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Abstract

The maritime transport industry plays a crucial role in the global economy, with over 11 billion
metric tonnes of goods traded by sea in 2019. Within this complex and diverse industry, dry bulk
operators like Western Bulk exploit regional arbitrage opportunities when offering cargo transport
services. This research focuses on a specific challenge faced by dry bulk operators, such as Western
Bulk, known as the Tramp Ship Routing and Scheduling Problem with Bunker Optimization
(TSRSPBO). This problem aims to maximize the overall profit of a fleet of vessels by selecting
the most profitable cargoes from a pool of available options. The formulation of this problem
incorporates flexible cargo limits and integrated bunker optimization. Additionally, the study
addresses the regional allocation of vessels and fleet repositioning. Consequently, a solution to this
problem must determine the appropriate cargo quantities to transport, make routing and scheduling
decisions regarding cargo and bunker ports, select the optimal bunker quantity to procure from
each port and pinpoint the regions in which vessels should be located at the end of the planning
period.

This thesis models the studied TSRSPBO as a two-stage stochastic optimization problem, where
routing and bunkering decisions are solved in the first-stage problem, and the recourse cost of
fleet repositioning is considered in the second-stage. An arc flow and a path flow model of the
TSRSPBO are provided. To solve realistic test instances, the path flow solution method leverages
an a priori column generation approach, generating and optimizing the set of all feasible routes.
Results indicate that the path flow solution approach can optimally solve test instances of up to
30 cargoes, ten vessels, and ten bunker ports within one hour.

Western Bulk operates a long-term fleet of 30 vessels. To solve test instances of this size, an iterative
matheuristic solution approach leveraging an Adaptive Large Neighborhood Search (ALNS) frame-
work is proposed. By utilizing the ALNS framework to generate columns, the iterative matheuristic
solves the path flow model at regular intervals to obtain high-quality solutions. Results show that
the iterative matheuristic finds near-optimal solutions for small- and medium-sized test instances.
Furthermore, the matheuristic successfully solves test instances of 120 cargoes, 30 vessels, and ten
bunker ports in under one hour.

Finally, this thesis conducts an economic analysis of Western Bulk’s operational environment.
The added value of fleet repositioning considerations is shown to be significant. Additionally, this
thesis quantifies the impact of procuring discounted bunker prices at specific ports, offering valuable
decisional support to Western Bulk’s chartering managers and bunker procurement department.
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Sammendrag

Den maritime shippingindustrien er en bærebjelke for den globale økonomien. I 2019, ble mer
enn 11 milliarder tonn med varer transportert av skip. I denne komplekse og mangfoldige indus-
trien finnes tørrbulk operatører som Western Bulk. Som tilbydere av transporttjenester utnytter
de regionale arbitrasjemuligheter for å maksimere profitt generert av en flate med skip. Denne
masterstudien utforsker et problem som er relevant for operatører som Western Bulk, definert som
et Tramp Ship Routing and Scheduling Problem med Bunker Optimization (TSRSPBO). Målet
til problemet er å maksimere profitten til en flate med skip ved å velge ut hvilke laster man bør
transportere. Problemformuleringen inkluderer fleksible lastekvoter, integrert bunkeroptimiering
og h̊andterer i tillegg hvilke regioner skip bør ende opp i ved slutten av planleggingshorisonten ved
hjelp av reposisjonering av flaten. Derfor m̊a en løsning til et slikt problem definere mengden last
som skal fraktes, bestemme hvilke laste- og bunkerhavner som skal besøkes, og allokere skip til de
mest optimale regioner.

Denne masterstudien formulerer et TSRSPBO som en to-stegs stokastisk optimeringsproblem, der
rute- og bunkerbeslutninger løses i første steg. I andre steg h̊andteres kostnaden av å ende opp i
feil regioner. B̊ade en modell basert p̊a buer, og en modell basert p̊a veier, blir definert. For å løse
realistiske probleminstanser benytter modellen basert p̊a veier seg av a priori kolonnegenerering.
Alle mulige ruter blir først generert og s̊a optimert. Deretter plukker modellen basert p̊a veier ut
de rutene som maksimerer flateprofitten. Resultatene fra de gjennomførte eksperimentene viser
at denne løsningsmetoden optimalt løser testinstanser med opp til 30 laster, ti skip og ti bunker
havner innen en time.

Western Bulk opererer en langtidsflate med 30 skip. For å løse s̊a store testinstanser foresl̊ar denne
masterstudien en iterativ matheuristikk som utnytter et Adaptive Large Neighborhood Search
(ALNS) for å generere kolonner. Den iterative matheuristikken løser modellen basert p̊a veier
ved faste mellomrom basert p̊a kolonnene generert av ALNS. Resulter viser at matheuristikken
finner nær optimale løsninger for sm̊a og mellomstore testinstanser. Matheuristikken finner ogs̊a
løsninger til store testinstanser med 120 laster, 30 skip og ti bunkerhavner innen en time.

Avslutningsvis gjennomfører denne masterstudien en økonomisk analyse av Western Bulk sitt
operasjonelle miljø. Merverdien av å h̊andtere flatereposisjonering viser seg å være betydelig. I
tillegg kvantifiserer denne studien effekten av bunkerinnkjøp til priser med ulike avslag. Disse
innsiktene viser at denne masterstudien tilbyr verdifull beslutningsstøtte til b̊ade Western Bulks
befraktningssjefer og til deres avdelinger som bestemmer innkjøp av bunker.
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Chapter 1

Introduction

Maritime transportation concerns transporting cargo around the globe using the world’s seaways.
It serves as a fundamental pillar of global trade. Maritime transportation dominates other modes
of transportation in terms of the total volume of goods transported. In 2019, more than 80% of
the internationally traded volume was carried by ships (UNCTAD, 2022). Factors like absolute
advantages, comparative advantages, technological advancements, and economies of scale con-
tribute to this scale. The key participants in the maritime transportation industry include cargo
owners, commodity traders, shipowners, and bulk operators. Cargo owners possess production
facilities, while commodity traders take advantage of regional price discrepancies by buying and
selling goods. Shipowners treat vessels as assets, speculating on market trends. Bulk operators,
on the other hand, buy and sell cargo transportation services by chartering vessels and securing
cargo. They act as intermediaries between shipowners and cargo owners and typically do not own
the ships they manage. Instead, they operate within the margins between operational costs and
revenue generated from transportation. This line of business involves significant risks. However,
a deep understanding of trade patterns and skills in securing transport contracts and managing
cargo can lead to financial success. The maritime transportation industry is further divided based
on the type of cargo being transported. For example, the dry bulk sector focuses on shipping dry
commodities such as iron ore, coal, and grain in large quantities.

This thesis studies a Ship Routing and Scheduling (SRS) problem defined in collaboration with
Western Bulk, a dry bulk operator. The problem revolves around the optimal deployment of
the operator’s hired fleet to maximize the overall profit. The operator faces the task of selecting
which cargoes to transport from a combination of mandatory contracted cargoes and optional spot
cargoes. Costs are incurred for not servicing a contracted cargo. Revenue is generated through
the cargo transportation, priced at a unit freight rate measured in USD per metric tonne. The
considered variable sailing costs are port expenses, canal fees, and fuel purchases. To maximize
profit, the operator must determine routes and schedules for each vessel in its fleet.

In the dry bulk industry, operators often have the flexibility to choose the precise amount of cargo
to transport within a given range. This consideration adds complexity to the decision-making
process, as determining the optimal amount for each cargo when vessels can carry multiple cargoes
simultaneously becomes challenging. Additionally, as ships consume fuel during their voyages, the
operator must strategically decide where to refuel and how much bunker (fuel) to purchase. Lastly,
Western Bulk aims to distribute its fleet across regions to enhance regional preparedness. Western
Bulk employs chartering managers to make such decisions. This study aims to provide chartering
managers with an additional tool to support their decision-making process.

In order to represent the operational environment of Western Bulk, this thesis introduces a Tramp
Ship Routing and Scheduling Problem with Bunker Optimization (TSRSPBO). The TSRSPBO
incorporates several decisions, including cargo selection, determining the quantity of cargo to
transport, identifying suitable refueling ports for vessels, optimizing bunker procurement, and
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allocating vessels to specific regions at the end of the planning period. To effectively model the
TSRSPBO, this thesis proposes a two-stage stochastic optimization model. In the first stage,
routing and bunkering decisions are addressed, while the second stage incorporates the recourse
cost of repositioning the fleet to the dedicated regions.

An arc flow formulation of the TSRSPBO is designed based on previous research by Brønmo
et al. (2007b) and Vilhelmsen et al. (2014). The proposed model integrates flexible cargo quantity
limits, as explored in Brønmo et al. (2007b), with integrated bunker optimization, as presented by
Vilhelmsen et al. (2014). Notably, this study is the first attempt to combine these elements with
fleet repositioning. Furthermore, a path flow formulation is introduced, employing a priori column
generation as the solution approach. This approach involves generating all feasible vessel routes
using a modified Depth-First-Search algorithm. For each route, a linear programming problem is
solved using commercial software to optimize cargo quantities and bunker purchases, maximizing
the vessel-specific profit. Finally, the path flow model is solved with the generated columns to
determine optimal solutions for the TSRSPBO, maximizing the fleet-specific profit.

This thesis generates test instances based on real-life data provided by Western Bulk. Additionally,
industry partner Maritime Optima provided accurate routing information. The path flow solution
method is finds optimal solutions to test instances of up to 30 cargoes, ten vessels, and ten bunker
ports. Western Bulk operates a fleet of more than 110 vessels. Thirty of these are in their long-
term portion. Western Bulk reports that their charting managers are doing an excellent job for
the remaining vessels in their short- and medium-term fleet. However, for their long-term fleet,
Western Bulk acknowledges a potential for improvement (Husby, 2022).

To solve test instances of 30 vessels, an iterative matheuristic solution approach leveraging an
Adaptive Large Neighborhood Search (ALNS) framework is proposed. By utilizing the ALNS
framework to generate columns, the iterative matheuristic solves the path flow model, called the
Vessel Combination Problem (VCP), at regular intervals to obtain high-quality solutions. The
resulting matheuristic is named Adaptive Large Neighborhood Search for the Vessel Combination
Problem (ALNS-VCP). Results show that the ALNS-VCP finds near-optimal solutions for small-
and medium-sized test instances. Additionally, the ALNS-VCP successfully solves test instances
of 120 cargoes, 30 vessels, and ten bunker ports in under one hour. As such, the ALNS-VCP
outperforms the path flow solution approach with a priori column generation.

This thesis concludes by conducting an economic analysis of Western Bulk’s operational environ-
ment. The impact of considering fleet repositioning is significant, with a Value of the Stochastic
Solution (VSS) of 4.79%. Further, this thesis quantifies the effect of procuring discounted bunker
prices at specific ports. Western Bulk devotes resources to procuring bunker purchase contracts.
This thesis’s results outline the ports on which Western Bulk should focus its efforts.

This thesis is based on the project thesis of Omholt-Jensen (2022) and further extends his work. In
particular, although flexible cargo quantities and integrated bunker optimization were investigated
in Omholt-Jensen (2022), this thesis incorporates fleet repositioning considerations. To this end,
the models are reformulated as two-stage stochastic optimization models. Furthermore, this thesis
introduces the iterative ALNS-VCP matheuristic, which can solve realistic test instances.

The remaining chapters in this thesis are organized as follows. Chapter 2 provides an introduction
to the industry of maritime transportation. Chapter 3 gives a thorough literature review of relevant
research. Chapter 4 describes the TSRSPBO studied in this thesis. Chapter 5 presents the arc
flow formulation of the TSRSPBO. Chapter 6 outlines the path flow formulation of the TSRSPBO
and describes the a priori column generation approach in detail. Chapter 7 introduces the iterative
ALNS-VCP matheuristic leveraged to solve realistic test instances. Chapter 8 describes the con-
struction of test instances from real-life data and provides model implementation details. Chapter
9 conducts a thorough computational study comparing different solution approaches. Chapter 10
summarizes the concluding remarks. Finally, Chapter 11 suggests future research that may be
performed based on this thesis.
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Chapter 2

Background

This chapter provides an overview of the maritime shipping industry. Specifically, Section 2.1 high-
lights the role of maritime trade in the global economy. Section 2.2 explains the maritime shipping
industry’s principles, participants, and trades. Finally, Section 2.3 introduces key characteristics
of Western Bulk, an industry partner of this thesis.

2.1 Maritime Transportation and the Global Economy

According to Rodrigue (2020), the maritime transportation industry has become crucial for the
global economy in terms of total traded volume due to four key economic factors. Firstly, absolute
advantages are attributed to the uneven geographical distribution of resources and the corre-
sponding demand for these resources. To bridge the gap between the vast supply and demand,
transportation services are necessary. Given the lack of cost-effective alternatives for long-distance
transportation of such large quantities, sea transport is preferred over other modes of transport.
Secondly, comparative advantages arise from variations in the production costs and capabilities
of manufactured goods, resulting in the trade of these products. As globalization has progressed,
trade barriers have diminished, leading to the transportation of assembled products over long dis-
tances. Thirdly, advancements in technology have significantly improved the efficiency of maritime
transportation. These advancements have been implemented on vessels and cargo-handling termi-
nals on land. Technological solutions have also expanded the range of products transported at sea
by adopting highly specialized vessels. Lastly, shipping companies have capitalized on economies
of scale by acquiring and utilizing larger vessels in their fleets, thereby increasing cost-effectiveness.

Driven by these influential factors and coinciding with the rise of consumer-driven trends starting
in the 1960s, maritime trade experienced substantial growth. From a cargo volume of 500 million
metric tonnes in 1950, it has grown by a Compound Annual Growth Rate (CAGR) of approximately
4.5% (Stopford, 2009; UNCTAD, 2022). Consequently, the composition of the global shipping fleet
underwent significant changes. During the early 1900s, the fleet primarily consisted of general cargo
liners and tramp vessels. General cargo liners followed fixed routes, transporting cargo, passengers,
and mail. On the other hand, tramp vessels filled the gaps in the transportation system, carrying
various bulk cargoes on the spot market. Both segments were characterized by their diverse cargo
types. However, following World War II, the fleet became more specialized due to standardization,
automation, economies of scale, and technological advancements (Stopford, 2009). As a result,
three significant segments emerged: bulk shipping, specialized shipping, and containerization.

Bulk vessels changed over time, adapting to transporting large quantities of homogeneous cargo
between automated terminals for efficient handling. Additionally, the size of these vessels has
increased significantly. For instance, the average capacity of tankers, as measured by Deadweight
Tonnage (DWT), grew from 16,500 DWT in 1945 to approximately 80,000 DWT in the 1980s. This
capacity expansion had a profound impact on reducing unit shipping costs. According to Stopford
(2009), US freight prices per tonnage for domestic railway transportation are nearly three times
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higher than maritime bulk shipments from Japan to the US West Coast.

The concept of specialized cargo carriers emerged to describe vessels specifically designed for the
transportation of particular types of cargo. These designs incorporate specific features such as
wide hatches for forest product carriers, ramps for Roll-on, Roll-off (Ro-Ro) vessels that transport
vehicles, different liquid cargo holds for chemical tankers, pressurized tanks for Liquid Natural
Gas (LNG) vessels, and refrigerated holds for Reefer ships that carry frozen goods. Given the
high level of control required in the supply chain, companies operating in this sector often adopt
vertical integration and prioritize technological innovations.

Lastly, the containerization shipping industry began in 1963 and is responsible for transporting
cargo that can be accommodated in standardized containers measuring 40 feet in length, eight
feet in width, and eight and a half feet in height. Transportation costs were significantly reduced
through extensive integration with rail and trucking services, amounting to approximately 1.5%
of the retail value. This reduction represents a remarkable 90% decrease compared to the pre-
containerization era (Donovan, 2004).

2.2 Overview of Bulk and Dry Bulk Shipping

This thesis concerns the operation of a dry bulk shipping company. As such, this section provides
an overview of the bulk segment, specifically the dry bulk segment.

In 2021, there were approximately 100,000 vessels with a cargo-carrying capacity of over 100 DWT,
totaling a capacity of more than 2.1 billion DWT (UNCTAD, 2022). Bulk carriers accounted for
71.8% of the overall capacity among these vessels. These bulk vessels operate under international
flags and are strategically designed to optimize tax benefits and regulations. They serve a vast
network of 2,916 ports (Aldworth, 2021). The shipbuilding industry comprises 285 shipyards, with
over 90% located in China, Japan, or South Korea (Statista, 2022; UNCTAD, 2022). 2019 the dry
bulk trade accounted for 5,248 million metric tonnes, predominantly of iron ore, coal, and grain.
Similarly, the tanker fleet transported 3,163 million metric tonnes, primarily transporting crude
oil and natural gas (UNCTAD, 2022).

The demand for maritime transport primarily comes from multinational corporations that extract
raw materials from regions where they are abundant and cost-effective. These corporations utilize
vessels to transport large quantities of these raw materials to refining facilities in countries with
low labor costs. Refined products are often used as components in other manufacturing processes,
leading to further transportation to assembly factories. Bulk shipping plays a crucial role in the
initial stage of this supply chain, characterized by large quantities and low unit values.

The Parcel Size Distribution (PSD) is a useful measure for understanding the movement of different
cargoes. Stopford (2009) defines a parcel as an individual consignment of cargo intended for
shipment. The PSD provides insights into the distribution of cargo sizes, which vary depending on
the specific type of commodity being traded. The distribution of parcels is influenced by factors
such as cargo demand, stock levels, water depth at loading and unloading terminals, and the impact
of economies of scale. Commodities with lower values often exhibit PSDs with a higher average
value, indicating that they are typically transported in larger quantities. Conversely, high-value
commodities are transported in smaller volumes, resulting in PSDs with a lower average value.

Stopford (2009) states that the bulk shipping transport system operates based on four fundamental
principles. Firstly, economies of scale play a significant role as larger vessel sizes result in lower unit
transportation costs. However, there are limitations to these economies of scale due to the nature
of PSD functions (larger vessels would not carry cargo with low PSD values). Additionally, port
limitations, such as water depth and vessel size restrictions, can contribute to diminishing returns
of the effect of economies of scale. Secondly, an efficient transport system aims to minimize the
time spent on cargo handling. Such a system involves investing in high-productivity cargo-handling
equipment, such as cranes and grabs for dry bulk cargo or industrial pumps for liquid bulk cargo.
Thirdly, the different links within the supply chain should be highly integrated regarding transport
modes. This integration can be achieved by strategically located manufacturing plants at coastal
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sites closely connected to bulk handling terminals, railway stations, and storage facilities. Lastly,
optimizing stock holding is crucial for both producers and consumers. This involves considering the
impact of holding costs and utilizing inventory theory principles. Just-In-Time (JIT) methodology
emphasizes the importance of timed deliveries at the beginning of production, resulting in frequent
and smaller cargo loads. This creates a trade-off between optimizing stock holding and taking
advantage of economies of scale in transportation. Higher-value commodities are more likely to be
shipped in smaller and more frequent voyages.

Bulk shipping companies differentiate themselves along four dimensions: price, speed, reliability,
and security (Stopford, 2009). While low transportation costs are generally preferred, the value
of the transported cargo often outweighs the importance of transportation costs. Consequently,
freight customers are often willing to pay a higher price for transportation services. However, other
differentiating factors for high-value commodities may hold greater significance than price alone.
Speedy deliveries may be prioritized due to JIT inventory scheduling or significant opportunity
costs associated with delays, such as machinery breakdowns. Some customers who follow JIT
practices might be willing to pay a premium for a reliable transport service that ensures timely
arrivals and minimizes disruptions. Furthermore, freight customers may be willing to pay a higher
price for secure transport that guarantees the safe arrival of undamaged goods, especially for high-
value products. However, it is essential to note that shipping companies often seek to avoid direct
competition along these dimensions by implementing various trade barriers. For instance, they may
establish long-term shipping contracts through business relationships or invest in new equipment
onboard their vessels to enhance customer attractiveness.

The bulk transport system involves four main participants, as Stopford (2009) describes. The first
group consists of cargo owners who own global extraction, refining, and manufacturing plants,
seeking the lowest labor cost and competitive labor capabilities. Their objective is to secure
the most cost-effective transport between their plants. Cargo owners have two options: they
can vertically integrate the transport system by acquiring and managing their fleet of vessels, or
they can outsource transport through long-term contracts like Contracts of Affreightment (CoA)
or charter vessels in the spot market. CoAs are long-term agreements between cargo owners
and shipping companies, specifying the volume of cargo to be transported within a given period.
Initially, these contracts may have ambiguous terms regarding delivery ports, vessel restrictions,
and pickup dates, but they progressively become more specific as the cargo pickup date approaches.
The second group comprises commodity traders primarily operating in the energy and agriculture
markets. They take advantage of arbitrage opportunities by buying cargo in one location and
selling it in another. Due to the inherent uncertainty in their trade, commodity traders usually
secure transport in the spot market. Shipowners form the third group. They own vessels, and
their business model revolves around trading vessels based on market conditions. They may order
new vessels from shipyards or engage exclusively in the second-hand market. Shipowners often
delegate the daily operation of their vessels to specialized companies as they lease their vessels to
these operators for fixed or variable payments over a specific period. This arrangement is known as
reletting. The final group of participants is the bulk operators who act as intermediaries between
shipowners and cargo owners. Unlike shipowners, bulk operators typically do not own any vessels
themselves. Instead, they manage vessels on behalf of others and operate within the margins
between operational costs and revenue generated from transport. Engaging in this line of business
entails significant risk. However, a comprehensive understanding of trade patterns, port handling
costs, and the trading of freight financial options can help mitigate these risks.

The remainder of this section provides information about the various types of cargo traded in the
dry bulk industry, which is relevant to companies like Western Bulk, the industry partner of this
thesis. According to UNCTAD (2022), dry bulk carriers accounted for 42.77% of the total capacity
of the world fleet in 2021. These carriers are further categorized into subsegments based on their
cargo-carrying capacity, as outlined in Table 2.1. Additionally, subsegments often differ in the
number of cargo holds they have. A cargo hold is a separate compartment used for transporting
cargo, which has a hatch that is opened during cargo loading or unloading and closed during
the voyage. The presence of cargo holds enables dry bulk vessels to carry multiple types of cargo
simultaneously. Furthermore, vessels are classified into subsegments based on whether they possess
self-handling cargo equipment. A vessel capable of loading and unloading cargo is called a geared
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vessel.

Subsegment DWT Range (1000s) Geared Equipment Number of Cargo Holds
Mini-Bulker 0 - 17 Often Variable
Small Handy 18 - 34 Yes 5
Big Handy 35 - 45 Yes 5
Handymax 46 - 50 Yes 5
Supramax 51 - 58 Yes 5
Ultramax 59 - 66 Yes 5
Panamax 67 - 85 No 7
Post Panamax 86 - 94 No 7
Capesize 95 - 300 No 9

Table 2.1: Different dry bulk segments, and their frequently quoted characteristics. (Husby, 2022)

The products transported in the dry bulk industry can be classified into two main categories. The
first category is major bulks, including iron ore, coal, and grain. The second category, minor bulks,
encompasses all other dry commodities transported in bulk. This category includes agribulks,
sugar, fertilizers, metals & minerals, steel products, and forest products (Stopford, 2009). Table
2.2 provides an overview of the various types of dry bulk cargo and their trade. The numbers
presented in the table are compiled from the data provided by UNCOMTRADE (2022), which
covers all modes of transportation, not just maritime shipping. Nonetheless, these figures offer
some insights into the scale and value of different dry bulk trades.

Iron ore, a vital component in the production of steel, is widely found across the world. However, in
2021, Australia and Brazil emerged as the top two iron ore exporters. This dominance is attributed
to their abundant high-grade ore reserves and advantageous coastal mining locations (UNCTAD,
2022).

Coal is a commodity traded in two distinct markets based on its characteristics. Coal with desirable
strength and porosity is transformed into coking coal, utilized alongside iron ore in steel production.
The remaining types of coal are burned as thermal coal in power stations to generate electricity.
Notably, China, India, Japan, and South Korea are the primary importers of coking and thermal
coal. Australia primarily exports coking coal, while thermal coal is predominantly supplied by
Australia and Indonesia (UNCTAD, 2022).

Grain is crucial in the food industry, utilized directly as human food and indirectly as animal feed
for meat production. The grain trade exhibits significant seasonal variations, resulting in volume
and trade route fluctuations. Consequently, vessels are primarily chartered from the spot market
(Stopford, 2009). Grain availability relies on crop yields and the extent of arable land. Developed
nations tend to achieve higher crop yields by leveraging advanced technologies in planting, har-
vesting, pesticides, and fertilizers. Hence, the leading grain exporters in 2020 were the US, Brazil,
Argentina, and Ukraine (UNCTAD, 2022). Income levels and population dynamics influence the
demand for grain. As income levels increase, a substitution effect leads to a shift in demand from
basic human food towards animal feed, driven by the rising popularity of products like meat and
milk. In 2020 the primary grain importers were East and South Asia, Africa, and South and
Central America (UNCTAD, 2022).

Agribulk, categorized as a minor bulk, encompasses various agricultural products that do not fall
under the grain classification. The main items transported within this category are soya beans and
rice. Soya beans are typically processed into soya meals and other vegetable oils, primarily utilized
as animal feed. As of 2021, Brazil and the US emerged as the leading exporters, with China being
the largest importer (UNCOMTRADE, 2022).
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Dry Bulk Dry Bulk Global Export Tonnage Value of Export
Cargo Segment Cargo Type (Million Metric Tonnes) (Million USD)
Iron Ore Total 1,518 200,222
Coal Total 1,169 127,914

Coke Coal 1,138 117,645
Thermal Coal 31 10,269

Grain Total 439 116,396
Wheat 188 52,344
Corn 192 49,241
Barley 42 10,092
Grain 11 3,172
Oats 4 1,015
Rye 2 532

Agribulks Total 202 97,076
Soya Beans 160 76,476
Rice 39 19,248
Soya Meal 3 1,352

Sugar Total 55 28,384
Raw Sugar 46 21,311
Bagged Sugar 9 7,073

Fertilizers Total 98 145,443
Slag 4 117,645
Potash 47 13,709
Urea 29 11,384
Sulfur 13 2,145
Phosphate Rock 5 560

Metals & Minerals Total 516 111,625
Copper Concentrates 17 68,678
Petcoke 71 16,322
Cement & Clinker 157 8,415
Zinc Concentrates 7 7,962
Nickel Ore 467 3,195
Salt 50 2,880
Alumina & Bauxite 66 2,030
Gypsum 30 1,006
Limestone 69 803
Manganese Ore 3 334

Steel Products Total 597 760,670
Forest Products Total 255 145,315

Table 2.2: Types of dry bulk cargo, their global export tonnage and value in 2021 (UNCOM-
TRADE, 2022).

The sugar dry bulk trades involve the transportation of raw sugar in loose bulk form and refined
sugar packaged in parcels. Around 90 countries participate in sugar exportation. Sugar production
follows a seasonal pattern with relatively small trading volumes. These characteristics often lead
to inadequate loading facilities in many ports that handle sugar. Consequently, the Parcel Size
Distributions (PSDs) are low, resulting in the use of smaller vessels for sugar transport. In 2021,
Brazil and India held the top positions as the largest exporters, while the US and China ranked
as the two largest importers (UNCOMTRADE, 2022).

Agricultural fertilizers primarily consist of chemical elements: nitrogen, potassium, phosphorous,
and sulfur. Dry bulk fertilizers commonly include urea, the most prevalent nitrogen-based fertilizer;
phosphorous extracted from phosphate rock; muriate of potash, a refined product rich in potassium;
slag, a phosphorous fertilizer derived from the steelmaking industry’s by-product; and sulfur, which
requires special precautions due to its high reactivity, explosive nature, and corrosiveness. When
exposed to moisture, sulfur can produce hydrogen sulfide, a dangerous gas (Stopford, 2009). In

7



2021, Brazil, the US, and India were the largest fertilizer importers, while Russia, China, and the
EU were the leading exporters (UNCTAD, 2022)

The trade of metals and minerals encompasses a wide range of products. Alumina, a key component
of aluminum production from bauxite, is an intermediate product. Guinea accounted for 46% of
the global bauxite supply, with a significant portion exported to China (UNCTAD, 2022). Bauxite,
a low-value product with a high PSD, is typically transported in large vessels of Panamax size or
larger due to its high volume. On the other hand, refined alumina, which is of higher value and has
a lower volume and PSD, is commonly transported in smaller dry bulk vessels. Non-ferrous metals
like manganese, copper, nickel, and zinc, which are valuable and have high inventory costs, are
often transported in smaller vessels. Regarding construction products, China and the European
Union were the top importers of cement and clinkers in 2021, while Turkey and the United Arab
Emirates were the leading exporters (UNCOMTRADE, 2022). The largest gypsum importers were
the US, India, Japan, and Indonesia, while Oman, the EU, and Spain were the leading exporters
(UNCOMTRADE, 2022). Salt was primarily exported from the EU and imported by the US and
China.

Steel products are available in various forms, including coils, slabs, bars, billets, pipes, and plates.
In 2021, China and the European Union emerged as the largest exporters of steel products, while
the United States was the largest importer (UNCOMTRADE, 2022).

Finally, significant exporting countries for the forest products trade include the European Union
and Canada, whereas the United States and China are among the importers (UNCOMTRADE,
2022). The forest products trade is characterized by its substantial trade volume and relatively low
stowage factor. The stowage factor measures density, indicating the volume occupied by a metric
tonne of cargo.

2.3 Western Bulk

This section provides an overview of Western Bulk, the industry partner of this thesis, and its
relevant operational characteristics. Western Bulk is a dry bulk operator overseeing a fleet of
110 vessels in the Handysize to Supramax dry bulk subsegment, as defined in Table 2.1. The
company operates within the profit margins between operational costs and revenue generated
from transportation. They are classified as asset-light since they do not possess ownership of the
vessels in their fleet. Instead, they acquire vessels through short-term, medium-term, and long-
term contracts. Western Bulk is headquartered in Oslo and has additional offices in Singapore,
Dubai, Seattle, Casablanca, and Santiago, Chile. With over ten different departments, these teams
collaborate to ensure a seamless global operation across the regions depicted in Figure 2.1.

Figure 2.1: The Western Bulk commercial teams’ regional responsibilities
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The core focus of a dry bulk operator lies in managing a fleet of vessels and maximizing the
transported amount of revenue-generating cargo. In the asset-light business model employed by
Western Bulk, vessels are chartered or hired under various contract types, including Time Charter
(TC), trip TC, or index contracts.

A TC contract involves the hiring company paying the previous vessel operator a predetermined
amount at regular intervals throughout a specified charter period, which has defined start and end
dates. Typically, a bulk operator would hire a ship on a TC contract from a shipowner. However,
it is also possible for a bulk operator to hire a ship on a TC contract from another bulk operator.
In either scenario, the shipowner remains responsible for capital costs and often technical expenses
related to crewing, repairs, spare parts, and insurance. On the other hand, the ship’s operator
assumes responsibility for operational costs associated with the commercial management of the
vessel. These costs include bunker fuel, port charges, canal fees, cargo handling fees, cleaning of
cargo holds, and other cargo-related expenses.

A trip TC contract can be seen as a variation of a TC contract, specifically tailored to transport a
particular cargo within a designated timeframe. In this thesis, a chartered vessel operating under
a trip TC contract is called a ”spot ship.” While regular TC contracts are typically negotiated
between shipowners and ship operators, trip TC contracts often involve two ship operator com-
panies as the parties involved. Consequently, trip TC contracts differ slightly from standard TC
contracts because certain commercial management costs, including bunkers, port charges, insur-
ance, and canal fees, are covered by the company leasing the ship.

In contrast to TC contracts, index contracts have a distinct characteristic in that the chartering
cost is variable and linked to the Baltic Dry Index (BDI). The BDI is a financial index compiled
and listed by the Baltic Exchange, a renowned shipping information provider based in London with
a long history dating back to the 1700s (BalticExchange, 2022). Each day, a panel of 20 ship broker
companies submits the previous day’s freight rates for various routes, cargo types, and dry bulk
subsegments. Freight rates represent the unit price of transportation and are measured in USD
per metric tonne. The emergence of the BDI in the late 1990s was a response to the significant
volatility of freight rates in the dry bulk shipping industry (Wilson, 2013). By utilizing the BDI,
dry bulk ship operators can employ trading techniques such as hedging and speculation to manage
the price fluctuations associated with their industry effectively.

Cargo is available to Western Bulk in the spot market and as part of longer-term Contracts of
Affreightment (CoAs). As mentioned in Section 2.2, CoAs specify how much and at which price
cargo should be transported for a given period. Historically, Western Bulk services three spot
cargoes for every two CoA cargoes. Most vessels in Western Bulk’s fleet are chartered on trip
TC or TC contracts with durations of less than a year, categorizing them as short- to medium-
term contracts. This arrangement results in a relatively high turnover of vessels within their fleet.
Additionally, a portion of their fleet is dedicated to vessels on long-term TC contracts spanning
over a year. These vessels tend to be among the largest in the fleet, falling within the Supramax to
Ultramax subsegments. Western Bulk has maintained a long-term fleet comprising approximately
20-30 vessels throughout history.

The success of a dry bulk operator hinges on its ability to manage portfolio risk effectively. Western
Bulk strategically aims to distribute its fleet capacity geographically, ensuring a relatively uniform
allocation and promoting preparedness for emerging regional arbitrage opportunities. This ap-
proach is essential for the long-term segment of their fleet (Husby, 2022). Regarding cargo compo-
sition, Western Bulk maintains a well-diversified portfolio across various dry bulk commodities, as
outlined in Table 2.2, with a moderate preference for minerals and coal. Another risk management
strategy Western Bulk employs includes parceling, where multiple cargoes are transported simul-
taneously on the same vessel. Additionally, the company actively engages in financial trading of
derivatives linked to the Baltic Dry Index, known as Forward Freight Agreements (FFAs). These
agreements serve as contracts between two parties to settle a freight rate for a specified cargo quan-
tity on one of the major dry bulk routes at a predetermined future date. The revenue-generating
freight rate is determined when Western Bulk secures a physical cargo in the market. At the time
of cargo pickup, the locked-in freight rate might prove to be above or below the FFA curves on
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the Baltic Dry Index. However, when Western Bulk secured its physical cargo, it may also trade
FFA derivatives to hedge or speculate on its secured freight rate. This strategy mitigates the risk
of varying freight rates. As an operator, Western Bulk can leverage FFA trading to end up in a
relatively risk-neutral market position. In 2021, Western Bulk attributed a gain of 25.8 million
USD to using positional FFAs (Western Bulk, 2022).

Western Bulk employs chartering managers to decide which cargoes a vessel should service at what
time. They also have to decide the amount of cargo to transport. A chartering manager is often
responsible for a fleet of vessels and has to create schedules for one’s vessels by having an accurate
outlook on the market. Given a belief that certain market conditions are about to arise, one would
utilize trading tools to take advantage of a potential arbitrage opportunity. Trading tools might
include fixing a spot or CoA cargo and fixing a spot ship, a TC vessel, or an index contract vessel.
Fixing, in this context, means contractually securing an asset. Chartering managers may also relet
(hire out) vessels on TC, index, or trip TC contracts. Additionally, one might trade FFA contracts
to hedge or speculate on future market developments. Finally, a chartering manager might think
about the regional allocation of his fleet and collaborate with other internal departments so that
the company’s fleet is allocated across regions to promote regional preparedness. Finally, once a
vessel’s schedule has been decided, the operation of the vessel with respect to who should crew the
vessel and where to stop for bunker (fuel) must be decided. This thesis denotes the problem faced
by the chartering managers of Western Bulk as a Tramp Ship Routing and Scheduling Problem
with Bunker Optimization (TSRSPBO), which is further defined in detail in Chapter 4.

Given the unpredictable nature of the dry bulk industry, chartering managers often make decisions
based on the reliable information available in the present rather than waiting for potentially better
options that may not materialize. Consequently, their decision-making is often focused on achieving
locally optimal outcomes rather than considering longer-term planning on a global scale. According
to Western Bulk, chartering managers excel in managing their fleet’s short-term and medium-term
segments. However, they acknowledge the potential for improving long-term fleet management
(Husby, 2022). Certain regional arbitrage opportunities may have been missed due to past planning
decisions, and some CoA cargoes have been suboptimally planned by utilizing costly spot ships
instead of vessels from Western Bulk’s long-term fleet. Generally, securing spot ships under time
pressure can be expensive since chartering managers have fewer options.
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Chapter 3

Literature Review

This chapter provides an overview of the relevant literature on the Tramp Ship Routing and
Scheduling Problem with Bunker Optimization (TSRSPBO) studied in this thesis. The TSR-
SPBO is based on the academic field of Ship Routing and Scheduling (SRS), and thus, Section
3.1 gives a high-level summary of research conducted in the SRS field. This thesis introduces
three extensions to the traditional SRS problem: a flexible cargo quantities extension, a bunker
optimization extension, and a fleet repositioning extension. The literature review in Section 3.2
examines SRS problems that involve flexible cargo quantities. Furthermore, Section 3.3 provides
a literature review of bunker optimization extensions in SRS and vehicle routing and scheduling.
Additionally, a literature review of other relevant studies is presented in Section 3.4. The resulting
literature is synthesized in Section 3.5. Finally, Section 3.6 outlines the contribution of this thesis
to the existing literature.

Throughout this thesis, academic literature search engines like Scopus (Elsevier, 2022) and Google
Scholar (Google, 2004) were utilized. Various combinations of search terms such as ship, vehicle,
routing, scheduling, tramp, bunker, reposition, and region were employed to conduct com-
prehensive searches. Additionally, several review papers were thoroughly examined to gain insights
into the existing studies on routing and scheduling problems in maritime and land transportation.
Notable review papers that were studied include Ronen (1983, 1993); Christiansen et al. (2004,
2013); Lin et al. (2014); Pache et al. (2019), and Ksciuk et al. (2022). Furthermore, the most highly
cited research papers published in the previous year were reviewed to identify any significant men-
tions of recent literature. Based on the collected literature, two distinct academic avenues were
identified. The first pertains to Ship Routing and Scheduling (SRS) problems considering flex-
ible cargo quantities. This field of study has witnessed significant contributions, warranting an
in-depth review. The second avenue focuses on routing and scheduling problems incorporating
bunker optimization. There were relatively few published articles in the maritime transportation
industry addressing these problems, so an exploration of the land transportation industry was also
undertaken.

In his review paper, Ronen (1993) provides definitions for commonly used terms in the literature
on SRS. The term shipping pertains to the transportation of cargo via ships. Routing involves
determining the order of ports to be visited by a vessel. Scheduling incorporates the temporal
aspect of routing by assigning specific timestamps to the sequence of port visits. Ronen (1993)
additionally categorizes SRS problems into three distinct modes of ship operation: liner, tramp,
and industrial operations.

Liner vessels operate according to predetermined routes, exemplified by the container and general
cargo shipping industry. On the other hand, tramp vessels operate based on available cargoes,
seeking opportunities for profit maximization through arbitrage. These cargoes can be contractual
(CoA) or optional spot cargoes. Routes are not determined a priori but depend on the availability
of cargo. This definition aligns with Stopford (2009)’s definition of bulk operators. Consequently,
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Western Bulk is classified as a tramp operator in this thesis. Industrial operators typically own
both the cargo and the vessels used for transportation. They resemble Stopford (2009)’s description
of vertically integrated cargo owners. Industrial operators typically focus on cost minimization and
consider production levels and storage quantities as decision variables.

Christiansen et al. (2007) categorize maritime transportation planning problems based on their
planning horizon, grouping them into three categories. Strategic problems have a longer time
horizon and involve fleet composition, network design, and transportation system design. Tactical
problems have a medium-term time horizon, encompassing traditional SRS problems. Operational
problems involve short-term planning horizon problems, such as selecting cruising speeds and
determining environmental routing.

3.1 Ship Routing and Scheduling Literature

The study by Ronen (1983) is a significant and influential contribution to the Ship Routing and
Scheduling (SRS) academic discipline. The paper highlights crucial distinctions between conven-
tional vehicle routing and scheduling problems and SRS problems. Ronen (1983) underscores
explicitly that vessels possess distinct cost structures, do not always return to their point of origin,
operate continuously, and have the potential to alter their destination while at sea.

Significant contributions have been made to the academic field of SRS in recent years, with many
summarized in review papers like those by Christiansen et al. (2004) and Christiansen et al. (2013).
There are several notable SRS problems studied. Brown et al. (1987) introduce a set partitioning
model for SRS problems, specifically for fleets of crude oil tankers with full shiploads. Fagerholt
and Christiansen (2000b) utilize dynamic programming to solve a traveling salesperson problem
with time windows and pickup and delivery considerations in the context of SRS. Later, Fagerholt
and Christiansen (2000a) extend this work to address a multi-ship Pickup and Delivery Problem
with Time Windows (PDPTW). Andersson et al. (2011) and St̊alhane et al. (2012) investigate a
maritime PDPTW with split loads and optional cargoes using exact path-flow models with column
generation and a branch-cut-and-price algorithm, respectively.

In addition to exact solution approaches, various heuristic and metaheuristic methods have been
applied to SRS problems. Brønmo et al. (2007a) propose a multi-start Local Search, Korsvik et al.
(2010) introduce the unified Tabu Search, and Korsvik et al. (2011) and Hemmati et al. (2014)
develop a large neighborhood search heuristic. Borthen et al. (2018) employ a hybrid Genetic
Algorithm (GA) to solve a multi-period supply vessel planning problem. The Unified Hybrid
Genetic Search (UHGS) methodology, previously applied to Vehicle Routing Problems (VRPs),
was leveraged by Vidal et al. (2012) and Bulhões et al. (2018). Homsi et al. (2020) extend this
methodology to address heterogeneous fixed fleets and customize the Local Search operators for
SRS problems. Currently, their work is considered the state-of-the-art solution method in the SRS
academic community.

Since the problem investigated in this thesis aligns closely with Ronen (1993)’s definition of tramp
operation, a brief overview of various Tramp Ship Routing and Scheduling Problems (TSRSPs)
classifications is provided. Pache et al. (2019) argue that there are five significant variations
in TSRSPs, including considerations for variable speed, environmental factors, cargo handling
variations, bunker optimization, and uncertainties related to sailing time, port duration, demand
and supply, spot rate revenue, and weather (Ksciuk et al., 2022).

However, this thesis does not explicitly address variable speed, environmental aspects, or weather-
related uncertainties. Furthermore, this thesis assumes fixed parameter values for speed, sailing
times, port duration, demand and supply, and spot rate revenues. Noteworthy contributions to
speed optimization have been made by Norstad et al. (2011), Gatica and Miranda (2011), Castillo-
Villar et al. (2014), and Fan et al. (2019) in their respective papers. Environmental aspects
are addressed by Wang et al. (2019) and Li et al. (2022) in their studies. Ksciuk et al. (2022)
comprehensively overview various methods to handle uncertainties.

SRS problems in the liner industry typically involve a fixed route and do not usually allow for

12



route deviations, even for refueling purposes (Vilhelmsen et al., 2014). Therefore, this thesis does
not offer an extensive overview of the academic literature specifically focused on liner operations.

3.2 SRS Problems with Flexible Cargo Quantities

Pache et al. (2019) provide a comprehensive overview of various cargo constraint extensions ex-
plored in the study of Tramp Ship Routing and Scheduling Problems (TSRSPs). Split cargoes,
where a single cargo may be serviced by multiple vessels, are investigated by Fagerholt and Ronen
(2013) and Lee and Kim (2015). However, as Western Bulk does not operate with split cargoes,
these considerations are considered irrelevant to the problem addressed in this thesis. Another
interesting cargo constraint extension relates to the concept of cargo coupling, commonly observed
in project shipping, where large and bulky cargoes must be transported simultaneously (Fagerholt
et al., 2013). In project shipping, vessel operators face the decision of providing transport for either
all or none of the cargoes due to limited storage options on board. Therefore, the cargoes are con-
sidered coupled. St̊alhane et al. (2015) further explore this problem and develop a branch-and-price
solution method. While coupled cargoes are relevant to Western Bulk’s operational environment,
they are not explicitly modeled in the problem studied in this thesis. Hence, this literature review
does not include a comprehensive review of coupled cargoes.

An additional cargo constraint extension relevant to the problem addressed in this thesis involves
the concept of flexible cargo quantities. In such scenarios, bulk operators have the flexibility to
service a variable quantity of cargo within a predetermined interval known as More or Less in
Owner’s Option (MoLOO) limits. The inclusion of flexible cargo quantity limits provides the
tramp operator with the freedom to decide the amount of cargo to transport. As an illustration,
consider a scenario where the cargo is specified as 66,000 metric tonnes of thermal coal with a 10%
MoLOO. In this case, the MoLOO flexibility limit indicates that the tramp operator can transport
any quantity ranging from 59,400 to 72,600 metric tonnes. As MoLOO limits are standard in
Western Bulk’s operational environment, the cargo constraint extension of flexible cargo quantities
is incorporated into the problem studied in this thesis. This section thoroughly reviews the relevant
academic literature on TSRSPBOs with flexible cargo quantities.

The mathematical formulation of a TSRSP with flexible cargo quantities was initially presented by
Brønmo et al. (2007b) when studying a short-term scheduling problem involving a heterogeneous
fleet of vessels. The key distinction from previous mathematical models lies in incorporating cargo
quantity as a decision variable. Since the revenue generated is contingent on the transported cargo
amount, the problem is formulated as a profit maximization problem. The appeal of operator op-
tionality stems from its ability to transport more cargo with higher freight rates and less cargo with
lower freight rates. Moreover, it enables the simultaneous servicing of multiple cargoes. In Brønmo
et al. (2007b), a Dantzig-Wolfe decomposition approach transforms the original problem, resulting
in a set partitioning formulation. This formulation considers fleet-specific constraints, ensuring
that each cargo is exclusively transported by a single vessel and that Contract of Affreightment
(CoA) cargoes can be serviced by spot ships. To create all feasible vessel routes adhering to the
vessel-specific constraints and compute their respective profits by optimizing the cargo quantity
transported on each route, Brønmo et al. (2007b) employ a priori column generation. Subsequently,
the set partitioning model selects the subset of feasible vessel routes that maximize fleet profit while
respecting fleet-specific constraints. Although the authors were able to solve small test instances
to optimality, they conclude that a priori column generation becomes intractable for larger test
instances due to the exponential growth in the number of feasible ship routes.

Brønmo et al. (2010) propose a dynamic column generation approach for TSRSPs with flexible
cargo quantities to address the computational challenges posed by the exponential growth of feasi-
ble routes. In this solution method, columns representing feasible routes are generated dynamically
as required rather than generating all feasible routes upfront. The vessel-specific constraints are
incorporated into a subproblem, while a restricted master problem is formulated by initially select-
ing a subset of columns representing feasible routes. Through solving the associated subproblem,
additional columns are dynamically added to the master problem. The process continues until the
subproblem no longer identifies improving columns. It is important to note that, in their approach,
the cargo quantities had to be discretized, rendering the solution method a heuristic. Nonetheless,
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the solution approach presented by Brønmo et al. (2010) successfully solved larger test instances
within a reasonable computational timeframe, yielding acceptable optimality gaps.

Korsvik and Fagerholt (2010) study the same TSRSP problem as Brønmo et al. (2007b) and
Brønmo et al. (2010) but implement a Tabu Search heuristic algorithm. The algorithm begins
with an initial solution and iteratively moves to the best solution within the current solution’s
neighborhood. Feasibility checks are conducted for potential moves with cargo quantities set at
their lower bounds. Tabu moves are employed to prevent cycling, forbidding solutions resembling
recently visited ones. A diversification mechanism reduces the risk of local optima, and periodic
reoptimization is performed. Compared to Brønmo et al. (2007b) and Brønmo et al. (2010),
Korsvik and Fagerholt (2010) demonstrate faster solving time for the same test cases. The heuristic
approach also achieves optimal solutions for problems with known optima. The paper highlights the
impact of cargo flexibility limits, showing that a wider range of MoLOO limits leads to nonlinear
increases in the profit-maximizing objective function. For instance, a MoLOO range of ± 5%
corresponds to approximately a 5% objective value increase, while a 10% ± MoLOO limit results
in over a 20% increase.

More recently, a matheuristic-based solution method was proposed by dos Santos et al. (2020)
for a maritime cargo routing and shipping problem faced by a chemical company in Brazil. The
paper presents a mathematical formulation of a cost-minimizing SRS problem with various consid-
erations, such as multi-product, a heterogeneous fleet with dedicated compartments, draft limits,
flexible cargo quantities, split load, and time windows. The developed matheuristic solution method
employs a modified relax-and-fix strategy, a relaxation procedure, and a repair and polishing pro-
cedure. The relax-and-fit strategy decomposes the planning problem into sequential subproblems
solved iteratively. Integer variables are gradually introduced and fixed based on previous itera-
tions until a complete solution is obtained. A post-processing phase, inspired by Rothberg (2007)
and Fischetti and Lodi (2008), is applied to improve the best solution found. The matheuristic
successfully produced solutions for test instances with up to six origin ports, eight delivery ports,
ten different products, and seven vessels. Notably, for smaller instances, the matheuristic outper-
formed the exact Mixed-Integer Linear Problem (MILP) solver in terms of both solution quality
and computational time.

3.3 Routing and Scheduling Problems with Bunker Opti-
mization

Besbes and Savin (2009) conducted one of the early studies focusing on optimal routing and bunker
plans for a Ship Routing and Scheduling (SRS) problem. They develop a stochastic dynamic
optimization model for a single tramp ship, considering bunkering considerations. Their model
incorporates fluctuations in bunker prices using a Markov chain. Notably, their formulation did
not consider specific cargo types; instead, they assume that the profit generated from traveling
between ports follows a known probability distribution function for each time period. Consequently,
their approach aligns more closely with the strategic classification of SRS problems outlined by
Christiansen et al. (2007), in contrast to the tactical planning problems with shorter planning
horizons. Besbes and Savin (2009) also explore two scenarios for bunker price fluctuations. In
the first case, bunker prices could vary over time while remaining consistent across all ports. In
the second case, bunker prices could differ across locations but remain fixed throughout the time
period. Their model aims to maximize the long-term average profit and does not have an explicit
end time. Therefore, it is not suitable for addressing tactical planning problems that involve
assigning schedules of cargoes to a fleet of vessels within a predetermined planning horizon.

Vilhelmsen et al. (2014) tackle an SRS problem denoted as a Tramp Ship Routing and Scheduling
Problem with Bunker Optimization (TSRSPBO) for a fixed fleet of heterogeneous tramp vessels.
They introduce bunker price variations, bunker port costs, and time aspects into their model.
In their study, bunker consumption depends on a vessel’s load, while vessel speeds are fixed at
the most economical magnitude. Bunkering can occur at bunker or pickup/delivery ports, but
simultaneous bunkering and loading/discharging is not allowed. The authors introduce an arc flow
formulation for the TSRSPBO and employ Dantzig-Wolfe decomposition as a solution approach.
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They reformulate the problem as a path flow problem, like Brønmo et al. (2010), with fleet-specific
constraints in the master problem and vessel-specific constraints in the subproblem. Their solution
method involves solving the subproblem using a heuristic shortest path problem with resource
constraints algorithm. The optimal route from the subproblem is added as a column in the master
problem, and the final solution is obtained by solving the integer version of the master problem.
However, the study does not incorporate a branch-and-price algorithm to ensure optimal integral
solutions. Test instances with seven vessels, up to 60 cargoes, and 19 bunker options are used to
compare the integration of bunker optimization to traditional TSRSPs.

In their paper, Meng et al. (2015) extend the work of Vilhelmsen et al. (2014) on tramp shipping
companies with fleets of heterogeneous ships. They propose a branch-and-price framework to
obtain solutions with guaranteed optimality gaps. Instead of discretizing bunker amounts, they
develop an efficient algorithm that considers real-valued optimal bunkering decisions. They also
incorporate cargo demand prediction and adjust daily sailing costs accordingly. Load-dependent
bunker consumption and bunker detours are not considered in their approach. Networks generated
by Meng et al. (2015) are acyclic, unlike potentially cyclic networks in Vilhelmsen et al. (2014).
The branch-and-price approach applies Dantzig-Wolfe decomposition to their arc flow formulation,
resulting in a path flow-based master problem. The master problem is solved by choosing a
subset of columns for the restricted master problem. The vessel-specific constraints are placed
in a subproblem, and the dual variable values are incorporated into the subproblem’s objective
function. The subproblem is solved using dynamic programming. The optimal subproblem solution
is added to the restricted master problem until reduced costs become nonnegative. If the solution
is integral, it is the final solution; otherwise, the problem is branched. This approach guarantees
optimal solutions without integrality gaps. Meng et al. (2015) demonstrate the effectiveness of
their methodology by solving problems for different fleet and cargo sizes, showing improved profit
in most instances. Additionally, they compare results with and without including predictions of
future cargo demand, showing a slightly higher profit-maximizing objective function value with
demand prediction.

The inclusion of refueling policies in the study of Vehicle Routing Problems (VRPs) is relatively
recent. Lin et al. (2014) argue that Erdoğan and Miller-Hooks (2012) were the first to do so. In
their problem, Erdoğan and Miller-Hooks (2012) consider a heterogeneous fleet of vehicles. Their
objective is to minimize total distance while visiting customers and avoiding fuel depletion. They
propose a MILP formulation and solve instances using heuristic approaches. Two construction
heuristics are employed: the Modified Clarke and Wright Savings heuristic and the Density-Based
Clustering Algorithm. The Modified Clarke and Wright Savings algorithm is a modified greedy
approach that considers vehicles’ fuel capacities. The Density-Based Clustering Algorithm identi-
fies clusters of customers. After initialization, a local neighborhood search with two operators is
applied for solution improvement. The best results are provided and compared with the optimal
solutions for a set of randomly generated test instances. Their heuristic approach works well com-
pared to exact methods and is shown to solve large problem instances.

In a more recent study, Keskin et al. (2021) formulate an Electric Vehicle Routing Problem with
Time Windows (EVRPTW) and stochastic waiting times at recharging stations. In this extended
problem, electric vehicles face potential waiting times at recharging stations due to limited chargers
available. They argue that waiting times disrupt logistic operations and, as such, aim to produce
routes that minimize travel costs and waiting times. To tackle this problem, Keskin et al. (2021)
formulate the problem as a two-stage stochastic problem and propose a two-stage simulation-based
solution heuristic incorporating an Adaptive Large Neighborhood Search (ALNS) approach. In the
first-stage phase, routes are determined based on the expected waiting times at charging stations.
The actual waiting times are revealed as the vehicles follow their designated routes and arrive
at recharging stations. If the actual waiting times exceed the expected value, the time windows
of subsequent customers on the route may be violated. To rectify such infeasible solutions, the
second-stage phase penalizes time-windows violations. The authors introduce various destroy and
repair operators tailored to address the specific requirements of the problem. Additionally, they
propose a novel adaptive mechanism for tuning the constant waiting times used in finding first-
stage solutions. To evaluate the performance of their approach and assess the impact of stochastic
waiting times on route decisions and costs, Keskin et al. (2021) conduct an experimental study using
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both small and large test instances from the existing literature. The study results demonstrate
that the simulation-based solution approach yields high-quality solutions in terms of both solution
quality and computational time, although optimality gaps are not reported. The study highlights
the substantial influence that uncertainty in waiting times can have on electric vehicle routes,
emphasizing the importance of considering stochastic elements in addressing the EVRPTW.

3.4 Other Relevant Studies

The search for repositioning vessels in the existing academic literature on the Tramp Ship Routing
and Scheduling Problem (TSRSP) yielded no relevant results. Most studies regarding repositioning
decisions in maritime transportation revolve around the liner industry. Common problems studied
include the repositioning of empty containers and liner shipping repositioning of vessels between
predetermined routes. This section provides a literature review of the latter, as repositioning empty
containers was deemed irrelevant to the problem studied in this thesis.

In their study, Kuhlemann et al. (2021) address a fleet repositioning problem in liner shipping,
which involves the costly process of moving container ships with a liner shipping network to adapt
to changing customer demands. They highlight a crucial limitation of existing deterministic mod-
els for the problem, which overlooks the inherent uncertainty associated with customer demands.
Failing to account for this uncertainty can incur additional costs when implementing plans de-
rived from deterministic models. To overcome this limitation, the authors propose a two-stage
stochastic optimization model with a binary first stage and a continuous second stage. The study
demonstrates the influence of uncertainty on the decisions made in the liner shipping industry. It
highlights the advantages of stochastic optimization over deterministic optimization approaches
commonly found in the literature. The problem is modeled as a Mixed-Integer Linear Problem
(MILP) and solved using Gurobi Optimization, LLC (2022). Kuhlemann et al. (2021) show that by
considering uncertainty, the stochastic optimization approach improves the expected performance
and enhances the robustness of the repositioning plans, making them more resilient to unpre-
dictable events.

Further, a search for fleet repositioning in land-based routing and scheduling problems primarily
resulted in vehicle-sharing problems. For example, He et al. (2020) conducted a study focusing
on such a fleet repositioning problem. The objective is to dynamically match vehicle supply
and travel demand while minimizing the cost associated with repositioning and lost sales. The
authors formulate the fleet repositioning problem as a stochastic dynamic program solved using a
distributionally robust optimization framework.

The solution method applied by Ulsrud et al. (2022) was deemed relevant to this thesis. The
authors study an operational planning problem in offshore oil and gas. Their objective is to
determine optimal routes and sailing speeds for a platform supply vessel fleet to minimize fuel
consumption costs. The authors address the challenges of fuel consumption and feasible speed
ranges, which are heavily influenced by varying weather conditions. The authors formulate a
Time-Dependent Vessel Routing Problem with Speed Optimization (TDVRP-SO). To tackle the
computational challenges of solving large-scale instances of the TDVRP-SO using a commercial
mixed-integer programming solver, the authors propose an Adaptive Large Neighborhood Search
(ALNS) heuristic. The ALNS heuristic is augmented with a local search and a set partitioning
model. Computational tests are performed on instances based on a real planning case from the
Norwegian continental shelf. The results demonstrate that the ALNS heuristic efficiently produces
high-quality solutions.

3.5 Synthesis of the Literature Review

Table 3.1 presents a comprehensive overview and comparison of the papers analyzed in this liter-
ature review. These papers can be categorized into three main groups, each addressing distinct
aspects of the research domain. The first group, comprising papers 1-4, proposes methods to model
and solve SRS problems with flexible cargo quantities. Papers 5-9 belong to the second group and
demonstrate various approaches to incorporating bunker decisions into routing and scheduling
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problems. The third group, represented by papers 10-11, explores handling vehicle repositioning in
maritime and land transportation settings. It is worth noting that Paper 12 is not classified within
any specific group as its primary significance lies in the authors’ implemented solution method
rather than its studied problem domain. The problem studied in this thesis encompasses and uni-
fies all three groups by considering a comprehensive Tramp Ship Routing and Scheduling Problem
(TSRSP). It addresses the challenges associated with flexible cargo quantities, integrated bunker
optimization, and the repositioning of vessels at the end of the planning horizon.

The papers included in the literature review also differ in their objective type. While most TSRSP
problems are formulated as profit maximization problems, routing and scheduling problems in VRP
and liner literature typically focus on minimizing costs. However, there is an exception. The study
of dos Santos et al. (2020) formulates the problem with a cost minimization objective because the
authors do not model spot vessels or optional cargoes. Similarly, routing and scheduling problems
in VRP and liner transportation literature also lack the option of generating additional revenue.
Their main concern is to minimize the costs incurred while satisfying the problem’s constraints.
These observations influenced the formulation of this thesis’ profit maximization objective function.
As an operator, Western Bulk often considers optional cargoes based on their profitability and the
availability of spare fleet capacity. Therefore, the objective function in this thesis aims to maximize
profits by optimizing revenue generation and operational efficiency.

Routing and scheduling studies in maritime transportation differ from those in other transport
industries in terms of the presence of central depots and the inclusion of pickup and delivery
operations. In the case of VRP problems, the fleet of vehicles starts and ends their routes at a
central depot, and pickups are not explicitly considered as they occur at the depot. Similarly,
pickup and delivery nodes are not modeled in the context of free-float vehicle-sharing systems
studied by He et al. (2020). In contrast, SRS problems do not involve the use of central depots.
Vessel operations in SRS problems incorporate pickup and delivery activities, and the fleet has no
centralized starting or ending point.

Several of the studies listed in Table 3.1 introduce novel considerations in their mathematical
models. For instance, Brønmo et al. (2007b) pioneered the study of a TSRSP that incorporates
flexible cargo quantities. Vilhelmsen et al. (2014) present the first TSRSP with integrated bunker
optimization. Erdoğan and Miller-Hooks (2012) are the first to consider bunker optimization in the
context of VRPs. These studies have played a significant role in shaping the development of the
Tramp Ship Routing and Scheduling Problem with Bunker Optimization (TSRSPBO) formulated
in this thesis. In particular, the model formulation presented in Section 5.3 draws inspiration from
the works of Brønmo et al. (2007b) and Vilhelmsen et al. (2014).

A noteworthy aspect of SRS problems is whether a vessel is permitted to transport multiple
cargoes simultaneously, referred to as parceling. In the studies focusing on flexible cargo limits,
it is generally assumed that the transportation of multiple cargoes is allowed. This assumption is
motivated by the potential for higher profits for the vessel operator, as it enables servicing multiple
cargoes concurrently. Consequently, this assumption is present in articles 1-4, 10, and 12. However,
there are two notable exceptions: the models proposed by Vilhelmsen et al. (2014) and Meng et al.
(2015) do not allow for parceling. The study of Vilhelmsen et al. (2014) revolves around a shipping
tanker company that primarily operates with full shiploads. Therefore, to simplify their model,
they decided to prohibit the transport of multiple cargoes. Similarly, Meng et al. (2015) also
restrict cargo transportation to full shiploads with no parceling.
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There is a limited amount of literature addressing vessel repositioning in the maritime transporta-
tion industry. Most studies addressing repositioning primarily focus on the liner industry, making
them less applicable to the problem examined in this thesis. However, the study by He et al.
(2020) presented an interesting approach to fleet repositioning. In their research, the objective is
to distribute a fleet of free-floating vehicles across multiple regions evenly. Although not directly
related to the problem studied in this thesis, their work provides a different perspective on fleet
repositioning.

Among the studies examined, four of them address the issue of uncertainty. Besbes and Savin
(2009) incorporate fluctuations in bunker prices over time and location. Keskin et al. (2021) employ
a two-stage stochastic approach, specifically leveraging an Adaptive Large Neighborhood Search
(ALNS) method, to minimize waiting times at charging stations in an electric VRP. Kuhlemann
et al. (2021) also adopt a two-stage stochastic framework, where routes are determined in the first
stage, and the number of transported containers is determined in the second stage. Lastly, He
et al. (2020) consider how demand uncertainty across different locations affects the allocation of
free-floating vehicles across regions.

The papers examined in this literature review employ various solution methods. Brønmo et al.
(2007b) generate all feasible routes and use a set partitioning formulation to obtain exact solutions.
Building on this, Brønmo et al. (2010) and Vilhelmsen et al. (2014) incorporate dynamic column
generation by solving a subproblem heuristically. Korsvik and Fagerholt (2010) propose a Tabu
Search heuristic for their TSRSP with flexible cargo quantities. Besbes and Savin (2009) employ
a heuristic dynamic programming approach to maximize expected profits. Meng et al. (2015)
develop a branch-and-price framework for exact solutions, restricting bunker detours. Erdoğan
and Miller-Hooks (2012) utilize several search heuristics tailored for VRPs, while Keskin et al.
(2021) implement a novel two-stage stochastic ALNS framework. Kuhlemann et al. (2021) solve
their vessel repositioning problem using an exact commercial solver with branch-and-bound. He
et al. (2020) employ a stochastic dynamic programming approach with distributionally robust
optimization to find high-quality solutions efficiently. Lastly, Ulsrud et al. (2022) leverage an ALNS
framework with local search and set partitioning formulation. Among these solution methods, the
approach used by Keskin et al. (2021) and Ulsrud et al. (2022) had the most influence on guiding
the solution method adopted in this thesis.

3.6 Our Contribution

To the best of the authors’ knowledge, the Tramp Ship Routing and Scheduling Problem with
Bunker Optimization (TSRSPBO) studied in this thesis is the first problem that combines the
elements of a Tramp Ship Routing and Scheduling Problem with the extension of flexible cargo
quantities, integrated bunker optimization, and fleet repositioning. This research contributes to
the academic field of routing and scheduling problems, specifically enriching and adding complex-
ity to the Tramp Ship Routing and Scheduling Problems. By considering the final destinations
of vessels in the fleet at the end of the planning horizon, this thesis extends the work done by
Omholt-Jensen (2022) to accurately represent Western Bulk’s operational environment. More-
over, an iterative matheuristic approach is proposed, which solves a path flow formulation called
the Vessel Combination Problem (VCP) based on columns generated through an Adaptive Large
Neighborhood Search (ALNS) procedure. The proposed method, Adaptive Large Neighborhood
Search for the Vessel Combination Problem (ALNS-VCP), demonstrates its ability to find high-
quality solutions for realistically sized problems. By solving test instances generated from real-life
data, the decision-making process of the studied models can provide valuable insights to chartering
managers in their professional decision-making processes.
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Chapter 4

Problem Definition

This chapter presents the Tramp Ship Routing and Scheduling Problem with Bunker Optimiza-
tion (TSRSPBO) studied in this thesis. The problem is relevant to companies involved in cargo
transportation within the dry bulk shipping industry. These companies may consist of dry bulk
operators, such as Western Bulk, which manages a fleet of chartered vessels, or integrated ship-
owning companies that own the ships in their fleet. Section 4.1 presents the necessary problem
input and assumptions, while Section 4.2 outlines the objective, decisions, and restrictions associ-
ated with the TSRSPBO.

This thesis provides a comprehensive study of the TSRSPBO, incorporating three notable exten-
sions contributing to its scholarly significance. Firstly, including flexible cargo quantities accurately
models the operational dynamics within the dry bulk industry. Secondly, the integration of bunker
optimization is incorporated, building upon the findings presented by Vilhelmsen et al. (2014).
Their work establishes the added benefits of merging cargo-routing decisions with bunker-related
considerations. By this inclusion, the thesis provides a more comprehensive framework for decision-
making in the dry bulk industry. Lastly, the introduction of fleet repositioning is motivated by
Western Bulk’s goal of optimizing its readiness for regional arbitrage opportunities. By incorpo-
rating this dimension, the thesis offers valuable insights into enhancing their operational strategies.

Notably, this thesis offers a pioneering effort, as it is the first known study to integrate these exten-
sions within the context of the TSRSPBO. By modeling these extensions, this research contributes
to advancing knowledge in the academic field of Ship Routing and Scheduling (SRS).

4.1 Problem Input and Assumptions

The problem inputs and assumptions for the TSRSPBO studied in this thesis can be divided into
sections for vessels, cargoes, ports, regions, and sailing legs.

The studied TSRSPBO considers a tramp operator controlling a heterogeneous fleet of vessels with
differing cargo and bunker carrying capacities, sailing speeds, bunker consumption profiles, drafts,
and initial bunker levels. A vessel is assumed to have a fixed average speed (load-independent) and
a specific bunker consumption profile. A vessel’s cargo and bunker capacities are given in terms
of weight. Moreover, vessels require a minimum water depth level (draft) for safe navigation and
may have different cargo handling equipment (gear). These vessel-specific constraints establish
feasibility relations between vessels and ports. At the beginning of the planning period, vessels
might be located in port or at sea. Additionally, the initial bunker levels are predetermined for
each vessel at the start of the planning period. The cost associated with hiring a vessel, known as
the charter cost, is defined in the charter contract. The fleet’s size remains constant throughout the
planning period, and the charter costs for the predefined fleet are considered fixed costs and are not
included in the problem formulation. Ships can carry multiple cargoes simultaneously if the total
volume and weight do not exceed the vessel’s total capacity. However, the specific arrangement of
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the cargoes within the vessel’s cargo holds is not considered.

A predetermined set of cargoes is considered to be available throughout the planning period. These
cargoes are characterized by their contract type, commodity, weight, flexible quantity limits, pickup
ports, delivery ports, pickup and delivery time windows, and freight rate. The cargoes can fall into
two categories: Contract of Affreightment (CoA) contracts or optional spot cargoes. Examples
of commodities include iron ore, bauxite, or similar items from Table 2.2. Cargoes are picked up
in one port and delivered to another. The pickup time windows establish the earliest and latest
allowed periods for cargo loading at the pickup port and are considered hard constraints. Similarly,
the delivery time windows operate in the same manner. The freight rates are determined through
negotiations and are expressed in USD per metric tonne. However, for this problem, it is assumed
that the freight rates are known in advance. It is also believed that the cargoes will be available
and defined for the entire planning period.

Apart from the predefined fleet, spot ships are available to hire on trip TC contracts to serve CoA
cargoes. These vessels are assumed to be available to service any CoA cargo at any given time,
with a corresponding charter cost. The charter cost includes any additional trip-related expenses,
such as ballast sailing and waiting.

Each port is associated with specific cargo handling durations for loading and discharge and specific
port costs. Moreover, bunker ports have an assigned bunker price. It is assumed that bunker ports
always have a sufficient supply of bunker fuel to refuel a vessel fully and that the bunker prices
remain constant over time. Additionally, every port belongs to a designated region. A region
represents a grouping of ports situated within a particular geographical area. Each port can only
belong to one region and not be part of multiple regions.

A vessel may navigate between pickup ports, delivery ports, bunker ports, or its current position
at the beginning of the planning period. It can then proceed to another pickup, delivery, or bunker
port from these locations. A sailing leg refers to the vessel’s direct route between these geographical
positions. Each sailing leg is associated with a specific sailing time and cost, which are determined
based on factors such as the distance of the sailing leg, the vessel’s sailing speed, and its bunker
consumption profile. If a ship passes through a canal like the Suez Canal, an additional cost known
as a canal cost is incurred. The distance of a sailing leg is assumed to be the shortest sailable
geospherical distance. At the start of the planning period, vessels loaded with cargo must deliver
their current cargo before being utilized to transport any other cargoes.

In the problem studied in this thesis, it is assumed that cargoes are decoupled, which means that a
vessel can transport two different types of cargoes consecutively without any restrictions. Although
this assumption simplifies the model, it does not accurately reflect Western Bulk’s operational
environment. Western Bulk deals with ”dirty” cargoes such as salt or cement. After transporting
dirty cargo, a vessel would typically incur costs to clean its cargo holds or would be restricted to
transporting similar types of cargo. However, these specific considerations are not considered in
the problem formulation examined in this thesis.

4.2 Objective, Decisions, and Restrictions

The main objective of the TSRSPBO is to maximize the expected profit for the fleet of vessels
during the planning period. Profit is determined by subtracting the total sum of variable sailing
costs relevant to this problem from the generated revenue of transported cargo. Each transported
cargo unit generates a specific revenue known as the freight rate. Voyage costs, including bunker
costs, port costs, and canal costs, as defined by Stopford (2009), are borne by the tramp operator
and are considered the variable sailing costs in this problem. Additionally, the problem considers
the cost associated with the fleet ending up in unfavorable regions. At the end of the planning
period, it is desired to allocate the fleet to regions that promote preparedness for potential regional
arbitrage opportunities.

The problem involves making decisions at both the tactical and operational planning levels. The
tactical decisions encompass routing decisions, determining whether a spot ship should serve a
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CoA cargo, deciding whether a vessel from the fleet should service a spot cargo, and allocating
vessels to regions at the end of the planning period. Routing decisions involve assigning specific
cargoes to vessels, scheduling cargo pickup and delivery times within designated time windows, and
determining the ports and timing for bunker stops. These tactical decisions are interdependent
and must be determined simultaneously, as they influence each other.

In this problem, the operational planning decision revolves around determining the quantity of
cargo to be transported and the amount of bunker fuel to be purchased. The MoLOO flexibility
limits allow the tramp operator to transport any amount within the specified cargo quantity flexi-
bility limits. Therefore, a solution to the TSRSPBO must explicitly specify the precise quantity of
cargo to be transported. MoLOO limits enable vessels to maximize their revenue by utilizing their
carrying capacity more efficiently. Moreover, the MoLOO flexibility limits increase the possibility
of carrying multiple cargoes simultaneously on board a single vessel. A vessel may carry and pur-
chase bunker as long as the carried quantity remains within the bunker capacity of the ship. These
modeling decisions necessitate a solution specifying the exact amount of bunker fuel to purchase.

The TSRSPBO examined in this thesis incorporates several restrictions. CoA cargoes must be
serviced, while the transportation of spot cargoes is optional. Moreover, all transported cargoes
must be picked up within their designated pickup time windows and delivered within their specified
delivery time windows. A vessel may be empty but must stay within its capacity limit when
transporting cargo. The quantity of cargo loaded at a pickup port must fall within the defined
MoLOO flexibility limits. Additionally, for realistic and safe operation, a vessel’s bunker level
must be above a safety limit and below its bunker capacity limit. Vessels cannot service cargoes
in ports with a water depth lower than their draft limit. Furthermore, vessels must comply with
the cargo handling restrictions specific to each port. Finally, at the end of the planning period,
the allocation of vessels in each region should be strategically planned to ensure preparedness in
the event of regional arbitrage opportunities.
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Chapter 5

Mathematical Arc Flow
Formulation

This section presents a mathematical arc flow formulation for the Tramp Ship Routing and Schedul-
ing Problem with Bunker Optimization (TSRSPBO) investigated in this thesis. Section 5.1 dis-
cusses the design choices that lead to a two-stage stochastic optimization model. The notation
used in the mathematical model is defined in Section 5.2. The complete mathematical arc flow
model studied in this thesis is presented in Section 5.3. Section 5.4 elaborates on the linearizations
necessary to solve the model using commercial Mixed-Integer Linear Programming (MILP) solvers.

5.1 Modeling Approach and Assumptions

Chapter 4 states that cargoes are assigned a delivery time window. However, cargo quotes provided
to the tramp operator only include a pickup time. The purchaser of transport is guaranteed
cargo delivery through a contractual document known as a Bill of Lading. However, the Bill of
Lading specifies that delivery should occur at the earliest convenience or at similarly ambiguous
timeframes. To avoid the possibility of a vessel continuously carrying a small cargo while servicing
more profitable cargoes, artificial delivery time windows were introduced. These artificial time
windows are created by multiplying the sailing and port times by a specific factor (e.g., 2). This
design decision allows for deviations to purchase bunker fuel and pick up other cargoes while
ensuring that all cargoes are delivered within a reasonable time.

Additionally, this thesis assumes that the time required to purchase and load bunker fuel is in-
dependent of the quantity of cargo being loaded. This assumption aligns with Vilhelmsen et al.
(2014), where the fixed time cost associated with a vessel berthing and preparing to take on bunker
fuel typically outweighs the variable time spent on loading the bunker fuel itself. Consequently,
a fixed amount of time for bunker operations is added to the sailing time for trips that involve
arriving at a bunker port.

At the beginning of the planning period, vessels may be located either at a port or at sea. As they
operate continuously throughout the day, it is unlikely for all vessels to be in port simultaneously.
Therefore, vessels become available at specific ports, corresponding to the discharge port of a
vessel’s ongoing voyage. Upon completing its service at the last planned discharge port, a vessel
concludes its route by traveling to an artificial destination node at zero cost and time. This
destination node is assumed to be within the same region as the preceding delivery or bunker
node. The amount of bunker fuel carried by vessels at the destination node is considered a resource
and is priced accordingly. The difference in bunker load between the origin and destination nodes
is valued based on the average price of all bunker ports. The value of the additional bunker is
reflected in the model’s objective function.
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Some bunker ports can also serve as pickup or delivery ports for cargo. This duality means
that there is a possibility of simultaneous bunkering and cargo-loading activities. However, such
concurrent operations are not permitted in the TSRSPBO studied in this thesis. Instead, for trips
between ports that involve both cargo-related and bunker-related activities, the travel time, cost,
and bunker consumption are all set to zero. This consideration allows for subsequent but not
simultaneous loading of cargo and bunkering activities. Consultations with Western Bulk have
confirmed that excluding the option of concurrent bunkering is reasonable. It was found that less
than 20% of their port visits involved this type of bunkering activity (Husby, 2022).

In theory, vessels can travel from one bunker node to another. This scenario could materialize
when a vessel with low fuel levels stops at an expensive bunker port to partially refill its bunker
tank before proceeding to a more cost-effective bunker port for a complete refill. However, Husby
(2022) indicated that such scenarios are rare. As incorporating such bunker-to-bunker legs would
significantly increase the complexity of the model, they are excluded.

As the TSRSPBO studied in this thesis optimizes the expected fleet-wide profit during the planning
horizon, optimal solutions should be characterized by favorable vessel distributions across regions.
To model such characteristics, constraints are introduced that determine the number of vessels
allocated in each region at the end of the planning period. These constraints reflect the ship
operator’s market expectations, with more vessels allocated to regions expected to offer numerous
profitable cargoes. Conversely, fewer vessels are allocated to regions with worse outlooks. A
repositioning cost is introduced to assess the quality of regional vessel allocations. This vessel-
specific cost considers sailing time, fuel consumption, and potential canal fees and estimates the
cost of repositioning a vessel from its final destination to a given region. The profit-maximizing
objective function of the model is extended by subtracting the total repositioning cost required
to adhere to the regional constraints. The repositioning term penalizes unfavorable allocations
and rewards favorable ones. The resulting model becomes a two-stage optimization model, where
routing decisions are decided in the first-stage, and the recourse cost of repositioning the fleet is
calculated in the second-stage. It is important to note that second-stage cost is solely used to price
regional vessel distributions and does not provide operational support. Due to the uncertainty
regarding the number of vessels to be allocated in each region, stochastic scenarios are introduced
with associated probabilities. Thus, regional constraints are defined for each region and scenario,
resulting in a stochastic two-stage optimization model that is leveraged to model the TSRSPBO
studied in this thesis.

5.2 Arc Flow Notation

The notation and formulation presented in this section follow the arc flow formulation of the Tramp
Ship Routing and Scheduling Problem presented by Christiansen et al. (2007), the flexible cargo
quantities extension formulated in Christiansen and Fagerholt (2014), and the bunker management
extension devised by Vilhelmsen et al. (2014). Additional notation is introduced to present the
stochastic formulation of the problem.

Let the fleet of vessels be represented by the set V, indexed by v. Assume N cargoes are available
for transport, indexed by i. The sets of pickup and delivery nodes are given by NP = {0, . . . , N}
and ND = {N + 1, . . . , 2N}, respectively. These sets allow each cargo i to be represented by a
pickup node i ∈ NP and a delivery node N + i ∈ ND. As such, the set of all cargo-related nodes is
represented as N = NP ∪ ND. The set of pickup nodes NP is partitioned into NP = NC ∪ NO,
where NC and NO denote the mandatory contracted and optional spot cargoes, respectively.
A vessel has a node of origin o(v), a geographical position at sea or in port. It is assigned an
artificial destination node d(v), which a vessel will travel to after its last planned discharge node
service. Due to cargo capacity, depth, and cargo handling equipment restrictions, some vessels
and nodes in N may be incompatible. Thus, the set of nodes a vessel v may visit is represented
as Nv ⊆ N ∪ {o(v), d(v)}. (Nv,Av) defines a base network for each vessel v, where the set of
arcs Av ⊆ {(i, j)|i ∈ Nv, j ∈ Nv} represents all arcs traversable by vessel v with respect to time
and bunker consumption. The pickup and delivery nodes compatible with vessel v are defined as
NP

v = NP ∩Nv and ND
v = ND ∩Nv for convenience.
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The next step is extending the base network (Nv,Av) to allow vessel visits at bunker option nodes.
Let B be the set of bunker option nodes. Similarly, as for the cargo-related nodes, vessels and
bunker option nodes may be incompatible. Thus, set Bv ⊆ B denotes the bunker option nodes
that vessel v may visit. The set of base nodes Nv for vessel v is extended to include the nodes
in Bv such that N̂v = Nv ∪ Bv. Further, the set of base arcs Av is extended by adding all arcs
connecting nodes in Nv \ d(v) with nodes in Bv that are traversable by vessel v with respect to
time and bunker. The arcs from the destination node d(v) are excluded as the next node to visit
is unknown. As such, the extended set of arcs is defined as Âv = Av ∪ AB

v , where AB
v is the set

of arcs for vessel v connecting bunker option nodes Bv to the nodes in Nv \ d(v). The extended
cargo-bunker network is thereby (N̂v, Âv).

Each node in the (N̂v, Âv) graphs is associated with a region k ∈ K. The set of scenarios is
represented by S, indexed by s.

Let TS
ijv be the sailing time from node i to node j for a given vessel v and arc (i, j) ∈ Âv. If

node j is a bunker node, a fixed time is added to TS
ijv, signifying the time spent bunkering. The

time required to load or discharge one unit of cargo i with vessel v is defined as TQ
iv . The variable

voyage cost Cijv accounts for the costs of visiting node i and the sailing costs from node i to
node j for vessel v. It is important to note that the cost of the purchased bunker is not included
in this parameter as the purchase of bunker will be modeled separately. Instead, let PB

i denote
the cost of purchasing one unit of bunker available in bunker option node i ∈ B. The bonus
bunker remaining at the destination node d(v) is represented as P̃ and calculated as the mean of
all available bunker node prices. The charter cost of servicing a contracted cargo i by a spot ship
is denoted CS

i . Further, the bunker consumption at sea is denoted BS
ijv for a vessel v traversing

the arc (i, j) ∈ Âv. The bunker consumed by vessel v in node i per unit of time is represented by
BP

iv. There is a unit revenue Ri generated for transporting cargo i ∈ NP . For each node i ∈ Âv

visited by vessel v, there is a time window
[
T iv, T iv

]
for the pickup and delivery time, defined by

the earliest time T iv and the latest time T iv of the visit. Additionally, the bunker level on board
each vessel v must be within a lower limit Bv and an upper limit Bv to ensure realistic and safe

operation. The quantity of cargo that can be transported is flexible within interval
[
Q

i
, Qi

]
, where

Q
i
is the minimum quantity and Qi is the maximum quantity that must be transported if cargo i

is serviced. The cargo carrying capacity of vessel v is denoted Kv. Let Aik be equal to 1 if node
i is in region k, and 0 otherwise. Let RK

ks represent the number of vessels that are to be allocated
in each region, r, and in each scenario, s. Further, let CB

d(v)k represent the repositioning cost for

vessel, v, from the last visited node, d(v), to region k. Finally, let Ps represent the probability of
scenario s.

The binary variable xijv is assigned the value 1 if vessel v traverses the arc (i, j) ∈ Âv, and 0
otherwise. The variables tiv denote the time vessel v begins service at node i. The cargo load on
board a vessel v when it leaves node i is represented by the variable lCiv. Similarly, the variable lBiv
represents the bunker load on board vessel v just after completing service at node i. The quantity
of cargo i transported by vessel v is represented by qiv, and the quantity of bunker purchased by
vessel v at bunker option node i is given by the variable biv. To represent whether a contracted
cargo is serviced by a spot ship, the binary variable zi is assigned the value 1, or 0 otherwise. The
binary variable yi is assigned a value of 1 if the optional spot cargo i is serviced, and 0 otherwise.
Let the binary variable rvk be equal to 1 if vessel v’s last visited node is located in region k, and
0 otherwise. Finally, let the binary stochastic second-stage variable xB

d(v)vks be equal to 1 if vessel

v repositions from its last visited node d(v) to region k in scenario s, and 0 otherwise.

Tables 5.1 - 5.2 provide a summary of the sets, variable, and parameters introduced in this section,
respectively.
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Set Notation Set Description
V Set of vessels
B Set of bunker option nodes
Bv Set of bunker option nodes that vessel v may service
N Set of all cargo-related nodes
ND Set of delivery nodes
NP Set of pickup nodes
NC Set of pickup nodes for the mandatory contracted cargoes
NO Set of pickup nodes for the optional spot cargoes
Nv Set of nodes that can be serviced by vessel v, including the origin node and an

artificial destination node
NP

v Set of pickup nodes that vessel v may service
ND

v Set of delivery nodes that vessel v may service
Av Set of all arcs traversable by vessel v

N̂v Extended set of nodes and bunker option nodes that vessel v may service

Âv Extended set of arcs between nodes and bunker option nodes that vessel v may
traverse

K Set of shipping regions
S Set of scenarios

Table 5.1: Model Sets

Variable Notation Variable Domain Variable Description

xijv v ∈ V, (i, j) ∈ Âv 1 if vessel v services node i just before node j,
0 otherwise

tiv v ∈ V, i ∈ N̂v Time of which vessel v begins service at node i
biv v ∈ V, i ∈ Bv The bunker quantity purchased by vessel v at node i

lCiv v ∈ V, i ∈ N̂v Cargo load on board vessel v just after completing
service at node i

lBiv v ∈ V, i ∈ N̂v Bunker load on board vessel v just after completing
service at node i

qiv v ∈ V, i ∈ NP
v Quantity of cargo i that is transported by vessel v

yi i ∈ NO 1 if the optional spot cargo is transported, 0 otherwise
zi i ∈ NP 1 if cargo at node i is serviced by vessel from

the spot market, 0 otherwise
rvk v ∈ V, k ∈ K 1 if vessel v’s last visited node is located in region k,

0 otherwise
xB
d(v)vks v ∈ V, k ∈ K, s ∈ S 1 if vessel v repositions from its last visited node

to region k in scenario s, 0 otherwise

Table 5.2: Model Variables
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Parameter Notation Parameter Domain Parameter Description
N Number of available cargoes

TS
ijv v ∈ V, (i, j) ∈ Âv Sailing time from node i directly to node j for

vessel v

TQ
iv v ∈ V, i ∈ N̂v Time required to load or discharge one unit of

cargo at node i with vessel v

Cijv v ∈ V, (i, j) ∈ Âv Cost of servicing node i and sailing directly from
node i to node j with vessel v, cost of
purchasing bunker not included

PB
i i ∈ B Price of purchasing one unit of bunker at the

bunker option i

P̃ Unit price of bonus bunker
CS

i i ∈ NP Cost of servicing the cargo at node i with
a spot ship

BS
ijv v ∈ V, (i, j) ∈ Âv Total bunker consumption for vessel v while

sailing directly from node i to node j

BP
iv v ∈ V, i ∈ N̂v Port bunker consumption for vessel v while in

node i
B0

v v ∈ V Initial bunker level on board vessel v
Ri i ∈ NP Revenue generated from transporting one unit

of cargo from node i

T iv v ∈ V, i ∈ N̂v The latest time at which vessel v may begin its
service at node i

T iv v ∈ V, i ∈ N̂v The earliest time at which vessel v may begin its
service at node i

Bv v ∈ V Maximum bunker level for vessel v
Bv v ∈ V Minimum bunker level for vessel v
Qi i ∈ NP Maximum quantity of the cargo at node i to be

transported
Q

i
i ∈ NP Minimum quantity of the cargo at node i to be

transported
Kv v ∈ V Cargo carrying capacity of vessel v

Aik i ∈ N̂v, k ∈ K 1 if node i is in region k, 0 otherwise
RK

ks k ∈ K, s ∈ S Number of vessels to be allocated in region k
in scenario s

CB
d(v)k v ∈ V, k ∈ K Reposition cost from vessel v’s last visited node

to region k
Ps s ∈ S Probability of scenario s

Table 5.3: Model Parameters

5.3 Arc Flow Mathematical Model

This section provides a mathematical model of the stochastic two-stage TSRSPBO studied in this
thesis. In particular, Section 5.3.1 provides the first-stage formulation of the problem. Section
5.3.2 presents the second-stage phase of the problem.

5.3.1 Arc Flow First-Stage Formulation

This section provides the first-stage formulation of the two-stage TSRSPBO, including the first-
stage objective function, network flow constraints, temporal constraints, cargo constraints, bunker
constraints, regional constraints, and variable domain constraints.

27



Arc Flow Objective Function

max
∑
v∈V

∑
i∈NP

Riqiv −
∑
v∈V

∑
(i,j)∈Âv

Cijvxijv −
∑

i∈NC

CS
i zi

−
∑
v∈V

∑
i∈Bv

Pibiv +
∑
v∈V

P̃ · (lBd(v)v −B0
v)−Q(r)

(5.1)

The objective function (5.1) aims to maximize the total profit for the deployed fleet. The first
term specifies the revenue generated for both contracted and optional cargoes as a function of the
quantity transported. The second term specifies the variable voyage costs associated with servicing
a cargo. The final term on the first line represents the charter costs associated with servicing a
contracted cargo with a spot ship. Together, the first line describes the objective presented by
Christiansen and Fagerholt (2014). The fourth term describes the cost associated with purchasing
bunker, and the fifth term models the value of the bonus bunker remaining at the destination
node. Note that if the bunker level at the destination is higher than at the origin, this term
will positively contribute to the objective. Conversely, a lower bunker level at the destination
than at the origin yields a negative contribution. The final Q(r) term denotes the second-stage
recourse cost for repositioning vessels to suitable regions. The symbol r denotes the collection of
rvk variables stating whether a vessel v’s last visited node is located in region k, or not. The Q(r)
term is explained further in Section 5.3.2.

Arc Flow Network Flow Constraints

∑
v∈V

∑
j∈N̂v

xijv + zi = 1 i ∈ NC (5.2)

∑
v∈V

∑
j∈N̂v

xijv − yi = 0 i ∈ NO (5.3)

∑
j∈N̂v

xo(v)jv = 1 v ∈ V (5.4)

∑
j∈N̂v

xijv −
∑
j∈N̂v

xjiv = 0 v ∈ V, i ∈ N̂v \ {o(v), d(v)} (5.5)

∑
i∈N̂v

xid(v)v = 1 v ∈ V (5.6)

∑
j∈N̂v

xijv −
∑
j∈N̂v

xN+i,jv = 0 v ∈ V, i ∈ NP
v (5.7)

Constraints (5.2) ensure that all contract cargoes are transported by a vessel in the predefined fleet
or by a spot ship. In contrast, Constraints (5.3) state that all spot cargoes must be transported by
a vessel in the predefined fleet or not at all. Constraints (5.4) ensure that all vessels begin a voyage
from their origin node and travel to a pickup node, a bunker option node, or directly to their
destination node. Constraints (5.5) denote the flow conservation, while Constraints (5.6) ensure
that all vessels travel to their destination node, either from a delivery node, a bunker option node,
or their origin node. Together, Constraints (5.4) - (5.6) describe the flow on the sailing route used
by vessel v. For each cargo i and vessel v, Constraints (5.7) ensure that the same vessel services
both the pickup and the cargo’s corresponding delivery node.
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Arc Flow Temporal Constraints

xijv

(
tiv + TQ

iv qiv + TS
ijv − tjv

)
≤ 0 v ∈ V, (i, j) ∈ Âv (5.8)

|i ∈ NP
v

xijv

(
tiv + TQ

iv qi−N,v + TS
ijv − tjv

)
≤ 0 v ∈ V, (i, j) ∈ Âv (5.9)

|i ∈ ND
v

xijv

(
tiv + TS

ijv − tjv
)
≤ 0 v ∈ V, (i, j) ∈ Âv (5.10)

|i /∈ NP
v ∧ i /∈ ND

v

tiv + TQ
iv qiv + TS

i,N+i,v − tN+i,v ≤ 0 v ∈ V, i ∈ NP
v (5.11)

T iv ≤ tiv ≤ T iv v ∈ V, i ∈ N̂v (5.12)

The above constraints handle the temporal aspects of the problem. Constraints (5.8) state that if
vessel v travels directly from node i to node j, then, the time at which a vessel v begins loading
of cargo in node j must be greater than or equal to the time at which the vessel began loading of
cargo in node i plus the sum of a quantity dependent loading time at node i and the sailing time
from node i to node j. Similarly, Constraints (5.9) specify the time progression for delivery nodes if
vessel v travel directly from node i to node j. Note, however, that the cargo quantity variable qiv is
only defined for pickup nodes, and as such the term that specifies the variable discharge time uses
a different index. Constraints (5.10) describe a similar time flow for origin, bunker, and destination
nodes as there is no cargo loading or discharging at these nodes. Constraints (5.11) are precedence
constraints forcing the pickup node to be serviced before its corresponding delivery node. The
inequality signs of Constraints (5.8) - (5.11) give vessels the option to wait before beginning their
service at node j. Finally, Constraints (5.12) are the time window constraints of within a vessel
must begin their service at node i.

Arc Flow Cargo Constraints

xijv

(
lCiv + qjv − lCjv

)
= 0 v ∈ V, (i, j) ∈ Âv (5.13)

|j ∈ NP
v

xi,N+j,v

(
lCiv − qjv − lCN+j,v

)
= 0 v ∈ V, (i,N + j) ∈ Âv (5.14)

|j ∈ NP
v

xijv

(
lCiv − lCjv

)
= 0 v ∈ V, (i, j) ∈ Âv (5.15)

|j ∈ Bv

lCo(v),v = 0 v ∈ V (5.16)

qiv ≤ lCiv ≤
∑
j∈N̂v

Kvxijv v ∈ V, i ∈ NP
v (5.17)

0 ≤ lCN+i,v ≤
∑
j∈N̂v

(Kv − qiv)xN+i,jv v ∈ V, i ∈ NP
v (5.18)

∑
j∈N̂v

Q
i
xijv ≤ qiv ≤

∑
j∈N̂v

Qixijv v ∈ V, i ∈ NP
v (5.19)

The constraints in this paragraph describe the restrictions related to the handling of the cargo
transported. Constraints (5.13) state that if a vessel v travels directly from node i to a pickup
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node j, then, the cargo load on board the vessel just after completing service at node i plus the
cargo loaded at node j must be equal to the cargo level on board the vessel just after completing
service at node j. Constraints (5.14) specify a similar cargo flow if vessel v travels directly from
node i to delivery node N + j. Further, Constraints (5.15) enforce that if a vessel v travels to a
bunker node j, then the cargo load on board the vessel stays the same as there is no cargo loading
or discharging at bunker nodes. Note that the equality sign in Constraints (5.13) - (5.15) ensure
that no cargo is misplaced during the shipment. Constraints (5.17) describe the cargo load capacity
restrictions at pickup nodes, i.e., that the cargo loaded by vessel v at pickup node i must be less
or equal to the cargo load on board just after the vessel completes its service of node i which must
be less or equal to the total cargo carrying capacity of the vessel. Constraints (5.18) specify the
cargo discharge capacity restrictions at delivery nodes, i.e., that the cargo load on board vessel
v just after completing its service at delivery node N + i must be greater or equal to zero and
less than or equal to the cargo load capacity of the vessel less the cargo loaded at pickup node i.
Finally, Constraints (5.19) ensure that the cargo loaded at pickup port i is within the minimum
and maximum cargo load limits. The summations in Constraints (5.17), (5.18), and (5.19) are
introduced to strengthen the formulation of the model by enforcing only one of the xijv variables
involved in the summation to be non-zero.

Arc Flow Bunker Constraints

xijv

(
lBiv −BS

ijv −BP
jvT

Q
jvqjv − lBjv

)
= 0 v ∈ V, (i, j) ∈ Âv (5.20)

|j ∈ NP
v

xijv

(
lBiv −BS

ijv −BP
ivT

Q
jvqj−N,v − lBjv

)
= 0 v ∈ V, (i, j) ∈ Âv (5.21)

|j ∈ ND
v

xijv

(
lBiv −BS

ijv + bjv − lBjv
)
= 0 v ∈ V, (i, j) ∈ Âv (5.22)

|j ∈ Bv

xijv

(
lBiv −BS

ijv − lBjv
)
= 0 v ∈ V, (i, j) ∈ Âv (5.23)

|j ∈ {d(v)}

lBo(v)v = B0
v v ∈ V (5.24)∑

j∈N̂v

(
Bv +BS

ijv +BP
jvT

Q
jvqjv

)
xijv ≤ lBiv ≤ Bv

∑
j∈N̂v

xijv v ∈ V, i ∈ N̂v (5.25)

biv ≤
(
Bv −Bv

) ∑
j∈N̂v

xijv v ∈ V, i ∈ Bv (5.26)

Constraints (5.20) - (5.26) describe the bunker constraints of the model. Constraints (5.20) state
that if vessel v travels directly from node i to pickup node j, then, the bunker load on board just
after completing service at node i less the bunker consumption of sailing from node i to node j less
the bunker consumed while loading at node j must be equal to the bunker load on board just after
completing service at node j. Constraints (5.21) specify the same balance for the delivery nodes
j, using the similar indexing scheme as before. Constraints (5.22) specify the bunker load balance
for bunker nodes j at which there is no cargo handling. There is, however, bunker loading at node
j which is added to the bunker load balance. Constraints (5.23) describe the bunker load balance
during travel to the destination node as there is no bunkering nor bunker consumption in port.
The quality signs in (5.20) - (5.23) ensure that no bunker is lost during travel. Constraints (5.24)
specify the bunker level on board vessel v at the beginning of the planning period. Constraints
(5.25) state the bunker load on board vessel v just after completing its service at node i must be
greater than or equal to the minimum bunker level of the vessel plus the bunker consumed during
sailing and cargo handling in node j and less than or equal to the total bunker capacity of the
vessel. Constraints (5.26) ensure that the bunker purchased by vessel v at bunker node i is less
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than or equal to the difference between the minimum and maximum bunker load capacity. The
summations in (5.25) and (5.26) are again strengthening the formulation of the model, enforcing
only one of the xijv variables involved in the summation to be non-zero.

Arc Flow Constraints

rvk =
∑
i∈N̂v

Aikxid(v)v k ∈ K, v ∈ V (5.27)

Constraints (5.27) assign the correct values to the rvk variables such that rvk equals 1 if vessel v’s
last visited node is located in region k, and 0 otherwise. The collection of rvk variables, r, is used
to calculate the second-stage recourse cost.

Arc Flow Binary and Non-Negativity Constraints

xijv ∈ {0, 1} v ∈ V, (i, j) ∈ Âv (5.28)

yi ∈ {0, 1} i ∈ NO (5.29)

zi ∈ {0, 1} i ∈ NC (5.30)

tiv ∈ R+ v ∈ V, i ∈ N̂v (5.31)

qiv ∈ R+ v ∈ V, i ∈ NP
v (5.32)

biv ∈ R+ v ∈ V, i ∈ B (5.33)

lCiv ∈ R+ v ∈ V, i ∈ N̂v (5.34)

lBiv ∈ R+ v ∈ V, i ∈ N̂v (5.35)

rvk ∈ {0, 1} k ∈ K, v ∈ V (5.36)

The xijv variables in Constraints (5.28) are binary as they specify whether a vessel v travels
directly from node i to node j, or not. The yi variables in Constraints (5.29) are binary as they
indicate whether a spot cargo is serviced, or not. The zi variables in Constraints (5.30) are binary
as they state whether a spot ship is used to transport a contracted cargo or not. The remaining
variables specified by Constraints (5.31) - (5.35) can take fractional values and are required to be
non-negative. Constraints (5.31) state that the time variables tiv can never take on values from
before the planning period begins. Constraints (5.32) denote that a vessel v may never transport
negative cargo from node i. Constraints (5.33) specify that a vessel v may never purchase a negative
amount of bunker at bunker node i. Constraints (5.34) ensure that a vessel v may never have a
negative cargo load on board. Constraints (5.35) state that there may never be a negative amount
of bunker on board vessel v at node i. Finally, Constraints (5.36) confine the rvk variables to be
binary as they are designed to equal 1 if vessel v’s last visited node is located in region k, and 0
otherwise.
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5.3.2 Arc Flow Second-Stage Formulation

Q(r) = min
∑
s∈S

Ps

(∑
v∈V

∑
k∈K

CB
d(v)kx

B
d(v)vks

)
(5.37)

s.t. ∑
k∈K

xB
d(v)vks ≤ 1 v ∈ V, s ∈ S (5.38)

RK
ks =

∑
v∈V

rvk + xB
d(v)vks −

∑
k′∈K\{k}

Ad(v)kx
B
d(v)vk′s

 k ∈ K, s ∈ S (5.39)

xB
d(v)vks ∈ {0, 1} v ∈ V, k ∈ K, s ∈ S (5.40)

Objective (5.37) and Constraints (5.38) - (5.40) represent the stochastic second-stage recourse cost
problem denoted by Q(r). Objective (5.37) minimizes the expected cost of repositioning vessels
from their last visited node to the region they are to be allocated in aggregated over each scenario
s ∈ S. Constraints (5.38) state that a vessel v may only reposition to at most one region in each
scenario s. Constraints (5.39) ensure that the number of vessels in each region k in each scenario s
equals the predetermined parameter, RK

ks. The first term in the variable expression counts up the
number of vessels ending up in each region k in each scenario s as a consequence of the first-stage
solution. The second term adds the number of vessels repositioning into region k in scenario s.
The final term counts up the number of vessels repositioning out from region k in scenario s which
is subtracted from the two previous terms. Thus, the variable expression in Constraints (5.39)
correctly count up the number of vessels ending up in each region r in each scenario s. Finally,
Constraints (5.40) confine the xd(v)vks variables to their binary domain.

5.4 Linearizations

In the presented arc flow model, there are nonlinearities in the balance constraints for time, cargo,
and bunker. In addition, there are nonlinearities in Constraints (5.18) handling the discharge load
capacities of the vessels, as well as in Constraints (5.25), controlling the bunker load capacities
of the vessels. This section provides methods to linearize these constraints if the model is to be
solved using a commercial MILP solver. In particular, Section 5.4.1 presents linearized balance
constraints, while Section 5.4.2 linearizes the capacity constraints.

5.4.1 Linearized Balance Constraints

Big-M notation is introduced to linearize the balance Constraints (5.8) - (5.10), (5.13) - (5.15),
and (5.20) - (5.23). As such, the multiplication of xijv variables with the balance equation can
be eliminated. A large Big-M constant multiplied by (1− xijv) is added or subtracted from the
LHS depending on the type of inequality sign. To maintain a tight formulation, it is preferable to
assign the constant with the lowest possible value that does not remove optional feasible solutions
to the problem. For each constraint, the value of the Big-M should be chosen such that it makes
the search space smaller by cutting away infeasible or non-optional feasible solutions.

tiv + TQ
iv qiv + TS

ijv − tjv −M1
ijv(1− xijv) ≤ 0 v ∈ V, (i, j) ∈ Âv (5.41)

|i ∈ NP
v

tiv + TQ
iv qi−N,v + TS

ijv − tjv −M2
ijv(1− xijv) ≤ 0 v ∈ V, (i, j) ∈ Âv (5.42)

|i ∈ ND
v

tiv + TS
ijv − tjv −M3

ijv(1− xijv) ≤ 0 v ∈ V, (i, j) ∈ Âv (5.43)

|i /∈ ND
v ∧ i /∈ NP

v
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Constraints (5.41) - (5.43) show the resulting temporal time balance constraints after linearizing.
If vessel v travels directly from node i to node j, then the Big-M term goes away. However, if
vessel v does not travel directly from node i to node j, then the Big-M term is active, and must
be of sufficient size for the LHS of the constraint to remain negative. The calculations of the
temporal Big-M values can be found in Equations (5.44) - (5.46). In Equation (5.44), the zero
inside the maximum operator ensure that the Big-M term does not contribute with a positive value
if the remaining of the LHS in Constraints (5.41) is negative. The other term inside the maximum
term gives the smallest value guaranteed to be greater in magnitude than the rest of the LHS
in Constraint (5.41). The values are defined as the latest time vessel v may begin its service at
pickup node i plus the maximum time it takes to load at node i plus the sailing time directly from
node i to node j less the minimum time at which the vessel may begin service at node j. The
minimum operator ensures a tighter formulation by picking the minimum of the vessel capacity or
the highest possible value that can be transported. Equations (5.45) give similar values for delivery
ports with a similar indexing scheme as before. Finally, Equations (5.46) specify the Big-M value
for the nodes that are neither pickup or delivery nodes, where cargo handling is nonexistent.

M1
ijv = max

{
0, T iv + TQ

iv min{Kv, Qiv}+ TS
ijv − T jv

}
v ∈ V, (i, j) ∈ Âv (5.44)

|i ∈ NP
v

M2
ijv = max

{
0, T iv + TQ

iv min{Kv, Qi−N,v}+ TS
ijv − T jv

}
v ∈ V, (i, j) ∈ Âv (5.45)

|i ∈ ND
v

M3
ijv = max

{
0, T iv + TS

ijv − T jv

}
v ∈ V, (i, j) ∈ Âv (5.46)

|i /∈ ND
v ∧ i /∈ NP

v

Constraints (5.47) - (5.52) give the resulting cargo balance constraints after linearizing. Due to
the equality sign in the origin Constraints (5.13) - (5.15), each constraint has been split into two
inequalities. In the first, the Big-M term is subtracted from the LHS and used with a ≤ sign. In
the other, the Big-M term is added to the LHS and used with a ≥ sign. The value of the Big-M
constant is the maximum capacity, Kv, of vessel v.

lCiv + qjv − lCjv −Kv(1− xijv) ≤ 0 v ∈ V, (i, j) ∈ Âv (5.47)

|j ∈ NP
v

lCiv + qjv − lCjv +Kv(1− xijv) ≥ 0 v ∈ V, (i, j) ∈ Âv (5.48)

|j ∈ NP
v

lCiv − qjv − lCN+j,v −Kv(1− xi,N+j,v) ≤ 0 v ∈ V, (i,N + j) ∈ Âv (5.49)

|j ∈ NP
v

lCiv − qjv − lCN+j,v +Kv(1− xi,N+j,v) ≥ 0 v ∈ V, (i,N + j) ∈ Âv (5.50)

|j ∈ NP
v

lCiv − lCjv −Kv(1− xijv) ≤ 0 v ∈ V, (i, j) ∈ Âv (5.51)

|j ∈ Bv
lCiv − lCjv +Kv(1− xijv) ≥ 0 v ∈ V, (i, j) ∈ Âv (5.52)

|j ∈ Bv

Constraints (5.53) - (5.60) show the resulting bunker balance constraints after linearizing the
original Constraints (5.20) - (5.23). The results can be explained in a similar manner as the
linearization of the cargo balance constraints. The difference lies in using the maximum bunker
capacity Bv of vessel v as the Big-M constant value.
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lBiv −BS
ijv −BP

jvT
Q
jvqjv − lBjv −Bv(1− xijv) ≤ 0 v ∈ V, (i, j) ∈ Âv (5.53)

|j ∈ NP
v

lBiv −BS
ijv −BP

jvT
Q
jvqjv − lBjv +Bv(1− xijv) ≥ 0 v ∈ V, (i, j) ∈ Âv (5.54)

|j ∈ NP
v

lBiv −BS
ijv −BP

ivT
Q
jvqj−Nv − lBjv −Bv(1− xijv) ≤ 0 v ∈ V, (i, j) ∈ Âv (5.55)

|j ∈ ND
v

lBiv −BS
ijv −BP

ivT
Q
jvqj−Nv − lBjv +Bv(1− xijv) ≥ 0 v ∈ V, (i, j) ∈ Âv (5.56)

|j ∈ ND
v

lBiv −BS
ijv + bjv − lBjv −Bv(1− xijv) ≤ 0 v ∈ V, (i, j) ∈ Âv (5.57)

|j ∈ Bv
lBiv −BS

ijv + bjv − lBjv +Bv(1− xijv) ≥ 0 v ∈ V, (i, j) ∈ Âv (5.58)

|j ∈ Bv

lBiv −BS
ijv − lBjv −Bv(1− xijv) ≤ 0 v ∈ V, (i, j) ∈ Âv (5.59)

|j ∈ {d(v)}
lBiv −BS

ijv − lBjv +Bv(1− xijv) ≥ 0 v ∈ V, (i, j) ∈ Âv (5.60)

|j ∈ {d(v)}

5.4.2 Linearized Capacity Constraints

In the presented arc flow model, there are further nonlinearities in load capacity Constraints (5.18)
and (5.25) that must be resolved to use a commercial MILP solver.

For Constraints (5.18) the nonlinearity is simply resolved by moving the qiv term outside of the
summation. Although this slightly weakens the original constraint, it is an efficient way of handling
the nonlinearity. Constraints (5.61) give the resulting linearized constraints.

0 ≤ lCN+i,v ≤
∑
j∈N̂v

KvxN+i,jv − qiv v ∈ V, i ∈ NP
v (5.61)

In Constraints (5.25), the qjv term inside the summation on the LHS is the cause of the nonlinearity.
It arises due to the bunker consumed in port being dependent on the time it takes to load or
discharge a load of cargo. To resolve the nonlinearity, the bunker consumed in port is rounded up
to the minimum of the capacity of the ship or the largest amount of cargo that may be transported
from node j. This design choice provides some additional robustness regarding the bunker level
on board a vessel as it increases the lower bound of the bunker load variables. Constraint (5.62)
give the linearized formulation of the original Constraints (5.25).

∑
j∈N̂v

(
Bv +BS

ijv +BP
jvT

Q
jv min

{
Kv, Qj

})
xijv ≤ lBiv ≤ Bv

∑
j∈N̂v

xijv v ∈ V, i ∈ N̂v (5.62)
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Chapter 6

Path Flow Solution Method

The linearized version of the arc flow model presented in Chapter 5 may be implemented and solved
using commercial Mixed-Integer Linear Problem (MILP) solvers. However, due to the structure of
the model, it becomes insolvable as the test instance size increases. The intractability was shown
in Omholt-Jensen (2022), who solved a deterministic version of the problem which did not consider
vessel repositioning decisions. Instead, this thesis implements a decomposition approach motivated
by Brønmo et al. (2007b) and Omholt-Jensen (2022), incorporating a priori column generation.

By inspection of the mathematical model presented in Section 5.3, it is clear that only Constraints
(5.2) and (5.3) are fleet-specific. In contrast, Constraints (5.4) - (5.27) are specific to each vessel,
as there is no interaction among the different vessels for these constraints. Furthermore, each
vessel’s objective function splits into separate terms. As such, the structure of the problem lends
itself to decomposition and column generation, in which the complex and vessel-specific constraints
concerning the routing and scheduling can be handled separately in a subproblem for each vessel.
The fleet-specific constraints can thus be placed in a path flow formulation with a reduced number
of constraints but with a large number of columns.

This chapter elaborates on how a Dantzig-Wolfe decomposition can be applied to the arc flow model
and how a priori column generation can be used with the decomposition approach to generate
optimal solutions for larger problem instances. In particular, Section 6.1 presents the required
notation of the problem. Section 6.2 presents the mathematical formulation of the decomposed
stochastic two-stage problem resulting in a path flow formulation. Finally, Section 6.3 provides
the algorithm for generating columns in the path flow problem a priori.

6.1 Path Flow Notation

The stochastic two-stage path flow formulation of the TSRSPBO incorporates the fleet-specific
first-stage Constraints (5.2) and (5.3). However, the variables must be expressed by path flow
variables corresponding to the optimized feasible routes for each vessel v. Let Nv be the set of
feasible sequence of node-visits for vessel v. In this setting, feasible means the sequence of nodes
adheres to Constraints (5.4) - (5.27). For each feasible sequence of nodes n ∈ Nv, there is an
optimal route r in which the optimal amount of cargo is transported, and the optimal of bunker is
purchased to maximize the vessel-specific objective function. Let Rv denote the set of optimized
feasible node sequences for vessel v, indexed by r. The optimized node sequences in Rv for vessel
v are referred to as routes. Further, let the sets V, N , N̂v, NC , NO, K, and S be defined as in the
original arc flow model presented in Chapter 5, denoting the set of vessels, cargo-related nodes,
set of nodes vessel v may visit, contracted cargoes, optional spot cargoes, regions, and scenarios,
respectively.

For each route r ∈ Rv for vessel v there is a vessel-specific profit denoted Rrv. As in the arc
flow model, CS

i denotes the cost of servicing the cargo at pickup node i with a spot ship. A new
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parameter, Airv, is introduced and set equal to 1 if vessel v carries cargo i in the optimized route
r, and 0 otherwise. Let Birv equal 1 if node i is the destination node in route r of vessel v, and
0 otherwise. Let Divk be equal to 1 if node i is in region k for vessel v, and 0 otherwise. As in
the arc flow model, let RK

ks denote the number of vessels to be allocated in each region, r, in each
scenario, s. The CB

ivk parameter represents the repositioning cost from node i for vessel v to region
k. Finally, let Ps be defined as before, denoting the probability of scenario s taking place.

The variable xrv defines a binary variable equal to 1 if vessel v is chosen to sail route r, and 0
otherwise. Variables yi ∈ NO and zi ∈ NC are defined as before, denoting whether or not a spot
cargo is serviced and whether or not a spot ship is used to service a Contract of Affreightment
(CoA) cargo, respectively. Variable xE

iv is defined to equal 1 if vessel v’s destination is node i, and
0 otherwise. Finally, let the second-stage stochastic recourse variable xB

ivks be equal to 1 if vessel
v repositions from node i to region k in scenario s, and 0 otherwise.

Tables 6.1 - 6.3 summarize the notation used in the path flow formulation.

Set Notation Set Description
V Set of vessels
N Set of all cargo-related nodes

N̂v Set of nodes vessel v may visit
NC Set of pickup nodes for the mandatory contracted cargoes
NO Set of pickup nodes for the optional spot cargoes
Rv Set of all routes for vessel v
K Set of regions
S Set of scenarios

Table 6.1: Path Flow Sets

Parameter Notation Parameter Domain Parameter Description
Rrv v ∈ V, r ∈ Rv Vessel specific profit generated by performing

route r for vessel v
CS

i i ∈ NP Cost of servicing the cargo at node i with
a spot ship

Airv i ∈ N , r ∈ Rv, v ∈ V 1 if vessel v carries cargo i in route r,
and 0 otherwise

Birv i ∈ N̂ , r ∈ Rv, v ∈ V 1 if node i is the destination node in route r
of vessel v, 0 otherwise

Divk v ∈ V, i ∈ N̂v, k ∈ K 1 if node i is in region k for vessel v,
0 otherwise

RK
ks k ∈ K, s ∈ S Number of vessels to be allocated in region k

in scenario s

CB
ivk i ∈ N̂ , v ∈ V, k ∈ K Reposition cost from node i for vessel v

to region k
Ps s ∈ S Probability of scenario s

Table 6.2: Path Flow Parameters
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Variable Notation Variable Domain Variable Description
xrv r ∈ Rv, v ∈ V 1 if vessel v is chosen to sail route r,

0 otherwise
yi i ∈ NO 1 if the optional spot cargo is transported,

0 otherwise
zi i ∈ NP 1 if cargo at node i is serviced by vessel from the spot

market, 0 otherwise

xE
iv i ∈ N̂ , v ∈ V 1 if vessel v’s destination is node i, 0 otherwise

xB
ivks i ∈ N̂ , v ∈ V, k ∈ K, s ∈ S 1 if vessel v repositions from node i to region k

in scenario s, 0 otherwise

Table 6.3: Path Flow Variables

6.2 Path Flow Mathematical Model

This section provides the two-stage stochastic path flow formulation of the TSRSPBO studied in
this thesis. The model is presented in two stages in Section 6.2.1 and Section 6.2.2, respectively.

6.2.1 Path Flow First-Stage Formulation

max
∑
v∈V

∑
r∈Rv

Rrvxrv −
∑

i∈NC

CS
i zi −Q(xE) (6.1)

s.t. ∑
v∈V

∑
r∈Rv

Airvxrv + zi = 1 i ∈ NC (6.2)

∑
v∈V

∑
r∈Rv

Airvxrv − yi = 0 i ∈ NO (6.3)

∑
r∈Rv

xrv = 1 v ∈ V (6.4)

xE
iv =

∑
r∈Rv

Birvxrv i ∈ N̂ , v ∈ V (6.5)

xrv ∈ {0, 1} v ∈ V, r ∈ Rv (6.6)

xE
iv ∈ {0, 1} i ∈ N̂ , v ∈ V (6.7)

yi ∈ {0, 1} i ∈ NO (6.8)

zi ∈ {0, 1} i ∈ NC (6.9)

Objective (6.1) and Constraints (6.2) - (6.9) comprise the first-stage formulation of the TSRSPBO.
The first term in Objective (6.1) sums up the vessel-specific profit generated by each of the vessels
in the fleet. The second term denotes the cost of hiring a spot ship to serivce a CoA cargo
and is subtracted from the vessel-specific profit generated. Finally, the second-stage Q(xE) term
representing the recourse cost of repositioning vessels in the fleet is subtracted from the vessel-
specific profit. Here, xE denotes the collection of xE

iv variables specifying whether node i is a vessel
v’s destination node, or not. Constraints (6.2) state that each contracted cargo is either transported
by a vessel in the fleet or by a spot ship. Constraints (6.3) specify that optional cargoes may be
serviced by a vessel in the fleet. Constraints (6.4) ensure that each vessel is assigned exactly one
route. Constraints (6.5) assigns the correct values to the xE

iv variables such that xE
iv is equal to

1 if vessel v’s destination is node i, and 0 otherwise. Constraints (6.6) - (6.9) confine the binary
variables to their respective domains.
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6.2.2 Path Flow Second-Stage Formulation

Q(xE) = min
∑
s∈S

Ps

∑
v∈V

∑
i∈N̂

∑
k∈K

CB
ivkx

B
ivks

 (6.10)

s.t. ∑
k∈K

xB
ivks ≤ xE

iv v ∈ V, i ∈ N̂v, (6.11)
s ∈ S

RK
ks =

∑
v∈V

∑
i∈N̂

Divkx
E
iv + xB

ivks −
∑

k′∈K\{k}

Divkx
B
ivk′s

 k ∈ K, s ∈ S (6.12)

xB
ivks ∈ {0, 1} i ∈ N̂ , v ∈ V, (6.13)

k ∈ K, s ∈ S

Objective (6.10) and Constraints (6.11) - (6.13) define the second-stage path flow formulation of
the TSRSPBO. Objective (6.10) minimizes the recourse cost which consists of the expected cost
of repositioning vessels in the fleet aggregated across each scenario s ∈ S. Constraints (6.11) state
that a vessel may at most reposition to one region. The xE

iv variables are used on the right hand
side of the expression to tighten the model formulation. Constraints (6.12) ensure that the number
of vessels in each region k in each scenario s equals the predetermined parameter, RK

ks. The first
term in the variable expression counts up the number of vessels ending up in each region k in
each scenario s as a consequence of the first-stage solution. The second term adds the number of
vessels repositioning into region k in scenario s. The final term counts up the number of vessels
repositioning out from region k in scenario s which is subtracted from the two previous terms. Thus,
the variable expression in Constraints (6.12) correctly count up the number of vessels ending up
in each region r in each scenario s. Finally, Constraints (6.13) confine the xB

ivks variables to their
binary domain.

6.3 A Priori Column Generation with Cargo and Bunker
Optimization

As input, the two-stage path flow formulation presented in Section 6.2 takes the routes generated
from optimizing the feasible node sequences for a given vessel. The routes are constructed in
two steps. First, all feasible node sequences for each vessel are generated. Section 6.3.1 explains
the generation procedure. Second, routes are generated from each feasible node sequence. This
procedure is presented in Section 6.3.2. For each feasible node sequence for each vessel, a linear
programming problem is solved to determine the optimal amount of cargo to transport and the
optimal amount of bunker to purchase while maximizing the vessel-specific profit function as the
objective function. The linear programming problem is referred to as the Vessel Scheduling Problem
(VSP). The VSP is solved for each feasible sequence of nodes for each vessel.

6.3.1 Node Sequence Generation

Feasible node sequences for each vessel are constructed from a resource constrained Depth-First-
Search on the graph G = (N̂v, Âv) between the origin node o(v) and the destination node d(v)
for vessel v. Algorithms 1 - 3 outline the construction of feasible node sequences for a given
vessel. An adjacency list stores the graph G such that for node i, G[i] returns a neighboring node
j such that (i, j) ∈ Âv. Algorithm 1 explores neighboring nodes recursively until the desired sink
node is reached. By starting from the origin node, o(v), and setting the desired sink node to the
destination node, d(v), the modified Depth-First-Search explores all node sequences starting at
o(v) and ending at d(v). To prevent cycles, an array keeps track of the visited nodes. Once d(v)
is reached, the current path is copied into the set of all feasible node sequences for vessel v, Nv.
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Algorithm 1: Recursive Depth-First-Search for Feasible Node Sequences

Data:
v Vessel name

G = (N̂v, Âv) Graph Network for vessel v stored as adjecency list
o(v) Origin node of vessel v
d(v) Destination node of vessel v
T o(v)v Time at which vessel v first becomes available

B0
v Initial bunker level for vessel v

Result:
Nv Feasible node sequences for vessel v

Define array visited of length |N̂v|
Define arrays path, time, bunker, cargo
Define map⟨(v, i) :array⟩ Nv

Define bool feasible

visited [i] ← false for i . . . |N̂v|
time[0] ← T o(v),v

bunker [0] ← B0
v

cargo[0] ← 0
getFeasibleNodeSequences(o(v), d(v))

Function getFeasibleNodeSequences(i, d(v)):
visited [i] ← true

path.pushBack(i)
if i == d(v) then

Nv[(v, i)]← copy(path)
end
else

for j ∈ G[i] do
feasible ← checkFeasibility(i, j, path, time, bunker, cargo) (Algorithm 2)
if feasible == true ∧visited[j] == false then

time, bunker, cargo←updateResources(time, bunker, cargo) (Algorithm 3)
getFeasibleNodeSequences(j, d(v))

end
end

end
path.pop()
time.pop()
bunker.pop()
cargo.pop()
visited [i] ← false

return
end

If no neighboring nodes lead to the destination node, Algorithm 1 backtracks by removing the last
visited node from the path. As only feasible node sequences are of interest, Algorithm 1 keeps
track of the vessel’s state of time, bunker load, and cargo load. These are considered the vessel’s
resources. Before considering a move to a neighboring node j of node i, Algorithm 1 checks whether
such a move would break any vessel-specific Constraints (5.4) - (5.27). To check any violations,
Algorithm 1 makes a function call to Algorithm 2. If any constraints are broken, Algorithm 1
does not perform the move and proceeds to check the next neighboring node of i. If none of the
constraints were broken, Algorithm 1 updates the vessel’s resource states by making a function
call to Algorithm 3 and moves to node j by performing the search recursively. Algorithm 1 shows
the outline of the modified Depth-First-Search. Algorithm 2 explains how constraint violations are
checked, while Algorithm 3 describes how a vessel’s resource states are updated. Vessel-specific
sets and parameters are available to Algorithms 1 - 3 as class members since the algorithms were
implemented as class methods.
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Algorithm 2: Check Node Sequence Feasibility

Data:
v Vessel name
N Number of cargoes
ND

v Set of delivery nodes for vessel v
NP

v Set of pickup nodes for vessel v
Bv Set of bunker nodes for vessel v
Kv Maximum cargo capacity of vessel v
o(v) Origin node of vessel v
d(v) Destination node of vessel v
PB
i Bunker price at bunker node i

T iv Maximum time at which vessel v may begin service of node i
T iv Minimum time at which vessel v may begin service of node i
Q

i
Minimum amount of cargo to transport from pickup node i

Qi Maximum amount of cargo to transport from pickup node i

TQ
iv Time it takes of load or discharge one unit of cargo at cargo node i for vessel v

TS
ijv Time it takes to traverse arc (i, j) for vessel v

BS
ijv Bunker consumed traversing arc (i, j) for vessel v

BP
iv Bunker consumed at node i for vessel v

Bv Minimum bunker limit for vessel v
Result:
feasible true if feasible node sequence, false if not

1 Function checkFeasibility(i, j, path, time, bunker, cargo):
2 feasible ← true

/* Precedence Constraints */

3 if j ∈ ND
v ∧ j −N /∈ path then feasible ← false

4 if j == d(v) then
5 for p ∈ path do
6 if p ∈ NP

v ∧ p+N /∈ path then feasible ← false

7 end

8 end
/* Time Balance Constraints */

9 if max(time.back(), T iv) + TS
ijv ≥ T iv then feasible ← false

10 if i ∈ NP
v ∧ max(time.back(), T iv) + TQ

ivQi
+ TS

ijv ≥ T iv then feasible ← false

11 if i ∈ ND
v ∧ max(time.back(), T iv) + TQ

ivQi−N
+ TS

ijv ≥ T iv then feasible ← false

12

/* Bunker Balance Constraints */

13 if bunker.back() - BS
ijv ≤ Bv then feasible ← false

14 if j ∈ NP
v ∧ bunker.back() - BS

ijv −BP
jvT

Q
jvmin(Kv, Qj) ≤ Bv then feasible ← false

15 if j ∈ ND
v ∧ bunker.back() - BS

ijv −BP
jvT

Q
jvmin(Kv, Qj−N ) ≤ Bv then feasible ← false

16

/* Cargo Balance Constraints */

17 if j ∈ NP
v ∧ cargo.back()+Q

j
≥ Kv then feasible ← false

18 if cargo.back() ≥ Kv then feasible ← false

19

20 return feasible

21 end

One significant limitation of Algorithm 1 is related to the prevention of cycles. As the recursive
Depth-First-Search algorithm does not allow for cycles during the construction of feasible node
sequences, it might exclude solutions that can be found by the arc flow model presented in Section
5.3. Algorithm 1 might exclude optimal solutions because, in theory, it could be optimal for a
vessel to visit the same bunker node multiple times. In the TSRSPBO studied in this thesis, the
bunker nodes are available for the entire duration of the planning horizon. As such, a one-to-one
correspondence between a bunker port and a bunker node exists. A simple solution to allow for
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Algorithm 3: Update Resources

Data:
v Vessel name
N Number of cargoes
ND

v Set of delivery nodes for vessel v
NP

v Set of pickup nodes for vessel v
Bv Set of bunker nodes for vessel v
Kv Maximum cargo capacity of vessel v
T iv Minimum time at which vessel v may begin service of node i
Q

i
Minimum amount of cargo to transport from pickup node i

Qi Maximum amount of cargo to transport from pickup node i

TQ
iv Time it takes of load or discharge one unit of cargo at cargo node i for vessel v

TS
ijv Time it takes to traverse arc (i, j) for vessel v

BS
ijv Bunker consumed traversing arc (i, j) for vessel v

BP
iv Bunker consumed at node i for vessel v

Bv Maximum bunker limit for vessel v
Result:
time updated time array
bunker updated time array
cargo updated time array

1 Function updateResources(i, d(v)):
/* Time Update */

2 if i ∈ NP
v then time.pushBack(max(time.back(), T iv) + TQ

ivQi
+ TS

ijv)

3 else if i ∈ ND
v then time.pushBack(max(time.back(), T iv) + TQ

ivQi−N
+ TS

ijv)

4 else time.pushBack(max(time.back(), T iv) + TS
ijv)

5

/* Bunker Update */

6 if j ∈ NP
v then bunker.pushBack(bunker.back() −BS

ijv −BP
jvT

Q
jvmin(Kv, Qj))

7 else if j ∈ ND
v then bunker.pushBack(bunker.back() −BS

ijv −BP
jvT

Q
jvmin(Kv, Qj−N ))

8 else if j ∈ Bv then bunker.pushBack(Bv)

9 else bunker.pushBack(bunker.back() −BS
ijv)

10

/* Cargo Update */

11 if j ∈ NP
v then cargo.pushBack(cargo.back()+Q

j
)

12 else if j ∈ ND
v then cargo.pushBack(cargo.back()−Q

j
)

13 else cargo.pushBack(cargo.back())
14

15 return time, bunker, cargo

16 end

multiple bunker visits would be to split the bunker ports into multiple bunker nodes such that the
bunker port’s time windows are partitioned into non-overlapping time windows of any arbitrary
duration. By denoting this duration as DB , the Depth-First-Search will allow for multiple visits
to the same port as long as it is not within the duration of DB . As this duration could be made
arbitrarily small, it can be decreased until it is within a realistic size. However, the drawback of
this approach is the increased number of nodes in the model and, consequently, the increased time
complexity of the solving problem. As such, the implemented path flow solution method presented
in this chapter does not include further discretization of bunker nodes according to their time
windows. It should be noted that this is easily achievable if discrepancies are found between the
optimal arc flow solutions and the Depth-First-Search approach.

In Algorithm 2, each potential move from node i to node j is checked for feasibility according to
Constraints (5.4) - (5.26). In line 2, the boolean variable denoting feasibility is set to true. If
any constraints are broken, the variable is set to false, denoting that Algorithm 1 should skip
to the next neighbor of i. Lines 3-8 correspond to the cargo precedence constraints presented in
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Constraints (5.7) and (5.11). Line 3 states that a vessel may not visit a delivery node before it
has visited its corresponding pickup node. Line 6 ensures that a vessel may only complete a valid
sequence of nodes after visiting all delivery nodes corresponding to the pickup nodes in its path.
Note that it is unnecessary to explicitly enforce the network flow Constraints (5.4) - (5.6) as they
are enforced implicitly by the Depth-First-Search’s traversal procedure. Lines 9-11 make sure that
the time balance equations presented in Constraints (5.8) - (5.10) and (5.12) are not violated.
In lines 10 and 11, the minimum cargo quantity to be transported, Q

i
, is used to calculate the

time spent in port conservatively. Lines 13-15 enforce the bunker balance constraints presented in
Constraints (5.20) - (5.26). In lines 14 and 15, the conservative parameter of the maximum cargo
to be transported, Qi, is used when calculating the bunker consumed in port. Finally, lines 17 and
18 exclude all moves violating Constraints (5.13) - (5.19). Note that the minimum cargo quantity
to be transported, Q

i
, is used to check for feasibility in line 17.

If a move from node i to a neighboring node j is feasible with respect to Algorithm 2, a vessel’s
resource states are updated according to Algorithm 3. In lines 2-4, the time balance is updated
depending on whether node i is a pickup node, a delivery node, or any other node. In lines 6-9,
the bunker balance on board the vessel is updated depending on whether node j is a pickup node,
delivery node, bunker node, or any other node. Finally, lines 11-13 update the cargo on board the
vessel depending on whether node j is a pickup node, delivery node, or any other node.

Algorithm 1 generates a set of all feasible node sequences Nv for vessel v upon completion. Al-
gorithm 1 is run for each vessel in the fleet. Once all feasible node sequences are found for every
vessel in the fleet, the next step is to optimize the node sequences to generate optimal routes.

6.3.2 Route Generation

Given the set of all feasible node sequences, Nv, for vessel v, the Vessel Scheduling Problem (VSP)
is solved for each feasible node sequence, n, for each vessel, v, to generate the optimal route, r.
As the node sequence generation procedure explained in Section 6.3.1 eliminates node sequences
not abiding by the network flow constraints represented by Constraints (5.4) - (5.7), they can
be excluded from the VSP model formulation. Constraints (5.11) are also eliminated as these
precedence constraints are ensured by the node sequence generation. Moreover, the variables xijv

are no longer useful as the nodes the vessel visits are specified by the nodes for a given node
sequence. Thus, the xijv variables are also excluded from the VSP formulation. The subscripts v
are eliminated from the sets, parameters, and variables defined for the arc flow model presented
in Section 5.3, as each model is defined for a given node sequence for a specific vessel. Otherwise,
the sets, parameters, and variables carry the same meaning as defined in Section 5.2. Finally, to
define required indexing notation, let n be a given node sequence for a specific vessel. Let K be
the indexing set of n such that K = {0, 1, . . . , |n| − 1}, indexed by k. Further, let i(k) be the node
of n at index k. By making these adjustments to the arc flow model presented in Chapter 5, the
mathematical VSP formulation can be presented. The Objective Function (6.14) and Constraints
(6.15) - (6.39) define the VSP problem. The problem is a linear programming problem with no
integer or binary variables. As such, it is considerably easier to solve than the arc flow model
presented in Chapter 5. Solving the VSP for each feasible node sequence for each vessel yields
the sets of routes Rv for each vessel v. The objective function value associated with each optimal
schedule s is the vessel-specific optimal profit Rrv for route r used in the path flow formulation.

Objective Function

max
∑

k∈K |i(k)∈NP

Ri(k)qi(k) −
∑
k∈K

Ci(k),i(k+1) −
∑

k∈K |i(k)∈B

Pi(k)bi(k) + P (lBd −B0) (6.14)

The Objective Function (6.14) maximizes the cargo quantity dependent revenue generated less the
cost of traversing the route, the cost of purchasing bunker, and the difference in bunker quantity
on board the vessel priced at the average bunker fuel price. The fixed sailing cost is included as
the objective function value of the optimal solution becomes the Rrv parameter used in the path
flow formulation.
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Temporal Constraints

ti(k) + TQ
i(k)qi(k) + TS

i(k),i(k+1) − ti(k+1) ≤ 0 k ∈ K |i(k) ∈ NP (6.15)

ti(k) + TQ
i(k)qi(k)−N + TS

i(k),i(k+1) − ti(k+1) ≤ 0 k ∈ K |i(k) ∈ ND (6.16)

ti(k) + TS
i(k),i(k+1) − ti(k+1) ≤ 0 k ∈ K |i(k) /∈ ND ∧ i(k) /∈ NP (6.17)

T i(k) ≤ ti(k) ≤ T i(k) k ∈ K (6.18)

The temporal constraints defined by (6.15) - (6.18) ensure the time is updated correctly at the
different nodes in the route and that the time limits of the nodes in the route are adhered to. They
correspond to Constraints (5.8) - (5.12) in the original model.

Cargo Constraints

lCi(k) + qi(k+1) − lCi(k+1) = 0 k ∈ K |i(k + 1) ∈ NP (6.19)

lCi(k) − qi(k+1)−N − lCi(k+1) = 0 k ∈ K |i(k + 1) ∈ ND (6.20)

lCi(k) − lCi(k+1) = 0 k ∈ K |i(k + 1) ∈ B (6.21)

lCo = 0 (6.22)

qi(k) ≤ lCi(k) ≤ K k ∈ K |i(k) ∈ NP (6.23)

0 ≤ lCi(k)+N ≤ K − qi(k) k ∈ K |i(k) ∈ NP (6.24)

Q
i(k)
≤ qi(k) ≤ Qi(k) k ∈ K |i(k) ∈ NP (6.25)

The Constraints (6.19) - (6.21) correspond to Constraints (5.13) - (5.15) and make sure that the
cargo on board the vessel is updated correctly. Constraint (6.22) sets the initial cargo amount on
board a vessel to zero and corresponds to Constraints (5.16). Constraints (6.23) and (6.24) ensure
the cargo quantity transported remains within vessels’ cargo capacity limits at pickup nodes and
delivery nodes, respectively. They correspond to Constraints (5.17) and (5.18). Finally, Constraints
(6.25) correspond to Constraints (5.19) and make certain that the amount of cargo loaded is within
the MoLOO limits.

Bunker Constraints

lBi(k) −BS
i(k),i(k+1) −BP

i(k+1)T
Q
i(k+1)qi(k+1) − lBi(k+1) = 0 k ∈ K |i(k + 1) ∈ NP (6.26)

lBi(k) −BS
i(k),i(k+1) −BP

i(k+1)T
Q
i(k+1)qi(k+1)−N − lBi(k+1) = 0 k ∈ K |i(k + 1) ∈ ND (6.27)

lBi(k) −BS
i(k),i(k+1) + bi(k+1) − lBi(k+1) = 0 k ∈ K |i(k + 1) ∈ B (6.28)

lBi(k) −BS
i(k),i(k+1) − lBi(k+1) = 0 k ∈ K |i(k + 1) = d (6.29)

lBo = B0 (6.30)

B +BS
i(k),i(k+1) +BP

i(k+1)T
Q
i(k+1)qi(k+1) ≤ lBi(k) ≤ B k ∈ K |i(k + 1) ∈ NP (6.31)

B +BS
i(k),i(k+1) +BP

i(k+1)T
Q
i(k+1)qi(k+1)−N ≤ lBi(k) ≤ B k ∈ K |i(k + 1) ∈ ND (6.32)

B +BS
i(k),i(k+1) ≤ lBi(k) ≤ B k ∈ K |i(k + 1) /∈ ND (6.33)

∧i(k + 1) /∈ NP

0 ≤ bi(k) ≤ B −B k ∈ K |i(k) ∈ B (6.34)

Constraints (6.26) - (6.29) correspond to Constraints (5.20) - (5.23), and make sure that the bunker
balance is updated correctly. Constraint (6.30) specifies the initial bunker level and corresponds
to Constraints (5.24). Constraints (6.31) - (6.33) states that the amount of bunker carried by the
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vessel is within its bunker capacity limits and correspond to Constraints (5.25). Finally, Constraints
(6.34) correspond to Constraints (5.26) and specify that the amount of bunker purchased is within
the bunker capacity limits.

Non-Negativity Constraints

ti(k) ∈ R+ k ∈ K (6.35)

qi(k) ∈ R+ k ∈ K |i(k) ∈ NP (6.36)

bi(k) ∈ R+ k ∈ K |i(k) ∈ B (6.37)

lCi(k) ∈ R+ k ∈ K (6.38)

lBi(k) ∈ R+ k ∈ K (6.39)

Constraints (6.35) - (6.39) confine their respective variables to their domain. They correspond to
Constraints (5.31) - (5.35).
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Chapter 7

Iterative Matheuristic for Path
Flow Models

The study by Omholt-Jensen (2022) concludes that the path flow formulation solution method, in
combination with a priori route generation, can solve test instances with 30 cargoes, ten vessels, and
ten bunker ports for a problem similar to this thesis within 30 minutes to optimality. This thesis
extends the problem to a two-stage stochastic programming model by also considering which regions
vessels end up in at the end of the planning period. Since Western Bulk’s long-term fleet consists
of 20-30 vessels, a solution method that can handle larger test instances than solved in Omholt-
Jensen (2022) is needed. To address this challenge, this thesis proposes a heuristic approach
that can deliver good solutions within a reasonable time. The proposed approach is an iterative
matheuristic based on the Adaptive Large Neighborhood Search (ALNS) framework proposed by
Ropke and Pisinger (2006). However, it should be emphasized that the ALNS is incorporated
mainly as a means of generating columns for the path flow problem formulated in Section 6.2.
The path flow problem is referred to as the Vessel Combination Problem (VCP). Once the VCP
is solved, the best obtained solution is fed back into the ALNS procedure for further exploration
of the search space. The iterative matheuristic combining ALNS and VCP is motivated by Ulsrud
et al. (2022) and Archetti et al. (2012), that both leverage iterative heuristic mechanisms to find
columns to a path flow problem. While the solution approach proposed by Ulsrud et al. (2022)
relies heavily on the ALNS framework, Archetti et al. (2012) leverage an iterative matheuristic that
solves a path flow model at regular intervals. The iterative matheuristic proposed in this thesis
combines the solution approaches put forth by Ulsrud et al. (2022) and Archetti et al. (2012).

As the problem studied in this thesis incorporates optimal bunker decisions, it is no longer a
traditional Ship Routing and Scheduling (SRS) problem which is mainly focused on the routing and
scheduling of cargo-related nodes. As a consequence, the iterative matheuristic solution approach
proposed by this thesis relies more heavily on the combination of local search and solving the
VCP at regular intervals than on the ALNS framework. The ALNS is incorporated to explore the
search space and provide the VCP with an increasing number of vessel-specific routes to select
from. In this thesis, the iterative matheuristic solution approach is referred to as ALNS for the
VCP (ALNS-VCP).

Section 7.1 presents a high-level overview of the proposed ALNS-VCP matheuristic. Section 7.2
explains how an initial solution is constructed. Section 7.3 outlines the large neighborhood search
process, a core component of the ALNS procedure. Section 7.4 presents local search extensions
incorporated in the ALNS-VCP. Section 7.5 provide details of how the ALNS-VCP matheuristic
is adapted to handle the stochastic two-stage problem formulation presented in Section 6.2.2.
Section 7.6 explains how the VCP is solved at regular intervals based on the columns encountered
by the ALNS procedure. Section 7.7 outlines the acceptance criterion leveraged in each iteration
of the ALNS-VCP to preserve the diversification of the search. Section 7.8 describes how noise is
introduced to the ALNS-VCP to diversify the search. Finally, Section 7.9 presents the adaptive
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selection process of the destroy and repair operators applied during the ALNS procedure.

7.1 Overview of the ALNS

Construct an initial solution (Section 7.2)

Create a new solution using destroy and repair operators (Section 7.3)

Perform Local Search on the new solution (Section 7.4)

Subtract recourse cost from the new solution (Section 7.5)

Solve VCP?

Solve VCP to get a new solution (Section 7.6)

Accept new solution?

(Section 7.7)

Update accepted solution

Stop ALNS-VCP?

Return best solution

First-stage

Second-stage

Yes

Yes

No

Yes

No
No

Figure 7.1: Flow chart representing the different components of the iterative ALNS-VCP
matheuristic.

Figure 7.1 provides a high-level overview of the implemented ALNS-VCP matheuristic. The al-
gorithm begins by constructing an initial solution. Next, a combination of destroy and repair
operators are applied in sequence to generate a candidate solution xcandidate. To explore other
feasible solutions in the local neighborhood of xcandidate, local search is applied to the xcandidate

solution. The sequence of destroy and repair operators, as well as the local search operators, aims
to find solutions to the first-stage path flow problem that is described in Section 6.2.1.

46



Algorithm 4: Adaptive Large Neighborhood Search for the Vessel Combination Problem (ALNS-VCP)

Data:
IALNS−V CP Number of ALNS-VCP iterations
IS Number of iterations in a segment
IV CP Number of iterations after which the VCP is solved

Result:
xbest Best found solution

1 set current accepted solution xaccepted by constructing an initial feasible solution

2 set the best-found solution xbest ← xaccepted

3 set the current segment m ← 1
4 set adaptive weights wdm equal to 1 for each destroy operator d
5 set adaptive weights wrm equal to 1 for each repair operator r
6 calculate selection probabilities Pdm, Prm based on wdm, wrm, respectively
7

8 for iteration = 1 to IALNS−V CP do
9 set current candidate solution xcandidate ← xaccepted

10 select a destroy operator using selection probabilities Pdm

11 select a repair operator using selection probabilities Prm

12 apply the destroy and repair operators on xcandidate

13 apply local search operators on xcandidate

14 subtract the second-stage cost from the candidate solution’s objective function
15

16 if IV CP iterations have passed since the VCP was solved then
17 improve the candidate solution xcandidate by solving the VCP
18 end
19

20 if xcandidate is accepted according to simulated annealing criterion then
21 xaccepted ← xcandidate

22 end
23

24 if f(xaccepted) > f(xbest) then
25 apply local search operators on xaccepted

26 improve the accepted solution xaccepted by solving the VCP

27 xbest ← xaccepted

28 end
29

30 update scores πd, πr for the repair and destroy operators, respectively
31

32 if IS iterations have passed since last weight update then
33 update weights wd,m+1 and wr,m+1 to be used in segment m+1 based on scores πd, πr,

respectively
34 calculate new selection probabilities Pd,m+1 and Pr,m+1 based on wd,m+1 and wr,m+1,

respectively
35 update the simulated annealing temperature, T
36 update current segment, m ← m+ 1

37 end

38 end

After the local search operators are applied to the xcandidate solution, the expected second-stage
recourse cost is deducted from the profit of xcandidate discovered during the first-stage solution
search. The cost can be calculated by solving the second-stage path flow problem formulated
in Section 6.2.2. Additionally, the Vessel Combination Problem (VCP) is solved in every IV CP

iteration. The VCP is solved using all the routes encountered during the ALNS procedure, and its
solution replaces xcandidate. The VCP differs from the overall path flow solution method presented
in Section 6 because it is only solved for a subset of all feasible routes.
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Once the first-stage and the second-stage phases of the ALNS-VCP matheuristic in Figure 7.1 have
been completed, the candidate solution xcandidate is checked to determine whether it should be
accepted as the accepted solution xaccepted. The acceptance criterion of the implemented ALNS-
VCP follows a simulated annealing approach. Therefore, candidate solutions may be accepted
even though they are worse than the best-known solution. If a candidate solution is accepted,
xaccepted ← xcandidate, and otherwise xcandidate is discarded. Finally, the ALNS-VCP stop criterion
determines whether the matheuristic should continue or return the best-found solution.

Algorithm 4 provides a more detailed pseudocode of the implemented matheuristic. In particular,
it introduces the process of selecting destroy and repair operators in each iteration. Operators
are selected based on probabilities and weights that are updated depending on the success of each
operator in finding promising solutions.

7.2 Constructing an Initial Feasible Solution

The ALNS-VCP matheuristic starts by constructing an initial solution for the provided test in-
stance. Let U denote the set of cargoes not assigned to any vessel in the fleet. The construction
heuristic begins by setting U ← NP , the set of pickup nodes. Additionally, the initial routes for
each vessel are set to only include the origin and destination node, o(v) and d(v), respectively. At
each iteration, a cargo, represented by the pickup and delivery node-pair (i, i+N), is inserted into
a vessel’s route at the position that increases the fleet-specific profit by the most. Subsequently,
i is removed from U . As such, the construction heuristic implements a greedy insertion criterion.
the construction heuristic terminates when either U = ∅ or there are no feasible cargo insertions.

Table 7.1 shows the resulting vessel routes for running the construction heuristic on a test instance
with two vessels and five cargoes. For illustrative purposes, bunker nodes are ignored. Note that
the origin and destination nodes are represented by 0 and 11, respectively.

Iteration 0 1 2 3 4
NP {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5}
ND {6, 7, 8, 9, 10} {6, 7, 8, 9, 10} {6, 7, 8, 9, 10} {6, 7, 8, 9, 10} {6, 7, 8, 9, 10}

U {1, 2, 3, 4, 5} {1, 2, 4, 5} {2, 4, 5} {2, 5} {2}
v1 [0, 11] [0, 3, 8, 11] [0, 3, 8, 11] [0, 4, 3, 9, 8, 11] [0, 4, 3, 9, 8, 11]
v2 [0, 11] [0, 11] [0, 1, 6, 11] [0, 1, 6, 11] [0, 1, 6, 5, 10, 11]

Table 7.1: Numerical example of construction heuristic

In iteration 3, cargo (4, 9) is inserted into vessel v1’s route such that the two cargoes (3, 8) and
(4, 9) are transported as parcels, meaning that they are transported simultaneously. Further, the
construction heuristic terminates after iteration 4, as the cargo (2, 7) cannot be inserted into any
vessel’s route.

The construction heuristic must check the potential route’s profitability when deciding what cargo
to insert in which vessel’s route in what position. Each potential route must also be checked for
feasibility with regard to the time balance, cargo balance, and bunker balance constraints specified
in Constraints (5.8) - (5.26). Additionally, the bunker node that contributes most to a vessel’s
route profit must be inserted at its best position. Algorithm 5 presents a pseudocode for calculating
the profit of a potential cargo insertion. The algorithm is an essential part of the ALNS-VCP and
is utilized by the construction heuristic and the destroy and repair operators.

In lines 4 and 13 of Algorithm 5, a potential route is checked for feasibility with regard to Con-
straints (5.8) - (5.26). In lines 5 and 14, the LP model presented in Section 6.3.2 is solved for a
potential route to generate the optimal vessel-specific profit. Note that Algorithm 5 inserts at most
one bunker node. However, as the input route may contain bunker nodes, the resulting bestRoute
may contain more than one bunker node.
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Table 7.2 illustrates the results of running the construction heuristic on the same test instance as
presented in Table 7.1 when including bunker nodes. The set B = {11, 12} denotes bunker nodes.
Consequently, the destination node d(v) takes on the value of 13.

Iteration 0 1 2 3 4
NP {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5}
ND {6, 7, 8, 9, 10} {6, 7, 8, 9, 10} {6, 7, 8, 9, 10} {6, 7, 8, 9, 10} {6, 7, 8, 9, 10}
B {11, 12} {11, 12} {11, 12} {11, 12} {11, 12}

U {1, 2, 3, 4, 5} {1, 2, 4, 5} {2, 4, 5} {2, 5} {2}
v1 [0, 13] [0, 3, 11, 8, 13] [0, 3, 11, 8, 13] [0, 4, 3, 9, 11, 8, 13] [0, 4, 3, 9, 11, 8, 13]
v2 [0, 13] [0, 13] [0, 1, 6, 12, 13] [0, 1, 6, 12, 13] [0, 1, 6, 12, 5, 10, 13]

Table 7.2: Numerical example of construction heuristic with bunker nodes

Algorithm 5: Bunker Insertion Search

Data:
route Candidate route for vessel v
B Set of bunker nodes

Result:
bestRoute Best route for vessel v
bestProfit Best found profit for vessel v

1 Function bunkerInsertionSearch(route, B):
2 Define a set allRoutes sorted by increasing profit
3

4 if route is feasible with respect to Equations (5.8) - (5.26) then
5 Get profit for route by solving the LP model in Section 6.3.2
6 route.profit ← profit
7 allRoutes.insert(route)

8 end
9 for b ∈ B do

10 for i = 1 to route.size() -1 do
11 bunkerRoute ← route
12 bunkerRoute.insert(b, i)
13 if bunkerRoute is feasible with respect to Equations (5.8) - (5.26) then
14 Get profit for bunkerRoute by solving the LP model in Section 6.3.2
15 bunkerRoute.profit ← profit
16 allRoutes.insert(bunkerRoute)

17 end

18 end

19 end
20 Define bestRoute ← allRoutes.last()
21 Define bestProfit ← bestRoute.profit
22 return bestRoute, bestProfit

23 end

Once the cargo assignment phase of the construction heuristic terminates, the solution’s profit
is calculated. The vessel-specific profits are summed to obtain the fleet-specific profit. For each
pickup node, i, such that i ∈ NC ∩ U , the cost of hiring a spot vessel to service a CoA cargo
is subtracted from the fleet-specific profit to obtain the solution profit. Finally, as explained in
Section 7.5, the second-stage recourse cost of repositioning vessels into their respective regions is
deducted from the solution profit.
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7.3 Large Neighborhood Search

In each iteration of the ALNS-VCP matheuristic, the current solution is modified by choosing and
applying, first, a destroy operator and, subsequently, a repair operator. The process of destroying
and repairing a solution is referred to as the large neighborhood search component of the ALNS
procedure. In Section 7.3.1, the implemented destroy operators are presented. Section 7.3.2 pro-
vides details about the repair operators implemented in this thesis.

7.3.1 Destroy Operators

In total, three destroy operators were implemented for the ALNS procedure. These draw inspiration
from those presented in Ropke and Pisinger (2006) but are adapted to the specific problem studied
in this thesis. The three implemented destroy operators are named random removal, Shaw removal,
and worst removal.

Before applying any of the destroy operators, how much of the current solution to destroy must
be determined. Let q denote the number of cargoes to remove from the current solution, and let
Q denote the set of cargoes to remove. Further, let T denote the set of cargoes serviced in the
current solution such that T = NP \ U . Finally, q is decided by drawing an integer number from
the discrete uniform distribution, Unif [1, α|T |], where α ∈ R | 1 < α|T | ∧ α < 1 is a constant.

Random Removal
Given q as the number of cargoes to remove from the current solution, random removal randomly
samples q cargoes from T using a uniform distribution. The sampled cargoes are assigned to the
set Q.

Shaw Removal
The Shaw removal destroy operator was first proposed by Shaw (1998) and further adapted to
Pickup and Delivery Problems with Time Windows (PDPTWs) by Ropke and Pisinger (2006). The
idea of the operator is to remove cargoes related to each other. This approach can be advantageous
since, when a repair operator reinserts the removed cargoes into the vessel routes, the cargoes’
similarities provide additional insertion options. Hopefully, some of these possibilities will result
in an improved solution.

Let R(i, j) denote the relatedness of two cargoes, i and j. The relatedness function R(i, j) is
defined as

R(i, j) =

(
dP (i, j) + dD(i, j)

)
−Dmin

Dmax −Dmin
+

(
|T i − T j |+ |T i − T j |

)
− Tmin

Tmax − Tmin
(7.1)

where dP (i, j) and dD(i, j) denote the shortest sailable geospherical distance between the pickup
nodes and delivery nodes of cargoes i and j, respectively. T i and T j denote the pickup time for

cargoes i and j averaged over the fleet of vessels. Similarly, T i and T j denote the delivery time for
cargoes i and j. The distance terms and the time terms are normalized to be in a range between
zero and one by leveraging the minimum and maximum values across all cargoes. As such, define
Dmin = min {dP (i, j) + dD(i, j)} across all cargoes and Dmax = max {dP (i, j) + dD(i, j)} across
all cargoes. Tmax and Tmin are defined similarly for the time windows.

The pseudocode for the Shaw removal is outlined in Algorithm 6. A parameter p≥1 is introduced
to allow for some randomness when selecting related cargoes. A higher value of p leads to selecting
the most related cargo more often. Conversely, a value of p = 1 leads to selecting cargoes at
random without using the relatedness measure at all. As output, Algorithm 6 returns the set Q,
which represents the cargoes that are to be removed from the current solution.
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Algorithm 6: Shaw Removal as presented in Ropke and Pisinger (2006)

Data:
q Number of cargoes to remove from current solution
p Randomness parameter
T Set of serviced cargoes in current solution

Result:
Q Set of cargoes to remove from current solution

1

2 Function shawRemoval(q, p, T ):
3 Define set of cargoes, Q ← {}
4 while |Q| < q do
5 Define r ← a randomly selected cargo from T
6 Define array L ← the cargoes not in Q
7 Sort L such that i < j ⇒ R(r, L[i]) < R(r, L[j])
8 Choose a random number y from the interval [0, 1)
9 Define index ← ⌊yp · |L|⌋ /* Higher p leads to lower index */

10 Q ← Q∪ {L[index]}
11 end
12 return Q
13 end

Worst Removal
The worst removal destroy operator aims to remove cargoes that contribute the least to the current
solution’s profit. The motivation for removing cargoes of low contribution is that they might
represent cargoes that are placed in the wrong position. As such, subsequently applied repair
operators might replace the removed cargo by a more profitable alternative. Let cont(i, s) denote
the contribution of cargo i ∈ T in the current solution, s. The contribution function is defined as
cont(i, s) = f(s)− f−i(s), where f(s) denotes the profit of the current solution and f−i(s) denotes
the profit of the current solution when cargo i is removed.

Algorithm 7 presents pseudocode for the worst removal procedure. The p parameter is again
introduced to allow for some randomness when selecting the worst cargo. On completion, Algorithm
7 returns the set Q, representing the cargoes to be removed from the current solution.

Algorithm 7: Worst removal

Data:
s Current solution
q Number of cargoes to remove from current solution
p Randomness parameter
T Set of serviced cargoes in current solution

Result:
Q Set of cargoes to remove from current solution

1

2 Function worstRemoval(q, p, T , s):
3 Define set of cargoes, Q ← {}
4 while |Q| < q do
5 Define array L ← the cargoes in T
6 Sort L by ascending cont(i, s)
7 Choose a random number y from the interval [0, 1)
8 Define index ← ⌊yp · |L|⌋ /* Higher p leads to lower index */

9 Q ← Q∪ {L[index]}
10 end
11 return Q
12 end

The presented removal operators select a set of cargoes to remove from the current solution.
Given a vessel route in the current solution that services a cargo to be removed, removing the
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corresponding pickup and delivery nodes from the vessel’s route is straightforward. However, the
vessel route also contains bunker nodes. These complicate the removal of cargoes as visiting a
bunker node might no longer be optimal after the removal of cargoes. As such, when performing
the removal of cargoes, all bunker nodes in a vessel’s route are also removed. This removal might
result in an infeasible route as a vessel would run out of bunker if it were to service the remaining
cargoes.. Infeasibility is a problem because the repair operators presented in Section 7.3.2 relies on
the destroyed solution’s profit when attempting to repair the destroyed solution. As such, bunker
nodes are purposefully inserted back into the vessel routes in cargo to make the destroyed vessel
routes feasible. The bunker insertions follow a similar procedure as presented in Algorithm 5 to
insert the bunker node at the position maximizing the vessel-specific profit. Finally, the set of
cargoes not assigned to any vessel in the fleet, U , is updated to reflect the removed cargoes by
assigning U ← U ∪Q.

7.3.2 Repair Operators

This thesis implements a single repair operator that can be parameterized to yield multiple operator
variants. The choice of repair operator was motivated by Ropke and Pisinger (2006). However, the
implementation is adapted to fit the specific problem studied in this thesis. This section presents
the implemented regret-k insertion operator and explains how it can be parameterized to yield
different variants.

Regret-k insertion
The regret-k insertion operator attempts to repair the destroyed solution by inserting cargoes from
the set of unassigned cargoes, U , into the destroyed vessel routes. As in the construction heuristic,
vessel routes are modified by inserting the corresponding pickup and delivery nodes sequentially.
However, the regret-k insertion operator is not limited to appending a cargo to a current vessel’s
route but may insert at any position in the route. The k parameter defines the preference for
how greedy the repair operator should act. By using k = 1, the cargoes increasing the destroyed
solution’s objective value by the most is inserted. Higher values of k result in insertions that try
to incorporate look-ahead information that aims to avoid local optima.

Let ∆f(s, i, j, v) denote the change in the objective value of solution, s, by inserting a cargo, i ∈ U ,
in position, j, in vessel v’s route such that the resulting route is feasible. For each cargo i ∈ U , let
∆i denote the collection of ∆f(s, i, j, v) sorted in descending cargo for cargo i. Let ∆i be indexed
by k.

Next, define the regret-k value as

c∗i (k) =

{
∆f(s, i, j, v) if k = 1∑k

l=1 (∆i[0]−∆i[l]) if k > 1
(7.2)

The regret-k insertion operator chooses the cargo insertion that maximizes

max
i∈U

c∗i (k). (7.3)

In the case that k = 1, the operator inserts the cargo, i, in position, j, of the vessel v’s route, which
improves the objective value of the destroyed solution by the most. As such, it is greedy in the pure
sense of the word, inserting the most profitable cargo without considering other insertions. For
higher values of k, the operator calculates the regret value as defined in Equation (7.2). The regret
value measures how much one would regret not inserting the kth best move. As the value of k
increases, it becomes evident sooner that there are fewer options to insert a cargo. The implemented
regret-k insertion operator handles regret value tiebreaks by inserting the cargo with the highest
contribution to the objective value of the solution. Further, if ∃i ∈ U such that |∆i| < k, the
regret value cannot be calculated for cargo i. In such cases, the cargo i with the smallest |∆i| is
inserted with tiebreaks broken the same way as for regret values. In addition to inserting a cargo
i ∈ U , the implemented regret-k operator inserts the bunker node at the position in the route that
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increases the vessel-specific profit by the most. The procedure of finding which bunker node to
insert in which position follows the pseudocode outlined in Algorithm 5. As the regret-k operator
inserts a cargo i, it is removed from the set of unassigned cargoes, U . The operator terminates
once U = ∅ or there are no more feasible cargo insertions.

7.4 Local Search Extension

The destroy and repair operators introduced in Section 7.3 aim to explore a diverse set of locations
in the solution search space. The large neighborhood search process represented by the destroy and
repair operators attempts to mitigate the chance of getting stuck in local optima. However, the
search for high-quality solutions can be improved by performing exhaustive searches in the local
neighborhood of the solutions resulting from the large neighborhood search. The iterative ALNS-
VCP matheuristic implemented in this thesis leverages three local search operators at each iteration
of the algorithm. First, the ALNS-VCP applies the CROSS-Exchange operator, introduced to
Vehicle Routing Problems with Time Windows (VRPTWs) by Taillard et al. (1997), to each
resulting solution from the large neighborhood search. Second, a proposed Bunker-Destination
operator is applied to handle the specific nature of the problem studied in this thesis.

Section 7.4.1 outlines the details of the implemented CROSS-Exchange operator. Finally, Section
7.4.2 introduces the proposed Bunker-Destination operator.

7.4.1 CROSS-Exchange Operator

The CROSS-exchange operator involves selecting two pairs of edges in two different routes, and
exchanging them in a way that generates two new routes. Specifically, four nodes i, k, j, l are
selected such that i and k belong to the same route, and j and l belong to a different route. Next,
the edges (i, i+1) and (j, j+1) are swapped to produce edges (i, j+1) and (j, i+1). Similarly, edges
(k−1, k) and (l−1, l) are also swapped to generate edges (l−1, k) and (k−1, l). Figure 7.2 illustrates
the procedure which produces two new routes. The CROSS-Exchange operator essentially swaps
substrings of cargoes between two vessel routes. To ensure that the resulting routes are feasible
with respect to the cargo precedence constraints presented by Network Flow Constraints (5.4)
- (5.7) and Time Balance Constraints (5.11), each substring is checked for feasibility before a
substring exchange takes place. If a substring contains a pickup node but not its corresponding
delivery not, the substring exchange is skipped. Similarly, if a substring contains a delivery node
but not its corresponding pickup node, the substrings are also not exchanged.

v1 v2 v1 v2

i j

k l l

ji

k l

ji

k

l − 1

j + 1 i+ 1

k − 1

j + 1

l − 1

i+ 1

k − 1

j + 1

l − 1

i+ 1

k − 1

v1 v2

Figure 7.2: Illustration of a CROSS-Exchange substring exchange of cargoes between two vessel
routes

Each route generated by the substring exchanges is further checked for feasibility with respect
to Time, Cargo, and Bunker Balance Constraints (5.8) - (5.26). Finally, the associated profit
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is calculated by solving the LP problem formulated in Section 6.3.2. It should be noted that
the implemented CROSS-Exchange operator does not change the routes in the current solution.
Rather, every feasible route resulting from the substring exchanges and their respective profits are
added to a pool, poolALNS , of encountered routes during the ALNS procedure. As explained in
Section 7.1, the Vessel Combination Problem (VCP) is solved every IV CP iteration with poolV CP as
input. Therefore, routes only encountered by the CROSS-Exchange operator are never propagated
to the current solution until the VCP is solved.

7.4.2 Proposed Bunker-Destination Operator

A way that vessels might mitigate the expected cost of repositioning to their respective regions
would be to travel to a bunker node in the correct region after serving their assigned cargoes. To
aid the ALNS-VCP matheuristic in finding such solutions, a local search operator inserting bunker
nodes at the end of a vessel’s route was implemented. For each bunker node, b ∈ B, the Bunker-
Destination local search operator first checks if a bunker node is currently at the position prior to
the destination node in vessel v’s route. If so, the bunker node is removed before b is inserted in
its place. The resulting route is checked for feasibility with respect to Constraints (5.8) - (5.26).
If feasible, the profit is calculated by solving the LP problem presented in Section 6.3.2. Finally,
feasible routes and their associated profits are inserted into poolALNS .

Algorithm 8: Bunker-Destination Operator

Data:
V Set of vessels
B Set of bunker nodes
poolALNS Pool of routes and profits encountered by the ALNS procedure

Result:
poolALNS Updated pool of routes encountered by the ALNS procedure

1

2 Function bunkerDestinationSearch(V, poolALNS):
3 for v = 0 to |V| do
4 for b ∈ B do
5 Define newRoute ← current route of vessel v
6 if a bunker node is at the end of newRoute then
7 Remove the bunker node from newRoute
8 end
9 Insert b prior to the destination node in newRoute

10 if newRoute is feasible with respect to Equations (5.8) - (5.26) then
11 Get profit for newRoute by solving the LP model in Section 6.3.2

12 Add newRoute and profit to poolALNS

13 end

14 end

15 end

16 end

7.5 Second-Stage Cost

The large neighborhood search represented by the application of destroy and repair operators on
the candidate solution, xcandidate, as well as the subsequent local search represented by the CROSS-
Exchange and Bunker-Destination operators, comprises the first-stage phase of the implemented
ALNS-VCP matheuristic. To account for the cost of repositioning vessels into the required regions,
the second-stage recourse cost must be deducted from the candidate solution, xcandidate’s objective
function value. This section presents the second-stage problem solved in each iteration of the
ALNS-VCP matheuristic. The formulation differs slightly from the model presented in Section
6.2.2, as each vessel in the candidate solution is already assigned a single route. As such, a more
compact formulation of the second-stage problem was implemented to lessen the time complexity
of the ALNS-VCP matheuristic.
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Let the sets V,NC ,NO,K,S be defined as in Section 6.1 denoting the set of vessels, contracted
CoA cargoes, optional spot cargoes, regions, and scenarios, respectively. A parameter Bvk is
introduced which is equal to 1 if the vessel v’s destination node is in region k, and 0 otherwise.
Let CB

vk denote the cost of repositioning vessel, v, from its destination node to region k. Let RK
ks

be defined as in Section 6.1, signifying the number of vessels to be allocated in each region, k, in
each scenario, s. The parameter Ps denotes the probability of scenario s being realized. Finally,
the binary variable xB

vks equals 1 if vessel, v, repositions from its destination node to region, k, in
scenario, s, and 0 otherwise. A summary of the presented notation is provided in Tables 7.3 - 7.5.

Set Notation Set Description
V Set of vessels
NC Set of pickup nodes for the mandatory contracted cargoes
NO Set of pickup nodes for the optional spot cargoes
K Set of regions
S Set of scenarios

Table 7.3: ALNS-VCP Second-Stage Sets

Parameter Notation Parameter Domain Parameter Description
Bvk v ∈ V, k ∈ K 1 if vessel v’s destination is in region k,

0 otherwise
CB

vk v ∈ V, k ∈ K Reposition cost from vessel v’s destination node
to region k

RK
ks k ∈ K, s ∈ S Number of vessels to be allocated in region k

in scenario s
Ps s ∈ S Probability of scenario s

Table 7.4: ALNS-VCP Second-Stage Parameters

Variable Notation Variable Domain Variable Description
xB
vks v ∈ V, k ∈ K, s ∈ S 1 if vessel v repositions from its destination node

to region k in scenario s, 0 otherwise

Table 7.5: Path Flow Variables

min
∑
s∈S

Ps

(∑
v∈V

∑
k∈K

CB
vkx

B
vks

)
(7.4)

s.t. ∑
k∈K

xB
vks ≤ 1 v ∈ V, s ∈ S (7.5)

RK
ks =

∑
v∈V

Bvk + xB
vks −

∑
k′∈K\{k}

Bvkx
B
vk′s

 k ∈ K, s ∈ S (7.6)

xB
vks ∈ {0, 1} v ∈ V, k ∈ K, s ∈ S (7.7)

The resulting ALNS-VCP second-stage formulation is represented by Objective (7.4) and Con-
straints (7.5) - (7.7). Objective (7.4) minimizes the expected recourse cost of repositioning vessels
to the required regions. Constraints (7.5) ensure that vessels are only allowed to reposition to a
single region. Constraints (7.6) ensure that the number of vessels in each region k in each scenario
s equals the predetermined parameter, RK

ks. The first term in the variable expression counts up
the number of vessels ending up in each region by summing the Bvk parameters. The second term
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adds the number of vessels repositioning into region k in scenario s. The final term counts up the
number of vessels repositioning out from region k in scenario s which is subtracted from the two
previous terms. Finally, Constraints (6.13) confine the xB

vks variables to their binary domain.

7.6 Vessel Combination Problem (VCP)

After the ALNS procedure has explored the search space for IV CP iterations, the Vessel Combi-
nation Problem (VCP) is solved to identify the best combination of feasible vessel-specific routes
encountered during the ALNS procedure. The resulting solution is fed back into the ALNS for
further search diversification.

In the a priori path flow solution method presented in Chapter 6, all feasible node sequences for
each vessel are generated as outlined in Section 6.3.1. Further, as outlined in Section 6.3.2, the
respective profit is calculated by solving the LP problem formulated in Section 6.3.2. The process
yields the set of routes Rv for each vessel, v, and the vessel-specific profit, Rrv, for each vessel, v,
an route r ∈ Rv. Let the path flow pool, poolPF , denote the collection of sets Rv and respective
vessel-specific profits, Rrv, for each vessel, v. The two-stage path flow model presented in section
6.2 is solved to generate optimal solutions by taking poolPF as input.

During the construction of an initial feasible solution and during the application of destroy, repair,
and local search operators, a vast number of vessel routes are checked for feasibility with regards
to Constraints (5.8) - (5.26). If feasible, the vessel-specific profit is calculated by solving the
LP problem formulated in Section 6.3.2. The process is outlined in Algorithm 5. Rather than
discarding all encountered feasible routes and their respective profits, they are kept by inserting
them into a pool, poolALNS .

When comparing poolPF with poolALNS it becomes evident that |poolPF | > |poolALNS |. Never-
theless, the idea is that the ALNS procedure should be capable of searching for a diverse set of
vessel-specific routes, which are stored in poolALNS , such that the VCP can alleviate the task of
combining encountered routes into a fleet-specific combination of routes, constituting a feasible
solution.

However, solving the VCP in every iteration introduces significant time complexity to the ALNS-
VCP matheuristic. Furthermore, it is not certain that a significant number of new vessel routes
have been encountered within a single iteration that could be recombined into a higher-quality
solution. As such, the VCP is solved at regular intervals, at every IV CP iteration of the ALNS-
VCP matheuristic.

7.7 Acceptance Criterion

The accepted criterion implemented in the ALNS-VCP presented in this thesis leverages a simulated
annealing-based approach similar to Ropke and Pisinger (2006). At the beginning of an ALNS-
VCP iteration, a candidate solution, xcandidate is generated by applying the destroy, repair, and
local search operators on the currently accepted solution xaccepted. Rather than restricting the
search operators to only be applied to xaccepted if it is the best solution found during the search, a
simulated annealing criterion lets the search operators be applied to a variety of different solutions.
Such an approach should hopefully mitigate the chance for the ALNS-VCP matheuristic to get
trapped in local optima.

Given a candidate solution, xcandidate, with profit, f(xcandidate) and accepted solution, xaccepted

with profit, f(xaccepted), the ALNS-VCP matheuristic assigns xcandidate to xaccepted with proba-
bility, p = 1, if f(xcandidate) > f(xaccepted). Otherwise, if f(xcandidate) ≤ f(xaccepted), the ALNS-

VCP matheuristic assigns xcandidate to xaccepted with probability p = e−(f(xcandidate)−f(xaccepted))/T

where T is referred to as the temperature. The temperature is initially set to T start and is decreased
by assigning T ← T · c every iteration where 0 < c < 1 is the cooling rate. As such, the simulated
annealing criterion allows for a diverse set of solutions to be accepted during the early stages of the
ALNS-VCP matheuristic. However, in the later iterations of the ALNS-VCP matheuristic, when
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the temperature is low, xcandidate with f(xcandidate) ≤ f(xaccepted) is only accepted with a small
probability. As such, as the search progresses, the acceptance criterion promotes the intensification
of the ALNS-VCP matheuristic.

7.8 Applying Noise in the Insertion Operators

Ropke and Pisinger (2006) describe their repair operators as being quite myopic. To combat this
behavior, they introduce a noise term when calculating the contribution of a potential reparation.
As their studied problem is a cost minimization problem for a Vehicle Routing Problem with Time
Windows (VRPTW), their noise application procedure was tailored to the specific Tramp Ship
Routing and Scheduling Problem with Bunker Optimization (TSRSPBO) studied in this thesis.
Let ∆f(s, i, j, v) denote the change in the objective value of solution, s, by inserting a cargo,
i ∈ U , in position, j, in vessel v’s route such that the resulting route is feasible. When calculating
∆f(s, i, j, v), one must decide whether to account for a cargo being a Contract of Affreightment
(CoA) cargo or not. For example, if one decides to account for CoA cargoes, one would calculate
∆f(s, i, j, v) by adding the cost of hiring a spot ship to service the cargo. After all, by servicing
a CoA cargo by a vessel in the fleet, no spot ship cost would be incurred, and vice versa. Always
accounting for the spot ship cost was found to make the repair operators presented in Section 7.3.2
quite myopic. The repair operators tend to always favor CoA cargoes. As such, noise was applied
to the ∆f(s, i, j, v) by randomly choosing whether to account for the spot ship cost or not.

7.9 Adaptive Selection of Destroy and Repair Operators

In each iteration of the ALNS-VCP matheuristic, a single destroy operator is selected from the
set of implemented destroy operators, and a single repair operator is selected from the set of
implemented repair operator variants. The selection is part of the large neighborhood search of
the ALNS procedure. To this end, a roulette wheel selection is leveraged for the destroy and
repair operators, respectively. The weights associated with each operator are adjusted based on
the operator’s success rate in finding promising solutions. The repeated update of these weights
comprises the adaptivity of the ALNS procedure as proposed by Ropke and Pisinger (2006). To
facilitate the repeated update of weights, the search process is divided into segments, denoted as
m, with each segment consisting of a certain number of iterations, referred to as IS . At the start
of a new segment, the weights are updated. For each destroy operator, denoted as d, the weights
are adjusted using

wdm = (1− r̃)wd,m−1 + r̃
πd

θd
.

Here, the new weight value is a weighted average of the previous weights wd,m−1, and a reaction
term comprising the tunable reaction parameter r̃, the operator score πd, and the number of times
θd that the destroy operator d has been selected in segment m − 1. At the start of each new
segment, the destroy operator score πd is reset to zero and can increase during the iterations of
the current segment in three different ways:

1. If a candidate solution becomes the best-found solution, the destroy operator score πd is
increased by σ1.

2. If a candidate solution has a higher objective value than the accepted solution and has not
been accepted before, the destroy operator score πd is increased by σ2.

3. If a candidate solution has not been accepted before and is worse than the current solution
but is still accepted by the simulated annealing criterion, the destroy operator score πd is
increased by σ3.

For each repair operator, denoted as r, the update of weights wrm works in the same manner by
instead using terms wr,m−1, πr, and θr.

By denoting Id as the set of all destroy operators, the probability of selecting destroy operator d
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in the roulette wheel selection process of segment m is determined by

P (d,m) =
wd,m∑

d̂∈Id
wd̂,m

.

Similarly, for Ir, the set of repair operators, the probability of selecting repair operator r is

P (r,m) =
wr,m∑

r̂∈Ir
wr̂,m

.
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Chapter 8

Test Instances and
Implementation

This chapter elaborates on retrieving real-life data from industry partners, constructing test in-
stances, and generating vessel networks in the presented models. In particular, Section 8.1 explains
how the data required by the Tramp Ship Routing and Scheduling Problem with Bunker Opti-
mization (TSRSPBO) studied in this thesis was retrieved. Section 8.2 showcases an example of a
constructed test instance and presents the generated test instances. Finally, Section 8.3 explains
a few techniques utilized when implementing the solution methods presented in Chapters 6 and 7.

8.1 Input Data

This section explains how real-life cargo and voyage data from the industry partner, Western Bulk,
was compiled into suitable test instances. In addition to Western Bulk’s operational data, routing
and port information were provided by Maritime Optima, a maritime data analytics company.
Section 8.1.1 explains how input was retrieved from these industry partners. The remaining input
data needed for the model was either gathered from open sources, constructed from open sources,
estimated from available data, or randomly sampled from reasonable uniform intervals. Section
8.1.2 explains this process.

8.1.1 Industry Partner Input Data

Table 8.1 shows a small sample of the data provided by Western Bulk. In total, the data consisted
of some 9,200 voyages performed in the time period 2015-2022. Due to commercial reasons, only
examples from 2015 are shown in this thesis. From the provided data, voyages performed by vessels
in the subsegments Supramax and Ultramax were extracted. These subsegments were chosen as
they are usually on longer Time Charter (TC) contracts, a part of Western Bulk’s operation they
are looking to improve. Parameter values such as freight rates, Ri, and More or Less in Owner’s

Option (MoLOO) flexibility limits
[
Q

i
, Qi

]
of transported cargo can be difficult to come by, so

working with real-life data provided by Western Bulk makes constructing realistic test instances
an easier task.
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Date 2015-10 2015-10 2015-12 2015-12 2015-12
Vessel Name PRABHU GOPAL ASTORIA WESTERN HEROYA SPAR LYRA MAINE DREAM
DWT 56025 63353 61297 53565 58105
Ship Contract Type Period TC Trip TC Index Period TC Period TC
Voyage Type coa coa spot spot spot
Route Type Pacific RV Cont FarEast Atlantic RV Cont FarEast Cont FarEast
Cargo Petcoke Steel Slabs WET FLYASH Steel Rebars Wheat
Cargo Quantity 10980 57721 49909 32177 51435
Freight Rate 41.0 23.0 12.8 24.75 22.25
Voyage Commence Port zhangzhou itaguai lorient icdas sauda
Pickup Port zhenjiang itaguai brunsbuttel icdas hamburg
Delivery Port sohar los angeles jacksonville chimbote djibouti

Table 8.1: Example data of Western Bulk voyages

Western Bulk also provided its definition of regions associated with each port. Figure 8.1 shows a
map of ports and their associated regions in the Indian Ocean.

Figure 8.1: Port regions provided by Western Bulk

The model presented in Chapter 5 further relies on distances between ports, their locations, and
the price of purchasing one unit of bunker at bunker ports. Geo-locational port data and distance
data were provided by MaritimeOptima (2022). Bunker price data was extracted through Maritime
Optima’s integration with BunkerEx (2022). Figure 8.2 shows simplified trajectories corresponding
to the shortest path of voyages performed by Western Bulk in the time period 2015-2022. Figure
8.3 shows bunker prices of different fuel grades for some of the most popular bunker ports (Husby,
2022). This thesis only considers a single type of fuel, Very Low Sulfur Fuel Oil (VLSFO), as
it is seeing increasing adoption in the shipping industry. Due to the environmental regulations
of IMO (2020), shipping companies are increasingly purchasing VLSFO rather than cheaper and
more polluting Intermediate Fuel Oil with Maximum Viscosity of 380 Centistokes (IFO380).
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Figure 8.2: Routes corresponding to the shortest path between ports for voyages performed by
Western Bulk (MaritimeOptima, 2022)

Figure 8.3: Bunker prices (retrieved November 11th, 2022) for the top ten most popular ports
(BunkerEx, 2022)

Along with data provided by Western Bulk and Maritime Optima, a few open sources were used to
compile additional necessary data. Canal costs were compiled from the Suez Canal Toll Calculator
from Wilhelmsen (2022), and spot ship rates were gathered from Fearnleys (2022), who publish
weekly Supramax spot ship rates for several popular trading routes.

8.1.2 Constructed Input Data

Although input data provided by the industry partners has been a tremendous help when compiling
real-life test instances, several parameter data were challenging to attain. Some of these were
gathered by talking with Western Bulk and Maritime Optima industry experts to define a sensible
range to which the parameters were confined. These ranges were thus uniformly randomly sampled
during test instance generation to imitate fluctuations and ascertain the model’s flexibility. Some
industry expert-generated parameter values include port costs, vessel speeds, bunker consumption,
time in ports, and the number of vessels to allocate in each region.
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A few parameters were estimated based on available data from Western Bulk. These include the[
Q

i
, Qi

]
parameters describing the MoLOO flexibility limits of transported cargo, the port of

which a spot ship is available, the origin ports, o(v), of the vessels, and the CB
d(v)k parameters

denoting the cost of repositioning from vessel v’s destination node to region k. The MoLOO limits
were estimated by creating a ± 10% interval from the actual amount of transported cargo. The
limits were rounded down and up to the closest integer of 1,000. Further, the port at which a spot
ship would become available to transport a CoA cargo was estimated by finding the most frequent
”voyage commence port” (see Table 8.1) for a given pickup port. A voyage commence port is the
name Western Bulk uses for ports of which a vessel becomes available and thus is ready to take
on new cargo. Cases where the voyage commence port and the pickup port were identical were
omitted as it is improbable that a spot ship would be available in the same port as the cargo.
The origin ports were found similarly by looking at the most frequent delivery ports of the data
provided by Western Bulk. Although parceling occurs, most vessels will be empty at their delivery
port, making them available to take on new cargo. The CB

d(v)k parameters were estimated by

retrieving the distance between each node in N̂v for vessel v and each region k’s centroid. The
centroid was manually defined to be at an approximate offshore center of all ports associated with
a region. From this, the sailing time of vessel v was calculated and multiplied with the unit price of
the bonus bunker, P̃ , to estimate the bunker cost of repositioning. Then, any incurred canal costs
and ports costs were added to the bunker cost to generate the resulting reposition cost CB

d(v)k.

A final group of parameters was randomly sampled from a sensible interval to refrain from creating
biasedly constructed test instances. These include the time when vessels first become available to
transport cargoes, T o(v)v, the beginning of the time windows for pickup ports, T iv, i ∈ NP

v , the

initial bunker level on board the vessels, B0
v , and the number of vessels to be allocated in each

region in each scenario, RK
ks. The T o(v)v parameters were decided by sampling uniformly from

an interval between [0, 10] days. Similarly, the B0
v parameters were sampled uniformly from the

interval [2Bv, Bv]. The lower limit was increased to ensure vessel would not start their schedules
with an empty tank. For pickup ports, the upper time windows were constructed by adding ten
days to the start. Typically, ten days is what one would experience as an operator in the dry
bulk operator industry (Husby, 2022). For the delivery ports, the start of the time windows,
T iv, i ∈ ND

v , were constructed to be the direct sailing time, TS
ijv, plus the start of the time window

for the corresponding pickup port, T iv, i ∈ NP
v . However, the end of the time windows for the

delivery ports, T iv, i ∈ ND
v , were defined to be the time of the end of the time window of the

corresponding pickup port, T iv, i ∈ NP
v , plus twice the direct sailing time, TS

ijv. Increasing the
time windows for delivery nodes allows vessels to stop for bunker, or to deviate to take on parceled
cargo as is often done in Western Bulk’s operational environment.

The RK
ks parameters were generated by starting from a projected allocation of vessels across regions

provided by industry experts. For example, Western Bulk might want to allocate five vessels in the
first region, three vessels in the second region, ten vessels in the third region, and so on. Denote
this projected allocation R∗ = {R∗

k ∀k ∈ K}, where R∗
k denotes the number of vessels allocated

in region k in the projected allocation of vessels. For each R∗
k define lower bounds, R∗

k = ⌊ 12R∗
k⌋,

and upper bounds, R
∗
k = ⌈ 32R∗

k⌉. Then, define a sequence, S∗k = {R∗
k, R

∗
k +1, . . . , R

∗
k − 1, R

∗
k}. For

each S∗k ∀k ∈ K, fit a symmetric binomial distribution, P ∗
k = binomk(n = |S∗k |, p = 0.5). For

each scenario, s ∈ S, and region k ∈ K, sample from P ∗
k to generate RK

ks. If
∑

k∈K RK
ks ̸= |V|

for a scenario s, discard the sampled parameters and repeat. Here, |V| is the number of vessels
in the fleet. The probability of scenario s, Ps, was set to be equal across scenarios. The set of
scenarios, S, was determined by the in-sample stability analysis presented in Section 9.1. Finally,
the cargo-related sets such as NP ,ND,NO,NC and the set of regions K are specific to each test
instance. Test instance generation is further explained in Section 8.2.

Table 8.2 and Table 8.3 summarize the sets and parameters used in the model, respectively, and
explain how they were generated.
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Sets Meaning Provided by
V Set of vessels Western Bulk
B Set of bunker nodes Industry experts
N Set of cargo-related nodes Western Bulk
K Set of regions Western Bulk
S Set of scenarios Stability Analysis (Section 9.1)

Table 8.2: Sets used in the model and how they were generated

Parameter Meaning Depends on Generated Provided by

TS
ijv

Sailing time from node i
directly to node j for
vessel v

Distance
Vessel speed
Time spent bunkering

No
Yes
Yes

Maritime Optima
Industry experts
Industry experts

TQ
iv

Time required to load or
discharge one unit of
cargo at node i with
vessel v

Yes Industry experts

Cijv

Cost of visiting node i
and sailing directly from
node i to node j, cost of
bunker not included

Port costs
Canal costs

Yes
No

Industry experts
Wilhelmsen (2022)

PB
i

Price of purchasing one
unit of bunker at bunker
node i

No BunkerEx (2022)

P̃ Unit price of bonus bunker P̃ =
∑|B|

i PB
i

|B| No Calculation

CS
ijv

Cost of servicing the cargo
at node i with a spot ship

Spot ship price
Spot ship port
Distance
Vessel speed

No
Yes
No
Yes

Fearnleys (2022)
Western Bulk
Maritime Optima
Industry experts

BS
ijv

Total bunker consumption
for vessel v while sailing
directly from node i to
node j

Yes Industry experts

BP
iv

Port bunker consumption
for vessel v while in
node i

Yes Industry experts

B0
v

Initial bunker level on board
vessel v

Yes Random sampling

Ri

Revenue generated from
transporting one unit of
cargo from node i

No Western Bulk

T iv

The latest time at which
vessel v may begin its
service at node i

Yes Random sampling

T iv

The earliest time at which
vessel v may begin its
service at node i

Yes Random sampling

Bv
Maximum bunker level
for vessel v

Yes Industry experts

Bv
Minimum bunker level
for vessel v

Yes Industry experts

Qi

Maximum quantity of the
cargo at node i to be
transported

Cargo quantity transported Yes Western Bulk

Q
i

Minimum quantity of the
cargo at node i to be
transported

Cargo quantity transported Yes Western Bulk

Kv
Cargo carrying capacity
of vessel v

No Western Bulk

o(v) Origin port of vessel v Yes Western Bulk

RK
ks

Number of vessels
to allocate to region k
in scenario s

Yes Random sampling

CB
d(v)k

Reposition cost
from vessel v’s last
visited node to region k

Distance
Vessel speed

P̃
Canal Cost
Port Cost

No
Yes
No
No
Yes

Maritime Optima
Industry experts
BunkerEx (2022)
Wilhelmsen (2022)
Industry experts

Ps Probability of scenario s PS = 1
|S| No Calculation

Table 8.3: Parameters used in the model and how they were generated
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8.2 Test Instances

After compiling the sets and parameters, as explained in Section 8.1, a test instance generator
was created. By taking on generator parameters such as NUM SPOT, signifying the number of
spot cargoes in the problem, NUM COA, denoting the number of CoA cargoes in the problem, and
NUM VESSELS, specifying the number of vessels in the problem, NUM SCENARIOS, specifying the
number of scenarios, and a RANDOM STATE parameter for reproducibility, a large variety of test
instance could be generated. The initial dataset of 9,200 voyages was filtered down to voyages
that commenced after January 1st, 2022, as spot ship rates from Fearnleys (2022) were collected
for this time period. Western Bulk expressed an interest in the Indian and West-Pacific Oceans
(Husby, 2022), so the dataset was further filtered to include voyages that started and ended in
these oceans. As such, a set of bunker ports specific to these regions was also constructed. After
filtering further for the Supramax and Ultramax subsegment, vessels hired on longer TC contracts,
and removing voyages between ports that could not be mapped to Maritime Optima’s database,
approximately 100 voyages remained. The generator randomly samples the compiled set of 100
voyages to create test instances according to the abovementioned generator parameters. The set
of regions R is generated for each test instance by finding all unique regions of the origin ports
for each vessel and the ports associated with each pickup node, delivery node, and bunker node.
Figure 8.4 shows an example test instance consisting of five CoA cargoes, ten spot cargoes, five
vessels, and five bunker nodes.

Figure 8.4: An example test instance

For the generated test instances, the number of spot cargoes was fixed to be twice the amount
of CoA cargoes. As such, for a test instance of 15 cargoes, there would be five CoA cargoes and
ten spot cargoes. According to Husby (2022), this is representable for Western Bulk’s operational
environment. The MoLOO flexibility limits were fixed to ± 10% for all the generated test instances.
The number of cargoes, number of vessels, and number of bunker ports categorize the generated
test instances into classes. For example, C15V3B4 refers to the class of test instances containing
15 cargoes, three vessels, and four bunker nodes. Five different test instances were generated
for each class by changing the RANDOM STATE parameter. Thus, test instances differ as they are
randomly sampled from about 100 actual voyages performed by Western Bulk. The RANDOM STATE

also controls the values of those parameters generated through random sampling. Table 8.4 shows
the different classes of generated test instances.
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Name Size # Cargoes # Vessels # Bunker nodes
C9V3B4 Small 9 3 4
C12V3B4 Small 12 3 4
C12V4B6 Small 12 4 6
C15V5B10 Medium 15 5 10
C30V5B10 Medium 30 5 10
C30V10B10 Medium 30 10 10
C60V10B10 Medium 60 10 10
C45V15B10 Medium 45 15 10
C60V15B10 Large 60 15 10
C60V20B10 Large 60 20 10
C90V20B10 Large 90 20 10
C90V30B10 Large 90 30 10
C120V30B10 Large 120 30 10

Table 8.4: Classes of generated test instances

8.3 Implementation

This section highlights implementation considerations for the path flow model presented in Chap-
ters 6, the Adaptive Large Neighborhood Search for the Vessel Combination Problem (ALNS-
VCP) outlined in Chapter 7. Section 8.3.1 explains preprocessing techniques leveraged during the
construction of networks (N̂v, Âv) for each vessel v. Section 8.3.2 highlights caching techniques
leveraged during the ALNS-VCP matheuristic to prevent performing repeated operations.

8.3.1 Arc Reductions

As explained in Section 5.2, each vessel v is assigned a network (N̂v, Âv). During the node sequence
generation presented in Section 6.3.1, these graphs are exhaustively searched by a modified Depth-
First-Search (DFS) algorithm. A näıve approach would be to generate all N̂v × N̂v arcs for each
graph and perform the DFS algorithm on these. The number of directed arcs in a fully connected
graph grows according to O(N̂ 2

v ). The time complexity of the DFS algorithm is proportional to
the number of nodes and arcs in the graph. As such, it is necessary to make the (N̂v, Âv) graphs
as small as possible for the DFS algorithm to complete its search for realistically sized problems
in a reasonable amount of time. This section elaborates on some of the arc reduction techniques
leveraged to minimize the number of arcs.

The most obvious eliminations exclude arcs that either go to the origin node, o(v), or leave the
destination node, d(v). As these nodes are either the starting or ending point of a vessel’s schedule,
such arcs should be eliminated. Thus, it is possible to eliminate all arcs (i, o(v)) ∈ N̂v × N̂v and
(d(v), j) ∈ N̂v × N̂v.

As ports and nodes are not related, traveling to a bunker node in the same port as a pickup
node or delivery node is acceptable, but traveling to the same node is not allowed. Thus, arcs
(i, j) ∈ N̂v × N̂v|i = j should be removed.

Further arc eliminations are achievable by remembering that a vessel has to deliver its cargo before
completing its route. As such, a vessel should not be allowed to travel from a pickup node to its
destination node. In other words, all arcs (i, d(v)) ∈ N̂v×N̂v|i ∈ NP

v can be eliminated. Following
an analogous logic, vessels should not be allowed to travel from their origin node o(v) to a delivery
node. Thus, it is possible to eliminate all arcs (o(d), j) ∈ N̂v × N̂v|j ∈ ND

v . The pickup node
precedence logic also facilitates the removal of arcs from delivery nodes to pickup nodes. As such,
all arcs (N + i, i) ∈ N̂v × N̂v|i ∈ NP

v should be eliminated.

Next, it would be advisable to remember that a vessel may not travel between two pickup nodes
if the sum of the minimum MoLOO limits, Q

i
+ Q

j
, at the pickup nodes is greater than the

cargo carrying capacity of vessel v, Kv. Thus, it is possible to remove all arcs (i, j) ∈ N̂v ×
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N̂v|i ∈ NP
v ∧ j ∈ NP

v ∧ Q
i
+ Q

j
> Kv. Using the same logic, vessels may not travel between

two delivery nodes if their corresponding pickup nodes have Q
i
+ Q

j
> Kv. As such, all arcs

(i, j) ∈ N̂v × N̂v|i ∈ ND
v ∧ j ∈ ND

v ∧Q
i−N

+Q
j−N

> Kv should be removed.

Time windows can also be used to eliminate further arcs. A vessel may not travel to a node with
earlier time windows. However, by including the sailing time, TS

ijv and minimum time spent in port

TQ
ivQi

, more arcs can be eliminated. For pickup nodes, eliminate all arcs (i, j) ∈ N̂v × N̂v|T iv +

TQ
ivQi

+TS
ijv > T jv. For delivery nodes, eliminate all arcs (i, j) ∈ N̂v×N̂v|T iv +TQ

ivQi−N
+TS

ijv >

T jv. For all remaining nodes, eliminate all arcs (i, j) ∈ N̂v × N̂v|T iv + TS
ijv > T jv.

Further, by combining information about time windows with precedence logic, it is possible to
remove all arcs (i, j) ∈ N̂v×N̂v|i ∈ N̂P

v ∧T iv +TS
ijv +TS

j,i+N,v > T i+N,v. Figure 8.5 illustrates the
situation of a cargo i being picked up in port A to be delivered in port C. Here, going from port A
to port B and then to port C will lead to a violation of the time window constraints in port C. As
such, the arc (A, B) should be excluded. A similar argument can be made with respect to delivery
ports by eliminating all arcs (i, j) ∈ N̂v × N̂v|j ∈ N̂D

v ∧ T j−N,v + TS
j−N,iv + TS

ijv > T jv. Figure 8.5
illustrates the situation where arc (B, C) is eliminated due to time violations in port C.

Figure 8.5: Example where arcs (A, B) and (B, C) can be excluded

Finally, traveling from a bunker node to a different bunker node is not allowed in the TSRSPBO
studied in this thesis. Thus, all arcs (i, j) ∈ N̂v × N̂v|i ∈ B ∧ j ∈ B are removed.

8.3.2 Caching

As shown in Algorithm 5, each potential route must be checked for feasibility with respect to Equa-
tions (5.8) - (5.26). If feasible, the profit of each route must be calculated by solving the linear
programming model presented in Section 6.3.2. As the ALNS-VCP matheuristic often produces
routes previously encountered during the search, storing the result of these relatively computa-
tionally heavy operations is beneficial. As such, all infeasible routes for each vessel are stored in
a lookup map. Similarly, each vessel’s feasible routes and profits are stored in a separate lookup
map.

A similar technique is used for the CROSS-Search operator presented in Section 7.4.1. Each
combination of two vessels and their respective routes in the current solution are stored in a
lookup map. If the combination is encountered later, the CROSS-Search operator is skipped.
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Chapter 9

Computational Study

The path flow model and the Adaptive Large Neighborhood Search for the Vessel Combination
Problem (ALNS-VCP) were implemented in C++ leveraging the Gurobi Optimization, LLC (2022)
C++ interface. In addition to having access to Gurobi, C++ was chosen as the extensive array
manipulation required by the ALNS-VCP matheuristic proved to be more efficient than in other
programming languages, such as Python. Test runs were run on computing nodes on the Microsoft
Azure cloud computing platform. Table 9.1 summarizes the system configuration.

Computer Microsoft Virtual Machine - Standard E20as v5
Processor AMD EPYCTM 7763v (Milan) - 3.2 GHz

RAM 160 GB
Operating System Linux (ubuntu 20.04)

Gurobi Licence Type Academic
Gurobi version 10.0.1
C++ version c++20

Table 9.1: Description of hardware and software used for the computational study

According to Western Bulk, it is acceptable to wait for a solution of up to one hour (Husby, 2022).
Hence, the ALNS-VCP was not allowed to run for more than 3,600 seconds. Similarly, the path
flow solution was stopped after one hour, in which case a solution was not considered to have
been found. As the ALNS-VCP exhibits some inherent randomness due to the adaptive selection
criteria, the ALNS-VCP matheuristic was run five times on every test instance to approximate the
heuristic’s average performance.

Section 9.1 provides an in-sample stability analysis to determine the number of scenarios to sam-
ple. Section 9.2 outlines how the iterative ALNS-VCP matheuristic was configured and tuned to
deliver high-quality solutions. Section 9.3 compares solutions found by the finalized ALNS-VCP
matheuristic to the path flow solution method with a priori column generation presented in Chap-
ter 6. Section 9.4 inspects solutions generated by the ALNS-VCP and their characteristics. Section
9.5 shows the impact of considering fleet repositioning. Finally, Section 9.6 emphasizes the impact
of dedicating resources to bunker procurement divisions by analyzing how the fleet-specific profit
varies with bunker price discounts.

9.1 Stability Analysis

An in-sample stability analysis was conducted using the exact path flow model with a priori column
generation to determine an appropriate number of scenarios. The test instance class C30V10B10
is one of the largest test instance classes the path flow solution approach would be able to solve
within one hour. As such, class C30V10B10 was chosen for the stability analysis. The test instance
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generation procedure outlined in Section 8.2 generated ten different test instances. For each test
instance, the scenario-dependent RK

ks parameters denoting how many vessels to allocate in each
region in each scenario were sampled. The RK

ks parameters were sampled ten times from the
same probability distribution according to the sampling procedure explained in Section 8.1.2. This
procedure was repeated by varying the number of scenarios to model. The parameters sampling
procedure was repeated for 1, 3, 5, 10, and 15 scenarios. The results from solving the generated test
instances by the path flow solution approach are presented in Table 9.2. The # Scenarios column
denotes the number of scenarios that were sampled. The ObjPF column presents the optimal
path flow objective value averaged across the ten test instances and ten sampled sets of scenario-
dependent parameters. The columns TimeAP[s] and TimePF[s] denote the averaged time in
seconds for the a priori column generation and solving the final path flow model, respectively. The
SD and CV[%] columns denote the standard deviation and coefficient of variation across the test
instances and ten sampled sets of scenario-dependent parameters, respectively.

# Scenarios ObjPF TimeAP[s] TimePF[s] SD CV[%]
1 28,110,505 1,428.7 49.4 253,220 0.90
3 28,046,195 1,428.3 49.9 241,188 0.86
5 28,070,379 1,429.7 49.8 220,758 0.77

10 28,043,056 1,432.0 50.6 224,773 0.80
15 28,035,828 1,433.3 51.4 202,705 0.72

Average tot. 28,061,193 1,430.4 50.2 228,529 0.81

Table 9.2: In-sample stability analysis results

Table 9.2 shows a decreasing trend in the ObjPF, SD, and CV[%] columns with increased scenar-
ios. Furthermore, the CV[%] values are relatively low, and the averaged ObjPF values decrease
only marginally with an increased number of scenarios. These observations suggest that for the
chosen class of test instances, the second-stage costs only constitute a small share of the total profit
generated by the fleet. The CV[%] change is most noticeable from three to five and ten to 15
modeled scenarios. The absolute values in the SD column show a significant drop when comparing
one scenario to five scenarios. Additionally, as using ten scenarios increases the standard deviation
compared to five scenarios, in-sample stability was assumed to be reached when using five scenar-
ios. As such, all further experiments conducted in this chapter use five scenarios to sample from.

9.2 ALNS-VCP Setup

This section presents two approaches in which the ALNS-VCP matheuristic was adjusted to provide
high-quality solutions to the TSRSPBO studied in this thesis. Section 9.2.1 outlines how local
search and the Vessel Combination Problem (VCP) were utilized to increase the performance of
the ALNS-VCP. Section 9.2.2 presents the parameter tuning procedure of the resulting ALNS-VCP
configuration.

9.2.1 ALNS-VCP Configuration

During the implementation phase of this thesis, it became evident that the operators employed by
the Large Neighborhood Search (LNS) of the ALNS procedure had difficulty finding high-quality
solutions alone. Initial test runs indicated the importance of incorporating Local Search (LS)
operators and the Vessel Combination Problem (VCP), thus introducing the iterative ALNS-VCP
matheuristic. To measure the impact of these extensions, three different heuristic configurations
were defined. The first configuration was based on the ALNS procedure without incorporating
local search of the VCP. The second configuration was the iterative ALNS-VCP matheuristic
without local search. The third configuration was the finalized ALNS-VCP matheuristic, which
incorporates local search. The parameters of the ALNS procedure were initially set according
to Ropke and Pisinger (2006)’s recommendations, which suggest parameter values that generally
perform well across a wide range of problems. Subsequently, five test instances were generated
for each instance class from the test instance classes listed in Table 8.4. All three of the different
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configurations were used to solve them. Furthermore, each test instance was solved five times by
all of the configurations.

The parameters of the ALNS procedure used directly from Ropke and Pisinger (2006) are summa-
rized in Table 9.3. Additionally, the number of iterations for the configurations, IALNS−V CP , the
number of iterations for each segment of the ALNS procedures, IS , and the number of iterations
before the VCP is solved, IV CP , were set to 2,500, 50, and 100, respectively.

Parameter Value Description
pworst 3 Randomness parameter for worst removal
pShaw 6 Randomness parameter for Shaw removal
T start - Simulated annealing temperature, set such that

the probability of accepting a candidate solution
is 50% if the candidate solution is less than %5
worse than the constructed solution

c 0.99975 Simulated annealing cooling rate
σ1 33 ALNS score for finding new best solution
σ2 9 ALNS score for finding new accepted solution
σ3 13 ALNS score for finding new solution
r̃ 0.1 ALNS reaction parameter
α 40% Maximum percentage of current solution to destroy

Table 9.3: Initial parameters of the ALNS procedure used directly from Ropke and Pisinger (2006)

Table 9.4 presents the results of comparing the three different configurations for the generated
test instances. Each test instance was solved five times by each of the different configurations.
The columns labeled ALNS, ALNS-VCP w/o LS, and ALNS-VCP represent the three con-
figurations. The Instance Class column displays the classes of the test instances solved along
with the size of the class. The values in the Gap[%] columns are calculated based on the best
objective value found across the different configurations for each test instance and averaged across
the five runs. Therefore, it provides a relative measure of the performance of the configurations.
The Time[s] columns indicate the time in seconds for each configuration to solve the generated
test instances averaged across the five runs.

ALNS ALNS-VCP w/o LS ALNS-VCP
Instance Class Gap[%] Time[s] Gap[%] Time[s] Gap[%] Time[s]
S C9V3B4 1.15 5.8 0.03 6.0 0.00 6.3
S C12V3B4 2.31 7.4 1.10 8.2 0.87 8.6
S C12V4B6 2.64 17.5 0.34 18.8 0.00 19.7
M C15V5B10 3.50 35.7 0.11 34.9 0.02 37.2
M C30V5B10 10.41 97.9 1.17 75.4 0.17 84.6
M C30V10B10 10.99 189.1 0.68 163.5 0.32 188.3
M C60V10B10 17.90 855.9 0.93 578.4 0.18 641.0
M C45V15B10 14.53 883.2 0.17 681.3 0.03 827.1
L C60V15B10 18.25 1659.8 0.36 1121.1 0.10 1293.7
L C60V20B10 15.23 2181.4 0.17 1839.6 0.03 2162.6
L C90V20B10 18.52 3600.0 0.68 3366.7 0.11 3493.5
L C90V30B10 15.50 3600.0 0.39 3600.0 0.06 3600.0
L C120V30B10 17.48 3600.0 1.13 3600.0 0.23 3600.0
Average tot. 11.42 1287.2 0.56 1161.1 0.16 1227.9

Table 9.4: Comparison of heuristic configurations before tuning parameters of the ALNS procedure

The key finding from Table 9.4 is the significant disparity in the Average tot. gap percentage
values. The ALNS configuration, on average, achieves solutions with a relative gap of 11.42%.
In contrast, the iterative ALNS-based matheuristic configurations, ALNS-VCP w/o LS and
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ALNS-VCP achieve gaps of 0.56% and 0.16%, respectively. The disparity is noteworthy because
the inclusion of the VCP does not directly contribute to finding a wider range of vessel-specific
routes. Instead, the VCP enables the search to find combinations of vessel-specific routes encoun-
tered by the LNS operators. This observation suggests that the implemented LNS operators used
by the ALNS procedure are effective at discovering various vessel-specific routes but struggle to
generate well-performing combinations of these routes. Finally, as the ALNS-VCP configuration
decreases the Averaged tot. gap from 0.56% to 0.16%, local search is shown to contribute to the
exploration of the search space.

9.2.2 Tuning the parameters of the ALNS procedure

Although Ropke and Pisinger (2006)’s reported the parameter values of the ALNS procedure to
work well on a variety of different problems, further parameter tuning specific to the TSRSPBO
studied in this thesis is required. To this end, this section presents a parameter tuning analysis for
the parameters of the ALNS procedure of the iterative ALNS-VCP matheuristic.

While experimenting with the implementation of the ALNS-VCP matheuristic, we discovered that
certain parameter values of the ALNS procedure mentioned in Ropke and Pisinger (2006) consis-
tently generated high-quality solutions and showed minimal sensitivity to changes in their values.
However, we observed that the solution quality heavily relied on the percentage of the current
solution that is destroyed in the ALNS procedure.

The number of cargoes removed in each iteration of the ALNS-VCP matheuristic is decided by
drawing randomly from the discrete uniform distribution Unif [1, α|T |], where α ∈ R | 1 < α|T | ∧
α < 1 is a constant. Here, T is the set of cargoes serviced in the current solution. During the early
stages of the development of the ALNS-VCP matheuristic, the α parameter was set to have a value
of 0.4. As increasing the value of the α parameter seemed to produce higher-quality solutions, a
more systematic parameter tuning experiment was deemed necessary.

To avoid the potential issue of overfitting the tuned parameters to a specific class of instances, we
generated two test instances for each of the following classes: C30V5B10, C30V10B10, C45V15B10,
C60V20B10, and C90V30B10. These test instances were then solved using the ALNS-VCP, utilizing
the parameter values of the ALNS procedure shown in Table 9.3, with the exception of the α value.
IALNS−V CP , IS and IV CP were set to 2,500, 50, and 100, respectively. Each test instance was
solved five times due to the inherent randomness in the ALNS-VCP matheuristic. Initially, the α
value was set to 0.2 and subsequently increased by increments of 0.05 until reaching a final value
of 0.8. The results of tuning the α parameter value are shown in Table 9.5. The α rows contain
the different α values used in the tuning procedure. The Time[s] rows show the averaged time
in seconds used to solve the generated test instances. The Gap[%] rows display the relative gap
measured across the different values of α averaged across the number of runs and generated test
instances. Finally, the CV[%] rows present the coefficient of variation measured across the five
runs for each test instance and averaged across each instance. The results are further visualized in
Figure 9.1.

α 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Time[s] 958 1,153 1,248 1,337 1,430 1,504 1,592 1,634 1,655 1,696 1,716 1,728 1,731
Gap[%] 0.37 0.21 0.09 0.07 0.08 0.05 0.03 0.04 0.05 0.03 0.06 0.06 0.06
CV[%] 0.23 0.16 0.08 0.08 0.08 0.05 0.03 0.02 0.03 0.03 0.03 0.04 0.04

Table 9.5: Results of tuning the α value for the ALNS-VCP matheuristic
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(a) Tuning time vs. α (b) Tuning CV vs. α (c) Tuning gap vs. α

Figure 9.1: Tuning results vs. α

As anticipated, Figure 9.1a illustrates that the time required to solve the generated test instances
increases as the value of α increases. This finding makes sense since the repair operators in the
ALNS procedure need to insert, on average, more cargoes. Figure 9.1b demonstrates a decreasing
trend in the coefficient of variation across the ALNS-VCP matheuristic tuning runs when averaged
across the test instances. This trend continues until an α value of 0.55, beyond which the coefficient
of variation starts to rise. Figure 9.1c shows a similar pattern, reaching a minimum gap value of
0.03 at an α value of 0.5. However, it is worth noting that an α value of 0.65 also achieves an
equivalent gap.

Based on Table 9.5 and Figure 9.1, an α value of 0.5 was determined to achieve the best results.
Although an α value of 0.65 achieves an equivalent gap, such a value increases the solution time
and the coefficient of variation.

9.3 Comparison of Solution Methods

This section presents a comparison between the solutions produced by the iterative ALNS-VCP
matheuristic and the path flow solution method with a priori column generation. Five test instances
for each of the classes presented in Table 8.4 were generated. Each test instance was solved a total
of five times by the ALNS-VCP heuristic. The path flow solution method was limited to generating
columns for up to one hour, after which a solution was not considered to have been found. It should
be noted that increasing the path flow solution time for more than one hour would lead to situations
in which the computer would run out of memory. The ALNS-VCP matheuristic was similarly run
for up to 3,600 seconds, after which the best-encountered solution was returned.

Table 9.6 summarizes the results. The Instance Class column shows the solved classes of test
instances along with their size. The ObjPF presents the objective value found by solving the
test instances by the path flow solution method with a priori column generated. The values are
averaged across the test instances in each class. The TimeAP[s] column displays the averaged
duration of the a priori column generation. Similarly, the TimePF[s] gives the averaged duration
of solving the resulting path flow model. ObjAV gives the objective value found by solving the test
instances by the ALNS-VCP matheuristic. The values are averaged across the five runs and test
instances in each instance class. Similarly, the TimeAV[s] column shows the averaged solution
time of the ALNS-VCP matheuristic. The CV[%] column presents the coefficient of variation
calculated across the five ALNS-VCP runs of each test instance. The values are then averaged
across the test instances in each instance class. Finally, the Gap[%] column displays the averaged
absolute percentage gap between the exact solution found by the path flow solution method with
a priori column generation and the ALNS-VCP matheuristic. The values are rounded to two
decimals.
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Instance Class ObjPF TimeAP[s] TimePF[s] ObjAV TimeAV[s] CV[%] Gap[%]
S C9V3B4 6,553,546 0.6 0.03 6,553,371 6.6 0.00 0.00
S C12V3B4 8,285,835 2.2 0.04 8,285,702 9.3 0.00 0.00
S C12V4B6 10,404,761 8.4 0.11 10,404,761 18.2 0.00 0.00
M C15V5B10 12,056,669 81.0 1.12 12,055,775 39.9 0.01 0.01
M C30V5B10 13,762,712 799.2 16.37 13,759,422 128.0 0.00 0.02
M C30V10B10 27,517,394 1,916.8 40.32 27,515,921 335.5 0.00 0.01
M C60V10B10 - 3,600.0 - 31,990,297 783.2 0.13 -
M C45V15B10 - 3,600.0 - 46,402,247 1,072.8 0.03 -
L C60V15B10 - 3,600.0 - 50,196,997 1,773.1 0.03 -
L C60V20B10 - 3,600.0 - 62,489,404 3,151.4 0.01 -
L C90V20B10 - 3,600.0 - 71,280,724 3,540.4 0.13 -
L C90V30B10 - 3,600.0 - 98,877,545 3,600.0 0.05 -
L C120V30B10 - 3,600.0 - 102,861,735 3,600.0 0.22 -
Average tot. - 2,154.5 - 41,744,146 1,389.1 0.05 -

Table 9.6: Comparison of solution approaches

The results presented in Table 9.6 demonstrate the effectiveness of the different solution approaches.
The path flow method, combined with a priori column generation, successfully solves all small test
instances optimally. However, it only achieves optimal solutions for three out of five medium-sized
instances and none of the large instances. In contrast, the ALNS-VCP matheuristic is capable
of solving all small and medium-sized instances within an hour. Among the large instances, the
ALNS-VCP matheuristic solves all test instances of the C60V15B10 and C90V20B10 classes within
an hour, while instances in the other large classes reach the one-hour stopping criterion.

The ALNS-VCP matheuristic achieves optimal solutions for all small-sized C12V4B6 instances.
For the remaining small instances, the optimality gaps are less than 0.005, which are considered
negligible and rounded to zero. In the first three medium-sized classes, the ALNS-VCP reports
average optimality gaps of 0.01, 0.02, and 0.01, respectively, indicating high-quality solutions. Since
the path flow approach fails to solve larger instances, no optimality gaps are reported for them.
However, the ALNS-VCP provides solutions for all generated test instances. The CV[%] column
values remain relatively low for larger instances, indicating that the ALNS-VCP matheuristic
produces solutions of similar high-quality across multiple runs, even for larger-sized test instances.

Furthermore, a comparison of solution times reveals interesting insights. For small-sized instances,
the path flow approach is advantageous, providing optimal solutions in a shorter solution time.
However, for the C15V5B10, C30V5B10, and C30V10B10 classes, the ALNS-VCP delivers near-
optimal solutions with significantly reduced computation times of 52%, 84%, and 83%, respectively.

Overall, when comparing the ALNS-VCP matheuristic to the path flow approach, it is evident
that the path flow approach cannot solve optimally or even produce feasible solutions to larger
instances. In contrast, the ALNS-VCP consistently produces high-quality solutions within the one-
hour time limit, making it a practical operational support tool for dry bulk operators like Western
Bulk, even for realistic-sized problems.

9.4 Inspection of Solutions

This section provides some details of the solutions found when solving the generated test instances
in the chosen instance classes. Table 9.7 provides cargo-related statistics that are averaged across
the test instances and the number of runs for each instance class. The Instance Class column
shows the instance classes and their size. The |NC ∈ T | column shows the averaged number of
contracted Contract of Affreightment (CoA) cargoes serviced by vessels in the fleet in the found
solutions. The |NO ∈ T | column gives the averaged number of optional spot cargoes serviced by
the fleet. The |NC ∈ U| column displays the averaged number of contracted CoA cargoes serviced
by hired spot vessels. Finally, the |NO ∈ U| shows the averaged number of optional spot cargoes
that are not serviced by any vessel in the fleet. The averaged values are rounded to the closest
integer value.
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Instance Class |NC ∈ T | |NO ∈ T | |NC ∈ U| |NO ∈ U|
S C9V3B4 2 3 1 3
S C12V3B4 3 3 1 5
S C12V4B6 4 5 0 3
M C15V5B10 4 6 1 4
M C30V5B10 7 6 3 14
M C30V10B10 9 14 1 6
M C60V10B10 13 13 7 27
M C45V15B10 14 22 1 8
L C60V15B10 18 21 2 19
L C60V20B10 19 32 1 8
L C90V20B10 26 29 4 31
L C90V30B10 29 46 1 14
L C120V30B10 35 43 5 37
Average tot. 14 19 2 14

Table 9.7: Averaged statistics of solutions

Table 9.7 highlights the importance of servicing the contracted CoA cargoes by vessels in the fleet.
In the best-found solutions, the number of spot vessels used to service CoA cargoes is significantly
lower than the number of hired spot vessels. However, apart from the C12V3B4 instance class, the
number of hired spot vessels is greater than zero. This observation emphasizes the benefit of the
hiring optionality of spot vessels. There may very well exist situations in which highly profitable
spot cargoes are available. In these situations, the spot cargoes should be prioritized over less
profitable CoA cargoes, even though the hire of a spot vessel is required.

Table 9.8 provides relevant bunker-related statistics for the best-found solutions. The Instance
Class column is defined as before. The Tot. # Bunker column shows the total number of bunker
nodes visited in the solutions. The values are averaged across the test instances and the number of
runs in each instance class and rounded to the closest integer. Similarly, the Avg. # Bunker (v)
displays the number of bunker nodes visited on average by each vessel in the fleet in the best-found
solutions. The values are rounded to one decimal. The Max. # Bunker (v) provides the number
of bunker node visits for the vessel with the most visits across the test instances and runs in each
instance class.

Instance Class Tot. # Bunker Avg. # Bunker (v) Max # Bunker (v)
S C9V3B4 3 1.0 2
S C12V3B4 3 1.0 2
S C12V4B6 4 1.0 2
M C15V5B10 8 1.6 3
M C30V5B10 7 1.4 3
M C30V10B10 15 1.5 3
M C60V10B10 15 1.5 3
M C45V15B10 23 1.5 3
L C60V15B10 22 1.5 3
L C60V20B10 28 1.4 3
L C90V20B10 30 1.5 3
L C90V30B10 41 1.4 3
L C120V30B10 41 1.4 3
Average tot. 18 1.3 2.8

Table 9.8: Averaged bunker node statistics of solutions

For the small instance classes, Table 9.8 shows that the best-found solutions contain routes where
each vessel visits a single bunker node on average. For the same instance classes, the maximum
number of bunker visits is two. For the medium and large instance classes, the average number
of bunker node visits is significantly higher and remains around 1.5 across the instance classes of
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these sizes. The Max # Bunker (v) column displays a similar trend. In general, the number
of bunker node visits depends on the planning horizon of the problem. In the problem studied in
this thesis, the planning horizon is usually less than 80 days. Table 9.8 shows that when utilizing
such planning horizons, one can expect that the maximum number of bunker nodes visited by a
vessel should not exceed three.

9.5 Impact of Fleet Repositioning

The Tramp Ship Routing and Scheduling Problem with Bunker Optimization (TSRSPBO) studied
in this thesis incorporates the extension of fleet repositioning. To quantify the impact of fleet
repositioning, four instance classes were chosen to study further. Five test instances from the
C30V10B10, C45V15B10, C60V20B10, and C90V30B10 instance classes were generated. Each test
instance was solved five times by the ALNS-VCP matheuristic.

In the first experiment, the test instances were first solved by only considering the first-stage phase
of the two-stage stochastic TSRSPBO presented in Chapter 5. As such, fleet repositioning is not
considered. The first-stage solutions were then compared to the two-stage stochastic solutions
by calculating and subtracting the resulting recourse cost. As described in Section 8.1.2, the
repositioning costs on which the recourse cost depends are calculated based on bunker costs and
canal costs. Table 9.9 summarizes the results of comparing first-stage solutions to the two-stage
stochastic solutions with five scenarios.

The Instance Class column shows the instance classes and their size. The ObjDet column shows
the objective values obtained by solving the deterministic first-stage phase of the problem without
considering fleet repositioning. The values are averaged over the five runs and five test instances in
each instance class. The ObjRC shows the averaged objective values of ObjDet after subtracting
the second-stage recourse costs. The TimeDet[s] column highlights the averaged solution time of
the deterministic first-stage problems. The ObjSS presents the averaged objective values of the
two-stage stochastic solutions. The TimeSS[s] gives the averaged solution time for the two-stage
stochastic problems. Finally, the Gap[%] column shows the averaged gap between the first-
stage solutions less the resulting second-stage recourse cost (ObjRC) and the stochastic solutions
(ObjSS).

Instance Class ObjDet ObjRC TimeDet[s] ObjSS TimeSS[s] Gap[%]
M C30V10B10 29,710,147 28,495,880 250.6 28,824,484 290.2 1.14
M C45V15B10 46,457,344 44,222,937 831.3 44,854,549 971.1 1.41
L C60V20B10 65,733,554 63,842,667 2469.9 64,384,387 2721.1 0.84
L C90V30B10 103,301,235 99,570,307 3600.0 100,524,767 3600.0 0.95
Average tot. 61,300,571 59,032,948 1,788.0 59,647,047 1,895.6 1.08

Table 9.9: Objective value differences between first-stage and two-stage stochastic solutions when
repositioning cost is based on bunker costs and canal costs.

Table 9.9 indicates that the first-stage objective values presented inObjDet column are significantly
higher than the objective values obtained from solving the two-stage stochastic model presented
in ObjSS. However, as the first-stage solutions are found without considering the repositioning
cost, these costs can be quite substantial, as indicated by column ObjRC. When comparing the
two approaches, solving the two-stage stochastic problem formulation yields, on average, a 1.08%
increase in the objective function value for the 20 test instances in the C30V10B10, C45V15B10,
C60V20B10, C90V30B10 instance classes

In the second experiment, rather than ignoring the cost of repositioning, a single scenario was gen-
erated based on the expected value of the scenarios used in the full two-stage stochastic problem
formulation. The resulting problem is denoted as the deterministic mean value problem. The solu-
tions obtained from solving the deterministic mean value problem were compared to the two-stage
formulation with five scenarios. To do so, the recourse cost of the deterministic mean value problem
solution was calculated based on solving the second-stage of the stochastic problem formulation
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with five scenarios. The resulting recourse cost was then subtracted from the first-stage objective
value of the deterministic mean value problem. Table 9.10 highlights the results.

Columns Instance Class, ObjSS, and TimeSS[s] are defined as before. The ObjMVP column
shows the objective values obtained by solving the deterministic mean value problem. The values
are averaged over the five runs and five test instances in each instance class. The ObjEEV columns
present the averaged objective values obtained when subtracting the second-stage recourse cost
based on five scenarios from the first-stage profit of the deterministic mean value problem. The
TimeMVP[s] columns show the averaged solution times for the two-stage formulation based on
the expected scenario. Finally, the VSS[%] column shows the averaged values of the stochastic
solution as a percentage.

Instance Class ObjMVP ObjEEV TimeMVP[s] ObjSS TimeSS[s] VSS[%]
M C30V10B10 28,936,920 28,348,469 256.6 28,824,484 290.2 1.65
M C45V15B10 44,928,976 43,979,907 868.3 44,854,549 971.1 1.95
L C60V20B10 64,513,642 63,774,819 2547.9 64,384,387 2721.1 0.95
L C90V30B10 100,712,461 98,837,711 3600.0 100,524,767 3600.0 1.68
Average tot. 59,773,000 58,735,227 1,818.2 59,647,047 1,895.6 1.56

Table 9.10: Value of the stochastic solution when repositioning cost is based on bunker costs and
canal costs.

Looking at Table 9.10, it is evident that solutions of the deterministic mean value problem account
for the expected cost of repositioning as the values of the ObjMVP column are lower than the
values of the ObjDet column found in Table 9.9. Further, the averaged difference between the
values of the ObjMVP and ObjEEV columns in Table 9.10 is smaller than the averaged difference
between the values of the ObjDet and ObjRC columns in Table 9.9. Interestingly, the averaged
values of the ObjRC column in Table 9.9 are greater than the averaged values of the ObjEEV

column in Table 9.10. Consequently, the averaged percentage values in the VSS[%] column in
Table 9.10 are greater than the values of the Gap[%] column in Table 9.9. These observations
complement the results presented in Table 9.2, highlighting the importance of modeling more than
a single scenario.

As explained in Section 8.1.2, the cost of repositioning a vessel from its last planned port visit
to a given region is based on the variable sailing costs, such as the cost of bunker consumed and
any potential canal costs. However, during repositioning legs, vessels do not carry cargo. As
such, there is an associated opportunity cost of repositioning that may be estimated by a charter
rate aggregated over the time it takes to reposition. By including this opportunity cost in the
calculation of the CB

d(v)k parameters, a more accurate estimation of the second-stage recourse cost
can be obtained.

Tables 9.11 and 9.12 summarize the results obtained from repeating the first two experiments when
including the opportunity cost in the estimation of the second-stage recourse cost. The columns
are defined similarly as in Table 9.9 and 9.10, respectively.

Instance Class ObjDet ObjRC TimeDet[s] ObjSS TimeSS[s] Gap[%]
M C30V10B10 29,710,147 27,021,840 250.6 28,302,306 255.7 4.52
M C45V15B10 46,457,344 41,457,699 831.3 44,151,917 780.2 6.10
L C60V20B10 65,733,554 61,536,298 2469.9 63,749,872 2463.4 3.47
L C90V30B10 103,301,235 94,895,385 3600.0 99,607,008 3600.0 4.73
Average tot. 61,300,571 56,227,806 1,788.0 58,952,776 1,774.8 4.71

Table 9.11: Objective value differences between first-stage and two-stage stochastic solutions when
repositioning cost includes opportunity cost.
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Instance Class ObjMVP ObjEEV TimeMVP[s] ObjSS TimeSS[s] VSS[%]
M C30V10B10 28,873,412 28,093,464 215.3 28,302,306 255.7 0.74
M C45V15B10 44,693,870 44,000,647 656.1 44,151,917 780.2 0.34
L C60V20B10 64,227,590 63,541,429 2270.4 63,749,872 2463.4 0.33
L C90V30B10 100,396,194 99,453,143 3600.0 99,607,008 3600.0 0.15
Average tot. 59,547,767 58,772,171 1,685.5 58,952,776 1,774.8 0.39

Table 9.12: Value of the stochastic solution when repositioning cost includes opportunity cost.

When comparing Table 9.9 with Table 9.11, it is clear that including the opportunity cost when
calculating the repositioning cost has a significant impact on the second-stage recourse cost. While
the values of the ObjDet columns are the same in both tables, the ObjRC column values in Table
9.11 are significantly lower than in Table 9.9, indicating that including the opportunity cost renders
the deterministic first-stage solutions less effective. Further, the ObjSS column values in Table
9.11 are only marginally smaller than those in Table 9.9. As a result, the Gap[%] column values
are significantly higher in Table 9.11. The Gap[%] columns in Tables 9.9 and 9.11 highlight the
importance of considering fleet repositioning when finding solutions to TSRSPBOs in the dry bulk
industry. If a dry bulk operator does not consider the regions of which vessels are located at the
end of the planning horizon, the Gap[%] columns in Tables 9.9 and 9.11 indicate that there is a
substantial amount of profit that is lost.

In Table 9.12, the ObjMVP column indicates that solutions of the deterministic mean value prob-
lem account for the expected cost of repositioning as the values are lower than the ObjDet column
values in Table 9.11. Further, the ObjEEV values in Table 9.12 are lower than the ObjEEV

values in Table 9.10, indicating the impact of including the opportunity cost when calculating
repositioning costs. Interestingly, including opportunity costs decrease the VSS[%] column values
when compared to Table 9.10. As such, the deterministic mean value problem performs better
when including opportunity costs compared to when opportunity costs are excluded. However, the
VSS[%] column values in Table 9.12 still indicate the added value of modeling more than a single
scenario.

9.6 Impact of Bunker Procurement

As explained in Section 8.1.1, the bunker prices used as input to the model presented in Chapters
5 and 6 were retrieved from Maritime Optima’s BunkerEx (2022) interface. These prices are
considered market prices and are accessible to anyone seeking to buy bunker fuel at a specific port.
However, shipping companies allocate resources to secure favorable bunker purchase agreements
in advance. For instance, Western Bulk has a dedicated department responsible for negotiating
bunker purchase deals with various ports. This section indicates how the ALNS-VCP can provide
decision support for the most effective allocation of resources for such a bunker department.

Figure 9.2 shows the average and total number of visits to bunker ports in the best solutions found
for the test instances in the C45V15B10 instance class. The y-axis shows the bunker price, while
the x-axis indicates the number of visits to the bunker port. Figure 9.2 shows that Port Elizabeth,
Gladstone, Kandla, and Hong Kong ports are rarely visited by vessels. Singapore, Al Fujayrah,
and Zhoushan are the most frequently visited bunker ports. This observation can be attributed to
the lower bunker prices but also to the location of the ports. The port of Singapore, for example,
is positioned strategically between the Indian Ocean and the East China Sea. On the other hand,
even though the bunker price in Hong Kong is relatively low, vessels seem to ignore this option.
Presumably, traveling to Hong Kong constitutes a detour compared to purchasing bunker in either
Singapore or Zhoushan Port.
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(a) Averaged number of bunker visits (b) Total number of bunker visits

Figure 9.2: Number of bunker visits in the C45V15B10 instance class

Figure 9.3 illustrates the average increase in profit for the test instances in C45V15B10 at varying
bunker discount rates. The bunker discount rates were applied one at a time to each of the bunker
ports. As anticipated, raising the discount rate results in a higher profit. Gladstone and Port
Elizabeth, situated in Australia and South Africa, respectively, are positioned inconveniently for
vessels operating in the Indo-Pacific region. Furthermore, neither country is a major oil producer,
resulting in comparatively higher bunker prices at these ports, as evident in Figure 9.2. Therefore,
acquiring a discounted bunker price at these ports is unlikely to significantly contribute to the
fleet’s overall profit. This notion is confirmed by Figure 9.3, where even with a 20% bunker price
discount, the fleet-specific profit only experiences a marginal increase compared to similar discounts
at other bunker ports. On the other hand, bunker price discounts at the ports of Singapore or
Al Fujayrah have the most significant impact on the average generated profit. This observation
aligns with the data presented in Figure 9.2, as these two ports are the most frequently visited and
offer the lowest bunker purchase prices. Consequently, if Western Bulk needs to prioritize efforts in
securing a discounted bunker purchase contract, Figure 9.3 suggests focusing on either Singapore
or Al Fujayrah.

Figure 9.3: Averaged effects of procuring discounted bunker for test instances in C45V15B10
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It is interesting that Hong Kong, a port that had infrequent visits in Figure 9.2, has a more
significant influence on the average profit for the test instances in C45V15B10 compared to Zhoushan
Port, which was visited relatively more frequently. Although visiting Hong Kong may require a
detour when compared to Singapore or Zhoushan, Figure 9.3 indicates that the cost of this detour
is minimal compared to the increased profit gained from securing a favorable bunker purchase
contract in Hong Kong.

During bunker purchase negotiations, the bunker purchase managers at Western Bulk can use the
information provided in Figure 9.3. By analyzing the data, they can identify the significant impact
that Al Fujayrah and Singapore have on the profitability of their fleet. As a result, they can prior-
itize obtaining discounted bunker purchase contracts in these ports. On the other hand, allocating
resources to secure favorable contracts at Gladstone and Port Elizabeth would be unnecessary
since these ports have a negligible impact on the generated profit. Additionally, if Western Bulk is
currently invests resources in securing purchase contracts at Zhoushan Port, it should reconsider
its strategy and shift its focus to Hong Kong instead. Such a shift is advisable because a discounted
bunker price in Hong Kong would have a greater impact on the company’s profits.
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Chapter 10

Concluding Remarks

This thesis studies and solves a Tramp Ship Routing and Scheduling Problem with Bunker Op-
timization (TSRSPBO) defined in collaboration with a dry bulk operator, Western Bulk. The
TSRSPBO is modeled as a two-stage stochastic optimization problem and includes three exten-
sions relevant to dry bulk operators. The TSRSPBO concerns generating optimal cargo schedules
for a fleet of vessels and a set of contracted and mandatory cargoes to be transported. The objective
of the TSRSPBO is to maximize the overall profit generated by the vessels in the fleet. A vessel
may transport any amount of cargo within predetermined MoLOO flexibility limits. As such, the
optimal amount of cargo to transport must be decided. The problem further incorporates bunker
optimization as vessels in the fleet must choose where to bunker and the amount of bunker to
purchase. Finally, the TSRSPBO considers regional vessel distributions at the end of the planning
horizon.

Western Bulk face TSRSPBOs daily and relies on charting managers to make optimal decisions.
This study aims to provide chartering managers with an additional tool to aid their decision-
making process. To model Western Bulk’s operational environment, an arc flow formulation was
proposed based on previous research conducted by Brønmo et al. (2007b), Vilhelmsen et al. (2014),
and Omholt-Jensen (2022). The arc flow was further reformulated as a two-stage stochastic opti-
mization model incorporating fleet repositioning costs. The proposed model is the first to combine
flexible cargo quantity limits, as studied in Brønmo et al. (2007b), and integrated bunker opti-
mization, as presented in Vilhelmsen et al. (2014), with fleet repositioning considerations.

The generated test instances were based on real-life information from Western Bulk’s operational
environment. Further, industry partner Maritime Optima provided accurate routing information.

As the arc flow model could not be solved for realistically sized test instances, an exact path flow
formulation leveraging a priori column generation was proposed. A modified Depth-First-Search
algorithm generates all feasible routes for each vessel in the fleet. A linear programming problem
solves each feasible route to optimize the transported cargo amount and purchased bunker amount.
Solutions to the linear programming problem yield the optimal vessel-specific profit used in the
path flow formulation as columns. The proposed path flow formulation was solved to optimality
for test instances of up to 30 cargoes, ten vessels, and ten bunker ports within one hour.

To solve larger test instances, this thesis proposes an iterative matheuristic incorporating an Adap-
tive Large Neighborhood Search (ALNS) framework for column generation. The resulting columns
are fed into a path flow formulation named the Vessel Combination Problem (VCP), which is
solved at regular intervals. The complete matheuristic framework is called the Adaptive Large
Neighborhood Search for the Vessel Combination Problem (ALNS-VCP).

The computational study suggests that the ALNS-VCP matheuristic finds optimal solutions for
small-sized test instances and near-optimal solutions for medium-sized test instances. For the larger
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test instances, the path flow solution method fails to provide any solution within a reasonable time.
In contrast, the ALNS-VCP consistently solves problems of up to 30 vessels, 120 cargoes, and ten
bunker nodes within one hour.

Managerial insights provided by the computational study quantify the impact of modeling the
TSRSPBO with fleet repositioning as a two-stage stochastic optimization problem. The results
confirm that a better regional allocation of vessels could increase fleet-wide profits. The impact of
bunker procurement is further investigated using discounted bunker purchase prices. Their effect
on the profit generated by the fleet is significant and further provides valuable insights for Western
Bulk’s bunker procurement division.
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Chapter 11

Future Research

This chapter proposes additional areas of research that can be pursued based on the work of the
presented thesis. In Section 11.1, potential modifications to the model are suggested in order to
better depict the operational environment of a dry bulk operator. Section 11.2 discusses solution
methods that could enhance the ability to solve larger test instances. Finally, Section 11.3 outlines
additional experiments that can be conducted to quantify the impact of fleet repositioning.

11.1 Model Extensions

Cargo Coupling
As discussed in Section 4.1, the models presented in this thesis do not account for the concept of
dirty cargoes, despite it being a characteristic of Western Bulk’s operational environment. There-
fore, a logical expansion would be to introduce constraints that indicate whether cargoes are
coupled and to incorporate a hull cleaning cost for coupled cargoes. Previous research in the field
of Ship Routing and Scheduling (SRS) literature, specifically the study by Fagerholt et al. (2013),
has explored cargo coupling. Thus, it would be natural to extend the arc flow model by including
coupled cargo constraints.

Non-Stationary Bunker Prices
In this thesis, it was assumed that bunker prices remain constant over time. However, considering
the dynamic nature of bunker prices would be a natural extension and a more realistic assumption.
To incorporate non-stationary bunker prices, the input data can be manipulated by dividing bunker
nodes into distinct time windows, each associated with a different bunker price. By implementing
this approach, the models presented in Chapters 5 and 6 could account for time-varying bunker
prices. A similar methodology is employed in the study by Vilhelmsen et al. (2014). It is important
to note that as the number of bunker nodes increases, solving the models becomes more challenging.

Speed Optimizations
In this thesis, it is assumed that vessels maintain a constant speed. However, vessels typically
have different speeds when sailing in ballast or laden conditions. This distinction directly affects
bunker consumption and travel costs. Therefore, it would make sense for a model to determine the
optimal speed at which a vessel should travel. Speed optimization extensions have been extensively
studied in previous research, including works by Norstad et al. (2011), Castillo-Villar et al. (2014),
and Fan et al. (2019). Given the numerous studies on this topic, it would be reasonable to extend
the models presented in this thesis with speed optimization techniques.

11.2 Solution Methods

All the suggested model extensions presented in Section 11.1 complicate the models and would
increase the time complexity of finding an optimal solution. As such, the problem size of which
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the path flow solution method with a priori column generation is capable of solving is expected
to decrease significantly. Thus, leveraging heuristic frameworks such as the presented ALNS-VCP
matheuristic might be required. Future research leveraging such an ALNS-VCP matheuristic might
incorporate a larger variety of Large Neighborhood Search (LNS) operators tailored to the specific
problem at hand.

Other solution methods include dynamic column generation leveraged by Brønmo et al. (2010) and
Vilhelmsen et al. (2014). In their studies, they formulate the path flow model with an associated
subproblem which they solve as a Shortest Path Problem with Resource Constraints. Homsi et al.
(2020) present an exact Branch-and-Price algorithm and a hybrid metaheuristic based on a Unified
Hybrid Genetic Search.

11.3 Experiments

In this thesis, the impact of considering fleet repositioning was quantified by calculating the Value of
the Stochastic Solution (VSS). Another approach would be to emplace the ALNS-VCP matheuristic
in a simulation framework with sequential planning horizons. The number of vessels to allocate in
each region represents a future outlook on the market and where cargoes should become available.
The cargoes available in subsequent planning horizons could be generated according to distributions
aligned to such outlooks. By simulating several sequential planning horizons, one could quantify the
impact of considering fleet repositioning by comparing first-stage models and mean value models
to the solutions of the stochastic two-stage formulation.
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