
Attacking B-SIDH Using Castryck-Decru’s
Key Recovery Attack on SIDH

Skuggedal, Georg

Submission date: June 2023
Main supervisor: Professor, Boyd Colin, NTNU
Co-supervisor: Eriksen, Jonathan Komada, NTNU

Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Title: Attacking B-SIDH Using Castryck-Decru’s Key Recovery Attack on
SIDH

Student: Skuggedal, Georg

Problem description:

Isogeny-based cryptography is an emerging and exciting field in modern cryptography
that strives to create new and hard cryptographic problems that makes it infeasible
for both classical and quantum computers to find our secret keys. This field uses
elliptic curve theory, particularly special maps between elliptic curves called isogenies.
One notable isogeny-based key encapsulation mechanism is Supersingular Isogeny Key
Encapsulation (SIKE), which reached the fourth round of the NIST standardization
process. However, in the summer of 2022 Castruck and Decru presented a new
devastating key-recovery attack on SIDH, which also breaks SIKE in seconds. The
full extent of the affected protocols remains uncertain. One of these protocols, that
remains unexplored, is Costello’s B-SIDH, which introduces a new way of instantiating
isogeny-based cryptography.

The objective of this thesis is to evaluate to what extent does Castruck and
Decryu’s attack hold in the case of B-SIDH and to determine the extent to which it
is effective. In addition, we aim to assess the effectiveness of Castruck and Decryu’s
attack in retrieving Bob’s secret key in B-SIDH for various key sizes. To accomplish
this, the thesis will adapt the available implementation of the attack, and make
appropriate adjustments to ensure its applicability against B-SIDH.

Approved on: 2023-02-24
Main supervisor: Professor, Boyd Colin, NTNU
Co-supervisor: Eriksen, Jonathan Komada, NTNU

Abstract

The foundation of our public-key cryptography schemes lies in the
hardness of specific mathematical problems. Although no efficient solution
for these problems exists for classical computers, the advent of quantum
computing presents a significant threat. Quantum computers have the
potential to solve these mathematical problems, threatening the security
of our current public-key cryptography systems. As a consequence, the
cryptographic community is actively exploring alternative cryptographic
protocols, which rely on other hard mathematical problems robust against
both classical and quantum attacks. Two such schemes are the isogeny-
based key exchanges called Supersingular Isogeny Diffie-Hellman (SIDH)
and the closely related B-SIDH. These two are based on hard problems
from the theory of elliptic curves and isogenies, which are rational maps
between elliptic curves.

In the summer of 2022 Castryck and Decru presented a new devastating
key-recovery attack on SIDH, breaking it in seconds. The attack recovers
Bob’s secret key by computing isogenies in a higher dimension. In this
thesis, we examine to what extent Castryck and Decru’s attack holds in the
case of B-SIDH and explore the applicability of the attack. Additionally,
we modify the practical implementation of the attack to take into account
Bob’s varying torsion and create a new representation of Bob’s secret key
using the Chinese Remainder Theorem (CRT).

Our findings indicate that the attack can be effectively applied to
B-SIDH under certain conditions, especially when p+ 1 or p− 1 can be
factored into only prime powers of two. When Alice’s degree is not a prime
power of two, the attack requires computing (ℓ, ℓ)-isogenies for ℓ > 2,
which poses practical challenges. The attack’s efficiency on B-SIDH is
innately slower due to the necessity of computing isogenies higher degree.

Sammendrag

Fundamentet i nesten alle offentlige nøkkelkryptografier ligger i vanske-
ligheten til spesifikke matematiske problemer. Selv om det ikke eksisterer
effektive løsninger for disse problemene på klassiske datamaskiner, pre-
senterer kommende kvantemaskiner en betydelig trussel. Kvantemaskiner
har potensiale til å løse disse vanskelige problemene, og truer sikkerheten
til nåværende offentlige nøkkelkryptografi systemer. Som en konsekvens
utforsker det kryptografiske miljøet aktivt etter alternative kryptografiske
protokoller, som er avhengige av andre vanskelige matematiske problemer
som er robuste mot både klassiske- og kvanteangrep. To slike systemer er
isegoni baserte nøkkelutvekslinger, Supersingulær Isogeni Diffie-Hellman
(SIDH) og den nært relaterte B-SIDH. Disse to er basert på vanskelige
problemer fra teorien om elliptiske kurver og isogenier, som er rasjonelle
avbildninger mellom elliptiske kurver.

Sommeren 2022 presenterte Castryck og Decru et nytt ødeleggende
nøkkelgjenopprettingsangrep på SIDH, og brøt det på sekunder. Angrepet
gjenoppretter Bob sin hemmelige nøkkel ved å beregne isogenier i en
høyere dimensjon. I denne oppgaven undersøker vi i hvilken grad Castryck
og Decru sitt angrep holder i tilfellet med B-SIDH og utforsker anvendel-
sen av angrepet. I tillegg endrer vi den praktiske implementasjonen av
angrepet for å ta hensyn til Bob sin varierende torsjon og skaper en ny
representasjon av Bob sin hemmelige nøkkel ved å bruke det kinesiske
restteorem.

Våre funn indikerer at angrepet effektivt kan brukes på B-SIDH under
visse omstendigheter. Spesielt når p + 1 eller p − 1 kan bli faktorisert
til bare primpotenser av to. Når Alice sin grad ikke er en toerpotens,
krever angrepet beregningen av (ℓ, ℓ)-isogenier for ℓ > 2, som forårsaker
praktiske utfordringer. Angrepet sin effektivitet på B-SIDH er naturlig
tregere på grunn av nødvendigheten av å beregne isogenier av høyere
grad.

Preface

This Master’s thesis represents the culmination of my 5 year Master
of Science degree in Communications Technology at the Department of
Information Security and Communication Technology at the Norwegian
University of Science and Technology (NTNU). It stands as a testament
to the journey I have undertaken over the past 5 years and reflects my
hard work and dedication.

The work presented here reflects my personal endeavor, but it was far
from a solitary pursuit. I would like to express my gratitude to my
amazing supervisors, Colin Boyd and Jonathan Komada Eriksen, whose
guidance and insights have been invaluable. Thank you for lending
me your expertise and for answering every dumb question I have had.
Working with you has been a real pleasure and good luck in the future.

I would like to thank my family for their unconditional support and belief
in my capabilities. Also, my deepest appreciation goes to my wife. Thank
you for your patience, support, and love over these years. I can’t wait
until what the future has in store for us.

Finally, to all my peers, I am humbled by the opportunity to get to
know all of you. You are all amazing people and made my stay here in
Trondheim for the better. Thank you for all these years and I hope our
paths cross again in the future.

Georg Skuggedal
Trondheim 2023

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Research Objective and Questions 2
1.3 Outline of Thesis . 3

2 Background 5
2.1 Algebra Fundamentals . 5

2.1.1 Groups . 6
2.1.2 Rings . 8
2.1.3 Fields . 9

2.2 Cryptography . 11
2.2.1 Asymmetric and Symmetric Cryptography 11
2.2.2 Diffie-Hellman Key Exchange 12
2.2.3 Shor’s Algorithm and Quantum Computers 13

2.3 Elliptic Curves . 14
2.3.1 Supersingular Curves . 17
2.3.2 Quadratic Twists . 18

2.4 Isogenies of Elliptic Curves . 19
2.4.1 Isogenies From Kernels . 21
2.4.2 The Supersingular Isogeny Problem 24

3 SIDH & B-SIDH 25
3.1 Building Upon Costello . 25
3.2 A Brief History of Isogeny-Based Cryptography 26
3.3 Walking and Drawing the Isogeny Graph 26

3.3.1 Discovering the ℓ-isogeny Graph with SageMath 28
3.4 Setting the Stage . 29

vii

3.5 The Protocol . 31
3.5.1 Description . 31
3.5.2 SIDH Toy Example . 33

3.6 Supersingular Isogeny Key Encapsulation 40
3.7 B-SIDH . 42

3.7.1 Enabled by X-Only Arithmetic 43
3.7.2 Choosing a Friendly Prime p 44
3.7.3 Handling Large ℓ-degree Isogenies 45
3.7.4 The Protocol . 46
3.7.5 B-SIDH Toy Example . 48
3.7.6 B-SIDH Running Time . 56

4 Castryck and Decru’s Key Recovery Attack 59
4.1 Hard Problems are Difficult to Find 59

4.1.1 Computational and Decision Diffie-Hellman Problem 59
4.1.2 Computational and Decisional Isogeny Problem 60

4.2 Even More Curves . 61
4.2.1 Hyperellptic Curves . 62
4.2.2 The Jacobian of a Genus 2 Curve 63
4.2.3 Richelot Isogenies . 65

4.3 Castryck-Decru Attack . 65
4.3.1 Kani’s Theorem . 66
4.3.2 Auxiliary Isogenies . 68
4.3.3 Constructing Bob’s Secret Key 68
4.3.4 The Glue and Split Oracle . 69
4.3.5 Attacking Algorithm . 70
4.3.6 Step Size . 70
4.3.7 Alternative Visual Representation of the Attack 70

4.4 Attacking SIDH Toy Example . 71
4.5 Other Attacks on SIDH . 74

4.5.1 Generalization by Martindale, Maino, and Robert 74
4.5.2 Direct Computation . 74

5 Attacking B-SIDH 75
5.1 Preparing to Attack B-SIDH . 75

5.1.1 Bob’s Twisted Torsion . 75
5.1.2 Alice’s Twisted Torsion . 76
5.1.3 (3, 3)-Isogenies . 77
5.1.4 (ℓ, ℓ)-Isogenies . 77
5.1.5 Can We At Least Lower the Security Requirements? 79
5.1.6 Representing Bob’s Secret Key with the Chinese Remainder

Theorem . 79

5.1.7 Number of Queries to Oracle 81
5.1.8 B-SIDH Attacking Algorithm 81

5.2 Attacking B-SIDH . 82
5.2.1 Toy Example . 82
5.2.2 Timing How Long One Guess Take 86
5.2.3 Attacking Example II . 87
5.2.4 Attacking Example III . 89

5.3 Ways To Speed Up the Attack . 91
5.3.1 Compute Isogenies Using

√
élu 91

5.3.2 Parallelisation . 91
5.3.3 Recover Smallest Degree Isogenies First 92
5.3.4 Extending Bob’s Secret Isogeny 92
5.3.5 Finding Optimal Course of Action 92

5.4 Can B-SIDH Be Considered Broken? 93

6 Conclusion 97
6.1 Research Questions . 98
6.2 Limitations and Remarks . 99
6.3 Future Work . 100

References 103

Appendix

A Finding Optimal
√

élu Degree 109

B Code for Algorithm 111

List of Figures

2.1 Left figure illustrates the operation of adding two points P and Q together
which represents a third point R. The right figure illustrates adding two
points lying in a vertical line which equals the point at infinity. 16

2.2 The table shows the coordinates and order of all rational points on curve
E. The figure shows the curve E : y2 = x3 + 12x2 + x over F17 with
j(E) = 10. The point at infinity is not geometrically correct but rather a
representation. 22

2.3 Visual representation of two cyclic subgroups. The green lines is one of
the subgroups of order 2 and the yellow lines are one of the subgroups of
order 3. 22

2.4 Isogeny map between two elliptic curves. Taking a point on E, not in the
kernel, maps to another point on the image curve. 23

3.1 Drawing the 2-isogeny graph edge by edge by computing 2-isogenies from
our starting curve with j-invariant of 364i+ 304. 27

3.2 The full 2-isogeny graph for p = 431. The graph consists of 37 super-
singular j-invariants represented as noted and the edges between them
correspond to 2-isogenies. 28

3.3 The full 3-isogeny graph for p = 431. The graph consists of 37 super-
singular j-invariants represented as noted and the edges between them
correspond to 3-isogenies. 29

3.4 Drawing the 3-isogeny graph edge by edge by computing 3-isogenies from
our starting curve with j-invariant of 364 · i+ 304. 29

3.5 An isogeny diamond configuration. Both Alice and Bob start at the curve
E0 and each computes a secret isogeny. They exchange the curves they
landed on and compute a new isogeny where they derive the same curve. 31

3.6 The set of yellow vertices represents the j-invariants Alice can land on
after her key generation. 34

3.7 Alice’s key generation path. She starts on the public curve with j-invariant
19, her secret key is the isogeny ϕB = (ϕ3 ◦ ϕ2 ◦ ϕ1 ◦ ϕ0). The destination
node with j-invariant 364i+304 becomes part of her public key. 36

xi

3.8 Bob’s key generation path. He starts in the public curve with j-invariant
19, his secret key is the isogeny ϕB = (ϕ2 ◦ϕ1 ◦ϕ0). The destination node
with j-invariant 107 becomes part of his public key. 38

3.9 Alice’s shared secret computation. She starts on the curve from Bob’s
public key with j-invariant 107. She then uses her secret key to compute
the remaining walk to the node with j-invariant 242. This is the shared
secret. 39

3.10 Bob’s shared secret computation. He starts on the curve from Alice’s
public key with j-invariant 364i + 304. He then uses his secret key to
compute the remaining walk to the node with j-invariant 242. This is the
shared secret. 41

3.11 Illustration of the two sides Alice and Bob will work over. The yellow
vertices is representing the A-side (p + 1) while the green vertices is
representing the B-side (p− 1). 42

3.12 Alice’s key generation path. She starts on the public curve with j-invariant
19, her secret key is the isogeny ϕB = (ϕ6 ◦ ϕ5 ◦ ϕ4 ◦ ϕ3 ◦ ϕ2 ◦ ϕ1 ◦ ϕ0).
The destination node with j-invariant 140 becomes part of her public key. 51

3.13 Bob’s key generation path. He starts on the public curve with j-invariant
19, his secret key is the isogeny ϕB = (ϕ1 ◦ ϕ0). The destination node
with j-invariant 87i+ 190 becomes part of his public key. 53

3.14 Alice’s shared secret computation. She starts on the curve from Bob’s
public key with j-invariant 87i + 190. She then uses her secret key to
compute the remaining walk to the node with j-invariant 42i+ 141. This
is the shared secret. 54

3.15 Bob’s shared secret computation. He starts on the curve from Alice’s
public key with j-invariant 143. He then uses his secret key to compute
the remaining walk to the node with j-invariant 42i + 141. This is the
shared secret. 55

4.1 Examples of genus 1 and genus 2 curves. Visually these two curves are
easily distinguishable by the number of circles the curve creates. 62

4.2 A visual representation of the path Bob takes during the key generation.
The root node is the starting j-invariant both Alice and Bob start on
while the internal nodes are the intermediate j-invariants Bob visits. The
leaf nodes are 27 possible destinations Bob can land on for p = 2433. The
green nodes and edges are the path Bob takes during the example 3.5.2. 71

List of Tables

3.1 Mapping j-invariants in Fp4 to Fp2 . Omega is a root of the irreducible
polynomial x4 + 2 · x2 + 323 · x+ 7. 49

3.2 Table for how long it takes to run through our implementation of the
B-SIDH protocol. The examples are labeled by ID and the full primes
can be seen in Table 3.3. The third and fourth columns are the biggest
integer in Alice and Bob factors respectively. Columns 5-8 are the timings
for the key generation and the derivation of the shared secret. 56

3.3 The full primes used in Table 3.2 labeled by ID. 57

5.1 Mean time of how long one guess takes for a given isogeny. 88
5.2 Mean time of how long one guess takes for a given isogeny. ×15 denotes

a (3 · 3)-isogeny where compute 15 times and the minimum, mean, and
max value is given. 90

A.1 Table of how long computing an isogeny of degree ℓ takes with vélu’s
formula and

√
élu over p = 2127 − 1. 110

A.2 Table of how long computing an isogeny of degree ℓ takes with vélu’s
formula and

√
élu. 110

A.3 Table of how long computing an isogeny of degree ℓ takes with vélu’s
formula and

√
élu. 110

xiii

List of Acronyms

CDH Computational Diffie-Hellman.

CIP Computational Isogeny Problem.

DDH Decision Diffie-Hellman.

DES Data Encryption Standard.

DHP Diffie-Hellman Problem.

DIP Decisional Isogeny Problem.

DLP Discrete Logarithm Problem.

NIST National Institute of Standards and Technology.

OTP One-Time Pad.

SIDH Supersingular Isogeny Diffie-Hellman.

SIKE Supersingular Isogeny Key Encapsulation.

xv

Chapter1Introduction

Elliptic curves have long been stars of the cryptographic stage and formed the
backbone of many widely used key exchange protocols and digital signature schemes.
Since the proposal of the Supersingular Isogeny Diffie-Hellman (SIDH) scheme by
Jao and De Feo in 2011 [JF11], the world of isogeny-based cryptography has been
attracting substantial attention. This scheme was created to stand resilient as we
march into the era of quantum computing. While there are no known efficient
quantum algorithms for attacking isogeny-based schemes, in the pursuit of quantum
resilience we cannot forget the potential threats from classical computers.

1.1 Motivation

Cryptography plays a crucial role in safeguarding our digital information as it travels
between devices and across the internet. Even before the birth of the internet,
encryption standards like the Data Encryption Standard (DES) were established to
scramble data during transit to ensure its confidentiality. However, as technology
advances, new encryption standards must be developed to keep pace with the
increasing sophistication of potential attacks.

The foundation of encryption schemes lies in the difficulty of specific mathematical
problems. Although cryptographic constructions can rarely be proven unconditionally
secure, we often rely on the assumption that solving these problems would require an
infeasible amount of time. For example, while multiplying two numbers is a simple
task, factoring a large number into its prime components presents a much greater
challenge. This problem, known as integer factorization, is the basis for the widely
used RSA encryption scheme.

The One-Time Pad (OTP) offers provably perfect security but is practically
infeasible for widespread use due to its requirements for long, pre-shared keys. In
1976, Diffie and Hellman [DH76] introduced a solution that eliminated the need
for pre-arranged keys, giving birth to public key cryptography. The Diffie-Hellman

1

2 1. INTRODUCTION

key exchange remains an essential component of many modern internet services.
The Diffie-Hellman Problem (DHP) relies on the difficulty of solving the Discrete
Logarithm Problem (DLP). Although no efficient algorithm for classical computers
exists to solve the DLP, Shor [Sho97] developed an algorithm in 1994 that can solve
both DLP and integer factorization using quantum computers.

Although no quantum computer is currently capable of executing Shor’s algorithm
at scale, the race is on to find new cryptographic problems that cannot be efficiently
solved by quantum computers. Post-quantum cryptography research focuses on
several approaches, one of which is isogeny-based cryptography. This field aims
to develop protocols based on the properties of supersingular elliptic curves and
supersingular isogeny graphs. One such protocol, the Supersingular Isogeny Key
Encapsulation (SIKE), reached the fourth round of the National Institute of Standards
and Technology (NIST) standardization process with high hopes of being standardized.
However, in July 2022, Castryck and Decru unveiled a brutal key-recovery attack
that shattered the security of SIKE, breaking it in seconds.

The full extent of the damage caused to isogeny-based cryptographic systems by
this attack remains uncertain, highlighting the importance of continued research in
this area. In this thesis, we will investigate the implications of the attack on another
closely related key exchange protocol, B-SIDH, to better understand its impact on
the broader field of cryptography.

1.2 Research Objective and Questions

In 2019, Costello [Cos20] explore a new way of instantiating isogeny-based cryptogra-
phy named B-SIDH. In light of Castryck and Decru’s new devastating key-recovery
attack on SIDH, a new question can be asked. To what extent does Castryck and
Decru’s attack hold in the case of B-SIDH1? Can the attack, with the same effi-
ciency, be used to recover Bob’s secret key in B-SIDH? This problem is meant to
be answered by using an implementation of the proposed attack [CD23a] as well as
any modifications needed to succeed. To achieve this research objective, we aim to
answer the following three research questions.

Research question 1: What properties of SIDH are used in the Castryck
and Decrus attack?

Research question 2: Can Castryck and Decru’s attack be used with the
same efficiency on B-SIDH as on SIDH?

1Pronounced ’B-SIDE’

1.3. OUTLINE OF THESIS 3

Research question 3: What modification needs to be done to Castryck and
Decru’s attack in order the use the same attack on B-SIDH?

To answer research question 1, we will undertake a comprehensive analysis
surrounding the theory underlying SIDH and the specific characteristics of the attack.
Our initial focus on SIDH will be a theoretical deep dive into SIDH’s framework and
provide examples to gain a solid understanding of SIDH’s properties.

Subsequently, we turn our attention to the attack in question. An in-depth study
of the attack will offer us insight into methodology, effectiveness, and particularly,
its interaction with SIDH. Through this dual perspective, we aim to identify the
properties of SIDH that the attack utilizes.

The second research question 2, involves the creation of a B-SIDH implementation.
Our first point of action will be an explanation of the key exchange where we highlight
the differences to SIDH. The subsequent phase is focused on adapting Castryck and
Decru’s attack to operate effectively on B-SIDH. Throughout this process, we will
describe what modifications, from a practical and theoretical point of view, are
needed to answer research question 3.

It’s worth noting that the concept of efficiency here extends beyond the speed
of the attack on B-SIDH, but also includes the scope of the attack’s applicability.
By practically testing the attack we wish to evaluate its reach and feasibility across
varying degrees of complexity.

1.3 Outline of Thesis

Including this introduction, this thesis is sectioned into 6 chapters, and an appendix.

Chapter 2 equips the reader with the essential background knowledge required to
comprehend Chapter 3 and the remainder of the thesis. The chapter is systematically
structured, beginning with the foundational concepts of algebra and transitioning
into an introduction to modern cryptography. In the latter half of the chapter, elliptic
curves are introduced, followed by an introduction to isogenies, which concludes the
chapter.

Chapter 3 presents the two key exchange protocols SIDH and B-SIDH on both
a high-level and a detailed explanation. The chapter begins by highlighting some
key properties before delving into the protocol descriptions and provides some toy
examples.

4 1. INTRODUCTION

Chapter 4 presents the key recovery attack developed by Castryck and Decru.
The chapter goes more in-depth on certain curves, including relevant theories for the
attack. A relevant attacking example is also presented to enhance understanding.

Chapter 5 discusses what changes were made to the attack B-SIDH and presents
the findings during our research.

Chapter 6 concludes with the key findings derived from the research, while also
presenting potential avenues for future work related to the topics explored in this
thesis.

Appendix provides additional material used in this thesis.

Chapter2Background

This chapter contains the essential background knowledge required to comprehend
Chapter 3 and the remainder of the thesis. In section 2.1 we explore the fundamentals
of algebra transitioning into general cryptography concepts in section 2.2. Finally, in
section 2.3 and 2.4, we cover the basics of elliptic curves and isogenies preparing for
chapter 3.

2.1 Algebra Fundamentals

In this section, a quick overview will be given of necessary theorems and definitions
from algebra, which are needed to understand later subjects. The proofs of theorems
are omitted in this section and we refer to any introduction book to the subject
[JBN14]. Before diving into groups, fields, and rings, it’s important to establish a
foundation in some fundamental concepts of set theory.

– Sets: A set is a collection of distinct objects, considered as an object in its
own right. Sets are usually denoted by capital letters and their elements by
lowercase letters. The objects in a set are called its elements or members. A
set can be finite or infinite depending on the number of its elements.

– Binary operations: A binary operation is a rule that combines two elements
from a set to produce a third element within the same set. Common examples
of binary operations include addition, subtraction, multiplication, and division
in the set of real numbers.

– Mappings (functions): A function is a relation between two sets that associates
each element of the first set with exactly one element of the second set. Functions
are used to describe relationships between different mathematical objects and
are fundamental to the study of algebraic structures.

– Relations: A relation is a set of ordered pairs of elements from two sets. It is a
way to describe a specific connection between elements in different sets. An

5

6 2. BACKGROUND

important type of relation in algebra is the equivalence relation, which satisfies
three properties: reflexivity, symmetry, and transitivity.

While in arithmetic we have four binary operations available to us, in abstract
algebra we often only consider addition and multiplication. Why we do this becomes
clearer with an example. 3− 4 is the same as 3 + (−4). Here one can think of the
subtraction operations as adding a negative. Also 3− (−4) is the same as 3 + 4. In
this example subtracting means the same as adding the opposite. But we use the
word inverse instead of opposite. These examples show that subtraction means the
same as addition with inverses. The same argument can be made that division is the
same as multiplication with inverses.

One reason we want to do this is that in algebra, the elements we work with
may not always be numbers. Some sets contain elements where each element is a
permutation, where subtraction and division may be incoherent. It makes more sense
to combine one element with an inverse since using inverses is more general.

With these basic concepts in mind, we can now introduce groups, rings, and fields
as specific algebraic structures.

2.1.1 Groups

The first tool we will explore is the structure called a group. Let’s take a look at the
definition.

Definition 2.1. A group can is a non-empty set of elements G and a binary
operation on G. The binary operation is depicted by a mapping ∗ : G×G −→ G. The
set and binary operation needs to satisfy the following axioms:

(i) Associative For all a, b, c ∈ G we have (a ∗ b) ∗ c = a ∗ (b ∗ c)

(ii) Identity element There exists an element e ∈ G such that e ∗ a = a for all
a ∈ G,

(iii) Inverse element For every a ∈ G, there exists an inverse a′ ∈ G such that
a ∗ a′ = e

We write a group as a tuple with the symbol G and the binary operations. For
example, consider the set of real numbers R, which has the binary operations addition
a+ b and multiplication a ∗ b. We may write (R\{0}, ∗).

In many instances, we may omit writing the multiplication sign, and instead only
write ab.

2.1. ALGEBRA FUNDAMENTALS 7

Definition 2.2. An abelian group also known as a commutative group, is a
group (G, ∗) that satisfies an additional axiom, called the commutative axiom.

(iv) Commutative For all a, b ∈ G we have ab = ba

In other words, the order in which the elements are combined does not affect the
result of the operation.

Examples of abelian groups include the additive group of integers (Z, +), the
additive group of real numbers (R, +), and the multiplicative group of nonzero real
numbers (R\{0}, ∗).

We continue our exploration of groups by talking about subgroups. Essentially, a
subgroup is a group that is contained within another group. More formally:

Definition 2.3. Subgroup Let (G, ∗) be a group, then a non-empty subset H ⊂ G
is called a subgroup of G if (H, ∗) is a group, written as H < G.

A subgroup is a subset of a bigger group that shares the same binary operation
as the original group. An important thing to remember about subgroups is that they
are themselves, groups. So all the properties of groups (associativity, existence of
identity element, and inverses) apply to them.

In algebra, we often work with multiple groups and more specifically the relation
between two groups. One such mapping or a function between two groups is called
group homomorphism.

Definition 2.4. Group homomorphism Given two groups, (G, ∗) and (H, ∗),
a mapping ϕ : G −→ H is a group homomorphism such that for all a, b ∈ G it holds
that ϕ(a ∗ b) = ϕ(a) ∗ ϕ(b)

The binary operation ϕ(a ∗ b) is the operation in G, while the binary operation
between ϕ(a) ∗ ϕ(b) is the operation in H.

In other words, a group homomorphism maps elements of one group to elements
of another group in such a way that the result of the group operation in the first
group corresponds to the result of the group operation in the second group, after
applying the homomorphism.

Given a group homomorphism, there is a subgroup we are specifically interested
in called the kernel. The kernel is the set of elements that are mapped to the identity
element of the targeted group.

8 2. BACKGROUND

Definition 2.5. Kernel Let ϕ : G→ H be a group homomorphism between the
two groups G and H. The kernel of ϕ is the set kerϕ = {a ∈ G|ϕ(a) = 1H}, where
1H is the identiy of H.

The image of a group homomorphism is the set of all elements in the codomain
(target group) that are mapped to by the homomorphism function from the elements
of the domain (source group). We define:

Definition 2.6. Image Let G and H be two groups, and ϕ : G→ H be a group
homomorphism. The image of the group homomorphism ϕ, denoted by imϕ, or
simply ϕ(G), is the subset of H consisting of all elements h ∈ H for which there
exists an element g ∈ G such that ϕ(g) = h.

The image of a group homomorphism ϕ : G→ H is always a subgroup H. This
fact follows from the properties of group homomorphisms, which ensure that the
image of f is closed under the group operation in H, contains the identity element
of H, and includes the inverses of its elements.

If the group homomorphism ϕ is injective and surjective, then we call ϕ a group
isomorphism. It follows that ϕ is an isomorphism if and only if only the identity in
G is in the kernel and imϕ = H. In this case, we say that G and H are isomorphic,
denoted as G ∼= H.

If ϕ is a homomorphism from G to itself, H = G, then ϕ is called an endomorphism.

Definition 2.7. Group order The order of a group, denoted by |G|, refers to the
number of elements contained within that group.

A group can have either a finite or an infinite order. A group has a finite order
if it has a finite number of elements and the order of a finite group is always a
non-negative integer. A group has an infinite order if it has an infinite number of
elements. For example, the additive group of integers (Z,+) is an example of an
infinite group, as it contains an infinite number of integers.

2.1.2 Rings

After the introduction of groups and their properties, we are ready to look at more
specific structures; groups with extra features. Additive groups which have a second
operation, multiplication. We call these rings.

Definition 2.8. Ring is a non-empty set R with two binary operations + (addition),
and · (multiplication), and is called a ring if the following axioms hold:

2.1. ALGEBRA FUNDAMENTALS 9

(i) (R,+) is an abelian group.

(ii) Associative For all a, b, c ∈ G we have (a · b) · c = a · (b · c)

(iii) There exist 1 ∈ R such that 1 · a = a for all a ∈ R

(iv) Distributive property a · (b+ c) = a · b+ a · c, and (a+ b) · c = a · c+ b · c
for all a, b, c ∈ R

For both operations, the set is closed. This means if you add any two elements
in R, you get another element in R. Similarly, if you multiply any two elements in
R, you get a third element in R. More formally, if x, y ∈ R, then x + y ∈ R and
x · y ∈ R.

Also note that 1 does not necessarily mean the integer 1, but rather symbolizes
the multiplicative identity in R. If the operation · is commutative, we way that R is
a commutative ring.

Definition 2.9. Characteristic Let R be a ring. If there exists n ∈ N \ {0}
such that na = 0 for all a ∈ R then the smallest n is called the characteristic of R,
denoted as char(R). If there is no such n, R has characteristic 0.

The characteristic of a ring gives important information about the structure of
the ring. This definition also applies to fields which be elaborate on in the following
section.

2.1.3 Fields

Up until now, we have seen that groups and rings are defined after which operations
we are allowed along with other axioms. Loosely speaking if we can add and subtract
you have a group. If we can add, subtract and multiply, we have a ring. If we can
use all four operations, we have what we call fields.

Definition 2.10. Field A set F with the two operations addition and multiplication
is a field K if the following three conditions hold

(i) F is an abelian group

(ii) F \ {0} is an abelian group under multiplication

(iii) The disruptive law holds: a(b+ c) = ab+ ac

There is an infinite number of fields, where the most famous ones are the rational
numbers Q, the real numbers R, and the complex numbers Q. These are examples

10 2. BACKGROUND

of infinite fields, however, there also exist finite fields or finite prime fields. A finite
prime field can be written of the form Z/pZ which means integers modulo p, which
we will write as Fp.

The finite prime fields and rational numbers Q is the starting point of all fields.
That is if you pick any field F , then it will contain one and only one of these fields
as a subfield, and we say F is an extension field. The characteristic of a field tells us
which prime field it extends.

Since we mostly will be working with finite fields the following theorem will be
important to find the characteristic of our field.

Theorem 2.11. Let F be a field, then the characteristic is either char(F) = p

where p is a prime number or char(F) = 0.

With groups, we are often interested in subgroups of other groups. However,
when it comes to fields, it’s often the other way around. We start with a field and
add numbers to it, to get larger fields. We then get the definition

Definition 2.12. Extension fields If F and E are fields with F ⊂ E, we say that
E is an extension of E

For example C is an extension of R which is an extension of Q.

Definition 2.13. Algebraically closed A field F is algebraically closed if every
non-constant polynomial p(x) with coefficients in F has a root in F .

An example of an algebraically closed field is the field of complex numbers C
since every non-constant polynomial with complex coefficients has a root in C.

Later in the thesis, we will be interested in quadratic extensions of large prime
fields. When p ≡ 3(mod 4) We will represent Fp2 = F(i) with i2 + 1 = 0 where
elements are of the form

F(i) = {a+ bi : a, b ∈ Fp}

We can use theorem 2.11 to find the characteristic char(p2) = p of our field.

Definition 2.14. Algebraic closure Given a field F its algebraic closure is a
larger field that contains F and is algebraically closed.

2.2. CRYPTOGRAPHY 11

meaning that every polynomial with coefficients in this larger field has a root in the
field. This property allows us to solve polynomial equations without leaving the field.
The algebraic closure of a field F is typically denoted by F̄

For example, the field of real numbers R is not algebraically closed, as there are
some polynomials with real coefficients that do not have real roots. Consider the
equation x2 + 1 = 0. There is no real number x that can satisfy this equation.

However, the field of complex numbers C is algebraically closed. It contains all
the roots of polynomials with real coefficients, including those that are not real. In
the case of the equation x2 + 1 = 0, its solutions are x = i and x = −i, where i is
the imaginary unit, and these solutions belong to the field of complex numbers C.

2.2 Cryptography

In this thesis, we will set the following framework for cryptography: Two communi-
cating parties, Alice and Bob, tries to communicate over an insecure channel. Both
parties are honest with the intention of sending messages privately. The messages
sent are in some way encrypted before being sent into the insecure channel, then
decrypted into the original message at the receiving party. A third entity, Eve, acts
as an eavesdropper and intercepts every message over the insecure channel.

2.2.1 Asymmetric and Symmetric Cryptography

Cryptographic systems can be broadly divided into two kinds. Symmetric cryptog-
raphy and asymmetric cryptography (also known as public-key cryptography). In
symmetric cryptography, the communicating entities, Alice and Bob, share some sort
of shared secret to both encrypt and decrypt messages. It is fast and efficient but
requires that both parties have a secure method for exchanging the shared secret.

For both of these cryptographic systems, we can define the tuple (K,M, C). K is
the key space, i.e. the set of all possible keys. M is the message space, i.e. the set of
all possible messages. C is the ciphertext-space, i.e. the set of all possible ciphertexts.

A symmetric encryption scheme consist of three algorithms (Gen, Enc, Dec)
– Gen : Key generation algorithm, which returns a random1 key k ∈ K.
– Enc : Encryption algorithm, which takes in a key k ∈ K and a message m ∈M

and returns a ciphertext c ∈ C.
– Dec : Decryption algorithm, which takes in a key k ∈ K and a ciphertext c ∈ C

and returns a message m ∈M.

1With the use of a pseudorandom number generators (PRNGs).

12 2. BACKGROUND

The correctness of this scheme can be defined by ∀k ∈ K,∀m ∈ M, we have
m = Dec(k,Enc(k,m)) meaning that encrypting a message m ∈ M using a key
k ∈ K decrypts to itself when using k.

Assuming |K| ≥ |M| one can prove there exists a symmetric encryption scheme
perfectly secure [SS14]. However, it is practically infeasible to use key sizes bigger
or equal to the size of the message. Therefore in most schemes |K| < |M| but
K is still large enough such that trying to decrypt with all possible keys in K is
computationally infeasible.

One major drawback of symmetric encryption is the problem of key distribution.
Two entities who have never met cannot share a secret. Public-key encryption aims
to solve this, as well as other problems. In contrast to symmetric-key schemes,
public-key schemes use two keys, one for encrypting (a public key) and one for
decrypting (a private key). The public key can freely be distributed to anyone who
wishes to send a message, and the corresponding private key is kept secret.

A public-key encryption scheme consist of three algorithms (Gen, Enc, Dec)
– Gen : Key generation algorithm, which returns a public key pk and private key
sk.

– Enc : Encryption algorithm, which takes in a public key pk and a message
m ∈M and returns a ciphertext c ∈ C.

– Dec : Decryption algorithm, which takes in a private key and a ciphertext c ∈ C
and returns a message m ∈M.

The key pair (pk, sk) have the property that it is computationally infeasible
to determine the private key solely from the knowledge of the public key. Further,
the correctness can be defined by ∀(pk, sk) ∈ K,∀m ∈ M we have that m =
Dec(sk,Enc(pk,m)).

2.2.2 Diffie-Hellman Key Exchange

In 1976, Diffie and Hellman [DH76] presents a key exchange algorithm, where a shared
secret between two parties is derived. Note that this is a key exchange algorithm, not
a public-key encryption scheme. However, the Diffie-Hellman key exchange can be
turned into a public-key encryption scheme called the ElGamal encryption scheme.
This thesis will not discuss ElGamal, readers wanting more information is referred to
the original paper [Gam85].

We can formulate the Diffie-Hellman key exchange in the following way. Let
G := ⟨g⟩ be a cyclic group of prime order q. Alice and Bob will begin by publicly
agreeing to use the base g. They will then each choose a secret exponent, x and
y such that x, y ∈ Zq, and compute A = ga and B = gb. A and B will then be

2.2. CRYPTOGRAPHY 13

exchanged and both parties will apply their secret exponent by calculating Ab and Ba.
Alice and Bob will then calculate their shared secret Ab = (ga)b = gab = (gb)a = Ba.

During the key exchange, attacker Eve gathers all information sent over the open
channel and has the following information: (G, g, q, A,B). Eve wishes to derive Alice
and Bob’s shared secret and if he could find one of the secret exponents it would
be trivial to calculate gab. We can formulate the problem Eve faces by showing the
following attacking game. A challenger sends gx, where x ∈ Zq, to an adversary. If
the adversary can find a x′ ∈ Zq such that x′ = x the adversary wins. This problem
is called the Discrete Logarithm Problem (DLP).

2.2.3 Shor’s Algorithm and Quantum Computers

Quantum computers represent a significant breakthrough in computing technology,
as they utilize the principles of quantum mechanics to perform certain calculations
that are exponentially faster than normal classical computers. One of the most well-
known algorithms that exploit the power of quantum computing is Shor’s algorithm,
developed by mathematician Shor in 1994 [Sho97]. This algorithm is capable of
solving two key problems that underlie the security of many modern cryptographic
systems: integer factorization and the discrete logarithm problem.

Shor’s algorithm leverages the unique properties of quantum bits (qubits), which,
unlike classical bits, can exist in a superposition of states. This enables quantum
computers to process information and perform calculations in parallel, leading to
significant speedup when solving certain problems [NCG02].

Integer factorization is a crucial problem in number theory and is the foundation
for the widely-used RSA cryptosystem. In classical computing, the most efficient
algorithms for integer factorization, such as the General Number Field Sieve [LL93],
have a sub-exponential running time. This makes it infeasible to factor in large
integers, ensuring the security of RSA.

Shor’s algorithm, on the other hand, can factor integers in polynomial time
on a quantum computer, thus posing a significant threat to the security of RSA.
When applied to the discrete logarithm problem, Shor’s algorithm can similarly
break cryptographic schemes based on this problem, such as the Diffie-Hellman key
exchange and the ElGamal cryptosystem.

As of today, no quantum computer is large enough to utilize Shor’s algorithm to
break any real-world cryptographic system at scale. However, the mere existence
of Shor’s algorithm and the rapid progress of quantum computing technology, calls
for new cryptographic systems which rely on new hard problems resistant to attacks
from both classical and quantum computers.

14 2. BACKGROUND

2.3 Elliptic Curves

In many of today’s cryptographic systems, elliptic curves are frequently used due to
their unique properties, such as speed and compactness, which make them highly
appealing from an implementation standpoint. Notably, elliptic curves typically
permit the use of smaller keys to achieve equivalent security levels compared to other
alternatives. This section will explore the well-known fundamental properties of
elliptic curves and present relevant examples for later discussions. While proofs will
not be provided in this section, readers interested in obtaining further details and
proofs are referred to any introduction book on elliptic curves [Sil09].

An elliptic curve is a curve over a field K (denoted by E/K) with a distinguished
point. This point is usually the point at infinity, which we will represent as ∞.
Generally, elliptic curves can be described with a homogeneous polynomial in three
variables with coefficients in K̄, where K̄ is the closure of the field we are working over.
For a field K where char(K) ̸= 2 an elliptic curve admits of the form E : y2 = f(x),
with deg(f) = 3. This thesis will only consider fields with characteristic not equal to
2 or 3. Consequently, an elliptic curve will be defined as follows:

Definition 2.15. An elliptic curve E over a field K is defined by the equation

E : y2 = x3 + ax+ b

where a, b ∈ K

In cryptographic applications, the Montgomery curve model is often the preferred
choice, due to some special properties that make them particularly efficient to
implement on computers. One such property allows Montgomery curves to be
expressed using only the x-coordinate, enabling x-only arithmetic, a concept that
will be further explored later in this thesis. Montgomery curve is defined as follows

Definition 2.16. A Montgomery curve over a field K is defined by the equation

Ea : y2 = x3 + ax2 + x

where a ∈ K and x, y are symbolic values [Mon87]. From this point, only Montgomery
curves will be used and considered.

The genus of a curve is a measure of its complexity or shape. It is closely related
to the number of holes the curve visually creates when drawn. By definition, the
genus for an elliptic curve is always equal to 1. We will consider genus 2 curves in
chapter 4.

Writing down equations for elliptic curves comes with its challenges as the equation
is generally not unique. Meaning two curves can be the same curve in different

2.3. ELLIPTIC CURVES 15

coordinated systems, when they are isomorphic. In section 2.4, we will delve into a
more detailed explanation of isomorphism. A straightforward method to ascertain
whether two curves are isomorphic involves computing the j-invariant.

Theorem 2.17. Let E and E′ be two elliptic curves over a field K, then E and E′

are isomorphic over K if and only if they have the same j-invariant.

In another way, comparing the j-invariant of two curves is a fast way of checking
if all certain criteria for isomorphism are fulfilled. Every elliptic curve has a unique
j-invariant and for curves in Montgomery form, the j-invariant can be calculated as

j(Ea) = 256(a2 − 3)3

(a2 − 4) (2.1)

We will emphasize the importance of this property by providing an example, as
it becomes relevant in later topics. Given two Montgomery curves Ea1 and Ea2 over
F71 where a1 = 1 and a2 = 70 we have

j(Ea1) = 256(12 − 3)3

(12 − 4) = 20 = 256(702 − 3)3

(702 − 4) = j(Ea2)

Theorem 2.17 tells us the two curves Ea1 and Ea2 are isomorphic due to having
the same j-invariant.

Given an elliptic curve E/K, the set of points carries an abelian group structure,
which makes it interesting in cryptography. Start with two points P and Q on the
curve E, then we can uniquely describe a third point R by the operation of P + Q. P
+ Q can intuitively be described geometrically by drawing a straight line between P
and Q, as depicted in Figure 2.1. Any straight line will intersect the curve in exactly
three (not necessarily distinct) points, by Bezout’s theorem [Mil06], where the three
points are P , Q, and −R. The sum of two points on the curve lying in a straight
vertical line equals the point at infinity, which serves as the identity. Since the curve
is symmetrical about the x-axis, any point P = (Px, Py) has a point opposite. This
operation is called point negation and can be defined with −P = (Px,−Py), where
we flip the y-coordinate.

By the description given, the binary operation + turns (E,+) into an abelian
group with ∞ as the identity since the following properties are fulfilled.

(i) For all P,Q ∈ E we have P +Q = Q+ P

16 2. BACKGROUND

Figure 2.1: Left figure illustrates the operation of adding two points P and Q
together which represents a third point R. The right figure illustrates adding two
points lying in a vertical line which equals the point at infinity.

(ii) For all P ∈ E, P +∞ = P

(iii) For all P ∈ E, there exist −P ∈ E such that P + (−P) =∞

(iv) For all P,Q,R ∈ E, (P +Q) +R = P + (Q+R)

One operation we are specifically interested in is the operation of adding a point
to itself multiple times, called scalar multiplication.

Definition 2.18. Scalar Multiplication Given a curve, E, over a finite field K,
any integer n defines a group homomorphism ϕ : E −→ E from any elliptic curve E to
itself. It consists of summing up n copies of a point using (E,+). Denote as

[n]P =P + P + · · ·+ P︸ ︷︷ ︸
n times

(2.2)

for some scalar n and a point P = (Px, Py) ∈ E .

This group homomorphism ϕ : E → E is actually an example of an isogeny. Later
in section 2.4 where we define isogenies we can see from the definiiton that scalar
multiplication is an isogeny from the curve to itself. For now the interesting thing
to note that is for some number n and point P , then [n]P = ∞, i.e. the identity
element of E.

2.3. ELLIPTIC CURVES 17

In this thesis, we are exclusively interested in elliptic curves over finite fields, i.e.
E/Fq. We are interested in the subset of F-rational points which forms a subgroup
of E.

Definition 2.19. K-rational points Given an elliptic curve E defined over K,
the K-rational points are the points (x, y) ∈ E with x, y ∈ K and the point ∞. We
denote as E(K).

As Fq is a finite field, it follows that E(Fq) contains a finite set of points. Finding
how many points there are contained in E(Fq), which we denote as #E(Fq), is not a
trivial task, the best-known algorithm is polynomial-time algorithms that find the
number of points [LM95]. However, there is a theorem called Hasse’s theorem which
gives us an upper and lower bound of E(Fq).

Theorem 2.20. Hasse’s theorem Let E be an elliptic curve over finite field Fq

then the order of E(F), denoted by #E(F) is given by

#E(Fq) = q + 1− t where |t| ≤ 2√q

2.3.1 Supersingular Curves

When it comes to isogeny-based cryptography, we are interested in a particular class
of elliptic curves, namely supersingular elliptic curves. Supersingular curves have
some sought-after different behaviors than their counterpart ordinary curves. These
curves can be defined in various ways, however, we define them in the following way

Definition 2.21. Given an elliptic curve E defined over a finite field of Fq of
characteristic p, E is supersingular if and only if p divides #E(Fq)− q − 1

By applying Hasse’s theorem 2.20 the order of E(Fp), the number of points,
simplifies to #E(Fp) = p+ 1 where q = p and p > 5. This allows us to effectively
choose what the group order of supersingular curves will be and makes it easy to
calculate the number of points on a given supersingular curve. This also applies to
supersingular curves over extension fields.

Just as ordinary curves are isomorphic when they have the same j-invariant, su-
persingular curves are also isomorphic when they have the same j-invariant. However,
we refer to them as supersingular j-invariants The number of different supersingular
j-invariants in a field Fp can be found using the following theorem:

Theorem 2.22. Let n be the number of distinct supersingular j-invariants in Fp

where p ̸= 2, 3, then

18 2. BACKGROUND

n =
⌊ p

12

⌋
+

0, if p ≡ 1 (mod 12)
1, if p ≡ 5 (mod 12)
1, if p ≡ 7 (mod 12)
2, if p ≡ 11 (mod 12)

[Sil09, Theorem V.4.1(c)]

This is a useful property which we will later see in section 3.5.1 where the shared
secret in SIDH is one of the j-invariants. Therefore the previous theorem can be used
to calculate the upper bound of the shared key space.

2.3.2 Quadratic Twists

An elliptic curve E over a not algebraically closed field K has an associated quadratic
twist. We will explore this by giving a concrete example. Let E be an elliptic curve
over finite field K and of the Montgomery form in 2.16, then given a d ̸= 0 not a
square in K, a quadratic twist of E is the curve Et, defined by the equation

Et : dy2 = x3 +Ax2 + x

The two elliptic curves E and Et are not isomorphic over K. This may seem
to contradict theorem 2.17 that two curves sharing the same j-invariant over K
are isomorphic. The two curves are rather isomorphic over the field extension K̄,
however, they will still have the same j-invariant over Fp2 .

Now consider the finite field of Fp2 and let B be a square in Fp2 and let γ be a
non-square in Fp2 . Take Fp4 = Fp2(δ) with σ2 = γ and take the two elliptic curves

EA,B : By2 = x3 +Ax2 + x and Et
A,γB : γBy2 = x3 +Ax2 + x

as models for E/Fp2 and its quadratic twist Et/Fp2 . These two curves are
isomorphic over Fp4 where we can write a map

σ : EA,γB(Fp4) −→ EA,B(Fp4), (x, y) −→ (x, δy) (2.3)

which is an isomorphism that leaves the x-coordinate unchanged.

2.4. ISOGENIES OF ELLIPTIC CURVES 19

Then, there is a point-value correspondence for the x-coordinates, given any
u ∈ Fp2 , we have three cases:

(i) If f(u) (where E : y2 = f(x)) is a square in Fp2 , it corresponds to two points
in E

(ii) If it’s a non-square, it corresponds to two points in Et.
(iii) If f(u) = 0, is a point on both curves.

Consider the two points P1 = (u1,−) and P2 = (u2,−), corresponding to cases
(i) and (ii) respectively. From these points, we can construct two isogenies: ϕ1 :
EA,B → EA,B/⟨P1⟩ and ϕ2 : EA,γB → EA,γB/⟨P2⟩. However, the evaluation of ϕ1
at P2 presents a problem, as these points reside on entirely different curves that are
not Fp2 -isogenous.

To address this, we elevate to Fp4 and precompose using twisting isomorphism,
which results in two new isogenies that are defined over Fp2 . We then compose
ϕ′

1 = (ϕ1 ◦ σ) and ϕ′
2 = (ϕ2 ◦ σ−1) to yield the isogenies ϕ′

1 : EA,γB → EA,B/⟨σ(P2)⟩
and ϕ′

2 : EA,B → EA,γB/⟨σ−1(P1)⟩.

Recall Montgomery curves and they allow to be expressed using only the x-
coordinate, enabling x-only arithmetic. Turning our attention back to equation 2.3,
the two morphisms σ : (x,−)→ (x,−) and σ−1 : (x,−)→ (x,−), the x-coordinate is
left unchanged, and we can ignore twisting morphisms completely. So by ignoring the
y-coordinate, all arithmetic operations can be conducted over Fp2 when we confine
ourselves to using only x-coordinates.

2.4 Isogenies of Elliptic Curves

In this section, we will introduce some special mappings between elliptic curves
called isogenies. Isogenies can be looked at as well-behaved maps and have some
interesting properties we can use to create key exchanges. We will begin by giving
some definitions and theorems before giving some related examples and theories for
later.

Definition 2.23. Isogeny An isogeny is a map between elliptic curves given by
rational functions over a field K, denoted by ϕ : E1 −→ E2.

The definition over is only partial, meaning we need a few more definitions and
theorems to fully grasp the structure of isogenies. This morphism between two elliptic
curves preserves the group structure and it’s important to note that the identity
element of curve E1 maps to the identity of E2. We can state the following theorem

20 2. BACKGROUND

Theorem 2.24. Let ϕ : E1 −→ E2 be an isogeny. Then ϕ maps the point at ∞1 in
E1 to the point at infinity ∞2 in E2, and satisfies ϕ(P +Q) = ϕ(P) + ϕ(Q).

Notice how the last part of the theorem satisfies the definition of a group homo-
morphism. So ϕ induces a group homomorphism between our two curves E1 and E2.
This induces us to look at their kernel i.e. the set of points that maps to the point
at infinity.

Theorem 2.25. Let ϕ : E1 −→ E2 be a non zero isogeny, then ker ϕ is a finite
subgroup of E1

We have introduced general isogenies, however, in this thesis, we will mostly work
with a specific type of isogenies called ℓ-isogenies. An ℓ-isogeny is an isogeny whose
kernel is a cyclic group of order ℓ. Or more specifically, we can define ℓ-isogenies as

Definition 2.26. ℓ-isogeny An ℓ-isogeny is an isogeny ϕ : E −→ E′ = E/G, where
G ∼= Z/ℓZ

E/G should not be confused with the notation E/K where K is a field, however,
this shows the group structure of E′. This shows that an elliptic curve E′ is the
image of ϕ derived from the kernel G.

Composition of isogenies is the process of applying multiple isogenies sequentially.
If we have two isogenies ϕ : E → E′ and ψ : E′ → E′′, then the composition of these
two isogenies is a new isogeny ω : E → E′′ that is obtained by applying ψ after ϕ.
An important thing about isogeny composition is that it preserves the structure of
the elliptic curve, including the group law.

If ϕ is ℓ1-isogeny and ψ is ℓ2-isogeny then ω = ϕ ◦ ψ will be a N -isogeny where
N = ℓ1 · ℓ2. Throughout this thesis, ℓ-isogenies will be referred to as prime degree
isogenies, while N -isogenies will be a composition of prime degree isogenies.

We have yet to define the degree of an isogeny. Since we mostly will be working
N -isogenies, we will informally define the degree of an isogeny equal to the size of its
kernel, which is ℓ.

It can be shown that for any N -isogeny φ : E −→ E′ of degree ℓ, has a unique
corresponding ℓ-isogeny called the dual isogeny φ̂ : E′ −→ E. The dual isogeny turns
the isogenies between two curves into an equivalence relation we call isogenous.

Definition 2.27. Isogenous Let E and E′ be elliptic curves over K. If there
exists a non-zero isogeny ϕ : E −→ E′, we say that E and E′ are isogenous.

2.4. ISOGENIES OF ELLIPTIC CURVES 21

To the previous definition, we can add that if E is supersingular, it follows that
E′ is also supersingular. Given the existence of the dual isogeny and this fact, it tells
us a lot about the isogeny class we are working with. The isogeny class is the set of
all elliptic curves that can be reached from a given curve by isogenies.

Theorem 2.28. Let Fq be a finite field of order q. Then all supersingular elliptic
curves over F̄q are isogenous.

This theorem tells us that for any field Fq, there exists only one isogeny class
containing supersingular curves. i.e. all supersingular elliptic curves belong to the
same isogeny class. Further, from the fact that ϕ : E → E′ with E as a supersingular
curve implies that E′ is a supersingular curve, we see that an isomorphism class
either contains none or all supersingular curves

In section 2.3 we discussed how we can do group operations on elliptic curves
or more specifically adding points. This gives us access to an important subgroup
called the n-torsion subgroup.

Definition 2.29. n-torsion subgroup Let E be an elliptic curve defined over a
field K, and n ∈ N. The n-torsion subgroup of E is defined as

E[n] = {P ∈ E(K)|[n]P =∞}

E[n] are the points on E of order dividing n. The isogeny is called multiplication-
by-n-map which is an important isogeny we will use a lot later. The multiplication-
by-n-map is defined by ϕ : E −→ E, where ϕ(P) = [n]P and allows us to easily find
isogenies of degree n. Notice that E[n] is precisely the kernel of this isogeny.

2.4.1 Isogenies From Kernels

So far, we’ve delved into a multitude of definitions and theorems relating to elliptic
curves and isogenies. These concepts, while crucial, may seem quite abstract and
disconnected from practical applications, such as their use in a key exchange protocol.
In the following section, we take our first stride towards connecting theory with
practice, as we delve into how we can generate isogenies from a given kernel.

Lets consider the curve E : y2 = x3 + 12x2 + x over F17 with j(E) = 10, which
is depicted in Figure 2.2. This curve has 12 rational points, including the point at
infinity, listed in Figure 2.2. From the Table, we can easily identify the 2-torsion
subgroup consisting of the points (0, 0), (10, 0) and (12, 0). In fact this can be
generelized to (0, 0), (1/α, 0) and (α, 0) and holds true for any Montgomery curve.

Take the point P = (12, 0) which we have an order of 2. By definition, we know
that multiplying it by 2 or adding the point to itself, yields the point at infinity. If

22 2. BACKGROUND

Figure 2.2: The table shows the coordinates and order of all rational points on
curve E. The figure shows the curve E : y2 = x3 + 12x2 + x over F17 with j(E) = 10.
The point at infinity is not geometrically correct but rather a representation.

we’re to add the point three times to itself, we will come back to the same point,
[3]P = P , represented in Figure 2.3. We have discovered one of the cyclic subgroups
of order 2 on our curve namely G = {∞, (12, 0)}. Taking the two other points of
order 2 yields the other two cyclic subgroups.

Figure 2.3: Visual representation of two cyclic subgroups. The green lines is one of
the subgroups of order 2 and the yellow lines are one of the subgroups of order 3.

2.4. ISOGENIES OF ELLIPTIC CURVES 23

We can do this with the 3-torsion subgroup as well and find that there are four
cyclic subgroups of order 3. In fact, this pattern holds true for any ℓ where p ∤ ℓ. The
set of points in the ℓ-torsion, i.e. the set of points sent to∞ under the multiplication-
by-ℓ map is such that

E[ℓ] ∼= Zℓ × Zℓ

forming ℓ+ 1 cyclic subgroups of order ℓ when ℓ is prime.

A key fact about isogenies is that there is a one-to-one correspondence between
N -isogenies and finite subgroups of order N . Meaning one of the cyclic subgroups G
gives rise to a unique isogeny ϕ : E −→ E′ = E/G. Vélus formulas [Vél71], a set of
formulas, give a way to compute the isogeny from a given kernel. We will not write
down Vélu’s formulas, the most important thing to note is that these formulas are
rational functions, and the degree of the functions is the size of the input.

Let’s take the cyclic subgroup we discovered G = {∞, (12, 0)} and input it into
Vélus formulas. The formulas give us the image curve E′ : y2 = x3 + 12x2 + 11 with
j(E′) = 6 and rational function:

ϕ : x→ x2 + 5x+ 7
x+ 5

that will take any x-coordinate on Ea, not in {∞, (12, 0)}, to the corresponding
x-coordinate on the image curve Ea′ , as shown in Figure 2.4.

Figure 2.4: Isogeny map between two elliptic curves. Taking a point on E, not in
the kernel, maps to another point on the image curve.

24 2. BACKGROUND

Given the definition of the kernel, definition 2.5, if we apply the rational function
ϕ to the points in the kernel, the resulting value should be the identity element of the
image, in this case, E′. Inserting the two points through the map, indeed yields the
identity element of E’, namely ∞ This behavior aligns perfectly with the definition
of a group homomorphism and its kernel, as the kernel forms the set of all elements
in the original group that get mapped to the identity in the image.

The key takeaway is that the kernel of an isogeny can uniquely define an isogeny,
which we later in chapter 3 will see is an important object for isogeny-based cryptog-
raphy,

2.4.2 The Supersingular Isogeny Problem

Recall to section 2.2.2 about the Diffie-Hellman key exchange where we could for-
mulate a hard problem called the discrete logarithm problem (DLP). We could
formulate a similar hard problem called the supersingular isogeny problem: Given
two supersingular elliptic curves E and E′ defined over a finite field K, find any
isogeny between them. This problem is conjecturally hard. We can give the following
attack game. A challenger sends two supersingular elliptic curves, E and E′, to an
adversary. If the adversary can find an isogeny ϕ : E −→ E′, the adversary wins.

Chapter3SIDH & B-SIDH

In this chapter, we will introduce the Supersingular Isogeny Diffie-Hellman (SIDH)
key exchange protocol. We will provide both a high-level overview and a detailed
explanation of the protocol by examining a specific example. Additionally, we will
discuss the closely related key exchange protocol B-SIDH, which is the primary focus
of this thesis.

Throughout sections 3.3 and 3.4, we will use the prime number p = 2433 = 431
for our examples. The rationale behind selecting primes of this form and the method
of choosing it will be explained in section 3.4. In section 3.7 a detailed explanation
of the protocol will be given accompanied by an example.

3.1 Building Upon Costello

The content of this chapter is largely based on Costello’s turotal on SIDH [Cos19]
and B-SIDH [Cos20]. Anyone familiar with his papers may notice parallels in the
illustrations and examples used, some of which are identical. This is done deliberately
to amplify his introduction to SIDH while offering a different point of view on certain
properties. In fact, reading this chapter alongside his paper may enhance one’s
understanding of the topic.

While this chapter might echo Costello’s work, our hope is that it gives different
insights on certain properties and the focus we provide, especially regarding B-SIDH
and the attack by Castryck and Decru. Our perspective aims to shine a different
light on the subject, thereby adding value to the existing body of work. We delve
deeper into certain aspects, highlighting their relevance to B-SIDH and preparing for
understanding Castryck and Decru’s attack.

25

26 3. SIDH & B-SIDH

3.2 A Brief History of Isogeny-Based Cryptography

In 1976, the original Diffie-Hellman protocol emerged and revolutionized the field
of cryptography. This protocol, which is explained in more detail in section 2.2.2,
marked the beginning of an era where secret information could be securely shared
over public networks.

Fast-forward to 2010, when Stolbunov proposed a variant of the Diffie-Hellman
scheme [Sto10], based on the hardness of computing isogenies between ordinary
elliptic curves. This was crafted with the aim of being resistant to both classical
and quantum attacks. However, Childs and his team [CJS14] discovered a faster
method to break Stolbunov’s system, indicating that it was not as robust as initially
expected.

In 2011, Jao and De Feo stepped into the picture and took Stolbunov’s concept to
a new level [JF11]. They introduced the Supersingular Isogeny Diffie-Hellman (SIDH)
scheme, where they used supersingular instead of ordinary elliptic curves. This
switch, however, brought in some challenges due to the noncommutative nature of
endomorphisms in supersingular elliptic curves. To work around this, they introduced
auxiliary points into the protocol, a novel method that had not been used before.

A new development emerged in 2018, when CSIDH was introduced by a team of
researchers, including Castryck, Lange, Martindale, Panny, and Renes [CLM+18].
CSIDH differed from SIDH in its group action, opting for a commutative action
instead of a non-commutative one. CSIDH is a promising alternative to SIDH as it
has remained unaffected by Castryck and Decru’s attack on SIDH.

The conjecture that finding isogenies between two elliptic curves is hard has not
only been used for key exchange protocols but also for creating hash functions and
signature schemes. The Charles-Goren-Lauter (CGL) hash function was proposed in
2006 [DPB17] as a theoretically collision-resistant cryptographic hash function. Most
recently, in 2020, a team consisting of De Feo, Kohel, Smith, Petit, and Wesolowski
introduced Supersingular Isogeny Signature (SQISign) [FKL+20], the first practical
isogeny-based signature scheme Despite its computation time being relatively longer
than other post-quantum alternatives, SQISign stands out due to the remarkably
small size of its signatures.

3.3 Walking and Drawing the Isogeny Graph

Before delving into the protocol, let’s build some intuition on how it works by
exploring a concept called isogeny graph. As theorem 2.17 states, each elliptic curve
has a unique j-invariant and two elliptic curves are isomorphic if and only if they
have the same j-invariant. In this context, we can represent each unique j-invariant

3.3. WALKING AND DRAWING THE ISOGENY GRAPH 27

in our set as a collection of elliptic curves with that specific j-invariant. For our
example with p = 431, we have a set of 37 j-invariants, due to theorem 2.22. Each
unique j-invariant can be represented as a vertex in the isogeny graph. Note that
finding all j-invariants for a given p is hard, however for our example, and other small
primes, it is trivial to find all j-invariants, especially with a tool like SageMath which
we will discuss further in section 3.3.1.

We introduce a new prime ℓ ̸= p, which will bring interesting properties to our
graph when combined with our set of j-invariants. For each ℓ, the vertices in our
graph remain the same, but the edges connecting them correspond to ℓ-isogenies.
This means that for different values of ℓ, we will obtain different graphs with the
same vertices but distinct edges. In SIDH, Alice and Bob will each move in their
own graph, typically with ℓ = 2 and ℓ = 3, respectively.

We can start constructing our isogeny graph by selecting a starting curve Ea :
y2 = x3 + (208i+ 161)x2 + x with j(Ea) = 364i+ 304 and representing it as a vertex.
By identifying the cyclic subgroups of order 2, we can compute 2-isogenies from Ea.
We generate the kernel using point P = (α, 0) ∈ Ea with α = 350i+ 68 which leads
us to the image curve Ea′ : y2 = x3 + (102i+ 423)x2 + x with j(Ea) = 344i+ 190.
We can then connect these vertices by drawing an undirected edge between them.
Additionally, two other 2-isogeny kernels on Ea can be connected to our vertex. The
kernel generated by (1/α, 0) links j = 364i+ 304 to j = 67, and the kernel generated
by (0, 0) to j = 319. The progression can be viewed in Figure 3.1.

Figure 3.1: Drawing the 2-isogeny graph edge by edge by computing 2-isogenies
from our starting curve with j-invariant of 364i+ 304.

By continuing this process, we will eventually explore the entire 2-isogeny graph
by visiting every j-invariant and drawing each corresponding edge. The complete
2-isogeny graph can be seen in Figure 3.2.

Similarly, we can draw the 3-isogeny graph, but now there are four outgoing edges
for every j-invariant. Starting with the same curve Ea : y2 = x3 + (208i+ 161)x2 + x

with j(Ea) = 364i + 304, we take the point (β, γ) = (321i + 56, 303i + 174) of
order 3 on Ea. This point serves as the kernel of an isogeny to an image curve
Ea′ : y2 = x3 + 415x2 + x with j(Ea) = 189. Plugging the other three 3-torsion
subgroups into Velu’s formulas yields three additional image curves with j-invariants

28 3. SIDH & B-SIDH

Figure 3.2: The full 2-isogeny graph for p = 431. The graph consists of 37 super-
singular j-invariants represented as noted and the edges between them correspond to
2-isogenies.

of j = 19, j = 42i+ 141, and j = 106i+ 379. We are repeating this process for every
node results in the full 3-isogeny graph, as shown in Figure 3.3

3.3.1 Discovering the ℓ-isogeny Graph with SageMath

Using a tool like SageMath, it becomes straightforward to find all supersingular
j-invariants and create the corresponding ℓ-isogeny graph. SageMath includes a
function called isogeny_ell_graph which returns a graph representing the ℓ-degree
K-isogenies between K-isomorphism classes of elliptic curves for a field K. To
discover the full 3-isogeny graph, in SageMath, over the finite field F431 and starting
curve E = x3 + (208i+ 161)x2 + x, we can do the following.

1 sage: p = 2^4*3^3 -1
2 sage: F.<i> = GF(p**2, modulus=x^2 + 1)
3 sage: E = EllipticCurve(F, [0, (208*i +
4 161), 0, 1, 0])
5 sage: G = E.isogeny_ell_graph(3, directed=False, label_by_j=True)
6 sage: G.vertices(sort=True)
7 [’0’, ’102’, ’105* i+36’, ’107’, ’125’, ’138* i+357’, ’14* i+372’, ’143’, ’150’, ’

166* i+107’, ’189’, ’19’, ’194* i+218’, ’214* i+389’, ’217* i+172’, ’234’, ’237*
i+412’, ’241’, ’242’, ’265* i+273’, ’293* i+64’, ’316’, ’319’, ’326* i+141’, ’

336* i+404’, ’356’, ’358’, ’379* i+144’, ’381’, ’4’, ’417* i+386’, ’419’, ’422’,
’52* i+92’, ’61’, ’67’, ’95* i+309’]

Listing 3.1: Example of how to find all supersingular j-invariants over a finite field
using SageMath

3.4. SETTING THE STAGE 29

Figure 3.3: The full 3-isogeny graph for p = 431. The graph consists of 37 super-
singular j-invariants represented as noted and the edges between them correspond to
3-isogenies.

Figure 3.4: Drawing the 3-isogeny graph edge by edge by computing 3-isogenies
from our starting curve with j-invariant of 364 · i+ 304.

3.4 Setting the Stage

Before we are ready to delve into the protocol, we need to set the stage by discussing
how SIDH primes are chosen as well as other public parameters. A prime p is chosen
of the form

p = ℓeA

A ℓeB

B f ± 1

where ℓA and ℓB are two small, distinct primes and f is a cofactor to ensure that p
is a prime. For the majority of instantiations of SIDH, the prime p is of the form

p = 2eA3eBf − 1

30 3. SIDH & B-SIDH

where eA and eB are chosen such that 2eA ≈ 3eB and usually f = 1 since it is flexible
enough to find primes at all security levels. The choices of the two small primes ℓ = 2
and ℓ = 3 give us the most efficient instantiations of SIDH. Computing isogenies
with Velu’s formula is polynomial in the degree of the isogeny. Meaning it is more
computational cost to compute isogenies of higher degrees, which facilitates us to
compute isogenies of the smallest degree.

It is also worth mentioning that even though the j-invariants in the isogeny graphs
are always in Fp2 , the isogenies corresponding to ℓ /∈ {2, 3} would be computed using
points that are not Fp2 -rational. In other words, points of order le for ℓ /∈ {2, 3} are
not found in E(Fp2), at least for our prime p chosen as above. So to compute these
isogenies we would have to perform computations in the larger extension fields of Fp

where these points are found.

Our elliptic curve group E(Fp2) is the full (p+ 1)-torsion for which is isomorphic
to Zp+1 × Zp+1. Thus, primes of the form p = 2eA3eBf − 1 yields the elliptic curve
group

E(Fp2) ∼= Z2eA 3eB × Z2eA 3eB × Zf × Zf

meaning for any r ∈ Z with r|p+ 1, the entire r-torsion E[r] ∼= Zr × Zr is then
contained in Fp2 . With this p, it follows that the full 2m-torsion E[2m] ∼= Z2m ×Z2m ,
and the full 3n-torsion E[3n] ∼= Z3n ×Z3n , are both Fp2 -rational. Since every isogeny
ϕ : E −→ E′ of degree d is in one-to-one correspondence with a kernel subgroup of
order d we give the following proposition.

Proposition 3.1. If each isogeny is computed using rational functions of the
input curve and the given kernel subgroup, it follows that if both these inputs are
Fp2-rational, then so is the isogeny computation.

During the initiation of the protocol, Alice and Bob each select two auxiliary
points, which are utilized for creating a secret generator. For Alice, these points have
an order of 2ea , while for Bob, they have an order of 3eb . Any linear combination
[α]P + [β]Q with α, β ∈ 2ea can be used to generate all points whose orders are
factors of 2ea . This ensures that every point we work with lies in E(Fp2).

To further understand the necessity of torsion points, consider the following
scheme. Both Alice and Bob choose a secret generator, SA and SB respectively, and
compute the corresponding isogenies ϕA/⟨SA⟩ and ϕB/⟨SB⟩ from the starting curve
E. They then send the new curve to the other party, where each party composes a
new isogeny, resulting in a shared curve as depicted in figure 3.4.

3.5. THE PROTOCOL 31

E0 EB

EA EAB

ϕB

ϕA ϕ′
A

ϕ′
B

Figure 3.5: An isogeny diamond configuration. Both Alice and Bob start at the
curve E0 and each computes a secret isogeny. They exchange the curves they landed
on and compute a new isogeny where they derive the same curve.

This scheme raises a crucial question: How can Alice evaluate her secret generator
SA at ϕB? Since this is not possible and Bob cannot provide his secret generator for
evaluation, an alternative solution must be found. If Bob were to take Alice’s basis
points and push them through his secret isogeny, Alice could then work with her own
torsion subgroup to evaluate at Bob’s curve instead of the secret generators itself. In
this new scheme, the two parties will not arrive at the same curve, however, the two
curves are isomorphic. Remember two isomorphic curves have the same j-invariant,
which is enough to make a shared secret.

3.5 The Protocol

SIDH is a key agreement scheme in which Alice and Bob establish a shared secret
by performing computations involving isogenies between supersingular curves. At
a high level, it closely resembles the Diffie-Hellman protocol. We will first provide
an overview of the SIDH protocol and then illustrate it with a simplified example.
For readers interested in the implementation code or who wish to run the protocol
themselves, please refer to GitHub repository

3.5.1 Description

Setup (public parameters). SIDH is instantiated with p = 2eA3eB − 1 where
2eA ≈ 3eB , and a starting supersingular curve E over Fp2 . In addition Alice has
two basis points {PA, QA} on E of order 2eA and likewise Bob has two basis points
{PB , QB} on E of order 3eB .

Key generation (Alice). Alice samples a random kA and will compute generators
of her secret subgroups by computing secret linear combinations of her two basis
points PA and QA

32 3. SIDH & B-SIDH

SA = PA + [kA]QA with kA ∈ [0, 2eA)

To calculate her public key, Alice computes her secret isogeny ϕA : E → EA,
where E/⟨SA⟩. She accomplishes this through multiple steps by composing eA

isogenies of degree 2, which involves taking eA steps in the 2-isogeny graph depicted
in Figure 3.2. Alice’s public key is then represented as the tuple:

PKA = (EA, P
′
B , Q

′
B) = (ϕ(E), ϕA(PB), ϕA(QB))

where the first element EA = ϕA(E) is the image curve from her starting point after
composing eA isogenies of degree 2. The two other elements Bob’s public basis points
pushed through Alice’s secret isogeny.

Key generation (Bob). Bob samples a random kB and will compute generators of
his secret subgroups by computing secret linear combinations of his two basis points
PB and QB

SB = PB + [kB]QB with kB ∈ [0, 3eB)

To compute his public key, he will compute his secret isogeny ϕB : E −→ EB where
E/⟨SB⟩. Bob will do this in multiple steps by composing eB isogenies of degree 3.
Meaning taking eb steps in the 3-isogeny graph depicted in Figure 3.3. Bobs public
key is then the tuple

PKB = (EB , P
′
A, Q

′
A) = (ϕ(E), ϕA(PB), ϕB(QA))

where the first element EB = ϕA(E) is the image curve from his starting point after
composing eB isogenies of degree 3. The two other elements Alice’s public basis
points pushed through Bob’s secret isogeny.

Computing a shared secret. Upon exchanging public keys, Alice takes her secret
integer kA and, combined with Bob’s public key, calculates a new secret subgroup
S′

A = P ′
A +[kA]Q′

A on EB . She then computes a new isogeny ϕ′
A : EA −→ EAB , where

EAB = EB/⟨S′
A⟩. Finally, Alice computes the shared secret j(EAB).

Similarly, after exchanging public keys, Bob takes his secret integer kB and,
combined with Alice’s public key, calculates a new secret subgroup S′

B = P ′
B +[kB]Q′

B

3.5. THE PROTOCOL 33

on EA. He then computes a new isogeny ϕ′B : EB −→ EBA, where EBA = EB/⟨S′
A⟩.

Bob computes the shared secret j(EBA) = j(EAB).

3.5.2 SIDH Toy Example

We are now prepared to provide an example of SIDH. For our example, we will utilize
the prime p = 2433 − 1 = 431. According to Theorem 2.22, there are ⌊p/12⌋+ 2 = 37
supersingular j-invariants in Fp2 . While the size of the set of supersingular j-invariants
may appear small, as p increases exponentially, so will the size of the subset. We
will adhere to the protocol description provided in 3.5.1.

Setup (Public parameters). We will take the public starting curve used in SIKE

Ea0 : y2 = x3 + a0x
2 + x with a0 = 6 and j(Ea0) = 19

We will take the following four basis points,

PA := (70 · i+ 332, 371 · i+ 191) and QA := (269 · i+ 403, 302 · i+ 3)
PB := (i+ 420, 112 · i+ 230) and QB := (265 · i+ 329, 377 · i+ 124)

We can assert that PA and QA is of order 24 and PB and QB is of order 33

Key generation (Alice). Alice begins by choosing a secret

kA := 8

from {0, 1, ...15}. After the secret integer is chosen she will compute her secret
generator corresponding to her kA.

SA = PA + [kA]QA

= (70 · i+ 332, 371 · i+ 191) + [8](269 · i+ 403, 302 · i+ 3)
= (361 · i+ 332, 371 · i+ 240)

This corresponds to a point of order 24 = 16 on our starting curve Ea0 . In Figure
3.6, we can observe the various nodes Alice would have reached after computing her
isogenies for different kA values. With her secret integer kA = 8, we see that she
arrives at the node with a j-invariant of 319. We also observe that kA = 7 would
have led to the same j-invariant; however, this does not imply that they will yield
identical public and secret keys. It is crucial to remember that we are interested

34 3. SIDH & B-SIDH

Figure 3.6: The set of yellow vertices represents the j-invariants Alice can land on
after her key generation.

in the path taken and the isogenies computed. It turns out, the real secret is the
isogenies why made along the way.

Alice will now start to compute her public key. Remember Alice will do this by
computing eA = 4 number of 2-isogenies, by using a combination of multiplication-
by-2, also called point doubling, and inputting the cyclic subgroup of order 2 into
Vélus formulas. We will present the first isogeny computed in a detailed manner
before the next isogenies are somewhat abbreviated.

Compute ϕ0. input: SA := (361 · i+ 332, 371 · i+ 240), PB := (i+ 420, 112 · i+ 230)
and QB := (265 · i+329, 377 · i+124) SA is of order 16, however, we can use the point
doubling operation three times to produce a point RA = [8]SA = (373, 0), which has
order 2 on Ea0 . Inputting RA into Vélus formulas gives us

ϕ0 : Ea0 −→ Ea1 with a1 = 142 · i and j(Ea1) = 234.

it also gives the rational map ϕ0 : x −→ x2+58·x−85
x+58 , which we will send SA, PB

and QB through

SA = ϕ0(SA) = (332 · i+ 232, 420 · i+ 253)
PB = ϕ0(PB) = (316 · i+ 269, 51 · i+ 141)
QB = ϕ0(QB) = (193 · i+ 265, 310 · i+ 249)

Compute ϕ1 SA := (332 · i+ 232, 420 · i+ 253) SA is of order 8 and we will use the

3.5. THE PROTOCOL 35

point doubling operation two times to produce a point RA = [4]SA = (72, 0), which
has order 2 on Ea1 . Inputting RA into Vélus formulas gives us

ϕ1 : Ea1 −→ Ea2 , with a2 = 120 and j(Ea2) = 242.

it also gives the rational map ϕ1 : x −→ x2−72·x+33
x−72 , which we will send SA, PB

and QB through

SA = ϕ0(SA) = (139 · i+ 190, 352 · i+ 399)
PB = ϕ0(PB) = (162 · i+ 335, 26 · i+ 156)
QB = ϕ0(QB) = (165 · i+ 293, 230 · i+ 108)

Compute ϕ2. SA := (139 · i+ 190, 352 · i+ 399) is of order 4 and we will use the point
doubling operation one time to produce a point RA = [2]SA = (190, 0), which has
order 2 on Ea2 . Inputting RA into Vélus formulas gives us

ϕ2 : Ea2 −→ Ea3 , with a3 = 221 and j(Ea3) = 67.

it also gives the rational map ϕ2 : x −→ x2−190·x+74
x−190 , which we will send SA, PB

and QB through

SA = ϕ0(SA) = (278 · i+ 190, 0)
PB = ϕ0(PB) = (192 · i+ 372, 62 · i+ 355)
QB = ϕ0(QB) = (139 · i+ 1, 215 · i+ 194)

Compute ϕ3. SA := (278 · i+ 190, 0) which is already of order two on Ea2 . Inputting
RA into Vélus formulas gives us

ϕ3 : Ea3 −→ Ea4 , with a4 = (223 · i+ 270) and j(Ea4) = 364 · i+ 304.

it also gives the rational map ϕ1 : x −→ x2+(153·i−190)·x+(23·i+161)
x+(153·i−190) , which we will

send PB and QB through

PB = ϕ0(PB) = (324 · i+ 185, 11 · i+ 166)
QB = ϕ0(QB) = (379 · i+ 90, 406 · i+ 317)

36 3. SIDH & B-SIDH

Alice’s secret 24-isogeny is the composition of the four 2-isogenies computed.
ϕA : Ea0 −→ Ea4 , with ϕA = (ϕ3 ◦ ϕ2 ◦ ϕ1 ◦ ϕ0), see Figure 3.7. Her public key PKA

is then

PKA = (Ea4 , ϕA(PB), ϕA(QB))
PKA = (364 · i+ 304, (324 · i+ 185, 11 · i+ 166), (379 · i+ 90, 406 · i+ 317)) (3.1)

Figure 3.7: Alice’s key generation path. She starts on the public curve with
j-invariant 19, her secret key is the isogeny ϕB = (ϕ3 ◦ ϕ2 ◦ ϕ1 ◦ ϕ0). The destination
node with j-invariant 364i+304 becomes part of her public key.

Key generation (Bob). Bob begins by choosing a secret

kB := 3

from {0, 1, . . . , 27}. After the secret integer is chosen he will compute his secret
generator corresponding to his kB .

SB = PB + [kB]QB

= (i+ 420, 112 · i+ 230) + [8](265 · i+ 329, 377 · i+ 124)
= (12 · i+ 176, 50 · i+ 423)

3.5. THE PROTOCOL 37

This corresponds to a point of order 33 = 27 on our starting curve Ea0 . Bob
will now start to compute his public key. Remember Bob will do this by computing
eB = 3 number of 3-isogenies, by using a combination of multiplication-by-3, also
called point tripling, and inputting the cyclic subgroup of order 3 into Vélus formulas.

Compute ϕ0. input: SB := (12 · i+ 176, 50 · i+ 423), PA := (70 · i+ 332, 371 · i+ 191)
and QA := (269 · i+ 403, 302 · i+ 3) SB is of order 27, however, we can use the point
doubling operation two times to produce a point RB = [9]SB = (208, 30 · i), which
has order 3 on Ea0 . Inputting RB into Vélus formulas gives us

ϕ0 : Ea0 −→ Ea1 with a1 = 130 and j(Ea1) = 125.

it also gives the rational map ϕ0 : x −→ x3+15·x2+108·x−141
x2+15·x+164 , which we will send SB ,

PA and QA through

SB = ϕ0(SB) = (100 · i+ 152, 376 · i+ 118)
PA = ϕ0(PA) = (100 · i+ 410, 170 · i+ 296)
QA = ϕ0(QA) = (239 · i+ 391, 371 · i+ 13)

Compute ϕ1. SB := (100·i+152, 376·i+118) is of order 9, however, we can use the point
doubling operation one time to produce a pointRB = [9]SA = (113·i+236, 398·i+407),
which has order 3 on Ea1 . Inputting RB into Vélus formulas gives us

ϕ1 : Ea1 −→ Ea2 with a1 = 55 · i+ 21 and j(Ea1) = 222 · i+ 118.

it also gives the rational map ϕ0 : x −→ x3+(205·i−41)·x2+(−199·i−157)·x+(144·i−164)
x2+(205·i−41)·x+(−108·i−173) ,

which we will send SB , PA and QA through

SB = ϕ0(SB) = (154 · i+ 391, 135 · i+ 228)
PA = ϕ0(PA) = (425 · i+ 406, 414 · i+ 127)
QA = ϕ0(QA) = (219 · i+ 164, 327 · i+ 236)

Compute ϕ2. SB := (154 · i+ 391, 135 · i+ 228) which is already of order 3 on Ea2 .
Inputting RB into Vélus formulas gives us

ϕ2 : Ea2 −→ Ea3 with a1 = 275 · i+ 299 and j(Ea1) = 107.

38 3. SIDH & B-SIDH

it also gives the rational map ϕ0 : x −→ x3+(123·i+80)·x2+(−175·i−210)·x+(115·i−60)
x2+(123·i+80)·x+(179·i−135) ,

which we will send PA and QA through

PA = ϕ0(PA) = (347 · i+ 270, 118 · i+ 17)
QA = ϕ0(QA) = (35 · i+ 394, 79 · i+ 323)

Bob’s secret 33-isogeny is the composition of the 3 3-isogenies computed. ϕB :
Ea0 −→ Ea3 , with ϕB = (ϕ2 ◦ ϕ1 ◦ ϕ0), see figure 3.8. Her public key PKB is then

PKB = (Ea3 , ϕA(PA), ϕA(QA))
PKB = (273 · i+ 355, (347 · i+ 270, 118 · i+ 17), (35 · i+ 394, 79 · i+ 323)) (3.2)

Figure 3.8: Bob’s key generation path. He starts in the public curve with j-invariant
19, his secret key is the isogeny ϕB = (ϕ2 ◦ ϕ1 ◦ ϕ0). The destination node with
j-invariant 107 becomes part of his public key.

Alice’s shared secret computation. Alice begins with the curve output from
Bob’s public key in 3.2, setting her new starting curve as Ea0 , where a0 = 273 · i+355
and j-invariant j(Ea0) =. Similar to her key generation process, Alice’s initial step
involves computing a secret generator on Ea0 that corresponds to her kA:

3.5. THE PROTOCOL 39

SA = ϕB(PA) + [kA]ϕB(QA)
= (347 · i+ 270, 118 · i+ 17) + [8](35 · i+ 394, 79 · i+ 323)
= (8 · i+ 369, 360 · i+ 87)

Alice will proceed just as before, performing four new steps in the 2-isogeny graph,
with her new generator. Saving computation she will no longer need to push any basis
points through the isogeny. We will summarize the four 2-isogenies computations as
follow:

ϕ0 : Ea0 → Ea1 with a1 = 273 · i+ 355 and j(Ea1) = 87 · i+ 190
ϕ1 : Ea1 → Ea2 with a2 = 259 · i+ 162 and j(Ea2) = 67 · i+ 304
ϕ2 : Ea2 → Ea3 with a3 = 17 · i+ 3 and j(Ea3) = 67
ϕ3 : Ea3 → Ea4 with a4 = 376 and j(Ea4) = 242

Alice’s shared secret computation is depicted in Figure 3.9

Figure 3.9: Alice’s shared secret computation. She starts on the curve from Bob’s
public key with j-invariant 107. She then uses her secret key to compute the remaining
walk to the node with j-invariant 242. This is the shared secret.

40 3. SIDH & B-SIDH

Bob’s shared secret computation. Similarly, as Alice, Bob begins with the curve
output from Alice’s public key in 3.1, setting his new starting curve as Ea0 , where
a0 = 364 · i + 304. Bob’s first step is again to compute a secret generator on Ea0

that corresponds to her kB :

SB = ϕA(PB) + [kB]ϕB(QB)
= (324 · i+ 185, 11 · i+ 166) + [3](379 · i+ 90, 406 · i+ 3173)
= (334 · i+ 430, 337 · i+ 6)

Bob will proceed just as before, performing three new steps in the 3-isogeny graph,
with his new generator. Saving computation he will no longer need to push any basis
points through the isogeny. We will summarize the three 3-isogenies computations
as follow:

ϕ0 : Ea0 → Ea1 with a1 = 322 · i+ 97 and j(Ea1) = 42 · i+ 141
ϕ1 : Ea1 → Ea2 with a2 = 14 · i and j(Ea2) = 422
ϕ2 : Ea2 → Ea3 with a3 = 376 and j(Ea3) = 242

Bob’s shared secret computation is depicted in Figure 3.10. Revisiting 3.9 we see
that both Alice and Bob landed on a curve with j-invariant 242.

3.6 Supersingular Isogeny Key Encapsulation

One of SIDH’s underlying assumptions is that given the four basis points in the
public parameters, and the image points in the public keys do not help a passive
adversary 1 solve the supersingular isogeny problem we described earlier in 2.4.2.
Up until the Castryck and Decru attack, this assumption remained valid. However,
Galbraith, Petit, Shani, and Ti [GPST16] showed that if static keys are used and an
adversary is active, the entire secret can be learned through repeated interactions
equal to the bit length of the key.

This has led to the development of the SIKE protocol, which applies a generic
transformation to SIDH, created by Hofheinz, Hövelmanns, and Kiltz [HHK17], which

1A passive adversary observes the key exchange in action, collecting information without
interfering. An active adversary, on the other hand, interferes with the system’s operation, potentially
altering data or processes to gain an advantage

3.6. SUPERSINGULAR ISOGENY KEY ENCAPSULATION 41

Figure 3.10: Bob’s shared secret computation. He starts on the curve from Alice’s
public key with j-invariant 364i+ 304. He then uses his secret key to compute the
remaining walk to the node with j-invariant 242. This is the shared secret.

safely allows Alice to use a long-term static secret. In this protocol, Bob calculates
the true shared secret before sending any information to Alice, using Alice’s fixed
public key and a secret key derived from a cryptographic hash function. This hash
function uses Alice’s public key and a random value as input. Bob also encapsulates
the random value by XOR-ing it with a hash of the shared secret and sends this to
Alice along with his usual public key.

Alice can then use Bob’s public key and her secret key to compute the shared
secret and recover Bob’s initial random value. She can then recalculate Bob’s secret
and check that Bob’s public key is exactly as it should be. If the check fails, Alice
can presume Bob is acting maliciously and output garbage, ensuring that Bob learns
nothing about Alice’s secret if he tampers with the protocol. More details on the
SIKE protocol can be found in [SAJA21].

SIKE was submitted to the NIST standardization process on post-quantum
cryptography [NIST]. The protocol reached the 4th round and after Castrcyck and
Decru released their attack, SIKE officially withdrew their submission [SIKE].

42 3. SIDH & B-SIDH

3.7 B-SIDH

In 2019, Costello [Cos20] introduced a novel approach to implementing SIDH, referred
to as B-SIDH. This method shares a strong resemblance with SIDH, not only by
name but with the primary distinctions stemming from the instantiation process,
where Alice and Bob each operate with distinct sets of supersingular curves. In this
section, we will first elucidate the differences and the instantiation process, followed
by providing a new toy example.

Revisiting section 3.4, we recall that Jao and De Feo selected primes in the
form of p = 2ea3ebf − 1, where Alice’s degree is 2eA and Bob’s degree is N = 3eB .
Until now, both Alice and Bob have operated over the (p+ 1)-torsion, which can be
conceptualized as one side of a coin, referred to as the A-side. We now introduce the
other side of the coin, the (p − 1)-torsion, which we will call the B-side. A visual
representation of the A-side and B-side can be observed in Figure 3.11.

Figure 3.11: Illustration of the two sides Alice and Bob will work over. The yellow
vertices is representing the A-side (p+ 1) while the green vertices is representing the
B-side (p− 1).

With a starting curve E, by taking the quadratic twist yields a different Fp2-
isomorphism class with group structure

Et(Fp2) ∼= Zp−1 × Zp−1

Every such supersingular curve with group structure Zp−1×Zp−1 is the quadratic
twist if a supersingular curve with group structure Zp+1 ×Zp+1, and vice versa. It is
essential to recognize that although two quadratic twists are not isomorphic over Fp2 ,
they still have the same j-invariant in Fp2 . Similarly, just as any factor r of p+ 1 led
to the complete rational r-torsion in E(Fp2), any factor s of p− 1 results in a full
rational s-torsion in Et(Fp2).

3.7. B-SIDH 43

For a given prime p, we use M and N to represent the coprime degrees of Alice
and Bob’s secret isogenies. Alice’s degree, M , is always defined such that M |p+ 1,
causing Alice to work over the A-side, while Bob’s degree, N , is always defined such
that N |p− 1, causing Bob to work over the B-side. Ideally, we want N ≈M ≈ p for
optimal parameter selection.

In SIDH, Alice calculates a secret isogeny of degree 2eA by composing eA isogenies
of degree 2, i.e., taking eA steps in the 2-isogeny graph. However, in B-SIDH, we
cannot solely rely on a single prime power; instead, the isogeny degree will generally
be the product of multiple primes. For example, with p = 161, we have M = 80 and
N = 81. Alice computes an isogeny of degree M = 80 = 24 · 5 by composing four
2-isogenies and one 5-isogeny, i.e., taking four steps in the 2-isogeny graph and one
step in the 5-isogeny graph.

This approach is possible due to the general conjecture that the hardness of the
L-isogeny problem depends on the size of L, rather than its factorization. This means
security is determined by the number of destination nodes Alice and Bob can both
reach.

Jao and De Feo chose primes in the form p = 2m3n−1, as computing small-degree
isogenies is currently faster. The same principle applies to B-SIDH, so acquiring
suitable parameters involves finding primes p for which both p+ 1 and p− 1 contain
factors large enough to achieve a high-security level, while also being smooth enough
for efficiency. An integer’s smoothness is determined by the size of its prime factors;
for example, a 7-smooth number is one where every prime factor is at most 7.

3.7.1 Enabled by X-Only Arithmetic

For Alice and Bob to freely work with points coming from the (p+ 1)-torsion and
(p− 1)-torsion one would think we have to lift the entire protocol to Fp4 . While it is
true the protocol will be lifted to Fp4 Alice and Bob can still work entirely in Fp2 ,
thanks to the use of twisting isomorphisms and the nature of Montgomery curves
that allow ignoring y-coordinates and certain curve coefficients.

The secret points chosen by Alice from the (p+ 1)-torsion of E and Bob from the
(p− 1)-torsion of Et can be transformed by two isogeny maps ϕ1 and ϕ2. When these
are lifted to Fp4 and precomposed with the twisting morphisms, we get isogenies that
work well over Fp4 . However, due to the property of the ϕ map, which we explored
in 2.3.2, the actual implementation can ignore the y-coordinates and work essentially
in Fp2 .

This way, the SIDH protocol can remain mostly unchanged in its implementation
while benefiting from the efficiency gains of x-only arithmetic on Montgomery curves.

44 3. SIDH & B-SIDH

3.7.2 Choosing a Friendly Prime p

We briefly mentioned choosing good friendly primes is crucial to have a fast and
efficient application of B-SIDH. We want to find primes p where both M |p+ 1 and
N |p− 1 are as smooth as possible and large enough to reach a required security level.
Costello [Cos20] discusses various methods for identifying friendly primes and we
will mention some of them here.

When choosing which primes it is important to keep in mind two things:

– One party has to compute some or all factors in p + 1 and the other has to
compute some or all factors in p− 1.

– Computing higher-degree isogenies requires more computational resources.

Finding primes where both parties have smooth order is not always feasible and as a
result, we often have to compromise and burden one party with more computation
to allow the other party to work more efficiently.

However, in some practical applications, this may not be a problem. A server
oftentimes will perform the protocol at a much greater volume than an individual
client. In this case, burdening the client to speed up the server’s operations could be
an acceptable trade-off.

For the purpose of our discussion, we’ll classify primes into three groups, mainly
based on Alice’s order M . The rationale behind this focus will become clearer in
the subsequent chapter, as it relates directly to the nature of the attack we’ll be
discussing.

Primes where Alice’s order is 2m.

These primes can be written in the form

p = 2m · c− 1

enables Alice to work with an order of 2m. Primes resulting in 2 dividing p+ 1 are
already popular in much of the Elliptic Curve Cryptography (ECC) literature, e.g.,
Mersenne and Ridinghood primes. Although these primes are fast and efficient for
Alice, their scarcity means that p− 1 is unlikely to be smooth.

Taking c = 1 yields Mersenne primes for which m = {31, 61, 127, 521} being of
interest. While m = 31, 61 offers no cryptographic security, they are relevant for
developing the necessary changes to the attack in the following chapter. Alice can

3.7. B-SIDH 45

utilize 2e-isogenies for any e ≤ m, allowing her to adjust her security level according
to requirements.

Bob can compute L-isogenies for any L|p − 1. For example, when m = 127,
p− 1 = 2 · 33 · 72 · 19 · 43 · 73 · 127 · 337 · 5419 · 92737 · 649657 · 77158673929, and Bob
can choose any of the factors.

Primes where Alice’s order is 2m3n

These are primes of the form

p = 2f · 3e · c− 1

From a practical standpoint, selecting primes in this manner is not ideal, as we
generally prefer Alice to mostly work with 2-factors and Bob to mostly work with
3-factors to maximize efficiency for both parties. Nevertheless, to fully comprehend
the scope of the attack, it is helpful to choose primes such that Alice’s order is 2m3n.
Finding these primes is straightforward, but in most cases, Bob’s order will not be
smooth.

Primes where Alice’s order is ℓk1
1 ℓk2

2 . . . ℓki
i

These are primes of the form

p = ℓk1
1 ℓk2

2 . . . ℓki
i − 1

We can generalize these primes to where the order for both Alice and Bob is as
smooth as possible. One of these primes is the 382-bit prime:

p :=0x277AF122D68C175343851A90621232112FB72C2AAB291357
9001 (3.3)

with

M = 3115 · 7 · 13 · 312 · 157 · 241 and
N = 2188 · 11 · 17 · 29 · 73 · 193,

These sizes offer security comparable to SIKEp434.

3.7.3 Handling Large ℓ-degree Isogenies

We have not delved deeply into the runtime of isogeny calculations thus far, primarily
because computing small-degree isogenies is relatively fast. However, B-SIDH involves

46 3. SIDH & B-SIDH

much larger isogenies compared to SIDH. When calculating ℓ-isogenies with Velu’s
formulas, where ℓ is a prime, the process requires O(ℓ) field operations. Considering
the primes mentioned in Section 3.7.2, some prime factors are quite large, which can
result in isogeny calculations taking several seconds or even minutes. For example,
when working with the prime p = 2127 − 1 discussed earlier, Bob needs to compute a
37-bit degree isogeny.

There are some practical strategies to speed up isogeny calculations. In 2020,
Bernstein, De Feo, Leroux, and Smith [BFLS20] introduced a significant improvement
for computing large prime-degree isogenies. They demonstrated a method that
requires only O(

√
ℓ) field operations for ℓ-isogenies. In recent times SageMath

implemented this feature using an algorithm called
√

élu 2 to compute isogenies of
elliptic curves in time O(

√
ℓ). We will take a closer look at the usage of

√
élu in

section 5.3.

Costello [Cos20] suggests two methods for accelerating isogeny calculations in
practice: parallelization and precomputation. An algorithm presented in [CH17],
lends itself to parallelization almost perfectly. For large enough ℓ-isogenies one can
shorten the final multiplications and squarings down to log(ℓ).

For large prime-degree isogenies, Bob can shorten the runtime significantly if
the procedure allows for the storage of offline precomputation. For example, where
Bob is the one generating ephemeral public keys and his largest degree isogeny is a
ℓ-isogeny, he could precompute all of the ℓ+ 1 possible image curves. At runtime, he
could simply choose the isogeny corresponding to his secret key.

3.7.4 The Protocol

As previously mentioned, B-SIDH largely resembles SIDH, with the primary dis-
tinction being the instantiation process. We will offer a high-level overview of the
B-SIDH protocol and demonstrate it using a simple toy example 3.

Description

Setup (public parameters). B-SIDH is instantiated with a given prime p, and M
and N will be used to denote two coprime degrees of Alice and Bob’s secret isogenies.
Alice’s degree M will be defined such that M |p+ 1 and Bob’s N such that N |p− 1.

Alice begins with a supersingular curve E defined over the field Fp2 , while Bob
starts with E′s quadratic twist, denoted as Et. Alice’s and Bob’s curves are not

2√
élu is a symbol for the name Squareroot Vélu

3The implementation code can be found in https://github.com/georgsku/BSIDH-
attack/blob/main/bsidh.sage

3.7. B-SIDH 47

isomorphic over Fp2 , however, they do share the same j-invariant in Fp2 . Furthermore,
Alice has two basis points {PA, QA} on curve E, both of order M , and Bob has two
basis points {PB , QB} on curve Et, both of order N .

Key generation (Alice). Alice samples a random kA and will compute generators
of her secret subgroups by computing secret linear combinations of her two basis
points PA and QA

SA = PA + [kA]QA with kA ∈ [0,M)

To calculate her public key, Alice computes her secret isogeny ϕA : E → EA,
where E/⟨SA⟩. She accomplishes this through multiple steps by composing isogenies
of the prime factors of M . Meaning where M = ℓk1

1 ℓk2
2 . . . ℓki

i she will take k1 steps in
the ℓ1-graph, k2 steps in the ℓ2-graph and so on. Alice’s public key is then represented
as the tuple:

PKA = (EA, P
′
B , Q

′
B) = (ϕ(E), ϕA(PB), ϕA(QB))

where the first element EA = ϕA(E) is the image curve from her starting point
after composing a secret isogeny of degree M . The two other elements are Bob’s
public basis points pushed through Alice’s secret isogeny.

Key generation (Bob). Bob samples a random kb and will compute generators of
his secret subgroups by computing secret linear combinations of her two basis points
PB and QB

SB = PB + [kb]QB with kB ∈ [0, N)

To calculate his public key, Bob computes his secret isogeny ϕB : E → EB , where
E/⟨SB⟩. He accomplishes this through multiple steps by composing isogenies of the
prime factors of N . Meaning where N = ℓk1

1 ℓk2
2 . . . ℓki

i she will take k1 steps in the
ℓ1-graph, k2 steps in the ℓ2-graph and so on. Bob’s public key is then represented as
the tuple:

PKB = (EB , P
′
A, Q

′
A) = (ϕ(Et), ϕA(PA), ϕA(QA))

48 3. SIDH & B-SIDH

where the first element EB = ϕA(Et) is the image curve from his starting point
after composing a secret isogeny of degree N . The two other elements are Alice’s
public basis points pushed through Bob’s secret isogeny.

Computing a shared secret. Upon exchanging public keys, Alice takes her secret
integer kA and, combined with Bob’s public key, calculates a new secret subgroup
S′

A = P ′
A + [kA]Q′A on EB. She then computes a new isogeny ϕ′A : EA −→ EAB,

where EAB = EB/⟨S′A⟩. Finally, Alice computes the shared secret j(EAB).

Similarly, after exchanging public keys, Bob takes his secret integer kB and,
combined with Alice’s public key, calculates a new secret subgroup S′

B = P ′B +
[kB]Q′B on EA. He then computes a new isogeny ϕ′

B : EB −→ EBA, where EBA =
EB/⟨S′A⟩. Bob computes the shared secret j(EBA) = j(EAB).

3.7.5 B-SIDH Toy Example

For our B-SIDH example, we will still utilize the prime p = 2433−1 = 431. Remember
Alice will work over (p + 1), which means her order will be N = 24 · 33, and Bob
will work over p− 1 resulting in order M = 5 · 43. We will adhere to the protocol
description provided in 3.7.4.

It is important to note that a modification is introduced in the implementation
in order to save time. The implementation operates over Fp4 to circumvent the use
of x-only arithmetic, as SageMath does not currently support this feature. Although
this approach results in slower performance, it is not a concern for this thesis, as the
outcome remains the same.

Operating over Fp4 means a few things change. Some j-invariants will get another
representation, however, these can be mapped back to Fp2 using the Table in 3.1.
We will also omit the y-coordinate, denoted by −, in order to avoid long tuples and
simulate how B-SIDH with x-only arithmetic works. Lastly, Bob will not start on
the quadratic twist but on the same curve as Alice. We are working in Fp4 = Fp(ω)
where ω4 + 2ω2 + 323ω + 7 = 0.

Setup (Public parameters). We will utilize the public starting curve used in
SIKE, which means both Alice and Bob will start on

Ea0 : y2 = x3 + a0x
2 + x with a0 = 6 and j(Ea0) = 19

We will take the following four basis points,

3.7. B-SIDH 49

Fp4 → Fp2

313 · ω3 + 93 · ω2 + 254 · ω + 287→ 209 · i+ 118
118 · ω3 + 338 · ω2 + 177 · ω + 380→ 222 · i+ 118
12 · ω3 + 217 · ω2 + 18 · ω + 297→ 344 · i+ 190

134 · ω3 + 340 · ω2 + 201 · ω + 209→ 106 · i+ 379
143 · ω3 + 395 · ω2 + 430 · ω + 322→ 364 · i+ 304
151 · ω3 + 396 · ω2 + 11 · ω + 228→ 306 · i+ 426
199 · ω3 + 402 · ω2 + 83 · ω + 371→ 389 · i+ 141
232 · ω3 + 29 · ω2 + 348 · ω + 342→ 42 · i+ 141
175 · ω3 + 399 · ω2 + 47 · ω + 331→ 132 · i+ 315

288 · ω3 + 36 · ω2 + ω + 286→ 67 · i+ 304
297 · ω3 + 91 · ω2 + 230 · ω + 118→ 325 · i+ 379
280 · ω3 + 35 · ω2 + 420 · ω + 193→ 125 · i+ 426
313 · ω3 + 93 · ω2 + 254 · ω + 287→ 209 · i+ 118
353 · ω3 + 98 · ω2 + 314 · ω + 16→ 350 · i+ 65
419 · ω3 + 214 · ω2 + 413 · ω + 83→ 87 · i+ 190

Table 3.1: Mapping j-invariants in Fp4 to Fp2 . Omega is a root of the irreducible
polynomial x4 + 2 · x2 + 323 · x+ 7.

PA := (136 · ω3 + 17 · ω2 + 204 · ω + 123,−)
QA := (218 · ω3 + 135 · ω2 + 327 · ω + 222,−)

and
PB := (380 · ω3 + 263 · ω2 + 139 · ω + 292,−)
QB := (336 · ω3 + 42 · ω2 + 73 · ω + 120,−)

We can assert that PA and QA order devides p+ 1 and PB and QB order devides
p− 1

Key generation (Alice). Alice begins by choosing a secret

kA := 314

from {0, 1, ...N}. After the secret integer is chosen she will compute her secret
generator corresponding to her kA.

50 3. SIDH & B-SIDH

SA = PA + [kA]QA

= (136 · ω3 + 17 · ω2 + 204 · ω + 123,−)
+ [314](218 · ω3 + 135 · ω2 + 327 · ω + 222,−)
= (346 · ω3 + 151 · ω2 + 88 · ω + 386,−)

Which corresponds to a point of order M on our starting curve Ea0 . Alice will
create her public key by computing a secret isogeny of degree N = 2433. She will
accomplish this by composing 4 numbers of 2-isogenies, and 3 numbers of 3-isogenies.
In other words, she will take 4 steps in the 2-isogeny graph, Figure 3.2, and 3 steps
in the 3.3. We will present the first isogeny computed in a detailed manner before
the next isogenies are abbreviated.

2-isogenies

Compute ϕ0. input: SA := (346 · ω3 + 151 · ω2 + 88 · ω + 386,−), PB := (136 · ω3 +
17 · ω2 + 204 · ω + 123,−) and QB := (218 · ω3 + 135 · ω2 + 327 · ω + 222,−) SA is of
order 2433, however, we can use a combination of the point doubling operation and
point tripling to produce a point RA = [2333]SA = (0,−), which has order 2 on Ea0 .
Inputting RA into Vélus formulas gives us

ϕ0 : Ea0 → Ea1 with a1 = 0 and j(Ea1) = 4

it also gives the rational map ϕ0 : x −→ x2+1
x , which we will send SA, PB and QB

through

SA = ϕ0(SA) = (247 · ω3 + 408 · ω2 + 155 · ω + 80,−)
PB = ϕ0(PB) = (43 · ω3 + 167 · ω2 + 280 · ω + 130,−)
QB = ϕ0(QB) = (40 · ω3 + 5 · ω2 + 60 · ω + 39,−)

ϕ1 : Ea1 → Ea2 with a2 = (378 · ω3 + 155 · ω2 + 136 · ω + 138)
and j(Ea2) = 19

ϕ2 : Ea2 → Ea3 with a3 = 39
and j(Ea3) = 241

ϕ3 : Ea3 → Ea4 with a4 = (37 · ω3 + 274 · ω2 + 271 · ω + 273)
and j(Ea4) = 209 · i+ 118

3.7. B-SIDH 51

3-isogenies

ϕ4 : Ea4 → Ea5 with a5 = 284 · ω3 + 251 · ω2 + 426 · ω + 408
and j(Ea5) = 132 · i+ 315

ϕ5 : Ea5 → Ea6 with a6 = 63 · ω3 + 385 · ω2 + 310 · ω + 23
and j(Ea6) = 102

ϕ6 : Ea6 → Ea7 with a7 = 406
and j(Ea7) = 143

Alice’s secret M -isogeny is the composition of the four 2-isogenies and three
3-isogenies computed. ϕA : Ea0 −→ Ea7 , with ϕA = (ϕ7 ◦ϕ6 ◦ϕ5 ◦ϕ4 ◦ϕ3 ◦ϕ2 ◦ϕ1 ◦ϕ0),
see Figure 3.12. Her public key PKA is then

PKA = (Ea7 , ϕA(PB), ϕA(QB))
PKA = (406, (183 · ω3 + 400 · ω2 + 59 · ω + 274),

(213 · ω3 + 296 · ω2 + 104 · ω + 84,−)) (3.4)

Figure 3.12: Alice’s key generation path. She starts on the public curve with
j-invariant 19, her secret key is the isogeny ϕB = (ϕ6 ◦ ϕ5 ◦ ϕ4 ◦ ϕ3 ◦ ϕ2 ◦ ϕ1 ◦ ϕ0).
The destination node with j-invariant 140 becomes part of her public key.

52 3. SIDH & B-SIDH

Key generation (Bob). Bob begins by choosing a secret

kA := 91

from {0, 1, ...M}. After the secret integer is chosen he will compute his secret
generator corresponding to his kB .

SB = PB + [kB]QB

= (380 · ω3 + 263 · ω2 + 139 · ω + 292,−)
+ [91](336 · ω3 + 42 · ω2 + 73 · ω + 120,−)
= (416 · ω3 + 52 · ω2 + 193 · ω + 257,−)

Which corresponds to a point of order N on our starting curve Ea0 . Bob will
create his public key by computing a secret isogeny of degree N = 5 · 43. he will
accomplish this by composing a 5-isogeny and a 43-isogeny. In other words, he will
take one step in the 5-isogeny graph and then another step in the 43-isogeny graph.

5-isogeny

ϕ0 : Ea0 → Ea1 with a1 = (31 · ω3 + 381 · ω2 + 262 · ω + 402)
and j(Ea1) = 325 · i+ 379

43-isogeny

ϕ1 : Ea1 → Ea2 with a2 = (194 · ω3 + 132 · ω2 + 291 · ω + 373)
and j(Ea2) = 87 · i+ 190

Bob’s secret N -isogeny is the composition of the 5-isogeny and 43-isogeny com-
puted. ϕA : Ea0 −→ Ea2 , with ϕA = (ϕ1 ◦ ϕ0), see Figure 3.13. His public key PKB

is then

PKB = (Ea2 , ϕB(PA), ϕB(QA)) (3.5)
PKB = ((194 · ω3 + 132 · ω2 + 291 · ω + 373),

(17 · ω3 + 56 · ω2 + 241 · ω + 256,−), (264 · ω3 + 33 · ω2 + 396 · ω + 311,−))

3.7. B-SIDH 53

Figure 3.13: Bob’s key generation path. He starts on the public curve with j-
invariant 19, his secret key is the isogeny ϕB = (ϕ1 ◦ ϕ0). The destination node with
j-invariant 87i+ 190 becomes part of his public key.

Alice’s shared secret computation. Alice begins with the curve output from
Bob’s public key in 3.5, setting her new starting curve as Ea0 , where a0 = (194 · ω3 +
132 · ω2 + 291 · ω + 373) and j-invariant j(Ea0) = 87 · i + 190. Similar to her key
generation process, Alice’s initial step involves computing a secret generator on Ea0

that corresponds to her kA:

SA = ϕB(PA) + [kA]ϕB(QA)
= (17 · ω3 + 56 · ω2 + 241 · ω + 256,−) + [314](264 · ω3 + 33 · ω2 + 396 · ω + 311,−)
= (108 · ω3 + 229 · ω2 + 162 · ω + 425,−)

Alice will proceed just as before, performing four new steps in the 2-isogeny graph
and three steps in the 3-isogeny graph, with her new generator. Saving computation
she will no longer need to push any basis points through the isogeny.

54 3. SIDH & B-SIDH

2-isogenies

ϕ0 : Ea0 → Ea1 with a1 = (231 · ω3 + 406 · ω2 + 131 · ω + 226) and j(Ea1) = 81 · i+ 65
ϕ1 : Ea1 → Ea2 with a2 = (259 · ω3 + 194 · ω2 + 173 · ω + 22) and j(Ea2) = 42 · i+ 141
ϕ2 : Ea2 → Ea3 with a3 = (317 · ω3 + 309 · ω2 + 260 · ω + 63) and j(Ea3) = 125 · i+ 426
ϕ3 : Ea3 → Ea4 with a4 = (286 · ω3 + 359 · ω2 + 429 · ω + 38) and j(Ea4) = 325 · i+ 379

3-isogenies

ϕ4 : Ea4 → Ea5 with a5 = 328 · ω3 + 41 · ω2 + 61 · ω + 34 and j(Ea5) = 67 · i+ 304
ϕ5 : Ea5 → Ea6 with a6 = 259 · ω3 + 194 · ω2 + 173 · ω + 215 and j(Ea6) = 389 · i+ 141
ϕ6 : Ea6 → Ea7 with a7 = (259 · ω3 + 194 · ω2 + 173 · ω + 22) and j(Ea7) = 42 · i+ 141

Alice’s shared secret computation is depicted in Figure 3.14

Figure 3.14: Alice’s shared secret computation. She starts on the curve from Bob’s
public key with j-invariant 87i+ 190. She then uses her secret key to compute the
remaining walk to the node with j-invariant 42i+ 141. This is the shared secret.

Bob’s shared secret computation. Similarly, as Alice, Bob begins with the curve
output from Alice’s public key in 3.1, setting his new starting curve as Ea0 , where
a0 = 364 · i + 304. Bob’s first step is again to compute a secret generator on Ea0

that corresponds to her kB :

3.7. B-SIDH 55

SB = ϕA(PB) + [kB]ϕB(QB)
= (324 · i+ 185, 11 · i+ 166) + [91](379 · i+ 90, 406 · i+ 3173)
= (346 · ω3 + 151 · ω2 + 88 · ω + 146,−)

Bob will proceed just as before, performing three new steps in the 3-isogeny graph,
with his new generator. Saving computation he will no longer need to push any basis
points through the isogeny. We will summarize the three 3-isogenies computations
as follow:

ϕ0 : Ea0 → Ea1 with a1 = 322 · i+ 97 and j(Ea1) = 42 · i+ 141
ϕ1 : Ea1 → Ea2 with a2 = 14 · i and j(Ea2) = 422
ϕ2 : Ea2 → Ea3 with a3 = 376 and j(Ea3) = 242

Bob’s shared secret computation is depicted in Figure 3.15. Revisiting 3.14 we
see that both Alice and Bob landed on a curve with j-invariant 42i+ 141.

Figure 3.15: Bob’s shared secret computation. He starts on the curve from Alice’s
public key with j-invariant 143. He then uses his secret key to compute the remaining
walk to the node with j-invariant 42i+ 141. This is the shared secret.

56 3. SIDH & B-SIDH

ID p ℓmax
Alice ℓmax

Bob Key gen Shared secret
(bits) (integer) (integer) Alice Bob Alice Bob)

1 253 76667 51193 11.82s 14.14s 10.41s 13.25s
2 255 47353 38201 8.065s 14.11s 6.419s 13.02s
3 255 2 51040879 3.925s 149.58s 3.791s 94.42s
4 247 7901 7621 10.63s 11.01s 9.715s 9.425s
5 247 53 709153 9.892s 17.14s 9.468s 13.11s
6 247 37 745309897 11.68s 196.5s 11.27s 123.3s

Table 3.2: Table for how long it takes to run through our implementation of the
B-SIDH protocol. The examples are labeled by ID and the full primes can be seen in
Table 3.3. The third and fourth columns are the biggest integer in Alice and Bob
factors respectively. Columns 5-8 are the timings for the key generation and the
derivation of the shared secret.

3.7.6 B-SIDH Running Time

As a next step, we shall execute the B-SIDH protocol using our own implementation to
measure the duration of key generation and shared secret derivation. It’s important
to highlight that our aim here is not to strive for optimal speed, but rather to
understand the performance characteristics of different prime numbers within this
context. As preiously stated in 3.7.5, operating over Fp4 and not use x-only arithemtic
will significantly slow the performance.

The selection of primes used in this timing excercise has been drawn from Costello’s
paper on B-SIDH [Cos20, Table 1]. This selection of primes gives a good varying
degree of smooth order, for both Alice and Bob.

In Table 3.2 we see the different running times for the different examples. The
first thing to notice is that the running time is heavily dependent on the degree of
the isogeny. The two most clear examples are the primes with IDs 3 and 6. In both
examples, Alice’s biggest isogeny degree is a relatively small number, while Bob is
burdened with a high degree of isogeny.

A second observation is that there is a tradeoff, either accelerate one part, in this
case, Alice, and burdened the other, or more evenly distribute the computational
time.

A final thing to note is that the time for deriving the shared secret is less than
the time for generating the public keys. As previously mentioned in the SIDH and
B-SIDH examples, during deriving the shared secret we do not have to push the
basis points through the isogeny. Which is a notable difference in running time.

3.7. B-SIDH 57

ID Prime
1 60765653817939205885795411562994008883009341319136736831931

38303184607223137608869474563035671800932229002362355713
2 11402780996313137804419565692258934141207562497476991733713

707020990899136527
3 53380256806900813486663140872422666278845625642838258109389

995943373349847039
4 49763539558022470300850808459551889029922028956791596168707

089459100476506111
5 12491118713903537091205502419055305197842537528443051602145

5114291199999999
6 18809883576148993975748257029181114827349928325822594094466

4269318258687
7 16030100430054179874911789578244068140393250617373305025172

9195751312457727
8 98155714371642269715112376762708295552524509256487326897635

5659484863281249

Table 3.3: The full primes used in Table 3.2 labeled by ID.

Chapter4Castryck and Decru’s Key Recovery
Attack

In this chapter, we will explore Castryck and Decru’s key recovery attack. We will
start by delving into the theory of genus 2 curves and their Jacobians, followed by
a high-level overview of the attack. We will then discuss Kani’s theorem and the
construction of auxiliary isogenies before providing a more detailed explanation.

4.1 Hard Problems are Difficult to Find

The security of cryptographic schemes often hinges on the formulation of the under-
lying problems. If these problems can be solved with high probability and within a
feasible timeframe, the scheme can be considered broken. To gain a better under-
standing of the attack on SIDH, it is useful to first examine the problems upon which
its security is based. In this section, we will explore the well-known Diffie-Hellman
problems and formulate two analogous problems specific to SIDH.

4.1.1 Computational and Decision Diffie-Hellman Problem

The Computational Diffie-Hellman (CDH) problem and the Decision Diffie-Hellman
(DDH) problem are two related cryptographic problems that pertain to the security
of the Diffie-Hellman key exchange protocol. Both problems are concerned with the
difficulty of solving specific mathematical challenges, and their hardness assumptions
are the foundation for the security of many cryptographic schemes.

The CDH problem can be formulated as follows: given a cyclic group G, a
generator g of G, and the elements ga and gb, where a and b are random secret
integers, compute the shared secret gab. The CDH problem is considered hard since
there is no known efficient algorithm for solving it. The security of the previously
mentioned, Diffie-Hellman key exchange, relies on the assumption that the CDH
problem is difficult to solve.

59

60 4. CASTRYCK AND DECRU’S KEY RECOVERY ATTACK

The DDH problem, on the other hand, deals with distinguishing between two
types of elements in the cyclic group G. Given a cyclic group G, a generator g of
G, the elements ga, gb, and an element h of G, the task is to decide whether h is
equal to the shared secret gab or not. If it is computationally infeasible to distinguish
between the case where h = gab and the case where h is a random element of G, the
DDH problem is considered hard.

Clearly DDH is weaker than CDH because if we can solve CDH we know the
answer to the DDH question with certainty. The hardness of the CDH and DDH
problems is crucial for the security of many cryptographic schemes, as it serves as
a foundation for the assumed difficulty of breaking the underlying mathematical
structures.

The relationship between breaking the Decisional Isogeny Problem (DIP) and
breaking the CDH problem lies in the fact that the solution to the DIP can be
directly used to solve the CDH problem. Once an attacker obtains the exponent x
through DLP-breaking techniques, they can calculate gab by raising ga to the power
of x. This effectively means that breaking the DLP implies the ability to break the
CDH problem as well. From this, we can create a chain DDH → CDH → DLP

where solving one on the right implies breaking the ones to the left.

4.1.2 Computational and Decisional Isogeny Problem

Similar to Diffie-Hellman, we can formulate one computational and one decisional
problem related to isogenies and SIDH. We will define these two problems and explain
how solving them can break SIDH.

The Computational Isogeny Problem (CIP) can be described as follows: given
two elliptic curves E and E′ over a field K, find an isogeny of degree ℓk between
them. This problem is not limited to prime powers but also applies to isogenies
with degrees that are products of many coprimes, as in B-SIDH. Analogous to the
CDH problem, we consider the CIP problem to be hard if there is no known efficient
algorithm for solving it.

An efficient algorithm for solving the CIP problem would enable the breaking
of SIDH easily. In the SIDH protocol, both the starting curve E and Bob’s curve
E′ are public, and finding an isogeny of degree ℓk between them would reveal Bob’s
secret isogeny.

The DIP involves deciding on the existence of an isogeny, rather than distinguish-
ing between two types of elements, as in the DDH problem. We define the DIP
problem as follows: given two elliptic curves E and E′ over a field K, determine if
there exists an isogeny of degree ℓi between them for 0 < i < k. Although it is not

4.2. EVEN MORE CURVES 61

as straightforward as the CIP problem, one can argue that solving the DIP problem
would also break SIDH.

Let’s consider an isogeny from E to E′ of degree ℓk and assume we have an oracle
that can flawlessly answer the DIP problem in a feasible amount of time. We can
then easily construct the entire isogeny ℓk by concatenating k isogenies of degree ℓ:

E = E0 → E1︸ ︷︷ ︸
ℓ + 1 - options

→ E2 → E3 → . . .→ Ek−1 → Ek = E′

For the first isogeny in our chain, we have ℓ + 1 options. By computing these
isogenies, we can ask the oracle if there exists an isogeny of degree ℓk−1 from E1 → Ek.
With high probability, there will only be one correct answer, and we can again consider
a new isogeny E1 → E2 which also has ℓ+ 1 options. In this way, we can construct
the entire ℓk isogeny.

The number of options we need to consider at each step depends on the size of ℓ,
but in SIDH, these values are small. Alice’s secret isogeny is of degree 2a, meaning
only three options, and Bob’s secret isogeny is of degree 3b, with only four options.
Therefore, constructing an oracle that can answer the DIP problem in a feasible
timeframe would break SIDH.

Adjusting our focus slightly, let’s now consider an extension of the DIP problem
that is particularly pertinent to SIDH. In this scenario, along with our elliptic curves
E and E′, we also have access to the additional torsion points. Now, the DIP
problem expands to determining the existence of an isogeny of degree ℓi, 0 < i < k

using these torsion points. Although this seems to be a minor shift, the implications
are significant. As it turns out, being able to answer this adjusted DIP problem
effectively breaks the security of SIDH and is precisely what Castryck and Decru
accomplished.

4.2 Even More Curves

Earlier in section 2.3 when we defined elliptic curves, we said that the genus of an
elliptic curve is always 1. In order to discuss the attack we need to broaden our set
of curves and take a look at hyperelliptic curves, which has genus g > 1, and their
Jacobians.

The following sections involve complicated mathematical concepts and are frankly
beyond the capabilities of this thesis. Therefore in order to simplify the explanation
and provide a high-level overview, we will gloss over many details related to the
theory of hyperelliptic genus 2 curves and their Jacobians. This is also necessary

62 4. CASTRYCK AND DECRU’S KEY RECOVERY ATTACK

because delving into the intricate mathematical definitions and concepts involved
would require significant additional complexity and a much longer background theory.
Our goal with this section is not to explain these concepts in great detail but rather
to give a high-level overview and explain why we need this.

4.2.1 Hyperellptic Curves

A hyperelliptic curve is a curve of genus g > 1. Often genus 1 and genus 2 curves can
visually be distinguished. Figure 4.1 shows two examples of a genus 1 and a genus 2
curve where we can observe, the number of donuts the curve creates represents the
genus of the curve. While genus curves may not always admit a circle when drawn, a
genus 1 curve can never look like the curve on the right in Figure 4.1.

More formally, if char(K) ̸= 2, a hyperelliptic curve of genus 2 curves admits an
equation of the form C : y2 = f(x), with deg(f) ∈ 5, 6 and the discriminant is not 0
[Gal12, ch. 10]. The set of points of the curve C is given by

C(K̄) = {(u, v) ∈ K̄2|v2f(u)} ∪
{
{∞} if deg(f) = 5
{∞+,∞−} if deg(f) = 6,

A point P ∈ C(K̄) is K-rational of its coordinates are in K. The set of K-rational
points is denoted by C(K).

Figure 4.1: Examples of genus 1 and genus 2 curves. Visually these two curves are
easily distinguishable by the number of circles the curve creates.

lets give an example with C : y2 = x(x2 − 1)(x2 − 4) over F7. The curve has
precisely 6 F7-rational points, the set of points is:

C(F7) ={∞, (0, 0), (0, 1), (−1, 0), (2, 0), (−2, 0)}

4.2. EVEN MORE CURVES 63

An important thing to note is that in contrast to elliptic curves, the set C(K̄) is
not a group. Which means there is no group law on the set of points. Therefore we
want another class we can work with namely the divisor class group of the curve.

A divisor on a curve C/K is a formal linear combination of the curve’s points
(with integer coefficients). In other words, a divisor D is an expression of the form:

D = n1 · P1 + n2 · P2 + . . .+ nk · Pk

where Pi are distinct points on the curve, and nk are integers associated with
each point. The degree of a divisor is the sum of its coefficients, i.e., deg(D) =
n1 + n2 + . . .+ nk.

Divisors can be added and subtracted, meaning the the divisor group has an
abelian group structure, denoted DivC . The group of K-rational devisors is denoted
by DivC(K).

Two divisors D,D′ ∈ DivC on a curve C are said to be equivalent (D ∼ D′)
if their difference D − D′ is a principal divisor [MZoW+96, definition 36]. Being
equivalent is an equal relation on the group of divisors. A principal divisor is a
divisor that can be associated with a rational function f on the curve C.

In other words, given such D and D′, then D is equivalent to D′ if there exists an
f such that D−D′ = div(f), where div(f) is the principal divisor associated with f .

The set of equivalence classes of divisors is denoted by PicC(K) and forms a
group known as the Picard group of the curve. The set of degree-0 divisors is denoted
by Pic0

C(K).

4.2.2 The Jacobian of a Genus 2 Curve

Although the points on a genus 2 curve don’t form a group, we can work with their
Jacobians. The Jacobian J (C) of genus 2 curve C over K is the 2-dimensional abelian
variety with a special property called principal polarization, i.e. an isomorphism to its
dual and is therefore considered a principally polarized abelian surface (p.p.a.s.). In
general, these p.p.a.s. come in two types: irreducible, which are the Jacobians of genus-
2 curves, and reducible, which are products of two elliptic curves. Jacobians have a
group structure, such that over each field K ⊂ L ⊂ K̄, we have J (C)(L) = Pic0

C(L).

We can represent elements of a Jacobian using the Picard group. This allows us
to use degree-0 divisors on the curve to represent elements of the Jacobian. Take
J (C)(K) = Pic0

C(K), and for any R ∈ J (C)(K)\{0}, there exist unique points

64 4. CASTRYCK AND DECRU’S KEY RECOVERY ATTACK

P1, P2 ∈ C(K̄) so that

R = [P1 + P2 −D∞], with D∞ =
{

2 · ∞ if deg(f) = 5
∞+ +∞− if deg(f) = 6

(4.1)

For each element in the Jacobian, there exist two unique points on the curve C.

Representing elements in the Jacobian, may not always be ideal, and another way
of presenting it is the Mumford presentation. Let R ∈ J (C)(K) and consider the
presentation in 4.1, i.e. R = [P1 + P2 −D∞] and for simplicity we write the points
P1 = (u1, v1) and P2 = (u2, v2) as affine points. We define

a = (x− u1)(x− u2) ∈ K[x]
b = b1x+ b0, so that b(u1) = v1 and b(u2) = v2.

Then (a, b) is called the Mumford presentation of R and we denote R = J(a, b).

Let y2 = x(x2−1)(x2−4) over F7 and consider (a, b) = (x2 +x−2, 0). This means
a = (x−1)(x+ 2) using the representation above, u1 = 1, u2 = −2 and v1 = b(1) = 0,
v2 = v(−2) = 0. This means that the two points P1 = (−2, 0) and P2 = (1, 0)
represents an element in the jacobian, R = J(a, b) = [(1, 0) + (−2, 0)− 2 · ∞]

Just as with elliptic curves, are we particularly interested in the N -torsion
subgroup. For an integer N , the N -torsion subgroup of a p.p.a.s is defined as
A[N] = {P ∈ A|[N] · P = 0}, where A represents a p.p.a.s. Let G ⊂ A[N] be a
maximal N-isotropic subgroup, which is a technical term that needs to satisfy certain
criteria [DK23, section 2.2]. Then there exist a unique p.p.a.s A′ together with an
isogeny ϕ : A → A′ with kernel ker(ϕ) = G. We will refer to the isogeny as an
(N,N)-isogeny.

There are four different types of (N,N)-isogenies based on the domain and
codomain of the isogeny. We can categorize the following isogenies:

i Generic case: ϕ : Jac(C) −→ Jac(C′).

ii Splitting case: ϕ : Jac(C) −→ E′
1 × E′

2.

iii Gluing case: ϕ : E′
1 × E′

2 −→ Jac(C′).

iv Product case: ϕ : E1 × E2 −→ E′
1 × E′

2.

In cryptography, the generic case is most common when working with p.p.a.s.
however, we will later see that the Gluing and Splitting case is particularly interesting.

4.3. CASTRYCK-DECRU ATTACK 65

4.2.3 Richelot Isogenies

Richelot isogenies are (2, 2)-isogenies between jacobians of genus-2 curves. These
isogenies are of type generic case as in 4.2.2, where the kernel ϕ can be represented
as the group kerϕ = {0, P,Q, P +Q}. Without going into too much detail we are
interested in the byproduct which is the domain curve H which can be represented
by the equation

H : y2 = G1(x)G2(x)G3(x)

The important thing to note is that Gi are factors of the defining polynomials of
the hyperelliptic curves, making the computation of (2, 2)-isogenies fast. For further
details and explicit formulas, we refer to the original paper [Smi06].

4.3 Castryck-Decru Attack

In this section, we will start with a high-level overview of the attack before delving
into the specific components that particularly interest us. The complete attack is
described in Castryck and Decru’s paper [CD23b] and has been implemented in
SageMath code [CD23a].

The attack aims to recover Bob’s secret key kb by exploiting several properties
of the SIDH protocol and parameters. There are three crucial pieces of information
utilized in the attack:

1. The exchanged data includes the images of the auxiliary points.

This data is included in the public keys making it always accessible.

2. The secret isogeny ϕB has a fixed and known degree.

The degree of the secret isogeny is determined by the prime. In the case
of SIKE, these are predetermined making it trivial to find the degree.
Even if the two parties agree upon a secret prime and degree, it would
be easy to find the degree given the public keys.

3. The initial curve E0 has a known endomorphism ring.

The starting curve E0 in SIKE is always the same, making the endomor-
phism ring known. Maino and Martindale [MM22] and Robert [Rob23]
have also described subexponential and polynomial-time attacks that do
not require knowledge of the starting curve’s endomorphism ring. This

66 4. CASTRYCK AND DECRU’S KEY RECOVERY ATTACK

makes this item obsolete, however, for the version of the attack we will
be using this is a requirement.

A crucial aspect of SIDH is that ϕ is not computed directly but as a composition
of isogenies of degree 3. Recall the 3-isogeny graph in Figure 3.4; Bob computes a
sequence of curves E0 → E1 → E2 → · · · → EB connected by 3-isogenies. The attack
emulates SIDH’s approach by recovering Bob’s secret key digit by digit through a
series of queries to an oracle, rather than computing the secret isogeny itself.

This oracle is precisely the oracle we discussed earlier in 4.1.2, who manages to
answer the Decisional Isogeny Problem (DIP) in the case of SIDH 1. Bob’s secret
isogeny ϕ : E0 → EB is constructed by b isogenies of degree 3. By guessing one
of the 3 isogenies from E0 → E1 we can ask the oracle and the oracle determines
if there exists an isogeny of degree ℓb−1 from E1 → EB and returns true or false
and transfer the torsion information. When we have made the correct guess, we can
consider the next isogeny E1 → E2.

Referring back to the 3-isogeny graph in Figure 3.4, each vertex has four connecting
edges. Since one of the edges represents the path already taken, there are only three
remaining steps, which we represent as one of the three ternary digits 0, 1, 2. This
implies that we need only two queries to the oracle at most. The path taken
and the resulting ternary number can be converted to the secret key; for example,
20102111203 = 421621010. Upon obtaining Bob’s secret key, one can follow the SIDH
protocol to compute the secret isogeny and shared j-invariant.

Castryck and Decru’s true ingenuity lies in their ability to create an oracle that
verifies whether the chosen path is correct and answers DIP using only public data.
This oracle is known as the glue-and-split oracle.

Before exploring the attack in more detail, we need to briefly discuss three
concepts: Kani’s theorem, auxiliary isogenies, and the construction of Bob’s secret
key.

4.3.1 Kani’s Theorem

Kani’s theorem [Kan97] asserts that there is a special relationship between the groups
of points of two specific elliptic curves, C and E. This relationship, denoted as
ψ : C[N] −→ E[N], helps us map between these two sets of points. The Castryck-
Decru attack fundamentally relies on the existence of this ψ, along with another genus

1Castryck and Decru have not solved DIP for all instances, only in the case of SIDH where
additional info is provided i.e. torsion points.

4.3. CASTRYCK-DECRU ATTACK 67

2 isogenies, or (N,N)-isogenies, which is mapping between two pairs of supersingular
elliptic curve products.

Recall the isogeny diamond configuration in Figure 3.4. This isogeny diamond
configuration is constructed by Alice’s and Bob’s secret isogenies as well as the
isogeny What Kani’s theorem tells us, is that it is possible to construct an explicit
(N,N)-isogeny:

Φ : EB × EA → E0 × EAB , ker(Φ) = ⟨(ϕB(PB), ϕA(PA), ϕB(QA), ϕA(QA))⟩

where in the case of SIDH, N = 2a + 3b.

Our next consideration is Bob’s isogeny. We ask: can we devise a new isogeny
and a corresponding curve to generate an alternative isogeny diamond configuration?
Specifically, we wish to exploit Alice’s torsion points to establish an auxiliary isogeny,
denoted by γ, which could potentially reveal something about Bob’s isogeny. How
this auxiliary isogeny is constructed will be discussed in Section 4.3.2. Consider this
new diamond configuration:

E0EA X0

EAB EB XB

ϕB

ϕA γ

ϕ′
B

ϕ′
A γ′

ϕ′
B

Let E0 and EB represent the starting curve and Bob’s curve, respectively. EB is
the codomain of Bob’s secret isogeny ϕB with degree NB . The new auxiliary isogeny
γ : E0 → X0 should be constructed such that the degree is NA −NB .

A necessary condition is that 2a > 3b. If this condition is not met, one could
attack Alice’s secret isogeny instead. However, this requires us to compute (3, 3)-
isogenies which are significantly slower and pose practical challenges. To address
this, one could make initial guesses and consider NB = 3b−βi , ensuring that 2a > 3b

holds.

Kani’s theorem then tells us for some configuration of γ, then there is unique
relation such that φ : X0[2a] → EB[2a] and a genus 2 (2a, 2a)-isogeny that maps
between pairs of supersingular curves:

68 4. CASTRYCK AND DECRU’S KEY RECOVERY ATTACK

Φ : X0 × EB → E0 ×XB , with ker(Φ) = ⟨(γ(PA), ϕB(PA), γ(QA), ϕB(QB))⟩

Castryck and Decru’s exploitation of Kani’s theorem does not directly compute
Bob’s secret isogeny. Instead, it is used as a computational tool for answering DIP,
in the case of SIDH, using the torsion points. By considering the 4 different options
of Bob’s first isogeny E0 → E1, we can use Kani’s theorem to decide which option is
correct, therefore learning something about Bob’s secret isogeny.

4.3.2 Auxiliary Isogenies

In order to fulfill the isogeny diamond configuration in 4.3.1 we need to create auxiliary
isogeny γ. An auxiliary isogeny is a supplementary isogeny that we aim to compute
using the auxiliary points in the SIDH protocol. We seek an auxiliary isogeny of
degree N = NA−NB . However, without extra information, constructing this isogeny
is not straightforward. This is where one of the critical pieces of information comes
into play, specifically item 3. In SIKE, the starting curve is E0 : y2 = x3 + 6x2 + x,
for which the endomorphism ring, End(E0), is known. In particular, this curve has
endomorphism 2i, which satisfies (2i)2 = [−4].

With the known endomorphism, we can construct an isogeny of degree N whenever
we can represent the degree in the form N = u2 + 4v2, which is feasible if all prime
factors of the form q = 4k + 3 have an even exponent in N . When this condition is
met, we can construct the N -isogeny γ = [u]x+ [v] · 2i.

4.3.3 Constructing Bob’s Secret Key

Recall the construction of the secret generator in SIDH, during the key generation
in 3.5.1, which involves the public generators PB , QB of E0[3b] and a secret integer
kB ∈ [0, 3b⟩. The kernel of ϕ is given by (PB + [kB]QB). Bob’s secret integer can be
represented as:

kB = k1 + k23β1 + · · ·+ kr3βr−1 , ki ∈ [0, 3βi−βi−1 − 1)

When we say we are guessing Bob’s secret integer digit by digit, we are guessing
the ki values. For k1, we can observe that:

kerϕ1 = ⟨3b−β1PB + k13b−β1QB⟩ (4.2)

4.3. CASTRYCK-DECRU ATTACK 69

For k2, we have:

kerϕ2 = ⟨3b−β2PB + (k1 + k23β1)3b−β2QB⟩

For ki, we have:

kerϕ3 = ⟨3b−βiPB + (k1 + k23β1 + · · ·+ ki3βi−1)3b−βiQB⟩

4.3.4 The Glue and Split Oracle

The glue and split oracle takes two supersingular elliptic curves as input and deter-
mines whether or not it takes us to a product of two elliptic curves. The oracle can
be summarized in three steps, and we will explain each step in a way to give further
intuition of how the attack works. For further proofs and details, we refer to the
original paper [CD23b, p. 8.1].

In the first step, the oracle computes a (2, 2)-isogeny of the product of the two
curves X0 and EB by a subgroup G = ⟨(PA, PB), (QA, QB)⟩, by gluing them into
the Jacobian, as the gluing case in 4.2.2.

Step1 : X0 × EB → Jac(C1)

The next step is computing a− 2 (2, 2)-isogenies between jacobians of genus two
curves. These isogenies are called Richelot isogenies where each kernel is a subgroup
generated by a pair of order two elements of the Jacobian.

Step2 : Jac(C1)→ Jac(C2)→ . . .→ Jac(Ci)︸ ︷︷ ︸
a − αi − 2

It’s in the last step where our oracle determines if we made the right guess for
ki. If the last (2, 2)-isogeny takes us back to a product of elliptic curves, we made
the right guess. Practically this is done by verifying whether or not the determinant
δ = 0 vanishes which happens if and only if the codomain is a product of elliptic
curves instead of the Jacobian of a genus two curve.

Step3 : Jac(Ci)→ E0 ×XB

Our final (N,N)-isogeny chain will look like the following:

X0 × EB → Jac(C1)→ Jac(C2)→ . . .→ Jac(Ci)→ E0 ×XB︸ ︷︷ ︸
a − αi

70 4. CASTRYCK AND DECRU’S KEY RECOVERY ATTACK

4.3.5 Attacking Algorithm

We can outline the attack process as a six-step algorithm, with each iteration denoted
by i. Keep in mind that this presentation may not be the most optimal approach, as
some steps or iterations could allow for shortcuts. Nevertheless, this representation
captures the attack’s fundamental structure, making it easier to comprehend.

Step 1: Choose βi ≥ 1 minimal such that there exists some αi ≥ 0 for which
ci = 2a−αi − 3b−βi is of the form u2

i + 4v2
i > 0

Step 2: Make a guess for ki ∈ {0, 1, 2} 2

Step 3: Use ui and vi to construct an auxiliary isogeny γ = [ui] + [vi] · 2i

Step 4: Determine the 3βi-isogeny τ : Estart −→ Ci with kernel γ(kerκi), where
kerϕi is as in equation 4.2.

Step 5: Compute the points PCi
, PQi

∈ Ci where PCi
= 2αikiγ(Pa) and QCi

=
2αikiγ(Qa)

Step 6: Check whether or not the subgroup ⟨(PCi , 2αiP), (QCi , 2αiQ)⟩ splits.

4.3.6 Step Size

When talking about step size we are referring to the gap between the integers
β0, β1, β2, . . . , βr = b. This gap should be as small as possible as it limits the number
of possible guesses in each iteration. For a one-step iteration, we only have 3 possible
guesses but for a two-step iteration, we need 3 · 3 = 9 possible guesses.

A necessary condition for keeping one step is ensuring that b − βi is odd. If
b− βi > 0 is odd then ci = 2a−αi − 3b−βi ≡ 3 mod 4 cannot be of the form u2

i + 4v2
i .

4.3.7 Alternative Visual Representation of the Attack

Consider the rooted tree graph in Figure 4.2. With Castryck and Decru’s attack, we
want to find out the explicit path Bob took during his key generation. By starting at
the root node we have three possibilities, given the step size is 1. If the step size is 2
we have to consider all the 9 possibilities by taking two steps down in the tree graph.

When taking the step we consult our oracle who tells us if we made the right step
in the graph and lower the number of possibilities. In this thesis, we will then say we
have recovered the isogeny. Visually this means we have found out which step in the
graph is correct and which branch the destination node lies in.

2We only have to make a guess for two of digits, as if two fail we can assume the third is the
correct digit.

4.4. ATTACKING SIDH TOY EXAMPLE 71

Figure 4.2: A visual representation of the path Bob takes during the key generation.
The root node is the starting j-invariant both Alice and Bob start on while the
internal nodes are the intermediate j-invariants Bob visits. The leaf nodes are 27
possible destinations Bob can land on for p = 2433. The green nodes and edges are
the path Bob takes during the example 3.5.2.

4.4 Attacking SIDH Toy Example

In this section, we will demonstrate an attack on SIDH using a toy example. By
working with a simplified version of the problem, we aim to provide a clearer
understanding of the attack’s mechanisms and the key concepts involved. This
hands-on approach will offer valuable insights into the protocol’s vulnerabilities and
the strategies Castryck and Decru employed to break SIDH. Keep in mind that the
essential ideas and techniques used in the attack remain the same, regardless of the
scale or complexity of the problem. Increasing the scale would merely result in more
iterations of the same core attack process, further emphasizing this toy example’s
relevance and educational value.

We will attack the example showcased in Section 3.5.2, where Bob’s secret key
is kb = 3. Remember that we recover Bob’s secret integer in ternary form, digit by
digit, resulting in kb = [0, 1, 0] with the first digit being the least significant bit. We
will go through each iteration of the algorithm in Section 4.3.5, explaining each step
and providing further analysis where necessary.

Setup During the attack we need Alice’s basis points to create the auxiliary isogeny
and Bob’s basis points to check if it splits. Also recall p = 2433− 1 where a = 4

72 4. CASTRYCK AND DECRU’S KEY RECOVERY ATTACK

and b = 3.

PA := (70 · i+ 332, 371 · i+ 191) and QA := (269 · i+ 403, 302 · i+ 3)
PB := (i+ 420, 112 · i+ 230) and QB := (265 · i+ 329, 377 · i+ 124)

We will initiate a list of the ternary digits we have recovered skBob = [−,−,−]

Iteration 1 We begin by guessing the first digits of Bob’s secret key.

Step 1 We find that for β1 = 2 we have a α1 = 0 for which C1 = 24−0−33−2 = 13.
This can be written of the form C1 = u2

i + 4v2
i = 32 + 4(−1)2 = 5

Our first step size is β1 = 2 which means we will make guesses for two of
Bob’s digits. This means we have 3 ·3 = 9 possibilities in the first iteration
or we have to consider all the possible nodes two steps down in Figure 4.2

Guess 1 k1, k2 = {0, 0}

Step 3 We can construct our auxiliary isogeny γ = [3] + [−1] · 2i
Step 4 The 32-isogeny τ1 : Estart −→ C1 with kernel γ(kerκ1), where kerκ1 =

33−2PB + (0 · 30 + 0 · 31) · 34−1QB

Step 5 Compute the points PC1 , QC1 ∈ C1 where PC1 = 20τ1γ(PA) and
QC1 = 20τ1γ(QA)
We have created a new curve C1 with a0 = (42 ∗ i + 420) and the
two new points are: PC1 = (53 ∗ i + 276, 171 ∗ i + 405) and QC1 =
(51 ∗ i+ 37, 410 ∗ i+ 26)

Step 6 Check whether or not the subgroup ⟨(PC1 , 2α0PB), (QCi , 2α0QB)⟩
splits.
We want to glue the curves C1 and Estart into the jacobian of a genus
2 curve, via the (2,2)-subgroup provided above. Going through step 1
and 2 in 4.3.4 our isogeny chain will look like:

C1 × Estart → Jac(C2)→ Jac(C3)

from the last Jacobian we will check if it splits, by determining the
determinant. The determinant does not vanish which means it does
not split, and we made the wrong guess.

Guess 2 k1, k2 = {1, 0}

Step 3 We can construct our auxiliary isogeny γ = [3] + [−1] · 2i
Step 4 The 32-isogeny τ2 : Estart −→ C2 with kernel γ(kerκ2), where kerκ1 =

33−2PB + (1 · 30 + 0 · 31) · 34−1QB

Step 5 Compute the points PC2 , QC2 ∈ C2 where PC2 = 20τ2γ(PA) and
QC2 = 20τ2γ(QA)

4.4. ATTACKING SIDH TOY EXAMPLE 73

Step 6 Check whether or not the subgroup ⟨(PC2 , 2α0PB), (QC2 , 2α0QB)⟩ is
splits.
We glue the two curves C2 and Estart into the jacobian of a genus 2
curve, via the (2,2)-subgroup provided above. The determinant does
not vanish which means it does not split, and we made the wrong
guess.

Guess 3 k1, k2 = {2, 0}
Step 3 We can construct our auxiliary isogeny γ = [3] + [−1] · 2i
Step 4 The 32-isogeny τ3 : Estart −→ C3 with kernel γ(kerκ3), where kerκ3 =

33−2PB + (2 · 30 + 0 · 31) · 34−1QB

Step 5 Compute the points PC3 , QC3 ∈ C3 where PC3 = 20τ3γ(PA) and
QC3 = 20τ3γ(QA)

Step 6 Check whether or not the subgroup ⟨(PC3 , 2α0PB), (QC3 , 2α0QB)⟩ is
splits.
We glue the two curves C3 and Estart into the jacobian of a genus 2
curve, via the (2,2)-subgroup provided above. The determinant does
not vanish which means it does not split, and we made the wrong
guess.

Guess 4 k1, k2 = {0, 1}
Step 3 We can construct our auxiliary isogeny γ = [3] + [−1] · 2i
Step 4 The 32-isogeny τ4 : Estart −→ C1 with kernel γ(kerκ4), where kerκ4 =

33−2PB + (0 · 30 + 1 · 31) · 34−1QB

Step 5 Compute the points PC4 , QC4 ∈ C4 where PC4 = 20τ4γ(PA) and
QC4 = 20τ4γ(QA)

Step 6 Check whether or not the subgroup ⟨(PC4 , 2α0PB), (QC4 , 2α0QB)⟩ is
splits.
We glue the two curves C4 and Estart into the jacobian of a genus 2
curve, via the (2,2)-subgroup provided above. The determinant does
indeed vanish which means it does split, and we made the right guess
and we can update our recovered digits skBob = [0, 1,−].

Iteration 2 Given that we have managed to retrieve two out of the three digits of
Bob’s key skBob = [0, 1,−], it is faster to brute force the last digit by computing
the isogeny from Estart

Guess 1 k3 = 0
◦ bobskey = (0 · 30 + 1 · 31 + 0 · 32) = 3
◦ The 33-isogeny ϕ : Estart → E′ with ker(ϕ) = PB + bobskey ·QB

◦ Check if j(E′) = j(EB)
For k3 = 0, j(E′) = j(EB) is indeed true which means we have the
last correct digit.

74 4. CASTRYCK AND DECRU’S KEY RECOVERY ATTACK

Finish We have successfully attacked SIDH by recovering Bob’s key digit by digit
skBob = [0, 1, 0] = 3.

4.5 Other Attacks on SIDH

Other attacks have been inspired by or further developed by the Castryck-Decru
attack. We will briefly take a look at a few of these.

4.5.1 Generalization by Martindale, Maino, and Robert

During the development of Castryck and Decru’s attack, Martindale and Maino
[MM22] discovered an attack that makes no use of any special endomorphisms on
E0. The work was done independently but inspired by an earlier joint project. The
attack has subexponential complexity which is slower than Castryck and Decru’s
attack, however significantly reduces the security of SIDH and SIKE in the case of
an unknown endomorphism ring on the starting curve.

The main idea behind the attack is constructing an elliptic curve E, an isogeny
ϕ : E → E0, and a polarized isogeny Φ originating from the abelian surface E ×EA,
where EA is the codomain of Alice’s secret isogeny. E ×EA is constructed such that
one of its components reveals the dual of Alice’s secret isogeny ϕA : E0 → EA.

Robert [Rob23] dramatically improved the theoretical result by giving a polynomial-
time attack with an arbitrary starting curve.

4.5.2 Direct Computation

Oudompheng [OP22a], and Wesolowski [Wes] have all observed that Kani’s machinery
allows for direct key recovery. Which is significantly faster than Castryck and Decru’s
decisional approach. After Oudompheng’s work, a modification to the Castryck-Decru
attack has been introduced. After the first digit has been successfully guessed, the
secret isogeny can directly be calculated from the result of the (2,2)-isogeny chain.

Chapter5Attacking B-SIDH

In this chapter, we discuss to what extent Castryck and Decru’s attack hold in the
case of B-SIDH. We will begin by discussing what properties of B-SIDH require
modifications to the attack. We present a new construction of Bob’s secret key and
show how a method for finding how many queries that are required to the oracle.
Then the attacking algorithm will be presented with three examples whereas one is a
toy example.

In section 5.3 we discuss how we can speed up the attack by exploring various
techniques and optimizations. We conclude the chapter by discussing if B-SIDH can
be considered broken.

5.1 Preparing to Attack B-SIDH

In this section, we will shift our focus to attacking B-SIDH. To do this, we need to
update some terminology and provide further explanations. We will use M to refer
to Alice’s order, or the party who works over p+ 1, and N to refer to Bob’s order, or
the party who works over p− 1. The variables a and b will now denote the number
of factors, including the multiples, in M and N , respectively.

We will begin by discussing some of the differences and adaptations required
to attack B-SIDH. As discussed in Section 3.7, most of the differences in B-SIDH
arise from the use of twisted torsion for both parties. Consequently, this introduces
challenges when carrying out the attack. We will explore the implications of Alice
and Bob using twisted torsion and the resulting consequences.

5.1.1 Bob’s Twisted Torsion

When Bob employs a varying degree of torsion, it follows that his secret integer can
no longer be represented as a list of ternary digits. The solution to this problem will
be discussed in Section 5.1.6, and consequently, we can no longer make the same

75

76 5. ATTACKING B-SIDH

guesses of ki ∈ [0, 1, 2]. Our guesses will now be dynamic and correspond to the
torsion part we are recovering.

Generalizing Bob’s order to N = ℓk1
1 ℓk2

2 . . . ℓki
i , when trying to find a valid ci in

step 2, we apply the same logic, yielding ci = M − ℓk1−β1i

1 ℓk2−β2i

2 . . . ℓki−βki

i , then
βi = β1i + β2i + . . . βki. In other words, we aim to remove as few factors in N as
possible, with βi representing the number of factors we remove. Given that we only
need to remove one factor, we make the guess for ki ∈ [0, ℓi⟩. If we need two factors,
then ki will be the tuple ki = (k1, k2), where k1 ∈ [0, ℓ1⟩ and k2 ∈ [0, ℓ2⟩.

Let Λ denote the order we have recovered. The next challenge arises when trying
to find the Λ-isogeny τ : Estart → Ci in step 4. The isogeny τ can no longer be
computed as a chain of 3-isogenies but rather as a chain of isogenies of the degree
Λ. Apart from some changes in the code, this is not a major problem, as finding
isogenies for a given degree with a given kernel is a straightforward task for small or
smooth enough order.

5.1.2 Alice’s Twisted Torsion

How efficiently we can attack B-SIDH heavily depends on how our prime p is chosen or
specifically how Alice’s order factors. We will revisit and use the three categories we
introduced in section 3.7.2, in order to explain different properties and the challenges
that arise. The type of isogenies we need to compute is directly correlated to Alice’s
degree, due to Kani’s theorem stating a unique genus 2 (N,N)-isogeny. The unique
genus 2 (N,N)-isogeny can be computed as a chain of (ℓ, ℓ)-isogenies of Alice’s
factors.

Alice’s order is 2f

When Alice’s order is a power of two, we only need to compute (2, 2)-isogenies. Due
to the work of Smith’s thesis [Smi06] these isogenies, called Richelot isogenies, are
efficient. Oudompheng and Pope, [OP22b], reimplemented this in SageMath using
explicit formulas and some work around SageMath limitations. It is also worth
mentioning Kunzweiler published an efficient implementation of (2n, 2n)-isogenies
[Kun22]. However, this implementation is not utilized in the implementation of the
attack in SageMath.

Alice’s order is 2f · 3e

When Alice’s order contains a power of threes, we need to compute (3,3)-isogenies.
We will explore possibilities of (3, 3)-isogenies in 5.1.3.

5.1. PREPARING TO ATTACK B-SIDH 77

Alice’s order is ℓk1
1 · ℓ

k2
2 · . . . · ℓ

ki
i

When Alice’s order has no restrictions and is the product of different coprime ℓ, we
need to compute (ℓ, ℓ)-isogenies. We will explore possibilities of (ℓ, ℓ)-isogenies in
5.1.4.

5.1.3 (3, 3)-Isogenies

We previously introduced a specific type of isogenies called Richelot isogenies, which
are (2, 2)-isogenies between Jacobians of genus-2 curves. As discussed above, to attack
B-SIDH, when Alice’s order contains three powers, we need the ability to compute
(3,3)-isogenies. Bruin, Flynn, and Testa [BFT14] provide the parametrization of genus
2 curves whose Jacobians have a (3, 3)-torsion subgroup with rational generators.
They also supply the corresponding isogeny formula. However, these formulas require
over 37,500 multiplications to evaluate a single isogeny at a point.

Following more recent work by Decru and Kunzweiler [DK23], these formulas
have been simplified and reduced by 94%, offering a significantly faster and more
efficient computation of (3n, 3n)-isogenies. Moreover, they deduce explicit formulas
for evaluating splitting and gluing as the two cases in 4.2.2. Their implementation
managed to retrieve Alice’s secret isogeny in 11 seconds for the SIKEp751 parameters,
which represented the highest security level.

Unfortunately, this implementation is only available in Magma and not SageMath,
which is required for this thesis. Translating this into the SageMath would be
outside the scope of this thesis. Oudompheng and Pope [OP22b, Section 3.3]
explains that translating Castryck and Decru’s attack into SageMath indeed posed
several challenges that necessitated assistance from many within the cryptographic
community. Comparable challenges may arise for anyone undertaking the task of
translating the implementation.

The time required for translating Decru and Kunzweiler’s implementation can
only be speculated. Nevertheless, this is certainly an area for future work and is well
worth further investigation. Resulting this task lies outside of the scope of this thesis.

5.1.4 (ℓ, ℓ)-Isogenies

Finding a way of computing (ℓ, ℓ)-isogenies would be the most appropriate approach.
However, this approach does not come without its own challenges. Computing
(ℓ, ℓ)-isogenies requires huge polynomials and takes a lot of time unless one finds
explicit formulas like Richelot isogenies in 4.2.3 or Bruin, Flynn, and Testa [BFT14].
When the degree of the isogeny increases so does the polynomials.

78 5. ATTACKING B-SIDH

Cosset and Robert [CR11] explore and give a method for computing (ℓ, ℓ)-isogenies.
Their way is by converting Momford coordinates of Jacobians of genus-2 curves into
another representation. In combination with other provided algorithms provides a
method for computing (ℓ, ℓ)-isogenies polynomial time.

To be able to see if we can combine this with Richolot isogenies, we need to
see the definition of a (ℓ, ℓ)-isogeny. To form an (ℓ, ℓ)-isogeny we need a symplectic
basis which is a set of four points (R1, R2, S1, S2) in the Jacobian In the following
definition, the term symplectic basis will be used which will be explained after the
definition.

Definition 5.1. Let (R1, R2, S1, S2) be a symplectic basis for J(C)[ℓ], then for any
a, b, c ∈ Z/ℓZ, the group

G = ⟨R1 + aS1 + bS2, R2 + bS1 + cS2⟩

defines a (ℓ, ℓ)-isogeny.

Finding a symplectic basis J(C)[ℓ] requires us to identify four points in J(C)[ℓ]
that form a group basis over Z/ℓZ. Meaning every point in J(C)[ℓ] can be written
uniquely as a Z/ℓZ-linear combination of the basis points.

Recall an element in J(C) is represented by two points P1, P2 ∈ C(K). After
computing a Richelot isogeny we have four points on C, which is not enough to fully
represent a symplectic basis.

Even if we managed to combine these approaches a big factor would be the time
it requires to compute big (ℓ, ℓ)-isogenies. Cosset and Robert [CR11, Section 5.6]
together with Bisson present an implementation that requires almost two hours for
computing an isogeny of degree ℓ = 1321 over a small finite field of 16-bits and
without any field extensions. After testing with their provided examples, computing
a single (3,3)-isogeny takes 0.448 seconds. Comparing this to computing a Ricghelot
isogeny, a (2,2)-isogeny, takes on average 0.00504 seconds, which is almost 90 times
slower.

This approximation of time is only evaluating a single isogeny and doesn’t take
into account the time its takes for converting Mumford coordinates of Jacobians to
theta coordinates. Practically this may be even slower than estimated.

While the work by Cosset and Robert gives us the isogenies of the generic type,
we still need gluing of elliptic curves and splitting of Jacobians. Castryck and Decru
[CD23b, Section 11.1] refer to work by Kuhn [Kuh88] and also point out away from

5.1. PREPARING TO ATTACK B-SIDH 79

ℓ = 2, 3 there is no known straightforward decision algorithm to verify whether an
(ℓ, ℓ)-subgroup of a given Jacobian of a genus 2 curve results in a product of elliptic
curves.

A possible solution to the gluing problem is ensuring that Alice’s order contains
a factor of 2, which is most often the case. Then always compute the (2,2)-isogeny
when gluing elliptic curves, since this is known and efficient. For the splitting case,
Castryck and Decru mention the seemingly easiest way, is to see if theta constants
fail to create a genus 2 curve.

Remark 5.2. While there are theoretical solutions to these issues, as far as we
know, there exist no implementations we can use. Implementing these would require
an extensive amount of research and is something we have to leave for future work.
Consequently, we have to limit ourselves to only attack primes where Alice’s order is
a power of two.

5.1.5 Can We At Least Lower the Security Requirements?

One might naturally wonder if it would be possible to relax the security constraints
by merely computing (2, 2)-isogenies, and then attempting to guess the remaining
isogenies through a brute-force approach. Regrettably, this method proves unfeasible.
As an example, consider the prime number discussed earlier in section 3.3, where
Alice’s order is given by N = 2188 · 11 · 17 · 29 · 73 · 193. In an attempt to guess one of
Bob’s digits and consult the glue-and-split oracle, it becomes necessary to compute
the entire (N,N)-isogeny chain to ascertain whether or not it splits. Therefore, we
cannot confirm the correctness of the guessed digit without the ability to compute
isogenies of higher degrees.

5.1.6 Representing Bob’s Secret Key with the Chinese
Remainder Theorem

As previously mentioned in Section 5.1.1, we can no longer represent Bob’s secret
integer as a list of ternary digits. In B-SIDH, Bob’s order is the product of different
coprime numbers, including multiples. Therefore, we need a way to represent Bob’s
secret integer that is not dependent on a fixed degree.

Taking into account that all our factors or divisors are pairwise coprime and the
digit we are guessing lies in the range 0 ≤ ki < ℓi, this problem can be addressed
using the Chinese Remainder Theorem. If we know every remainder ki, then there
exists a unique integer K, such that 0 ≤ K < N , and K ≡ ki(mod ℓℓi

i).

Given Bob’s order M = n1 · n2 . . . · ni, where n1 · n2 . . . · ni are integers greater
than 1 and all ni are pairwise coprime, we can represent Bob’s secret integer as

80 5. ATTACKING B-SIDH

follows:
K = k1 ·

M

n1
· y1 + k2 ·

M

n2
· y2 + . . .+ ki ·

M

ni
· yi

where

k1(mod n1) M

ℓ1
y1 ≡ 1(mod ℓ1)

k2(mod n2) M

ℓ2
y2 ≡ 1(mod ℓ2)

...

ki(mod ni)
M

ℓi
yi ≡ 1(mod ℓi)

If one of Bob’s factors has multiplies, we can solve it as follows. Take M = 4095 =
32 · 5 · 7 · 13, we can represent Bob’s integer as:

kb = (k11 + k123) · M32 · y1 + k2 ·
M

5 · y2 + k3 ·
M

7 · y3 + k4 ·
M

13 · y4

where

K ≡ k1(mod 32) M

ℓ1
y1 ≡ 1(mod 32) y1 = 2

k2(mod 5) M

ℓ2
y2 ≡ 1(mod 5) y1 = 4

k3(mod 7) M

ℓ3
y3 ≡ 1(mod 7) y1 = 2

k4(mod 13) M

ℓ4
y4 ≡ 1(mod 13) y1 = 9

We can observe that for our first iteration, we get

kerϕ1 = ⟨Λ · PB + (k1 ·
M

n1
· y1) · Λ ·QB⟩

After finding k1, we can proceed to find k2

kerϕ2 = ⟨Λ · PB + (k1 ·
M

n1
· y1 + k2 ·

M

n2
· y2) · Λ ·QB⟩

The general equation ki is:

kerϕi = ⟨Λ · PB + (k1 ·
M

n1
· y1 + k2 ·

M

n2
· y2 + . . .+ ki ·

M

ni
· yi) · Λ ·QB⟩ (5.1)

5.1. PREPARING TO ATTACK B-SIDH 81

5.1.7 Number of Queries to Oracle

As presented in chapter 4 we make a guess for each digit of Bob’s key, comparable to
an efficient brute force attack. For SIDH one can easily calculate the upper bound of
the total number of attempts we need to find Bob’s key. For each digit we guess we
need to at worst make two queries to our oracle, the digits {0, 1}, and if both fail,
we can assume 2 is the correct digit. Our upper bound of queries will then be O(2b).

In B-SIDH we are in a much worse spot as our isogenies are of higher degrees.
Bob’s order can be generalized to ℓk1

1 ℓk2
2 . . . ℓki

i and by applying the same logic the
upper bound of queries needed, denoted by #Q:

#Q = k1(ℓ1 − 1) + k2(ℓ2 − 1) + . . .+ ki(ℓi − 1) (5.2)

This will always be bigger than 2b when ℓk1
1 ℓk2

2 . . . ℓki
i ≈ 3b and most ℓi > 3. Bob’s

degree in SIDH is 3b which is the smallest prime factor he can work over.

Let us take the prime in 3.3 and use the equation in 5.2 we get a total of:

#Q = 115 · (3− 1) + (7− 1) + (13− 1) + 2 · (31− 1) + (157− 1) + (241− 1) = 704

Comparing this to it’s equivalent in SIDH namely SIKEp434 where p = 22163137−1,
the number of queries is:

#Q = 2 · 137 = 274

We can already observe there is a severe difference in total queries between SIDH
and B-SIDH.

One crucial thing to note is this only applies if, for each iteration, our step size is
βi = 1. In the case where

Ci = M −N ≡ 3 mod 4
it cannot be of the form u2

i + 4v2
i . Therefore it may be necessary to take a step size

of two, i.e. remove two factors. Let ℓ1 and ℓ2 be the two factors we remove, then
have a total of ℓ1 · ℓ2 − 1 guesses.

5.1.8 B-SIDH Attacking Algorithm

By using the attacking algorithm in 4.3.5 as a base, we can create a new six-step
attacking algorithm suited for attacking B-SIDH. Let N = ηk1−α1i

1 ηk2−α2i
2 . . . ηki−αki

j

82 5. ATTACKING B-SIDH

and M = ℓk1−β1i

1 ℓk2−β2i

2 . . . ℓki−βki

i and denote N ′ and M ′ as the remaining factors
in N and M .

Step 1: Choose βi = β1i + β2i + . . . βki minimal such that there exists some αi ≥ 0
where αi = α1i + α2i + . . . αki, for which Ci = N ′ −M ′ is of the form u2

i + 4v2
i > 0.

Denote ℓl > 0 as the prime factor we will recover from Bob’s order and ηn ≥ 0 as
the factor from Alice.

Step 2: Make a guess for ki ∈ [0, ℓj⟩

Step 3: Use ui and vi to construct an auxiliary isogeny γ = [ui] + [vi] · 2i

Step 4: Determine the Λ · ℓl-isogeny τi : Estart −→ Ci with kernel γ(kerϕi), where
kerϕi as equation 5.1.

Step 5: Compute the points PCi
, PQi

∈ Ci where PCi
= N

N ′ kiτ(Pa) and QCi
=

N
N ′ kiτ(Qa)

Step 6: Check whether or not the subgroup ⟨(PCi ,
N
N ′PB), (QCi ,

N
N ′QB)⟩ splits.

5.2 Attacking B-SIDH

In this section, we shall proceed to attack B-SIDH with three distinct examples.
The first example consists of a simplified toy example. This toy example will enable
us to delve deeper into the details of the attack mechanism while highlighting the
notable modifications from the SIDH attack. In the subsequent stages, we will engage
with two more complex examples. Prior to the two more complex examples, we
will conduct a preliminary analysis to estimate the time requirements and provide
discussion where deemed necessary.

5.2.1 Toy Example

For the toy example, we will use p = 213 − 1 = 8191 which gives Alice order
N = 213 and Bob M = 32 · 5 · 7 · 13. We are working in Fp4 = Fp(ω) where
ω4 + 3ω2 + 8183ω + 17. Using the new representation in 5.1.6, Bob’s key can be
written as, kb = (k11 + k12 · 3) · M

32 · y1 + k2 · M
5 · y2 + k1 · M

7 · y3 + k1 · M
13 · y4. We will

go through each iteration of the algorithm in Section 5.1.8, explaining each step and
providing further analysis where necessary.

Setup During the attack we need Alice’s basis points to create the auxiliary isogeny
and Bob’s basis points to check if it splits. Running through the B-SIDH

5.2. ATTACKING B-SIDH 83

protocol with the parameters shown above yields us these basis points:

PA := (2578 · ω3 + 2121 · ω2 + 5156 · ω + 1220,−)
QA := (5746 · ω3 + 6602 · ω2 + 3301 · ω + 7002,−)

and
PB := (751 · ω3 + 3004 · ω2 + 1502 · ω + 161,−)
QB := (2330 · ω3 + 1129 · ω2 + 4660 · ω + 6415,−)

From Bob’s public key, we note that his public curve is the curve EB where
a = (4722 · ω3 + 2506 · ω2 + 1253 · ω + 3254) and j-invariant of 4251 · i+ 2640.
We will initiate a dictionary isogenies degrees we have recovered skBob = {32 :
[−,−], 5 : −, 7 : −, 13 : −}

Iteration 1 We begin by guessing the first digit of Bob’s secret key.

Step 1 We find that for β1 = 1 or removing 5 from M, we have a α1 = 0 for
which C1 = 213 − 32 · 7 · 13 = 7373. This can be written of the form
C1 = u2

i + 4v2
i = (−77)2 + 4 · 192 = 7373

Our first step size is β1 = 1 which means we will make a guess for
one of Bob’s factors, in particular the 5-isogeny. This means we have 5
possibilities in the first iteration.

Guess 1 k1 = 0
Step 3 We can construct our auxiliary isogeny γ = [−77] + [19] · 2i
Step 4 The Λ · 5-isogeny τ1 : Estart −→ C1 with kernel γ(kerϕ1), where

kerϕ1 = ΛPB + (0 · M
5 · y1) · ΛQB

For the time being Λ = 1
Step 5 Compute the points PC1 , QC1 ∈ C1 where PC1 = 20τ1γ(PA) and

QC1 = 20τ1γ(QA)
We have created a new curve C1 with a1 = 3384 and the two new
points are: PC1 = (3429 ·ω3 +5525 ·ω2 +6858 ·ω+6107,−) and QC1 =
(7973 · ω3 + 7319 · ω2 + 7755 · ω + 2533,−)

Step 6 Check whether or not the subgroup ⟨(PC1 , 213 · PB), (QCi , 213 ·QB)⟩
splits.
We want to glue the curves C1 and Estart into the jacobian of a genus
2 curve, via the (2,2)-subgroup provided in step 6. Going through step
1 and 2 in 4.3.4 our isogeny chain will look like:

C1 × Estart → Jac(C2)→ Jac(C3)→ . . .→→ Jac(C12)

from the last Jacobian we will check if it splits, by determining the
determinant. It turns out the first guess we made, the determinant
does vanish which means it does split, and we can update our recovered
digits skBob = {32 : [−,−], 5 : 0, 7 : −, 13 : −}.

84 5. ATTACKING B-SIDH

Iteration 2 After first iteration we have so far recovered skBob = {32 : [−,−], 5 :
0, 7 : −, 13 : −}, and update our recovered factor variable Λ = 5

Step 1 We find that for β2 = 2 or removing two factors from M’, namely 3 and 3,
we have a α2 = 0 for which C2 = 213 − 7 · 13 = 8101. This can be written
of the form C2 = u2

2 + 4v2
2 = (−1)2 + 4 · (−45)2 = 8101

For this iteration we have to make a guess for two factors which means
we have 3 · 3 possibilities in this iteration.

Guess 1 k21, k22 = {0, 0}

Step 3 We can construct our auxiliary isogeny γ = [−1] + [−45] · 2i
Step 4 The Λ(3 · 3)-isogeny τ21 : Estart −→ C2 with kernel γ(kerϕ2), where

kerϕ2 = ΛPB + (0 · M
5 · y1 + (0 + 0 · 3) · M

33 · y2) · ΛQB

Step 5 Compute the points PC2 , QC2 ∈ C2 where PC2 = 20τ2γ(PA) and
QC2 = 20τ2γ(QA)
We have created a new curve C2 with a2 = (384 ·ω3 + 1536 ·ω2 + 768 ·
ω + 7485) and the two new points are: PC1 = (6734 · ω3 + 2363 · ω2 +
5277 ·ω+7039,−) and QC1 = (3851 ·ω3 +7213 ·ω2 +7702 ·ω+2851,−)

Step 6 Check whether or not the subgroup ⟨(PC2 , 213 · PB), (QC2 , 213 ·QB)⟩
splits.
We want to glue the curves C2 and Estart into the jacobian of a genus
2 curve, via the (2,2)-subgroup provided in step 6. Going through step
1 and 2 in 4.3.4 our isogeny chain will look like:

C2 × Estart → Jac(C2)→ Jac(C3)→ . . .→→ Jac(C12)

from the last Jacobian we will check if it splits, by determining the
determinant. It does not split and we have to continue guessing

...
...

Guess 5 k21, k22 = {1, 1}

Step 3 We can construct our auxiliary isogeny γ = [−1] + [−45] · 2i
Step 4 The Λ(3 · 3)-isogeny τ21 : Estart −→ C2 with kernel γ(kerϕ2), where

kerϕ2 = ΛPB + (0 · M
5 · y1 + (1 + 1 · 3) · M

33 · y2) · ΛQB

Step 5 Compute the points PC2 , QC2 ∈ C2 where PC2 = 20τ2γ(PA) and
QC2 = 20τ2γ(QA)
We have created a new curve C2 with a2 = (4775 ·ω3 +2718 ·ω2 +1359 ·
ω + 3641) and the two new points are: PC1 = (581 · ω3 + 2324 · ω2 +
1162 ·ω+3930,−) and QC1 = (7139 ·ω3 +3983 ·ω2 +6087 ·ω+6828,−)

5.2. ATTACKING B-SIDH 85

Step 6 Check whether or not the subgroup ⟨(PC2 , 213 · PB), (QC2 , 213 ·QB)⟩
splits.
We want to glue the curves C2 and Estart into the jacobian of a genus
2 curve, via the (2,2)-subgroup provided in step 6. Going through step
1 and 2 in 4.3.4 our isogeny chain will look like:

C2 × Estart → Jac(C2)→ Jac(C3)→ . . .→→ Jac(C12)

from the last Jacobian we will check if it splits, by determining the
determinant. This configuration does split! And we can update our
recovered digits skBob = {32 : [1, 1], 5 : 0, 7 : −, 13 : −}.

Iteration 3 After second iteration we have so far recovered skBob = {32 : [1, 1], 5 :
0, 7 : −, 13 : −}, and update our recovered factor variable Λ = 32 · 5

Step 1 We find that for β3 = 1 or removing 13 from M’, we have a α2 = 0
for which C2 = 213 − 7 = 8185. This can be written of the form C2 =
u2

2 + 4v2
2 = (−83)2 + 4 · (18)2 = 8185

For this iteration we have to make a guess for one factor which means we
have 13 possibilities.

Guess 1 k3 = 0

Step 3 We can construct our auxiliary isogeny γ = [−83] + [18] · 2i
Step 4 The Λ · 13-isogeny τ3 : Estart −→ C3 with kernel γ(kerϕ3), where

kerϕ3 = ΛPB + (0 · M
5 · y1 + (1 + 1 · 3) · M

33 · y2 + 0 · M
13 · y3) · ΛQB

Step 5 Compute the points PC3 , QC3 ∈ C3 where PC3 = 20τ3γ(PA) and
QC3 = 20τ3γ(QA)
We have created a new curve C3 with a3 = (5627 ·ω3 +6126 ·ω2 +3063 ·
ω + 4635) and the two new points are: PC3 = (2021 · ω3 + 8084 · ω2 +
4042 ·ω+5236,−) and QC3 = (4489 ·ω3 +1574 ·ω2 +787 ·ω+6496,−)

Step 6 Check whether or not the subgroup ⟨(PC3 , 213 · PB), (QC3 , 213 ·QB)⟩
splits.
We want to glue the curves C3 and Estart into the jacobian of a genus
2 curve, via the (2,2)-subgroup provided in step 6. Going through step
1 and 2 in 4.3.4 our isogeny chain will look like:

C3 × Estart → Jac(C3)→ Jac(C3)→ . . .→→ Jac(C12)

from the last Jacobian we will check if it splits, by determining the
determinant. It does not split and we have to continue guessing

Guess 2 k3 = 1

Step 3 We can construct our auxiliary isogeny γ = [−83] + [18] · 2i

86 5. ATTACKING B-SIDH

Step 4 The Λ · 13-isogeny τ3 : Estart −→ C3 with kernel γ(kerϕ3), where
kerϕ3 = ΛPB + (0 · M

5 · y1 + (1 + 1 · 3) · M
33 · y2 + 1 · M

13 · y3) · ΛQB

Step 5 Compute the points PC3 , QC3 ∈ C3 where PC3 = 20τ3γ(PA) and
QC3 = 20τ3γ(QA)
We have created a new curve C3 with a3 = (6578 ·ω3 +1739 ·ω2 +4965 ·
ω + 6985) and the two new points are: PC3 = (6702 · ω3 + 2235 · ω2 +
5213 ·ω+3183,−) and QC3 = (4654 ·ω3 +2234 ·ω2 +1117 ·ω+326,−)

Step 6 Check whether or not the subgroup ⟨(PC3 , 213 · PB), (QC3 , 213 ·QB)⟩
splits.
We want to glue the curves C3 and Estart into the jacobian of a genus
2 curve, via the (2,2)-subgroup provided in step 6. Going through step
1 and 2 in 4.3.4 our isogeny chain will look like:

C3 × Estart → Jac(C3)→ Jac(C3)→ . . .→→ Jac(C12)

from the last Jacobian we will check if it splits, by determining the
determinant. For k3 = 1, it splits. We can update our recovered digits
skBob = {32 : [1, 1], 5 : 0, 7 : −, 13 : 1}.

Iteration 2 We have recovered all isogenies except one and we will brute force the
last by computing the isogeny from Estart → EB

Guess 1 k4 = 0
◦ bobskey = (0·M5 ·y1 +(1+1·3)·M33 ·y2 +1·M13 ·y3 +0·M7 ·y4)%M = 2380
◦ The M -isogeny ϕ : Estart → E′ with ker(ϕ) = PB + bobskey ·QB

◦ Check if j(E′) = j(EB)
For k4 = 0, j(E′) = j(EB) returns false which means we have not
made the correct guess.

Guess 2 k4 = 0
◦ bobskey = (0·M5 ·y1 +(1+1·3)·M33 ·y2 +1·M13 ·y3 +1·M7 ·y4)%M = 3550
◦ The M -isogeny ϕ : Estart → E′ with ker(ϕ) = PB + bobskey ·QB

◦ Check if j(E′) = j(EB)
For k4 = 1, j(E′) = j(EB) is indeed true which means we have the
last correct digit.

Finish We have successfully attacked SIDH by recovering Bob’s key digit by digit
skBob = {32 : [1, 1], 5 : 0, 7 : 1, 13 : 1} and kb = 3550.

5.2.2 Timing How Long One Guess Take

During the analysis of the next two examples, we need to estimate how long it takes
to make one guess for each isogeny of Bob’s order. This estimation was conducted

5.2. ATTACKING B-SIDH 87

using our modified implementation of the attack. We executed this attack on the
prime numbers cited in the examples and recorded the time used for each guess.

Our time measurement began when the guessing number was selected and stopped
upon the oracle’s response. The tables showcased, namely Table 5.1 and 5.2, in
the examples represent the mean values derived from roughly 100 guesses for every
isogeny degree. All timing computations were performed on a MacBook Air with an
Apple M1 chip.

5.2.3 Attacking Example II

For the 127-bit prime, we will use the prime presented in 3.7.2.

p = 2127 − 1

The presented prime is one of the Mersenne primes which enables Alice to only
work with two primes. Since p− 1 is not as smooth we need to slightly adjust the
order of Bob by removing the two biggest factors. The reasoning behind this is that
computing isogenies of this degree will take seconds. From an attacking point, this
will result in months to years of computing, and from a practical point, this will
never be used as the key exchange will be too slow. Alice and Bob’s order will be as
follow:

M = 2127

N = 33 · 72 · 19 · 43 · 73 · 127 · 337 · 5419 · 92737

Using the equations in 5.1.7, we can find the worst, average, and best number of
queries done to our oracle.

#Qbest = 12 #Qavrg = 49383 #Qworst = 98766

This estimate is only viable when the step size βi = 1, however, this does not
hold for this example. No matter which factors one begins with, one will always end
up recovering two factors at once. It is therefore important to find the most optimal
succession to limit the number of queries to our oracle. Using some of the techniques
we will discuss later in section 5.3, we find that one of the most optimal succession is:

88 5. ATTACKING B-SIDH

Time of guessing digit
Isogeny degree Avrg Time

73 1.071s
337 1.147s

7 · 43 1.053s
3 · 19 1.013s
3 · 7 0.8460s

3 · 127 0.5289s
92737 3.207s
5419 1.156s

Table 5.1: Mean time of how long one guess takes for a given isogeny.

(73, 2122)→ (337, 2121)→ (7 · 43, 2108)→ (3 · 19, 2100)→
(3 · 7, 279)→ (3 · 127, 229)→ (92737, 229)→ 5419

where the first element in the tuple is the isogeny degree we are recovering and
the second element is 2127−αi . With this in mind, we can calculate the new best,
average, and worst number of queries.

#Qbest = 8 #Qavrg = 49653 #Qworst = 99306

How long it takes to make one guess is dependent on many things. The isogeny
degree we are recovering, how many (2, 2)-isogenies we need to compute, pushing the
basis points through the auxiliary isogeny. In Table 5.1 we present on average how
long it will take to make one guess for each part.

Using these values we can find the best, average, and worst running time for our
attack.

timebest = 10s timeavrg = 152366s(42hours) timeworst = 304732s(85hours)

Practically running this example multiple times is not feasible without dedicated
equipment that can run for many hours up until days. However, we did run it once
and the attacking time clocked in at approximately 31 hours, which is below average
according to our analysis.

5.2. ATTACKING B-SIDH 89

5.2.4 Attacking Example III

For the final example, we will utilize the 255-bit prime

p = 0x76042798BBFB78AEBD02490BD2635DEC131AB
FFFFFFFFFFFFFFFFFFFFFFFFFFF

Given our inability to compute (ℓ, ℓ)-isogenies for ℓ > 2, it becomes necessary to
adjust the orders assigned to Alice and Bob. Alice’s order will need to be constrained
to only two primes. Concurrently, to ensure the condition M −N > 0 is met, we
will reduce some of Bob’s factors. To prevent this example from leaning too close
to SIDH, we will systematically eliminate Bob’s three factors until the condition
M −N > 0 is satisfied. Consequently, the revised orders for Alice and Bob will be
as follows:

M = 2110

N = 334 · 11 · 17 · 192 · 29 · 37 · 532 · 97 · 107

Using the equations in 5.1.7, we can find the worst, average, and best number of
queries done to our oracle.

#Qbest = 44 #Qavrg = 250 #Qworst = 500

Just like the example in 5.2.3, this estimate is only viable when the step size
βi = 1. Finding the optimal sequence is not a trivial task, however, we believe one of
the best sequences is:

(3, 2110)→ (3 · 3, 2107)→ (3 · 3, 2100)→ (3 · 3, 2100)→ (3 · 3, 295)→ (3 · 3, 288)→
(3 · 3, 286)→ (3 · 3, 282)→ (3 · 3, 278)→ (3 · 3, 278)→ (3 · 3, 272)→ (3 · 3, 269)→
(3 · 3, 266)→ (3 · 3, 263)→ (3 · 3, 259)→ (3 · 3, 257)→ (33, 257)→ (3 · 19, 248)→

(3 · 19, 242)→ (17, 235)→ (37, 235)→ (53, 235)→ (29 · 53, 214)→ (97, 28)→ 107

where the first element in the tuple is the isogeny degree we are recovering and
the second element is 2127−αi . With this in mind, we can calculate the new best,
average, and worst number of queries.

90 5. ATTACKING B-SIDH

#Qbest = 24 #Qavrg = 1581 #Qworst = 3162

Comparing this to the example in 5.2.3, we have on average only 3% of guesses.
This is of course due to the large isogeny which carries much more possibilities.

In Table 5.2 we present on average how long it will take to make one guess for
each part.

Time of guessing digit
Isogeny degree Avrg Time

3 1.762
(3 · 3)× 15 1.560s (min/1.294, max/1.919))

33 1.336s
3 · 19 1.260s
3 · 19 1.209s

17 1.148s
37 1.210s
53 1.174s

29 · 53 1.125s
97 1.162s
107 0.5807s

Table 5.2: Mean time of how long one guess takes for a given isogeny. ×15 denotes
a (3 · 3)-isogeny where compute 15 times and the minimum, mean, and max value is
given.

Using these values we can find the best, average, and worst running time for our
attack.

timebest = 13.52s timeavrg = 1197s(20minutes) timeworst = 2394s(40minutes)

To validate our analysis, we conducted a practical test of the attack on the given
example, repeating it five times. The average duration across these runs amounted to
24 minutes. However, it’s important to keep in mind the execution time is strongly
influenced by the nature of Bob’s secret key.

5.3. WAYS TO SPEED UP THE ATTACK 91

5.3 Ways To Speed Up the Attack

In this section, we will explore various techniques and optimizations aimed at
accelerating the attack B-SIDH. As cryptographic attacks are often computationally
intensive, improving the efficiency is crucial for reducing the time and resources
required to recover Bob’s secret key, we will examine a variety of methods that can
help optimize the attack process.

These methods encompass parallelization, pre-computation, algorithmic improve-
ments, and strategic ordering of computations. Castryck and Decru present some of
these methods in [CD23b], as well as the lessons learned during the development of
suiting the attack to B-SIDH.

5.3.1 Compute Isogenies Using
√

élu

The primary factor that makes attacking B-SIDH slower is the computation of
high-degree isogenies. As discussed in Section 3.7.3, the

√
èlu algorithm requires

O(
√
ℓ) field operations, which is more efficient than the naive O(ℓ) approach, where

ℓ is the degree of the isogeny.

According to the SageMath documentation for
√

élu, the isogeny degree threshold
where

√
élu begins to outperform the regular Vélu’s algorithm can range from ≈ 100

to ≈ 1000, depending on the specific situation. Our experiments, detailed in Appendix
A, indicate that the optimal threshold for our context is ≈ 300. Thus, we use the
regular Vélu’s algorithm for isogenies of degree < 300 and

√
élu for isogenies of degree

> 300.

5.3.2 Parallelisation

Parallelizing code execution is an effective way to accelerate the attack. Although
Castryck and Decru’s attack was designed to run on a single core, the implementation
in [OP22b] cleverly parallelizes certain parts of the algorithm. Each guess can be
made in parallel; however, it is essential to note that we cannot run more parallel
computations than the torsion part we are recovering. For example, when recovering
a 5-isogeny, a maximum of four cores can be utilized for guessing the correct digit and
asking our oracle. In SIDH, where we only recover 3-isogenies, using two cores is the
best possible performance. Since B-SIDH often requires recovering larger isogenies,
more cores can be used, making parallelization more effective.

However, running the attack on n-cores does not necessarily lead to an n-times
faster attack. While increasing the number of cores does speed up the attack, each
guess takes a longer time.

92 5. ATTACKING B-SIDH

5.3.3 Recover Smallest Degree Isogenies First

A small yet effective optimization for speeding up the attack involves recovering
isogenies with smaller degrees first. When determining the isogeny τ in step 3 in
5.1.8, we compute an isogeny chain with a degree equal to what we have already
recovered. By computing the highest degree isogenies last, we significantly reduce
the computational cost by avoiding the calculation of high-degree isogenies each time
we recover a new isogeny.

5.3.4 Extending Bob’s Secret Isogeny

Consider the scenario where there is no candidate for βi of only one factor such that
N ′−M is congruent to 1 mod 4. We then have to choose two factors and significantly
increase the number of queries required. One solution to this is prolonging Bob’s
secret isogeny with an arbitrary isogeny ϕ′ of the smallest degree, in most cases a
3-isogeny, such that the expression N ′−M ′ ·new_isogeny_degree is 1 mod 4. Then
let P ′ = ϕ′(P) and Q = ϕ′(Q) ´and treat ϕ ◦ ϕ′ as the new secret isogeny.

5.3.5 Finding Optimal Course of Action

Castryck and Decru employed a precomputed table to optimize the selection of αi and
βi, eliminating the need for real-time factoring. Their optimized selection strategy
involved choosing αi as large as possible. The larger the αi, the shorter the chain of
(2, 2)-isogenies, as the length is determined by a− αi. However, the precomputed
table used in their attack is not suitable for attacking B-SIDH, as it only works when
Alice’s order is 2a and Bob’s degree is 3b. Creating a generic precomputed table for
B-SIDH is impractical due to the diverse prime factors involved.

Despite the infeasibility of a precomputed table, it is worthwhile to conduct some
preliminary analysis to determine the most optimal sequence for recovering parts
of Bob’s secret integer. Taking into account the considerations from 5.3.3 and the
strategy of maximizing αi, we can devise a simple algorithm to find the best sequence.

Let n ≥ 0 and m ≥ 3 represent some prime factors in M . We want to choose
the smallest prime factor m such that C = n − M

m is positive and free of prime
factors congruent to 3 mod 4. If our chosen m satisfies this condition, check if there
exists a larger n for which C = N

n −
M
m holds. If no prime factors pass this test,

relax the constraints and increment the number of prime factors one is considering.
Choose m = m1 ·m2 · . . . ·mi, with the smallest possible values for two prime factors
m1 ·m2 · . . . ·mi ∈M . Once we have found our n and m, we recover the isogeny of
degree m.

5.4. CAN B-SIDH BE CONSIDERED BROKEN? 93

In some cases, choosing two small prime factors might be more optimal than
selecting one large prime factor to avoid the issue described in 5.3.3. i.e. guessing
19 · 337 before 5419 is more optimal since we avoid computing the 5419-isogeny
19 · 337 times.

Finding optimal sequence practical can be a daunting task, especially as the
number of possibilities can be quite large. However, we can do some greedy choices
and make an algorithm that will find a good sequence. It is essential to recognize that
C = M −N either will be (i) C ≡ 1 mod 4 or (ii) C ≡ 3 mod 4. If C is the former,
we know that all factors that are congruent to 3 mod 4 will satisfy the condition
since N is always congruent to 0 mod 4 (This is because N is the prime power of
two), and if C is the latter, all factors congruent to 1 mod 4 mod will satisfy.

Our approach will start from the last isogeny we wish to recover. Since we also
ideally like to compute large isogenies last, we can take the greedy choice of choosing
the largest factor that is congruent to 3 mod 4 and find the smallest i that satisfies
C = 2i − num. We will continue this until there is no such factor longer, and relax
or constraints to the product of two numbers. Starting by trying the largest number
with the smallest number. The algorithms pseudo-code is in Algorithm 5.1 and
translated into Python code can be viewed in appendix B. Please note that the
algorithm is tailored when Alice’s order is a power of two.

5.4 Can B-SIDH Be Considered Broken?

The question of whether B-SIDH is broken or not merits an interesting discussion.
From a conceptual perspective, a cryptographic protocol can be considered broken
when an adversary can efficiently recover the secret keys or otherwise compromise the
security promises of the protocol. Efficiency, in this context, is typically measured in
terms of time complexity.

In the case of B-SIDH, we find that the security landscape is quite varied,
dependent upon the specific parameters in play. As discussed earlier, the SIDH
protocol is completely broken where the secret key can be recovered within seconds
or minutes for all parameters. B-SIDH, on the other hand, presents a more complex
scenario.

For certain prime numbers, as shown in section 5.2, the secret key of B-SIDH
can indeed be recovered easily. Specifically, this is true when p+1, the degree of
Alice’s isogeny, is the product of only two primes. The reason for this vulnerability
lies in the requirement to compute (n, n)-isogenies, where n represents the different
prime factors of Alice’s order. For values of n greater than 2, efficient polynomial
expressions for these isogenies are currently unavailable or hard to utilize. This limits

94 5. ATTACKING B-SIDH

Algorithm 5.1 Algorithm for finding an optimal sequence of recovering isogenies.
1: Mtmp ←M
2: recovered_M ← 1
3: results← [[−1,−1,−1,−1]]
4: while |{pe | pe ∈ factor(Mtmp)}| > 1 do
5: for prime_factor ∈ prime_combinations(Mtmp) do
6: recovered_M ← recovered_M × prime_factor
7: if recovered_M mod 4 ̸= 3 then
8: recovered_M ← recovered_M/prime_factor
9: continue

10: end if
11: result← find_lowest_alpha(N, recovered_M)
12: if result is None then
13: continue
14: end if
15: Nlow, u, v ← result
16: Mtmp ←Mtmp/prime_factor
17: results[−1][1]← prime_factor
18: results.append([Nlow,−1, u, v])
19: break
20: end for
21: end while
22: results[−1][1]←Mtmp

23: results.reverse()
24: return results

the range of prime numbers for which the attack can be performed efficiently, and
thereby the range of parameters where B-SIDH can be considered broken.

However, the claim that a protocol is broken does not necessarily mean that
an attack is feasible in all practical scenarios. Cryptographic strength is not a
binary quality, but rather a spectrum of resistance against potential attacks. If an
attack algorithm exists that runs in polynomial time, the protocol can be considered
theoretically broken, even if the required time for the attack is beyond the reach of
current computational capabilities.

In this context, the Castryck and Decru attack on B-SIDH can be considered as
running in polynomial time, which indicates that B-SIDH is theoretically broken.
Nevertheless, for larger prime factors, the required computation time might extend
to years, decades, or even longer. Effectively placing a successful attack beyond the
realm of practical feasibility with current knowledge.

While B-SIDH does have vulnerabilities that can be exploited under specific
conditions, the range of these conditions is limited. The protocol can therefore be

5.4. CAN B-SIDH BE CONSIDERED BROKEN? 95

considered theoretically broken, but its practical security remains dependent on the
choice of parameters.

In light of these findings, the status of B-SIDH’s security further underscores the
need for ongoing research. The key to extending the practicality of attacks on B-
SIDH lies in the development of efficient polynomial expressions for (N,N)-isogenies
Currently, our ability to exploit the protocol’s vulnerabilities is restricted by the lack
of such expressions.

The challenge of finding fast and efficient polynomials for (N,N)-isogenies, there-
fore, marks a significant frontier in isogeny-based cryptography research. By meeting
this challenge, we may not only practically attack B-SIDH across all primes, but also
inform the development of more robust and secure cryptographic systems.

Chapter6Conclusion

In this thesis, we have studied to what extent Castryck and Decru’s attack holds in
the case of B-SIDH and explored the applicability of the attack. Our findings indicate
that the attack adapts well to B-SIDH under certain circumstances - specifically when
p+1 or p−1, factorizes to only prime powers of two. Additionally, we had to confront
some inherent complexities associated with B-SIDH. One of these complexities arose
from the practical difficulties in computing (N,N)-isogenies, corresponding to Alice’s
prime powers, which presented a major challenge in our study.

To further optimize the attack’s applicability to B-SIDH, we made several modifi-
cations to the original methodology of Castryck and Decru’s attack. These included
modifying the attack to take into account Bob’s twisted torsion and creating a new
representation of Bob’s secret key using the Chinese Remainder Theorem (CRT).
However, we found that attempting an attack on B-SIDH is innately slower due to
the necessity of computing isogenies of higher degrees.

Moving forward, we illustrate the practicalities and challenges of our adapted
attack using two concrete examples, each corresponding to a different prime where
Alice’s order is a power of two. The first example showed a considerably slower
running time, while the second one was significantly faster. The discrepancy between
the two can be largely attributed to the varying isogeny degrees and the differing
number of oracle queries required.

Building upon these findings, we sought to devise a more efficient attack strategy.
We developed a simple algorithm that aimed at finding a better sequence for recovering
isogenies. The algorithm, under the right circumstances, enhances the efficiency of
the attack on B-SIDH, effectively cutting down the running time.

97

98 6. CONCLUSION

6.1 Research Questions

The primary research objective for this thesis is to find out to what extent does
Castryck and Decru’s attack hold in the case of B-SIDH. To answer this research
objective, we formulated three key research questions that guided our exploration
of the attack’s relevance and efficacy in the context of B-SIDH. Throughout this
thesis, we have aimed to answer these questions. This section will provide a concise
summary of the insights gathered during our research.

Research question 1: What properties of SIDH are used in the attack?

The Castryck-Decru attack on Supersingular Isogeny Diffie-Hellman
(SIDH) exploits several properties of the protocol and its parameters:

– Auxiliary Points Exchange: In the SIDH protocol, the exchanged
data include the images of the auxiliary points. These are used to
construct auxiliary isogenies, which are key to the attack.

– Known Degree of Secret Isogeny: In SIDH, the secret isogeny
ϕB has a fixed and known degree. The attack uses this information
to recover Bob’s secret key digit by digit, using a sequence of queries
to an oracle rather than computing the secret isogeny itself.

– Known Endomorphism Ring of Initial Curve: The initial
curve E0 in SIKE is always the same, and its endomorphism ring
is known. This allows the construction of an auxiliary isogeny of
a particular degree whenever it can be represented in the form
x = u2 + 4v2. However, due to work by Robert [Rob23], this is not
required.

– Isogeny Diamond Configuration: The attack utilizes the isogeny
diamond configuration, a concept rooted in Kani’s theorem, to
construct explicit isogenies between pairs of supersingular elliptic
curves.

– Structure of Secret Generator: The structure of the secret
generator in SIDH, specifically the kernel of Bob’s secret isogeny, is
exploited to guess Bob’s secret integer digit by digit.

– Effective Computation of (2,2)-Isogenies: The attack uses
the efficient computation of (2,2)-isogenies called Richelot isogenies,
especially when the degree NA is chosen to be 2n. This allows the
construction of the glue-and-split oracle.

The attack cleverly combines these properties to create a practical attack
against SIDH.

6.2. LIMITATIONS AND REMARKS 99

Research question 2: Can Castryck and Decru’s attack be used with the same efficiency
on B-SIDH as on SIDH

Castryck and Decru’s attack does not operate with the same efficiency
on B-SIDH as it does on SIDH. The primary reason is the fact that
B-SIDH utilizes higher degree prime factors, and the efficiency of the
attack is polynomial in the isogeny degrees. Consequently, the increased
isogeny degrees in B-SIDH would result in a slower attack than in the
case of SIDH. The increased isogeny prime degrees also require more
queries to our Glue-and-split oracle and section 5.1.7 present a way for
finding the number of queries required. Another crucial factor is the
necessity to compute (N,N)-isogenies for N > 2. These computations
are significantly slower because efficient polynomials for these calculations
are currently unavailable. Furthermore, despite our efforts as detailed in
5.1.2, we were unable to practically implement these computations, which
results in only practical attacks where Alice’s order is a prime power of
two.

Research question 3: What modification needs to be done to Castryck and Decru’s
attack in order the use the same attack on B-SIDH

There are two main modifications. Due to B-SIDH’s utilization of twisted
torsion, we must adjust the attack to accommodate this difference. As
discussed in section 5.1, this results that the attack needs to handle
varying isogeny degrees and a varying number of guesses, unlike the
original attack scheme on SIDH. The ternary representation of Bob’s key
within SIDH can no longer be utilized as Bob’s order is not a prime power
of three. To overcome this obstacle, presented in section 5.1.6, we made
an implementation using the Chinese Remainder Theorem (CRT) to
provide an effective representation of Bob’s key. Lastly, the glue-and-split
oracle needs to compute (ℓ, ℓ)-isogenies for Alice’s prime powers in order
to determine if the correct guess has been made.

6.2 Limitations and Remarks

Firstly, our research focused solely on applying Castryck and Decru’s attack to
B-SIDH, with no exploration of other potential attacks or protocols. Since late
2022 and the inception of this thesis, there have been additional inspired attacks
introduced in the field. However, these attacks have been acknowledged but not
integrated into our work on attacking B-SIDH, where our sole focus is Castryck and

100 6. CONCLUSION

Decru’s attack. Second, due to computational limits and time constraints, we weren’t
able to fully implement (N,N)-isogenies and test them practically.

This work was also limited in its scope to explore the possibilities of attacking
B-SIDH, while some optimizations of attacking are mentioned, this is not a main
focus. Moreover, although we explored some modifications to the attack to fit the
specifics of B-SIDH, there might be other optimizations or adjustments that we did
not consider.

Despite these limitations, we believe that our work contributes valuable insights
into the world of isogeny-based cryptography and the scope of Castryck and Decru’s
attack. It also builds on the groundwork for future research to further explore
attacking B-SIDH. We also believe that open-source code is important, all code used
in this thesis can therefore be found on GitHub. 1

6.3 Future Work

Our research leaves room for more work on attacking B-SIDH. We give three open
problems that, if solved, will broaden the practical application of attacking B-SIDH.
The first two problems relate to the ability to compute (ℓ, ℓ)-isogenies, while the last
open problem aims to further optimize the attacking strategy.

Open problem 1: Write code that utilizes other representations of (ℓ, ℓ)-isogenies.

The efficient Richelot isogenies are exclusive to (2, 2)-isogenies. In order to
orchestrate a full-scale attack on B-SIDH, we require additional represen-
tations. An intriguing candidate would be the polynomial (ℓ, ℓ)-isogenies
by Cosset and Robert. Successfully integrating this into the attack could
pave the way for an attack on every prime. However, for certain primes,
this might be practically unfeasible due to extensive computation times
unless a faster representation is identified.

Open problem 2: Translate Decru and Kunzweiler’s fast (3n, 3n)-isogeny computa-
tion into SageMath

Decru and Kunzweiler present a fast (3n, 3n)-isogeny computation, and
translating this from Magma to SageMath would enable an efficient attack
on primes where Alice’s order contains both prime powers of two and
three.

1https://github.com/georgsku/BSIDH-attack

6.3. FUTURE WORK 101

Open problem 3: Further optimize the attacking strategy on B-SIDH

We have proposed an algorithm to efficiently find sequences for recovering
isogenies. However, we conjecture that further optimizations are feasible
and the algorithm must be extended to accommodate cases where Alice’s
degree deviates from a prime power of two. Also, Extending Bob’s secret
isogeny could also be a good way to avoid having a step size of two. Other
potential approaches that we haven’t mentioned may also exist and are
worthy of exploration.

References

[BFLS20] D. J. Bernstein, L. D. Feo, et al., «Faster computation of isogenies of large
prime degree», CoRR, vol. abs/2003.10118, 2020. [Online]. Available: https:
//arxiv.org/abs/2003.10118.

[BFT14] N. Bruin, E. Flynn, and D. Testa, «Descent via (3,3)-isogeny on jacobians of
genus 2 curves», Acta Arithmetica, vol. 165, Jan. 2014.

[CD23a] W. Castryck and T. Decru, «An efficient key recovery attack on SIDH», in
Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Lyon, France, April 23-27, 2023, Proceedings, Part V, C. Hazay and M.
Stam, Eds., ser. Lecture Notes in Computer Science, vol. 14008, Springer,
2023, pp. 423–447. [Online]. Available: https://doi.org/10.1007/978-3-031-30
589-4%5C_15.

[CD23b] W. Castryck and T. Decru, «An efficient key recovery attack on SIDH», in
Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Lyon, France, April 23-27, 2023, Proceedings, Part V, C. Hazay and M.
Stam, Eds., ser. Lecture Notes in Computer Science, vol. 14008, Springer,
2023, pp. 423–447. [Online]. Available: https://doi.org/10.1007/978-3-031-30
589-4%5C_15.

[CH17] C. Costello and H. Hisil, «A simple and compact algorithm for SIDH with
arbitrary degree isogenies», in Advances in Cryptology - ASIACRYPT 2017
- 23rd International Conference on the Theory and Applications of Cryp-
tology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part II, T. Takagi and T. Peyrin, Eds., ser. Lecture Notes in
Computer Science, vol. 10625, Springer, 2017, pp. 303–329. [Online]. Available:
https://doi.org/10.1007/978-3-319-70697-9%5C_11.

[CJS14] A. M. Childs, D. Jao, and V. Soukharev, «Constructing elliptic curve isogenies
in quantum subexponential time», J. Math. Cryptol., vol. 8, no. 1, pp. 1–29,
2014. [Online]. Available: https://doi.org/10.1515/jmc-2012-0016.

[CLM+18] W. Castryck, T. Lange, et al., «CSIDH: an efficient post-quantum com-
mutative group action», in Advances in Cryptology - ASIACRYPT 2018 -
24th International Conference on the Theory and Application of Cryptology

103

https://arxiv.org/abs/2003.10118
https://arxiv.org/abs/2003.10118
https://doi.org/10.1007/978-3-031-30589-4%5C_15
https://doi.org/10.1007/978-3-031-30589-4%5C_15
https://doi.org/10.1007/978-3-031-30589-4%5C_15
https://doi.org/10.1007/978-3-031-30589-4%5C_15
https://doi.org/10.1007/978-3-319-70697-9%5C_11
https://doi.org/10.1515/jmc-2012-0016

104 REFERENCES

and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part III, T. Peyrin and S. D. Galbraith, Eds., ser. Lecture
Notes in Computer Science, vol. 11274, Springer, 2018, pp. 395–427. [Online].
Available: https://doi.org/10.1007/978-3-030-03332-3%5C_15.

[Cos19] C. Costello, «Supersingular isogeny key exchange for beginners», in Selected
Areas in Cryptography - SAC 2019 - 26th International Conference, Waterloo,
ON, Canada, August 12-16, 2019, Revised Selected Papers, K. G. Paterson
and D. Stebila, Eds., ser. Lecture Notes in Computer Science, vol. 11959,
Springer, 2019, pp. 21–50. [Online]. Available: https://doi.org/10.1007/978-3
-030-38471-5%5C_2.

[Cos20] C. Costello, «B-SIDH: supersingular isogeny diffie-hellman using twisted
torsion», in Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part
II, S. Moriai and H. Wang, Eds., ser. Lecture Notes in Computer Science,
vol. 12492, Springer, 2020, pp. 440–463. [Online]. Available: https://doi.org
/10.1007/978-3-030-64834-3%5C_15.

[CR11] R. Cosset and D. Robert, «Computing (l, l)-isogenies in polynomial time
on jacobians of genus 2 curves», IACR Cryptol. ePrint Arch., p. 143, 2011.
[Online]. Available: http://eprint.iacr.org/2011/143.

[DH76] W. Diffie and M. E. Hellman, «New directions in cryptography», IEEE
Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654, 1976. [Online]. Available:
https://doi.org/10.1109/TIT.1976.1055638.

[DK23] T. Decru and S. Kunzweiler, «Efficient computation of (3n, 3n)-isogenies»,
IACR Cryptol. ePrint Arch., p. 376, 2023. [Online]. Available: https://eprint
.iacr.org/2023/376.

[DPB17] J. Doliskani, G. C. C. F. Pereira, and P. S. L. M. Barreto, «Faster crypto-
graphic hash function from supersingular isogeny graphs», IACR Cryptol.
ePrint Arch., p. 1202, 2017. [Online]. Available: http://eprint.iacr.org/2017
/1202.

[FKL+20] L. D. Feo, D. Kohel, et al., «Sqisign: Compact post-quantum signatures
from quaternions and isogenies», in Advances in Cryptology - ASIACRYPT
2020 - 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7-11,
2020, Proceedings, Part I, S. Moriai and H. Wang, Eds., ser. Lecture Notes in
Computer Science, vol. 12491, Springer, 2020, pp. 64–93. [Online]. Available:
https://doi.org/10.1007/978-3-030-64837-4%5C_3.

[Gal12] S. D. Galbraith, Mathematics of Public Key Cryptography. Cambridge Uni-
versity Press, 2012. [Online]. Available: https://www.math.auckland.ac.nz
/%5C%7Esgal018/crypto-book/crypto-book.html.

[Gam85] T. E. Gamal, «A public key cryptosystem and a signature scheme based on
discrete logarithms», IEEE Trans. Inf. Theory, vol. 31, no. 4, pp. 469–472,
1985. [Online]. Available: https://doi.org/10.1109/TIT.1985.1057074.

https://doi.org/10.1007/978-3-030-03332-3%5C_15
https://doi.org/10.1007/978-3-030-38471-5%5C_2
https://doi.org/10.1007/978-3-030-38471-5%5C_2
https://doi.org/10.1007/978-3-030-64834-3%5C_15
https://doi.org/10.1007/978-3-030-64834-3%5C_15
http://eprint.iacr.org/2011/143
https://doi.org/10.1109/TIT.1976.1055638
https://eprint.iacr.org/2023/376
https://eprint.iacr.org/2023/376
http://eprint.iacr.org/2017/1202
http://eprint.iacr.org/2017/1202
https://doi.org/10.1007/978-3-030-64837-4%5C_3
https://www.math.auckland.ac.nz/%5C%7Esgal018/crypto-book/crypto-book.html
https://www.math.auckland.ac.nz/%5C%7Esgal018/crypto-book/crypto-book.html
https://doi.org/10.1109/TIT.1985.1057074

REFERENCES 105

[GPST16] S. D. Galbraith, C. Petit, et al., «On the security of supersingular isogeny
cryptosystems», in Advances in Cryptology - ASIACRYPT 2016 - 22nd
International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part I, J. H. Cheon and T. Takagi, Eds., ser. Lecture Notes in Computer
Science, vol. 10031, 2016, pp. 63–91. [Online]. Available: https://doi.org/10
.1007/978-3-662-53887-6%5C_3.

[HHK17] D. Hofheinz, K. Hövelmanns, and E. Kiltz, «A modular analysis of the
fujisaki-okamoto transformation», in Theory of Cryptography - 15th Interna-
tional Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017,
Proceedings, Part I, Y. Kalai and L. Reyzin, Eds., ser. Lecture Notes in Com-
puter Science, vol. 10677, Springer, 2017, pp. 341–371. [Online]. Available:
https://doi.org/10.1007/978-3-319-70500-2%5C_12.

[JBN14] S. Jain, P. Bhattacharya, and S. Nagpaul, Basic Abstract Algebra. Cambridge
University Press, 2014. [Online]. Available: https://books.google.no/books?i
d=x7jXoQEACAAJ.

[JF11] D. Jao and L. D. Feo, «Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies», in Post-Quantum Cryptography -
4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November
29 - December 2, 2011. Proceedings, B. Yang, Ed., ser. Lecture Notes in
Computer Science, vol. 7071, Springer, 2011, pp. 19–34. [Online]. Available:
https://doi.org/10.1007/978-3-642-25405-5%5C_2.

[Kan97] E. Kani, «The number of curves of genus two with elliptic differentials.»,
vol. 1997, no. 485, pp. 93–122, 1997. [Online]. Available: https://doi.org/10.1
515/crll.1997.485.93.

[Kuh88] R. M. Kuhn, «Curves of genus 2 with split jacobian», Transactions of the
American Mathematical Society, vol. 307, no. 1, pp. 41–49, 1988. [Online].
Available: http://www.jstor.org/stable/2000749 (last visited: Jun. 1, 2023).

[Kun22] S. Kunzweiler, «Efficient computation of (2n, 2n)-isogenies», IACR Cryptol.
ePrint Arch., p. 990, 2022. [Online]. Available: https://eprint.iacr.org/2022
/990.

[LL93] A. Lenstra and H. Lenstra, The Development of the Number Field Sieve
(Lecture Notes in Mathematics). Springer, 1993. [Online]. Available: https:
//books.google.no/books?id=%5C_QBvFRP69xEC.

[LM95] R. Lercier and F. Morain, «Counting the number of points on elliptic curves
over finite fields: Strategies and performance», in Advances in Cryptology
- EUROCRYPT ’95, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Saint-Malo, France, May 21-25, 1995,
Proceeding, L. C. Guillou and J. Quisquater, Eds., ser. Lecture Notes in
Computer Science, vol. 921, Springer, 1995, pp. 79–94. [Online]. Available:
https://doi.org/10.1007/3-540-49264-X%5C_7.

[Mil06] J. Milne, Elliptic Curves. BookSurge Publishers, 2006, pp. 238+viii.

https://doi.org/10.1007/978-3-662-53887-6%5C_3
https://doi.org/10.1007/978-3-662-53887-6%5C_3
https://doi.org/10.1007/978-3-319-70500-2%5C_12
https://books.google.no/books?id=x7jXoQEACAAJ
https://books.google.no/books?id=x7jXoQEACAAJ
https://doi.org/10.1007/978-3-642-25405-5%5C_2
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1515/crll.1997.485.93
http://www.jstor.org/stable/2000749
https://eprint.iacr.org/2022/990
https://eprint.iacr.org/2022/990
https://books.google.no/books?id=%5C_QBvFRP69xEC
https://books.google.no/books?id=%5C_QBvFRP69xEC
https://doi.org/10.1007/3-540-49264-X%5C_7

106 REFERENCES

[MM22] L. Maino and C. Martindale, «An attack on SIDH with arbitrary starting
curve», IACR Cryptol. ePrint Arch., p. 1026, 2022. [Online]. Available: https
://eprint.iacr.org/2022/1026.

[Mon87] P. Montgomery, «Speeding the pollard and elliptic curve methods of fac-
torization. mathematics of computation», vol. 48, no. 177, pp. 234–264,
1987.

[MZoW+96] A. Menezes, R. Zuccherato, et al., An Elementary Introduction to Hyperelliptic
Curves (CORR Report). Faculty of Mathematics, University of Waterloo,
1996, (Accessed on 06/14/2023). [Online]. Available: https://books.google.no
/books?id=yxZYNAEACAAJ.

[NCG02] M. A. Nielsen, I. Chuang, and L. K. Grover, «Quantum Computation and
Quantum Information», American Journal of Physics, vol. 70, no. 5, pp. 558–
559, May 2002. [Online]. Available: https://doi.org/10.1119/1.1463744.

[NIST] PQC Standardization Process: Announcing Four Candidates to be Standard-
ized, Plus Fourth Round Candidates. [Online]. Available: https://csrc.nist.g
ov/News/2022/pqc-candidates-to-be-standardized-and-round-4 (last visited:
Aug. 11, 2022).

[OP22a] R. Oudompheng and G. Pope, «A note on reimplementing the castryck-
decru attack and lessons learned for sagemath», IACR Cryptol. ePrint Arch.,
p. 1283, 2022. [Online]. Available: https://eprint.iacr.org/2022/1283.

[OP22b] R. Oudompheng and G. Pope, «A note on reimplementing the castryck-
decru attack and lessons learned for sagemath», IACR Cryptol. ePrint Arch.,
p. 1283, 2022. [Online]. Available: https://eprint.iacr.org/2022/1283.

[Rob23] D. Robert, «Breaking SIDH in polynomial time», in Advances in Cryptology
- EUROCRYPT 2023 - 42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part V, C. Hazay and M. Stam, Eds., ser. Lecture Notes in
Computer Science, vol. 14008, Springer, 2023, pp. 472–503. [Online]. Available:
https://doi.org/10.1007/978-3-031-30589-4%5C_17.

[SAJA21] H. Seo, M. Anastasova, et al., «Supersingular isogeny key encapsulation
(SIKE) round 2 on ARM cortex-m4», IEEE Trans. Computers, vol. 70,
no. 10, pp. 1705–1718, 2021. [Online]. Available: https://doi.org/10.1109
/TC.2020.3023045.

[Sho97] P. W. Shor, «Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer», SIAM J. Comput., vol. 26, no. 5,
pp. 1484–1509, 1997. [Online]. Available: https://doi.org/10.1137/S00975397
95293172.

[SIKE] Sike statement to nist, https://csrc.nist.gov/csrc/media/Projects/post-quan
tum-cryptography/documents/round-4/submissions/sike-team-note-insec
ure.pdf, (Accessed on 05/24/2023).

https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://books.google.no/books?id=yxZYNAEACAAJ
https://books.google.no/books?id=yxZYNAEACAAJ
https://doi.org/10.1119/1.1463744
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://eprint.iacr.org/2022/1283
https://eprint.iacr.org/2022/1283
https://doi.org/10.1007/978-3-031-30589-4%5C_17
https://doi.org/10.1109/TC.2020.3023045
https://doi.org/10.1109/TC.2020.3023045
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf

REFERENCES 107

[Sil09] J. H. Silverman, The Arithmetic of Elliptic Curves (Graduate texts in math-
ematics). Dordrecht: Springer, 2009. [Online]. Available: https://cds.cern.ch
/record/1338326.

[Smi06] B. Smith, «Explicit endomorphisms and correspondences», Bulletin of The
Australian Mathematical Society - BULL AUST MATH SOC, vol. 74, Dec.
2006.

[SS14] T. J. Shimeall and J. M. Spring, «Chapter 8 - resistance strategies: Symmetric
encryption», in Introduction to Information Security, T. J. Shimeall and
J. M. Spring, Eds., Boston: Syngress, 2014, pp. 155–186. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9781597499699000080
.

[Sto10] A. Stolbunov, Constructing public-key cryptographic schemes based on class
group action on a set of isogenous elliptic curves, 2010. [Online]. Available:
/article/id/e8001706-6615-4b24-b499-8ea9d348dabb.

[Vél71] J. Vélu, Comptes rendus de l’académie des sciences de paris, série a, t. 273,
https://aghitza.github.io/pdf/other/velu.pdf, (Accessed on 04/19/2023),
Jul. 1971.

[Wes] B. Wesolowski, Understanding and improving the castryck-decru attack on
sidh, https://www.dropbox.com/s/pmv3lrsg1gayl13/attacksidh.pdf?dl=0,
(Accessed on 05/09/2023).

https://cds.cern.ch/record/1338326
https://cds.cern.ch/record/1338326
https://www.sciencedirect.com/science/article/pii/B9781597499699000080
https://www.sciencedirect.com/science/article/pii/B9781597499699000080
/article/id/e8001706-6615-4b24-b499-8ea9d348dabb
https://aghitza.github.io/pdf/other/velu.pdf
https://www.dropbox.com/s/pmv3lrsg1gayl13/attacksidh.pdf?dl=0

AppendixAFinding Optimal
√

élu Degree

For finding an optimal threshold for when to use vélu’s formula and
√

élu we conducted
several tests where we computed all the different isogenies in Fp2 . For each isogeny,
we computed 100 and took the average computing time. All tests were conducted
using a MacBook Air with an Apple M1 chip.

We did three different tests with different primes. The three different primes
were:

p = 2127 − 1
p = 0x76042798BBFB78AEBD02490BD2635DEC131AB
FFFFFFFFFFFFFFFFFFFFFFFFFFF

p = 1880988357614899397574825702918111482734
99283258225940944664269318258687

For the first prime, Table A.1, we see that computing isogenies with degree ≥ 337
are faster with

√
élu. For the second prime, Table A.2, the only isogeny it paid off

using
√

élu was 5419. We can set a temporary lower bound, we can observe that
computing isogeny of degree 251 is not beneficial. For the last test, Table A.3, the
269-degree isogeny is borderline not faster using

√
élu.

While computing isogenies take varying amounts of time, depending on the field
we are working over, we can set a soft threshold of around 300. Using Table A.1 and
A.3, we see the threshold is between 269 < threshold < 337.

109

110 A. FINDING OPTIMAL
√

élu DEGREE

Calculating isogeny of degree ℓ in a field p = 255-bit
Isogeny degree Avrg time (Vélu) Avrg time (

√
élu) times faster

19 0.002171 0.01894 0.1146
43 0.004890 0.02063 0.2370
73 0.008827 0.02181 0.4047
127 0.01479 0.02337 0.6329
337 0.03981 0.02931 1.358
5419 0.6603 0.09900 6.670
92737 12.08 0.4430 27.27

Table A.1: Table of how long computing an isogeny of degree ℓ takes with vélu’s
formula and

√
élu over p = 2127 − 1.

Calculating isogeny of degree ℓ in a field p = 253-bit
Isogeny degree Avrg time (Vélu) Avrg time (

√
élu) times faster

107 0.01333 0.04469 0.2983
109 0.01424 0.04482 0.3177
131 0.01665 0.04489 0.3709
137 0.01742 0.04591 0.3794
197 0.02566 0.04785 0.5363
199 0.02531 0.04925 0.5139
227 0.02921 0.04809 0.6074
251 0.03265 0.05133 0.6361
5519 0.7344 0.1451 5.061

Table A.2: Table of how long computing an isogeny of degree ℓ takes with vélu’s
formula and

√
élu.

Calculating isogeny of degree ℓ in a field p = 237-bit
Isogeny degree Avrg time (Vélu) Avrg time (

√
élu) times faster

103 0.01297 0.03206 0.4046
269 0.034633 0.03550 0.9756
439 0.053026 0.04330 1.224

Table A.3: Table of how long computing an isogeny of degree ℓ takes with vélu’s
formula and

√
élu.

AppendixBCode for Algorithm

1 # Function to find an optimal sequence
2 # Returns a list list of form [alpha_i, factor to remove, u, v]
3 def optimal_sequence(N, M):
4 # Initialize variables: temporary M, recovered M, and results
5 M_tmp = M
6 recovered_M = 1
7 results = [[-1,-1,-1,-1]]
8

9 # Iterate while there is at least one prime factor of M_tmp
10 while len([p for p, e in list(factor(M_tmp)) for _ in range(e)]) > 1:
11 # Iterate over each prime factor combination of M_tmp
12 for prime_factor in prime_combinations(M_tmp):
13 # Multiply the current prime factor by the recovered_M
14 recovered_M *= prime_factor
15

16 # If recovered_M modulo 4 is not equal to 3
17 # Then divide the recovered_M by the prime factor and continue the loop
18 if recovered_M % 4 != 3:
19 recovered_M /= prime_factor
20 continue
21

22 # Call the function find_lowest_alpha with parameters N and recovered_M
23 # If the result is None, then continue the loop
24 result = find_lowest_alpha(N, recovered_M)
25 if result is None: continue
26

27 # If there is a result, unpack the result into N_low, u, and v
28 N_low, u, v = result
29 # Divide the M_tmp by the prime factor
30 M_tmp /= prime_factor
31 # Append the result to the results list
32 results[-1][1] = prime_factor
33 results.append([N_low, -1, u, v])
34 # Need to update factor of previous list such that u_v list is correct
35 # Break the loop
36 break
37 # Return the results list

111

112 B. CODE FOR ALGORITHM

38 results[-1][1] = M_tmp
39 results.reverse()
40 return results

Listing B.1: Code for finding the best sequence for attacking B-SIDH. M is Bob’s
order.

1 def find_lowest_alpha(N, M):
2 for i in range(factor(N)[0][1] + 1):
3 C = 2^i - M
4 if C % 4 and C > 1:
5 u_v = find_u_v(C)
6 if u_v is not None:
7 return i, u_v[0], u_v[1]
8 return None
9

10 def prime_combinations(int):
11 # Get the prime factors
12 prime_factors = [p for p, e in list(factor(int)) for _ in range(e)]
13

14 # Sort in descending order
15 prime_factors.sort(reverse=True)
16

17 # Copy the prime factors
18 prime_factors_combinations = list(prime_factors)
19

20 result = []
21 while prime_factors_combinations:
22 # Pop the largest prime factor
23 largest_prime_factor = prime_factors_combinations.pop(0)
24 # Generate all combinations of the largest prime factor and each of the other

prime factors,
25 # starting with the smallest, and append them to the result
26 result.extend(largest_prime_factor * p for p in reversed(

prime_factors_combinations))
27

28 # Concatenate the prime factors and the combinations and return
29 return prime_factors + result

Listing B.2: Two helper functions called find_lowest_alpha and
prime_combinations.

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Research Objective and Questions
	Outline of Thesis

	Background
	Algebra Fundamentals
	Groups
	Rings
	Fields

	Cryptography
	Asymmetric and Symmetric Cryptography
	Diffie-Hellman Key Exchange
	Shor's Algorithm and Quantum Computers

	Elliptic Curves
	Supersingular Curves
	Quadratic Twists

	Isogenies of Elliptic Curves
	Isogenies From Kernels
	The Supersingular Isogeny Problem

	SIDH & B-SIDH
	Building Upon Costello
	A Brief History of Isogeny-Based Cryptography
	Walking and Drawing the Isogeny Graph
	Discovering the -isogeny Graph with SageMath

	Setting the Stage
	The Protocol
	Description
	SIDH Toy Example

	Supersingular Isogeny Key Encapsulation
	B-SIDH
	Enabled by X-Only Arithmetic
	Choosing a Friendly Prime p
	Handling Large -degree Isogenies
	The Protocol
	B-SIDH Toy Example
	B-SIDH Running Time

	Castryck and Decru's Key Recovery Attack
	Hard Problems are Difficult to Find
	Computational and Decision Diffie-Hellman Problem
	Computational and Decisional Isogeny Problem

	Even More Curves
	Hyperellptic Curves
	The Jacobian of a Genus 2 Curve
	Richelot Isogenies

	Castryck-Decru Attack
	Kani's Theorem
	Auxiliary Isogenies
	Constructing Bob's Secret Key
	The Glue and Split Oracle
	Attacking Algorithm
	Step Size
	Alternative Visual Representation of the Attack

	Attacking SIDH Toy Example
	Other Attacks on SIDH
	Generalization by Martindale, Maino, and Robert
	Direct Computation

	Attacking B-SIDH
	Preparing to Attack B-SIDH
	Bob's Twisted Torsion
	Alice's Twisted Torsion
	(3, 3)-Isogenies
	(,)-Isogenies
	Can We At Least Lower the Security Requirements?
	Representing Bob's Secret Key with the Chinese Remainder Theorem
	Number of Queries to Oracle
	B-SIDH Attacking Algorithm

	Attacking B-SIDH
	Toy Example
	Timing How Long One Guess Take
	Attacking Example II
	Attacking Example III

	Ways To Speed Up the Attack
	Compute Isogenies Using élu
	Parallelisation
	Recover Smallest Degree Isogenies First
	Extending Bob's Secret Isogeny
	Finding Optimal Course of Action

	Can B-SIDH Be Considered Broken?

	Conclusion
	Research Questions
	Limitations and Remarks
	Future Work

	References
	Finding Optimal élu Degree
	Code for Algorithm

