. 1998, McDonald 2003). However, within the

hydropower industry, the standard for making refurbishment and upgrading decisions is based on

the NPV method (Andersson et al. 2014). For real options to be applicable, the investment must be

irreversible, future rewards must be dependent on future uncertain developments and the investor

can decide to delay the investment to ascertain more information (Huisman and Kort 2002). The

advantages of having the option to delay when deciding on investment under uncertainty were

highlighted early by McDonald and Siegel (1986) amongst others, but a comprehensive introduction

to real options theory can be found in (Dixit and Pindyck 1994). The methodology developed by

Dangl (1999) extends Dixit and Pindyck (1994) by considering both optimal timing and capacity

in a case where different investment opportunities of continuous capacities choices are mutually

exclusive of each other once an investment is undertaken, meaning that no expansion at a later

stage is possible. This is further expanded upon by Hagspiel et al. (2016), where investment in

both capacity and timing is considered, but with either flexible or inflexible production.

A model for comparing the option to invest in two similar but mutually exclusive projects is

introduced in Dixit (1993). It is however proven in Décamps et al. (2006) that under general

conditions the findings in Dixit (1993) do not hold, and the investment region is dichotomous. In

this thesis, we refrain from comparing the option value of two exclusive investments. This is a

consideration that would otherwise be relevant when considering expanding from a conventional

hydropower facility to a pumped storage plant, as one could invest solely in a capacity upgrade of

the existing plant.

A significant portion of existing hydropower facilities in developed countries are ageing, with the

average age of facilities in North America and Europe being somewhere between 45 to 50 years

(International Energy Agency 2021). Demand for reinvestment is increasing along with the ageing

of hydropower plants, as components deteriorate, maintenance costs increase and market conditions

change (Andersson et al. 2014, Linnerud et al. 2014). The real options framework has been proven

effective when applied to small hydropower projects both in the Norwegian and the Brazilian

setting (Bøckman et al. 2008, Mart́ınez-Ceseña and Mutale 2011). The real options framework has

also been successfully applied to the investment and refurbishment of facilities with water reservoirs

(Andersson et al. 2014, Fertig et al. 2014). Kleiven et al. (2022) considers the specific problem

of investing in a production capacity upgrade, simulating production with different capacities

and inputting production valuations into an optimal stopping problem. Common amongst these

methods is the use of Dangl (1999) to find the price trigger at which it is optimal to invest, i.e.

timing, with corresponding capacity.

2.4 Commodity modelling

Modelling the price developments of a commodity is a central aspect of evaluating projects and

making informed decisions about the future (Dixit and Pindyck 1994, Schwartz and Smith 2000). A

non-exhaustive list of common price process models includes Geometric Brownian Motions (GBM),
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Ornstein–Uhlenbeck processes (also known as mean-reverting processes) and the family of auto-

regressive models as ARMA/ARIMA and ARCH/GARCH (Brooks 2019). The two-factor model

of Schwartz and Smith (2000) utilises a combination of GBM in the equilibrium price of the

commodity and an Ornstein-Uhlenbeck process in short-term price deviations. The two factors are

estimated using spot prices and the forward curve, the latter being created using futures contracts

(Fleten and Lemming 2003). The real options framework requires a stochastic process, which

renders the predictive models mentioned inapplicable (Dixit and Pindyck 1994).

Industry and academia have jointly developed an alternative approach to forecast medium-term

price dynamics in the form of a specialised equilibrium market model known as EFI’s Multi-area

Power-market Simulator (EMPS). This model generates price forecasts for power producers by

simulating weather conditions and production across the entire Nordic region (SINTEF 2022b). A

key characteristic of the Nordic power market is the dependence on different weather conditions, as

renewable energy production such as hydro- and wind-power is a major part of the production mix

(Fosso et al. 1999). EFI’s Multi-area Power-market Simulator (EMPS) is a model that develops

price forecasts for hydropower producers by simulating weather and production for the entire

Nordics. Due to its precision and low computational demands, it has become the industry standard

in Norway and is today maintained by SINTEF Energy2 (Wolfgang et al. 2009).

In the Nordic electricity market3, the price fluctuates according to regional and national demand

and supply (NVE 2023a). Due to bottlenecks in grid capacity, there are also different price areas

within the Nordics. The primary day-ahead spot market and the balancing intraday market are

managed by Nord Pool, where most trading occurs (Nord Pool 2023). An ancillary market exists

for the transmission system operator to ensure the required quality of the grid (SINTEF 2022a).

A hydropower producer that can schedule production has the ability to trade on several of these

markets, a well researched subject (Wen and David 2002, Fleten and Kristoffersen 2007, Aasgard

et al. 2014, Braun and Burkhardt 2015). The majority of trading is however done on the day-ahead

spot market, and it remains the reliable benchmark for medium- and long-term planning (Kleiven

et al. 2022).

Besides electricity prices, inflow into the reservoir is the most influential exogenous uncertainty

that affects hydropower production scheduling. There are multiple methods of modelling inflow

scenarios used in literature and the industry. Statistical auto-regressive models are the Nordic

industry standard (Helseth et al. 2018). One example is the first-order AR(1) model, described in

Gjelsvik et al. (2010), which combines accuracy with computational feasibility. The AR model can

be improved by including seasonality in a periodic auto-regressive model (PAR) when generating

inflow scenarios, as detailed in Tilmant and Kelman (2007) and further extended with multiplicative

error terms to avoid negative realisations of inflow (Shapiro et al. 2013). Historical inflow records

can also be used as scenarios directly. A new fundamental market optimisation and simulation

model introduced in Helseth et al. (2017) applies yearly weather measurements of inflow, wind,

snow and temperature as scenarios. Utilising historical weather gives the advantage of holding

correlations in time and space and keeping relationships between different types of data. This can

be difficult to obtain from statistical models (Helseth et al. 2018). It is also common to include a

negative correlation between price and inflow. Despite the fact that correlation exists in reality,

Kleiven et al. (2023) conclude that the influence of not including the correlation is minor when

regarding revenues.

2EFI was absorbed into SINTEF and rebranded into SINTEF Energy in 1998
3The Nordic power market has established power trading with other European nations, so it is not excluded from

the rest of northern Europe. However, grid capacities and heavy investments in renewable sources of production

create a difference between the Nordics and their neighbours. In the base case of this thesis we concern ourselves

only with the Nordics.
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2.5 Production scheduling methods

To manage the uncertainties in inflow and price, different optimisation methods to schedule pro-

duction have been developed through collaboration between the industry and academia. Originally,

Bellman (1957) introduced a method to calculate a policy that recommends the optimal course

of action while dealing with uncertainty, called stochastic dynamic programming (SDP). SDP has

been applied to several scheduling problems and is a key part of the EMPS model (Wolfgang et al.

2009, Schäffer et al. 2022, Helseth et al. 2016). In order to avoid the issue of dimensionality asso-

ciated with dynamic programming, which arises from the discretisation of state variables, Pereira

and Pinto (1991) propose an alternative to SDP, labelled stochastic dual dynamic programming

(SDDP), in the setting of optimising the operation of a hydrothermal system with uncertain in-

flow. The algorithm generates Benders’ cuts from the dual solutions to each stage of the stochastic

optimisation problem. Despite being a commonly used method for operational scheduling, Gjerden

et al. (2015) find that cuts from the SDDP are difficult to obtain in a detailed Norwegian hydro-

power system using historical data. In the long-term hydrothermal scheduling model presented

by Helseth et al. (2018), a two-stage stochastic model is instead employed, where the first-stage

problem holds uncertainties in inflow and price and the second-stage is solved deterministically for

each scenario of future prices and inflow. The method demonstrates promising results but demands

a reduced number of scenarios due to high computational requirements. In Kleiven et al. (2022),

a deterministic hydropower scheduling model from an investment perspective is introduced, where

expected values of price and inflow replace uncertainty. The model follows the re-optimisation

heuristic methodology, which reduces time complexity significantly (Lai et al. 2010, Gray and

Khandelwal 2004).

2.6 Our contributions

In this section, we list and explain the contributions of this thesis to the literature on hydropower

investment, production scheduling and optimisation methods within pumped storage hydropower.

A central aspect of our thesis is the consideration of investment into a pumped storage hydro-

power facility. Specifically, we combine detailed production scheduling for pumped hydropower

with a real options investment model. Separately, these methods have been used on pumped stor-

age hydropower before, real options in Reuter et al. (2012), finding optimal capacity in Bozorg

Haddad et al. (2014) and Nasir et al. (2022), and production scheduling in Helseth et al. (2013).

The totality of our work contributes to joining approaches from these different research fields and

expanding on these works with the new implementations mentioned in this section.

In the hierarchical planning context of Dempster et al. (1981), we join the operational and

tactical planning horizons into a single level, to more accurately calculate the value of production.

The implementation draws inspiration from work by Helseth et al. (2018) and extends the model

of Kleiven et al. (2022). By assuming external factors known in the immediate future, scheduling

production for a dynamic amount of hour blocks, decreasing granularity as the scheduler moves

further in the future and re-optimising each week, the method plans production on an operational

basis with a tactical horizon.

Pumped storage hydropower facilities require price volatility to be profitable. We include in

our price model intra-weekly price variations. This is an extension of the model in Kleiven et al.

(2022), where intra-weekly variations consist of a calculated average and are identical for all weeks.

By instead sampling historic weekly spot-price deviations the authors argue that the realism of

the model is increased. This implementation is advantageous to pumped hydropower specifically,

as averaged volatility would limit the model’s opportunities for pumping (Rodriguez et al. 2017).

Another extension to the model of Kleiven et al. (2022) is the discretising of uncertain future
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inflow and price developments to scenarios. Their linear optimisation program resolves the un-

certainties using expected values as forecasts for inflow and price. By including a weighted set of

scenarios, the model has the opportunity to optimise for multiple outcomes at the same time, to

possibly improve performance.

One crucial aspect often overlooked in hydropower investment literature, but deemed essential by

the authors, is an accurate description of costs associated with the investment. Properly accounting

for these costs is a fundamental component in calculating the real option value with precision. NVE

has, in partnership with the Norwegian consultant firm Norconsult AS, developed a report covering

estimates of most construction and component costs related to hydropower facility construction

(Norconsult AS 2016). Both in the Nordic setting and more internationally, research using ROA

for hydropower investment assumes fixed or simplistic cost functions (Mart́ınez-Ceseña and Mutale

2011, Andersson et al. 2014, Reuter et al. 2012). One exception is the case-based method of cost

calculations in Kvamme (2008), where investment in a specific refurbishment project is planned.

These calculations are however not capacity dependent. Using the report and conversations with

Professor Leif Lia (personal communication, 24.05.23) as a basis we construct a capacity-dependent

cost function. This function has decreasing marginal cost as capacity increases and is similar to

the concave cost function of Dangl (1999).
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3 Problem description

We view the problem from the perspective of a hydropower facility owner that wishes to maximise

the value of their plant. We consider a facility between two large reservoirs in southern Norway.

The plant is ageing and designed for steady production in a power market of different market

conditions. To achieve the highest possible profits from their facility, water must be used efficiently

given uncertain external factors, minimising spillage and exploiting price variations to produce at

peak prices.

The facility owner has the option to increase the capacity of the existing facility, to optimise

the value of the plant. To further make use of price volatility, we consider investing in upgrading

the facility to a pumped storage hydropower plant. This extends the hydropower plant with both

pumping and production capabilities, enabling the producer to schedule each at low and high prices

respectively. This also enables full operation of the existing plant during the construction of a new

facility.

We operate as a price taker in the open market of the Nordics, specifically the NO2 region,

and limit ourselves to only considering the day-ahead spot market for electricity. Although price

manipulation is a technical possibility, this assumption is reasonable in accordance with the number

of market participants in the market the producer operates in (Arteaga and Zareipour 2019). The

producer is interested in long-term planning, and as such trading on other short-term markets is

deemed out of the scope of our problem.

Available to the producer is historical data on spot prices, electricity futures and inflow into

the upper reservoir. Future developments in the exogenous factors of price and inflow must be

modelled. The size of the lower reservoir is so large that the availability of water for pumping

can be considered uncapped. The upper reservoir level must be balanced to avoid spillage, which

will induce an opportunity cost. When scheduling production, exogenous factors are considered

deterministic one week ahead but are subject to uncertain developments after the first week.

The producer also holds information on the cost parameters associated with the upgrade. Con-

struction of a pumped storage hydropower facility requires a new penstock, power station and

a ternary unit, along with all electrotechnical components. A new dam is not necessary, as the

upper reservoir is already dammed. The decision to invest in an upgrade can be made now or in

the future, but once made it is irreversible. Costs related to the upgrade are not influenced by

uncertain developments and need only be discounted by the risk-free rate. Both construction costs

and plant valuation are considered fixed at the time an investment decision is made. The producer

can discard maintenance costs for both the existing and the new facility.

The hydropower facility’s production flexibility is limited by both physical constraints and reg-

ulations imposed by governmental agencies. There are upper and lower water levels allowed in the

upper reservoir. The hourly production is bounded by a maximum production capacity. Friction

loss in the penstock and efficiencies of the pump and turbine can be considered fixed.

The decision to be made comprises two related choices, the pumped storage hydropower facility’s

production capacity and the ideal timing of investment.
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4 Modelling

This section presents the mathematical formulation and modelling decisions that form the found-

ation of our method. The chapter starts with the introduction of price and inflow models, which

serve as input to the production valuation model. The approach uses a stochastic linear optim-

isation technique to assess production at various capacities. The first- and second-stage problem

of the stochastic linear optimisation model is introduced, along with their respective parameters.

Lastly, a cost function is defined and, together with the valuation function, incorporated into an

optimal stopping problem adapted from the work of Dixit and Pindyck (1994).

4.1 Price modelling

A price modelling framework is needed as input to the optimisation program of the production

scheduling problem. We apply the approach of Schwartz and Smith (2000) to build a two-factor

electricity model. This framework requires a non-overlapping forward price curve of a fixed delivery-

date commodity such as electricity. To form the price curve, we use historical price data from the

period of 2017-2022. The data includes spot prices from the day-ahead market and futures con-

tracts. The futures are traded as a speculative derivative of the Nordic system price, significantly

more liquid than the contracts of the NO2 area price, where the hydropower plant in the case

study is located. System spot prices are also utilised accordingly, obtained from Nord Pool (Nord

Pool 2023). The futures contracts, provided by Montel (Montel Online 2023), have overlapping

delivery periods ranging from one month to multiple years. By inserting futures and system spot

prices into the method of Dietze et al. (2022), we extract estimated forward prices, with a delivery

period of one day, that estimate the forward price curve.

The two-factor stochastic model of Schwartz and Smith (2000) is described by equations (1)-

(3), where St denotes the price for time t ∈ [0,∞). As there are strong cyclic seasonal price

fluctuations, trigonometric functions adding seasonal deviations are also included. ϕ1 and ϕ2

determine the magnitude of the seasonal effects, and θ define the number of periods in a cycle.

lnSt = ϕ1 cos
2πt

θ
+ ϕ2 sin

2πt

θ
+ χt + ξt (1)

dχt = (−κχχt − λχ)dt+ σxdzχ (2)

dξt = (µξ − λξ −
1

2
σ2
ξ )dt+ σξdzξ (3)

The stochastic factors χt and ξt in equations (1)-(3) drive the electricity price developments.

The short-term factor in equation (2), χt, follows an Ornstein-Uhlenbeck process, also known as

a mean-reverting process. The increments dzχ and dzξ of the stochastic factors are correlated,

given by dzχdzξ = ρχξdt, and they correspond to increments of a Wiener process. The mean

reversion speed of χt is denoted as κχ, while λχ represents the short-term risk premium, and

σχ signifies the short-term volatility. The long-term price factor in equation (3), ξt, evolves as a

geometric Brownian motion with drift. The long-term risk-adjusted drift of log-prices is given by

(µξ − λξ − 1
2σ

2
ξ ), where µξ represents the drift and λξ is the risk adjustment term. The long-term

volatility is denoted as σξ.

As the estimated forward price data is discrete, the continuous-time representation of the two-

factor model in (1)-(3) needs to be discretised, resulting in equations (4)-(6). In equation (5), ϵ1

represents a standard Gaussian variable, whereas in equation (6), ϵ2 is a Gaussian variable with a

mean of ρχξ
and a variance of 1− ρ2χξ

.
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In the discrete model, we choose a weekly resolution of ∆t = 1
θ = 1

52 years, giving weekly changes

in both the short- and long-term price factors, and thus also in price in week t, St. The seasonal

factors of the model are found through sinusoidal regression of spot prices and removed from the

forward prices. The remaining parameters are then estimated by Kalman filtering and maximum

likelihood estimation with weekly time steps from the adjusted price data set (Goodwin 2013).

St = exp(ϕ1 cos
2πt

θ
+ ϕ2 sin

2πt

θ
+ χt + ξt) (4)

ξt+1 = ξt + (µξ − λξ −
1

2
σ2
ξ )∆t+ σξϵ1

√
∆t (5)

χt+1 = χte
−κχ∆t − λχ

κχ
(1− e−κχ)∆t+ σχϵ2

√
1− e−2κχ∆t

2κχ
(6)

With all parameters accounted for, we simulate price paths with weekly developments performing

Monte Carlo simulations.

As the considered hydropower plant is located in the price area NO2, the simulated Nordic

system prices need to be converted into NO2 prices. Electricity price area differentials (EPAD) are

futures contracts which represent the market value of the price difference between the system price

and the price of a specified area for a period in the future (Nasdaq 2023). By adding the differential,

an estimation of the price level of NO2 relative to the simulated system prices is approximated.

The contract with the longest maturity listed on Montel (Montel Online 2023) is selected, with

the assumption that an EPAD contract with a longer maturity provides a more accurate rep-

resentation of future price differentials compared to a contract with a shorter maturity. This

reasoning is based on the understanding that futures with shorter maturities are more susceptible

to short-term market conditions, which can change rapidly. Contracts with longer maturities offer

a more comprehensive view of the price difference, taking into account mostly long-term market

conditions. This long-term perspective is crucial for a hydropower plant, which operates over mul-

tiple decades. This approach aligns with the presumption of Schwartz and Smith (2000) where

long-maturity futures contracts provide the most reliable information regarding changes in the

long-term equilibrium price.

The price process introduced in equations (4)-(6) provides electricity prices on a weekly basis. To

facilitate the operational perspective of variable electricity production and consumption from the

turbine and pump with hourly changes, intra-weekly variations must be accounted for. Similarly

to Kleiven et al. (2022), we consider weekly profiles of hourly log price deviations from the weekly

mean, focusing on the area of NO2. Instead of averaging the weekly profiles, sampling of historical

profiles is instead implemented as a novel approach. The selected profiles are incorporated into each

weekly price simulation. This is to preserve both low and high-volatility weeks, where especially

the latter is assumed to be of high importance when both a turbine and pump are available. The

sampling of historical profiles presents an alternative to Muche (2009), where a stochastic jump

component is included in the price modelling to create price spikes.

4.2 Inflow modelling

The method in Helseth et al. (2017) utilises historical weather data to create scenarios. Our

specific focus is on historical inflow data for a single hydropower plant. This data consists of daily

records spanning several decades near the plant’s geographical location. To simplify the analysis,

we allocate the daily inflow uniformly across each hour of the day, assuming that hourly differences

have minimal impact on hydropower plants with large reservoirs. We define an inflow year as one

year’s worth of inflow data. To ensure consistency, we scale the average sum of the inflow years to

match the average yearly inflow of the reservoir for the hydropower plant. These measured inflow
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years can then be treated as inflow scenarios, representing a set of possible future developments of

inflow. However, instead of considering every inflow year as a potential future realisation of inflow,

we employ a fast-forward scenario reduction technique proposed by Heitsch and Römisch (2003)

specifically for inflow years. This algorithm allows us to reduce the number of inflow scenarios

while providing probabilities for each scenario based on similarities between inflow years. By doing

so, we effectively simplify the stochastic problem and make it computationally feasible given the

available resources, without compromising the accuracy of the optimisation results. Yearly inflow

realisations are denoted λt.

4.3 Stochastic linear program

The goal of the optimisation model is to maximise the value of the pumped storage hydropower

facility by scheduling production and pumping to optimal time periods. To facilitate this we denote

a scheduling horizon of one year, termed the planning horizon, which is separated into weekly

time steps i ∈ I = {0, . . . , I − 1}. These decision periods allow for a separation of the original

problem into smaller segments where exogenous information can be assumed deterministic. For

each time step, we create a scheduling problem formulated as a stochastic linear program, labelled

the intrinsic problem. The intrinsic problem spans two different decision periods, namely the

central section and the forecast section. The central section spans one week i of the planning

horizon, while the forecast section is defined as weeks w ∈ W = {i + 1, . . . ,W}, where W is the

last week of the forecast section, with W ≥ I. Production is scheduled of the entire forecast

section to avoid overemphasising the amount of production in the central section. The solution

to the intrinsic problem provides the optimal production schedules for both the central section

and forecast section, dependent on the initial water level and the exogenous factors of price and

inflow. In the central section, electricity prices and inflow are realised, meaning the model can

treat both as deterministic. Conversely, scenarios of price and inflow, s ∈ {1, . . . , N}, dependent
on the realisations, are used in the forecast section. This is illustrated in Figure 1. N corresponds

to the number of unique scenarios.

Figure 1: The intrinsic problem. The solid lines communicate time coupling between weeks.

The parameters and variables relevant to the central section of the intrinsic problem, are shown

in Figure 2. Price S and inflow λ are realisations of the price process introduced in Section 4.1

and the historical inflow of Section 4.2. The subvectors discharge, xdis, pumping, xpump, reservoir

level, xres and spillage, xspill, represent the decisions variables that are made within the week. We

denote the decision variable vector, that contains all decisions made for the first week
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x = (xres,xdis,xspill,xpump) (7)

The upper reservoir has a maximum capacity denoted by R, and the ternary production capacity

is represented by P . The energy coefficients Edis and Epump are conversion rates from discharged

and pumped water volumes to corresponding amounts of electricity.

Figure 2: Schematic view of power plant with decision variables x and some parameters.

The intrinsic problem of week i is formulated as a stochastic linear program in (8)-(10). The first

term of Equation (8) spans the central section, while the second term covers the forecast section.

To distinguish between decision vectors for the different periods, the decisions of the central section

are denoted by xi, and by ysw for the forecast section. The cost vectors ci and csw contain various

components, including profit parameters and conversion rates from water to electricity for the

intrinsic problem. Each scenario of the second-stage problem, s, has a weighted probability ps,

dependent on the scenario reduction of the historical inflow explained in Section 4.2.

Zi = max
(xi)

cixi +

N∑
s=1

ps

W∑
w=i+1

cswysw (8)

s.t.

xi ∈ Xi ∀i ∈ I (9)

ysw ∈ Ysw ∀s ∈ {1, . . . , N},∀w ∈ W (10)

The constraints (9) and (10) of the intrinsic problem define the feasible solution space for all

decision vectors.

4.3.1 Decomposition

To make solving the intrinsic problem of week i computationally feasible, we decompose it into

a first-stage and a second-stage problem, using Benders’ decomposition (Benders 1962). The
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first-stage problem, formulated in (11)-(13), aims to maximise the profit of the central section,

taking into account approximate future profits of the second-stage problem, denoted α̂i+1. The

approximate future profit is constrained from above by cuts, cut ∈ Ci = {1, . . . , Ci}. As this is a

maximisation problem, an upper bound on the optimal value of the future profit is established.

The cuts are created by the solutions of the second-stage problem. Ci is the number of cuts made

in week i. Cuts are generated by iteratively solving first- and second-stage problems.

Z1
i = max

(xi)
cixi + α̂i+1 (11)

s.t.

xi ∈ Xi ∀i ∈ I (12)

α̂i+1 − πcutxi ≤ βcut ∀cut ∈ Ci (13)

The second-stage problem consists of N independent subproblems. A subproblem solves the

scheduling problem over the forecast section for a specific scenario. The end reservoir level of the

first-stage problem resulting from the first-stage decisions, x∗
i , sets the initial water level of all the

subproblems in the second-stage. The objective of the subproblem (14) is similar to the second

term of (8), but for a single scenario s.

Z2
s,i+1(x

∗
i ) = max

(ysw)

W∑
w=i+1

cswysw (14)

s.t.

ysw ∈ Ysw(x
∗
i ) (πs) ∀w ∈ W (15)

The dual value πs, to (15), associated with the initial water level of the subproblem, is utilised

for generating cuts in (16). The right-hand side parameter of (13) is calculated in (17).

πcut =
∑
s∈S

psπs (16)

βcut =
∑
s∈S

ps(Z
2
s,i+1 − πsysi) (17)

The iterative process of Benders’ decomposition is illustrated in Figure 3. For each iteration, a

trial decision of the first-stage problem is found, giving an end-of-week water level, l∗i+1. This is

utilised as input in the second-stage problem. Next, the second-stage problem is solved providing

cuts that constrain the future profit variable of the first-stage problem, which is solved again with

the new information. This process is repeated until convergence.
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Figure 3: First-stage problem i and the N scenarios of second-stage problem. The second-stage

problem exists to provide the valuation of the end water level of the first-stage problem.

¯
Zi = cix

∗
i +

∑
s∈S

psZ
2
s,i+1(x

∗
i ) (18)

Z1
i −

¯
Zi < ϵ (19)

Convergence occurs when the solution to the first-stage problem closely approximates the value of

(18). The first-stage solution provides an upper bound to the two-stage problem by incorporating

an optimistic approximation of future profits. (18) represents the lower bound of the problem

as it combines a feasible decision set of the second-stage problem with the determined production

schedules of the first-stage problem. The solution is considered optimal when the difference between

the upper and lower bounds is smaller than a predefined threshold value, ϵ, as shown in (19). Upon

convergence, the solution for xi is stored, and the initial water level for the next week is set to the

last trial value, as illustrated in (20).

li+1 = l∗i+1 (20)

4.3.2 Detailed first- and second-stage problems

The two-stage problem introduced in the last section is a condensed version of the intrinsic problem,

explained in more detail here, both for the objective functions and their constraints. Each intrinsic

problem of the planning horizon is solved separately, therefore we omit the index i from the decision

variables in this section. The first- and second-stage problems are divided into J hour blocks to

account for intra-weekly price deviations. The objective function of the first-stage problem of week

i, in (21), maximises the value of operational decisions in the central section while considering

approximate future profits, based on leftover water. The first-stage problem receives inflow and

price realisations Si and λi, and a water level as input. Water discharged or pumped is converted

into produced or consumed power by the energy coefficients, Edis and Epump. The objective value

is discounted by a weekly discount rate, γi2.
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Z1
i (li,Si,λi) = max

(x)

∑
j∈J

γi2Sj(E
disxdisj − Epumpxpump

j ) + α̂i+1 (21)

s.t.

xres0 = li (22)

Constraint (22) enforces that the reservoir level at the start of each week is equal to the specified

initial reservoir level for that week.

xresj+1 = xresj − xdisj − xspillj + xpump
j + λj ∀j ∈ J \ {J − 1} (23)

li+1 = xresj − xdisj − xspillj + xpump
j + λj j = J − 1 (24)

The reservoir level for the next hour-block is set as a result of all decisions affecting water balance

in (23). li+1 in (24) is an auxiliary variable, which represents the end-of-week water level.

0 ≤ xdisj ≤ |j| P

Edis
∀j ∈ J (25)

0 ≤ xpump
j ≤ |j| P

Epump
∀j ∈ J (26)

Both (25) and (26) ensure that we do not discharge or pump more water than capacity P allows,

where |j| is the length of each hour block. The decision variables are non-negative.

xresj ≤ R ∀j ∈ J (27)

xdisj ≤ xresj + λj ∀j ∈ J (28)

xspillj , xresj ≥ 0 ∀j ∈ J (29)

(27)-(28) restricts the reservoir level to its upper limit and discharge to never exceed the total

available water in the reservoir. (29) adds a non-negativity constraint for the reservoir and spillage

decision variables.

α̂i+1 ≤ βcut + πcutli+1 ∀cut ∈ Ci (30)

The future profit function, in (30), is constrained by the cut contributions from the second-stage

solution.

We solve the second-stage problem for a set of price and inflow forecasts, F and Λ respectively,

over the forecast section, Wi. The forecast section starts at week i + 1 and ends at week W ,

Wi = {i + 1, . . . ,W}. We implement dynamic hour-block sizing in the forecast section. As a

result, the set J varies in length for different weeks of Wi, J i
w = {0, . . . , J i

w},∀w ∈ Wi. The hour

block size progressively increases as we move deeper into the forecast section, starting from week

i.

The objective function of each subproblem in the second-stage is quite similar to the objective of

the first-stage problem. However, the approximate future profit is replaced with an end-of-horizon

water value function, A(yresend), valuing leftover water after the end of the finite forecast section.

Most constraints in the subproblems function similarly to the ones in the first-stage problem.

Z2
s,i+1 = max

(y)

∑
w∈Wi

∑
j∈J i

w

γw2 Fswj ∗ (Edisydiswj − Epumpypump
wj ) + γW2 A(yresend) (31)
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s.t.

yres0,0 = li+1 (πs) (32)

yresw,j+1 = yreswj − ydiswj − yspillwj + ypump
wj + Λswj ∀w ∈ Wi, j ∈ J i

w \ {J i
w − 1} (33)

yresw+1,0 = yreswj − ydiswj − yspillwj + ypump
wj + Λswj ∀w ∈ Wi, j = J i

w − 1 (34)

yresend = yreswj − ydiswj − yspillwj + ypump
wj + Λswj ∀w =W, j = J i

w − 1 (35)

0 ≤ ydiswj ≤ |j| P

Edis
∀w ∈ Wi, j ∈ J i

w (36)

0 ≤ ypump
wj ≤ |j| P

Epump
∀w ∈ Wi, j ∈ J i

w (37)

yreswj ≤ R ∀w ∈ Wi, j ∈ J i
w (38)

ydiswj ≤ yreswj + Λswj ∀w ∈ Wi, j ∈ J i
w (39)

yspillwj , yreswj ≥ 0 ∀w ∈ Wi, j ∈ J i
w (40)

Constraint (32) sets the initial reservoir level. The constraint (33) ensures water balance within

each week, while (35) enforces water balance between weeks. (36) and (37) ensures that discharging

and pumping are non-negative and within the limits of the capacity, P . (38) sets the maximum

reservoir level. (39) constrains the water available for production, and (40) ensures non-negativity

in the decision variables of spillage and reservoir level.

The optimal solutions to the subproblems of intrinsic problem i contribute to parameters of the

cuts in (30), as described in (41) and (42).

π =

N∑
s=1

psπs (41)

β =

N∑
s=1

ps(Z
2
s,i+1 − li+1πs) (42)

4.4 The investment decision

The optimal timing of investment into the pumped storage hydropower facility and its capacity can

be found by solving an optimal stopping problem. The timing and capacity solutions are largely

dependent on the value of the existing hydropower plant, the value of the new facility and its

associated investment costs. Next, we show how these factors of the investment decision process

are formulated.

4.4.1 Optimal stopping

Optimal stopping is defined as the maximisation of an expected reward by choosing the timing of

an action, such as the decision to invest in a pumped storage hydropower facility. In our case, a

capacity decision must also be made. Alongside the value of the existing hydropower plant and

the new pumped storage hydropower facility, we define a capacity-dependent cost function, K(P ),

to formulate the optimal stopping problem.

In the existing hydropower plant, the capacity is denoted P0. The capacity of the pumped storage

hydropower project is independent of this but assumed to be no less than P0 as of the increased

flexibility from the pump. We denote the capacity of the pumped storage hydropower facility as

P ∈ [P0, P ] measured in MW, where P is a hypothetical maximum capacity. The investment can

occur at the start of each year t ∈ [0, . . . ,∞), with the timing denoted τ ∈ [0, . . . ,∞). The capacity

of the hydropower plant in time t is thus
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Pt(τ, P ) =

P0, for t < τ

P, for t ≥ τ
(43)

The value of one year of hydropower production is denoted Vt[ωωωt, Pt(τ, P )] in year t. The state

vector ωωωt = (χt, ξt, λt) represents the exogenous variables in year t, the short-term- and long-term

price factor, and inflow. The optimal stopping problem can then be formulated as shown in (44).

The solution to the problem is conditional on the exogenous variables in ωωωt and investment cost. A

possibility of indefinitely postponing investment exists, meaning that the current production can

continue in perpetuity.

D(ωωωt) = max
τ,P

E
[ ∫ ∞

0

γt1Vt[ωωωt, Pt(τ, P )] dt− γτ1K(P )

]
(44)

The production value and investment cost are discounted using the rate of γ1 = e−r, where r is

the risk-free rate. We assume the risk-free rate to be an appropriate discount factor as the price

parameters in (1)-(3) are calibrated using historical futures contracts, which already are discounted

for the risk of their asset (McDonald 2003).
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5 Solution method

This section begins with an explanation of how the two-stage stochastic optimisation model is

used to determine the annual production valuations for different capacity options. This includes a

discussion of the input data required by the model, such as price and inflow, and what information

is extracted. The final part of the solution is solving the optimal stopping problem of Section 4.4,

in which we incorporate the yearly valuations to determine the ideal timing for investment and

capacity for the pumped storage hydropower facility. The entire solution method is summarised

in Figure 4.

Figure 4: Solution method overview

Figure 5: The rolling intrinsic methodology from an arbitrary week i. Only the first-stage solution

is stored for each iteration of the rolling intrinsic.

5.1 Production planning

The pumped storage hydropower facility’s evaluation of different capacities involves solving I

intrinsic problems, one for each time step in the planning horizon. In Section 4.3, we explain

in detail the solution method for a single intrinsic problem, which provides optimal operation

schedules for both the central section and forecast section. However, only the schedule of the central
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Figure 6: A different perspective of the rolling horizon. Exogenous factors are revealed each week

to the first-stage problem, and based on those, forecast scenarios are generated for the second-stage

problem.

section is utilised for the facility valuation. This approach follows the rolling intrinsic methodology,

where each intrinsic problem’s solution is reoptimised based on the previous problem’s results and

new price and inflow information.

To implement the rolling intrinsic method, we start with the first intrinsic problem and find a

solution that provides operational schedules for the central section (i = 0) and the forecast section

from week 1 to week W . The schedule for the central section is then fixed and stored as part

of the final solution. Then, the rolling intrinsic method moves to the next intrinsic problem. In

the subsequent iteration, there is a reoptmisation of the schedules from the solution to the first

iteration. Now, the central section’s schedule spans week i = 1, and the forecast section covers

week 2 to W . Figure 5 illustrates the general procedure of the rolling intrinsic method from week

i. After I iterations, each with a new week in the central section, we obtain a planning schedule

for every hour of the planning horizon.

A critical aspect of the rolling intrinsic method is how we determine the initial reservoir level

for each intrinsic problem. We achieve time-coupling between intrinsic problems by using the end

water level to the first-stage problem solution in the previous iteration as the initial reservoir level.

For the first week of the planning horizon (i.e., the first intrinsic problem with i = 0), the water

level is initialised to what we refer to as the steady-state water level, denoted l0.

Another central aspect of the rolling intrinsic methodology is the realisation of the exogenous

variables price and inflow for each intrinsic problem. These factors are described in Sections 4.1

and 4.2 and are used deterministically in the first-stage problem. The forecast scenarios provided

for each subproblem in the second-stage problem are dependent on these realisations. This is

illustrated in Figure 6.

The realisation vector of electricity prices of week i, Si, is given from

SSSi = (Si + EPAD) ∗ exp (αj) ∀j ∈ J (45)

In the equation above, Si represents the price of week i simulated from Equation (4), as a

continuation of the realisation of week i− 1. EPAD is the futures contract of the price differential

between the system price and NO2-prices, and αj denotes the hourly log-price deviation from the
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weekly mean of a sampled historical week for hour block j. The same historical week is used for

all hourly price deviations within the week, which constitute a weekly profile. The realisation of

inflow, λλλi, follows a predefined historical inflow year, the same year as the realisation λλλi−1. The

realisation consists of seven days of inflow records, where the records correspond to the same week

as i. Inflow is uniformly distributed within each day, for all hour blocks j.

New forecasts of the exogenous variables are generated for each price and inflow realisation.

The price forecast for every week w ∈ Wi = {i + 1, . . . ,W} of the forecast period is dependent

on the newly realised values of the short-term- and long-term price factors of week i. Utilising

(4)-(6), we generate N distinct price scenario paths, one for each scenario of the forecast section,

to obtain Fsw(ξi, χi),∀s ∈ {1, . . . , N},∀w ∈ Wi. Figure 7 illustrates the scenario generation at

two time steps, i = 20 and i = 40, for one simulation. Further, we add the EPAD contract and

the expectation of all available weekly profiles, E(αj),∀j ∈ J . The price forecast vector of week

w can thus be written as

FFF sw = (Fsw(ξi, χi) + EPAD) ∗ exp (αj) ∀j ∈ J ,∀s ∈ {1, . . . , N},∀w ∈ Wi (46)

where aj denotes the average log-price deviation for hour block j. The average weekly profile

is plotted in Figure 11. The inflow forecasts are based on the new inflow realisation, λλλi, and the

other scenario-reduced inflow years. Section 4.2 explains our approach to managing the uncertainty

of future inflow by utilising the historical inflow years as scenarios. These inflow years exhibit

somewhat similar patterns across different seasons, but they also demonstrate significant variations

for the same week in different years. While rainfall changes rapidly, we have observed a notable

serial correlation in inflow within our available data set. Consequently, we employ a method called

smoothing, outlined in Helseth et al. (2017), to condition the forecast inflow on the past realisation.

This approach helps maintain the temporal correlation between realisations and future scenarios.

After each new weekly inflow realisation, we apply smoothing to the future inflow scenarios to

obtain inflow forecasts ΛΛΛsw.

Along with the scenario reduction performed on the historical inflow records to limit the number

of future scenarios, the use of dynamic sizing of hour blocks reduces the computational complexity

of our problem. Having fewer time steps reduces the number of decisions the model has to make.

In general, operational decisions in the near future has more influence on cuts than decisions taken

in the distant future (Helseth et al. 2018). This enables a less detailed time granularity as we

move further away from the present. In the central section, where price, SSSi, and inflow, λλλi, are

realised, every hour is represented by a one-hour block. Through the weeks of the forecast section,

the size of each block gradually changes from a three-hour block to an eight-hour block. The block

size is increased after week i, meaning that dynamic block-sizing only affects the weeks in the

forecast section. Aggregating the hourly inflows of a scenario to larger hour blocks is not expected

to have a substantial impact on the operation, as hourly variations in inflow should have minimal

effect on the operation of plants with large reservoirs. When considering forecast prices, FFF sw, it is

important to note that the prices are averaged over the entire hour block. This approach reduces

the ability to leverage intra-weekly price volatility, which is assumed to be particularly important

in the utilisation of a pump. The ability diminishes progressively deeper into the forecast horizon,

with fewer hour blocks available. Hence, the incorporation of dynamic block-sizing decreases

the complexity of the problem but sacrifices the opportunity to take full advantage of the price

volatility.

With realised prices and inflow and their forecast values used as input to the optimisation model

of Section 4.3, we obtain Y different yearly production valuations for each capacity, P . Y represents

the total of unique combinations of price and inflow realisations. The valuations are conditional

on two crucial factors that need to be considered. First, we need to determine the end-of-horizon
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(a) Price realisation for week i = 20 (b) Inflow realisation for week i = 20

(c) Price realisation for week i = 40 (d) Inflow realisation for week i = 40

Figure 7: Realisations and forecasts of exogenous factors. The number of forecast scenarios graphed

is set to three for the illustration.

value, which accounts for the valuation of leftover water after the forecast section of each intrinsic

problem. Second, we must establish a steady-state water level to define the initial water level at the

beginning of the first year. These additions are vital in obtaining representative yearly valuations

that enable comparison between the different capacities.

To ensure a fair assessment of the value of water over time, it is important to avoid overemphas-

ising the value of the first year of production compared to subsequent years. If we allocate the

discharge of the entire reservoir and inflow to production within the central- and forecast section

of the intrinsic problem, it can lead to an inflated production valuation for those years, leaving

no value for the years following the forecast section, except for inflow. To address this issue, we

need to assign a positive value to the water remaining in the reservoir after the forecast section,

an end-of-horizon water value (Helseth et al. 2017). To compute this value, we create a water

value function using the objective value and corresponding dual value obtained from running a

subproblem with an extended forecast section starting from the end of our original forecast sec-

tion. This process is carried out for various initial water levels and all capacities, P . By extending

the period, we mitigate the bias towards maximising the value of the nearest years without con-

sidering the subsequent years within the forecast horizon. The end-of-horizon value is then used

to evaluate the remaining water after the forecast period in our original problem, ensuring that

the water consumption in the first year is not disproportionately high compared to the subsequent

years. Extending the forecast section of our original problem presents an alternative solution to the
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requirement for an end-of-horizon value. However, it is crucial to acknowledge that this extension

will significantly increase the computational workload associated with the problem.

The comparison of yearly production valuations for different capacities, P , also relies on finding

steady-state water levels. After a year of production with capacity, P , we end up with an end water

level. If this level is below the initial reservoir level, it indicates a positive net water discharge.

However, repeating this process over multiple years becomes impractical as we run out of water.

Thus, in order to obtain a representative valuation for a given capacity based on the first year of

production, it is important to ensure that the initial water level and the average final reservoir level

of different simulations are approximately equal. With representative valuations for each capacity,

their magnitude can be compared.

After making these considerations, the expected yearly profit for capacity P is given as the

average of the Y valuations in

VP (ωωω0) =
1

Y

Y∑
n=1

∑
i∈I

∑
j∈J

γi2S
n
ijy

nP
ij (47)

with γ2 as the weekly discount rate. We employ the method of random common numbers for

the evaluation of the various capacities. This approach involves using the same price and inflow

realisations and forecasts for each capacity, leading to positive correlations between their valuations.

Consequently, the use of random common numbers reduces the number of simulations needed to

make valid comparisons (Figueira and Almada-Lobo 2014).

5.2 Optimal stopping problem

The objective of the optimal stopping problem introduced in Section 4.4 is to determine the optimal

timing for exercising the investment option, and the corresponding capacity. For this problem, a

continuous function is required to estimate the valuation, Vt[ωωωt, Pt(τ, P )] in year t, for all practical

capacities, P . The evaluation of the stochastic linear program is limited to a discrete number

of capacity alternatives. To address this limitation, we adopt spline interpolation on the values

obtained from Equation (47), following the proposition by Kleiven et al. (2022) regarding a concave

yearly valuation function for capacities ranging from P0 to P . This interpolation method adheres

to the constraints of concavity and monotonic increase, as explained in the approach outlined

by Pya and Wood (2014). The resulting valuation function V0(ωωω0, P ) serves as the input to the

optimal stopping problem in Equation (44).

Under a risk-neutral expectation of futures price, Kleiven et al. (2022) show that the optimal

solution of the weekly intrinsic problems is independent of the initial long-term price factor. The

valuation function of the first year can thus be written as

V0(ωωω0, P ) = exp(ξ0)G0(χ0, λ0, P ) (48)

The valuation function is thus only dependent on the short-term deviations in electricity price,

χ0, and the uncertainty of inflow, λ0, besides capacity. These parameters are considered short-

term factors. Schwartz and Smith (2000) find that the valuations of a generalisable long-term

investment in oil properties are insensitive to short-term price deviations. This is due to a long

productive lifetime and a construction lag. Kleiven et al. (2022) also prove that the potential ap-

proximation error of the valuation function depending on short-term price deviation is extremely

small. Further, it is assumed that the same argument is valid for inflow deviation, thus concluding

that short-term factors do not affect the strategic decision of upgrading a hydropower plant. Sim-

ilarly, considering the project’s long production lifetime, we assume that the production valuation

function of the pumped storage hydropower project is independent of short-term factors, which
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can then be approximated as

Vt[ωωωt, Pt(τ, P )] ≈ exp(ξt)Gt[Pt(τ, P )] (49)

where Gt(Pt(τ, P )) is continuous, concave, monotonically increasing, similarly to Vt(·), and also

independent of the long-term price level. The optimal stopping problem of (44) can then be

reformulated to

D(ξt) = max
τ, P

E
[ ∫ ∞

0

γt1 exp(ξt)Gt[Pt(τ, P )] dt− γτ1K(P )

]
, (50)

The optimal stopping problem is now feasible to solve to obtain the price trigger and optimal

capacity to maximise the real options value of the new project by following the approach of Dangl

(1999). Consider a case where the long-term price is above the trigger price, ξ ≥ ξ∗. In such a

scenario, the optimal course of action would be to ”stop” and promptly invest in the new project.

The value of the real option approximates thus to the perpetual net present value (NPV) of the

hydropower plant, as of an extensive production lifespan, with the new capacity, P , minus the

investment cost, K(P ), given in

NPV (ξ, P ) =
exp(ξ)G(P )

ρ
−K(P ) (51)

The discount factor, ρ = r − (µξ − λξ), denotes the risk-free rate subtracted by the expected

growth rate of the project, i.e. the risk-adjusted drift of the long-term price.

When the long-term price is lower than the trigger price, ξ < ξ∗, it is not optimal to invest.

Instead, it is advantageous to continue with the existing production and wait to exercise the

option until the long-term price reaches the trigger level. To determine the continuation value of

the optimal stopping problem, we utilise the framework introduced by Dixit and Pindyck (1994) for

evaluating a project without operating costs. By applying this framework to the optimal stopping

problem, we derive the Bellman equation

1

2
σ2
ξ [exp(ξ)G(P0)]

2D′′(ξ) + (µξ − λξ)[exp(ξ)G(P0)]D
′(ξ)− rD(ξ) + exp(ξ)G(P0) = 0 (52)

The solution to the differential equation (52) with its general and particular solutions is on the

form

D(ξ) = C1[exp(ξ)G(P0)]
β1 + C2[exp(ξ)G(P0)]

β2 +
exp(ξ)G(P0)

ρ
(53)

where the last term may be seen as the perpetual value of production with the current hydropower

plant, while the two other terms indicate the additional value of waiting to obtain more information.

β1 and β2 represent the positive and negative roots, respectively, of the fundamental quadratic

equation

1

2
σ2
ξβ(β − 1) + (µξ − λξ)β − r = 0. (54)

In order to prevent the option value from becoming infinitely large for values of exp(ξ) close

to zero when ξ < ξ∗, it is necessary to set C2 = 0. This condition ensures that the option value

remains negligible at low prices, consistent with the boundary condition D(0) = 0. C1 is given by

the smooth-pasting condition D′(ξ∗) = NPV ′(ξ∗, P ) in (55).

C1 =
G(P )−G(P0)

β1ρ[exp(ξ∗)]β1−1
(55)

For the two different cases, ξ ≥ ξ∗ and ξ < ξ∗, the option value of the project is thus
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D(ξ) =


exp(ξ)G(P )

ρ −K(P ), for ξ ≥ ξ∗

exp(ξ)G(P0)
ρ + C1[exp(ξ)]

β1 , for ξ < ξ∗ .
(56)

Each case in (56) are defined to have the same value in ξ = ξ∗ by value-matching, D(ξ∗) =

NPV (ξ∗). This property allows us to solve for exp(ξ∗) to obtain (57), i.e. the corresponding

trigger price to a specific production capacity.

exp(ξ∗) =
β1

β1 − 1

K(P )ρ

G(P )−G(P0)
(57)

Further, to maximise the NPV of the investment, the marginal value of production with capacity

P must equal the marginal instalment cost of such capacity. We then obtain the equation:

exp(ξ)

ρ

G(P )

∂P
|P∗ =

K(P )

∂P
|P∗ (58)

With the two expressions in (57) and (58), we can implicitly find the optimal production capacity

and price trigger. First, we make an initial capacity guess of the new project, P̂ . By inserting the

guess into (57), we find the corresponding trigger price. Then (58) is evaluated, indicating whether

the optimal capacity, P ∗, is bigger or smaller than our guess. If the marginal instalment cost of

capacity is bigger/smaller than the marginal value of production, the guess, P̂ , is too large/low.

Through iterative updates of the capacity using progressively smaller steps until reaching satisfact-

ory convergence, we can identify a near-optimal price trigger, ξ∗, and its corresponding capacity

P ∗.
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6 Base Case and Results

In this section, we present the results of our study that revolves around a two-stage stochastic

optimization model, leading to the real options valuation through the optimal stopping problem.

The primary focus of our analysis is to determine the optimal timing and capacity for investing in

a pumped storage hydropower facility. We begin by providing an overview of the central paramet-

ers utilised as inputs to both the optimisation model and the optimal stopping problem. These

parameters form the foundation of our decision-making process. Subsequently, we delve into the

examination of various aspects, including production patterns and valuations, which are central

to a comprehensive analysis. Finally, we explore the sensitivity of our solutions, discussing how

changes in key variables and parameters impact the outcomes.

6.1 The case

To provide context for our results it is relevant to explain our base case setting and parameters.

Figure 8 depicts the location of our facility’s penstock, while Table 1 lists the values of the para-

meters relevant to the case. Reservoir capacity, average annual inflow and the initial production

capacity of the existing facility are all publicly available information. The remaining parameters

needed to provide the production scheduler and optimal stopping problem with proper input is

explained in this section. To adjust for design considerations and simplifications we set penstock

length L to 23500 meters.

Figure 8: Simple visualisation of the penstock location between the two reservoirs

6.1.1 Energy coefficients

The generation of electricity in a hydropower facility depends on its design. The facility has

a specific conversion rate, a certain amount of water flowing through the turbine will produce a

corresponding amount of electricity. This conversion rate is commonly denoted e or E in literature,

we use the latter in this thesis. E is dependent on the net head and the efficiency of the turbine,

electric generator, and transformer when producing electricity. When pumping, the turbine and

the generator are switched to a pump and a motor. As such we get Edis and Epump for water

discharged and water pumped respectively. To calculate the energy coefficients we must first

calculate the net head of the penstock, ∆H, and then use the formulas found in Antal (2014):

Pprod = Edis ×Q = ρgγdis∆Hηt ×Q (59)
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Table 1: Facility parameter values

Parameter description Symbol Value Unit

Reservoir capacity R 595 Mm3

Average annual inflow 560 Mm3

Initial production capacity P0 180 MW

Weekly inflow of inflow years λt Figure 9 Mm3

Initial reservoir level l0 Figure 10 Mm3

Average intra-weekly hourly log price deviation αj Figure 11 €/MWh (log)

Water velocity v 1.7 m/s

Net head ∆H 874 m

Energy coefficient production Edis 1.911 kWh/m3

Energy coefficient pumping Epump 2.120 kWh/m3

Total penstock length L 23500 m

Transformer efficiency ηt 0.95

Electric generator efficiency ηg 0.95

Motor efficiency ηm 0.90

Pelton turbine efficiency ηpt 0.91

Francis turbine efficiency ηft 0.95

Ppump = Epump ×Q =
ρgγpump∆H

ηp
×Q (60)

The above equations describe the relationship between the power produced and water discharged,

where P is power and Q is water flow in the penstock. The variables ρ, g, η and γ are water dens-

ity, gravity, turbine-/pump-efficiency and the the product of generator-/motor- and transformer-

efficiency, respectively. The efficiencies in Table 1 are chosen using conventional values and from

literature (Norconsult AS 2016). From these energy coefficients the roundtrip efficiency of the

proposed facility is about 75%, in the standard range for pumped storage hydropower facilities

(Deane et al. 2010).

To calculate net head we apply Manning’s equation to determine the friction loss in the penstock.

Manning’s equation is on the form

hf =
L× v2

M2 × r
4/3
h

(61)

where L is the length of the penstock, v is the water speed, M is the Manning-coefficient and rh

is the hydraulic radius. By subtracting hf from the total vertical drop H we get net head, ∆H.

Edis and Epump are both applied in the stochastic linear program of Section 4.3.

6.1.2 Investment cost

To estimate the cost of investing in a pumped hydropower production facility, we use NVE’s

”Cost basis for hydropower”4, authored by Norconsult AS (Norconsult AS 2016). The objective

of this thesis does not involve evaluating a particular investment; rather, it aims to enhance our

understanding of the profitability associated with a pumped storage hydropower facility. To achieve

this, we conduct basic calculations to estimate the potential expenses associated with such an

investment. We study the scenario of constructing a new facility, with a new penstock that connects

4We have translated the title from Norwegian to English. In Norwegian the report is called ”Kostnadsgrunnlag

for vannkraft”

26



two larger bodies of water, allowing for high utilization of the pumping technology, given adequate

price conditions.

A capacity upgrade will inflict an investment cost. The costs are formulated after our specific

case. The proposed facility requires a new penstock, a power station with all necessary elec-

trotechnical components, and a ternary unit for pumping and producing. Turbine parameters,

penstock diameter, power station size and electrotechnical components are all dependent on either

the chosen production capacity or maximum water flow in the penstock (Norconsult AS 2016). The

costs need to be expressed as a function of production capacity P , therefore we define Bter(P ),

Bel(P ), Bpen(P ) and Bst(P ) as the costs related to purchasing and constructing the ternary unit,

electrotechnical components, the penstock and the power station respectively. According to Pro-

fessor Leif Lia (personal communication, 24.05.23), the total of these four functions should be

multiplied by a factor of 1.4 to adjust for simplifications and omissions. We then get the cost

formulated as presented in equation (62).

K(P ) = [Bter(P ) +Bel(P ) +Bpen(P ) +Bst(P )]× 1.4 (62)

The cost functions are affected by several varying conditions. As ”Cost basis for hydropower”

was last updated in 2015, the numbers are index-adjusted to today’s prices. We define ψ as a

variable that index-adjusts prices to an updated value and adds relevant taxes. The costs of

the ternary unit, the power station and the penstock are dependent on the amount of water the

penstock is able to transport per second, maximum water flow, Q. Q is dependent on the velocity

of water in the penstock and the size of its cross-section. Water velocity is dependent on penstock

slope, water head, friction and pressure on each side of the penstock, but as we study economic

effects we assume fixed water velocity. We can express the relationship between Q and P using

the formula

P = Edis × 3600Q (63)

where P is power [MW ], Edis is the energy coefficient of production [kWh/m3] and Q is max-

imum discharge per second [m3/s] (Antal 2014). From this, we calculate the price of production

per MW. Equation (64) denotes the formula for the cost of the ternary unit.

Bter(P ) = kpel × (
P/2

Edis × 3600
)upel × P × ψter + kfra × (

P/3

Epump × 3600
)ufra × P × ψter (64)

In equation (64), kpel, upel, kfra and ufra are variables dependent on the vertical drop from the

upper reservoir to the turbine, or water head. The first two are for a Pelton turbine and the latter

two for a Francis turbine. A ternary unit is comprised of both. Due to the significant head of

our proposed facility, a ternary unit is considered more appropriate than using the more common

solution of a reversible Francis turbine. The head is both larger than what a conventional Francis

turbine is able to pump and above the ideal head for using Francis in production (Koritarov et al.

2013, Nag and Lee 2020). Therefore, we model the cost of multiple turbines in a sequence, both

in production and pumping, which is why P is divided by 2 in the first term and 3 in the second

term, for two Pelton and three Francis turbines respectively.

Norconsult AS (2016) also provides an approximation of total electrotechnical costs. The cost is

expressed as a function of the rotational speed of the electric generator, n, and production capacity.

knel and u
n
el are variables dependent on the choice of n and the chosen number of electric generators.

Bel(n, P ) = 106 × (knel × Pun
el)× ψel (65)

The cost of the penstock is dependent on the length of the penstock and the area of its cross-

section. Length is fixed, while the size of the cross-section is dependent on maximum water flow
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F and velocity v. Due to friction losses in the penstock, the optimal cross section size is found

by the intersection of marginal cost and marginal revenue of increasing penstock area. As we are

interested in large-scale economic effects, we choose to define a fixed v. The cross-section can then

be expressed with the equation A = F/v and penstock costs as

Bpen(P ) = kpen + upen × (
P

v × Edis × 3600
)× L× ψpen (66)

Station cost is a function of V , the total demolition volume necessary to build the station, where

V = 78×H0.5×Q0.7×n0.1. We also define a variable for concrete volume, B = 0.2V . Equation (67)

is a function of V and B and includes the demolition costs, the cost of concrete, reinforcement,

formwork, securing the stone, brick & plaster and decoration costs. To account for unforeseen

costs we multiply all of the above with 1.1 and add a fixed cost of 13MNOK for ventilation, heat,

lighting, water and other electric necessities, before index-adjustment (Norconsult AS 2016).

Bst(V ) = ((405V + 6990B)× 1.1 + 1.3× 106)× ψsta (67)

By substituting Q in the formula for V with P/(e× 3600), and inserting the equation for V into

(67), we get the cost of building the power station as a function of P .

As calculating accurate costs for an entire hydropower facility is far more complicated than what

can be expressed through a single equation, (62) is considered an approximation of the total costs.

From the many components included in facility design, we choose the cost-bearing elements above.

Specific to our case of upgrading an existing facility is that the reservoirs are already dammed. As

such we do not model costs related to dam construction.

By solving Equations (59)-(61) and inserting the parameters found in Appendix A into Equations

(62)-(67) we find that our capacity-dependent cost function is an increasing and concave function,

i.e., the marginal cost of installed capacity is decreasing. This is consistent with the model of Dangl

(1999). The design of the facility is dependent on a distinct number of turbines, generators and

transformers, and the producer has the option to build multiple penstocks as well. Considering this,

a more realistic function would be step-wise and dependent on these distinct elements. Comparing

costs to value in the optimal stopping problem does however require a continuous cost function,

and based on conversations with Leif Lia (personal communication, 04.06.23) we deem it adequate

for our purpose.

6.1.3 Parameter calculations

Even though the average inflow is known, as mentioned in Section 6.1, the distribution of inflow

through the year is not. The historical measurements of inflow recorded near the hydropower plant

are instead used as an estimate for this. We adjust these historic inflow years to match the average

annual inflow to the existing facility. All inflow years are plotted in Figure 9.

Moreover, the initial reservoir level, l0, is dependent on facility capacity, P . Instead of choosing

an initial reservoir level by random, we follow the reasoning in Section 5 to find differing steady-

state water levels. These are key to ensuring comparable yearly production valuations for different

capacities. For each evaluated capacity, the steady-state water level is presented in Figure 10.
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Figure 9: The inflow each week of the year from 73 years of inflow records. The bold red line

represents the average weekly inflow.

Figure 10: The steady-state water level, l0, for each evaluated capacity. The red line represents

the maximum reservoir capacity.

In Section 4, the parameters of the two-factor stochastic price model of Schwartz and Smith

(2000) are introduced. The parameters are calibrated using Kalman filtering and maximum like-

lihood estimation, yielding an initial long-term price of 45€/MWh. The seasonality parameters,

ϕ1 and ϕ2 are found through sinusoidal regression. The price parameters provide a basis for the

Monte Carlo price path simulations. The EPAD contract with a maturity of three years, referen-

cing the expected differential between the system and NO2 spot prices with a value of 30€/MWh,

is then added to the long-term price, giving exp (ξ0) = 75€/MWh. Further, sampled historical

weekly log price deviations from NO2 are incorporated in the price realisations. As we consider

the period from 2017-2022, 312 different weekly profiles are sampled. The average intra-weekly log

price deviation profile is shown in Figure 11.
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Figure 11: Average log deviation from average weekly log price for all 168 hours during the week.

Based on NO2 spot price data from 2017-2022.

Using PWC (2022) we find a risk-free rate, r, of 3.4%, which is used to discount the yearly

valuation function and cost of investment. This rate is determined based on the yield of the

Norwegian 10-year government bond. The decision aligns with the findings from the PWC yearly

report on the risk premium in the Norwegian market, where 50% of the respondents believe that

the yield of the Norwegian 10-year government bond should be utilised as the risk-free rate for

Norwegian companies (PWC 2022).

6.2 Results and discussion

In this section, we present our final results. The section begins with an examination of the variations

in production and pumping patterns, average water levels, and spillage across different capacities.

These factors play a crucial role in the valuation of the pumped storage hydropower facility. This

valuation is compared to the valuation of the method in Arnstad et al. (2022), where expectancy is

used instead of scenarios. We also demonstrate how our valuation method differentiates from the

upper bounds associated with our model. As for the real options analysis we assess the valuation

and cost functions simultaneously, to determine the optimal timing of investment and capacity of

the facility. Finally, we present a discussion on the sensitivity of the final results, with particular

emphasis on the impact of intra-weekly price volatility.

We analyse how the facility operates in a single week to gain a fundamental understanding of how

water is discharged and pumped throughout the week. Figure 12 graphs a price realisation based on

Equation (45), showcasing noticeable price peaks during the day and lower prices during the night

and weekends. For the same week, the hourly discharge of the different capacities P = 250 MW and

P = 1250 MW are plotted in Figures 13a and 13b, respectively. Additionally, Figures 14a and 14b

illustrate the corresponding pumping hours for the same week and capacities. Evidently, discharge

is scheduled during periods of high prices, while pumping takes place during times of low prices. In

the case of low capacity, production is scheduled for the first four days of the week, whereas high

capacity only produces for the first three days, before both transition to pumping. This highlights

the significant influence of capacity on the optimal schedule, emphasising the different valuations

of water for production and pumping for each capacity. The switch from production to pumping

occurs when the price peak-to-off-peak ratio surpasses the ratio between the energy coefficient of

pumping and production.
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Figure 12: Price realisation of a single week with sampled intra-weekly price volatility.

(a) Production capacity P = 250 MW. (b) Production capacity P = 1250 MW.

Figure 13: Illustration of which hours of the week the model has scheduled discharge for production.

(a) Pumping capacity P = 250MW (b) Pumping capacity P = 1250MW

Figure 14: Illustration of which hours of the week the model has scheduled for pumping.

Aggregating operations data provide further insights into the patterns of discharging and pump-

ing. Figures 15a and 15b display the average weekly amounts of water discharged and pumped,
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along with their corresponding average prices throughout the year. During the winter, when prices

are high, production reaches its peak. In the spring, the discharge falls and is replaced by pump-

ing and inflow, as depicted in Figure 9. From spring until fall the production rises again, while

pumping decreases to its off-peak at the end of the year. Given a steady-state production pattern,

where the end water level approximates the initial water level, this pattern is expected to repeat

annually.

(a) Weekly discharge over one year for different

capacities with average price.

(b) Weekly pumping over one year for different

capacities with average price.

Figure 15: Discharging and pumping patterns for some capacities for each week of the year in the

planning horizon, after the rolling intrinsic method has scheduled production for one year.

The duration curves presented in Figures 16a and 16b offer a clear overview of the price levels

at which various capacities engage in either production or pumping throughout the year. For low

capacities, a substantial portion of the year requires maintained production at a high level due to

spillage considerations. This means that low capacities are forced to produce at low prices. In

contrast, higher capacities have the flexibility to choose advantageous production times with most

production above 75€/MWh. As the capacity increases, the impact of yearly inflow on the overall

production decreases in importance. Instead, the emphasis shifts towards the quantity of water

being pumped, which becomes increasingly significant. Although all capacities engage in pumping

during periods of low electricity prices, higher capacities also pump water when prices are higher.

This indicates a higher water valuation for high capacities than low, in at least parts of the year.

(a) Duration curve for discharging (b) Duration curve for pumping

Figure 16: The duration curves illustrate the proportion of time the electricity price during pro-

duction and pumping exceeds a certain price level.
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Figure 17 illustrates the average water level of the reservoir throughout the year for different

capacities. The water level is impacted by inflow and production and pumping patterns. The

plot aligns with the expectation that facilities with higher capacities will exhibit more pronounced

fluctuations in water levels. This is due to the fact that larger production capabilities can leverage

larger volumes of water, and exploit seasonal volatility. The low capacities are required to produce

for most of the year simply to discharge the yearly inflow. Large capacity allows for significant

pumping when water is in abundance and prices are low and is also capable of discharging large

amounts to produce at peak prices and avoiding spillage. Facilities with lower capacities must

maintain a more stable water level to prevent potential spillages caused by excessively high levels,

while also avoiding significant depletion of the reservoir due to insufficient inflow for replenishment

before the next season of high prices.

Figure 17: Average water level through the year for different capacities within the highest (red

line) and lowest regulated water levels.

To maximise profits from water utilisation throughout the year, each capacity adjusts its water

level to find a balance between having ample water during periods of high prices and avoiding

wasteful spillages. However, some spillages may still occur due to uncertainty in future inflow

realisations. Figure 18 presents the average yearly spillage for each capacity. When considering

low capacities, the limited water level leads to relatively low spillage. In the case of medium

capacities, a higher water level in the fall increases the risk of spillage. For the highest capacities,

the risk of spillage decreases, despite the average water level during the fall being close to the

maximum, due to an increased ability to discharge water to production. It is worth noting that

the capacity with the highest spillage, P = 420 MW, has a spillage amounting to only 0.163% of

the average yearly inflow. This indicates that spillage does not appear to be a significant concern

in the valuation of each capacity.
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Figure 18: Average spillage for different capacities.

In Figure 19, we present the yearly valuation, VP , of the pumped storage hydropower facility

calculated using two different methodologies, namely the stochastic linear program of this thesis,

and the method of Arnstad et al. (2022). The latter method has been altered to include a pump

and samples of historical intra-weekly price profiles, instead of average weekly profiles, but uses the

expectancy of inflow and prices in the forecast section of the intrinsic problem, instead of scenarios.

The comparison aims to evaluate the additional value of a stochastic optimisation method, with

profit maximisation over different future price and inflow scenarios. The plot demonstrates that the

methods’ performances are nearly identical for this case, within their standard deviations shown

in Table 2.

Figure 19: Valuation of the facility using scenarios in the forecast section compared to the meth-

odology of using expected values of the exogenous factors.

Figure 20 shows the valuation, VP for each evaluated capacity, P of the pumped storage hydro-

power, in comparison to the perfect information upper bound and a dual penalty upper bound.
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Table 2: Standard deviation of capacity valuations.

Capacity [MW] Scenarios [%] Expectancy [%]

180 1.2 3.6

195 1.4 3.7

220 1.3 3.8

250 1.4 3.8

290 1.5 3.8

350 1.5 3.8

420 1.5 3.7

500 1.6 3.6

600 1.6 3.4

750 1.6 3.3

950 1.6 3.2

1250 1.5 3.4

The perfect information upper bound is found by solving the deterministic case where all future

realisations of inflow and prices are known in advance, i.e. all non-anticipativity constraints are

relaxed. This is a relatively weak upper bound, and we find a better one by employing dual-bound

penalties (Brown et al. 2010). The dual upper bound assumes perfect information but penalises

the relaxation. The dual penalty is calculated from the equations

d1 = δ1
∑
i∈I

∑
j∈J

(xdisij + xpump
ij )(Sij − E(Sij |χ0, ξ0)) (68)

d2 = δ2
∑
i∈I

∑
j∈J

(xdisij + xpump
ij )(λij − E(λij |λ0)) (69)

with penalty coefficients δ1 = 4 ∗ 10−4 and δ2 = 2 ∗ 10−8 found to provide good penalties. The

dual penalties are subtracted from the objective when solving for the dual bound. The last factor

in (68) and (69) values the difference between realisation and expected realisation given the initial

parameters of the stochastic price process and the inflow year. The optimality gap between our

valuations and the upper bounds is presented in Table 3 for all capacities.

Figure 20: Rolling intrinsic valuation compared to its upper bounds.
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Table 3: Rolling intrinsic valuation and optimality gaps.

Capacity [MW] VP [€ million] Perfect information [%] Dual bound [%]

180 93.1 5.67 4.00

195 95.4 5.88 3.99

220 97.1 7.42 5.21

250 100.8 7.01 4.52

290 104.9 6.94 4.09

350 110.9 6.75 3.46

420 116.3 7.49 3.70

500 122.2 8.79 4.47

600 129.2 10.31 5.42

750 139.5 12.53 6.89

950 151.3 12.60 6.25

1250 168.4 10.76 3.69

The valuation, VP , exhibits an upward trend for larger capacities, but the increase rate does not

diminish as much as observed in Arnstad et al. (2022), which considers a conventional hydropower

facility with no pump. The combination of low-cost pumping and high-price production appears

to establish a nearly linear relation between capacity and valuation, especially for larger capacities.

To examine this relationship further, we explore how the intra-weekly price profiles affect the value

of the pumped storage hydropower for three different cases. The first is the valuation resulting

from the sampling of actual historical weekly profiles, αj ,∀j ∈ J , which are added to the weekly

simulated price, referred to as 1.0α. For the next valuation, each historical intra-weekly profile

is scaled down by 50%, giving 0.5α. Last, the 0.0α refers to the valuation in a situation where

the simulated week price is used for the entire week, with no hourly deviations. From our rolling

intrinsic methodology, we obtain three different yearly valuations, VP . Using the approach in

Section 5.2, we find the smoothed, continuous valuation functions, V0(ωωω0, P ), for each case. Next,

we evaluate each function to find the optimal timing and corresponding capacity for the pumped

storage hydropower investment.

In Table 4, the trigger price and capacity for each case are presented along with perpetual facility

valuations. We observe that the semi-analytical process of Section 5.2 did not reach convergence

for any capacities where P ∈ (180MW, 1250MW), neither for 1.0α nor for 0.5α. The reason for

this is that the marginal value of production with capacity, P ∈ (180MW, 1250 MW), decreases

at a slower rate than the marginal capacity investment cost for the same region. As discussed

in Dangl (1999), this yields immediate investment in maximum capacity, and we set the installed

capacity to the max, P = 1250 MW.

While the cost function of Equation (62) differs from the ones found in other hydropower invest-

ment literature, such as Kleiven et al. (2022) or Bøckman et al. (2008), the authors argue for its

increased realism compared to their functions (Norconsult AS 2016). Not achieving convergence

may be viewed as an argument against the usefulness of real options analysis when applied to our

problem. However, as mentioned in Section 6.1.2, decreasing marginal costs of installed capacity is

similar to cost functions found in earlier literature on real options theory (Dangl 1999, Hagspiel et

al. 2016). Hagspiel et al. (2016)(p.103) argue that ”There are important economic reasons pleading

for such a concave investment costs function, such as indivisibilities, use of information, fixed costs

of ordering and quantity discounts”. In Dangl (1999), investment timing and optimal capacity

are studied under varying demand conditions, especially the amount of uncertainty involved with
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demand. For larger demand uncertainty (or price volatility), the investment will occur only for

a large production capacity but will be postponed until price requirements are sufficiently high.

This is consistent with our findings in Table 4 and Figure 22.

To further ascertain the useful applications of real options analysis, we study the case of no

intra-weekly deviations, 0.0α, where convergence is reached with the trigger price, exp (ξ∗) = 167

€/MWh and optimal capacity, P ∗ = 930 MW. As the trigger is significantly higher than the current

price level exp (ξ0) = 75 €/MWh and the long-term risk-adjusted drift is negative, investment is

unlikely in the near future. The real options valuation of the investment project is thus dominated

by the NPV of the existing facility (with 180 MW turbine capacity), which is also higher than the

NPV of the optimal investment in a pumped storage hydropower plant at today’s price level. In

Figure 21 the valuations of the three cases are shown at the price level, exp (ξ), set to the trigger

price of 0.0α. The cost function and 0.0α has the same slope in P ∗.

Table 4: Results

1.0α 0.5α 0.0α Unit

Trigger price, exp(ξ∗) 40.29 77.00 166.8 €/MWh

Facility capacity (at price trigger) > 1250 > 1250 930.2 MW

Facility capacity (invest immediately) > 1250 > 1250 542.4 MW

NPV (existing facility) 2197 2157 2074 € (million)

NPV (invest immediately) 3450 2513 2020 € (million)

Real options value, D(ξ) 3450 2527 2131 € (million)

Investment probability (10 years) 100 87.13 2.18 %

Investment probability (40 years) 100 90.95 12.71 %

Figure 21: Valuations with different intra-weekly volatility at the trigger price level, exp (ξ∗), of

0.0α. The dashed line is the corresponding optimal capacity.

While convergence may not be achieved when including intra-weekly price deviations, it is evid-

ent that the market conditions characterised by high volatility within the week present a highly

profitable opportunity for investment in pumped storage hydropower facilities. Due to the prof-

itability, the real options value equals the NPV of immediate investment for 1.0α, as the option
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should be exercised immediately. Considering 0.5α, immediate investment is nearly as profitable as

delaying investment until the long-term price surpasses the trigger point slightly above the current

price level.

Figure 22 depicts the sensitivity of the price trigger in long-term price volatility, σξ, for the

three different cases. The shaded areas indicate when it is optimal to invest, given the magnitude

of intra-weekly price deviations. In the case of 0.0α, a substantial price level is necessary for

immediate investment. Conversely, for 1.0α and 0.5α, the trigger prices are significantly lower.

Irrespective of the case, heightened long-term price volatility corresponds to higher trigger prices.

Increased price volatility introduces greater uncertainty regarding future price levels, consequently

amplifying the value of waiting to obtain more reliable information, thus giving higher trigger

prices. Notably, for all values of long-term price volatility, the optimal capacity corresponding to

the trigger prices of 1.0α and 0.5α is the maximum capacity, i.e. in our case P = 1250MW.

Figure 22: Sensitivity of the long-term price volatility. The red line represents the estimated

parameter value of the two-factor price model.
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7 Concluding remarks

Our results and findings necessitate some remarks and a discussion of possibilities for further

research. In this section, we summarise our work and comment on the aspects of our model that

are relevant for further work.

7.1 Conclusion

In conclusion, our method has provided some interesting and noteworthy results. First and foremost

is the demonstration of the profitability of pumped storage hydropower for a single producer with

a price-taker perspective. The combination of our cost function and facility valuation suggests

investing in a production capacity as high as possible, given the present price level. While lower

intra-week volatility may result in a decrease in profitability, investments can still remain profitable

due to seasonal price differences. However, it is important to note that an increased number of

pump investments could limit this profitability, as this could reduce intra-weekly market volatility.

Our model demonstrates how increased production and pumping capacity impacts production

patterns and reservoir management, giving varying valuations. The valuation function from our

stochastic model is also closely aligned with its upper bounds. One result that was somewhat

surprising to the authors is the negligible effect of uncertainty included in the linear program.

Our model, and the model in Kleiven et al. (2022) performed similarly, indicating that using

expectations in the second-stage problem provides adequate results.

We have presented a general production planning model, a general investment model, and applied

them to a case with a case-dependent cost function. Detailed cost calculations of any hydropower

investment are heavily case specific, but our method for discerning said function has general applic-

ations. The use of real options analysis as an investment model is widely suggested by academia

as an improvement upon the NPV method and other methods. It is however slow to be adopted

by the industry. When considering pumped storage hydropower facilities, which currently ap-

pear highly profitable within the existing market conditions, the application of the real options

methodology does not provide additional value to the investment problem. The analysis yields

the same investment recommendation as the traditional NPV analysis. However, under different

market conditions, and for other investment problems, the real options framework does present an

advantage.

Another important question to address regarding the indicated profitability of pumped stor-

age hydropower under the current market conditions is the lack of construction of such facilities,

specifically in Norway, the location of our case problem. In their review of pumped storage hy-

dropower in Norway, Pitorac et al. (2020) note a decrease in hydropower investment after the

market deregulation of 1991, both pumped storage and conventional hydropower. This is because

the market was saturated with supply exceeding demand significantly. Prior market conditions,

how power prices were defined and requirements for security in supply resulted in investments in

overcapacity (Bye and Hope 2005). These considerations extend from conventional hydropower

to pumped storage (Pitorac et al. 2020). It is also worth noting that from the perspective of the

regulatory bodies, excess pumping reduces the total net energy produced. The Nordic market is

however forecast to experience grid imbalance by 2030 (NVE 2022). Pumping capabilities would

give hydropower facilities the ability to counteract this imbalance, and so may warrant investment

and further research in pumped storage hydropower.
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7.2 Further work

The main finding of our thesis, that pumped storage hydropower warrants high valuation and

considerable profit, hinges on the current market conditions. As long as price volatility enables

profits from pumping, investment in pumped storage hydropower will be profitable. An interesting

direction for research would however be to study how the market would be affected by the inclusion

of a large amount of pumping capabilities. As pumped storage hydropower contributes to reducing

market price volatility, this would be interesting from a socioeconomic perspective.

An important consideration for further investigation is whether the intra-weekly volatility can

be modelled as a process or discretised into scenarios with different probabilities. This prompts

the exploration of implementing a two-stage stochastic model, where the initial stage focuses on

optimising capacity upgrades, followed by optimisation over scenario realisations. By examining

these possibilities, we can enhance decision-making by accounting for the dynamic nature of intra-

weekly volatility and capturing a range of potential outcomes, enabling more informed and effective

decision-making regarding the investment problem.

Our price model considers solely trading on the day-ahead spot market. The increased production

flexibility of pumped storage hydropower makes it ideal for trading on the ancillary and balancing

markets (Braun and Burkhardt 2015). Including these trading opportunities in our model could

yield interesting insight. A topic that is somewhat related to the research proposed in the paragraph

above would be researching the inclusion of large pumping capabilities in the other power trading

markets, and the effects it would have on these markets.

We consider in this thesis the investment into a brand-new facility. The construction of our

proposal entails that the old facility would be decommissioned. We do however avoid comparing

the option value of refurbishing the existing facility with our proposal, as Décamps et al. (2006)

ascertains that such a comparison is inadequate. A method of comparing two discrete projects with

discrete costs would assist facility owners even further when considering refurbishing old plants.

Additionally, maintenance costs for old facilities are generally larger than for newer plants, and

including this would further increase the realism of our investment model.

By including stochastic developments of our cost function, for instance using the approach in

Pindyck (1993), the accuracy of the options model could be further improved. This would require

solving the real option numerically, which is possible using the Least Squares Monte Carlo method

in Longstaff and Schwartz (2001).

In our production scheduling model we disregard several operational constraints that are not

relevant to our case problem. We operate with a fixed net head, disregarding how the head is

affected by the reservoir levels due to the large head of our case. This is a relevant constraint

for pumped storage hydropower with a smaller head. Our problem description dismisses ramping

constraints and constraints imposed by regulatory services due to environmental concerns, as our

case problem consists of an underground penstock connecting two large reservoirs. In addition

to these decisions, we also assume head-loss and turbine/pump efficiency to be constant. The

inclusion of all these considerations would further increase the general applicability of our model.

In a more detailed production scheduler, some of the variables discussed above would provide

incentives for production at less than maximum capacity. Restricting the model to only producing

at maximum capacity is however a necessary modelling constraint. The alternative would make the

problem non-linear and significantly more difficult to solve. However, including volume flexibility

in the real options model is done in Hagspiel et al. (2016). Their case differs from ours somewhat,

but implementing aspects of their real options method could provide further insight into optimal

investment strategies.
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Appendix

A Case parameters

The parameters of our case not considered relevant for apprehending our results are placed below

in Table 5. Cost parameters are all derived from the report of Norconsult AS (2016). Index

adjustments are calculated using NVE’s adjustment report (NVE 2023b). The parameters of the

two-factor price model are calibrated as described in Section 4.1.

Table 5: Parameter values

Parameter description Symbol Value Unit

Penstock cost parameter kpen 12190

Penstock cost parameter upen 196.3

Pelton turbine cost parameter kpel 2304

Pelton turbine cost parameter upel -0.522

Francis turbine cost parameter kfra 1036

Francis turbine cost parameter ufra -0.304

Electrotechnical cost parameter knel 5.643

Electrotechnical cost parameter unel 0.655

Mechanical index adjustment ψter 1.79

Electrotechnical index adjustment ψel 1.81

Construction index adjustment ψsta 1.75

Penstock index adjustment ψpen 1.95

Initial long-term price factor exp(ξ0) 45.0 €/MWh

Initial short-term price factor χ0 0.00 €/MWh (log)

Short-term price mean reversion κχ 1.768

Short-term price risk premium λχ 0.113

Short-term price volatility σχ 0.505

Long-term risk-adjusted drift µξ − λξ -0.008

Long-term price volatility σξ 0.189

Price factor correlation ρχξ -0.207

Risk-free rate r 0.034

Seasonality price parameter ϕ1 -0.028

Shifted seasonality price parameter ϕ2 0.160

Electricity price area differential EPAD 30.0 €/MWh
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