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Abstract
Autonomous navigation and information gathering in challenging environments are demanding since the robot’s sensors
may be susceptible to non-negligible noise, its localization and mapping may be subject to significant uncertainty and drift,
and performing collision-checking or evaluating utility functions using a map often requires high computational costs. We
propose a learning-based method to efficiently tackle this problem without relying on a map of the environment or the
robot’s position. Our method utilizes a Collision Prediction Network (CPN) for predicting the collision scores of a set of
action sequences, and an Information gain Prediction Network (IPN) for estimating their associated information gain. Both
networks assume access to a) the depth image (CPN) or the depth image and the detection mask from any visual method
(IPN), b) the robot’s partial state (including its linear velocities, z-axis angular velocity, and roll/pitch angles), and c) a
library of action sequences. Specifically, the CPN accounts for the estimation uncertainty of the robot’s partial state and the
neural network’s epistemic uncertainty by using the Unscented Transform and an ensemble of neural networks. The outputs
of the networks are combined with a goal vector to identify the next-best-action sequence. Simulation studies demonstrate
the method’s robustness against noisy robot velocity estimates and depth images, alongside its advantages compared to
state-of-the-art methods and baselines in (visually-attentive) navigation tasks. Lastly, multiple real-world experiments are
presented, including safe flights at 2.5 m/s in a cluttered corridor, and missions inside a dense forest alongside visually-
attentive navigation in industrial and university buildings.
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1. Introduction

Recent breakthroughs in the field of aerial robotics have
enabled their widespread adoption in various applica-
tions including in subterranean exploration, construc-
tion, agriculture and forestry Tranzatto et al. (2022);
Loquercio et al. (2021); Petracek et al. (2021); Zhou and
Gheisari (2018); Kulbacki et al. (2018). Extremely agile
navigation of quadrotors has been demonstrated recently
in the context of drone-racing competitions Foehn et al.
(2022); Wagter et al. (2021) or in broader field tests
Loquercio et al. (2021); Kaufmann et al. (2020).
However, the task of autonomous 3D navigation and
efficient information gathering in challenging, geo-
metrically complex, perceptually-degraded environ-
ments remains demanding since a) the robot’s sensors
may be susceptible to non-negligible noise, b) the on-
board localization and mapping may be subject to sig-
nificant uncertainty and drift Ebadi et al. (2022); Cadena
et al. (2016), and c) performing collision-checking or
evaluating utility functions for high-quality information
sampling using a map often results in high computa-
tional cost Schmid et al. (2020).

While map-based methods require building a consistent
map of the environment, for example via octrees Hornung
et al. (2013), TSDFs Oleynikova et al. (2017); Han et al.
(2019), or VDB structures Museth (2013), map-less methods
follow another approach by only relying on a single ob-
servation or a (spatio)-temporal window of recent observa-
tions possibly combined with high-level commands from the
operator or path planners. Traditional map-less approaches
utilize various data structures such as kd-trees Florence et al.
(2018); Gao et al. (2019), 3D circular buffers Usenko et al.
(2017), rectangular pyramids Bucki et al. (2020) or directly
use disparity images Matthies et al. (2014) for fast collision
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checking. Recent work on data-driven learning offers another
promising pathway towards low-latency navigation by ex-
ploiting both the parallel computing capabilities of GPUs
Kew et al. (2021); Kahn et al. (2021a) and the universal
approximation power of deep neural networks Tabuada and
Gharesifard (2022) to directly map raw sensor observations
to control actions, thus bypassing the need for separate
perception, mapping, and planning modules Loquercio et al.
(2021); Kaufmann et al. (2020).

Our work falls into this latter category of approaches as
we aim to develop an efficient collision-free and
information-gathering navigation method that does not rely
on the global map or position information of the robot.
Learning-based methods can offer low computation costs,
however, only a few works discuss the effects of different
uncertainties on the robot’s navigation capabilities. In turn,
modern deep neural networks are notoriously famous for
giving unjustifiably overconfident predictions Guo et al.
(2017); Abdar et al. (2021). Hence, it is essential to handle
uncertainty in neural network prediction properly in safety-
critical applications.

Simultaneously, we further aim to address the challenge
of combining such map-less safe navigation with efficient
sampling of information about interesting areas in the en-
vironment. Relevant works in the literature of informative
path planning have been various Hollinger and Sukhatme
(2014); Forssen et al. (2008); Dang et al. (2018); Popovic
et al. (2018), but usually require building maps of the
environments and tend to be computationally expensive,
which hinders their deployability or the quality of the
achieved solution given the limited computing resources
onboard most aerial robots.

Responding to the combined problem of map-less col-
lision-free and visually-attentive navigation, we propose a
duo of new methods, called “Attentive ORACLE” (A-
ORACLE) and “ORACLE.” Attentive ORACLE trains two
deep neural networks: a Collision Prediction Network for
predicting uncertainty-aware collision costs and an Infor-
mation gain Prediction Network for estimating information
gain values of a set of action sequences in a Motion
Primitives Library. While the Collision Prediction Network
utilizes only depth data—alongside a partial robot state that
does not involve its position—and is built and expanded
upon our earlier work Nguyen et al. (2022), the new In-
formation gain Prediction Network utilizes both depth
images and visual detection results and is trained with the
information gain labels provided by an offline expert that
relies on a volumetric mapping representation of the en-
vironments. Given the predictions from the two networks, in
addition to a unit goal vector given by any high-level
planner, the method derives the safe (collision-free) mo-
tion primitive having the highest information gain and
leading towards a desired direction. This is then com-
manded and executed in a receding horizon fashion. It is
noted that when the Information gain Prediction Network is
not engaged, the method reduces to 3D ORACLE which
ensures safe uncertainty-aware map-less navigation.

Compared to our previous work on ORACLE Nguyen
et al. (2022), this manuscript represents a major extension
and claims a set of contributions as outlined below.

First, it is about introducing visual attention-aware nav-
igation into the framework through the Information gain
Prediction Network which in turn allows to combine safe
navigation with implicit information sampling (contribution
1). Second, we present a significant upgrade of Nguyen et al.
(2022) as the new method a) extends the previous one from
2D to 3D navigation enabling safe flight in complex and
cluttered scenes without the need for a map or position es-
timates (contribution 2) and further b) utilizes a deep en-
sembles method, called Deep Ensembles Lakshminarayanan
et al. (2017), instead of Monte Carlo dropout Gal and
Ghahramani (2016) for the neural network’s epistemic un-
certainty estimation thus offering performance robustness
against sources of noise (contribution 3).

To realize these goals, ORACLE and A-ORACLE employ
a novel supervised learning paradigm for collision prediction
and assessment of the informativeness of candidate motion
primitives where both the epistemic and aleatoric uncertainty
are accounted for collision prediction through the Deep En-
sembles and the Unscented Transform over the robot’s partial
state covariance (contribution 4). Finally, a new set of sim-
ulations and real-world experiments are conducted to verify
the proposed uncertainty-aware and visually-attentive
framework. The method is thus extensively evaluated in-
cluding successful sim-to-real transfer, an ablation study, and
comparative analysis against other methods of the state-of-the-
art highlighting its advantages (performance claim).

Specifically, more thorough simulation studies are
conducted to demonstrate the performance of our method
against noisy inputs including the robot’s velocity estimate
and the depth image (linked to contributions 2–4). An
ablation study regarding the role of the Deep Ensembles is
also conducted in simulation (linked to contribution 3),
alongside a comparative analysis of ORACLE with the
work in Loquercio et al. (2021) (linked to contributions 2–
4). Moreover, simulation results with different sources of
visual attention are performed to illustrate the advantages of
our visually-attentive navigation method compared to other
baselines and an appropriately modified version of the
informative planning work in Schmid et al. (2020) (linked to
contribution 1). Finally, real-world experiments, a subset of
which is depicted in Figure 1, including safe flights with a
reference forward speed of 2.5 m/s in a cluttered envi-
ronment (linked to contributions 2–4), autonomous mis-
sions in a highly cluttered forest (linked to contributions 2–
4), and visual attention-aware navigation in industrial and
campus buildings (linked to contribution 1) are also pre-
sented. As demonstrated and analyzed, the method not only
utilizes partial state information and transfers well to the real
system but also presents robustness to state uncertainty and
exteroceptive sensor noise that is unseen during training
(contributions 2–4). For the remainder of this manuscript,
the 3D ORACLE method which ensures safe uncertainty-
aware map-less navigation is simply called ORACLE.
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The remainder of this paper is organized as follows:
Section 2 presents related work, followed by the problem
statement in Section 3. The proposed method is presented in
Section 4 while evaluation studies are detailed in Section 5,
followed by conclusions in Section 6.

2. Related work

A set of contributions in a) learning-based navigation, b)
uncertainty-aware navigation and modeling uncertainty in
deep neural networks, and c) visually-attentive navigation
relate to this work.

2.1. Learning-based navigation

In recent years, a large amount of work has been devoted to
harnessing the power of deep learning in various ways to
solve the problem of autonomous navigation. A group of
work focuses on solving the global path planning problem
efficiently in which a top-down image or point cloud of the
whole environment is provided a priori Ichter and Pavone
(2019); Srinivas et al. (2018); Qureshi et al. (2021).
However, in this work, we focus on the setting where the
global map of the environment is not available and the robot
needs to navigate in a collision-free manner given only local
onboard observations. Several works utilize neural net-
works to solve the local navigation problem. The authors in
Loquercio et al. (2021) and Tolani et al. (2021) use imitation
learning to generate collision-free smooth trajectories which
are then tracked by model-based controllers. Nevertheless,
position information may not be reliable in many
perceptually-degraded environments. On the other hand,
other low-level commands (velocity/steering angle, accel-
eration, or angular velocity/thrust commands) can be in-
ferred by deep navigation policies which can be trained by
various schemes including reinforcement learning Francis
et al. (2020), supervised learning where ground-truth
commands are readily available in a driving dataset

Loquercio et al. (2018), provided by human operators Shah
and Levine (2022) or demonstrated by an expert Kaufmann
et al. (2020), and self-supervised learning Gandhi et al.
(2017); Kahn et al. (2021a); Kahn et al. (2021b). In this
work, we choose to use velocity/steering angle commands
to allow the robot to not rely on reliable position estimation.

A body of work utilizes deep learning to derive inter-
pretable maps, which are then used by classical planners to
plan collision-free paths Wang et al. (2021); Frey et al.
(2022); Castro et al. (2023); Zeng et al. (2019). Instead of
learning classical map representations from raw observation
data, many works present methods to encode raw sensor data
into an implicit latent vector Hoeller et al. (2021); Dugas et al.
(2021); Ichter and Pavone (2019); Srinivas et al. (2018);
Qureshi et al. (2021). Control actions can then be inferred
through these latent representations thus offering the benefit
of low-latency navigation Loquercio et al. (2021), utilizing
the computing capability of modern GPU for efficient deep
neural network’s inference. The latent vectors in our work are
learned to implicitly encode information about the envi-
ronments as well as the robot’s partial state to predict collision
events and information gains at future time steps.

Like other works that apply deep learning to score each
motion primitive in a discrete set (Veer andMajumdar, 2020);
Kahn et al., 2021a); Kahn et al., 2021b), our work also falls
into this category. However, we explicitly consider the effects
of uncertainties when scoring each motion primitive.

2.2. Modeling uncertainty in deep neural
networks and uncertainty-aware
learning-based navigation

When using deep neural networks for making predictions,
there are two kinds of uncertainty that need to be consid-
ered: a) aleatoric uncertainty which captures inherent and
irreducible data noise and b) epistemic uncertainty which
accounts for model uncertainty and cannot be negligible for
out-of-distribution inputs Kendall and Gal (2017). Two

Figure 1. Instances of real-world experiments demonstrating the proposed methods, including safe flights with a reference forward speed
of 2.5 m/s in a cluttered corridor (1a), under canopy flights inside a dense forest (2a) and visual attention-aware navigation in an
industrial silo tank (3a) and a university’s hall (4a). The bottom row (b) illustrates prediction results from the method where the spherical
markers correspond to the estimated trajectory endpoints of a set of action sequences, while among them green markers illustrate the
subset of safe action sequences (with orange being unsafe), and the blue marker with an arrow corresponds to the selected action
sequence.
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main methods for estimating epistemic uncertainty that can
be applied to large neural networks and large datasets are a)
approximate Bayesian inference and b) ensembling
(Gustafsson et al., 2020); Abdar et al., 2021). Monte Carlo
(MC) dropout (Gal and Ghahramani, 2016) is an approx-
imate Bayesian inference method that is widely used in deep
learning due to its simplicity and efficiency. On the other
hand, ensembling methods use an ensemble of neural
networks to derive the output uncertainty. Empirically,
studies in Gustafsson et al. (2020); Ovadia et al. (2019)
conclude that Deep Ensembles (Lakshminarayanan et al.,
2017), an ensemble method that assembles different neural
networks trained with different initialization weights and
shuffling of the same dataset, can provide more reliable and
useful uncertainty estimates than MC dropout.

Additionally, methods for propagating aleatoric uncer-
tainty from the input to the output of the neural network can
be classified into two main groups: layer-wise and entire-
network uncertainty propagation (Abdelaziz et al., 2015).
Though layer-wise uncertainty propagation methods
(Ghosh et al., 2016); Hernández-Lobato and Adams, 2015);
Gast and Roth, 2018); Wang et al., 2016); Astudillo and
Neto, 2011) can offer the distributions of hidden layers, they
often require modification to the original network during the
training or inference phases. Moreover, Abdelaziz et al.
(2015); Chua et al. (2018) demonstrate that entire-network
uncertainty propagation through particle-based propagation
methods such as the Unscented Transform Julier and
Uhlmann (1997) can be competitive in terms of accuracy
and computation.

As demonstrated in traditional belief space planning
methods (Bry and Roy, 2011); Agha-mohammadi et al.,
2018); Sun et al., 2021), modeling uncertainty is vital to
achieving safe navigation in challenging environments
where the state of the robot or the map of the environment
can be highly uncertain. Most existing works applying deep
neural networks for autonomous navigation account for
epistemic uncertainty only, for instance, by using au-
toencoders Richter and Roy (2017), dropout and bootstrap
Kahn et al. (2017); Georgakis et al. (2022); Lütjens et al.
(2019), 2D spatial dropout Amini et al. (2017), evidential
fusion Liu et al. (2021). One of the exceptions is Loquercio
et al. (2020) which accounts for both uncertainties in the
image data using Assumed Density Filtering Ghosh et al.
(2016) and epistemic uncertainty using MC dropout. Chua
et al. (2018) propose to use particle propagation to estimate
the aleatoric uncertainty and Deep Ensembles to derive the
epistemic uncertainty. However, this work focuses on the
different problem of control of robot dynamics as opposed
to the task of safe and attentive flight exploiting extero-
ceptive sensor data, employs reinforcement learning instead
of supervised learning, is not verified onboard a robot for
autonomous navigation and thus does not address the sim-
to-real challenge, especially with high-dimensional data.
Moreover, in Chua et al. (2018), to predict future plausible
state trajectories, all the state particles are initially created
from the same current state since the aleatoric uncertainty

considered is the inherent stochasticities of the dynamics
model (e.g., process noise). Our work considers the alea-
toric uncertainty of the system as the prediction uncertainty
due to the noisy robot’s partial state estimates. Thus, our
particles are chosen as the sigma points around the current
robot’s partial state estimate, given by the Unscented
Transform.

2.3. Visually-attentive navigation

Our problem is also closely related to the informative path
planning (IPP) problem where the robots need to find
trajectories to maximize information gathered along the
trajectory, given a constrained budget of time, fuel, or
energy (Hollinger and Sukhatme, 2014). Traditionally,
the IPP problem can be tackled by performing coverage
path planning and viewpoint selection on the pre-built
map of the environment (Hollinger and Sukhatme, 2014;
Forssen et al., 2008) or adapting the paths online based on
the latest map to focus on the areas of interest (Dang et al.,
2018; Popovic et al., 2018; Schmid et al., 2020).
Learning-based methods have been applied to solve the
IPP problem efficiently. While Choudhury et al. (2017)
present an imitation learning approach where an agent
imitates an “information-gathering” planner with full
information about the world map, other works in Niroui
et al. (2019); Chen et al. (2020); Zhu et al. (2018) train
reinforcement learning agents to output the next frontiers
to visit for autonomous exploration. Furthermore, the
works in Tao et al. (2023); Georgakis et al. (2022) use
neural networks to predict the occupancy maps and
calculate the informative trajectories to reduce the un-
certainties of the map.

The step of evaluating the information gains for all the
trajectories, however, can be time-consuming Schmid et al.
(2020). Accordingly, several works have proposed methods
to reduce the computational time of the information gain
calculation step, either by subsampling ray casting (Selin
et al., 2019; Oleynikova et al., 2018; Zhou et al., 2021),
avoiding redundant voxel checks (Zhou et al., 2021;
Millane et al., 2018; Schmid et al., 2020), or calculating an
analytical formula for a specific metric (Zhang et al., 2020).
Rckin et al. (2022) combined tree search with offline-
learned neural network predicting informative sensing ac-
tions. The method, however, requires the robot’s position
and a cost feature map input to the network which relies on
the assumption that the robot’s underlying localization and
mapping are accurate.

Our work proposes to efficiently approximate an in-
formation gain formula tailored to obtaining high-quality
observations of interesting areas with a neural network. The
prediction is then combined with an uncertainty-aware
Collision Prediction Network, exploiting the Unscented
Transform and Deep Ensembles, alongside input from a
high-level planner to achieve efficient uncertainty-aware
visually-attentive navigation without relying on a map of
the environment or the robot’s position information.
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3. Problem formulation and notations

The problem considered in this work is that of autonomous
uncertainty-aware and visually-attentive aerial robot navi-
gation. The method explicitly assumes no access to the map
of the environment (neither offline nor online) and no in-
formation for the robot position but only a partial state
estimate of the robot combined with the real-time depth data
and a 2D detection mask representing the interestingness of
every region within an angle- and range-constrained sensor
frustum. We assume that there is a global planner providing
the 3D unit goal vector ngt to the robot (e.g., for exploration
or inspection), possibly by having access to a topological
map of the environment. Given the above, the focus is on
designing a local safe navigation planner to head towards
the goal vector and not only avoid obstacles but simulta-
neously pay attention to interesting areas.

In the following sections, we will denote Fb as vector b
expressed in frame F and [bx, by, bz] as the projected com-
ponents of vector b in x, y, z axes of the frame that b is expressed
in. We also use ξ(τ) to represent the value of vector or scalar
variable ξ at continuous time τ, and ξ t = ξ(tΔt) to indicate the
value of ξ at discrete time step t, where Δt is the time step
duration. Let B,V be the body frame and vehicle (or yaw-
rotated inertial) frame of the robot, respectively, ot the current
depth image, μt the current detection mask, coming from any
visual detection methods, in which each pixel encodes the
interestingness of the corresponding pixel in ot and has the value
between 0 (uninteresting pixel) and 1 (the most interesting
pixel), and st ¼ ½vTt ,ωt,ft, θt�

T
the estimated partial state of

the robot consisting of a) the 3D velocity in V
ðvt ¼ ½vt, x, vt, y, vt, z�T 2R

3×1Þ, b) the angular velocity around
the z-axis of B (ωt), as well as c) the roll (ft) and pitch angles
(θt). LetΣt denote the covariancematrix of the estimated robot’s
partial state,ngt the 3D unit goal vector—expressed inV—given
by the global planner, ψt the current yaw angle of the robot, and
at:t+H = [at, at+1,…, at+H�1] an action sequence having lengthH
where the action at time step t + i (i = 0,…,H� 1) includes a)
the reference speed expressed in the vehicle frame vrtþi and b)
the steering angle ðδrtþiÞ from the current yaw angle of the robot

(ψt), such that atþi ¼ ½ðvrtþiÞ
T , δrtþi�

T
. The exact problem

considered is then formulated as that of finding an optimized
collision-free sequence of actions at:t+H enabling the robot to
safely navigate along the goal vector ngt and simultaneously
“gather” additional information gain about interesting areas in
the environment given (ot, st, μt, Σt).

4. Proposed approach

To satisfy the two objectives of collision-free navigation and
information sampling, we design two deep neural networks to
efficiently estimate the ground-truth collision score ccol and the
information gain g for each action sequence, namely, the
“Collision Prediction Network (CPN)” and “Information gain
Prediction Network (IPN),” respectively. Both networks as-
sume access to a) either the depth image (CPN) or the stacked

matrix of the current depth image and the detection mask
(IPN), alongside b) the estimates of the robot’s linear veloc-
ities, z-axis angular velocity, and roll/pitch angles, as well as c)
candidate action sequences from a Motion Primitives Library
(MPL). The choice of using the MPL instead of regressing the
action (Francis et al., 2020) or trajectory (Tolani et al., 2021)
directly from the input is based on the observations thatMPL is
a multi-modal output by construction, which is vital for the
collision-avoidance task (Loquercio et al., 2021). Attentive
ORACLE identifies the next-best-sequence of actions, spe-
cifically 3D velocity-steering commands over certain time
periods, that ensure that the system is navigating towards
where the unit goal vector is pointing, while not only avoiding
the obstacles but also gathering information about interesting
areas in the environment. The first action of this sequence is
executed by the robot, while the process continues iteratively
in a receding horizon manner. Importantly, the “global” goal
vector may be provided by any global planner thus allowing
Attentive ORACLE to be combined with any high-level
planning framework Dang et al. (2020); Galceran and
Carreras (2013); Kim and Ostrowski (2003); Achtelik et al.
(2014). Figure 2 provides an overview of the architecture of the
method. It is noted that the CPN accounts both for a) the
estimation uncertainty of the robot’s partial state and b) the
neural network’s epistemic uncertainty, and thus considers
sigma points given the partial state estimate and its covariance,
while simultaneously using an ensemble of neural networks to
evaluate the collision scores. IPN is not concerned with the
uncertainty of the partial state estimate and the epistemic
uncertainty for computational reasons.

4.1. Velocity-steering angle motion
primitives library

For each candidate action sequence in the MPL, the commands
at each time step have the same velocity in the corresponding V
with zero velocity in the y-axis and the same steering angle from
the yaw angle of the robot at the beginning of the action se-
quence, ψt. The steering angle is sampled within the field-of-
view (FOV) of the depth sensor. Specifically, we have

at : tþH ¼ ½ðvrÞT , δr, ðvrÞT , δr, :::, ðvrÞT , δr�T 2R
4×H . We as-

sume the xOz-plane ofB and the yOz-plane of the depth camera
frame, C, are identical. The x, y, z-axes ofB point to the front, left
of the robot, and upward, respectively. The x, y, z-axes of C point
to the left of the depth camera, downward, and to the front of the
depth camera, respectively.We denote [Fh, Fv] as the FOV, dmax
the maximum range of the depth camera, and θc the rotation
angle of C around the y-axis of B. For each candidate action
sequence, we have:

vrtþi ¼ vr, δrtþi ¼ δr ði¼ 0, :::,H�1Þ (1)

δr 2
�
� Fh

2
,
Fh

2

�
(2)

vrxHΔt ≤ dmax (3)
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vry¼ 0 (4)

vrz ¼ vrxtanðβÞ, β2
�
� Fv

2
� θt � θc,

Fv

2
� θt � θc

�
(5)

We denote akt : tþH as the kth action sequence in the MPL.
As opposed to other MPL-based methods that sample the
position space Veer and Majumdar (2020); Bucki et al.
(2020), our planned sequences do not include the robot’s
position space but remain in velocity/steering angle space,
similar to those proposed in Lopez and How (2017); Goel
et al. (2021), as the underlying assumption is that ORA-
CLE does not have—or does not need to have—access to a
position estimate. The open-loop trajectories of the robot
can be estimated by integrating the low-order approxi-
mation of the robot’s low-level closed-loop dynamics
model:8>>>>><

>>>>>:

_vjðτÞ ¼
1

T v, j

�
Kv, jv

r
j ðτÞ � vjðτÞ

�
, j ¼ x, y, z

_δ
rðτÞ ¼ Kp,ψðδrðτÞ � δðτÞÞ

€δðτÞ ¼ 1

T _ψ
ðK _ψ

_δ
rðτÞ � ωðτÞÞ

(6)

where T v, j,Kv, j ðj ¼ x, y, zÞ are the time constant and gain
of the velocity controller for the velocity component in j-
axis of V, respectively, δ(τ) = ψ(τ)� ψt is the robot’s current
relative yaw angle with respect to the V-frame at time step t
when the first action in the action sequence is applied, Kp,ψ

is the gain of the Proportional controller for the yaw angle of

the robot which sends the yaw-rate command, _ψr
t or _δ

r
t , to

the low-level yaw-rate controller having time constant T _ψ

and gain K _ψ as in Brescianini et al. (2013). Figure 3(a)
illustrates the estimated trajectories from an indicative MPL
having 16 action sequences, while Figure 3(b) demonstrates
the changes in the estimated trajectories when applying the
MPL with noisy initial velocities of the robot.

4.2. Uncertainty-aware collision-free navigation

At the core of the collision-free navigation task is the CPN
which processes a) the input depth image ot, b) the robot’s
partial state st, and c) motion primitives-based sequences of
future references at:t+H from the MPL discussed in Section
4.1, and is trained to predict the collision scores of the
anticipated robot motion at each time step from t + 1 to t +H
in the future:

Figure 2. Overview of the algorithmic architecture of Attentive ORACLE (A-ORACLE). We design two deep neural networks to
efficiently estimate the uncertainty-aware collision score and the information gains for multiple action sequences, namely the
“Collision Prediction Network (CPN)” and “Information gain Prediction Network (IPN)”, respectively. Both networks assume access to
(a) either the depth image (CPN) or the stacked matrix of the current depth image and the detection mask (IPN), alongside, (b) the
estimates of the robot’s linear velocities, z-axis angular velocity, and roll/pitch angles, and (c) candidate action sequences in a Motion
Primitives Library (MPL). Notably, CPN utilizesm1 representing the current mean value of st andm2…mNΣ representing the remaining
sigma points of the Unscented Transform to account for the uncertainty in the robot’s partial state estimate, while an ensemble of CPNs is
used to account for the epistemic uncertainty of the neural network model. The predicted uncertainty-aware collision cost bcuac,
information gain bg, and a unit goal vector ngt given by a high-level global planner are used to choose the optimal action sequence to be
executed in a receding horizon fashion. When the IPN is not engaged, the method reduces to ORACLE method which ensures safe
uncertainty-aware map-less navigation.
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bccoltþ1 : tþHþ1 ¼
�bccoltþ1,bccoltþ2, :::,bccoltþH

�
(7)

By entirely using collision data in simulation. Thus,
ORACLE avoids the need for hand-engineered collision
checking algorithms such as in Bucki et al. (2020); Gao
et al. (2019) or access to a reconstructed map of the
environment Funk et al. (2021); Tabib et al. (2022). The
collision costs for every action sequence in the MPL of
velocity-steering commands can then be evaluated in
parallel as per Kew et al. (2021), exploiting modern
GPU architectures and thus enable high update rate
compute. Notably, when evaluating the collision costs,
ORACLE does not only consider the mean estimate of
the robot’s partial state but also its estimated uncertainty
(exploiting the Unscented Transform) as calculated by
any onboard localization system, as well as the epi-
stemic uncertainty in the neural network model, as
detailed in Section 4.2.3.

4.2.1. Neural network architecture. To predict a sequence
of collision labels ðbccoltþ1 : tþHþ1Þ from a sequence of input
actions (at:t+H), given the current partial state of the robot (st)
and the depth image (ot), we use a Long Short-Term
Memory (LSTM), a type of recurrent neural network, at
the core of the CPN. In further detail, the input to the LSTM
cells is generated by the velocity-steering angle action
sequence provided by the MPL, while the initial state of the
LSTM is a compressed latent vector encoding information
about st and ot. This encoded latent vector is a concatenation
of the output of a Convolutional Neural Network (CNN),
which processes ot, and a Fully-Connected Network (FCN),
which processes st. It is noted that this encoded latent vector
is learned simultaneously with the rest of the network, while
CPN is trained in an end-to-end manner. Specifically, the
outputs of the LSTM cells are passed through an FCN to
predict a) the collision labels, as well as b) the positions, and
c) relative yaw angles of the robot at each future time step
with respect to the current V-frame at time step t:

bccoltþ1 : tþHþ1 að Þ
vbptþ1 : tþHþ1 ¼

vbptþ1,
vbptþ2,…, vbptþH

� �
bð Þ

bδtþ1 : tþHþ1 ¼ bδtþ1,bδtþ2, :::,bδtþH

h i
cð Þ

(8)

Instead of regressing the robot’s low-level commands
directly from the network inputs, our CPN learns to perform
collision checking implicitly for each action sequence. This
is shown to generalize well to different simulated and real-
world environments, as demonstrated in section 5. Intui-
tively, the method opts to rely on a priori set of motion
primitives as candidate action sequences and then solves the
simpler problem of collision checking on them instead of
regressing directly the control action which would represent
a more complex and thus potentially harder to generalize
formulation. It is noted that the position and relative yaw
angle prediction output heads are only executed in the
training phase to provide additional back-propagated gra-
dients to train the CPN and are not evaluated in the inference
mode. The prediction network architecture, as shown in
Figure 4, is inspired by the network in Kahn et al. (2021b).
However, we replace the MobileNetV2 part with the
ResNet-8 network as in Loquercio et al. (2018) for faster
onboard inference speed.

4.2.2. Data collection and augmentation. The RotorS
simulator (Furrer et al., 2016) is used to collect data for
training the CPN. To ensure successful sim-to-real transfer,
the dynamics of the simulated model should be matched
with the intended real system, in this case, the custom
quadrotor described in Section 4.5.2. Relevant methods for
dynamic system identification of MAVs are presented in Sa
et al. (2017). To collect data for predicting collision scores at
the future time steps, an action sequence with random vr and
δr as described in (1)–(5) is drawn and is fully executed.
This process is repeated until the robot collides with the
obstacles or a timeout event occurs. One training data point
d is recorded every time the robot moves more than Δth

Figure 3. (a) Estimated trajectories from an indicative MPL having 16 action sequences and st = [2.5,0,0,0,0,0]T, (b) the changes in the
estimated trajectories, visualized in green color, when applying the MPL with 20 different initial velocities ½vt, x, vt, y, vt, z�T of the robot
which are drawn randomly from Gaussian distributions ½N ð2:5; 0:5Þ,Nð0; 0:5Þ,Nð0; 0:5Þ�T m=s.
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meters or collides with the environment. Each such data
point has the format:

dCPN ¼
�
ot, st, at : tþH , c

col
tþ1 : tþHþ1,

Vptþ1 : tþHþ1, δtþ1 : tþHþ1

	
where ccoltþ1 : tþHþ1 ¼ ½ccoltþ1, c

col
tþ2, :::, c

col
tþH �, ccoltþi denotes the

ground-truth collision label between time steps t + i� 1 and
t + i, i = 1, …, H (equal to 1 for collision and 0 for non-
collision status) and
vptþ1 : tþHþ1 ¼ ½vptþ1,

vptþ2,…, vptþH �, δtþ1 : tþHþ1 ¼
½δtþ1, δtþ2, :::, δtþH �; vptþi, δtþi ¼ ψtþi �ψt denote the
ground-truth position and relative yaw angle of the robot at
the future time step t + i, i = 1,…,H expressed in the current
V-frame at time step t, respectively. When the collision
happens midway an action sequence, for instance after the
execution of at+k (k < H), then the collision labels corre-
sponding to the remaining actions in the sequence
ccoltþkþ1 : tþH are set to 1, and augmented data points are also
added to the dataset by replacing the actions after at+k with
randomly sampled actions as in Kahn et al., (2021a). The
number of data points created by augmenting the remaining
actions is such that the number of data points with no
collision and the number of data points with at least one
collision label are almost equal; hence, the dataset is almost
balanced. Moreover, we also perform the horizontal flip data
augmentation following the below lemma:

Lemma IV.1 Consider the following assumptions:

1) The depth camera follows the pinhole camera model.
2) The xOz-plane of B and the yOz-plane of the depth

camera frame, C, are identical. The x, y, z-axes of B
point to the front, left of the robot, and upward, re-
spectively. The x, y, z-axes of C point to the left of the
depth camera, downward, and to the front of the depth
camera, respectively.

3) The low-level closed-loop dynamics of the robot can be
approximated by the system of equation (6).

If the above assumptions are satisfied, the augmented
data point dflipCPN can be added to the dataset where dflipCPN ¼
ðoflipt , sflipt , aflipt : tþH , c

col
tþ1 : tþHþ1,

Vpfliptþ1 : tþHþ1, δ
flip
tþ1 : tþHþ1Þ

where oflipt is the horizontally flipped image of ot and

sflipt , aflipt : tþH ,
Vpfliptþ1 : tþHþ1, δ

flip
tþ1 : tþHþ1 are created by chang-

ing the signs of vt,y, ωt, ft; vrtþi, y, δ
r
tþi ði¼ 0, :::,H�1Þ;

vptþi, y; δt+i (i = 1,…,H) in st, at:t+H, pt+1:t+H+1 and δt+1:t+H+1,

respectively.
Proof. See Appendix B
In order to collect a comprehensive dataset for training

the collision predictor, we randomized the initial position
and orientation of the robot, as well as the obstacles’ poses,
categories, dimensions, and densities in order to collect
around 1.5 million data points, including augmented ones,
in total. The entire data collection process in the Gazebo
simulator requires approximately 6 days on a laptop with
AMD Ryzen 9 4900HS CPU with 32 GB of RAM. Figure 5
illustrates one indicative training environment which has a
size of 40 × 40 × 10 m and includes obstacles having
primitive shapes such as spheres, pyramids, cylinders, T-
shape and U-shape blocks, as well as common real-world
obstacles such as trees, tables, chairs, walls, or fences. The
derived dataset was then split into a training and validation
subset with an 80%: 20% ratio. The network is trained end-
to-end with the Adam optimizer Kingma and Ba (2015) and
the loss function as the weighted sum of the binary cross-
entropy (BCE) loss for collision prediction (binary classi-
fication task) and the mean-squared error (MSE) loss for
position and relative yaw angle predictions (regression
tasks):

Figure 4. Architecture of the Collision Prediction Network (CPN). The convolutional hyperparameters are represented in the format
(a× b conv , c, =d), where a ×b refers to the kernel size, c refers to the number of channels, and d refers to the stride length. The dense
layers only have the layer size mentioned alongside. The dimensions of the inputs and outputs are displayed next to their corresponding
arrows where H denotes the action sequence’s length.
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LCPN ¼ αCPN1 LBCEðccoltþ1 : tþHþ1,bccoltþ1 : tþHþ1Þ
þ αCPN2 LMSEðVptþ1 : tþHþ1,

Vbptþ1 : tþHþ1Þ
þ αCPN3 LMSEðδtþ1 : tþHþ1,bδtþ1 : tþHþ1Þ

(9)

where LMSE loss is only calculated for time steps where the
collision labels are zeros.

4.2.3. Uncertainty-aware prediction. As mentioned, the
method further considers the uncertainty of the robot’s
partial state and the epistemic uncertainty of the collision
prediction network. First, we calculate the combined col-
lision cost for each action sequence in the MPL as the
weighted sum of the collision scores at future time steps.
Specifically, the sooner the collision event is predicted to
happen, the higher its contribution to the final collision cost:

bccol ¼ XH
i¼1

bccoltþie
�λði�1Þ, λ> 0 (10)

where λ is the time-step weighting factor. It is noted that this
formula is similar to the geometric discount widely used in
reinforcement learning where the discount rate is e�λ < 1
with λ > 0. To account for the uncertainty of st, which may
not be negligible—especially in fast flight or within per-
ceptually degraded environments—we utilize the Un-
scented Transform (UT) Julier and Uhlmann (1997) to
approximately propagate the uncertainty in st to the pre-

dicted collision costbccol of an action sequence at : tþH . In the
UT, for a ζ-dimensional robot’s partial state, NΣ¼ 2ζþ1
sigma points mi, and their associated weights Wi

ði¼ 1,…,NΣÞ, are computed based on the mean value st and
the covariance matrix Σ t using the following formulas:

m1 ¼ st (11)

W1 ¼ κ
ζ þ κ

(12)

mi ¼ st þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðζ þ κÞΣt

p �
i

(13)

Wi ¼ 1

2ðζ þ κÞ (14)

miþζ ¼ st �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðζ þ κÞΣt

p �
i

(15)

Wiþζ ¼ 1

2ðζ þ κÞ (16)

where i¼ 2, :::, ζþ1, κ2R, ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ þ κÞΣt

p
Þi is the (i � 1)th

row or column of the matrix square root of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ þ κÞΣt

p
.

These sigma points are then propagated through the CPN,

and the mean and variance of the output distribution of bccol
are calculated based on the output predictions of the sigma
points mi and the weights Wi.

Additionally, the epistemic uncertainty—which can be
significant for novel input data—can be captured by the
variance between the outputs of different models in an
ensemble of neural networks as in Lakshminarayanan et al.
(2017). Specifically, we train the CPN with different initial
weights and shuffling of the dataset to obtain multiple final
weights for it. This is shown empirically to explore more
diverse modes in function space compared to MC dropout
Fort et al. (2019); Pop and Fulop (2018). For efficient neural
network forward pass and uncertainty estimation, we split
the neural network shown in Figure 4 into 3 parts, namely,
the CNN, Combiner, and Prediction networks. Let a)
NE,NMP be the number of neural networks in the ensemble
and action sequences in the MPL, respectively, and b)
σcoln , ρcoln ðn¼ 1, :::,NEÞ the variance and mean of the pre-
dicted collision cost of at : tþH , estimated by the UT with
different neural networks in the ensemble. As per Kendall
and Gal (2017), the total variance can then be expressed as:

σcol
tot ¼

1

NE

XNE

n¼1

h
σcoln þ

�
ρcoln � ρcol

	2i
(17)

where ρcol¼ 1=NE
PNE

n¼1
ρcoln . The final uncertainty-aware

collision cost for an action sequence follows the upper
confidence bound policy as per Georgakis et al. (2022) and
is given as:

bcuac ¼ ρcol þ α
ffiffiffiffiffiffiffi
σcoltot

q
, α > 0 (18)

Specifically, we denotebcuack as the uncertainty-aware collision
cost of the k th action sequence, akt : tþH , in the MPL
(k ¼ 1, :::,NMP). It is noted that by splitting CPN into 3 parts,
we can perform inference on theCNN,Combiner, andPrediction
networks with different input batch sizes of 1, NΣ , and
NΣ ×NMP, respectively, avoiding the need to use the large input
batch size of NΣ ×NMP for each CPN in the ensemble. Figure 6
outlines the steps to derive the uncertainty-aware collision costs
for every action sequence in the MPL.

Figure 5. An indicative simulation environment for collecting
training data.

Nguyen et al. 9



4.3. Visually-attentive navigation

Solutions to the information-gathering problem usually
involve the evaluation of utility functions Fox et al. (1998);
Popovic et al. (2018), which is one of the main computa-
tional bottlenecks in informative path planning Schmid et al.
(2020); Rckin et al. (2022). In this work, we aim to allow
efficient information gathering based on the latest sensor
observations by designing an IPN to approximately estimate
the information gains of multiple action sequences. Spe-
cifically, the IPN considered in this work is a neural network
that takes as input a) the depth image and a 2D detection/
interestingness mask stacked together ½ot,μt�, b) the mean
value of the robot’s partial state estimate st (involving its
linear velocities, z-axis angular velocities, and roll/pitch
angles), and c) action sequences in the same library (MPL)
as the CPN. The detection mask is such that each pixel of the
depth image is associated with a value from 0 (lowest) to 1
(highest) based on its interestingness. As interestingness
value, the output of relevant methods focusing on extrinsic
top-down or intrinsic bottom-up motivations such as in
object detection Redmon and Farhadi (2018) (top-down) or
visual saliency image maps Tsotsos (2011); Frintrop et al.
(2015); Kümmerer et al. (2018) (bottom-up) are considered.
A-ORACLE is not bound to any particular type of inter-
estingness concept and only assumes that the results of such
methods are captured by an image mask aligned with the
depth image thus annotating each depth pixel with an

interestingness weight. Specifically, the task of the IPN is to
predict the information gain obtained by the robot at each
time step from t þ 1 to t þ H in the future:

bgtþ1 : tþHþ1 ¼ ½bgtþ1,bgtþ2, :::,bgtþH � (19)

by approximating the expert detailed in Section 4.3.2,
utilizing modern GPU computing capabilities to speed up
the computation.

4.3.1. Neural network architecture. Figure 7 describes the
architecture of the IPN. To predict a sequence of infor-
mation gain labels at future time steps ðbgtþ1 : tþHþ1Þ, we
need information about the anticipated positions and ori-
entations of the robot at those time steps, as well as the latest
understanding of the environment encoded in the stacked
matrix of the current depth image and the associated de-
tection mask ([ot, μt]). We use a 1D Long Short-Term
Memory (LSTM) recurrent neural network whose output
vector at each time step encodes information to predict the
robot’s position and relative yaw angle at that time step with
respect to V-frame at time step t. It is noted that the position

ðVbptþ1 : tþHþ1 ¼ ½Vbptþ1,
Vbptþ2, :::,

VbptþH �Þ and relative yaw

angle ðbδtþ1 : tþHþ1 ¼ ½bδtþ1,bδtþ2, :::,bδtþH �Þ prediction output
heads are only executed in the training phase to provide
additional back-propagated gradients to train the IPN and
are not evaluated in the inference mode. Specifically, the
input to the LSTM cells is generated by the velocity-steering

Figure 6. (a) The ensemble of CPNs takes as inputs the current depth image, the set of sigma points calculated from the Unscented
Transform based on the mean value st and covariance matrix Σ t , and the MPL to derive the uncertainty-aware collision costs for every
action sequence in the MPL in parallel. (b) Steps to derive the uncertainty-aware collision cost for an action sequence in the MPL from
the output of the ensemble of CPNs.
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angle action sequence at : tþH provided by the same MPL as
the CPN, while the initial state of the LSTM is a latent vector
encoding information about st. The ResNet1 in Figure 7
outputs a multi-channel feature map that compresses the
information in [ot,μt]. Then, the output from the LSTM
network is fed to several FC layers whose output is expanded
and added to the expanded output of ResNet1 to provide the
input to ResNet2. Another FCN processes the output from
ResNet2 to provide future information gain predictions.

We also tested the same architecture as the CPN, de-
scribed in Figure 4, for the information prediction task.
However, the output feature map from the CNN part of the
CPN does not have enough spatial resolution to enable the
information gain prediction task. Moreover, we tried to
replace the ResNet2 (Figure 7) with a 2D Convolutional
LSTM Shi et al. (2015) while using the output feature map
from ResNet1 as the 2D LSTM’s initial state, and the output
sequence from the 1D LSTM as the 2D LSTM’s input
sequence. However, the resulting network was slow to train
and perform inference. The choice of using the network
architecture presented in Figure 7 (using a 1D LSTM for
position and relative yaw angle predictions and using the
ResNet2 with shared weights for information gain predic-
tion at every future time step) balances the accuracy of the
prediction and the speed of training and inference.

For efficient neural network forward pass, we split the
neural network shown in Figure 7 into 2 parts, namely, the
CNN and Prediction networks. We can then perform infer-
ence on the CNN and Prediction networks with different
input batch sizes of 1 and NMP, respectively, avoiding the
need to use the same input batch size of NMP for the whole

IPN. Intuitively, given that the IPN can closely approximate
the information gain then the ability to run it efficiently al-
lows high planning rates which benefits online performance.

4.3.2. Ground-truth information gain label. The ground-
truth information gain label for training the IPN is calculated
using Voxblox’s volumetric map (Oleynikova et al., 2017)
augmented with an additional interestingness field for each
voxel. Specifically, we denote Ik as the interestingness of
voxel k in the occupancy map built only from the current
depth image ot. The interestingness value of each voxel is
calculated as the average interestingness of every pixel in the
detection mask μt whose 3D projected point lies in voxel k:

I k ¼ 1��projkμt ��
X

½u, v�2projkμt

μtðu, vÞ (20)

where projkμt denotes the set of interesting pixels whose 3D
projections lie on voxel k. Moreover, to encourage ob-
serving the unknown areas that are next to the observed
interesting areas, we decay the interestingness of the ob-
served interesting voxels to unknown neighbor voxels by
the decay function:

I k
unk ¼ I k

unk
nearestλ1

γðkunk , kunknearestÞ, 0 < λ1 < 1 (21)

where kunknearest is the nearest observed interesting voxel of the
unknown voxel kunk and γðkunk , kunknearestÞ is the diagonal
distance between kunknearest and kunk. It is noted that equation
(21) is only applied to unknown neighbor voxels satisfying
γðkunk , kunknearestÞ ≤ γth. Finally, to account for the resolution of

Figure 7. Architecture of the Information gain Prediction Network (IPN). The convolutional hyperparameters are represented in the
format (a ×b conv , c, =d), where a ×b refers to the kernel size, c refers to the number of channels, and d refers to the stride length. The
dense layers only have the layer size mentioned alongside. The dimensions of the inputs, outputs, and some internal signals inside the
IPN are displayed next to their corresponding arrows where H denotes the action sequence’s length.
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the observation, we also weigh the contribution of each
voxel by its corresponding Area per Pixel, denoted as APk

for voxel k, as in Dang et al. (2018). The information gain
for a viewpoint at time step t þ j is then calculated as:

gtþj ¼
X
k2Ftþj

I ke�λ2APk , λ2 > 0

APk ¼ z2k
f cx f

c
y

(22)

where Ftþj is the frustum of the detection camera on the
robot at time step t þ j, zk is the distance from voxel k to the
detection camera, and f cx , f

c
y denote the focal length of the

detection sensor based on the pinhole camera model. In
practice, we perform ray casting in the frustum Ftþj and
calculate the contribution of each voxel k lying on the rays,
it is noted that each voxel is only counted once in equation
(22). Moreover, the cast ray stops when it meets an occupied
voxel. Figure 8 illustrates how the information gain label is
calculated.

4.3.3. Data generation and augmentation. To create a
diverse dataset for training the IPN, we utilize the same
dataset collected for training the CPN and create synthetic

detection masks, μt, based on the depth data. Specifi-
cally, multiple ellipses are created with random posi-
tions and dimensions to represent the interesting pixels
(having interestingness equal 1) in the detection mask.
To randomize between the cases where the observed
information gain is high or low, we guarantee that there’s
an ellipse in the actual moving direction of the robot
with probability p = 0.5. A Gaussian filter with random
kernel size is further applied to the detection mask to
create the final synthetic mask, reflecting a prior as-
sumption that pixels that are next to the most interesting
pixels can have small interestingness (between 0 and 1).
Lastly, the synthetic mask pixels corresponding to the
depth pixels that have invalid depth values (outside the
depth range of the depth sensor) are removed and only
pixels corresponding to the objects in the depth image
are kept. Figure 9 illustrates the steps to generate the
synthetic detection masks.

A data point dIPN can then be created with the format:

dIPN ¼
�
ot,μt, st, at : tþH , gtþ1 : tþHþ1,

vptþ1 : tþHþ1, δtþ1 : tþHþ1

	
where gtþ1 : tþHþ1 ¼ gtþ1, gtþ2,…, gtþH½ � denotes the in-
formation gain label at future time steps and
vptþ1 : tþHþ1, δtþ1 : tþHþ1 are defined as in Section 4.2.2.
Assuming that all the assumptions in lemma IV.1 hold and
the detection camera also satisfies the first two assumptions
in lemma IV.1, we also perform the horizontal-flip data
augmentation to obtain dflipIPN ¼ ðoflipt , μflipt , sflipt ,

aflipt : tþH , gtþ1 : tþHþ1,
Vpfliptþ1 : tþHþ1, δ

flip
tþ1 : tþHþ1Þ, where μflipt is

the horizontally flipped image of μt.

4.3.4. Network training and inference. A weighted-MSE
loss is calculated for the regression tasks of the three output
prediction heads depicted in Figure 7 and the Adam opti-
mizer Kingma and Ba (2015) is utilized to train the IPN. The
loss function has the form:

LIPN ¼ αIPN1 LMSEðgtþ1 : tþHþ1,bgtþ1 : tþHþ1Þ
þαIPN2 LMSEðVptþ1 : tþHþ1,

Vbptþ1 : tþHþ1Þ
þαIPN3 LMSEðδtþ1 : tþHþ1,bδtþ1 : tþHþ1Þ

(23)

where LMSE is only calculated for time steps where the
collision labels are zeros. The total information gain pre-
diction of an action sequence can then be calculated as:

Figure 9. Steps to create synthetic detection masks to train the IPN. From left to right: (1) Multiple ellipses are created with random
positions and dimensions for training purposes. (2) A Gaussian filter with random kernel size is further applied. (3a) The depth image is
loaded. (3b) The final detection mask is generated by combining all valid pixels (having values within the range limits) of the depth
image with the mask created by filtering randomly generated ellipses.

Figure 8. Outline of how the information gain label gtþj at time
step t þ j is calculated. At time step t, the robot builds an
annotated volumetric map based only on the current depth image
and the detection mask. The unknown voxels with decayed
interestingness from observed interesting voxels are visualized
in pink color. In this case, the decay equation (21) is only applied
for unknown neighbor voxels having γðkunk , kunknearestÞ≤1. The
information gain label gtþj is then calculated by performing ray
casting within the detection camera’s frustum Ftþj to calculate
equation (22). The voxels that contribute to gtþj are marked with
yellow boundaries.
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bg ¼
XH
i¼1

bgtþi (24)

Additionally, to reduce the computational time of the
IPN in inference mode, we can estimate the information-
gain for one in everyK future time steps by reducing the size
of the input to the Resnet2 in Figure 7 from [H , 34, 60, 32]
to [HIPN , 34, 60, 32], resulting in the number of prediction
steps for the IPNHIPN < H .

4.4. Uncertainty-aware visually-attentive
collision-free navigation

Algorithm 1 outlines Attentive-ORACLE’s key steps.
After calculating the uncertainty-aware predicted collision
cost for each action sequence in the MPL, as described in
section 4.2.3 (line 6–19), the minimum collision cost bcuacmin

of all action sequences is calculated (line 20). If bcuacmin > cde,
where cde is a set positive threshold, the robot faces a dead
end and it will rotate in the current position (“yaw-in-
spot”) until it finds a collision-free direction to follow (line
21–24). Then all the action sequences having collision cost
greater thanbcuacmin þ cth, where cth is a set positive threshold,
are discarded (line 25). If the detection mask μt is not

empty and timeout does not occur, the IPN is queried to
determine the most informative action sequence to follow
(line 26–29), otherwise, the remaining safe action se-
quences are checked for deviation from the goal vector ngt
(line 30–33):

cgδ ¼ jwrapðδr � δgt Þj (25)

cgθ ¼
��wrap�atan 2�vrz, vrx	� θgt

	�� (26)

where

δgt ¼ atan 2
�
ng
t, y,n

g
t, x

	
(27)

θgt ¼ atan 2
�
ng
t, z,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ng
t, x

�2

þ
�
ng
t, y

�2
r �

(28)

and wrap (.) is the function that wraps an angle in radians to
[�π, π]. It is noted that lines 26–29 are not considered in the
ORACLE (non-attentive) method. The best action sequence
is then chosen and its first step is executed, while the whole
procedure is repeated in a receding horizon fashion (line
35).

4.5. Implementation details

4.5.1. Hyper-parameters for training CPN and IPN. Both
CPN and IPN are trained with the learning rate set to 5e� 5
for around 200 epochs and we choose αCPN1 ¼ 1:0, αCPN2 ¼
αCPN3 ¼ 0:01, αIPN1 ¼ 1:0, αIPN2 ¼ αIPN3 ¼ 0:01 to balance
different loss terms in (9) and (23). It is noted that future
work may involve learning the weights of distinct terms in
the loss functions as per the work in Cipolla et al. (2018).

4.5.2. System overview. We design a quadrotor, dubbed
Learning-based Micro Flyer (LMF), which inherited the
collision-tolerant design of the Resilient Micro Flyer De
Petris et al. (2020), yet with an increased diameter of
0.43 m and a mass of 1.2 kg. It integrates a Realsense D455
to obtain depth and RGB data at a 480 × 270 resolution
with FOVof [Fh, Fv] = [87, 58]° and a frequency of 15 FPS,
a PixRacer Ardupilot-based autopilot delivering velocity
and yaw-rate control, and a Realsense T265 fused with the
IMU of the autopilot allowing it to estimate the velocity,
orientation and angular rates of the robot. Notably, the
position estimates of the T265 are not required by OR-
ACLE or A-ORACLE except for calculating the unit goal
vector ngt and checking if the robot had reached the
waypoints. A Proportional controller for converting the
reference steering angle to the yaw-rate command is also
developed. The CPN, IPN, and the detection method for
obtaining the detection mask (YOLO Redmon and Farhadi
(2018) in this case) are implemented on a Jetson Xavier
NX onboard LMF. Figure 10 illustrates the main hardware
components of the LMF.

4.5.3. Image pre-processing step. Since real-life depth
images are often subject to several shortcomings
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compared to simulated data, including a) missing in-
formation, b) loss of detail, and c) depth noise Hoeller
et al. (2021), we perform an additional pre-processing
step using the IP-Basic algorithm Ku et al. (2018) to
refine the depth frame and thus reduce the mismatch
between the real and simulated depth images. Specifi-
cally, this pre-processing step applies a series of mor-
phological transformations and blurring operation to fill
in empty pixels in the depth images. Figure 11 illus-
trates the effect of the depth image pre-processing step.

5. Evaluation studies

A set of evaluation studies were then conducted to verify
the proposed learning-based attentive navigation
method.

5.1. Simulation studies

5.1.1. Uncertainty-aware navigation. To evaluate ORA-
CLE’s ability to navigate cluttered environments in com-
bination with degraded state estimates and noisy depth
image inputs, we conducted simulation studies and com-
pared ORACLE with 2 baselines. Specifically, the proposed
approach was compared with a) the “Naive” method which
utilizes the CPN directly to calculate the collision cost
without considering the uncertainty of the partial state es-
timate st or that of the neural network model and b) the
“Ensemble” method which uses Deep Ensembles only and
not UT. Accordingly, the Naive method is not using neither
the UT samples nor the ensemble of CPNs (cf. Figure 2).
The type of simulation environments used is illustrated in
Figure 12 and has dimensions of width × length × height =
60 × 100 × 9 m. Each such environment consists of two

Figure 11. Depth-image preprocessing results. (a) RGB images from the Realsense D455 camera. (b) Raw depth images returned by the
Realsense D455. Areas marked in blue boxes contain empty depth pixels due to textureless features caused by a light (1a) or reflective
surface (2a). “Stereo shadow” regions can also be seen around the left object in 1b and the left part of (2b). (c) Depth images after the
empty pixels are filled in.

Figure 10. Main hardware components onboard LMF.
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parts: the first part contains multiple cylinder-like obstacles
with a diameter of about 1 m, distributed according to a
Poisson disc sampling with a density of δ1 = 3.5 m, and the
second part includes obstacles with different shapes, as
illustrated in Figure 12(b), also following a Poisson disc
sampling with a density of δ2 = 5 m.

The robot is modeled as a sphere of radius 0.22 m. We
randomly generated 10 different environments, and both
ORACLE and the 2 baselines are deployed in each envi-
ronment 10 times with the same start point and end goal,
which is 110 m ahead of the start point in the x-axis, but with
different noise inputs at each run. Specifically, we deteri-
orated the partial state estimate with additive Gaussian noise
on the x, y, and z-velocity components simultaneously,
leading to Σt¼ diagðσv2, σv2, σv2, 0; 0; 0Þ, reflecting that the
robot’s z-axis angular velocity, roll/pitch angles can be
estimated reasonably well (Weiss, 2012). The standard
deviations (std) of the velocity noise in every axis σv is
varied from 0.2 m/s to 0.6 m/s. For the image noise, we
followed the empirical study in Ahn et al. (2019) to model
the std of the depth noise as a quadratic function of the
depth. Accordingly, if a pixel has the ground-truth depth of
z, the simulated noisy depth value of that pixel znoisy is given
as:

znoisy ¼ zþNð0, σzðzÞÞ (29)

σzðzÞ ¼ dzz
2 (30)

It is noted that the negligible first- and zeroth-order terms
are ignored in this formula. The Intel Realsense RGB-D
camera D435 is found to have dz ≈ 0.004 in Ahn et al. (2019)
while we use the later version of this sensor, Intel Realsense
D455, in this work. We chose to simulate the depth image
noise up to dz = 0.005. For all simulations, the robot reaches
the goal when it is within a radius of 5 m from the goal or if it
crosses the line x = 110 m, additionally a timeout period of
100 s is also applied. The depth camera is simulated with a
maximum range of dmax = 10 m, FOVof [Fh, Fv] = [87, 58]°.
The MPL consists of NMP = 256 action sequences and for
each action sequence, NΣ = 7 sigma points are evaluated
since we only consider the noise in the velocity components
of st. The length of the action sequences in the MPL utilized
by the CPN isH = 14 and the time-step duration is Δt = 0.2 s,
leading to vrx≤3:57m=s from (3). The reference forward

speed vrx¼ 2:5 m=s is chosen for all simulations in Section
5.1.1 where the velocity and depth image’s noise are also
applied. The same collision threshold cth = 0.1 and the time-
step weighting factor λ = 0.04 are used for all methods,
resulting in the weight of around 0.6 for the largest time step
in (10). Additionally, all the methods replan at the rate of
15 Hz. For the Ensemble and ORACLE methods, we use an
ensemble of NE = 5 CPNs for collision-score prediction.

It is noted that the reference forward speed of 2.5 m/s is
higher than the reference speed of 1.5 m/s used in
Bartolomei et al. (2023), where no velocity or image noise is
simulated and the density of the simulation environments is
δ1 = 2.23 m. While our reference speed is lower than the
flying speed of 10 m/s in Loquercio et al. (2021), where the
maximum density of the simulated environments is δ1 = 5 m
and the diameter of the obstacles is about 0.6 m, our
maximum simulated velocity noise (σv = 0.6 m/s) is around
3 times the standard deviation of the velocity noise in the y-
axis, the main reactive axis of the robot, simulated in
Loquercio et al. (2021). Additionally, an empirical image
noise model is applied in our simulation evaluation study. It
is aimed to systematically evaluate the performance of our
method when exposed to novel noisy depth images that are
unseen during the training process. The average and 1-σ
boundaries of the success (non-collision) rate of each
simulation study are reported below.

Figure 13 demonstrates the success rate when the velocity
estimation deteriorates. As shown, the Naive method exhibits
more significant drops in the performance when the velocity
noise in all axes is increased (drops by 28% at 0.2 m/s- but
50% at 0.4 m/s- and 60% at 0.6 m/s-noise level). On the other
hand, the Ensemble method shows smaller drops in the per-
formance at all levels of noise (drops by 12% at 0.2 m/s-, 28%
at 0.4 m/s- and 32% at 0.6 m/s-noise level). Lastly, ORACLE
is the least sensitive to velocity noise. Its success rate drops
marginally at 0.2m/s, while it drops by only 6% at 0.4m/s- and
14% at 0.6m/s-noise level. The predictions from 2CPNs in the
Ensemble are illustrated in Figure 14(a) and (b). The Ensemble
baseline utilizes prediction from multiple CPNs, resulting in a
more conservative set of safe action sequences, as presented in
Figure 14(c). Lastly, when ORACLE is deployed and σv
utilized in the UT is increased from 0.2 to 0.6 m/s (Figure
14(d)–(f)), the safe set of action sequences is further reduced,
leading to a safer action sequence chosen finally when the

Figure 12. An indicative simulation environment for simulation studies evaluating ORACLE (a) and enlarged view of a specific section
in the environment (b). The ceiling is removed for visualization purpose.
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velocity estimate is subjected to noise. However, a more
conservative set of safe action sequences can lead to a larger
deviation from the goal vector.

We also verified the performance of ORACLE when the
velocity noise is wrongly estimated. Figure 15 shows the
success rates of ORACLE when a fixed standard deviation
σv = 0.2 m/s is used while the actual standard deviation of
the velocity noise in all axes varies between 0 and 0.6 m/s. It
can be concluded that the higher the true noise level is
compared to the estimated noise level, the lower the success
rate. However, the performance drops gracefully when the
actual noise level is close to the estimated one (drops by
only 2% at 0.4 m/s-noise level compared to using ORACLE

with the actual σv) and the performance is still higher than
the Ensemble baseline which does not use the UT.

The performance of the Naive baseline and Ensemble
baseline, which is similar to ORACLE in this case, with
different levels of depth image noise is given in Figure 16.
As shown, the performance of the Naive method is greatly
affected by the image noise (drops to 0%-success rate at the
highest level of depth image noise). On the contrary, the use
of the ensemble of CPNs renders the Ensemble method
much less sensitive to depth image noise, only exhibiting a
drop of around 20% at the highest noise level.

Figure 14. Collision-score predictions from Naive baseline with 2 different CPN’s weights (a), (b), Ensemble baseline (c) and ORACLE
with different σv utilized in UT (d, e, f). Green markers: estimated trajectory endpoints of safe action sequences, blue marker with an
arrow: estimated trajectory endpoint of chosen action sequence. The presented results relate to contributions 2-4.

Figure 13. Sensitivity analysis of noise in velocity estimation
(100 runs were performed). The x-axis shows the standard
deviation of velocity noise applied simultaneously in all axes. The
presented results relate to contributions 2–4.

Figure 15. Sensitivity analysis of noise in velocity estimation
when wrong σv is utilized in the UT (100 runs were performed).
The x-axis shows the standard deviation of velocity noise applied
simultaneously in all axes. The presented results relate to
contributions 2-4.
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Lastly, we also compared ORACLE with the two base-
lines when both the velocity noise of 0.5 m/s std in all axes
and the depth image noise are applied. As depicted in Figure
17, the performance of the Naive method drops drastically
when the noise level is increased, reaching less than 10% at
the highest noise level. On the other hand, the Ensemble
method shows smaller degradation in the performance but
still drops to around 56%-success rate at the highest noise
level. On the other hand, ORACLE is the least sensitive to
both velocity and depth image noise. Its success rate is
around 74% when the noise level is the most significant.

An ablation study is also conducted to study the effect
that the number of neural networks in the Deep Ensembles,
NE, has on the planning performance of ORACLE. Spe-
cifically, the highest noise levels in Figures 13, 16, and 17
are injected into the robot, and the success rates of ORA-
CLE with different NE parametrizations are reported in
Figures 18–20 (NE = 1, …, 5). As shown, the planning
performance generally increases when the ensemble utilizes
a larger number of neural networks, albeit at the expense of

increased running time. Onboard running time with dif-
ferent numbers of neural networks in the ensemble is an-
alyzed in section 5.3. This analysis reveals the important
role of the Deep Ensembles.

While most state-of-the-art learning-based navigation
methods do not explicitly account for the uncertainty in the
robot’s partial state estimate and noisy exteroceptive data that is

Figure 16. Sensitivity analysis of noise in depth image (100 runs
were performed). The presented results relate to contributions 2-4.

Figure 17. Sensitivity analysis of noise in both velocity
estimation and depth image (100 runs were performed). The
presented results relate to contributions 2-4.

Figure 18. Planning performance when different NE is utilized in
ORACLE and velocity noise with σv = 0.6 m/s is applied on all
x, y, z axes simultaneously (100 runs were performed). The
presented results relate especially to contribution 3.

Figure 19. Planning performance when different NE is utilized in
ORACLE and image noise with dz = 0.005 is applied (100 runs
were performed). The presented results relate especially to
contribution 3.

Figure 20. Planning performance when different NE is utilized in
ORACLE and both image noise with dz = 0.005 and velocity
noise (σv = 0.5 m/s on all x, y, z axes simultaneously) are applied
(100 runs were performed). The presented results relate especially
to contribution 3.

Nguyen et al. 17



unseen during the training process (Loquercio et al., 2021;
Kaufmann et al., 2020), we demonstrate that using the Un-
scented Transform and Deep Ensembles (Lakshminarayanan
et al., 2017) make our method more resilient against a) noise in
the robot’s partial state estimate and b) novel noisy depth image
inputs, while not relying on consistent position estimate.

Moreover, to verify the performance of our methods in
context with the literature, we modified our code to work
with the Flightmare simulator Song et al. (2020) and
compared our method (ORACLE) alongside its two sim-
plifications (Naive, Ensemble) against a state-of-the-art
learning-based navigation method for drones, namely, the
work in Loquercio et al. (2021) called “Agile.”

Specifically, forest environments provided by Flightmare
where the trees follow a Poisson disc sampling with a
density of δ = 4.5 m are chosen to benchmark the methods.
The final waypoint is 50 m in front of the robot and the
commanded velocity is 2.5 m/s for all the methods. Ad-
ditionally, a timeout period of 100 s is applied. Notably,
ORACLE and its simplifications have not been trained or
fine-tuned explicitly for this type of environment, while it is
clarified that we have used the pre-trained weights for Agile
as provided by its authors in order to facilitate fairness.
Whereas Agile employs a default camera model with a
resolution of 640 × 480, FOVof [91, 75]°, and max range of
dmax = 20 m, our methods (Naive, Ensemble, ORACLE)
utilize depth data at a 480 × 270 resolution with an FOVof
[87, 58]° and dmax = 10 m. Both camera models produce
data at a frequency of 15 FPS. For all simulations, Agile
utilizes the Hummingbird quadrotor model in RotorS Furrer
et al. (2016) while we use the LMF model described in
Section 4.5.2. For collision checking, both robots are
modeled—for the purposes of this simulation—as a sphere
of radius 0.18 m as this is the default value used by Agile.
All tests in Flightmare were performed on a desktop with
RTX3090 GPU and AMD Ryzen Threadripper 3970X 32-
Core CPU with 64 GB of RAM. It is noted that while Agile
requires access to position information for tracking the
trajectory command, our methods (both the planners and the
low-level controller) don’t assume access to position in-
formation (except when calculating the goal vector and
checking if the robot has reached the waypoint).

Different noise levels, including a) “No noise”where the
ground-truth partial state estimates and depth images are
given to the robot, b) “Velocity noise” where the velocity
estimates are deteriorated by additive Gaussian noise with
standard deviation σv = 0.5 m/s on all x, y, z axes simul-
taneously, c) “Image noise” where the noise model pre-
sented in equations (29) and (30) with dz = 0.004 is
employed for the depth images, as well as d) “Both noise”
where both the noise in cases (b) and (c) are injected to the
robot. We randomly created 10 different forest environ-
ments as per the previously mentioned parameters. For each
such forest environment, 10 runs were performed for each
method. The same collision threshold cth = 0.075 is used for
Naive, Ensemble, and ORACLE, while ORACLE also
utilizes a fixed standard deviation for the velocity σv =

0.5 m/s which is considered “by default” even in the case
that no actual state uncertainty was applied in simulation.
The rest of the parameters are kept the same as mentioned
earlier. The success (non-collision) rate, alongside the total
traveled distance, the average acceleration, and jerk values
for all the methods are provided in Table 1 and the robots’
trajectories in indicative environments when ORACLE and
Agile are employed are given in Figure 21.

The above examples demonstrate the performance and
robustness characteristics of ORACLE against a state-of-
the-art method. As can be seen, ORACLE presents high
performance with good generalization in collision-free
navigation across simulated forest environments, this is
driven by a) it being robust against depth image noise-
induced uncertainty through the Deep Ensembles, alongside
b) accounting for partial state uncertainty in all cases. As
shown in Table 1, the Naive method has generally similar
performance with Agile but when the Deep Ensembles and
the consideration of state uncertainty are factored in, OR-
ACLE significantly outperforms Agile across simulated
forest environments and noise conditions. Consideration of
depth image noise through the Deep Ensembles supports
safe navigation through added conservativeness. The in-
troduced conservativeness promotes the selection of safer
paths—even if potentially slightly longer than necessary—
which is essential especially in cluttered environments and
when operating subject to noisy depth images. Likewise,
accounting for partial state uncertainty has similar positive
effects. Interestingly, the two remain beneficial even in the
“No noise” case as they still offer enhanced conserva-
tiveness (e.g., a fixed state uncertainty is considered by
ORACLE in any case even when such noise is not presented
in the simulated data), as explained in Figure 14. Despite its
superior performance when it comes to success ratio, when
only successful paths are considered for both methods,
ORACLE on average employs longer paths compared to
Agile, as illustrated in Figure 21.

5.1.2. Visually-attentive navigation. We conducted a set of
simulation studies to evaluate the proposed visually-
attentive navigation method (A-ORACLE) with two dif-
ferent sources of visual interestingness detection: visual
saliency detection Frintrop et al. (2015) and object detection
using YOLO Redmon and Farhadi (2018).

For the case of using saliency as a method to derive
detection masks to guide the robot’s attention, we use art
gallery environments with varying densities (sparse, aver-
age, and dense) of salient objects (paintings and furniture) as
in Dang et al. (2018) to evaluate A-ORACLE and the
baselines. The detection mask μt is derived by thresholding
and then normalizing the saliency map output from the
visual saliency detection method as described in Frintrop
et al. (2015). The simulation environments are depicted in
Figure 22.1 and several planning instances are shown in
Figure 22.2-3. Specifically, four baselines are compared
with A-ORACLE, namely, 1) ORACLE which is described
in section 4.2 and utilizes only the CPN for collision-free
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navigation (no attentive component), 2) the Visual Saliency-
aware receding horizon Exploration Planner (VSEP) Dang
et al. (2018) which generates exploration paths through a
sampling-based planning step first, then another (nested)
sampling-based planning step samples and evaluates the
intermediate viewpoints to reach the first viewpoint of the
exploration path in the most informative manner (in terms of
looking towards visually salient areas), 3) an Expert-
baseline (“Expert”) which employs Voxblox Oleynikova
et al. (2017) to build the map of the environment incre-
mentally and using the current full occupancy map of the
environment to evaluate the information gain for the same
action sequence library as our methods using equations ((4),
(20), (22), and (24)) the Online Informative Path Planning
approach (“Online IPP”) described in Schmid et al. (2020)
which continuously expands, maintains, and improves a
single RRT*-inspired tree of paths while simultaneously
executing it. Specifically, the Online IPP is modified to
utilize equations (20) and (22) to calculate the gain at each
node in the tree (thus aligning it with the information gain in
A-ORACLE), while the cost of a node is the expected
execution time to reach it as per the default choice of the
authors. It is noted that for the Expert and Online IPP, the
interestingness level of a voxel is calculated from the current
and all past observations, and the decay equation (21) is not
used. To obtain the information gain label for training the
IPN of A-ORACLE, we perform ray casting with the
maximum range of 5 m and the angular resolution of [5, 5]°
within the detection camera’s frustum and choose λ1 = 0.9,
λ2 = 1000, and a voxel size of 0.2 m. For both VSEP, the
Expert and Online IPP, a voxel resolution of 0.2 m is also

used. The depth and detection cameras are simulated with a
maximum range of dmax = 10 m and FOVof [Fh, Fv] = [87,
58]°. The MPL consists of NMP = 256 action sequences and
for each action sequence NΣ = 7 sigma points are evaluated.
The length of the action sequences in the MPL is H = 15
while the time-step duration is Δt = 0.33 s, leading to
vrx≤2 m=s from (3). For all simulations of all methods in
Section 5.1.2, the reference forward velocity is chosen as
vrx¼ 0:75 m=s. Similar to Section 5.1.1, the same collision
threshold cth = 0.1, time-step weighting factor λ = 0.04,
number of CPNs in the ensemble NE = 5 are used for
ORACLE, A-ORACLE, and the Expert. To reduce the
computation time of the information gain prediction task,
for A-ORACLE and Expert, we only estimate the infor-
mation gain at one in every four future time steps, leading to
HIPN = 4. For VSEP, the maximum number of sampling
points in the second planning phase is set to NMP × HIPN =
1024. On the other hand, for the Online IPP, maximum NMP

× HIPN = 1024 new viewpoints are sampled for each update
step of the trajectory tree. Since VSEP constraints a max-
imum travel time for the visual saliency-aware path, we also
tune the timeout time in line 26 of Algorithm 1 so that the
total traveled distances of A-ORACLE and VSEP are
roughly similar in order to have a fair evaluation. Addi-
tionally, because our methods are not built for exploration
purposes, we provide the four methods: ORACLE, A-
ORACLE, Expert, and Online IPP with the waypoints
defined by the exploration paths from the first planning step
of VSEP and allow the methods to deviate from the ex-
ploration paths to capture higher quality observations. This
is in order to allow all methods to be compared in the task of

Table 1. Comparative Evaluation Metrics for Uncertainty-aware Navigation Simulations With Forest Environments in the Flightmare
Simulator Using our Method (ORACLE), its Simplifications (Naive, Ensemble) and the State-of-The-Art Agile Open-source Method.
The Mean and Standard Deviation (the Number Enclosed in the Parentheses) of the Metrics are Calculated From 100 Runs (10 Runs per
Environment). These Results Relate to Contributions 2-4.

Noise levels Metrics Naive Ensemble ORACLE Agile

No noise Success rate (%) 65 (31) 80 (35) 90 (10) 55 (29)
Traveled distance of every run (m) 42.3 (14.8) 47.2 (10.5) 50.2 (5.4) 38.4 (16.3)
Traveled distance of successful runs (m) 51.2 (1.5) 51.4 (1.7) 51.4 (2.4) 48.4 (0.4)
Average acceleration [m/s2] 0.7 (0.1) 0.6 (0.1) 0.6 (0.1) 1.5 (0.4)
Average jerk [m/s3] 5.5 (1.1) 4.6 (1.0) 4.4 (0.8) 8.6 (2.4)

Velocity noise Success rate (%) 55 (19) 60 (18) 82 (15) 35 (25)
Traveled distance of every run (m) 40.5 (15.3) 39.9 (16.5) 49.0 (13.1) 33.4 (16.6)
Traveled distance of successful runs (m) 51.6 (1.5) 51.7 (1.6) 53.9 (5.8) 50.3 (0.6)
Average acceleration [m/s2] 1.0 (0.2) 0.8 (0.2) 0.9 (0.2) 1.4 (0.2)
Average jerk [m/s3] 13.1 (2.2) 8.9 (1.6) 9.7 (1.3) 8.0 (1.7)

Image noise Success rate (%) 50 (25) 66 (32) 73 (34) 32 (28)
Traveled distance of every run (m) 46.3 (14.6) 45.6 (15.1) 57.0 (18.1) 31.8 (15.0)
Traveled distance of successful runs (m) 53.4 (4.2) 55.3 (4.0) 60.6 (16.6) 48.4 (0.3)
Average acceleration [m/s2] 1.0 (0.1) 0.8 (0.1) 0.8 (0.1) 1.4 (0.3)
Average jerk [m/s3] 8.3 (1.0) 6.3 (1.0) 5.4 (0.8) 8.5 (1.6)

Both noise Success rate (%) 32 (16) 53 (16) 64 (27) 24 (25)
Traveled distance of every run (m) 42.9 (18.1) 44.1 (15.5) 52.8 (22.1) 30.2 (15.5)
Traveled distance of successful runs (m) 54.0 (5.4) 58.8 (9.7) 62.1 (10.8) 50.2 (0.6)
Average acceleration [m/s2] 1.2 (0.1) 0.9 (0.1) 1.0 (0.1) 1.5 (0.3)
Average jerk [m/s3] 15.3 (1.8) 9.9 (1.1) 10.4 (1.3) 8.5 (1.8)
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navigation with implicit information sampling. Notably, the
Online IPP is modified such that the next-best node in the
trajectory tree to be reached at each planning step is the node
containing the highest value and is within the neighborhood
of the next target waypoint. A timeout value similar to A-
ORACLE is also applied in the Online IPP. When a timeout
event happens, the robot will follow the straight-line con-
nection between the robot’s current position and the chosen
next-best node if this connection lies in the known collision-
free space, otherwise, the remaining of the present planned
path will be fully executed. It is noted that while VSEP and
the Online IPP methods derive informative paths and ex-
ecute them until the end before replanning and the Expert
can only replan at the rate of 1 Hz, ORACLE and A-
ORACLE replan at 5 Hz-rate (or possibly higher) in this
simulation study due to their small processing time, as can
be seen in the last row of Table 2.

To compare the five methods, we run the Voxblox
mapping framework and annotate each voxel based on
the saliency mask using equation (20). Avalid interesting

voxel k is defined as a voxel being observed in at least Nth

camera frames and having interestingness Ik > Ith. For
each valid interesting voxel, we also logged its minimum
viewing distance from all observed camera frames.
Figure 23 shows the percentage of valid interesting
voxels, calculated based on the total number of valid
interesting voxels seen by the Expert, plotted against
their minimum viewing distances for each method. It can
be seen that Attentive ORACLE views more valid in-
teresting voxels from closer distances than ORACLE and
VSEP, leading to a higher quality of observations of the
objects. Table 2 presents the average metrics of 10 runs/
environment for each method. As depicted, the number
of valid interesting voxels observed by A-ORACLE is
1.08 � 1.48 times that of those observed by ORACLE,
0.98 � 1.23 times that seen by VSEP, 0.82 � 0.93 times
that observed by the Expert, and 0.82� 0.89 times that of
those viewed by the Online IPP, while having average
travel distances that are very similar to those of VSEP
and the Expert, and only 0.5 � 0.6 times that of those

Figure 21. The robots’ trajectories in indicative environments using Flightmare where (i) ORACLE succeeds and Agile fails and (ii) both
ORACLE and Agile succeed. The onboard RGB-D images from ORACLE’s sensor model are visualized in 1-4a,b (the ground-truth
depth images from Flightmare are illustrated here, whereas they are saturated to dmax = 10 m before feeding to the CPN). The presented
results relate to contributions 2-4.
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covered by the Online IPP. It is stressed that the Online
IPP can plan the viewpoints outside the current FOV of
the robot’s depth camera, as opposed to the MPL utilized
in ORACLE, A-ORACLE, and the Expert. Notably, the
average inference time of A-ORACLE is just 6.3% of
that of the Expert, 10.2% of that of VSEP, and 2.1% of
that of Online IPP, while managing to achieve compa-
rable or better performance than VSEP and comparable
performance with the Expert. Figure 22.2-3 illustrates
specific instances with the point clouds annotated with
saliency values and the network predictions (left col-
umn), the onboard RGB image (middle column), and the
detection mask (right column) where the brighter the
color, the higher the saliency value.

To demonstrate that our method can work with multiple
visual detection input sources, we also verified A-ORACLE
using the output of the YOLO object detector Redmon and
Farhadi (2018), as trained for the DARPA Subterranean
Challenge by Team CERBERUS Tranzatto et al. (2022), as
a cue for interestingness. Specifically, the detection mask μt
is created by assigning the interestingness values of 1 to all
the pixels inside the detected objects’ bounding boxes. We
tested three methods: A-ORACLE, ORACLE, and the
Expert in a realistic 3D subway station environment where
the waypoints are given in a lawn mower pattern, as de-
picted in Figure 24(a)–(b). VSEP is not evaluated in this
case since it requires a very high number of sampling points
to find the feasible path in this large environment. The poses

Figure 22. (1) Art gallery environments for visually-attentive navigation simulation with the detection masks derived from the saliency
maps, the salient objects are the paintings and furniture (visualized in the orange boxes). (2) and (3) show specific planning instances
with the point clouds annotated with saliency values from the detector and the network predictions (a), images from the onboard RGB
camera (b), and saliency detection mask (c). Green markers: estimated trajectory endpoints of safe action sequences, blue marker with an
arrow: estimated trajectory endpoint of chosen action sequence. (4) Illustration of a saliency mask (b) obtained from an onboard RGB
image (a) when the robot is spawned in front of a painting. The presented results relate to contribution 1.
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of the objects are randomized to create 10 different envi-
ronments and the simulation parameters are the same as the
experiments with saliency detection input. Similar to the
simulations with saliency input, Voxblox is also run for
evaluating the three methods.

Figure 25 shows the percentage of valid interesting
voxels, calculated based on the total number of valid in-
teresting voxels seen by the Expert, plotted against their
minimum viewing distances for each method. It can be seen
that A-ORACLE views more valid interesting voxels from
closer distances than ORACLE, leading to a higher quality

of observations of the objects. Table 3 presents the average
metrics of 10 environments for each method. As depicted,
the number of valid interesting voxels observed by A-
ORACLE is 15% more than that of those observed by
ORACLE, and 9% less than that observed by the Expert-
baseline, while having an average travel distance that is only
9.5% longer than that of ORACLE (and 7.1% less than that
of the Expert). Figure 24(b) shows the robot’s trajectory
when A-ORACLE is deployed in a specific environment
where the red backpacks visualized are the objects of
interest.

Table 2. Evaluation metrics for visually-attentive navigation simulations with saliency detection inputs in art gallery environments. The
metrics displayed in the table include 1) the number of valid interesting voxels (valid interesting voxels), 2) the volume of valid interesting
voxels (volume), 3) the total traveled distance, and 4) the processing time. The average and standard deviation (the number enclosed in the
parentheses) of processing time is calculated from 500 planning iterations on a laptop with AMD Ryzen 9 4900HS CPU and RTX 2060
GPU. These results relate to contribution 1.

Environments Metrics ORACLE VSEP Expert A-ORACLE Online IPP

Sparse Valid interesting voxels 1965 2377 3131 2915 3276
Volume (m3) 15.72 19.02 25.05 23.32 26.21
Traveled distance (m) 113.9 155.0 177.6 152.5 288.4

Average Valid interesting voxels 3510 3884 4641 3799 4397
Volume (m3) 28.08 31.07 37.13 30.39 35.18
Traveled distance (m) 105.9 161.2 180.9 151.5 302.7

Dense Valid interesting voxels 5524 7036 8818 7510 9213
Volume (m3) 44.19 56.29 70.54 60.08 73.70
Traveled distance (m) 110.0 158.6 173.5 154.5 260.8
Processing time (ms) 21.3 (4.6) 423.8 (151.1) 688.3 (330.1) 43.4 (7.1) 2110 (1804)

Figure 23. Simulation results for visually-attentive navigation with saliency detection inputs in art gallery environments. Top row:
The x-axis shows the minimum viewing distances for the valid interesting voxels and the y-axis shows the percentage of seen valid
interesting voxels (average value and 1� σ boundaries of 10 runs/environment), with respect to the Expert, having minimum viewing
distances less than x. Bottom row: the mean and 1 � σ error bar of the total traveled distance of each method. The presented results
relate to contribution 1.
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5.2. Experimental studies

Moreover, to verify our methods in the real system, we
performed a set of experiments in both pure navigation and
visually-attentive navigation tasks with the robot platform
described in Section 4.5.2. In all experiments, the position
information was not required by ORACLE or A-ORACLE
except for calculating the unit goal vector ngt and checking if
the robot had reached the waypoints. The parameters used
for all experiments are listed in Table 4.

Since the Intel Realsense T265 estimation output does not
contain covariance information, we used a fixed standard
deviation of σv = 0.2 m/s for the velocity noise. It is also noted
that compared to the simulated parameters in Section 5.1, we

used an ensemble of NE = 3 neural networks in all real-world
experiments and used NMP = 96 with A-ORACLE to reduce
the inference time of the CPN and the IPN onboard the robot.
The running times of different components of ORACLE and
A-ORACLE are provided in Section 5.3. Additionally, we
used a lower threshold cth for the first and second experiments
compared to the other experiments to allow safer navigation
when the robot was tasked to fly faster in more cluttered
environments. We also chose λ = 0.08 in the second exper-
iment inwhich the environment is themost cluttered, as shown
in Figure 27, to prioritize the predictions at smaller time steps.

In the first experiment, illustrated in Figure 26 and
Extension 1, the robot was tasked to reach a waypoint that is
in front of it with the reference forward speed of
vrx¼ 2:5 m=s while navigating safely in a cluttered corridor
filled with various types of obstacles. Figure 26.1-3 presents
predictions of the CPN at some specific scenarios, where the
end of trajectories are generated only for visualization
purposes based on st and the MPL using the estimated
dynamics models of the robot. The green dots correspond to
the action sequences that pass the collision cost threshold
check in line 25 of Algorithm 1, while the blue dot cor-
responds to the best action sequence chosen in line 32 of
Algorithm 1. As shown, the visualized trajectories correlate
well with the collision cost predicted by the CPN, showing

Figure 24. (a) Subway station environments for visually-attentive navigation simulation with YOLO detections as attention input. The
red backpacks visualized in the image are the objects of interest in this case. (b) The robot’s trajectory when A-ORACLE is deployed
and the waypoints marked with the numbers representing the visiting order. The presented results relate to contribution 1.

Figure 25. Simulation results for visually-attentive navigation
based on YOLO detection inputs in subway station
environments. The x-axis shows the minimum viewing distances
for the valid interesting voxels and the y-axis shows the percentage
of seen valid interesting voxels (average value and 1 � σ
boundaries of 10 runs), with respect to the Expert, having
minimum viewing distances less than x. The presented results
relate to contribution 1.

Table 3. Evaluation Metrics for Visually-Attentive Navigation
Simulations Based on YOLO Detection Inputs in subway Station
Environments. All Distances are in Meters, and all Volumes are in
Cubic Meters. These Results Relate to Contribution 1.

Metrics ORACLE Expert
A-

ORACLE

Number of valid interesting
voxels

1233 1566 1423

Volume of valid interesting
voxels

9.86 12.53 11.38

Traveled distance 296.8 350.1 325.1
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Table 4. Experiment parameters.

Parameter ORACLE (1st experiment) ORACLE (2nd experiment) A-ORACLE (3rd, 4th experiments)

vrx 2.5 m/s 1.5 m/s 0.6 m/s
NMP 256 256 96
NE 3 3 3
NΣ 7 7 7
σv 0.2 m/s 0.2 m/s 0.2 m/s
H 14 14 15
HIPN None None 4
Δt 0.2 s 0.2 s 0.33 s
λ 0.04 0.08 0.04
cth 0.01 0.05 0.1

Figure 26. Experiment 1: experiment with ORACLE in a corridor filled with obstacles. The map of the environment, reconstructed from
the Realsense T265’s odometry and the Realsense D455’s pointclouds, is given in the top row while some instances of the experiment
are shown in 1-3 where the predictions from the CPN are illustrated in 1-3a (green markers: estimated trajectory endpoints of safe action
sequences, blue marker with an arrow: estimated trajectory endpoint of chosen action sequence), the third-person views are displayed in
1-3b, and the onboard RGB-D images are visualized in 1-3c,d, respectively. The robot was commanded to fly toward a waypoint in
front of it with the reference forward velocity of 2.5 m/s, as shown in the velocity profile plot. The presented results relate to contributions
2-4.
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the reliable performance of the CPN in real-world situations.
The velocity profile is also given in Figure 26 where the z-
component of the velocity is utilized to avoid obstacles in
some instances, showing the benefit of navigating in full 3D
compared to our prior (2D) work presented in Nguyen et al.
(2022).

The second experiment related to a forest during under
canopy flight and took place near Evo, Finland, and was
presented in Extension 2. The robot was commanded to
navigate safely towards a waypoint that is in front of it with
reference forward speed of vrx¼ 1:5 m=s. Figure 27.1-3
presents predictions of the CPN in some particular in-
stances. It is noted that a large part of this environment has a
density of around 0.2 trees/m2, which corresponds to the
densest forests simulated in Bartolomei et al. (2023) and 5
times more than the densest forests simulated in Loquercio
et al. (2021)

�
with a density of 1

25 trees=m
2

. Additionally,

this environment presents challenging conditions for the

navigation methods since thin tree branches are abundant, as
can be seen in Figure 27.1-3(b),(c),(d). As shown, ORA-
CLE can negotiate this environment successfully although it
has never collected data in cluttered forests in simulation,
demonstrating the generalization capability of our method.

In the third experiment, we performed flight tests with A-
ORACLE and ORACLE in an industrial silo tank at the
RelyOn training facility in Trondheim, Norway, as pre-
sented in Figure 28 and Extension 3. The robot was tasked
to navigate safely in the environment following a pre-
defined set of waypoints, while it was allowed to deviate
from the intended waypoints to gather higher quality ob-
servations of objects of interest (a backpack and a protective
suit simulating a human in this case). YOLO Redmon and
Farhadi (2018), as trained for the DARPA Subterranean
Challenge by Team CERBERUS Tranzatto et al. (2022),
was utilized as the object detection algorithm, and its output
detection masks are depicted in Figure 28.1-2(d). While

Figure 27. Experiment 2: experiment with ORACLE in a dense forest during under canopy flight. The maps of the environment and the
odometry estimates of the robot, derived by RTAB Labbé and Michaud (2019), are given in the top row while some instances of the
experiment are shown in 1-3 where the predictions from the CPN are illustrated in 1-3a (green markers: estimated trajectory endpoints of
safe action sequences, blue marker with an arrow: estimated trajectory endpoint of chosen action sequence), the third-person views are
displayed in 1-3b, and the onboard RGB-D images are visualized in 1-3c,d, respectively. The robot was commanded to fly towards a
waypoint in front of it with the reference forward velocity of 1.5 m/s. Each square in the figure has dimensions equal to 5 m × 5 m. Note
that the position estimates are not provided to the robot during the mission and the results of RTAB-based map are only derived in post-
processing given the relative drift experienced by the onboard T265 odometry. The presented results relate to contributions 2-4.
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moving from waypoint 1 to 2 and 5 to 1 (marked with the
white ellipses in Figure 28), the robot deviated from the
straight-line connection between the waypoints in order to
look at the objects of interest from closer distances, as il-
lustrated in Figure 28.1-2(b). For comparison, ORACLE
was also deployed with the same set of waypoints and the
trajectory of the robot is visualized in the bottom left of
Figure 28. As can be seen, since ORACLE does not con-
sider the quality of observations of interesting objects,
straight-line connections between the waypoints were
usually chosen (except when moving from waypoint 3 to 4).
It is noted that the straight-line connection between way-
points 3 and 4 is not collision-free. Notably, when the robot
traversed closer to the survivor when A-ORACLE was
engaged, it detected a dead end, depicted in Figure 28.3, and
performed a yaw-in-spot action until it found a free di-
rection, as presented in line 21 of Algorithm 1. Figure 28.4
shows the CPN’s prediction around waypoint 3, demon-
strating the capability of our methods to provide a multi-
modal navigation solution where the robot can choose to
turn left or right to avoid the front obstacle.

The fourth experiment, as seen in Extension 4, was
conducted in a hall inside a building on the campus of
NTNU. The robot was given a waypoint that is in front of it
and the straight-line connection between the start and end
points is not collision-free. Three backpacks were placed
along the hall to represent the objects of interest and YOLO
Redmon and Farhadi (2018) was again utilized to detect the
objects. Similar to the second experiment, when A-
ORACLE was deployed, the robot traversed closer to the
objects of interest to view them from smaller distances.
Notably, in this environment, the position estimates from
the Realsense T265 drifted significantly, possibly due to the
darkness in some parts of the environment, as can be seen
from the onboard RGB image in Figure 29.c. The ground-
truth reconstructed maps and odometry estimates of the
robot, visualized in the top row (A-ORACLE) and the left
column in the second row of Figure 29 (ORACLE), are
estimated offline using the method presented in Labbé and
Michaud (2019). The drifted map with wrong dimensions
(25 m versus 40 m) and odometry estimates from Realsense
T265 are visualized in the right column in the second row of

Figure 28. Experiment 3: experiments with both A-ORACLE and ORACLE in an industrial silo tank. The map of the environment
(reconstructed from the Realsense T265’s odometry and the Realsense D455’s pointclouds), the given waypoints, and the trajectories
taken by the robot when ORACLE and A-ORACLE are deployed are shown on the left. As shown in the white ellipses, the robot
traversed closer to the interesting objects, which are marked with yellow boxes and visualized in 1-2c, when A-ORACLE was engaged
compared to ORACLE. Some instances of the experiment with A-ORACLE are shown in 1-4. The predictions from the CPN are
illustrated in 1-4a where the green markers correspond to the estimated trajectory endpoints of safe action sequences, and the blue marker
with an arrow corresponds to the estimated trajectory endpoint of chosen action sequence (determined using both the prediction results
from the CPN and the IPN). The third-person views are displayed in 1-2c, and 3-4b, while the onboard RGB images and detection
masks from YOLO are visualized in 1-2b, and d, respectively. The presented results relate to contributions 1-4.
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Figure 29. A-ORACLE and ORACLE could still avoid
obstacles and additionally, A-ORACLE could pay attention
to interesting objects in this case despite the significant drift
of the position estimates.

5.3. Onboard running time

The running time of the ORACLE/A-ORACLE methods
consists of three computational components, namely a)
the depth image pre-processing step (“Pre-processing”),
b) multiple forward passes through the CPN (ORACLE)
or the CPN and the IPN (A-ORACLE) on the GPU, and

c) other operations including data transfer between the
CPU and the GPU as well as remaining CPU’s opera-
tions (“Others”). The actual onboard running times for
ORACLE and A-ORACLE with the configurations
presented in Table 4 are detailed in Tables 5 and 6. The
utilized Xavier NX operates in 15 W 6-core mode in all
the computational evaluations and real-world experi-
ments presented, while NVIDIA TensorRT is used to
optimize the CPN and IPN. It is noted that in practice,
the number of CPNs in the ensemble NE does affect the
running time, as can be seen in Table 5. We choose to use
NE = 3 in all real-world experiments, allowing the

Figure 29. Experiment 4: experiments with both A-ORACLE and ORACLE in a hall inside a building on the campus of NTNU. The
maps of the environment and the odometry estimates of the robot, derived by RTAB Labbé and Michaud (2019), are shown in the first
row (A-ORACLE) and the left plot in the second row (ORACLE). On the other hand, the drifted map of the environment, reconstructed
from the Realsense T265’s odometry, and the Realsense T265’s odometry solution are shown in the right plot in the second row. Some
instances of the experiment with A-ORACLE are shown in 1-3. The predictions from the CPN are illustrated in 1-3a where the green
markers correspond to the estimated trajectory endpoints of safe action sequences, and the blue marker with an arrow corresponds to the
estimated trajectory endpoint of chosen action sequence (determined using both the prediction results from the CPN and the IPN). The
third-person views are displayed in 1-3b, while the onboard RGB images and detection results from YOLO are visualized in 1-3c, and
d, respectively. Owing to its design, A-ORACLE and ORACLE can still avoid obstacles and additionally, A-ORACLE can pay attention
to interesting objects, marked with yellow boxes, despite the significant drift of the position estimation of Realsense T265. The presented
results relate to contributions 1-4.
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planning rate of 15 Hz in the first experiment and 5 Hz in
the two other experiments when YOLO is also running
alongside A-ORALCE with the same rate. Notably, with
the same NE = 3, the running time of the CPN in the first
experiment (when NMP = 256) only increases by 17%
compared to the other experiments (when NMP = 96
and the action’s sequence lengthH is almost the same). It
can be seen that by exploiting the GPU’s computing
capability, the running time of our methods scales
gracefully with the number of action sequences in the
MPL (NMP) and the number of CPNs in the ensemble
(NE). The overall sufficiently low computational times
and the ablation study summarized in Figures 18–20
allows the appropriate selection of the key parameter
value NE for a certain robot’s capabilities and mission
demands.

6. Conclusions

This paper presented a learning-based method to effi-
ciently tackle the problem of visually-attentive uncer-
tainty-aware 3D navigation without relying on a map of
the environment or the position estimate of the robot.
Two neural networks are designed in this work: a
Collision Prediction Network for predicting the
uncertainty-aware collision costs for action sequences in
a Motion Primitives Library (utilizing the Unscented

Transform and an ensemble of neural networks) and an
Information gain Prediction Network for estimating their
associated information gain. The networks’ outputs are
used in addition to a unit goal vector, given by any high-
level global planner, to determine the best action se-
quence to be executed in a receding horizon fashion. We
conducted a set of simulations and real-world experi-
ments to verify the proposed method. Extensive simu-
lation studies involving navigation with noisy inputs
including the robot’s velocity estimate and the depth
image demonstrate the robustness of our methods
(ORACLE and A-ORACLE). Moreover, visual
attention-aware navigation with different sources of
visual detection input is performed to show the benefits
of A-ORACLE compared to other baselines. Finally,
several real-world experiments including collision-free
flights with the reference forward speed of 2.5 m/s in a
cluttered corridor, and visually-attentive navigation in
industrial and university environments are also de-
scribed, demonstrating that the method can transfer well
to real systems and complex environments. The code and
training datasets will be publicly released at https://
github.com/ntnu-arl/ORACLE upon acceptance.

Regarding future work, five important directions are
identified. First, this relates to extending the extero-
ceptive sensor inputs of the method to enable multi-
modal fusion, especially of depth and visual data. Visual

Table 5. Onboard running time of different components of ORACLE (NE is varied while the other parameters are the same as in the first
experiment mentioned in Tables 4 and it is noted That NE = 3 is Used in all Real-world Experiments.). All the times are in milliseconds.

NE Step Mean Percentage Total

1 Pre-processing 15.7 36.3 43.2
CPN 18.7 43.3
Others 8.8 20.4

2 Pre-processing 15.7 32.2 48.8
CPN 19.5 40.0
Others 13.6 27.8

3 Pre-processing 15.7 28.6 54.9
CPN 22.8 41.5
Others 16.4 29.9

4 Pre-processing 15.7 24.3 64.5
CPN 29.1 45.1
Others 19.7 30.6

5 Pre-processing 15.7 21.2 74.0
CPN 36.5 49.3
Others 21.8 29.5

Table 6. Onboard running time of different components of A-ORACLE in the third and fourth experiments. All the times are in
milliseconds.

Step Mean Percentage Total

Pre-processing 15.7 18.5 85.0
CPN 19.5 22.9
IPN 38.1 44.8
Others 11.7 13.8
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data can deliver the resolution and acuity typically
lacking in depth images, while co-fusing depth data
allows to benefit from the more direct collision infor-
mation they offer and their ability to be simulated with
higher fidelity which supports successful sim-to-real
transfer. This direction of future work is especially
motivated by our experience from field testing within
dense forests including hard-to-detect thin branches
(e.g., with a cross section less than 1 cm) where the
depth camera faced limitations in its ability to correctly
provide range information. Second, we aim to investi-
gate the potential of offering safety certificates in order
to not only have high performance in statistical terms but
guarantee the system’s safety. A plausible direction is
that of developing a safety filter through control barrier
functions. This is a critical domain of research that aims
to address core limitations of neural network-based
methods within critical tasks such as robot control
and navigation. Third, also related with the previous
direction, we aim to investigate the online detection of
situations where the robot is exposed to inferring from
data significantly different from those experienced
during training. The latter could be used to trigger an-
other fallback system to safeguard the robot or its en-
vironment. Fourth, the method can be extended to use a
sequence of depth images with the goal of handling
dynamic obstacles. Finally, future work may focus on
alleviating the limitation of hand-tuning certain pa-
rameters in the loss equations used to train the CPN and
the IPN by automatically learning such weights at
training time.
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Appendix

Appendix A: Index to multimedia extensions

The index to the multimedia extensions of this manu-
script is given in Table 7.

Appendix B: Proof of lemma

The proof of Lemma IV.1 is as follows
Proof. Let q = (u, v) be an arbitrary pixel in the depth

image ot, Z = ot (u, v) the depth value of pixel q, and
ðcx, cyÞ, f dx , f dy the pixel coordinates of the optical center as

well as the focal length of the depth camera, respectively.
Then the corresponding pixel in the horizontal flip depth

image oflipt is approximately qflip = (2cx � u, v). We denote
the 3D projected points of the pixels q and qflip as Q and
Qflip, respectively. Given assumption (1) above, the coor-
dinates of Q and Qflip expressed in C are:

CQ ¼
h
CQx,

CQy,Z
iT

(31)

CQflip ¼
h
CQflip

x , CQflip
y ,Z

iT
(32)

where

CQ ¼ u� cx
f dx

Z (33)

CQy ¼
v� cy
f dy

Z (34)

CQflip
x ¼ cx�u

f dx
Z ¼ �CQ (35)

CQflip
y ¼ v� cy

f dy
Z ¼CQy (36)

From the assumption (2) above, the transformation from
C-frame to B-frame has the form:

RBC ¼ RyðθcÞ

0
BB@

0 0 1

�1 0 0

0 �1 0

1
CCA (37)

tBC ¼ ½tBC, x, 0, tBC, z�T (38)

where Rj(η) (j = x, y, z) denotes the rotation matrix for a
rotation around the j-axis by η degrees and θc is the
rotation angle of C around the y � axis of B. The 3D
coordinates of the projected points Q and Qflip are given
in B and V as:

BQ ¼ RBC
CQþ tBC (39)

VQ ¼ RyðθtÞRxðftÞ
BQ (40)

BQflip ¼ RBC
CQ

flip þ tBC ¼ ½BQx,�BQy,
BQz�T (41)

VQflip ¼ RyðθtÞRxð�ftÞ
BQflip ¼ ½VQx,�VQy,

VQz�T (42)

Plugging sflipt , aflipt : tþH into (6), it can be deduced that the
flipped position and relative yaw labels can be obtained by
reverting the signs of Vptþi, y, δtþi ði¼ 1, :::,HÞ in
Vptþ1 : tþHþ1 and δt+1:t+H+1, respectively. From (42), we can
infer that the y-coordinate of the obstacles in V-frame is also
reverted; hence, the collision labels of the augmented data

point dflipCPN are the same as dCPN.

Table 7. Table of multimedia extensions.

Extension
Media
type Description

1 Video This video presents the overview of the
method, the setup, and the data from
experiment 1 with ORACLE in a
cluttered corridor

2 Video This video presents the setup and the data
from experiment 2 with ORACLE in a
dense forest during under canopy flight

3 Video This video presents the setup and the data
from experiment 3 with A-ORACLE and
ORACLE in an Industrial silo tank

4 Video This video presents the setup and the data
from experiment 4 with A-ORACLE and
ORACLE in a university’s hall
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