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A B S T R A C T   

This article presents a novel method for estimating large scale spatiotemporal distribution patterns of fish 
populations modelled at the individual level. A single realization of an individual-based model calibrated on 
historic data has weak predictive capacity, given the underlying uncertainties faced when modelling a relatively 
small cluster of individuals operating in a high dimensional spatial plane. By incorporating real-time data sources 
to update these models, we can improve their predictive capacity. When correcting estimates from a large 
population of individuals, we don’t have access to information about individual histories, such as information 
derived from tagging data. We propose mapping individuals to derived density matrices, which can be corrected 
using conventional data sources which describe a mass of individuals e.g. catch data. An ensemble of derived 
states are used as forecast inputs to an assimilation procedure, that calculates an analysis state matrix of the same 
form. An individuals’ position and biomass values are updated based on the analysis values. To assess the effect 
of corrections, we setup a simulation experiment to explore the impact the number of measurement points has on 
the updated spatiotemporal distribution. The measurement points were sampled from derived states of a twin 
model that resembles the original model. The output of the twin model serves as the true distribution. With an 
increasing number of measurement points the centre of mass of the modelled distribution converges on the true 
distribution and the two distributions increase in overlap. Additionally, the absolute error between model and 
true values decreases. This estimation method, applied to individual-based models and coupled with real-time 
fisheries data, can improve spatially explicit estimates of fish distributions.   

1. Introduction 

Individual-based models (IBMs) simulate interactions between a 
population of model individuals and their surrounding environment 
(Grimm and Railsback, 2005). IBMs capture large scale phenomena with 
simple interactions. Complexity arises from modelling bottom-up pro
cesses, rather than imposing population level parameters such as birth 
and death rates (DeAngelis and Grimm, 2014). It is the individuals local 
input information that produces unique responses. Infection trans
mission models in epidemiology demonstrate this. Contact rates and 
transmission probabilities vary in accordance with the unique behaviour 
of individuals. The social network of the individual matters too (Koop
man and Lynch, 1999; Buchwald et al., 2020). For these reasons 
population-level features are not a simple sum of parts. The subtle dif
ferences between individuals alter system behaviour over time. Differ
ences arise as individuals update state variables, such as position and 

velocity, at frequent time intervals (DeAngelis and Grimm, 2014). In this 
way, internal states represent the integration of past and present input 
over time. Incrementing states forward in time, in distinct simulation 
scenarios, can explain the evolution of higher level phenomena. For 
example, an individual fish’s response to temperature and current ex
plains variation in migratory routes (Barbaro et al., 2009; Tu et al., 
2012). 

These properties make IBMs attractive explanatory tools. However, 
IBMs have weak predictive capacity at a precise location and time, and 
are of limited operational use. As Baker et al. (2018) has pointed out, 
mechanistic models rely on oversimplified assumptions that are narrow 
in nature and limited in broad predictive power. Models are tuned once 
using historical data, validated on an independent dataset, before fore
casting future estimates. This is useful for points trained on the historical 
data, but as the model progresses, states diverge from reality owing to 
uncertainties (Ward et al., 2016; Kieu et al., 2020). We consider model 
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simplifications, intialization values, mechanistic assumptions, parame
ters and inputs as main sources of uncertainty. Integrating real-time, 
real-world observations to correct model states is a way of controlling 
divergence. Data Assimilation updates model states based on real-time 
observations. It operates under the assumption models or observations 
alone cannot resolve the real system (Fu et al., 2011). It estimates the 
real system by applying a statistical correction term to model estimates 
(Alver and Michelsen, 2015. Data Assimilation has been applied suc
cessfully to applications in fishery models, predictive ecology, the 
terrestrial carbon cycle, traffic simulation, amongst other areas (Niu 
et al., 2014; Kieu et al., 2020). 

The Ensemble Kalman Filter (EnKF) is a Data Assimilation method 
initially developed by Evensen (1994). It is used for state and parameter 
estimation of non-linear systems e.g. atmospheric and ocean systems 
(Houtekamer and Mitchell, 2001; Alver and Michelsen, 2015). The EnKF 
simulates separate instances of a model in a Monte Carlo setup where 
instances diverge over time due to random perturbations which repre
sent the uncertainty in the model and its inputs. The divergence in model 
states is used to calculate error statistics. When observations are avail
able, a correction term is applied to each instance of the model, based on 
these error statistics (Evensen, 2009). Although the EnKF implicitly as
sumes Gaussian distributions of prior states, it is effective in approxi
mate estimation of states in non-linear systems that violate this 
assumption, which is often the case (Katzfuss et al., 2016). 

Assimilating measurement data with IBM output can vastly improve 
predictions. This has been explored in the case of population-level es
timates (Niu et al., 2014). Here we focus on high dimensional spatially 
explicit patterns of abundance in fish distributions. Real-time integra
tion of available observations has the potential to facilitate the goal of 
time sensitive decision-support for stakeholders in the fishing industry. 
There are two main challenges to achieving this objective. Firstly, at 
large spatial scales, we currently don’t have access to measurement data 
that describe individual fish with unique identities tracked through time 
to compare with IBM output directly. Secondly, the real spatially explicit 
distribution of fish stocks at any given time is highly uncertain, due to 
the sparsity of observations. 

We propose a novel approach for correcting the IBM that is 
compatible with measurement sources that don’t preserve an individual 
fishes identity, such as catch data. This method maps IBM output onto a 
two dimensional spatial grid, where derived density estimates are uti
lized as prior states in the EnKF. With minimal manipulation, the anal
ysis estimate is remapped to the IBM individuals. The EnKF is 
advantageous for this purpose, as the IBM model mechanics are not 
altered directly, avoiding degeneracy of the model structure (Katzfuss 
et al., 2016). Additionally, the EnKF is suitable for assimilation when we 
don’t fully understand the sources of errors. 

To address the issue of the true underlying distribution, we use a twin 
model experiment to simulate observations. That is, we simulate an 
altered IBM and treat it as the true migration pattern. The IBM is based 
on the spawning migration of the Norwegian Spring Spawning Herring, 
as described in Kelly et al. (2022). The model IBM mechanics are 
extended from the single realization described, to an ensemble of esti
mates, through addition of stochastic perturbations to model compo
nents. In the true scenario, the deterministic realization is simulated 
alongside the ensemble of models, then sampled for measurement 
points. The measurement values are assimilated with each instance of 
the ensemble. We then investigate the impacts of measurements on the 
model distribution, given we have full knowledge of the true 
geographical distribution. The convergence of the ensemble on the true 
distribution indicates the capacity to correct the IBM. Spatial indices 
were used to measure this convergence and scenarios run in this study 
examined the influence of number of observations on spatial patterns. 

With improvements in technology, observations will become less 
sparse and thus, our capacity to correct models shall improve (Fu et al., 
2011). For example, acoustic technology today involves use of a 
multi-beam system that can resolve multiple fish at once (Chu, 2011). 

Additionally, studies have shown it is possible to classify fishing activity 
with high precision, from available vessel data at an individual level, 
such as position, speed and turning angle of boats (Bez et al., 2011; de 
Souza et al., 2016). Assimilating such sources of fisheries data with 
spatially explicit model predictions can improve our collective under
standing of dynamics of large scale fish distribution patterns. 

2. Materials and methods 

The purpose of the model is to improve spatiotemporal estimates of 
fish distributions through integration of observations when they become 
available. The following description primarily focuses on two aspects: 1) 
Modifying the IBM to make it compatible with the EnKF procedure for 
assimilating data. 2) Setup of the twin model experiment to analyse the 
impact of measurements on the model (Fig. 1). 

2.1. Ensemble of IBM trajectories 

The IBM prediction model developed in Kelly et al. (2022) of a single 
model trajectory of herring is reproduced here for completeness, with 
the following set of difference equations at each time step k: 

p[k] = p[k − 1] + Δt
(
vf [k − 1] + vc[k − 1]

)
(1)  

vf [k − 1] = − Φvc[k − 1] + vb[k − 1] (2)  

vb[k − 1] = rb

([
cos(θ[k − 1])
sin(θ[k − 1])

])

(3)  

θ[k − 1] = f (∇T[k − 1],∇D[k − 1]) (4)  

where p is the vector of positions, vc are the horizontal current com
ponents vector at the individuals position in m s− 1, Φ is a parameter that 
controls the response to the current, rb is the swimming speed of the 
individual and θ is the angle of orientation, which is a function tem
perature and bathymetry gradients (T and D). This configuration allows 
the individual to respond with a higher priority to the horizontal com
ponents of the prevailing current. 

As Evensen (2009) notes, the solution to a dynamical model is one of 
an infinite many realizations, and for meaningful solutions, we must 
consider the time series of the probability density function. The IBM 
modelled one realization of the herring migration pattern, optimized 
based on a narrow set of assumptions (Kelly et al., 2022). Numerous 
alternative realizations are possible, given uncertainties in model evo
lution over time. Here, we add random perturbations to the IBM state 
variables to generate a set of N divergent instances sequentially in time. 
This generates N trajectories of the original IBM, which are held in 
memory and updated independently at each time step. 

Position p and velocity v of individuals were extended from the 
single IBM to N instances, notated by the state matrices P and V, both 
with N columns. Additionally, biomass B of individuals in kg is added as 
another state here, where each individual was treated as a mass of fish 
(also referred to as a superindividual): 

P[k] = P[k − 1] + Δt(V[k] + Ṽ[k]) (5)  

B[k] = B[k − 1] − Δt(B̃[k] + ω)B[k − 1] (6)  

where Δt was the time increment, reduction in biomass was controlled 
by the constant parameter ω, and divergence in states V and B were 
caused by the stochastic errors Ṽ and B̃. The expected value E [Ṽ] = E [B̃]
= 0. These errors produce prediction uncertainty in the system, repre
senting errors in individuals migration direction, speed and mass and 
were formulated as follows: 

Ṽ[k] = R̃[k]
[

cos(Θ̃[k])
sin(Θ̃[k])

]

(7) 
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R̃[k] = α1R̃[k − 1] + α2

(
esx1N

(
0, ϵ2

R

)

1xN

)
+ N

(
0, σ2

R

)

sxN (8)  

Θ̃[k] = α1Θ̃[k − 1] + α2

(
esx1N

(
0, ϵ2

Θ

)

1xN

)
+ N

(
0, σ2

Θ

)

sxN (9)  

B̃[k] = α1B̃[k − 1] + α2

(
esx1N

(
0, ϵ2

B

)

1xN

)
+ N

(
0, σ2

B

)

sxN (10)  

where temporally correlated, slowly varying errors were controlled by 
the parameters α1 and α2, esx1 is an sx1 vector of ones, where s is the 
number of individuals and ϵR, ϵΘ and ϵB represent standard deviation in 
speed, angle and biomass for each of the ensemble members. Applying 
these errors cause the N columns to diverge, creating an ensemble of 
random realizations.The standard deviations were calibrated to main
tain spread between ensemble members and limit the severity of cor
rections when data was assimilated. This formulation is similar to 
system noise modelled in ocean models that use temporal autocorrela
tion of random noise to account for errors in representation of certain 
processes (Keppenne et al., 2008). In this case, we represent the errors in 
the individuals state matrix, resulting from uncertainties in the evolu
tion of migration patterns. In addition to the temporally autocorrelated 
ensemble noise, spurious gaussian noise is added to each individual with 
mean of zero and standard deviations of σR, σΘ and σB. These individual 
noise components account for uncertainties in the migration of indi
vidual fish, regardless of ensemble member. 

2.2. Data Assimilation framework 

Before assimilation, the forecast IBM position Pf and biomass Bf from 
Equation (5) and (6) are converted to derived estimates: 

Xf = f (Pf ,Bf ) (11)  

where Xf is an nxN grid of density values, with each cell representing the 
sum of the biomass of all individuals within that grid cell. 

The EnKF uses the error covariance structure of the ensemble fore
cast Xf to calculate the correction term. However, the full covariance 
matrix is too large to be explicitly calculated here. We employ an 
equivalent implementation by Mandel (2006), which avoids the 

calculation of the full error covariance matrix and derives directly the 
prediction error covariance matrix in the observation space: 

A = Xf −
1
N
(
Xf eNx1

)
e1xN (12)  

HA = HXf −
1
N
( (

HXf )eNx1
)
e1xN (13)  

P =
1

N − 1
HA(HA)T Im + R (14)  

K = L ⊙

(
1

N − 1
A(HA)T P− 1

)

(15)  

where H is an mxn matrix that contains ones at m measured states, Im is 
an mxm identity matrix, R is the mxm observation error covariance 
matrix, where each element on the diagonal is the variance of obser
vation noise (σ2

O), L is an mxN localization matrix and finally, K is the 
Kalman Gain, which is used to calculate the correction term. Localiza
tion adds a penalty to model covariances that are distant from the 
measurment point. For a small ensemble and high dimensional system, 
localization is necessary to limit the impact of observations (Houte
kamer and Mitchell, 2005). The operator ( ⊙ ) is the Schur product, an 
elementwise operation acting on all covariance values. The full L matrix 
was calculated from a radial basis function: 

Lij =

⎧
⎪⎨

⎪⎩

0, if ‖ gi − gj‖
2 > c

exp
(
− ‖ gi − gj‖

2

2ρ2

)

, otherwise

⎫
⎪⎬

⎪⎭
(16)  

where we calculate the euclidean distance between the xy grid coordi
nate for each model grid cell gi and the measured grid cell gj. The value is 
calculated for all model coordinates (i = 1: n) and measurement point 
coordinates (j = 1: m). When i equals j, the value of L equals one, and as i 
moves away from j there is exponential decline in the value of L. To 
controls spatial correlations around the measurement point, the con
stant parameter ρ is used. In addition, to avoid spurious correlations, a 
cut-off point c sets distant spatial covariances to zero. 

The analysis estimate Xa is calculated as follows: 

Fig. 1. A conceptualization of the assimilation of data using the twin model experiment.  
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Xa = Xf + K(D − HXf ) (17)  

where D is the mxN measurement matrix. The standard EnKF adds 
N (0,R) realizations of observation errors to generate observational 
perturbations. However, in this study, where we are sampling from a 
non-negative distribution with mostly zero values, perturbation of ob
servations led to inaccuracies in the posterior field. Instead, the columns 
of D are treated as replicates of the original measurement vector. 
Treating the observations as deterministic contracts the variance across 
the ensemble in the analysis estimate (Burgers et al., 1998). To 
compensate for this contraction in spread between columns of Xa, an 
inflation factor ψ was used to replace the analysis estimates, as 
mentioned in Evensen (2009): 

Xa
z = Xa

+ ψ
(
Xa

z − Xa) (18)  

where z is the index for the ensemble member and Xa is the ensemble 
mean of the analysed derived states. 

Following assimilation, the IBM is modified to reflect updated grid 
cell biomass values and this is achieved with minimum manipulation of 
the underlying model structure. The derived analysis estimate Xa is 
converted back to IBM states: 

[Pa,Ba] = f (Xa) (19)  

where Ba and Pa are the analysis biomass and position values for in
dividuals, calculated from Xa. 

2.3. Data assimilation adapted for the IBM 

In this section, we detail how the conversion between IBM and EnKF 
states was achieved in Equations (11) and (19). Mapping from individ
ual representations to derived density states means aggregating infor
mation from individuals into a grid representation that describes 
geographical distribution and abundance. Cocucci et al. (2022) de
scribes this as a transition between micro- and macro-states. To achieve 
this mapping, the forecasted states are derived individual by individual, 
as shown in Algorithm 1, until the Xf matrix is furnished with an 
ensemble of density fields. 

Algorithm 1. Algorithm for mapping from IBM states to forecast states 
Xf in Equation (11).  

Mapping from the high dimensional analysis field to relatively fewer 
individuals is more challenging, and Algorithm 2 was designed to 
maximize the retention of density values, while limiting adjustments to 
the IBM. Each cell is checked for the analysis estimate and if it is greater 
than zero, the value is assigned as individual biomass, divided evenly 
amongst individuals at that position. If the analysis estimate is greater 
than zero, but there are no individuals present, one individual posi
tioned in a cell with a zero analysis estimate is randomly moved there 
(assuming there is an individual available to move). 

Algorithm 2. Algorithm for mapping from analysis states Xa to IBM 
states in Equation (19).  

(continued on next column)  

(continued ) 

This method is similar to the randomized redistribution described in 
Cocucci et al. (2022), where individuals are moved between categories 
where needed and attributes are updated. In this case, Pa and Ba are 
estimated from the macro- to micro-state mapping. This mapping con
serves density estimates with higher priority than individual histories, 
given real fisheries observations are of aggregated individuals. 

2.4. Twin model development 

The observations used in this study were synthetically generated 
using a twin model, which represents the true distribution here. Twin 
model design has been used to give insight into capacity to correct model 
components with few observed variables (Simon and Bertino, 2009. 
Specifically, we are testing the data assimilation procedure and 
observability of the system in our setup. Here, we observe a derived 
variable from the twin model (XT), which is a density field with di
mensions nx1. This was sampled in the assimilation procedure to furnish 
the D matrix in Equation (17). The samples were taken from a predefined 
grid along the Norwegian coast (Fig. 2). Like the model IBM, these 
values were derived from individual state variables: 

XT = f (PT ,BT) (20)  

where PT and BT were position and biomass of twin model individuals. 
Unlike the model IBM, the twin individuals were stepped forward with 
no feedback from the assimilation procedure. The twin IBM was updated 
using the same dynamics as the main IBM, with the exception of the 
swimming speed rb in Equation (3), which was reduced in the twin 
model. This hypothetical scenario represents a situation where the 
model overestimates the true migration speed of the herring. 

2.5. Model Simulation 

The environmental conditions were obtained from a run of the 
physical-biological ocean model SINMOD (Slagstad and McClimans, 
2005 set up in a domain with 4 km horizontal resolution covering the 
Norwegian and Arctic Seas. The same grid resolution was used for the 
derived states, where n = 941 × 620. The IBM modelled individuals in a 
2D environment where position was updated on N continuous horizontal 
planes. The s individuals initialized in each ensemble member had their 
position P centred in an area in Northern Norway in mid-January. The 
biomass B states for each ensemble were initialized from a Gaussian 
distribution with mean μB and standard deviation ΣB. These values were 
divided among individuals based on their proximity to the centre point 
of the starting position. The model was simulated for a period of 45 days 
during the herring spawning migration. The time increment Δt was 4 h, 
for a total of 270 time steps. The simulation period was split into 
assimilation and non-assimilation periods. The assimilation period 
operated from day 18–37. During the assimilation period, corrections 
were performed once per day. This left a period prior- and 
post-assimilation for the states to diverge from the ensemble mean. 
Model parameters were calibrated to stabilize the assimilation 
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procedure, specifically to avoid extreme correction terms (Table 1). 
To investigate the number of observation points needed to make the 

ensemble converge towards the true state, four separate scenarios were 
setup to test varying number of observation points, where S1 = 100 
points, S2 = 200 points, S3 = 400 points and S4 = 800 points. The points 
were sampled at equally spaced intervals in the observation area 
(Fig. 2). To implement a fixed virtual observer system, these same points 
were sampled on each day of the assimilation period. The output from 
these scenarios was compared to a control model, which was run in 
parallel with no assimilation of data. 

2.6. Analysis 

Quantitative and qualitative measures of performance investigated 

the capacity to correct the four model scenarios with samples of mea
surement points and thus, represent the spatiotemporal patterns of the 
true fish distribution. This is important in the geographical mapping of 
fish stocks. The quantitative measures used were based on equations 
from Woillez et al. (2007). The Centre of Gravity (CG) measures the 
weighted position of the density estimates at a given time. We investi
gated how this diverged from the control model and converged towards 
the true CG. Global index of Collocation (GIC) is a measure of the 
overlap of two separate distributions. It takes into account the CG of the 
two distributions and the variance around the CG. A value of one is 
perfect overlap between the two and a value of zero indicates distinct 
populations. Both CG and GIC were described in terms of latitude and 
longitude coordinates. They were calculated from the densities of the 
derived states X and XT, where X is the ensemble mean of the model. The 
derived states were saved once per day during the model simulation, and 
after the assimilation step. 

In addition to spatial estimates, the raw error between the density 
values of the model and true model were analyzed. This ground truth 
error was taken as the difference root-mean squared difference between 
density estimates from the model and the true derived density estimates: 

eT =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
l
∑l

i=1
(Xi − XT i)

2

√

(21)  

where i is the model coordinate and l is the number of indices within the 
observation area (Fig. 2). 

3. Results 

3.1. Qualitative analysis 

The ensemble mean of the model (X) is the best estimate of the model 
at each time step, and thus in the following results, X is the focus for 
analysis. The modelled migration moves south, with an offshore distri
bution prior to assimilation. During assimilation, the control simulation 
continues with this development, while the corrected scenarios develop 
a more coastal distribution, reflecting the true distribution. Following 
assimilation, all corrected scenarios deviate from the true distribution, 
but to a lesser degree than the control distribution. 

To visualize the impact of corrections, we plotted derived density 
maps from two time stamps during the assimilation period, one at day 25 
(Fig. 3) and another at day 35 (Fig. 4). The visual comparisons show 

Fig. 2. The area sampled for measurement point during assimilation (black rectangle), where the colored cells represent the true distribution of derived density 
values (XT), in kilograms, on day 25 of the simulation. The contours represent the depth in metres. For convenience, the colorbar represents the scale of both XT and 
depth. Longitude and latitude ticks extend from the x and y axis, respectively, along the Norwegian coast. 

Table 1 
List of model variables and parameters for ensemble simulations.  

Name Description Unit Value 

State variables    
P Model position of individuals   
B Model biomass of individuals   
X Model derived density states   
PT True position of individuals   
BT True biomass of individuals   
XT True derived density states   
Parameters    
N Number of ensemble members – 100 
s Number of individuals – 10000 
m Number of observations – – 
n Number of derived states – 583420 
Δt Time step h 4 
ϵR Standard deviation in ensemble magnitude m s− 1 0.1 
ϵΘ Standard deviation in ensemble angle ∘ 45 
ϵB Standard deviation in ensemble biomass – 0.002 
ω Biomass reduction for ensemble – 0.005 
μB Mean total initial biomass kg 5e06 
σR Standard deviation in individual magnitude m s− 1 0.01 
σΘ Standard deviation in individual angle ∘ 4.5 
σB Standard deviation in individual biomass – 0.002 
σO Observation noise kg 250 
ΣB Standard deviation in initial biomass kg 1e06 
α1 Temporal correlation parameter – 0.984 
α2 Temporal correlation parameter – 0.129 
ρ Localization parameter – 6 
c Localization cut-off – 15 
ψ Inflation factor – 1.01  
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Fig. 3. (a) Large scale 2D plot of derived density states of model (X) and true distribution (XT) over a selected area of the Norwegian coast on day 20 of the 
simulation. The density colormap shows values in kg, while the contour lines show depth in metres. The black point shows the centre point (CG). The same colorbar 
scale is used for both. (b) The local 3D representations of derived states taken from the squared area in (a). Black dots show the location of measurement points. No 
measurement points were sampled for the control scenario. 
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Fig. 4. (a) Large scale 2D plot of derived density states of model (X) and true distribution (XT) over a selected area of the Norwegian coast on day 35 of the 
simulation. The density colormap shows values in kg, while the contour lines show depth in metres. The same colorbar scale is used for both. The black point shows 
the centre point (CG). (b) The local 3D representations of derived states taken from the squared area in (a). Black dots show the location of measurement points. No 
measurement points were sampled for the control scenario. 
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large scale distributions (2D plot) concatenated vertically with local 
distributions (3D surface plot). The large scale model distributions 
become more similar to the true distribution in the assimilated sce
narios. The model CG converges on the true value also. The true dis
tribution tends towards the coast and is concentrated more northerly. 
Further north (higher on the x axis) there is a clear increase in density 
values in assimilated scenarios, where measurement values from the 
true distribution are higher. Further south (lower on the x axis), the 
density values decrease, as a result of adjustments using zero measure
ment values. 

In any given cell, local densities vary from true values, but on 
average the ensemble mean approaches the topography of XT. Location 
and density of measurement points impact the scale of corrections. The 
peaks and valleys in the local densities of Fig. 3b and 4b are concen
trated in varying locations, related to the position of measurement 
points. In the case of the control model, the derived density topology is 
distinct from the true derived topology. With an increasing number of 
measurement points, the density map starts to resemble the true map. 
For example, the ridge in S4 resembles the surface features of the true 
model (Fig. 4b). In any given cell, the density estimates from X may not 
reflect those from XT, but on average with increased observation 
numbers recreates a similar topography. 

3.2. Quantitative analysis 

The time series of CG of the ensemble mean for three scenarios was 
compared to the true CG. The CG is calculated in both latitude and 
longitude axes (Fig. 5). During the assimilation period there is conver
gence of CG towards the true point. The standard deviation across the 
ensemble reduces during the assimilation period and is sharply reduced 
with a higher density of observations. This sharp reduction is pro
nounced on the first call to the assimilation function. A large number of 

instances of the model are heavily penalized at this point. The standard 
deviation increases rapidly post-assimilation. There is faster conver
gence on latitude, reflecting the greater difference in latitude points, 
which was the main axis of variation for the simulation period. The 
inflation factor (ψ) is partly responsible for maintaining the standard 
deviation across the ensemble. The CG and standard deviation identical 
in all scenarios prior to assimilation. With a low density of observations, 
there are relatively weak corrections and convergence on the truth. In all 
cases there is divergence from the true CG post-assimilation. However, 
with a higher density of observations, there is less divergence. This is 
clear when we compare S3 to S1. 

In Fig. 6, we compare each scenario to the true and control CG 
(Fig. 6a) and overlap (Fig. 6b). Before the assimilation period, the model 
and true distribution diverge and there is less overlap. The non- 
assimilated control model continues to diverge from the truth during 
the assimilation period. There is immediate divergence from the control 
on day 18 and convergence to the true CG for all scenarios. This is re
flected in the overlap, which approaches a value of one over time. 

The ground truth error (eT) evaluates the raw error in the observation 
area between the model derived density values and the true derived 
density estimates from Equation (21). The error increases initially as the 
initial distribution of the truth and ensemble diverge in spatial charac
teristics. This pattern continues for the control model, until it eventually 
plateaus. The eT is generally reduced from S1 to S4, with an initial sharp 
reduction, followed by a gradual decline in errors, with some irregu
larities. The eT remains lower than the control for some days post- 
assimilation, until it eventually converges to a similar value at the end 
of the simulation. 

4. Discussion 

In this article, we have presented a novel general method for 

Fig. 5. Time series of Centre of Gravity (CG) in terms of latitude (first row) and longitude (second row) values during the simulation period. The CG of the true 
derived states (XT) is shown with the dotted blue line in each panel, while the CG of the ensemble mean of the model derived states (X) is shown with the black line, 
with each column representing a separate scenario. The vertical dotted grey lines represent the boundaries of the assimilation period. 
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assimilating data with an IBM operating in a high dimensional system. 
Assimilating data sources with a population of unique, discrete in
dividuals is challenging, given observation sources like catch data, 
which do not preserve individual identity. Our suggestion is the use of 
derived states, which map individuals onto a discrete grid, with each 
grid cell expressing total densities of individuals. These derived states 
can then be assimilated with observation data, using an ensemble 
approach, to calculate a posterior density grid. Derived states can be 
remapped to the IBM states, without excessive manipulation of the 
model structure. Such a method is particularly useful for spatially and 
temporally explicit predictions of fish distributions. In the setup tested 
here, we compared scenarios for a bounded time period, where obser
vations were available at frequent discrete intervals. The prior- and post- 
assimilation periods assumed no access to observations. In scenarios 
with access to many measurement points, the large scale and local 
density field converge on the true distribution. Importantly, we have 

shown how the assimilated scenarios outperform the non-assimilated 
control scenario in spatiotemporal predictions during the assimilation 
period. Performance is also superior for the time stamps directly suc
ceeding assimilation. Towards the end of the time series, the model es
timates eventually diverge from the true distribution and converge on 
the control case. Future work on incorporating fisheries dependent data 
can improve predictions and validate this method with real data. 

4.1. Making the IBM compatible with the EnKF 

The EnKF was chosen given the highly non-linear nature of the sys
tem modelled. Additionally, the EnKF shifts values in the model, rather 
than reinitializing model components. This prevents degeneracy of the 
model structure since each IBM instance is altered with minimal 
manipulation during assimilation. The IBM states were perturbed with 
Gaussian errors, but upon simulation the distribution of the ensemble of 

Fig. 6. (a) Time series of centre points (CG) for the four 
scenarios, true distribution and control model in terms 
of latitude (top panel) and longitude (bottom panel). 
The vertical dotted grey lines represent the boundaries 
of the assimilation period. (b) Time series of overlap 
(GIC) between the model and true distributions for the 
four scenarios and control model in terms of latitude 
(top panel) and longitude (bottom panel). The vertical 
dotted grey lines represent the boundaries of the 
assimilation period.   
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derived states becomes non-Gaussian. However, while the EnKF 
implicitly assumes a Gaussian state-space, it provides good approximate 
solutions in cases where systems violate this assumption (Katzfuss et al., 
2016). 

In the real system, the observations will be sampled from an un
derlying non-negative concentration field (fish per unit area), and 
furthermore the field will have a bias towards values of zero in locations 
outside of the distribution of the migrating fish at any time. This has two 
consequences. First, the assumption of gaussian measurement noise is a 
poor fit to real world observations outside of the area covered by the 
migrating fish. Second, perturbation of observations using gaussian 
distributed random values will lead to a high number of negative values 
in those same areas. For these reasons, observations were treated as 
deterministic in this study. To compensate for the lower ensemble 
spread resulting from this choice, an ensemble inflation factor was 
applied (Evensen, 2009). To relax the need for adding observation er
rors, a square root EnKF variant could be considered (for example: 
Bishop et al., 2001). In future studies using real world observations, the 
statistics of the sampling process should be investigated in detail for the 
actual observations made, and the assimilation process customized 
accordingly. One approach could be to use approximate Bayesian 
inference along the lines proposed by Eidsvik et al. (2008). 

An innovation of our method is the use of derived states that convert 
from particles to a field of density values. This allows corrections of 
density values rather than unique individual values, for which we don’t 
have measurement data to describe. This would require, for example, 
large-scale tagging studies or time-sensitive acoustic back-scattering 
data, which are not fully developed as of now. Also, a spatial density 
field is easier to interpret and compare with observation data sources, 
relative to a cloud of particles at large spatial scales. When mapping the 
posterior state back to individual states, there were two manipulations. 
Firstly, the negative Xa values were removed to omit negative biomass 
values. Secondly, individuals that had zero biomass values (post- 
assimilation), were moved into positions with positive Xa values, until 
either none remained to be moved or all positive Xa values were 
assigned, in a process similar to the randomized redistribution described 
in Cocucci et al. (2022). This prevented loss of information during 
assimilation, without heavily intruding on the mechanics of the IBM 
directly. 

The parameter values in assimilation were calibrated to ensure cor
rections were applied without extreme effects. The inflation factor kept 
spread around the ensemble, preventing excessive convergence of model 
on the observations, given observations were treated as deterministic. 
Localization was used to limit impacts of observations spatially and the 
choice of localization distance affects the corrections of cells between 
measurement points. Random perturbations on model states generated 
variance in the evolution of the migration scenarios. Balance between 
observation noise and model perturbations determined the overall scale 
of the corrections. One must note that assimilation is an approximate 
method of estimation, and operates under the assumption of uncertainty 
in model states and parameters. More persistent effects of the data 
assimilation can be achieved by also estimating model parameters in the 
data assimilation process, and for the present system the average 
swimming speed is a natural choice. Using parameter estimation, one 
would not only update the model state, but also attempt to tune the 
model to better match the real system at a fundamental level. 

4.2. Impacts of measurements on the fish distribution 

We used the twin model experiment (Fig. 1) to generate virtual ob
servations, gauging the impact of corrections on the model IBM. The 
twin model was designed to configure a hypothetical shift in the spatial 
distribution of the fish relative to the prior assumption of our model. 
Inter-annual shifts in distribution are common in many migratory fish 
species, as captured often in surveys. For example, the herring spawning 
migration usually ends with masses of individuals spawning around 

Møre, but often, spawning occurs further north (Slotte and Fiksen, 
2000). Our intention was not to explicate those reasons, but to gain 
insight into how assimilation of real-time data may modify the distri
bution to reflect a hypothetical disagreement between modelled and 
true distributions. In reality, fish distributions are highly uncertain in 
real-time as we have access to sparse observations, such as catch data. 
The twin model experiment design is useful as we are omniscient of the 
underlying true distribution and can easily analyse the impact of 
measurements. 

Qualitatively, the large scale and local spatiotemporal distributions 
increasingly resemble the true distribution with denser clusters of ob
servations (Fig. 3 and 4). Quantitatively, the centre points and overlap of 
the model converge on the true indices during assimilation to an 
increasing degree with more observations (Fig. 6a and b. Additionally, 
the deviations between ensemble instances is reduced with measure
ments, meaning the estimates are of higher certainty (Fig. 5). Finally, the 
ground truth error between the model and true derived density states is 
reduced with observations, showing, with access to more measurements, 
the model becomes more predictive in an absolute sense (Fig. 7). 

At any one location, corrections are highly sensitive to placement of 
observation points. For example, at the coordinate (5,38) in (Fig. 3b) 
there are high density values in scenarios S1, S2 and S3, while this peak is 
absent in S4. This is related to the position of measurement points at this 
step of the analysis and the previous position of measurement points. 
However, on average, the denser the observations, the more the features 
reflect the true spatial distribution. The overall topography of S4 re
sembles the true distribution more closely at the large and local scale 
(Fig. 3a and 3b). 

4.3. Opportunities for model implementation 

Today, there is much interest in utilizing fisher’s knowledge, as it is 
considered part of the best available information for research studies. 
This is complementary to research survey data, which much work has 
relied on until now. Utilizing spatially explicit data, such as position and 
speed from vessel monitoring systems, we can improve our under
standing of the state of the fishery in real-time. The estimation approach 
presented in this article is intended to be coupled with such data sources 
and thus, facilitate real-time monitoring of fish stocks. This has potential 
applications in fisheries management, marine planning and tracking of 
migrations. We note that this method is suggested to support decisions in 
these areas alongside complementary sources of information. Explicit 
decisions in fisheries systems are complex and require human deliber
ation and intervention. Thus, our model offers increased situational 
awareness without explicitly directing the decision-making process. 
Decision-making is the responsibility of the end user. 

The method also has theoretical value for tuning parameters and 

Fig. 7. The ground truth error (eT) between the model and true distribution for 
the simulation period in kg. The vertical dotted grey lines represent the 
boundaries of the assimilation period. 
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improving models of fish dynamics. We have shown that applying cor
rections to model estimates improve prior predictions and with enough 
coverage, model estimates converge on the true spatial distribution. 
Further work will attempt to validate this method with real fisheries 
observation data. Furthermore, we wish to improve predictions when 
observations are not available, for example during time windows with 
little access to measurements. 
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