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1. Introduction

Mackey functors were first defined by Dress and Green in the early 1970s [7–9]. They have proven to 
be important objects in equivariant homotopy theory and representation theory. For G a finite group, the 
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category of G-Mackey functors is abelian and symmetric monoidal via the box product. We call a monoid 
R in this category a Mackey ring (note that commutative Mackey rings are also called Green functors in 
the literature). From R one obtains an abelian category of R-modules, a corresponding category of chain 
complexes of R-modules, and an associated derived category D(R).

The derived category of a Mackey ring is our main object of study in this paper, though our motivation 
comes from topology. In classical topology, if T is a ring then D(T ) is the natural homotopical recipient 
for singular homology with T -coefficients. In the G-equivariant setting, if R is a Mackey ring then D(R) is 
the analogous recipient for ordinary Bredon homology with R-coefficients. For this reason it is natural to 
investigate D(R) and try to understand as much as we can about it.

This paper specializes to the case where G = C2, the cyclic group of order two, and R = Z/�, the 
constant-coefficient Mackey functor for the ring Z/�, with � a prime. In this case we completely describe the 
full subcategory D(Z/�)perf consisting of perfect complexes. Here a “perfect complex” is a bounded chain 
complex of finitely-generated projective modules. There are only two indecomposable, finitely-generated 
projectives, called H and F in the � = 2 case and H and SΘ in the � > 2 case (see Section 2). Topologically, 
H and F correspond to fixed and free C2-equivariant cells, respectively, and when � > 2 one has F ∼= H⊕SΘ.

When � is odd, the category of Z/�-modules is semisimple and hence D(Z/�)perf is easy to understand. 
Every perfect complex decomposes—as a chain complex, not just an object in the derived category—as a 
direct sum of suspensions of H and SΘ (regarded as complexes concentrated in degree 0) as well as “disks” 
on H and SΘ (chain complexes consisting of exactly one identity map)—see Proposition 3.5. But the case of 
real interest is � = 2. Here we are again able to describe all perfect complexes, but the result and techniques 
used are more complicated. For this case we define certain families of complexes Ak, Br (for k, r ≥ 0), 
and H(n) (for n ∈ Z). These are simple “linear strands” consisting of a single H or F in each degree; see 
Section 4 for the precise definitions. Our main classification result is the following:

Theorem 1.1. Every perfect complex of Z/2-modules is isomorphic to a finite direct sum of suspensions of 
complexes of type Ak, Br, and H(n), together with suspensions of elementary contractible disk-complexes 
D(P ), where P is a projective and D(P ) denotes the complex 0 −→ P

id−→ P −→ 0.

We actually prove more than is stated in the above theorem. We give an algorithm for taking any perfect 
complex and splitting it into the above form. We also prove a similar splitting theorem for bounded below 
complexes of finitely-generated modules. The bounded below case requires two more types of complexes 
(allowing k = ∞ and r = ∞); see Theorem 4.10.

We call each of the special complexes in the splitting theorems “strands” because they take a particularly 
nice form: they are nonzero for a finite string of degrees, and in each of these degrees they have a single 
summand that is either H or F . A similar splitting phenomenon occurs for the classical derived category 
of abelian groups: every perfect complex splits as a direct sum of shifts of the strands 0 −→ Z −→ 0 and 
0 −→ Z n−→ Z −→ 0. In some ways our main argument is similar to what happens in this classical example, 
in that we can do concrete change-of-bases to produce the splitting—but the bookkeeping is more difficult 
and comes with several subtleties. Note that there is something special about G = C2 here; for G = Cp with 
p an odd prime, there are perfect complexes that cannot decompose into strands in D(Z/p). We discuss 
this in Remark 4.11.

Returning to G = C2, it follows from Theorem 1.1 that we can understand D(Z/2)perf by studying all 
maps between the Ak, Br, and H(n) complexes. The derived category D(Z/2) also has a monoidal product 
�, analogous to the tensor product on the derived category of an ordinary commutative ring. We completely 
calculate all maps and products in D(Z/2)perf . We also study several other aspects of this derived category 
such as the Picard group, the Balmer spectrum, and a certain kind of duality. We find the Picard group 
of D(Z/2) is Z2 (see Theorem 5.2) and the Balmer spectrum for D(Z/2)perf consists of three points, two 
closed and one generic (see Theorem 5.4).
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Remark 1.2. The reader will have noticed the different notation of indices for the H-family as opposed to 
the A- and B-families. In the derived category, the H(n) are invertible with H(n)�H(m) � H(n + m). 
The derived category D(Z/2) in many ways behaves like the derived category of a projective curve having 
exactly two closed points x and y. The H(n) are analogs of the canonical sheaves O(n), and the Ak and 
Bk are analogs of the kth order thickenings of the structure sheaves for the points x and y. For further 
analogies with algebraic geometry see Remark 4.4 and Theorem 4.21.

While the main work of this paper is entirely algebraic, our motivation comes from equivariant homotopy 
theory. For every Mackey functor M , there is a corresponding genuine equivariant spectrum HM called 
the Eilenberg–MacLane (or Bredon) spectrum. If A is an abelian group then we can take M = A, the 
constant-coefficient Mackey functor, and if A is a ring then HA is a ring spectrum.

In the equivariant setting, homotopy and (co)homology are often graded on the representation ring 
RO(G). For G = C2, this gives us bigraded homotopy and (co)homology. Unlike the classical setting, the 
RO(G)-graded homotopy of HA is typically not concentrated in a single degree. This can make computations 
significantly more challenging. In general, the homotopy category of HA-modules is not well understood. 
However, we can transform this into a problem in algebra.

The homotopy category of HA-modules is equivalent to the derived category D(A) (for A = Z this was 
explained in [17]). We use this equivalence and our classification of perfect complexes in D(Z/�) to give 
a classification of finite HZ/�-modules. For � odd, every finite HZ/�-module decomposes as a wedge of 
suspensions of HZ/�. Here the suspensions are by (possibly virtual) representation spheres. Our description 
of perfect complexes is not actually required here: this decomposition follows from the fact that the RO(C2)-
graded homotopy of HZ/� is a graded field, and graded modules over a graded field decompose nicely. As 
before, � = 2 is the much more interesting case. The RO(C2)-graded homotopy of HZ/2 is a non-Noetherian 
ring and has a complicated module theory.

In [13] it was shown that if X is a finite C2-CW spectrum then HZ/2 ∧ X splits into a wedge of 
suspensions of HZ/2 and HZ/2 ∧ (Sk

a)+, where Sk
a is the k-dimensional sphere with the antipodal action 

and suspensions are by (virtual) representation spheres. Using the splitting of perfect complexes in D(Z/2), 
we prove a generalization. This generalization requires a third type of HZ/2-module given by “cofibers of 
powers of τ”, where τ is a certain familiar element in the homotopy of HZ/2 (see Section 4.24 for a precise 
definition).

Theorem 1.3. Every finite HZ/2-module is equivalent to a wedge of RO(C2)-graded suspensions of HZ/2, 
HZ/2 ∧ (Sk

a)+, and Cof(τ r) for various k ≥ 0 and r ≥ 1.

This follows from the splitting theorem by identifying the complexes H(n) with weight n representation 
spheres (smashed with HZ/2), the complexes Ak with the antipodal spheres (again, smashed with HZ/2), 
and finally the complexes Br−1 with Cof(τ r).

While this splitting theorem might appear a bit asymmetric with the appearance of Cof(τ r), we can 
reinterpret the splitting by identifying HZ/2 ∧ (Sk

a)+ with a desuspension of Cof(ρk+1). Here ρ is another 
familiar element in the homotopy of HZ/2. Then we observe every finite HZ/2-module splits as a wedge 
of suspensions of the unit HZ/2, Cof(ρk), and Cof(τ r) for k, r ≥ 1.

The splitting result of Theorem 1.1 has some other nice consequences. One is that it leads to a new proof 
of the topological splitting theorem from [13]. We also use it to give a new perspective on an important 
result of Kronholm. Kronholm [12] observed that for a C2-space built from a finite number of representation 
cells (called a finite Rep(C2)-complex), the RO(C2)-graded Bredon cohomology is always free as a module 
over the Bredon cohomology of a point. The proof of this “freeness theorem” is subtle, and a small but 
significant gap was discovered and repaired by Hogle and C. May [11], who also extended the result to the 
finite-type case. We use Theorem 1.1 to give another proof of this freeness theorem, which again has some 
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subtleties but also offers some enlightening perspectives. In particular, one notable aspect of Kronholm’s 
freeness theorem is the phenomenon now known as “Kronholm shifting”, whereby cells from the original 
decomposition appear to shift weights in terms of how they contribute to the cohomology of the space. The 
algebraic splitting algorithm underlying Theorem 1.1 gives a concrete perspective on these Kronholm shifts.

Remark 1.4. In a private communication, Dylan Wilson shared a perspective on how the derived category 
versions of some of our results can be understood via the Tate square from equivariant homotopy theory. 
We briefly include a rough outline since this might serve as a useful guidepost to the reader, though some 
of the details are outside the scope of this paper.

The Tate square for HZ/2 takes the form

HZ/2 HZ/2[ρ−1]

HZ/2[τ−1] HZ/2[τ−1, ρ−1].

Isomorphism classes of modules over HZ/2 can be seen to correspond to isomorphism classes of triples 
(M, N, φ) where M is a module over HZ/2[τ−1], N is a module over HZ/2[ρ−1], and φ is an isomorphism 
M [ρ−1] → N [τ−1] (according to Wilson there is an appropriate ∞-categorical equivalence here).

The bigraded homotopy rings of the equivariant ring spectra HZ/2[τ−1] and HZ/2[ρ−1] are very simple: 
they are Z/2[τ±1, ρ] and Z/2[τ, ρ±1], respectively. In particular, these are bigraded PIDs and this implies 
that the module theory of these ring spectra is formal—that is, the module theory is the same as the 
(bigraded) module theory of their bigraded homotopy rings (using that bigraded homotopy detects weak 
equivalences in the C2-equivariant setting). By algebra, the graded module theory of these rings is the same as 
that of the singly-graded rings Z/2[x1] and Z/2[x2] where x1 = ρ

τ and x2 = τ
ρ . One is therefore led to consider 

triples (M1, M2, φ) where Mi is a graded Z/2[xi]-module and φ is an isomorphism M1[x−1
1 ] → M2[x−1

2 ]. 
Such tuples can be seen to break up into sums of three types: (Z/2[x1]/(xr

1), 0, 0), (0, Z/2[x2]/(xs
2), 0), and 

the free case (Σk1Z/2[x1], Σk2Z/2[x2], 1 
→ xk2−k1
2 ). These are the analogs of our A-, B-, and H(n)-families, 

respectively (the third tuple listed above corresponds to Σk1H(k1 − k2)).
One can find shades of the above argument sprinkled amongst our methods throughout the paper, though 

our perspective is more rigid and algebraic. But in particular we want to accentuate the viewpoint that the 
module theory of HZ/2-modules (or equivalently, the homological algebra of Z/2-modules) is almost like 
that of a PID. Note also that the above perspective shows the connection between finite-type HZ/2-modules 
and coherent sheaves over the projective line P 1

F2
, which was foreshadowed in Remark 1.2 and also appears 

later in Section 4.

1.5. Organization of the paper

Section 2 gives background on the category of Mackey functors and its closed symmetric monoidal 
structure, and sets up much of our notation. In Section 3 we focus on understanding Z/n-modules, and 
find that there are only a few finitely-generated indecomposables. The main results are in Section 4, which 
contains a thorough investigation of the derived category of Z/2-modules together with our main splitting 
theorem. Consequences of this work are then developed in Sections 5 and 6, whereas Section 7 gives the 
proof of the splitting theorem. Finally, Section 8 uses techniques from the proof of the splitting theorem to 
prove an algebraic version of Kronholm’s freeness theorem.
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1.6. Notation and terminology

If C is a category then we write C(A, B) for HomC(A, B). The cyclic group with two elements is denoted 
C2 when it is the background group acting on spaces, and denoted Z/2 when it plays the role of a coefficient 
system.

1.7. Acknowledgments

Many thanks to the anonymous referee for their careful reading, helpful feedback, and for suggesting the 
short proof of the freeness theorem via localization. The third author would also like to thank Anna Marie 
Bohmann, Drew Heard, Mike Hill, Eric Hogle, and Mingcong Zeng for a number of helpful conversations.

2. Background on Mackey functors

In this section we review the basic definitions and structures on Mackey functors. We then introduce the 
Mackey rings Z/n. The main objects of study throughout the paper will be Z/n-modules. More information 
about Mackey functors and their homological algebra can be found in papers such as [16], [10], [4], [5], and 
[17].

A Mackey functor for the group C2 is a diagram of abelian groups

MΘ
p∗

t M•
p∗

where the maps satisfy the formulas tp∗ = p∗, p∗t = p∗, t2 = id, and p∗p∗ = 1 + t. There are other ways 
of defining Mackey functors as certain additive functors defined on all finite C2-sets. This ‘coordinate-free’ 
approach is more convenient for some purposes. If • denotes the trivial C2-set with one element and Θ
denotes C2 regarded as a C2-set via left multiplication, then every C2-set is a disjoint union of copies of •
and Θ. So an additive functor M on all C2-sets is completely determined by the data in the above diagram.

Write MackC2 for the category of Mackey functors for the group C2, and note that this is an abelian 
category.

Remark 2.1. It is often convenient to denote elements of MΘ by xΘ, and elements of M• by x•. In short, we 
use subscripts to remind us what part of the Mackey functor elements live in.

2.2. Free Mackey functors

Consider the evaluation functors ev• : MackC2 → Ab and evΘ : MackC2 → Ab sending M 
→ M• and 
M 
→ MΘ, respectively. These have left adjoints, which will be denoted F• and FΘ, respectively. If A is an 
abelian group it is easy to compute that F•(A) has (F•(A))Θ = A and (F•(A))• = A ⊕A, where t = id, the 
map p∗ is the inclusion of the right factor, and p∗ is the identity on the left factor and multiplication-by-two 
on the right factor. We can use the symbols p∗ and p∗ as placekeepers and write

F•(A) : p∗Aid

[ 0 1 ]
A⊕ p∗p∗(A).[ 1

2

]

Similarly, FΘ(A) can be computed to have (FΘ(A))Θ = A ⊕ A and (FΘ(A))• = A, where t switches the 
two summands, p∗ is the fold map, and p∗ is the diagonal. We can write
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FΘ(A) : A⊕ tA
[ 0 1
1 0

] [ 1 1 ]
p∗A.[ 1

1

]

Of particular importance are the Mackey functors FΘ(Z) and F•(Z), which play the role of free objects 
in our category. It can be useful to write these in terms of chosen generators g:

F•(Z) : Z〈p∗g•〉id

[ 0 1 ]
Z〈g•〉 ⊕ Z〈p∗p∗g•〉,[ 1

2

]

FΘ(Z) : Z〈gΘ〉 ⊕ Z〈tgΘ〉
[ 0 1
1 0

] [ 1 1 ]
Z〈p∗gΘ〉.[ 1

1

]

Note that giving a map FΘ(Z) → M is equivalent to specifying the image of gΘ in MΘ and likewise giving 
a map F•(Z) → M is equivalent to specifying the image of g• in M•.

The Mackey functor F•(Z) coincides with what is usually called the Burnside Mackey functor and is 
frequently denoted as A.

2.3. Constant Mackey functors

Let A be an abelian group. There is a Mackey functor A where AΘ = A• = A, p∗ = t = id, and p∗ is 
multiplication by 2. This is called the constant coefficient Mackey functor with value A and has diagram:

A : A
2

id A.
id

2.4. The box product

Given two Mackey functors M and N , their box product M�N is the Mackey functor given by

(M�N)Θ = MΘ ⊗NΘ, (M�N)• = [(M• ⊗N•) ⊕ (MΘ ⊗NΘ)]/ ∼

where the equivalence relation will be defined in a moment. The structure map p∗ will send MΘ⊗NΘ to the 
image of the right summand in (M�N)•, so we denote the element mΘ ⊗ nΘ in (M�N)• as p∗(mΘ ⊗ nΘ). 
The other structure maps in M�N are given by

• t(mΘ ⊗ nΘ) = t(mΘ) ⊗ t(nΘ),
• p∗(m• ⊗ n•) = p∗(m•) ⊗ p∗(n•),
• p∗(p∗(mΘ ⊗ nΘ)) = mΘ ⊗ nΘ + t(mΘ) ⊗ t(nΘ).

Finally, the equivalence relation that defines (M�N)• is generated by

• p∗(p∗(m•) ⊗ nΘ) = m• ⊗ p∗(nΘ),
• p∗(mΘ ⊗ p∗(n•)) = p∗(mΘ) ⊗ n•, and
• p∗(t(mΘ) ⊗ t(nΘ)) = p∗(mΘ ⊗ nΘ).

There is a natural unit isomorphism A�M → M that sends g• ⊗m• 
→ m• and p∗g• ⊗mΘ 
→ mΘ. There 
is a similar right unital isomorphism M�A → M .
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The associativity isomorphism (M�N)�Q ∼= M�(N�Q) is the evident one. The twist isomorphism 
M�N ∼= N�M sends mΘ ⊗nΘ 
→ nΘ ⊗mΘ and m• ⊗n• 
→ n• ⊗m•. With these structures, (MackC2 , �, A)
is a symmetric monoidal category.

Example 2.5. As an example we analyze FΘ(Z)�FΘ(Z). On the Θ side this is the free abelian group with 
generators gΘ ⊗ gΘ, gΘ ⊗ tgΘ, tgΘ ⊗ gΘ, and tgΘ ⊗ tgΘ, with the twist t acting diagonally. On the • side we 
have the free abelian group with generators p∗(gΘ ⊗ gΘ) and p∗(gΘ ⊗ tgΘ). A quick analysis of the p∗ and 
p∗ maps shows this is isomorphic to FΘ(Z) ⊕FΘ(Z), with corresponding generators gΘ ⊗ gΘ and gΘ ⊗ tgΘ.

As a generalization of the above, one can check that if M is any Mackey functor then M�FΘ(Z) ∼=
FΘ(MΘ).

2.6. Rings and modules

A ring structure on a given Mackey functor M consists of a unit map A → M and a multiplication 
M�M → M satisfying the usual axioms (the commutative version of this structure is also called a Green 
functor). This is equivalent to specifying a ring structure on M• and a ring structure on MΘ such that

(I) p∗ and t are maps of rings, and
(II) p∗ : MΘ → M• is a map of M•-M•-bimodules, where MΘ is an M•-M•-bimodule via p∗.

Condition (II) is equivalent to the “projection formulas”

p∗(p∗(m•) ·mΘ) = m• · p∗(mΘ), p∗(mΘ · p∗(m•)) = p∗(mΘ) ·m•.

In particular, note that if R is a ring then the constant Mackey functor R is a Mackey ring in a natural 
way, by using the multiplication in R for the multiplication in both the Θ and • components.

If R is a Mackey ring and M is a Mackey functor, then equipping M with a (left) R-module structure is 
equivalent to giving an R•-module structure on M• and an RΘ-module structure on MΘ such that

(i) p∗(x• ·m•) = p∗(x•) · p∗(m•)
(ii) t(xΘ ·mΘ) = t(xΘ) · t(mΘ)
(iii) p∗(p∗(x•) ·mΘ) = x• · p∗(mΘ)
(iv) p∗(xΘ · p∗(m•)) = p∗(xΘ) ·m•.

When R is the ring Z or Z/n, we have the following description of R-modules:

Proposition 2.7. A Mackey functor M admits at most one structure of Z-module, and it admits such a 
structure if and only if p∗p∗ = 2. Similarly, a Mackey functor M admits at most one structure of Z/n-
module, and it admits such a structure if and only if nMΘ = 0, nM• = 0, and p∗p∗ = 2.

Proof. Because there is exactly one Z-module structure on an abelian group, conditions (i)–(iii) above are 
trivial (they all involve products with a multiple of the identity). Only condition (iv) has content and it is 
the condition that p∗p∗ = 2. The analysis for Z/n-modules is exactly the same. �
Remark 2.8. In the classical literature, Z-modules were originally called “cohomological Mackey functors”. 
See [16], for example.

Remark 2.9. If R is a Mackey ring, M is a right R-module, and N is a left R-module, then we define M�RN

to be the coequalizer of the two evident arrows
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M�R�N ⇒ M�N.

This is the usual definition that works in any monoidal category.

We will have special need for the “free” R-modules FR
Θ = R�FΘ(Z) and FR

• = R�F•(Z). Note that these 
have the adjunction properties

HomR(FR
Θ ,M) ∼= MΘ, HomR(FR

• ,M) ∼= M•.

Note as well that FR
• is just another name for R, since F•(Z) = A is the unit for the box product. It is best 

to think of FR
Θ as the free R-module generated by an element on the Θ side, and FR

• as the free R-module 
generated by an element on the • side. We leave it as an exercise for the reader to check that FR

Θ
∼= FΘ(RΘ). 

That is, FR
Θ is isomorphic to the R-module

FR
Θ : RΘ〈gΘ〉 ⊕RΘ〈tgΘ〉

[ 0 1
1 0

] [ 1 1 ]
RΘ〈p∗gΘ〉[ 1

1

]

where RΘ acts diagonally on the Θ side and R• acts via p∗ : R• → RΘ on the • side.
It is easy to check that both FR

Θ and FR
• are projective R-modules. We say that an R-module is free if 

it is a direct sum of copies of FR
Θ and FR

• . We have the expected notion of free basis:

Definition 2.10. Let R be a Mackey ring and let M be an R-module. Define a basis of M to be a collection 
of elements bΘ1 , . . . , bΘm ∈ MΘ and b•m+1, . . . , b

•
m+n ∈ M• such that the induced map

(
m⊕
i=1

FR
Θ

)
⊕

(
n⊕

j=1
FR

•

)
−→ M

is an isomorphism.

Not every R-module has a basis, of course, only the free modules.

2.11. The internal hom (cotensor)

Let M and N be Mackey functors, and write Hom(M, N) for the set of maps of Mackey functors from 
M to N . This is an abelian group in the natural way. We will next describe an internal hom Hom(M, N), 
itself a Mackey functor, with the property that Hom(M, N)• = Hom(M, N).

Consider the diagram of Mackey functors

FΘ(Z)t

p∗

F•(Z)
p∗

where here t is the map sending gΘ 
→ tgΘ, p∗ sends gΘ to p∗(g•), and p∗ sends g• to p∗(gΘ). One readily 
checks that p∗ ◦ p∗ = 1 + t. As a caution to the reader, note the maps in the above diagram go in the 
opposite direction from the similarly named maps of abelian groups within a Mackey functor. The names 
p∗ and p∗ are just used to remember how we defined these maps of Mackey functors.

Given our Mackey functors M and N , we first apply (−)�M to the above diagram to get

FΘ(Z)�Mt

p∗

F•(Z)�M
p∗
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(suppressing �idM on the maps) and then we apply Hom(−, N) to get

Hom(FΘ(Z)�M,N)Hom(t,N)
Hom(p∗,N)

Hom(F•(Z)�M,N).
Hom(p∗,N)

This is a Mackey functor, and this is our definition of Hom(M, N). Note that F•(Z)�M ∼= M , and so 
Hom(M, N)• ∼= Hom(M, N).

Proposition 2.12. There are natural adjunctions

Hom(M,Hom(N,Q)) ∼= Hom(M�N,Q)

and

Hom(M,Hom(N,Q)) ∼= Hom(M�N,Q).

Proof. This is a standard argument and left to the reader. �
Now suppose that R is a Mackey ring. If M and N are left R-modules we define HomR(M, N) ⊆

Hom(M, N) to be the subset consisting of the R-linear maps.
If R is commutative we now define an R-module HomR(M, N). The categorical definition is to define 

this to be the equalizer of

Hom(M,N) ⇒ Hom(R�M,N)

where one map is induced by R�M → M and the other is the composition Hom(M, N) →
Hom(R�M, R�N) → Hom(R�M, N). Alternatively, we can form the diagram

FR
Θ �RMt�idM

p∗�idM

FR
• �RM

p∗�idM

and then apply HomR(−, N). The resulting Mackey functor is HomR(M, N).
The following result is again standard and left to the reader.

Proposition 2.13. Suppose R is a commutative Mackey ring. There are natural adjunctions

HomR(M,HomR(N,Q)) ∼= HomR(M�RN,Q)

and

HomR(M,HomR(N,Q)) ∼= HomR(M�RN,Q).

Proposition 2.14. Let R be Z or Z/n. If M and N are R-modules then the canonical map M�N → M�RN

is an isomorphism.

Proof. Observe HomR(N, N ′) = Hom(N, N ′) for any R-module N ′. This fact and the above adjunctions 
give us that
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Hom(M�N,N ′) ∼= Hom(M,Hom(N,N ′)) = HomR(M,HomR(N,N ′))
∼= HomR(M�RN,N ′)

= Hom(M�RN,N ′).

We see that Hom(M�N, −) and Hom(M�RN, −) are the same functor, and the result follows. �
2.15. Some adjoint functors

Now we specialize to the case where R is a ring and R is the associated constant Mackey ring. An 
R-module consists of a Mackey functor M together with R-module structures on MΘ and M• having the 
properties that p∗, p∗, and t∗ are maps of R-modules and p∗p∗ = 2.

The evaluation functor evΘ : R−Mod → R[C2]−Mod has a left adjoint KL and a right adjoint KR given 
as follows:

KL(M)Θ = M, KL(M)• = M/C2, p∗ is projection, p∗(x̄) = x + tx;
KR(M)Θ = M, KR(M)• = MC2 , p∗(x) = x + tx, p∗ is inclusion.

Note that the adjunctions yield a natural transformation KL → KR that is the identity on the Θ-component.
The next result is an easy exercise:

Proposition 2.16. If 2 is invertible in R then both pairs (KL, evΘ) and (evΘ, KR) are adjoint equivalences, 
and the natural transformation KL → KR is an isomorphism.

3. Z/�-modules

In this section we investigate the category of Z/�-modules, where � is a prime. We give a simple classifica-
tion of all finitely-generated modules. Then we compute all box products and internal homs, and investigate 
their associated derived functors.

Recall from Proposition 2.7 that a Z/�-module is a pair of Z/�-vector spaces VΘ and V• together with 
maps

VΘ
p∗

t V•
p∗

such that p∗p∗ = 1 +t and p∗p∗ = 2. Unsurprisingly, the structure of the category Z/�−Mod in the � = 2 case 
turns out to be very different from the � �= 2 case. We investigate both cases in detail below. A Z/�-module 
M will be called finitely-generated if both MΘ and M• are finite-dimensional vector spaces over Z/�.

3.1. Duality

If V is a Z/�-vector space, let V ∨ denote the dual vector space. If M is a Z/�-module, write Mop for the 
result of applying (−)∨ objectwise to M . That is,

(Mop)Θ = (MΘ)∨ and (Mop)• = (M•)∨,

with the dual structure maps tMop = (tM )∨, p∗Mop = (pM∗ )∨, pMop

∗ = (p∗M )∨. The contravariant functor 
(−)op is an anti-equivalence when restricted to the finitely-generated Z/�-modules. The following useful 
result is a consequence:
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Proposition 3.2. If P is a finitely-generated projective Z/�-module, then P op is an injective Z/�-module.

Proof. If R is a Mackey ring then an R-module M is injective if and only if it satisfies Baer’s criterion. 
In this setting, that means M has the extension property with respect to submodule inclusions I ↪→ FR

•

and J ↪→ FR
Θ (cf. [14, Theorem 2.4.1], but the proof is readily adapted from the classical proof of Baer’s 

criterion as in [16, 2.3.1]). When R = Z/�, the modules FR
• and FR

Θ are finitely-generated, and so I and J
will be as well. The result then follows immediately by applying duality. �
3.3. Classification

We begin by introducing some basic Z/�-modules. Define the two basic “free module” functors FZ/�
Θ , 

FZ/�
• : Z/�−Mod → Z/�−Mod by

FZ/�
Θ (V ) = Z/��FΘ(V ), FZ/�

• (V ) = Z/��F•(V ).

We will shorten these to F �
Θ and F �

• , and also abbreviate F �
Θ(Z/�) = F and F �

• (Z/�) = H. Once again, 
these are

H : Z/�id
2

Z/�
id

and F : Z/�⊕ Z/�
[ 0 1
1 0

] [ 1 1 ]
Z/�.[ 1

1

]

If M is a Z/�-module then giving a Z/�-module map H → M is equivalent to specifying an element of M•, 
and giving a Z/�-module map F → M is equivalent to specifying an element in MΘ.

Consider the duals of the basic free objects. We have

Hop : Z/�id
id

Z/�,
2

while F op ∼= F . The modules F and H are projective, and consequently their duals F and Hop are injective 
by Proposition 3.2. In particular, F is both projective and injective.

Let V be a Z/�-vector space. We will also need the Mackey functor

SΘ(V ) : V 0

where t is multiplication by −1. Using the functors KL and KR from Section 2.15, observe that SΘ(V ) is 
KL (or KR) applied to the sign representation. For convenience we will abbreviate SΘ(Z/�) as SΘ.

3.4. Classification for � odd

The classification of Z/�-modules for � odd is straightforward: by Proposition 2.16 the category of Z/�-
modules is equivalent to the category of Z/�[C2]-modules. The latter is semi-simple with two irreducibles: 
Z/� with the trivial action and Z/� with the sign action. Applying the functor KR to these yields H and 
SΘ. Thus, we obtain the following:

Proposition 3.5. Assume � is an odd prime. Then every Z/�-module is a direct sum of copies of H and SΘ. 
Moreover, every Z/�-module is projective and (consequently) every short exact sequence splits.



12 D. Dugger et al. / Journal of Pure and Applied Algebra 228 (2024) 107473
Note that when � is odd, we have H ∼= Hop and F ∼= H ⊕ SΘ. Note also that if M is finitely-generated 
then M ∼= Ha ⊕ Sb

Θ where a = dimZ/�(M•) and b = dimZ/�(MΘ) − dimZ/�(M•), since this can be detected 
using the above equivalence of categories.

Using that evΘ is strong monoidal lets us easily compute box products in Z/�-modules. For completeness 
we record the following nontrivial box products and internal homs (all other computations follow from H
being the unit). From here on, we let Hom and � denote HomZ/� and �Z/�.

Proposition 3.6. Assume � is odd. Then we have

SΘ�SΘ ∼= H, Hom(SΘ, SΘ) ∼= H, Hom(SΘ, H) ∼= SΘ.

Proof. Routine. �
3.7. Classification for � = 2

For the bulk of this paper we focus on the case � = 2. Note that when working mod 2 we can view t as 
the identity in SΘ. We also pick up a new Mackey functor in this case: if V is a Z/2-vector space then we 
have

S•(V ) : 0 V

As usual, we abbreviate S•(Z/2) as S•.
The following result gives a complete classification for finitely-generated Z/2-modules:

Proposition 3.8. Every finitely-generated Z/2-module M is isomorphic to a direct sum of the Mackey functors 
H, Hop, F , S•, and SΘ. The number of summands of each type is uniquely determined and is given by the 
following formulas. Let f be the rank of 1 + t : MΘ → MΘ. Then

• The number of F summands equals f ;
• The number of Hop summands equals dimMΘ − f − dim(ker p∗);
• The number of H summands equals dimM• − dim(ker p∗) − f ;
• The number of S• summands equals dim(ker p∗) − dimMΘ + f + dim(ker p∗);
• The number of SΘ summands equals dim(ker p∗) − dimM• + dim(ker p∗).

Note that the above decomposition of a module is not canonical. Also, we are not saying that the category 
of Z/2-modules is semisimple: for example, there is an evident exact sequence 0 → SΘ → H → S• → 0 but 
H � SΘ ⊕ S•.

Proof of Proposition 3.8. Let M be a finitely-generated Z/2-module. If the map t : MΘ → MΘ is not the 
identity, pick x ∈ MΘ such that tx �= x. Since p∗(p∗x) = x + tx �= 0, it follows that p∗x �= 0. Then the map 
F → M sending the generator gΘ to x is an injection. Since F is injective, we have M ∼= F ⊕M ′ for some 
M ′. Proceeding inductively to keep splitting off copies of F , we reduce to the case where t : MΘ → MΘ is 
the identity.

If p∗ is nonzero, pick x ∈ MΘ such that p∗(x) �= 0. Then p∗(p∗x) = x + tx = x + x = 0, and so we get an 
injection of Z/2-modules Hop ↪→ M . Again, Hop is an injective Z/2-module and so we split M ∼= Hop⊕M ′

for some M ′. Continuing in this way, we reduce to the case where t = id and p∗ = 0.
Choose a vector space splitting M• = (ker p∗) ⊕U . Likewise, choose a vector space slitting MΘ = p∗(U) ⊕V . 

One readily checks that M ∼= SΘ(V ) ⊕ S•(ker p∗) ⊕Hn where n = dimU .
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The calculation of the number of summands of each type simply comes from going back through the 
above proof and counting. �

The only indecomposable objects are F , H, Hop, SΘ, and S•. We next turn to understanding maps 
between these. Recall that maps F → M are in bijective correspondence with elements of MΘ, and maps 
H → M are in bijective correspondence with elements of M•. Routine calculations show that, except for 
maps from F to itself, there is at most one nonzero map between any two of the indecomposables.

We will have particular need for understanding maps between the projective objects F and H. Maps 
F → H are determined by the image of the generator gΘ, and since HΘ = Z/2 there are exactly two of 
these: the zero map and the map that sends gΘ 
→ p∗(g•). We denote the nonzero map as p∗. Similarly, 
there is exactly one nonzero map H → F , sending g• 
→ p∗(gΘ); we call this map p∗. The only nonzero map 
H → H is the identity, and there are three nonzero maps F → F : 1, t, and 1 + t (where t is the map sending 
gΘ 
→ tgΘ). As a short summary, the following diagram depicts all of these nonzero maps:

F1,t,1+t

p∗

H
p∗

1

Observe that these satisfy the expected relations, e.g.

p∗t = p∗, tp∗ = p∗, p∗p
∗ = 1 + t, p∗p∗ = 0, t2 = 1.

Again, a word of caution to the reader: the maps p∗ and p∗ in the diagram go in the opposite direction of 
those in a Mackey functor. Since there is only one nonzero map F → H and only one nonzero map H → F , 
we sometimes just denote both by p since the precise map is clear from context.

For future reference we record how all these maps look on the Θ and • sides, with respect to our standard 
bases for F and H:

t 1 + t p∗ p∗

Θ
[ 0 1

1 0

] [ 1 1
1 1

]
[ 1 1 ]

[ 1
1

]
• 1 0 0 1

3.9. Homological algebra of Z/2-modules

We now investigate the homological algebra of Z/2-modules, making use of the classification given in the 
previous section. We have the following projective resolutions of the nonfree indecomposable modules:

0 H F SΘ 0, 0 H F H S• 0

and

0 H F
1+t

F Hop 0.

We also have short exact sequences

0 SΘ H S• 0, 0 S• Hop SΘ 0.

The above sequences show that SΘ, S•, and Hop all have projective resolutions with at most three nonzero 
terms. The following is an immediate consequence:
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Proposition 3.10. For any two Z/2-modules A and B where A is finitely-generated, we have Exti(A, B) = 0
for all i ≥ 3.

The following proposition lists the results of several routine calculations in the homological algebra of 
Z/2-modules. Recall that we use Hom and � to mean HomZ/2 and �Z/2.

Proposition 3.11. Let A and B be finitely-generated Z/2-modules. Then Hom(A, B) and A�B are given by 
the following tables:

Hom(A, B):
A\B H F Hop S• SΘ

H H F Hop S• SΘ

F F F 2 F 0 F

Hop H F H 0 H

S• 0 0 S• S• 0
SΘ H F SΘ 0 H

A�B:
A\B H F Hop S• SΘ

H H F Hop S• SΘ

F F 2 F 0 F

Hop Hop 0 Hop

S• S• 0
SΘ Hop

For the cases where A is not projective and B is not injective, the Mackey functors Exti(A, B) are as follows:

Exti(A, B):

A, B Hop, H Hop, SΘ Hop, S• SΘ, H SΘ, SΘ SΘ, S• S•, SΘ S•, S•

2 S• 0 S• 0 0 0 S• S•

1 S• S• 0 S• 0 S• S• 0
0 H H 0 H H 0 0 S•

Finally, for the cases where neither A nor B is free the Mackey functors Tori(A, B) are as follows:

Tori(A, B):

A, B Hop, Hop Hop, SΘ Hop, S• SΘ, SΘ SΘ, S• S•, S•

2 S• 0 S• 0 0 S•

1 S• S• 0 0 S• 0
0 Hop Hop 0 Hop 0 S•

Proof. Lots of calculations, but completely routine. �
Remark 3.12. Notice in the above tables that M�F , Hom(M, F ), and Hom(F, M) are always sums of copies 
of F , no matter what M is. This can be explained by the observation that F can be given the structure of 
a Mackey field over Z/2: it is the Mackey field

F4t
tr

F2
i

where t is the nontrivial automorphism. The above constructions have natural structures of F -modules, and 
over a Mackey field all modules are free.
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Likewise, one might notice that for i > 0 one always has Exti(A, B)Θ = 0 = Tori(A, B)Θ. This follows 
from the observation that for any Mackey functor M one has MΘ = 0 if and only if M�F = 0 (because 
M�F = FΘ(MΘ) as in Example 2.5). Then one calculates that

Tori(A,B)�F = Tori(A,B�F ), Exti(A,B)�F = Exti(A,B�F )

and uses the fact that B�F is a finite direct sum of copies of F , making it both projective (hence flat) and 
injective.

4. Complexes of Z/2-modules

If A is any abelian category we can consider the category of chain complexes Ch(A) and the associated 
homotopy category Ho(Ch(A)) obtained by inverting quasi-isomorphisms. This is also known as the derived 
category D(A). As usual, if R is a Mackey ring and A = R−Mod this homotopy category will also be denoted 
D(R). Our goal is to understand what we can about the structure of D(Z/2).

We will occasionally have to distinguish between constructions on Ch(Z/2) and their derived versions on 
D(Z/2). The derived version of the box product will be denoted ��, and the derived version of the cotensor 
will be denoted FF(−, −).

A complex in Ch(Z/2) is called perfect if it is quasi-isomorphic to a bounded complex that in each 
degree is a direct sum of finitely-many copies of H and F . These are the compact objects in D(Z/2), by the 
same argument as given in [3, Proposition 6.4]. Write D(Z/2)perf for the full subcategory of D(Z/2) whose 
objects are the perfect complexes. Our first goal is to completely classify these objects.

The full subcategory of Z/2−Mod whose objects are F and H is, by inspection, isomorphic to the full 
subcategory of Z/2[C2]-modules consisting of Z/2[C2] and Z/2 (with C2 acting trivially). All finitely-
generated Z/2[C2]-modules are direct sums of these two types, so the full subcategory of finitely-generated 
free Z/2-modules is isomorphic to the category of finitely-generated Z/2[C2]-modules. Comparing the box 
products of F and H from Proposition 3.11 with the tensor products of Z/2[C2] and Z/2, we see the 
symmetric monoidal structures agree. Finally, recall that D(R)perf for any ring (or Mackey-ring) R can be 
modeled by the category of bounded complexes of finitely-generated projectives and chain homotopy classes 
of maps. The following is an immediate consequence:

Proposition 4.1. The map M 
→ MΘ gives an equivalence of symmetric monoidal categories D(Z/2)perf �
Kb,fg(Z/2[C2]), where K denotes the category of chain complexes and chain homotopy classes of maps and 
“b, fg” indicate bounded complexes of finitely-generated modules.

The above proposition is not required for our classification, but it is informative to identify our main 
problem with a more classical problem from ordinary ring theory. We are grateful to Paul Balmer for 
pointing out this connection.

We now isolate the following special classes of perfect complexes. By a strand, we mean a perfect complex 
that in each degree is equal to either H, F , or 0, with all nonzero terms consecutive, and where all maps 
between nonzero terms are nonzero. It is not hard to determine all possible strands. In addition to the 
contractible complexes that have a single isomorphism and zero elsewhere (e.g. t : F → F ), we have the 
following complete list of strands.

For k ≥ 0, let Ak be the complex

Ak : 0 F
1+t

F
1+t

F
1+t · · · 1+t

F 0,
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where the nonzero groups are in degrees 0 through k (note that our complexes use homological grading, 
where the differentials decrease degree). For n > 0, let H(−n) be the complex

H(−n) : 0 H
p

F
1+t

F
1+t · · · 1+t

F 0,

where H is in degree n and the rightmost F is in degree 0. Likewise (still for n > 0), let H(n) be the 
complex

H(n) : 0 F
1+t

F
1+t

· · ·
1+t

F
p

H 0,

where the leftmost F is in degree 0 and the H is in degree −n. Let H(0) be the complex 0 −→ H −→ 0
with H in degree 0. Finally, let Br be the complex

Br : 0 H
p

F
1+t

F
1+t · · · 1+t

F
p

H 0,

where the leftmost H is in degree 0 and the rightmost H is in degree −(r + 2).
We call Ak, Br, and H(n) (allowing k, r ≥ 0 and n ∈ Z) our fundamental complexes. There are evident 

homotopy cofiber sequences

A0 −→ Ak −→ ΣAk−1, B0 −→ Br −→ Σ−1Br−1,

An−1 −→ H(−n) −→ ΣnH, Σ−(n+2)H −→ Bn −→ Σ−(n+1)H(−(n + 1)),

as well as many others which the reader can readily identify.

Remark 4.2. Note that SΘ � H(−1), S• � Σ2B0, and Hop � H(−2), using the resolutions from Section 3.9.

It will turn out that for all n ∈ Z, H(n) is invertible in D(Z/2), and in fact the objects ΣpH(n)
constitute all the invertible objects in D(Z/2). The inverse of H(n) is H(−n), and more generally one has 
H(n)�H(m) � H(n + m). See Proposition 4.18 below for this and related facts, as well as Theorem 5.2.

For C any object in D(Z/2), define

Hp,q(C) = D(Z/2)(C,ΣpH(q)).

The derived box product of maps makes 
⊕

p,q H
p,q(H) into a bigraded ring, which we denote M2, and ⊕

p,q H
p,q(C) is a bigraded M2-module. We record the bigraded module structure on a grid, where each 

dot indicates a Z/2, and the vertical and diagonal lines indicate action by certain elements τ ∈ H0,1(H)
and ρ ∈ H1,1(H).

The ring M2 is shown in Fig. 1. The ring structure is completely determined by the picture (showing τ -
and ρ-multiplications) together with the assertion that θ2 = 0, from which it follows that the product of any 
two classes in the “lower cone” descending from θ is also zero. This computation, as well as Proposition 4.3
below, is jumping ahead a bit, but it is useful to see these calculations right away to get a sense of the 
fundamental complexes. More information about these calculations and their consequences will be given in 
Section 4.24 below.

Proposition 4.3. The cohomology groups Hp,q(C) for C ∈ {Ak, H(n), Br} are given by the following pic-
tures:
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p

q

τ

1

ρ

θ

θ
τ

θ
ρ

Fig. 1. The ring M2 = H∗,∗(H).

p

q

p

q

Fig. 2. The cohomology of A0 and A4.

p

q

Fig. 3. The cohomology of H(2).

(i) Ak: Vertical strip stretching from p = 0 through p = k. See Fig. 2.
(ii) H(n): Copy of M2 generated by a class in bidegree (0, n). Here n can be positive or negative. See 

Fig. 3.
(iii) Br: Diagonal strip occupying the diagonals p − q = 0 through p − q = −r. See Fig. 4.
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p

q

Fig. 4. The cohomology of B3.

In more algebraic terms, we have

(i) H∗,∗(Ak) = M2[τ−1]/(ρk+1),
(ii) H∗,∗(H(n)) = M2〈e〉 where e has bidegree (0, n),
(iii) H∗,∗(Br) = M2[ρ−1]/(τ r+1).

The proof of Proposition 4.3 appears in Section 4.24 below.

Remark 4.4. The ring M2 also appears in algebraic geometry, but with a different grading: it is the ring ⊕
p,q H

p(P 1, O(q)) (over the ground field F2). But in this context the “upper cone” is entirely concentrated 
in degree p = 0 whereas the “lower cone” is entirely concentrated in degree p = 1.

The following is our main algebraic classification theorem. In short, it says every bounded complex of 
projectives splits into strands. Before stating it we need one more piece of notation. If M is any Z/2-module, 
let D(M) denote the chain complex with M in degrees 0 and 1, zeros in all other degrees, and with the 
differential D(M)1 → D(M)0 given by the identity map. Notice that D(M) is contractible (and here D
stands for ‘disk’).

Theorem 4.5. Let C be a bounded complex that in each degree is given by a finite direct sum of copies of F
and H. Then C is isomorphic to a direct sum of shifts of the complexes Ak, Br, H(n), for various values 
of k, r ≥ 0 and n ∈ Z, and the contractible complexes D(F ) and D(H).

Proof. The proof is technical and we defer it to its own section. See Section 7. �
Corollary 4.6. Any perfect complex is quasi-isomorphic to a direct sum of shifts of the fundamental complexes 
Ak, Br, and H(n), for various values of k, r ≥ 0 and n ∈ Z.

Proof. Immediate. �
The following corollary is also very useful:

Corollary 4.7. Let C be a bounded complex which in each degree is a finite direct sum of copies of F . Then 
C is isomorphic to a direct sum of shifts of the complexes Ak (for various k ≥ 0) and the contractible 
complexes D(F ).

Proof. Theorem 4.5 implies that C is isomorphic to a direct sum of the desired types of complexes and 
also the Br, H(n), and D(H) complexes. None of these last three types can appear since H is not a direct 
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summand of any Fm. This last fact follows because in H the structure map p∗ is zero, whereas in Fm it is 
surjective. �
4.8. Results for bounded below complexes

We can extend the above results to chain complexes that are bounded below by adding two more funda-
mental complexes to our list. Let B∞ denote the complex that has an F in each positive degree and ends 
with an H in degree zero, and let A∞ denote the complex that has an F in all nonnegative degrees. In both, 
the maps F → F are given by 1 + t, and in B∞ the map F → H is p∗.

The complex A∞ clearly deserves its name, as it is the colimit of an evident sequence:

A∞ ∼= colim
[
A0 → A1 → A2 → · · ·

]
.

The situation is less clear for B∞. On the one hand, B∞ is the colimit of a sequence

H → ΣH(1) → Σ2H(2) → Σ2H(3) → · · · .

But at the same time, B∞ is also the inverse limit of an evident sequence involving B-complexes:

B∞ ∼= lim
[
· · · → Σ4B2 → Σ3B1 → Σ2B0

]
.

The appropriateness of the name B∞ really becomes clear in Proposition 4.18(vii) below, as well as in the 
following result (whose proof is again deferred until Section 4.24):

Proposition 4.9. The bigraded cohomology of A∞ is H∗,∗(A∞) = M2[τ−1]. For B∞, H∗,∗(B∞) is the Σ1,0-
suspension of the bigraded module quotient M2[τ−1, ρ−1]/M2[ρ−1]. The picture of H∗,∗(B∞) is similar to 
Fig. 4 except the diagonal strip extends to occupy the entire half-plane below the diagonal p − q = 2.

Theorem 4.10. Let C be a bounded below complex that in each degree is a finite direct sum of copies of F
and H. Then C is isomorphic to a direct sum of shifts of the complexes Ak, Br, H(n), A∞, B∞, and the 
contractible complexes D(F ) and D(H) (for various values of k, r ≥ 0 and n ∈ Z).

Proof. Fix C as in the statement of the proposition. Without loss of generality we can assume that C
vanishes below degree zero. Let C[0, m] be the truncation of C consisting of degrees 0 through m. Recall 
the notion of basis from Definition 2.10 and let Sm be the set of all (homogeneous) bases for C[0, m] that 
make the truncation split as a direct sum of shifts of the complexes Ak, Br, H(n), D(F ), and D(H). There 
are evident maps Sm → Sm−1 given by forgetting the basis in degree m. The proposition is then equivalent 
to the statement that the inverse limit S = lim←−−Sm is nonempty. By Theorem 4.5, the set Sm is nonempty 
for each m, and since C is finite-dimensional in each degree, Sm is finite for each m. A filtered inverse limit 
of any collection of finite, nonempty sets is nonempty [6, E III.58, Theorem 1], and thus S is nonempty. 
This completes the proof. �
Remark 4.11. When p is an odd prime and one considers Cp-Mackey functors, there are again basic projective 
Z/p-modules F and H. One could ask about a similar splitting theorem for complexes of Z/p-modules in 
this context. The situation here is much more complicated, however, and nothing as simple as Theorem 4.5
could work. Theorem 4.5 implies every perfect complex is quasi-isomorphic to a direct sum of strands, but 
in the Cp case there are perfect complexes that do not split this way.

For example, let p = 3 and consider G = C3 with generator γ. Now let H = Z/3 and F = FΘ(Z/3) be 
the analogous Mackey functors in MackC3 . The complex
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0 → F

[
1 + γ + γ2

1 − γ

]
−−−−−−−→ F ⊕ F

[1 − γ 0 ]−−−−−−→ F → 0

cannot be quasi-isomorphic to a direct sum of strands. In particular, the homology at the middle spot is a 
Mackey functor that is not found in the homology of any possible strand.

4.12. Duality for complexes

The functor (−)op : Z/2−Mod → Z/2−Mod extends to a functor Ch(Z/2) → Ch(Z/2). This functor 
preserves quasi-isomorphisms and so further extends to a functor D(Z/2) → D(Z/2). We calculate this 
functor for the fundamental complexes:

Proposition 4.13. The duals of the fundamental complexes are

(a) Aop
k � Σ−kAk,

(b) H(n)op � H(−(n + 2)), and
(c) Bop

r � Σr+4Br.

Proof. Part (a) is a direct computation. For (b), when n > 0 the complex H(n)op is

0 → Hop → F → F → · · · → F → 0

where the Hop is in degree n and the rightmost F is in degree 0. Patching the resolution 0 → H → F →
F → Hop on to the end of this complex, we see that H(n)op � H(−(n + 2)). Similarly, for the complex 
H(−n)op we use the quasi-isomorphism

0 F F · · · F F F Hop 0

0

id

F

id

F

id

· · · F

id

H

p

0

to see that H(−n)op � H(n − 2). This proves (b).
Finally, the proof of (c) is a combination of the two types of arguments used for (b). The complex Bop

r

has an Hop at both ends, in degrees r + 2 and 0. The one in degree r + 2 can be removed by patching in a 
resolution, and the one in degree 0 is removed via a quasi-isomorphism as we used in (b). The end result is 
a copy of Br that lies in degrees r + 4 down through 2, which is Σr+4Br. �

Another kind of duality involves the functor FF(−, H). There is a canonical map

ΓX,Z : FF(X,H)��Z −→ FF(X,Z)

obtained as the adjoint of the composite

FF(X,H)��Z��X
id⊗tZ,X

FF(X,H)��X��Z
ev⊗idZ

H��Z
∼=

Z.

The following is a standard argument:

Proposition 4.14. If X is a perfect complex then ΓX,Z is an isomorphism in D(Z/2), for any Z.
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Proof. One checks the result directly for the two special objects X = H and X = F . Then use that the 
property persists under direct sums, extensions, and retracts. �
Remark 4.15. We will not need it, but the standard arguments also show that the canonical map X to 
FF(FF(X, H), H) is an isomorphism in D(Z/2) whenever X is perfect.

4.16. Calculations for fundamental complexes

Moving towards our goal of understanding everything we can about D(Z/2), the next step is to calculate 
the effects of basic operations on the fundamental complexes. We start by computing the homology modules 
of the complexes:

Proposition 4.17. For k ≥ 2, n ≥ 1, and r ≥ 0 the homology of the different strands is given by the following 
formulas.

(a) Hi(A0) =
{
F if i = 0,
0 else.

(b) Hi(A1) =

⎧⎪⎪⎨
⎪⎪⎩
H if i = 1,
Hop if i = 0,
0 else.

(c) Hi(Ak) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H if i = k,
S• if 0 < i < k,
Hop if i = 0,
0 else.

(d) Hi(H(n)) =

⎧⎪⎪⎨
⎪⎪⎩
H if i = 0,
S• if −n ≤ i < 0,
0 else.

(e) Hi(H(0)) =
{
H if i = 0,
0 else.

(f) Hi(H(−1)) =
{
SΘ if i = 0,
0 else.

(g) Hi(H(−2)) =
{
Hop if i = 0,
0 else.

(h) For n > 2, Hi(H(−n)) =

⎧⎪⎪⎨
⎪⎪⎩
S• if 1 ≤ i ≤ n− 2,
Hop if i = 0,
0 else.

(i) Hi(Br) =
{
S• if −r − 2 ≤ i ≤ −2,
0 else.

Proof. These are direct (and straightforward) computations with the complexes. �
Proposition 4.18. Let k, l, r ≥ 0 and m, n ∈ Z. The (derived) box product of fundamental complexes is given 
by the following formulas:
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(i) Ak��Al � Ak ⊕ ΣlAk for k ≤ l.
(ii) Ak��H(n) � Ak.
(iii) Ak��Br � 0.
(iv) H(n)��H(m) � H(n + m).
(v) H(n)��Br � Σ−nBr

(vi) Br��Bl � Σ−(l+2)Br ⊕Br for r ≤ l.
(vii) Parts (i)–(iii) and (v)–(vi) also hold when k, l, or r is ∞, if we interpret any term with Σ∞ or Σ−∞

as being zero. For example, Ak��A∞ � Ak and H(n)��B∞ � Σ−nB∞ for all k ≤ ∞ and n < ∞.

Proof. There are a variety of ways to do these computations using the standard machinery of homological 
algebra. The following is one route through this.
(1): We claim F�Br � 0, F�H(n) � F , and F�Ak � F ⊕ ΣkF .

To see this, note since F is projective we have Hi(F�C) ∼= F�Hi(C) for any C. Then Proposition 4.17, 
together with Proposition 3.11, shows that H∗(F�Br) = 0, and H∗(F�H(n)) is F concentrated entirely in 
degree 0. Now Corollary 4.7 implies that F�H(n) � A0 = F . Similarly, H∗(F�Ak) is F in degrees 0 and 
k, and zero elsewhere. By Corollary 4.7, F�Ak must be quasi-isomorphic to a direct sum of A-strands, so 
the only possibility is F�Ak � F ⊕ ΣkF .
(2): Br�Ak � 0, Br�H(n) � Σ−nBr, and Ak�H(n) � Ak.

For this step, apply Br�(−) to the cofiber sequence A0 → Ak → ΣAk−1 and use induction to conclude 
that Br�Ak � 0 for all k. When n > 0, for Br�H(n) use the cofiber sequence An−1 → H → ΣnH(n) and 
apply Br�(−). Similarly, for Br�H(−n) use a cofiber sequence Σn−1H → An−1 → H(−n).

When n ≥ 0, applying Ak�(−) to the cofiber sequence Σ−(n+2)H → Bn → Σ−(n+1)H(−(n + 1)) and 
using what we have already proven immediately yields Ak�H(−(n + 1)) � Ak. A similar argument applied 
to the sequence Σ−1H(n + 1) → Bn → H yields Ak�H(n + 1) � Ak.
(3): If k ≤ l then Ak�Al � Ak ⊕ ΣlAk and if r ≤ l then Br�Bl � Br ⊕ Σ−(l+2)Br.

Observe first that there is an evident cofiber sequence

Σ−(l+1)H −→ H(l + 1) −→ Σ−lAl.

Boxing with Ak and using Ak�H(l + 1) � Ak, and for convenience applying Σl, gives a homotopy cofiber 
sequence in the derived category

Σ−1Ak −→ ΣlAk −→ Ak�Al.

But it is immediately observed for degree reasons that there are no nonzero maps Σ−1Ak → ΣlAk (since 
k ≤ l), and so we conclude Ak�Al � ΣlAk ⊕ Ak. The same proof works for the B-strands, starting with 
the cofiber sequence

Σ−2H(l) −→ Bl −→ Σ−1H(−1)

and then using that there are no nonzero maps Σ−1Br → Σ−(l+2)Br for r ≤ l.

(4): H(n)�H(m) � H(n + m).
Corollary 4.6 says that H(n)�H(m) decomposes (up to weak equivalence) as a direct sum of shifts of A-, 

B-, and H-strands. Applying A0�(−) and using the previous parts immediately shows that no A-strands can 
appear, and that exactly one H-strand must appear. Similarly, applying B0�(−) shows that no B-strands 
can appear and also that the H-strand that appears must be H(n + m). These four steps finish (i)–(vi).
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H

H

H

SΘ

Hop

Hop
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S• S• S• S•
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S• S•

S•

S•

S• S•

Fig. 5. The bigraded homology of H.

We only briefly sketch the proofs for (vii), leaving the details to the reader. For part (i), explicit hand 
calculation readily shows F�A∞ � F . Pass to the general case of Ak�A∞ by a double complex argument. 
For Br�A∞ in (iii) use that Br�Al � 0 and that A∞ is the homotopy colimit of the Al. Then for H(n)�A∞
in (ii) use the cofiber sequences Σ−2H → B0 → Σ−1H(−1) and H → B0 → Σ−1H(1) and induction.

For the remaining cases of (iii), first prove F�B∞ � 0 by explicit calculation. Then get Ak�B∞ � 0
by induction using the cofiber sequence Ak−1 → Ak → ΣkF . For Br�B∞ in (vi) use H → B∞ → ΣA∞
together with (iii). Finally, for (v) use the cofiber sequence Σ−nH → H(n) → Σ−(n−1)An−1 and box with 
B∞. �
Corollary 4.19. For all n ∈ Z, H(n) is invertible with inverse H(−n).

Just as we defined bigraded cohomology groups Hp,q(X) for X ∈ D(Z/2), we can also define bigraded
homology groups. Here the definition is

Hp,q(X) = D(Z/2)(ΣpH(q), X) = D(Z/2)(ΣpH,X��H(−q)) = Hp(X��H(−q))•,

where we have used the invertibility of H(q) for the second equality. The right-most term suggests an 
extension of this to Mackey-functor-valued homology, given simply by Hp,q(X) = Hp(X��H(−q)). For 
example, a portion of the bigraded homology of H is shown in Fig. 5 (the bigraded homology extends 
infinitely in the vertical directions).

We next turn to the cotensor in D(Z/2):

Proposition 4.20. The cotensor between fundamental complexes is given by the following formulas for k, r ≥ 0
and m, n ∈ Z:

(a) FF(H(m), H(n)) � H(n −m)
(b) FF(Ak, Br) � 0 � FF(Br, Ak)
(c) FF(H(n), Br) � ΣnBr

(d) FF(H(n), Ak) � Ak

(e) FF(Ak, H(n)) � Σ−kAk

(f) FF(Br, H(n)) � Σr−n+2Br

(g) FF(Ak, Al) �
{

Σ−kAk ⊕ Σl−kAk if k ≤ l,

A ⊕ Σ−kA if k ≥ l.
l l
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(h) FF(Br, Bl) �
{

Σr−lBr ⊕ Σr+2Br if r ≤ l,

Σr+2Bl ⊕Bl if r ≥ l.

Proof. One readily computes by inspection that F(Ak, H) ∼= Σ−kAk, while F(H(n), H) ∼= H(−n), and 
F(Br, H) ∼= Σr+2Br. The desired results are then immediate from Proposition 4.14 and Proposition 4.18. �

We include the following result as a curiosity. We have called this “Grothendieck-Serre duality” because 
of the evident analog to the similar statement in algebraic geometry. Note that the appearance of H(−2) is 
really due to the equivalence Hop � H(−2).

Theorem 4.21 (Grothendieck-Serre Duality). For perfect complexes X and Y one has

FF(X, Y ��H(−2)) � FF(Y,X)op.

This theorem can be proven by brute force using Theorem 4.5 simply by checking it for the fundamental 
complexes, but this is clearly not the ideal method. As we have no need of the result elsewhere in the paper, 
we do not take the time here to develop a more satisfying proof.

We next look at morphisms between fundamental complexes. Recall that we write D(Z/2)(X, Y ) for 
maps in the derived category from X to Y . Note that since the H(n) are invertible one always has

D(Z/2)(X,Y ) ∼= D(Z/2)(X��H(n), Y ��H(n))

for every n ∈ Z.
We start with the case X = H, which has already been done by virtue of the isomorphism 

D(Z/2)(ΣiH, Y ) ∼= Hi(Y )• (the • side of the Mackey functor Hi(Y )):

Proposition 4.22. Let k, n, r ≥ 0. The homology of the fundamental strands is nonzero only in the following 
cases:

(a) D(Z/2)(ΣiH, Ak) = Z/2 if 0 ≤ i ≤ k,
(b) D(Z/2)(ΣiH, H(n)) = Z/2 if −n ≤ i ≤ 0,
(c) D(Z/2)(ΣiH, H(−1)) = 0 for all i,
(d) D(Z/2)(ΣiH, H(−n)) = Z/2 if 0 ≤ i ≤ n − 2 (for n ≥ 2),
(e) D(Z/2)(ΣiH, Br) = Z/2 if −(r + 2) ≤ i ≤ −2.

Proof. Immediate from Proposition 4.17. �
Using the previous results we can easily compute D(Z/2)(ΣiX, Y ) for any two fundamental complexes 

X and Y . As one example, we compute D(Z/2)(ΣiA2, A5) for all i. We use the isomorphisms

D(Z/2)(ΣiA2, A5) ∼= D(Z/2)(ΣiH,FF(A2, A5))
∼= D(Z/2)(ΣiH,Σ−2A2 ⊕ Σ3A2)
∼= D(Z/2)(Σi+2H,A2) ⊕D(Z/2)(Σi−3H,A2)

∼=
{
Z/2 if −2 ≤ i ≤ 0 or 3 ≤ i ≤ 5,
0 otherwise.
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The first isomorphism is just an adjunction, the second is by Proposition 4.20, and the fourth isomorphism 
is by Proposition 4.22.

The above technique allows one to compute D(Z/2)(ΣiX, Y ) for any fundamental complexes X and Y . 
We state one specific result along these lines, which will be needed later:

Proposition 4.23. One has D(Z/2)(ΣiAk, Br) = 0 and D(Z/2)(ΣiBr, Ak) = 0 for k, r ≥ 0 and all i ∈ Z.

Proof. This follows immediately from FF(Ak, Br) � 0 � FF(Br, Ak), which is Proposition 4.20(b). �
4.24. Distinguishing complexes

The classification in 4.5 guarantees any perfect complex is quasi-isomorphic to a direct sum of fundamental 
complexes. It does not, however, guarantee there is a unique such direct sum. Our main goal in this subsection 
is to prove the following proposition, from which we can conclude every perfect complex is quasi-isomorphic 
to a direct sum of fundamental complexes in a unique way. This completes the classification of objects in 
D(Z/2)perf .

Proposition 4.25. Let

X=
⊕
α∈J

ΣnαAα ⊕
⊕
β∈K

ΣnβH(β) ⊕
⊕
γ∈L

ΣnγBγ

and similarly

Y =
⊕
α∈J′

ΣnαAα ⊕
⊕
β∈K′

ΣnβH(β) ⊕
⊕
γ∈L′

ΣnγBγ

where all the indexing sets are finite and allow for repetition. If X � Y then the sets J and J′ are equal 
up to permutation, and likewise for K, K′ and L, L′. Moreover, the suspension factors for corresponding 
summands must be equal.

Note that we cannot prove this by simply looking at homology modules H∗(−). For example, by Propo-
sition 4.17 H(1) and H ⊕ ΣB0 have isomorphic homology modules (H in degree 0 and S• in degree −1), 
but we will see in this section that they are not quasi-isomorphic. In order to distinguish homotopy types 
in D(Z/2) we therefore need to use a finer invariant. Recall the bigraded cohomology groups of a complex 
X given by

Hp,q(X) = D(Z/2)(X,ΣpH(q))

and H∗,∗(X) =
⊕

p,q H
p,q(X). Recall also that M2 = H∗,∗(H). Note that the derived box product gives 

pairings

Hp,q(X) ⊗Hr,s(Y ) −→ Hp+r,q+s(X��Y )

where we are using the unique equivalence H(q)�H(s) � H(q + s) in the derived category (such an equiv-
alence exists by Proposition 4.18(iv), and is unique because D(Z/2)(H(n), H(n)) ∼= Z/2 for all n). In 
particular, H∗,∗(X) is an M2-bimodule, and one can readily check that the left and right module structures 
coincide.

Note that Mp,q
2 = D(Z/2)(H, ΣpH(q)) ∼= H−p(H(q))• and these groups are calculated by Proposi-

tion 4.22. This gives the picture of dots in Fig. 1. Let τ ∈ M0,1
2 , ρ ∈ M1,1

2 , and θ ∈ M0,−2
2 be the unique 
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H τ ρ H θ H

F H F H H F F

0 −1 1 0 2 1 0

Fig. 6. The maps τ , ρ, and θ (complexes are drawn horizontally here).

nonzero classes. It is routine to check that these can be represented by the maps H → H(1), H → ΣH(1), 
and H → H(−2) shown in Fig. 6. By convention, unlabeled maps between H’s and F ’s always denote the 
unique nonzero map, except in the case of maps F → F where an unlabeled map always denotes 1 + t. To 
justify that the maps in Fig. 6 do represent the indicated classes, one only has to prove that the given maps 
are not chain homotopic to zero; this is routine.

Before giving the proof of Proposition 4.3 we need a simple lemma:

Lemma 4.26. The cofiber of the map θ : H → H(−2) is weakly equivalent to H(−1) ⊕ ΣH(−1), and under 
this weak equivalence the cofiber sequence is

H
θ

H(−2)
[τ ρ]

H(−1) ⊕ ΣH(−1).

Proof. The cofiber of θ is the complex on the left of the diagram below (where the complexes are now drawn 
vertically):

Ha

p

Ha

p

Fb Hc

p

Fb+p∗(c) Hc

p

Fe Fe

Here we use the subscripts to denote basis elements. So d(a) = p∗(b), d(b) = (1 + t)e, and d(c) = p∗(e). The 
change of basis {b, c} 
→ {b + p∗(c), c} gives the complex on the right, which is H(−1) ⊕ ΣH(−1).

Composing the inclusion of H(−2) into the cofiber with the two projections for this direct sum, we get 
maps H(−2) → H(−1) and H(−2) → ΣH(−1). To see that these are τ and ρ we only need to check that 
they are nonzero in D(Z/2), since there are unique nonzero maps in each case. The two compositions are

H

p

H
1

p

H

p

F

1+t

p
H

p

and F
1

1+t

F

F
1

F F

and in each case it is readily checked that null homotopies do not exist. �
Proof of Proposition 4.3 and Proposition 4.9. This is tedious but routine, and we only give a sketch. First 
note that the groups H∗,0(F ) are trivially computed, and then one gets a (0, 1)-periodicity in H∗,∗(F ) using 
that F�H(1) � F (see Proposition 4.18). Similarly, H∗,0(B0) is readily computed, and then one gets a 
(1, 1)-periodicity using that B0�H(1) � Σ−1B0.



D. Dugger et al. / Journal of Pure and Applied Algebra 228 (2024) 107473 27
Next use the cofiber sequence H
ρ−→ Σ1H(1) −→ Σ1F to deduce all the ρ-multiplications in H∗,∗(H). 

Similarly, the cofiber sequence H τ−→ H(1) −→ ΣB0 lets one deduce all the τ -multiplications in H∗,∗(H).
The cofiber sequences Ak−1 ↪→ Ak → ΣkF and F ↪→ Ak → ΣAk−1 allow one to inductively compute the 

Z/2[τ, ρ]-module structure on H∗,∗(Ak). Similarly, the cofiber sequences Br−1 → Br → Σ−rB0 and B0 →
Br → Σ−1Br−1 lead to the inductive computation of the Z/2[τ, ρ]-module structure on H∗,∗(Br). Note also 
that the computations can be simplified by using the equivalences Ak�H(1) � Ak and Br�H(1) � Σ−1Br

from Proposition 4.18, which yield periodicities in the module structures.
Finally, by using Lemma 4.26 one readily computes all of the θ-multiplications in M2 = H∗,∗(H) (they 

are all zero, except for 1 · θ = θ). The rest of the ring structure can be deduced from simple algebraic 
arguments. (For example: θτ · θ

ρ is a class that when multiplied by τρ gives θ2—which is zero—and by our 
analysis of all the τ - and ρ-multiplications we know this forces the class to be zero.) Similarly, such algebraic 
arguments also readily yield the full M2-module structures on H∗,∗(Ak) and H∗,∗(Br).

Only a bit more work is required to compute H∗,∗(A∞) and H∗,∗(B∞). For the first, the filtration by 
Ak’s shows that An ↪→ A∞ induces isomorphisms on Hp,∗ for p ≤ n and the desired result readily follows 
from this. For the second, one first uses the cofiber sequence H → B∞ → ΣA∞ to calculate all of the 
cohomology groups, but there is one set of unresolved extension problems. Then one considers the map 
ΣB∞ → B∞ that is p : H → F in degree one and the identity in higher degrees. The cofiber is readily seen 
to be quasi-isomorphic to Σ2B0, and this cofiber sequence then resolves those extensions. �

Say that a bigraded M2-module is perfect if it is isomorphic to H∗,∗(X) for some perfect complex X. By 
Theorem 4.5 this is equivalent to saying that the module is a finite direct sum of bigraded shifts Σp,qM2
as well as shifts of H∗,∗(Ak) and H∗,∗(Br) for various values of k and r. It is not a priori true that the 
constituent pieces of such a direct sum are uniquely determined, but they are:

Proposition 4.27. Let M be a perfect M2-module. Then there exist unique integers (up to permutation) pi, 
qi, sj, and tr together with nj ≥ 0 and kr ≥ 0 such that

M ∼=
⊕
i

Σpi,qiM2 ⊕
⊕
j

ΣsjH∗,∗(Anj
) ⊕

⊕
r

ΣtrH∗,∗(Bkr
).

Proof. We know existence, so the only thing to be proven is uniqueness. Observe that AnnM (τ, ρ) is a 
finite-dimensional bigraded vector space over Z/2 whose homogeneous basis is in bidegrees (pi − 2, qi − 2), 
so this gives uniqueness of the p’s and q’s.

The operation M 
→ M [ρ−1] kills the H∗,∗(A)-summands and does nothing to the H∗,∗(B)-summands. 
The construction

AnnM [ρ−1](τ∞) = {x ∈ M [ρ−1]
∣∣ τnx = 0 for some n > 0}

exactly isolates the H∗,∗(B)-summands of M . This construction is a module over M2[ρ−1] ∼= Z/2[ρ, ρ−1][τ ]
which is a graded PID, so the uniqueness of the tr and kr follow from the usual classification of modules 
over a PID.

Finally, the operation M 
→ M [τ−1] kills the H∗,∗(B)-summands, and the construction AnnM [τ−1](ρ∞)
exactly isolates the H∗,∗(A)-summands. The analogous argument to the preceding paragraph shows that 
the sj and nj are uniquely determined, since M2[τ−1] ∼= Z/2[τ, τ−1][ρ] is again a graded PID. �

Proposition 4.25 is really just a corollary of the above:

Proof of Proposition 4.25. Let X and Y be as in the statement of the proposition and assume X � Y . 
Let M = H∗,∗(X) and N = H∗,∗(Y ), so that M ∼= N as bigraded M2-modules. By Proposition 4.27 it 
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follows that M and N have the same constituent summands, and these exactly correspond to the constituent 
summands of X and Y . �

We also call attention to the following useful consequence:

Corollary 4.28. Let X and Y be perfect complexes of Z/2-modules. Then X � Y if and only if H∗,∗(X) ∼=
H∗,∗(Y ) as bigraded M2-modules.

Proof. Immediate from Proposition 4.27 and Theorem 4.5. �
5. Algebraic consequences of the classification theorem

In this section we compute the Picard group of D(Z/2) as well as the Balmer spectrum for D(Z/2)perf , 
deducing both as consequences of our work in Section 4.

5.1. The Picard group of D(Z/2)

Theorem 5.2. The Picard group of D(Z/2) is Z ⊕ Z, with generators ΣH and H(1).

Proof. First note that an invertible object in D(Z/2) is necessarily compact, hence perfect. To see this, 
observe that if X is invertible with inverse Y and {Zα} is any collection of objects then there is a commutative 
diagram

⊕
α D(Z/2)(X,Zα)

∼=

D(Z/2)(X,
⊕

α Zα)

∼=⊕
α D(Z/2)(X��Y,Zα��Y ) D(Z/2)(X��Y,

(⊕
α Zα

)��Y )

Now use the fact that (−)��Y commutes with direct sums, together with the fact that X��Y � H is compact, 
to see that the bottom horizontal map is an isomorphism. Thus, the top horizontal map is an isomorphism 
as well.

Since X is compact, we know by Corollary 4.6 that X is quasi-isomorphic to a direct sum of shifts of 
complexes of type Ak, Br, and H(n). But it is easy to see that the direct sum must only involve one term. 
For suppose X � J ⊕K, and let Y be the inverse of X. Then

H � X��Y � (J��Y ) ⊕ (K��Y ).

By taking homology and using that H is indecomposable as a Z/2-module, this can only happen if either 
J��Y � 0 or K��Y � 0. Without loss of generality, we assume the former. Then box with X to get 
0 � (J��Y )��X � J . This proves that a nontrivial direct sum can never be invertible.

The classification theorem then implies that the only possible invertible objects are suspensions of Ak, 
Br, and H(n). If Ak has an inverse W , then take Ak�Br � 0 and box with W to get Br � 0; this is a 
contradiction (by Proposition 4.22(d), for example). So Ak is not invertible, and the same proof shows that 
Br is not invertible. Of course we know that the H(n) are invertible by Proposition 4.18(iv).

Consider the group homomorphism Z2 → Pic(D(Z/2)) sending (m, n) to ΣmH��H(n) � ΣmH(n). The 
first generator of Z2 maps to ΣH and the second to H(1). We have just proven that this map is surjective. 
For injectivity just note that the homology calculations of Proposition 4.22(a,b) show that ΣmH(n) � H

can only happen if m = n = 0. �
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5.3. The Balmer spectrum of D(Z/2)perf

Recall that a tensor-triangulated category (C, ⊗) has an associated topological space Spec C called the
Balmer spectrum of C [1]. The elements of Spec C are the primes of C, i.e. proper thick subcategories I of 
C having the properties that

(i) If X ∈ I and Y ∈ C then X ⊗ Y ∈ I;
(ii) If X, Y ∈ C and X ⊗ Y ∈ I then either X ∈ I or Y ∈ I.

Recall that a subcategory is thick if it is full and closed under formations of suspensions and desuspensions, 
retracts, and extensions. Thick subcategories satisfying (i) are called tensor ideals.

The topology on Spec C is an analog of the Zariski topology from algebraic geometry. For X ∈ C define 
SuppX = {P ∈ Spec C | X /∈ P}. Then {SuppX | X ∈ C} is a basis for the closed sets in Spec C.

A convenient source of tensor ideals is via annihilators. If S is a set of objects in C, let

Ann S = {X ∈ C |X ⊗ Y � 0 for all Y ∈ S}.

Then Ann S is a tensor ideal.
One more piece of notation: is S is a set of objects in C, write ΣS for the closure of S under suspension 

and desuspension.
By Proposition 4.1 the following result can also be interpreted as computing the Balmer spectrum for 

the triangulated category (Kb,fg(Z/2[C2]), ⊗). In that context, the computation was independently done 
by Balmer and Gallauer [2].

Theorem 5.4. There are only three prime ideals in (D(Z/2)perf , ��):

• the full subcategory 〈A〉 whose objects are the finite direct sums made from the set Σ{Ak | k ≥ 0},
• the full subcategory 〈B〉 whose objects are the finite direct sums made from the set Σ{Br | r ≥ 0},
• the full subcategory 〈A, B〉 whose objects are the finite direct sums made from the set Σ{Ak, Br | k, r ≥ 0}.

The first two are closed points of the Balmer spectrum, whereas the closure of the third point is the whole 
space. This is depicted via the diagram

〈A〉 〈B〉

〈A,B〉.

Proof. First note that if a tensor ideal contains H(n) then it also contains H, using that H(n) is invertible. 
Therefore it contains every object, and so is not a proper ideal.

We make the following observations:

• Since Ak�Br � 0 by Proposition 4.18(iii), any prime ideal must contain either Ak or Br.
• By Proposition 4.18(i), if a tensor ideal contains Ak then it contains all Ai for i ≤ k.
• Using the cofiber sequences A0 → An+1 → ΣAn and induction, any tensor ideal containing A0 must 

contain all other An.
• By Proposition 4.18(vi), if a tensor ideal contains Br then it contains all Bi for i ≤ r.
• Using the cofiber sequences B0 → Bn+1 → Σ−1Bn and induction, any tensor ideal containing B0

contains all other Bn.
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It follows at once from Theorem 4.5 that the only possible prime ideals are 〈A〉, 〈B〉, and 〈A, B〉.
We must next check that each of these really is a prime ideal. Using Theorem 4.5 and Proposition 4.18 it 

follows immediately that 〈A〉 = Ann{Br}, and so is a tensor ideal. Suppose X and Y are perfect complexes 
and X��Y ∈ 〈A〉. By Theorem 4.5 we can write

X �
⊕
α∈J

Aα ⊕
⊕
β∈K

H(β) ⊕
⊕
γ∈L

Bγ

where the formula should also have various suspensions on all the factors, which we have omitted to write. 
Similarly, we can write

Y �
⊕
α′∈J′

Aα′ ⊕
⊕

β′∈K′

H(β′) ⊕
⊕
γ′∈L′

Bγ′ .

Since X��Y ∈ 〈A〉 we conclude immediately that either K or K′ is empty; without loss of generality we 
assume K = ∅.

If K′ �= ∅ then we must have L = ∅, else we have a B-type summand in X��Y . But this yields X ∈ 〈A〉. 
So now assume K′ = ∅. If L �= ∅ and L′ �= ∅ then we again get a B-type summand in X��Y ; so either L = ∅
or L′ = ∅. But this precisely says that either X ∈ 〈A〉 or Y ∈ 〈A〉. This completes the proof that 〈A〉 is 
prime.

The same style of argument shows that 〈B〉 is prime.
It remains to prove that 〈A, B〉 is a prime ideal. This is largely similar to what we have already done, 

except the proof that the subcategory is closed under extensions. For this, assume that

X =
⊕
α∈J

Aα ⊕
⊕
β∈K

Bβ , Y =
⊕
α′∈J′

Aα′ ⊕
⊕

β′∈K′

Bβ′

(again, with suspensions on all summands omitted for brevity). We must check that for any map f : X → Y

the cofiber Cof(f) is still in 〈A, B〉. Here we use Proposition 4.23 to see that there are no maps from the 
Ak to the Br and vice versa, so that our map f must split as f1 ⊕ f2 where f1 :

⊕
α Aα →

⊕
α′ Aα′ and 

f2 :
⊕

β Bβ →
⊕

β′ Bβ′ . Since we have already proven 〈A〉 and 〈B〉 are thick, we have Cof(f1) ∈ 〈A〉 and 
Cof(f2) ∈ 〈B〉. Since Cof(f) = Cof(f1) ⊕ Cof(f2), we are done.

Finally, it remains to investigate the topology on SpecD(Z/2). For k ≥ 0 one clearly has that Supp(Bk) =
{〈A〉} and Supp(Ak) = {〈B〉}, using Proposition 4.18. These generate the closed sets of SpecD(Z/2), so 
the topology is as described in the statement of the theorem. �

For good measure we also determine the Balmer spectrum of the category D(Z/2)bb,fg consisting of 
complexes which are bounded below and have finitely-generated projective modules in each degree. Let 
〈A, A∞〉 denote the full subcategory whose objects are the direct sums made from the set Σ{Ak | 0 ≤ k ≤ ∞}, 
with arbitrary indexing sets but where the direct sum must be bounded below and finitely-generated in 
each degree. Similarly, define the full subcategories 〈B, B∞〉, 〈A, B, A∞〉, and 〈A, B, B∞〉.

Theorem 5.5. The Balmer spectrum for (D(Z/2)bb,fg, �) consists of exactly four points, separated into two 
connected components as depicted here:

〈A,A∞〉 〈B,B∞〉

〈A,B,A∞〉 〈A,B,B∞〉.
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The prime ideals in the top row are closed points of the Balmer spectrum, whereas

〈A,B,A∞〉 =
{
〈A,B,A∞〉, 〈A,A∞〉

}
and 〈A,B,B∞〉 =

{
〈A,B,B∞〉, 〈B,B∞〉

}
.

The inclusion of categories D(Z/2)perf ↪→ D(Z/2)bb,fg induces a map of the corresponding Balmer spectra 
in the other direction: this is the quotient map which sends 〈A, B, A∞〉 and 〈A, B, B∞〉 to the same point, 
namely 〈A, B〉.

Proof. The cofiber sequence H → B∞ → ΣA∞ shows that if a tensor ideal contains both A∞ and B∞ then 
it contains everything. So no prime ideal contains both A∞ and B∞, and since A∞�B∞ � 0 it follows that 
every prime ideal must contain exactly one of A∞ or B∞.

If P is a prime ideal containing A∞, then using Ak�A∞ � Ak it must also contain all the Ak. If it 
contains any Br then just as in the proof of Theorem 5.4 it must contain all of the Br. Since P cannot 
contain any of the invertible objects H(n), this shows that P is either 〈A, A∞〉 or 〈A, B, A∞〉.

Similar reasoning for the case where P contains B∞ shows that the only possible prime ideals are the 
four from the statement of the theorem. It remains to check that these are indeed prime.

One readily checks using Proposition 4.18 and Theorem 4.10 that Ann(B∞) = 〈A, A∞〉, so this is a tensor 
ideal. Primality also readily follows from those two results. Similarly, Ann(A∞) = 〈B, B∞〉 is a prime ideal.

Similar considerations show that 〈A, B, A∞〉 is a prime ideal, but here one must work a bit harder to 
check that it gives a triangulated subcategory. If X is a direct sum of shifts of copies of Ak, Br, and A∞, 
write X(A) for the direct sum of the pieces of A-type, and X(B) for the direct sum of pieces of B-type. If 
S is a single strand, of type A or B, we claim that any map S → X in D(Z/2) must factor through X(A)
or X(B), respectively. This is an easy computation. This claim then yields that 〈A, B, A∞〉 is triangulated 
by the argument from the proof of Theorem 5.4.

The topology on the Balmer spectrum is readily identified using Proposition 4.18, since one easily com-
putes the support of any object. The computation of the map SpecD(Z/2)bb,fg → SpecD(Z/2)perf is 
immediate. �
6. Topological consequences of the main theorem

In this section we explain how our description of D(Z/2) leads to various topological results about 
equivariant HZ/2-modules and bigraded Bredon cohomology with coefficients in Z/2.

Let R be a Mackey ring. There is an associated equivariant Eilenberg–MacLane ring spectrum HR. As 
explained in [17, Corollary 5.2] for the special case of R = Z (though it works in general), the general theory 
developed by Schwede–Shipley in [15] gives a Quillen equivalence between the algebraic model category of 
Ch(R) and the topological category of HR-modules:

Ch(R)

Γ

HR− Mod.

Ψ


 (6.1)

In particular, the homotopy category of Ch(Z/2) is equivalent to the homotopy category of HZ/2 − Mod. 
The Quillen equivalence is set up so that HZ/2 and HZ/2 ∧ (C2)+ correspond to H and F respectively. 
By examining cell structures for Sp,q one finds that HZ/2∧ Sp,q corresponds to ΣpH(q) under the Quillen 
equivalence. It follows that if M is an HZ/2-module then its bigraded cohomology HomHZ/2(M, Σ∗,∗HZ/2), 
as an M2-module, is isomorphic to the bigraded cohomology of Ψ(M). Here we may use either Mackey 
functor valued cohomology or consider only the • side. Since compact objects in D(Z/2) are determined by 
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their bigraded cohomology (see Corollary 4.28), this implies that when M is a finite HZ/2-module Ψ(M)
is completely determined by the M2-module HomHZ/2(M, Σ∗,∗HZ/2).

If Sk
a denotes a k-sphere with the antipodal C2-action, then one readily finds that HZ/2 ∧ (Sk

a)+ corre-
sponds to the fundamental complex Ak: this can be done either by an analysis of explicit cell structure on 
Sk
a , or by computing the bigraded homology of Sk

a , and recognizing it as that of Ak.
It remains to identify the HZ/2-module corresponding to Br. For this, recall that there is a unique 

nonzero homotopy class τ : HZ/2 → Σ0,1HZ/2. Write Cof(τ) for the homotopy cofiber of this map, and 
Cof(τ r) for the homotopy cofiber of τ r : HZ/2 → Σ0,rHZ/2. One readily computes the bigraded cohomology 
and observes that it exactly matches the cohomology of Br−1.

In light of the Quillen equivalence from (6.1) we can thus reinterpret Corollary 4.6 as follows:

Theorem 6.2. Let M be a finite HZ/2-module. Then up to weak equivalence M splits as a wedge of bigraded 
suspensions of HZ/2, HZ/2 ∧ (Sk

a)+, and Cof(τ r), for various k ≥ 0 and r ≥ 1.

Remark 6.3. We have not proven that the Quillen equivalence from (6.1) is symmetric monoidal, but it is. 
There is a folklore proof using ∞-categorical techniques, and a proof is forthcoming in work in progress by 
Drew Heard and the third author. Therefore the results of Section 5.3 can be reinterpreted as computing 
the Balmer spectra for various homotopy categories of HZ/2-modules.

6.4. Structure theorem for C2-spaces

The classification of finite HZ/2-modules in Theorem 6.2 implies the following structure theorem for 
RO(C2)-graded cohomology of C2-spaces from [13].

Theorem 6.5 (C. May). Let X be a pointed finite C2-CW complex. Then HZ/2 ∧ X splits as a wedge of 
bigraded suspensions of HZ/2 and HZ/2 ∧ (Sk

a)+ for various k ≥ 0.

Proof. From Theorem 6.2 we know that HZ/2∧X splits as a wedge of suspensions of HZ/2, HZ/2∧(Sk
a)+, 

and Cof(τ r), for various k and r. So it remains to show there cannot be any summands of the form Cof(τ r). 
Recall from Lemma 4.3 of [13] that ρ-localization of the cohomology of a finite C2-CW complex is

ρ−1H∗,∗(X) ∼= ρ−1H∗,∗(XC2) ∼= H∗
sing(XC2) ⊗ ρ−1M2.

Notice ρ−1M2 does not have any τ -torsion and thus neither does

ρ−1H̃∗,∗(X) ∼= ρ−1 HomHZ/2(HZ/2 ∧X,Σ∗,∗HZ/2),

since it is a free ρ−1M2-module. However, ρ-localization preserves the cohomology of Cof(τ r), which has 
τ -torsion by construction. Thus HZ/2 ∧X cannot have any wedge summands of the form Cof(τ r) for any 
r. �
6.6. Toda bracket decomposition of 1

A key piece of the proof of the structure theorem for RO(C2)-graded cohomology of C2-spaces from [13]
is the Toda bracket decomposition of 1 in M2 given by 〈τ, θ, ρ〉 = 1 with zero indeterminacy. This Toda 
bracket can be witnessed in Ch(Z/2) as follows.

Recall the maps representing ρ, θ, and τ from Fig. 6. For our present purposes it will be better to 
represent θ as a map ΣH(1) → ΣH(−1) and τ as a map ΣH(−1) → ΣH, namely the following (with 
complexes drawn horizontally):
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ΣH(1) :
θ

F

id

H ΣH(−1) :
τ

H F

ΣH(−1) : H F ΣH : H

2 1 0 2 1

The left diagram below depicts the composition τ ◦ θ ◦ ρ, where we now switch to drawing complexes 
vertically:

H 0

F F H F H

H H H.

p

1

p

p p

p

h

1
h=1

To construct an element of the Toda bracket 〈τ, θ, ρ〉 we start by choosing null-homotopies for τθ and θρ. 
But θ ◦ ρ = 0 on the nose, so we can use the zero null-homotopy there. The second composition τ ◦ θ is 
not zero in degree 1, but it is null-homotopic via the null homotopy h shown in the right diagram above. 
Finally, forming h ◦ ρ gives

F

H H H,

1

1 1

and the composite is the identity H → H. Thus 1 ∈ 〈τ, θ, ρ〉. The indeterminacy of the Toda bracket is 
zero since M0,0

2 contains no τ or ρ-multiples for degree reasons. So we may conclude the bracket identity 
〈τ, θ, ρ〉 = 1.

Remark 6.7. The splitting for finite HZ/2-modules in Theorem 6.2 is stated here in parallel with Theo-
rem 6.5. In this form, there appears to be a lack of symmetry of the fundamental objects. However, we may 
reinterpret HZ/2∧ (Sk

a)+ as a desuspension of Cof(ρk+1), where ρ : HZ/2 → Σ1,1HZ/2. Thus Theorem 6.2
can be restated as: All finite HZ/2-modules split as a wedge of suspensions of HZ/2, Cof(ρk), and Cof(τ r)
for various k, r ≥ 1.

6.8. Classification of finite HZ/�-modules

Here we collect some of the analogous results for odd primes. In particular, we also obtain a classification 
of finite HZ/�-modules for � an odd prime. The splitting theorem for D(Z/�)perf and the computation of 
the Balmer spectrum follow immediately from Proposition 3.5.

Proposition 6.9. Let � be an odd prime. Every perfect complex of Z/�-modules decomposes as a direct sum 
of shifts of 0 −→ H −→ 0, 0 −→ SΘ −→ 0, and the contractible complexes D(H) and D(SΘ).

Corollary 6.10. Let � be an odd prime. The Balmer spectrum of D(Z/�)perf is a single point, the zero ideal.

Proof. This follows immediately from Proposition 6.9 once one knows that SΘ is invertible, which is true 
by Proposition 3.6. �
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We also get a splitting at the spectrum level.

Proposition 6.11. Let � be an odd prime and M be a finite HZ/�-module. Then up to weak equivalence M
splits as a wedge of bigraded suspensions of HZ/�.

Proof. This follows from Proposition 6.9 and the observation that 0 → SΘ → 0 corresponds under the 
Quillen equivalence to Σ0,1HZ/�. To see the latter claim, note that ΣSΘ is quasi-isomorphic to the complex 
F → H (concentrated in degrees 0 and 1), which is HZ/� ∧ S1,1 under the Quillen equivalence.

Alternatively, one may compute the bigraded cohomology on the • side of HZ/�. The result is a graded 
field Z/�[x, x−1] with x in degree (0, 2). �

The computation of the Balmer spectrum in this context is then immediate, as every nonzero HZ/�-
module is invertible.

Corollary 6.12. Let � be an odd prime. The Balmer spectrum of compact objects in HZ/�−Mod is a single 
point, the zero ideal.

7. Proof of the classification theorem for chain complexes

In this section we will prove Theorem 4.5. That is, we will show that any perfect complex in Ch(Z/2)
is isomorphic to a direct sum of “strands”. Recall from Section 4 that complete lists of strands are the 
fundamental complexes Ak, Br, and H(n), for various values of k, r ≥ 0 and n ∈ Z, together with the 
contractible disk complexes D(H) and D(F ).

Our proof of the splitting decomposition involves changing the basis at various levels in the complex 
in an algorithmic fashion. We work our way from the bottom of the complex up, but at each stage the 
algorithm involves possibly changing the basis at some or all of the lower levels. So although the proof is 
constructive, the algorithm can be time-intensive to implement in practice (at least by hand), and there is 
no simple way in general to look at a complex and know what strands will come out at the end. This differs 
from Proposition 3.8, for example, where the algorithm in that proof yielded formulas for the number of 
summands based on properties of the given H-module.

7.1. Proof outline

Our approach is roughly to proceed by induction on the length of the complex. Suppose the complex is 
nonzero only in degrees 0 through m. For the inductive step, we assume the portion of the complex in degrees 
0 to m −1 has been split into strands. We consider summands of H and F in the top degree m mapping via 
the differential to the strands below. Then, through a series of steps, we split off all subcomplexes having 
top degree m.

We begin by considering any isomorphisms at the top and use these to split off copies of the contractible 
complexes D(H) and D(F ). Next we consider the case where copies of H in degree m map nontrivially 
to various strands below. We use these maps to split off copies of Br. Then we split off any summands of 
H(−n) for n > 0. Turning to the case where we have copies of F in degree m mapping to strands below, we 
split off any summands of the form H(n). Finally, we split off summands of Ak. All other summands of H
and F in degree m support trivial maps and thus split off. Once we have dealt with all the terms in degree 
m we will be done, since by induction the rest of the complex in lower degrees was already split.

At each stage of the proof, we choose a particular type of strand mapped to by a particular copy of either 
H or F in degree m. We change the basis of the complex at level m so no other summands in degree m hit 
the chosen strand. Then we change the basis of each term in the chosen strand to form a new strand that 
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F ⊕ H ⊕ H ⊕ F

F ⊕ F ⊕ H ⊕ F

H ⊕ F ⊕ F

⎡
⎣

u p 0 0
0 0 p 0
0 0 1 p

0 0 0 u

⎤
⎦

[
p p 0 0
0 u 0 0
0 t p t

]

Fa1 Ha2 Ha3 Fa4

Fb1 Fb2 Hb3 Fb4

Hc1 Fc2 Fc3

u u

tu t

Fig. 7. An example using matrix notation and using basis labels.

splits off from the rest. The general rule for the choice of strand at each stage is this: if we are splitting off a 
type of strand that ends in an H then we choose the shortest strand of that type, whereas if we are splitting 
off a type of strand that ends in an F then we choose the longest strand of that type. As the reader will 
see, these choices guarantee that the evident change of basis does what we need in order to split off.

Recall the notion of a basis for a free Z/2-module from Definition 2.10. The following lemma states that 
certain adjustments (analogous to the usual column operations of linear algebra) give a change of basis. 
Notice we can use p∗ and p∗ to mix basis elements from the • and Θ sides.

Lemma 7.2. Let M be a free Z/2-module with γ = {bΘ1 , . . . , bΘm, b•m+1, . . . , b
•
m+n} a chosen basis M . For a 

fixed choice of i and j with i �= j, each of the following modifications to γ yields a new basis:

(i) Replace bΘi with b̃Θi = bΘi + bΘj .
(ii) Replace bΘi with b̃Θi = bΘi + tbΘj .
(iii) Replace bΘi with b̃Θi = bΘi + (1 + t)bΘj .
(iv) Replace bΘi with b̃Θi = bΘi + p∗b•j.
(v) Replace b•i with b̃•i = b•i + b•j.
(vi) Replace b•i with b̃•i = b•i + p∗b

Θ
j .

Proof. By inspection. �
In the following proof we draw chain complexes vertically, with basis elements appearing as subscripts 

(so that Fa is a copy of F with basis aΘ for example). To simplify notation, we omit the superscripts Θ
and • when it is clear from context where each basis element lives. Our convention is to only draw arrows 
for nonzero maps. We also omit labels of maps whenever there is only one possible nonzero map, such as 
Ha → Hb. For convenience, we denote the map 1 + t : F → F by u. This map appears frequently in chain 
complexes and so whenever we omit the label of a map F → F , we mean that it is u.

An example of a complex with this notation is given in Fig. 7 on the right. On the left in Fig. 7, the same 
complex is drawn using matrix notation (where matrices act on the left). In the main proof, we will refer to 
individual arrows. For example, in Fig. 7 there is a map u : Fa1 → Fb1 from the top level to the level below.

We now give the proof of our main splitting theorem for complexes.

Proof of Theorem 4.5. Let C be a bounded complex that has a finite direct sum of copies of H and F in 
each degree. We aim to show that C is isomorphic to a direct sum of shifts of copies of Ak, Br, H(n), for 
various values of k, r ≥ 0 and n ∈ Z, and the contractible complexes D(H) and D(F ).

If C = 0 we are done, so assume C �= 0. By shifting as needed, we can assume C is concentrated in 
degrees 0 through d with C0 �= 0. Let Ti(C) be the truncated complex given by (Ti(C))j = Cj if j ≤ i and 
(Ti(C))j = 0 if j > i. Observe that any choice of basis for T0(C) is trivially a decomposition into strands 
(just direct sums of H and A0 = F ). Assume for m > 1 that there exists a basis for Tm−1(C) decomposing 
it as a direct sum of shifts of fundamental complexes and contractible complexes. For the inductive step, we 
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Fig. 8. An example of Step 1.

will find a basis for Tm(C) decomposing it into such a direct sum. In the process, we will possibly change 
the basis at level m as well as (potentially all) levels below.

Fix a basis for Tm−1(C) so that the truncated complex is a direct sum of fundamental complexes together 
with contractible ones. Choose any basis for Cm. One can visualize Tm−1(C) written in strands with the 
basis elements in Cm mapping to some combination of those strands (see the left side of Fig. 8 for an 
example). We provide an algorithm to adjust the bases at each level so that Tm(C) is written as a direct 
sum of fundamental complexes and contractible ones. In each step, we explain what to do in general and 
give an example. To distinguish these, we use Greek letters for the basis elements in the general case and 
Roman letters for the examples.

Step 1: Split off disks. In this step, we will split off disks in C with nonzero terms in degrees m and m − 1. 
Suppose an isomorphism of summands appears in the map from Cm to Cm−1. See for example the left side 
of Fig. 8 (which has three such isomorphisms, all from H to H). For concreteness, assume the isomorphism 
is id : H → H. We will demonstrate how to change bases to split off a shifted copy of D(H). The other cases 
of isomorphisms id, t : F → F can be handled similarly and are addressed at the end of this step. If there 
are no isomorphisms of summands between degree m and degree m − 1, proceed to Step 2.

Fix one of the identity maps Hα → Hβ between levels m and m − 1. We first adjust the basis at level 
m so that no other summand in degree m maps to Hβ. This change of basis proceeds as follows. Any other 
basis element α′ that maps nontrivially to the submodule generated by β is either on the • side or the Θ
side. Replace α′ with α′ + α if α′ is on the • side, and with α′ + p∗α if α′ is on the Θ side. The result is 
again a basis (see parts (v) and (iv) of Lemma 7.2). After changing all such α′ in this way, no basis element 
other than α will map nontrivially to the submodule generated by β.

For example, in Fig. 8 we choose the identity map Ha3→Hb3 sending the element a3 to b3. As there is 
also a nonzero map Ha2 → Hb3 , the basis element a2 at the top is replaced with a2 + a3. Similarly, the 
element a4 is replaced with a4 + p∗a3. These new basis elements are depicted on the right of Fig. 8 in blue. 
Notice after the change of basis Ha2+a3 maps to the sum of two strands, as does Fa4+p∗a3 , but neither maps 
to Hb3 since we are working over Z/2. At this point, no other summands at level m map nontrivially to 
Hb3 . However, a3 maps nontrivially to the summands generated by b2 and b4, so we are not yet able to split 
off a copy of D(H). Thus we consider the basis below degree m.

In general (as in the example), it is possible α maps nontrivially to some other summand. In this situation, 
we change the basis at level m − 1, adjusting the target basis element β so that this is no longer the case. 
Suppose β′ is another basis element at level m −1 such that α maps nontrivially to the summand generated 
by β′. Replace β with β + β′ if β′ is on the • side. Replace β with β + p∗β

′ if β′ is on the Θ side. Repeat 
this process until α only maps to a single summand, and call this new basis element β̃. We can now split 
off the complex Hα → Hβ̃ .

In our example, this change is shown in Fig. 9. We first replace b3 with b3 + p∗b2, and then replace that 
with β̃ = b3 + p∗b2 + b4. Now Ha3 → Hb3+p∗b2+b4 splits off. Observe that we have effectively chosen the 
diagonal basis element hit by a3. That is, we replace b3 with the sum of the elements that are hit by a3

(using p∗ as necessary, since all these elements must lie on the • side).
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Fig. 9. The example for Step 1, continued.
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Fig. 10. The example for Step 2.

Note the change of basis at level m −1 has not destroyed the decomposition into strands in lower degrees. 
The fact that Hα → Hβ was the identity and the criteria that d2 = 0 in the chain complex, means the 
original strand involving Hβ could not have had any lower degree terms. The same is true of Hβ̃. Thus we 
have indeed split off a copy of D(H).

If initially we had instead chosen the identity map Fα → Fβ the process to split off a copy of D(F ) would 
be analogous, except we would replace basis elements α′ in level m with either α′ + α, α′ + tα, α′ + uα, 
or α′ + p∗α. At level m − 1, we similarly would add β′, tβ′, uβ′, or p∗β′ to β. If we had instead chosen 
t : Fα → Fβ , we could simply replace α with tα and then apply the steps for id : Ftα → Fβ .

Continue this process until all isomorphisms from level m to level m − 1 have been split off as disks.

Now we turn to decomposing the remaining complex where these top-level disks have been split off. We 
abuse notation and again refer to this complex as C. Notice C may still have contractible complexes as 
summands in lower degrees, but these can essentially be ignored.

Having completed Step 1, we may assume C has no isomorphisms from degree m to degree m − 1. We 
consider nonzero maps out of a copy of H in degree m, and since there are no maps of the form H → H, 
we suppose there is a map of the form p : H → F . This type of map appears at the top of both Br strands 
and H(−n) strands, for n > 0. In general, to split off a strand ending in H we choose the shortest strand, 
and to split off a strand ending in F we choose the longest. In the next two steps, we will split off the Br

summands, shortest strands first, and then the H(−n) summands, longest first. If C has no maps of the 
form p : H → F at this level, proceed to Step 4.

Step 2: Split off Br summands. Assume there exists a map p : Hα → Fβ from level m to level m − 1, and 
further assume that the strand in Tm−1(C) with Fβ at the top is isomorphic to a shift of H(i) for some 
i > 0. If there is no such strand, proceed to Step 3. If there is such a strand, amongst all such α, β pairs, 
select one so the complex beginning with Fβ is isomorphic to a shifted copy of H(i) for the smallest possible 
i. That is, choose the shortest strand that ends in an H. An example is shown on the left in Fig. 10 with 
α = a1 and β = b3, where the chosen strand is a shifted copy of H(2).



38 D. Dugger et al. / Journal of Pure and Applied Algebra 228 (2024) 107473
Fa2+p∗a1 Ha1

Fb1 Fb2 Fb3+b1+b2+b4 Fb4

Fc1 Fc2 Fc3+c1+c2+c4 Fc4

Hd1 Hd3+d1+p∗d4 Fd4

He

Fig. 11. The example for Step 2, continued.

Our goal is to change the bases in order to split off a shifted copy of Br with r = i − 1. To do so, we first 
adjust the basis at level m so that Hα is the only term hitting our chosen strand. If α′ is some other basis 
element that maps nontrivially to the summand generated by β, replace α′ with either α′ + α or α′ + p∗α. 
Continue in this way until Hα is the only term with a nontrivial map to the chosen strand. This change is 
made in the example on the right in Fig. 10.

Next we change the basis of our chosen strand at every level below, starting with level m − 1. Recall the 
element β generates a copy of F . Replace β with the diagonal element, i.e. the sum of all basis elements 
whose summands are mapped to nontrivially by Hα. Note that because there are no longer any isomorphisms 
from degree m to m − 1, each of these basis elements must generate a copy of F . Thus all these elements 
are on the Θ side and the sum makes sense (there is no need to involve p∗ or p∗). Call this new diagonal 
basis element β̃. Observe that Hα now maps nontrivially only to Fβ̃ . We adjust the basis at level m − 2
in a similar fashion, again replacing the basis element in the chosen strand with a sum of basis elements. 
Eventually we will encounter a summand of the form Hδ at the bottom of the chosen strand. At this level, 
we replace the basis element δ with the diagonal element, but adjust as necessary. We take the sum of all 
the relevant copies of basis elements on the • side (including δ) and p∗ applied to relevant basis elements on 
the Θ side. See Fig. 11 for clarification.

In the example, note that d3 + d1 + p∗d4 maps to zero because p : Fd4 → He is zero on the • side, so we 
can now split off a complex of the form B1. The general case works as in the example: after replacing the 
basis element δ with the sum, we can split off a shift of Br with r = i − 1.

Continue this process until there are no more maps p : Hα → Fβ from level m to level m − 1, where Fβ

is the top of a shifted copy of H(i) for any i > 0. Afterward, if there are no more maps p : H → F at this 
level then skip to Step 4. Otherwise proceed to Step 3 to split off shifted copies of H(−n).

Step 3: Split off H(−n) summands. Having completed Steps 1 and 2, and again abusing notation, we may 
assume that any maps p : H → F from level m to level m − 1 in C must hit strands made entirely of copies 
of F . So assume there is a map of the form p : Hα → Fβ from level m to level m − 1 where in the truncated 
complex Tm−1(C) the summand with Fβ at the top is of the form Ai for some i ≥ 0. In this step, choose the 
pair α, β such that the summand Ai beginning with Fβ has the largest possible value of i (in other words, 
Fβ begins the longest possible strand). Our goal is to use this strand to split off a shifted copy of H(−n)
with n = i + 1.

We can adjust the basis at level m as in Step 2. We do not repeat these details and instead begin by 
assuming there are no other basis elements from level m that map nontrivially to Fβ. We next change the 
basis at level m − 1 as in Step 2. That is, replace β with the sum of all basis elements whose summands are 
mapped to nontrivially by α. If i > 0, make the same adjustment at level m − 2 and continue making this 
change until reaching level m − (i + 1). An example is provided in Fig. 12 for clarification.
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Fig. 12. The example for Step 3.

Now split off a complex that is a shift of H(−(i +1)). Continue this process until there are no longer any 
maps of the form p : H → F from degree m to m − 1.

Step 4: Split off H(n) summands. Suppose we have completed Steps 1, 2, and 3. If there are any nonzero 
maps remaining from level m to level m − 1, then they must be of the form u : F → F . We now consider 
basis pairs α, β such that u : Fα → Fβ appears in C from level m to m − 1, and the summand beginning 
with Fβ in Tm−1(C) ends in H. That is, the summand beginning with Fβ is isomorphic to H(i) for some 
i > 0. As in Step 2, choose the pair α, β such that Fβ begins a copy of H(i) for the smallest possible i. 
Change bases as in Step 2 to split off a copy of H(n) with n = i + 1 from Tm(C).

Repeat the above until there are no such α, β pairs remaining.

Step 5: Split off Ak summands. Assume we have completed Steps 1 through 4. Again, if there are any 
nonzero maps remaining from level m to level m − 1, they must be of the form u : Fα → Fβ . Having 
completed Step 4, it must be that the summand in Tm−1(C) that begins with Fβ is of the form Ai for some 
i ≥ 0. As in Step 3, choose the α, β pair such that Fβ begins the longest possible Ai. Change bases as in 
Step 3 to split off a copy of Ak with k = i + 1 from Tm(C).

Repeat the above until there are no such α, β pairs remaining.

After completing these steps, all remaining maps from level m to level m − 1 will be zero. Thus any 
remaining H or F summands split off as chain complexes with zero differentials. We have successfully 
decomposed Tm(C) as a sum of fundamental chain complexes. We can now repeat the above steps to split 
Tm+1(C), and so on. Since C is a bounded complex, there is a large enough d so that Td(C) = C. Thus this 
process will eventually terminate to give a splitting of C. �
8. An algebraic version of Kronholm’s theorem

Kronholm’s freeness theorem, which first appeared in [12], states the RO(C2)-graded Bredon cohomology 
with Z/2-coefficients of any finite Rep(C2)-complex is free as a module over the cohomology of a point M2. 
A mistake in the original proof was fixed in [11], which also expanded the result to Rep(C2)-complexes of 
finite type. The proof of the freeness theorem involved delicate arguments about extensions of M2-modules. 
In this section, we give two alternate proofs. The first uses τ -localization to quickly deduce freeness as 
suggested by the referee. The second uses the splitting algorithm from Section 7 to describe the cohomology 
explicitly. The first has the advantage of being short and clear, while the second perspective helps clarify an 
important phenomenon observed by Kronholm now known as “Kronholm shifts”. This is a phenomenon in 
which the representation cell structure of a Rep(C2)-complex determines the bidegrees of the free generators 
in cohomology, up to some shifting of bidegrees.

We begin by defining an analog of Rep(C2)-cells and Rep(C2)-complexes in Ch(Z/2). This is somewhat 
complicated by the fact that complexes in Ch(Z/2) correspond to general HZ/2-modules, not just those 
of the form HZ/2 smashed with a pointed C2-space. Recall that a Rep(G)-complex is a particular type of 
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Fig. 13. Freeness theorem and shifts for HZ/2 ∧ RP 2
tw.

G-space built by attaching Rep(G)-cells of the form D(V ) so that each filtration quotient looks like a wedge 
of representation spheres SV . In this section, we will focus on Rep(G)-complexes and not consider G-CW 
complexes, which are built by attaching orbit cells G/H ×Dm.

We define a representation cell to be a fundamental complex of the form ΣmH(q) where 0 ≤ q ≤ m. As 
discussed in Section 6, ΣmH(q) corresponds to HZ/2 ∧ Sm,q. We require 0 ≤ q ≤ m so that Sm,q is an 
actual (rather than virtual) representation sphere. Recall ΣmH(q) is the complex

ΣmH(q) : 0 F
u

F
u · · · u

F
p

H 0,

where the leftmost F is in degree m and the H is in degree m −q. We refer to m as the topological dimension, 
q as the weight, and m − q as the coweight of the representation cell. For a representation cell W we write 
top(W ), wt(W ), and cowt(W ) for the topological dimension, weight, and coweight, respectively.

The complex for a representation cell W is zero in degrees above top(W ) and in degrees below cowt(W ). 
Colloquially, top(W ) is the degree of the “top F” and cowt(W ) is the degree of the “bottom H”. The weight 
wt(W ) is the “length” of the fundamental complex, where length is one less than the number of nonzero 
terms. The weight is also the number of F ’s in the strand. It is useful to keep these interpretations of the 
three invariants in mind while reading the arguments in this section.

We next want to define Rep(C2)-chain complexes so that under the equivalence (6.1) we have

Rep(C2)-chain complexes ←→ HZ/2 ∧ Rep(C2)-complexes.

If a space K is formed by attaching an (m, q)-cell D(Rm,q) to the space L, then we have a cofiber sequence 
L → K → Sm,q. Desuspending in the homotopy category then gives K � Cof(Sm−1,q → L). Thus we are 
led to define attaching an (m,q)-representation cell to a chain complex of Z/2-modules Y to be taking the 
cofiber of a map Σm−1H(q) → Y in Ch(Z/2). We will show that (under well-controlled circumstances) the 
cofiber splits as a direct sum of representation cells, and thus the bigraded cohomology is a free M2-module 
by Proposition 4.3.

The following example illustrates the freeness theorem and the shifting phenomenon in the context of 
chain complexes. The reader is invited to compare it with the extension of M2-modules from Example 3.2 
in [11]. In the chain complex setting, a change of basis immediately solves the extension problem.

Example 8.1. The projective space RP 2
tw = P (R3,1) sits in a cofiber sequence S1,0 → RP 2

tw → S2,2. Desus-
pending in the stable homotopy category, we may view RP 2

tw as Cof(S1,2 → S1,0). Smashing with HZ/2
and translating to chain complexes, we consider the corresponding complex X = Cof(Σ1H(2) → Σ1H). 
The map f : Σ1H(2) → Σ1H is pictured on the left in Fig. 13, where complexes are drawn vertically. If f
is not null-homotopic (as turns out to be the case here), it must be given by p : F → H in degree 1. The 
cofiber X is then pictured in the middle of Fig. 13. Applying the change of basis algorithm from Section 7, 
Step 4 of the algorithm splits the complex into the two summands as pictured on the right. Thus we find 
X � Σ1H(1) ⊕Σ2H(1) (this can also be deduced from Lemma 4.26 by identifying f ∧ idH(−2) with the map 
Σθ).



D. Dugger et al. / Journal of Pure and Applied Algebra 228 (2024) 107473 41
H F

H

f

p

H

F

H

p

p

Fig. 14. Freeness theorem fails for non-spaces.

Notice the splitting algorithm decomposes X as a direct sum of representation cells Σ1H(1) and Σ2H(1). 
So the (reduced) bigraded cohomology of X is a free M2-module generated in bidegrees (1, 1) and (2, 1). 
Translating to topology we have

HZ/2 ∧RP 2
tw � HZ/2 ∧ (S1,1 ∨ S2,1).

Moreover, back in chain complexes, the splitting algorithm has effectively transferred a copy of F onto 
the second chain complex. This is precisely how the shifting phenomenon observed by Kronholm manifests 
in chain complexes. The original spheres S1,0 and S2,2 give rise to free M2 generators in the same topological 
dimensions but with shifted weights: the first generator shifts up one in weight and the second generator 
shifts down one. These weight shifts occur because a single F “moved” to the second complex during the 
change of basis. Notice that no copies of F appeared or disappeared, so the total weight is preserved.

As in the previous example, more general Kronholm shifts will be determined by copies of F moving onto 
different strands and the total weight will be preserved.

Before proceeding to the proof in the general case, we need one more restriction on the complexes. 
Without this restriction, it is easy to construct a chain complex out of representation cells that cannot 
correspond to a space and hence not a Rep(C2)-complex.

Example 8.2. Consider the nontrivial map f : Σ1H → Σ1H(1). We can compute Cof(Σ1H → Σ1H(1)) �
Σ2B0 as depicted in Fig. 14. However, by the structure theorem (Theorem 6.5), the bigraded cohomology 
of Σ2B0 cannot be the bigraded cohomology of a C2-space.

To exclude these sorts of chain complexes, we make the following definition.

Definition 8.3. A map X → Y in D(Z/2) is spacelike if the cofiber does not have any B-type summands in 
its decomposition (see Theorem 4.5).

We are now ready to define the appropriate analog of Rep(C2)-complexes.

Definition 8.4. A Rep(C2)-chain complex is a chain complex X with a filtration X0 ⊆ X1 ⊆ · · · ⊆ X, 
where X0 is either 0 or a direct sum of copies of H, and Xm is formed by attaching m-cells to Xm−1. That 
is,

Xm = Cof
(⊕

i

Σm−1H(qi) → Xm−1

)

where 0 ≤ qi ≤ m for each i. Furthermore, we require that all of the attaching maps are spacelike.

We are now ready to state a version of Kronholm’s theorem in D(Z/2).

Theorem 8.5. Suppose X is a Rep(C2)-chain complex built from finitely-many cells. Then X is quasi-
isomorphic to a direct sum of complexes of the form ΣkiH(ri) where 0 ≤ ri ≤ ki for all i.
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Before giving the proof, we note the topological version of Kronholm’s theorem is an immediate corollary.

Corollary 8.6 (Kronholm; Hogle–May). Let L be a pointed C2-space with the structure of a finite Rep(C2)-
complex. Then H̃∗,∗(L; Z/2) is free as an M2-module.

Proof. The object of D(Z/2) corresponding to HZ/2 ∧ Σ∞L can be represented by a Rep(C2)-chain com-
plex X satisfying Definition 8.4. So Theorem 8.5 applies and X is quasi-isomorphic to a finite direct sum 
⊕iΣkiH(ri) where 0 ≤ ri ≤ ki for all i. By Proposition 4.3, the bigraded cohomology of X is a free 
M2-module and thus so is the bigraded cohomology of the C2-space L. �

Now we turn to the proofs of Theorem 8.5. We first outline a short proof of the freeness theorem via 
localization. We thank the referee for suggesting this argument.

Proof of freeness in Theorem 8.5 via localization. Let X be a finite Rep(C2)-chain complex. Theorem 4.5
implies that up to quasi-isomorphism X is the sum of fundamental complexes. The spacelike assumptions 
rules out the appearance of any B-type summands. To rule out A-type summands, it is enough to rule out 
any ρ-torsion in the τ -localization of the cohomology. This can be done by inducting on the dimension of 
the complex and using that M2[τ−1] is a graded PID. We outline this argument in the paragraph below.

The base case is immediate because X0 is just a direct sum of copies of H. In the inductive step we build 
Xm from Xm−1 by attaching m-cells. The attaching map induces a map on the τ -localized cohomology, 
which leads us to analyze the map of free M2[τ−1]-modules

τ−1H∗,∗(Xm−1) →
⊕

# of m-cells
Σm−1M2[τ−1].

The module τ−1H∗,∗(Xm−1) will be a direct sum of free M2[τ−1]-modules with generators in topological 
degrees strictly less than m. For degree reasons, the only summands on which this map can be nonzero are 
the ones generated in topological degree m −1. On these summands, analyzing the map of M2[τ−1]-modules 
reduces to analyzing a map of F2-vector spaces.

By making a change of basis if necessary, there are only two options for a degree m − 1 summand in the 
domain: the summand is in the kernel, or it is mapped isomorphically onto a degree m −1 summand in the 
codomain. Thus, using the long exact sequence on cohomology, τ−1H∗,∗(Xm) will again be a direct sum of 
free M2[τ−1]-modules whose generators are in topological degrees m or less. In particular, τ−1H∗,∗(Xm)
has no ρ-torsion and so neither does H∗,∗(Xm). By induction, X has no A-type summands and is thus 
quasi-isomorphic to a sum of terms of the form ΣkiH(ri). �
Remark 8.7. The above argument has the advantage of being short and clear. However, it obscures how 
the chain complexes are glued together and how the weights shift. That is, while the localization argument 
guarantees the result will be a direct sum of strands of the form ΣkiH(ri), it does not give us a way to 
predict the values of ki or ri based on our starting cells.

We thus give a second proof that sheds some light on the nature of the Kronholm shifts, by which the 
bigradings in the original cell structure shift around to become the bigradings in the splitting decomposition. 
We certainly do not claim the following proof is easier or clearer, but rather that it illustrates explicitly 
how the weights of the attached cells get shifted. One can see these shifts are a consequence of the splitting 
algorithm in the proof below.

We now embark on proving Theorem 8.5 using our splitting algorithm. We again aim to induct on the 
dimension of a Rep(C2)-chain complex X. However, it will be simpler to consider the attaching map for a 
single representation cell V . We thus consider a map f : Σ−1V → Y where V is a single representation cell 
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Fig. 15. Attaching a single representation cell.

and by induction we assume Y is split as a direct sum of representation cells. An example is depicted in 
Fig. 15, where there is a single representation cell Σ−1V shown on the left with a (potentially complicated) 
attaching map f to the direct sum of representation cells on the right. Notice on the right-hand side, the 
cells are ordered by topological dimension, the degree of the top F .

If we take the cofiber of f , then we get a complicated complex to which we can apply the splitting algo-
rithm from Section 7. According to the algorithm, the cofiber will split into strands, but not necessarily the 
same vertical strands we started with. One can picture various copies of F and H breaking and reattaching 
to each other. However, at the end of the process, there are the same number of summands of F and H.

Since we have assumed the attaching map is spacelike, there will be no B-type strands in the final 
decomposition. Our aim is to show that no strands of the form Ak or H(−n) appear, so there are only 
strands of the form H(n) for n ≥ 0. For a nontrivial attaching map, we will find either several disks split 
off or some number of copies of F from V will transfer to other strands. The latter will decrease the weight 
of the newly attached cell and increase the weights of the others.

In the course of this, we will need to consider maps between representation cells of particular dimensions. 
Up to homotopy, we may choose nice representatives for the attaching map on each summand. In the 
following lemma, we determine the possible maps for our setting. From now on we draw chain complexes 
horizontally.

Lemma 8.8. Let V = ΣaH(b) and W = ΣsH(t) be representation cells with a ≥ s, and if a = s then b ≥ t. 
Then for any map Σ−1V → W , exactly one of the following holds:

(1) the cells satisfy top(Σ−1V ) = top(W ) and cowt(Σ−1V ) = cowt(W ), and the map is homotopic to the 
identity,

Σ−1V F F · · · F H

W F F · · · F H ;
1 1 1 1

(2) the cells satisfy top(Σ−1V ) = top(W ) and cowt(Σ−1V ) > cowt(W ), and the map is homotopic to one 
of the form

Σ−1V F F F F H

W F F F F F F H ;
1 1 1 1 p

(3) the cells satisfy top(Σ−1V ) ≥ top(W ) and cowt(Σ−1V ) ≤ cowt(W ) − 2, and the map is homotopic to 
one of the form
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Σ−1V F F F F F F H

W F F F H ;
u 0 0 0

(4) the map is null-homotopic.

Proof. To justify these are the only cases, we start by computing homotopy classes of maps D(Z/2)(Σ−1V, W ). 
Using that H(b) is invertible with inverse H(−b), we find that

D(Z/2)(Σ−1V,W ) ∼= D(Z/2)(Σa−1H(b),ΣsH(t))
∼= D(Z/2)(Σa−1−sH(b), H(t))
∼= D(Z/2)(Σa−1−sH,H(t− b))

∼=

⎧⎪⎪⎨
⎪⎪⎩
Z/2 if t− b ≥ 0 and − (t− b) ≤ a− 1 − s ≤ 0
Z/2 if t− b ≤ −2 and 0 ≤ a− 1 − s ≤ −(t− b) − 2
0 otherwise.

The last isomorphism follows from cases (b)–(d) of Proposition 4.22. That the only nonzero value is Z/2
means there is at most one nontrivial homotopy class of maps between representation cells. One can readily 
check the three maps described in parts (1)–(3) of the lemma are non-null. It remains to show these are 
the only possibilities that satisfy the given constraints on V and W . We have two cases for non-null maps: 
t − b ≥ 0 or t − b ≤ −2.

Observe in the context of representation cells V and W , the value t − b measures how many more copies 
of F the cell W has compared to V , i.e. how much longer the second strand is than the first. We now 
consider the two cases.

Case 1 (t − b ≥ 0): When t − b ≥ 0, the strand V is the same length or shorter than W . Under these 
circumstances, we show the constraints placed on the dimensions of the cells lead to either the identity map 
or the map in part (2).

To get a non-null map, we must also have a − 1 − s ≤ 0 or equivalently a − 1 ≤ s. This means the top 
F in W is in the same degree or higher than (i.e. to the left of) the top F in Σ−1V . By hypothesis, we also 
have a ≥ s or equivalently a − 1 − s ≥ −1. We see there are only two possibilities: a − 1 − s = 0 and the 
strands begin at the same place, or a − 1 − s = −1 and there is a single F in W above the start of Σ−1V .

Suppose a − 1 − s = 0, so the strands begin in the same degree. If the strands are the same length, we 
have an easy choice of non-null map: the identity. Otherwise, W is longer than Σ−1V . In that case, we may 
assume the map is of the form in part (2) of the lemma, having identity maps between copies of F and 
p : H → F in the degree of cowt(V ), as below:

Σ−1V F F · · · F H

W F F · · · F F F H.

1 1 1 p

This map is not null and thus represents the nonzero homotopy class. Notice here top(Σ−1V ) = top(W )
and the restrictions on the lengths of the strands mean cowt(Σ−1V ) > cowt(W ), as desired.

Lastly, consider when a − 1 − s = −1. We show there are no maps that satisfy the hypotheses of the 
lemma. In this case we have a = s, for which the lemma specifies that we must have b ≥ t. On the other 
hand, t ≥ b in this case. Thus t = b, but this contradicts that −(t − b) ≤ a − 1 − s since 0 is not less than 
−1.
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Case 2 (t −b ≤ −2): This inequality implies Σ−1V has at least two more nonzero terms than W . Rearranging 
the two inequalities from the homotopy class calculation, 0 ≤ a − 1 − s and a − 1 − s ≤ −(t − b) − 2, we 
immediately find s ≤ a − 1 and (a − 1) − b ≤ s − t − 2. That is, W and V have top(W ) ≤ top(Σ−1V ) and 
cowt(Σ−1V ) ≤ cowt(W ) − 2. A map of the form in part (3) of the lemma satisfies these constraints and is 
not null, and thus is a representative of the unique nontrivial homotopy class. �
Remark 8.9. Observe that each of the non-null maps in Lemma 8.8 has a distinct lowest degree (right-most) 
nonzero component: either id, p, or u, corresponding to the cases (1)–(3). This will be important in our 
application below.

We are now ready to prove Kronholm’s theorem in the chain complex setting using the splitting algorithm.

Proof of Theorem 8.5 via splitting. We induct on the number of representation cells in the Rep(C2)-chain 
complex X. To build X, instead of attaching all the m-cells at once, attach representation cells one at a time 
in order of increasing topological dimension, and within each topological dimension in order of increasing 
weight. We attach the cells in order of increasing weight to have better control of the attaching maps. This 
will allow us to reduce to studying the attaching maps from Lemma 8.8.

In order to maintain control of the attaching maps, our induction will prove a slightly stronger result 
than in the statement of the theorem. We prove that if X is obtained by attaching an (m, q)-representation 
cell V to a Rep(C2)-chain complex Y where Y � ⊕iΣkiH(ri) with 0 ≤ ri ≤ ki and also satisfying

ki ≤ m, and if ki = m then ri ≤ q (**)

for all i, then X is quasi-isomorphic to a direct sum of representation cells satisfying the same inequalities 
as in (**). In particular, any cells of dimension m have weight no more than q. The base case where Y has 
no cells is trivial.

We need to analyze the attaching map f : Σm−1H(q) → Y . Since Y is quasi-isomorphic to ⊕iΣkiH(ri)
and Y is cofibrant, while ⊕iΣkiH(ri) is fibrant, in the projective model structure on Ch(Z/2−Mod), there 
must be a quasi-isomorphism g : Y → ⊕iΣkiH(ri). So we can instead consider the attaching map gf

Σm−1H(q) → ⊕iΣkiH(ri),

whose cofiber will still be quasi-isomorphic to X. Thus, we can just replace Y with the direct sum in 
the codomain. For convenience, let Wi denote the summand ΣkiH(ri), so X is quasi-isomorphic to the 
cofiber of Σ−1V → ⊕iWi. We will apply the splitting algorithm from Section 7 to the cofiber. Recall that 
the algorithm proceeds from lowest degree nonzero term to highest, or from right to left when we draw 
complexes horizontally.

If the map Σ−1V → ⊕iWi is null-homotopic, then the cofiber immediately splits as the direct sum 
V ⊕ (⊕iWi). The condition (**) on the cells is immediate.

The more interesting situation arises from a non-null map. Projecting onto each summand, we get maps 
of the form Σ−1V → Wi. Since the cells Wi satisfy condition (**) by assumption, we can apply Lemma 8.8
letting W = Wi. Thus there are only three non-null possibilities (up to homotopy) for the map Σ−1V → Wi; 
as in Lemma 8.8 we label these possibilities (1)–(3). Choose these nice representatives for each non-null map 
and the zero map for any null portion. As the splitting algorithm proceeds from bottom to top, we will 
want to consider the lowest degrees first. Recall the lowest degree nonzero map for each representative is: 
id : H → H for case (1), p : H → F in case (2), and u : F → F in case (3).

Now consider Cof(Σ−1V → ⊕iWi) and apply the splitting algorithm. There are no maps between the 
Wi, so reading from right to left the complex is split into strands until degree cowt(V ). In degree cowt(V ), 



46 D. Dugger et al. / Journal of Pure and Applied Algebra 228 (2024) 107473
the bottom H from V supports either the identity map, p, or the zero map into the various strands. If that 
copy of H supports a nonzero map, we begin to apply the splitting algorithm here.

The splitting algorithm considers isomorphisms first and uses them to split off disks. So if the bottom 
H in V supports the identity map to a copy of H in any of the summands, then for at least one i there is 
a map of the form id : V → Wi. An example of the cofiber (omitting other strands for brevity) is pictured 
below:

V F F · · · F H

Wi F F · · · F H.

u

1

u

1

u p

1 1

u u u p

Regardless of whether the terms from V support other nonzero maps, in each degree the algorithm prioritizes 
the identity maps between terms and we can choose to use the identity maps to Wi. The algorithm will 
split off many disks, as many as the length of V . After the change of bases, no terms from V will support 
nonzero maps, so the remainder of the complex will be split as it was in Y . Thus X will be quasi-isomorphic 
to Y but with one strand (Wi) removed. As before, none of the remaining strands have changed so the 
inequalities from (**) still hold.

Now suppose there are no identity maps supported by the bottom H from V . If that H supports a 
nonzero map, it must be p : H → F . We will ultimately see this is not possible. If it were, there would be 
at least one summand Wi with a map V → Wi of the form in part (2) of Lemma 8.8. An example of the 
cofiber (again omitting other strands) is pictured below:

V F F F F H

Wi F F F F F F H.

u

1

u

1

u

1

u

1 p

u u u u u p

In the degree of cowt(V ), the algorithm prioritizes the map p : H → F . Applying the algorithm would 
split off a B-type summand (B1 in the example pictured). By assumption, all the attaching maps in our 
complex are spacelike, contradicting that there are any B-type summands. Thus the bottom H from V
cannot support any nonzero maps to other summands other than the identity, and hence there are no maps 
of the form in part (2) of Lemma 8.8.

Having dealt with these possibilities, we may now assume the bottom H from V does not support any 
nonzero maps, and any remaining non-null maps supported by this strand are of the form in part (3) of 
Lemma 8.8. Reading from bottom to top (i.e. right to left) in the cofiber, the strands will be split until 
we encounter a copy of F from V supporting the map u : F → F . Here Step 4 of the algorithm splits the 
strands by attaching the F from V to the shortest strand ending in H.

An example of the cofiber of such a map Σ−1V → Wi (omitting other strands as usual) is depicted below:

V F F F F F F H

Wi F F F H .
u

After the splitting, the resulting strands for this example are

F F F F F F H

F F F H .

Observe that after the splitting, there are again two representation cells with topological dimensions top(V )
and top(Wi). Moreover, attaching the F to the second strand changes the weights. The weight of the first 
strand decreases by the same amount the weight of the second strand increases.
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Of course, there may be many non-null maps of the form in part (3). Continue reading from right to left 
until all strands have been split according to the algorithm. The strand V is finite so this process eventually 
terminates.

We give an example to illustrate these last steps in more detail. In the example, we only show the 
shortest strands at each stage, since the algorithm will effectively ignore any longer ones. Alternatively, 
using a diagonal change of basis for the cofiber, one may assume the copies of F from V support a nonzero 
map to at most one strand of each topological dimension. The example is shown below:

V F F F F F F F H

Wi1 F F F H

Wi2 F F H

Wi3 F F F F F H .

u

u

u

At the first stage, the fifth copy of F from V (reading right to left) moves to the second strand, as in the 
previous example:

F F F F F F F H

F F F H

F F H

F F F F F H .

u

u

Then the algorithm attaches the next F from V onto the shortest strand, which is now the third strand 
pictured:

F F F F F F F H

F F F H

F F H

F F F F F H .

u

Finally, the remaining F from V attaches to the third strand since it is shorter than the fourth:

F F F F F F F H

F F F H

F F H

F F F F F H .
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At the end of this process we have split the cofiber into a number of strands, though they may have 
different lengths than the original strands. In any case, all of the strands are of the form ΣkH(r) for various 
k and r satisfying 0 ≤ r ≤ k. Thus X is quasi-isomorphic to a direct sum of representation cells as desired.

It only remains to verify that the inequalities from (**) are satisfied by X. In fact, since the copies of 
F from V have simply detached and reattached, the collection of topological dimensions of the strands 
is preserved (as well as the total weight). So all the topological dimensions are still less than or equal to 
m. Note that by Lemma 8.8, Σ−1V does not admit a non-null map to any of the summands in Y having 
topological dimension m; so these cells are unaffected in the cofiber X and still have weights less than or 
equal to q by (**). The only other cell in X of topological dimension m is the one onto which the top F from 
V gets attached. According to Step 4 of the algorithm, which at each iteration chooses the shortest strand 
ending in H to split off, this top F from V must have attached to a strand no longer than the original V . 
So that strand contributes a representation cell with weight at most q, and thus (**) is still satisfied. This 
completes the induction. �
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