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Isotropic covariance structures can be unreasonable for phe-
nomena in three-dimensional spaces. In the ocean, the vari-
ability of a response may vary with depth, and ocean currents
may lead to spatially varying anisotropy. We construct a class
of non-stationary anisotropic Gaussian random fields (GRFs) in
three dimensions through stochastic partial differential equa-
tions (SPDEs), where computations are done efficiently using
Gaussian Markov random field approximations. A key novelty is
the parametrization of the spatially varying anisotropy through
vector fields.

In a simulation study, we find that simple stationary models
obtain reasonable parameter estimates with a moderate num-
ber of observations and a single realization, whereas the most
complex non-stationary anisotropic model requires dense ob-
servations and multiple realizations. Further, we construct a
stationary and a non-stationary GRF prior for salinity in an ocean
mass outside Trondheim, Norway, based on simulations from the
complex numerical ocean model SINMOD. These GRF priors are
then evaluated using in-situ measurements collected with an
autonomous underwater vehicle. We find that the new model
outperforms the stationary anisotropic GRF prior for real-time
prediction of unobserved locations both in terms of root mean
square error and continuous rank probability score.
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1. Introduction

Gaussian random fields (GRFs) are a powerful tool for spatial and spatio-temporal geostatistical
odeling (Diggle et al., 1998; Cressie and Wikle, 2015). When the key goal is predictions at
nobserved locations, i.e., Kriging, isotropic covariance functions often perform well, and more
lexible covariance structures should be used with care (Fuglstad et al., 2015b). In data-rich settings,
his is often attributed to the screening effect (Stein, 2002), which causes the closest observations to
ecome the most important for prediction. In other settings, the primary goal is not prediction, but
o estimate the covariance structure, for example, to describe internal variability in a climate model
nsemble (Castruccio et al., 2019), or to produce a spatial prior based on numerical simulations that
ill later be used to guide autonomous sampling (Fossum et al., 2021; Foss et al., 2022). For the

ormer, Fuglstad and Castruccio (2020) and Hu et al. (2022) demonstrated that flexible covariance
tructures can perform better than stationary covariance structures.
There are many approaches to constructing flexible covariance structures (Sampson, 2010;

alvaña and Genton, 2021; Schmidt et al., 2011). Some early approaches are the deformation
ethod (Sampson and Guttorp, 1992) and kernel convolutions (Paciorek and Schervish, 2006), but

hey both involve the covariances between any pair of locations. This means standard implemen-
ations are infeasible for large datasets. There are many ways to overcome such computational
ssues in spatial statistics and some are applicable for flexible covariance structures (Heaton
t al., 2019). The stochastic partial differential equation (SPDE) approach (Lindgren et al., 2011)
s interesting because it directly gives rise to computationally efficient models and easily extends
o non-stationary covariance models.

A challenge with increasing the degree of flexibility in the covariance structure is that general
arametrizations of such flexibility require many parameters. The common family of isotropic
atérn covariance functions (Stein, 2012) are parametrized through 3 parameters: marginal vari-
nce, range, and smoothness. Flexible models can have 100s or more parameters (Fuglstad et al.,
015b). An appealing way to reduce dimensionality is to describe the covariance structure through
ovariates (Schmidt et al., 2011; Neto et al., 2014; Ingebrigtsen et al., 2014, 2015; Risser and Calder,
015), but this requires knowledge about what type of non-stationarity is expected and suitable
ovariates to explain such non-stationarity.
There has been much recent development on the theoretical and numerical side for generalized
hittle-Matérn GRFs using the SPDE approach (Lindgren et al., 2022). However, the literature is

parse with respect to parametrization and practical application of models with spatially varying
nisotropy in three-dimensional space. For example, stationary models have been used in the
ontext of seismic inversion (Zhang et al., 2016), simple anisotropic covariance structures have been
sed in the context of fMRI data from the brain (Sidén et al., 2021), and more complex covariance
tructures in the context of astronomy (Lee and Gammie, 2021), though this was two-dimensional
pace and time treated as three-dimensional space. The spatially varying anisotropy parametrized
y a vector field (Fuglstad et al., 2015a) has not been extended to three-dimensional space.
The aim of this paper is to develop a new approach for parametrization and estimation with spa-

ially varying anisotropy in three-dimensional space. A key advantage of using the SPDE approach
s that the SPDE guarantees a valid covariance structure. The main challenge is how to describe
nd parametrize non-stationary covariance structures. Fuglstad et al. (2015a) used one vector field
o describe spatially varying anisotropy, but in three dimensions, two spatially varying orthogonal
ector fields are necessary for full generality.
In a simulation study, we investigate how much data is necessary to recover parameters for

hree different model complexities: stationary isotropic, stationary anisotropic, and non-stationary
nisotropic. We then estimate stationary and non-stationary GRF priors that encode knowledge
bout the ocean from a numerical forecast generated by the numerical model SINMOD by SINTEF.
hese priors are updated using sparse in-situ measurements by an autonomous underwater vehicle
AUV), and the predictive ability under the priors is compared on a mission conducted in Trond-
eimsfjorden, Norway, on May 27, 2021. Improved predictions are key, for example, in autonomous
ampling of the oceans (Fossum et al., 2019, 2021), but current approaches in autonomous ocean

ampling are limited to stationary GRFs.
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In Section 2, we describe how to model anisotropy and non-stationarity in three dimensions
sing SPDEs. Then in Section 3, we describe how to perform inference for the new model in a
omputationally efficient way. In Section 4, we describe the simulation study and discuss the results,
nd then continue, in Section 5, with the application to ocean sampling. We end with a discussion
n Section 6.

. Constructing SPDEs with spatially varying anisotropy

.1. Existing models

The Matérn covariance function on R3 is given by

r(s1, s2) =
σ 2

2ν−1Γ (ν)
(κ∥s1 − s2∥)νKν(κ∥s1 − s2∥), s1, s2 ∈ R3, (1)

where ∥·∥ is the Euclidean distance in R3, σ > 0 the marginal standard deviation, Kν is the modified
Bessel function of the second kind and order ν > 0, and κ > 0 is an inverse spatial scale parameter.
As discussed in Lindgren et al. (2011), GRFs with this covariance function are the stationary solutions
of the SPDE

(κ2
− ∇ · ∇)α/2(τu(s)) = W(s), s ∈ R3, (2)

where α = ν +3/2, τ =
√
8πκ/σ , ∇ ·∇ is the Laplacian, and W is a standard Gaussian white noise

rocess.
Lindgren et al. (2011) proposed to introduce non-stationarity by allowing κ and τ to vary in

pace (Ingebrigtsen et al., 2014, 2015) or by deformations of space (Hildeman et al., 2021). Fuglstad
t al. (2015a,b) consider a version of the SPDE, where the Laplacian is replaced by an anisotropic
aplacian where the direction and degree of anisotropy vary spatially. This was further extended
o spherical geometry in Fuglstad and Castruccio (2020), Hu et al. (2022) and Zhang et al. (2023).
owever, all of these works were in two-dimensional base spaces, and only simpler models have
een applied for three-dimensional base spaces (Zhang et al., 2016; Sidén et al., 2021).
The key idea in Fuglstad et al. (2015a) was to replace ∇·∇ by ∇·H(s)∇ , where H(s) is everywhere

symmetric positive definite 2 × 2 matrix that controls the strength and direction of anisotropy.
he matrix-valued function was specified as H(s) = γ (s)I2+v(s)v(s)T, s ∈ R2, where γ (·) is a positive
unction and v(·) is a vector field. This allows γ (·) to control the baseline strength of dependence
n all directions, and v(·) to control the strength and direction of additional spatial dependence.
owever, the same parametrization in R3 is not sufficiently general to control anisotropy fully.

.2. Stationary anisotropy in R3

We follow the idea in Fuglstad et al. (2015a) for R2, and change the SPDE in Eq. (2) to

(κ2
− ∇ · H∇)u(s) = W(s), s ∈ R3, (3)

here ∇·H∇ is an anisotropic Laplacian and the symmetric positive definite 3 × 3 matrix H controls
he anisotropy. The parameter τ has been dropped since κ and H together control both marginal
ariance and correlation.
As shown in Appendix A.1, the resulting marginal variance is

σ 2
m =

1
8πκ

√
det(H)

(4)

nd the covariance function is explicitly known as

r(s1, s2) =
1

8πκ
√
det(H)

exp
(
−κ∥H−1/2(s1 − s2)∥

)
(5)

for s1, s2 ∈ R3. The latter is derived in Appendix A.2, and is a generalization of results in Lindgren
et al. (2011) and Sidén et al. (2021). This corresponds to geometric anisotropy in the Matérn
3
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Fig. 1. The three-dimensional iso-correlation surface at the ∼0.37 level of Eq. (5), where v1 , v2 , and v3 are the eigenvectors
f some H with lengths

√
λ1/κ ,

√
λ2/κ and

√
λ3/κ .

covariance function with smoothness ν = 1/2. To understand the behavior of the covariance
unction, it is useful to think about H in terms of its eigenvalue decomposition. Let ṽ1, ṽ2, and
3̃ be orthonormal eigenvectors corresponding to eigenvalues λ1, λ2 and λ3, respectively. Then
ig. 1 shows an example of the 0.37 level iso-correlation surface that will arise from the covariance
unction in Eq. (5). The semi-axes of the ellipsoid in the figure are v1 = (

√
λ1/κ)ṽ1, v2 = (

√
λ2/κ)ṽ2,

nd v3 = (
√

λ3/κ)ṽ3, which by evaluating the covariance function with either of these semi-axes
will yield the relationship and the iso-correlation level r(v)/σ 2

m = e−1
≈ 0.37.

We generalize the parametrization described in Section 2.2 and H is decomposed as

H = γ I3 + vvT
+ ωωT. (6)

where v = (vx, vy, vz)T ∈ R3 and w = (ωx, ωy, ωz)T ∈ R3, v ⊥ ω, and γ > 0. The eigenvalue
decomposition of H has eigenvalues λ1 = γ , λ2 = γ + ∥v∥2 and λ3 = γ + ∥w∥

2 with the
corresponding eigenvectors v1 = v × ω, v2 = v and v3 = ω, respectively. We construct ω by
a linear combination of two orthogonal vectors in the plane with v as a normal vector. First, let
ω1 = (−vy, vx, 0)T, which satisfies v ⊥ ω1. Second, let ω2 = v × ω1 = (−vzvx, −vzvy, v

2
x + v2

y )
T,

which also satisfies v ⊥ ω2. We parametrize ω through

ω = ρ1
ω1

∥ω1∥
+ ρ2

ω2

∥ω2∥
, (7)

here ρ1, ρ2 ∈ R which works whenever vx = vy ̸= 0. An alternative solution is to use Euler–
Rodrigues parametrization (Euler, 1771; Rodrigues, 1840) to obtain both v and ω; however, in this
case, the parameters are less interpretable.

The above parametrization for H uses six parameters, γ , vx, vy, vz , ρ1, and ρ2, to describe all
forms of geometric anisotropy. The parametrization is interpretable: (1) γ controls the isotropic
effect, (2) vx, vy, and vz controls extra anisotropy in one direction, and (3) ρ1 and ρ2 controls extra
anisotropy in a second direction orthogonal to the first. Lastly, κ simultaneously controls scaling of
spatial dependence equally in all directions, and the variance of the GRF together with the six other
parameters as seen in Eq. (4).
4
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2.3. Spatially varying anisotropy on bounded domain D ⊂ R3

Non-stationarity and spatially varying anisotropy is achieved by making the coefficients in Eq. (3)
patially varying,

(κ(s)2 − ∇ · H(s)∇)u(s) = W(s), s ∈ R3, (8)

where κ(·) is a positive function, and H(·) is a differentiable spatially varying symmetric positive
definite 3 × 3 matrix. There are further requirements to make this well-defined such as ensuring
that κ(·) is bounded from below by a non-negative number and that H(·) is uniformly positive
efinite; see Bolin and Kirchner (2020) for more details on the technical requirements on κ(·)
nd H(·). Heuristically, one can imagine that the SPDE is gluing together different local behavior
escribed by ellipsoids, as discussed in Section 2.2, to a valid non-stationary covariance structure.
In practice, we need to limit Eq. (8) to a bounded domain to parametrize the non-stationarity.

he SPDE we propose is

(κ(s)2 − ∇ · H(s)∇)u(s) = W(s), s ∈ D ⊂ R3, (9)

here D is bounded, and we enforce the boundary condition

(H(s)∇u(s))Tn(s) = 0, s ∈ ∂D,

where n(s) is the outward normal vector of D. This corresponds to no flux through the boundary.
The effect of the boundary condition is increased marginal variance on the boundary and increased
spatial dependency due to the ‘‘reflective’’ boundary condition. As discussed in Lindgren et al. (2011)
and Fuglstad et al. (2015b), one can extend the domain D outside the area with observations to
educe boundary effects, or one can consider the boundary effects a feature that the non-stationary
odel can adjust for if necessary.

. Estimating SPDEs with spatially varying anisotropy

.1. Parameterizing the non-stationarity

Before using the SPDE in Eq. (9) in inference, we need to parametrize the non-stationarity
hrough a finite number of parameters. This involves expanding log(κ(·)), log(γ (·)), vx(·), vy(·), vz(·),
1(·), and ρ2(·) in basis functions. The log-transform is used for κ(·) and γ (·) since they must be
ositive functions.
Let g : R3

→ R denote a generic function that we want to expand in a basis, and let p > 0 the
umber of basis functions. We use basis splines similar to Fuglstad et al. (2015b), and set

g(s) = f (s)Tαg , (10)

here αg ∈ Rp, and f (s) = (f1(s), . . . , fp(s))T is a p-dimensional vector with the basis functions
valuated at location s.
In this paper, we use rectangular domains such as D = [A1, B1] × [A2, B2] × [A3, B3], and a basis

onstructed as a tensor product of three one-dimensional second-order B-splines. We use clamped
plines as discussed in Appendix A.3, and Fig. 2 shows an example of the resulting basis functions
n 1-dimension. The use of a rectangular grid is typically not a serious restriction, but tetrahedral
rids can be natural for special geometries such as the globe which has a spherical surface (Zhang
t al., 2016). For the globe, one could consider a basis based on spherical harmonic functions for
he coefficients in the SPDE.

Let Bx,i denote the ith basis function of the second-order basis in the x-dimension, and similarly
y,j and Bz,k for the y- and z-dimension. The resulting tree-dimensional basis is then

fijk (s) = Bx,i(s1) · By,j(s2) · Bz,k(s3), s = (s1, s2, s3)T ∈ D, (11)

for all combinations i, j, k ∈ {1, . . . ,m} (see Fig. 3 for visualization in 3D). This means that αg ∈ Rm3
,

and m3 parameters must be estimated for each of the seven functions described at the start of the

section.

5
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v

Fig. 2. Clamped B-spline basis with three basis functions in 1D.

Fig. 3. Parametrized function representation with B-splines in 3D.

In Sections 4 and 5, we use 3 basis functions for each spatial dimension such that p = m3
= 33

=

27, resulting in a total of 189 parameters controlling the functions of log(κ(·)), log(γ (·)), vx(·), vy(·),
z(·), ρ1(·), and ρ2(·). When data is sparse, such a model can easily result in overfitting (Fuglstad

et al., 2015b), and it is necessary to introduce penalties on the seven functions. In Fuglstad et al.
(2015b), this was achieved by a hierarchical model where

τg∆g(s) = Wg (s), s ∈ D,

together with Neumann boundary conditions of zero derivatives on the boundary of the domain.
However, this requires selecting a reasonable value for τg > 0 for each of the seven functions
and is computationally expensive if it is done using cross-validation. In the context of this paper,
we are constructing a stochastic model that mimics the behavior of a densely ‘‘observed’’ numerical
simulation model and we do not include penalties beyond the restriction of using 27 basis functions.
In the simulation study in Section 4, we demonstrate the ability of this model to be estimated and
investigate the amount of data needed to estimate the model.
6
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3.2. Hierarchical model and discretization

Consider a bounded domain D ⊂ R3, and observations y = (y1, y2, . . . , yn) made at locations
1, s2, . . . , sn ∈ D. We assume a Gaussian observation model

yi|η(si), σ 2
N ∼ N (η(si), σ 2

N), i = 1, . . . , n,

here σ 2
N > 0 is the nugget variance and

η(s) = x(s)Tβ + u(s), s ∈ D,

escribes true spatial variation as a combination of covariates and a GRF. Here x(·) is a spatially
arying vector of k covariates, β ∈ Rk are the coefficients of the covariates, and u(·) is a GRF with
patially varying anisotropy as presented in Section 2.
As described in Appendix B, the GRF u(·) is discretized using a regular grid with l cells, and we get

Gaussian Markov random field w = (w1, . . . , wl)T. Let θ be the vector of all parameters controlling
(·), then

w|θ ∼ Nl(0,Q−1),

here dependence on θ is suppressed for Q, and Q is a l × l precision matrix with a three-
imensional spatial sparsity structure. The vector w is linked to u(·) through a linear transformation
(s) = a(s)Tw, where a has only one non-zero entry corresponding to which grid cell location s
elongs. This gives u = (u(s1), . . . , u(sn))T = Aw, where the n × l matrix A only has one non-zero
ntry on each row.
The coefficients of the fixed effect, β, is assigned the weak penalty β ∼ NK (0, V IK ) for a fixed

> 0. Thus we can write y as

y = Xβ + Aw + ϵ, (12)

here X is the design matrix of covariates, and ϵ ∼ Nn(0, Inσ 2
N) is an n-dimensional vector of

andom noise. This gives rise to the hierarchical formulation

y|β, w, σ 2
N ∼ Nn(Xβ + Aw, σ 2

NIn),
β ∼ Nk(0, V Ik), w|θ ∼ Nl(0,Q−1).

Let s∗
∈ D be an unobserved location. After parameters θ̂ and ˆσ 2

N are estimated, one can predict
he underlying value η(s∗) = x(s∗)Tβ + a(s∗)Tw or a new observation y∗

= x(s∗)Tβ + a(s∗)Tw + ϵ∗,
here ϵ∗

∼ N (0, ˆσ 2
N) is a new nugget. The predictions are made using the conditional distributions

(s∗)|y, θ = θ̂, σ 2
N =

ˆσ 2
N and y∗

|y, θ = θ̂, σ 2
N =

ˆσ 2
N . The estimation of parameters is detailed in the

ext section.

.3. Parameter inference

Simplify notation by letting z = (uT, βT)T. Then

z|θ ∼ N (0,Q−1
z ), where Qz =

[
Q 0
0 V Ik

]
.

et S =
[
A X

]
, then the observation model can be rewritten as

y|z, σ 2
N ∼ Nn(Sz, Inσ 2

N). (13)

sing this notation the log-likelihood can be expressed as

logπ (θ, σ 2
N|y) = Const + logπ (θ, σ 2

N) +
1
2
log det (Qz) −

n
2
log(σ 2

N)

−
1
log det (QC) −

1
µT

CQCµC −
1

2 (y − SµC)
T(y − SµC).

(14)
2 2 2σN

7
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Here dependence on θ is suppressed for µC, Qz and QC, and π (θ, σ 2
N) can be used to assign a penalty

n θ, e.g., like the random-walk penalty used in Fuglstad et al. (2015b). The conditional precision
atrix QC is

QC = Qz + STS/σ 2
N (15)

nd µC is the conditional mean,

µC = Q−1
C STy/σ 2

N . (16)

Parameter inference is done by maximizing Eq. (14) with respect to θ and σ 2
N . The parameter

ector θ includes all coefficients for the basis functions, and when using 27 basis functions for each
function,

θ =
(
αlog(κ2), αlog γ , αvx , αvy , αvz , αρ1 , αρ2

)
,

has 189 parameters. The parameter space is challenging to search and we use an analytical expres-
sion for the gradient in the optimization algorithm. The derivation of the analytical gradient involves
many nested chain rules and a technique to calculate a partial inverse of sparse matrices (Rue and
Held, 2010), see Appendix A.5 for a complete description.

4. Simulation study

In this section, we perform a simulation study to investigate the amount of data required to
acquire reasonable parameter estimates for the SPDE models. We consider three different levels of
complexity for the spatial dependence structure and use the observation model

yMod = AwMod + ϵ, (17)

where wMod is the GMRF controlled by the parameters θMod for a given model Mod, and ϵ is
i.i.d. Gaussian noise with mean zero and standard deviation σN = 0.1. All models use the same
domain, s ∈ D = [0, 40] × [0, 40] × [0, 40], with a grid of size (M,N, P) = (30, 30, 30), which
results in a total of 27000 grid cells.

The simplest model is a Stationary Isotropic (SI) model which has a covariance structure
controlled by the three parameters θSI = (log κ2, log γ , log σ 2

N ). We assign the values κ2
= 0.2,

γ = 2.5, and σN = 0.1, which corresponds to a spatial range 10.6, around 25% the extent in each
dimension, and a marginal variance 0.023.

The second model is a Stationary Anisotropic (SA) model described by 8 parameters θSA =

(log κ2, log γ , vx, vy, vz, ρ1, ρ2, log σ 2
N ). We assign the values κ2

= 0.35, γ = 0.5, vx = 1.9, vy = 1.4,
vz = 0.4, ρ1 = 1.4, ρ2 = 0.6 and σN = 0.1. These values correspond to spatial ranges 10.1 along
the x-dimension, 6.8 along y, and 3.9 along z, and marginal variance 0.023. This gives around the
same range as SI in x-direction, but smaller ranges in y- and z-directions.

The third model is the Non-stationary Anisotropic (NA) model described in Section 3, which
has three B-spline basis functions in each spatial dimension for each coefficient in the SPDE. NA
has 190 parameters controlling the non-stationary anisotropic covariance structure. We select the
parameters

θNA =
(
αlog(κ2), αlog γ , αvx , αvy , αvz , αρ1 , αρ2 , log σN

)
so that the covariance structure and variance resemble a vortex as illustrated in Fig. 4.

The aim of the simulation study is to investigate howmuch data is needed to estimate the chosen
covariance structures in SI, SA, and NA. It is known that for SI observed on a bounded domain, the
parameters are not consistently estimable (Zhang, 2004). In the isotropic SPDE in Eq. (2), κ cannot
be consistently estimated, while τ can be consistently estimated (Fuglstad et al., 2019). Bolin and
Kirchner (2023) provide more general results also applicable to the SPDE with spatially varying
coefficients in Eq. (9), which suggests that κ(·) is also not consistently estimable in this case. We
will not pursue exact theoretical results in this paper, but this suggests that even with a densely
observed realization of NA on a bounded domain, there is a limit to how well the parameters
8
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Fig. 4. Spatial correlation at location [20,20,20] (a) and variance of the spatial effect (b) in the non-stationary anisotropic
model.

can be estimated. On the other hand, under both in-fill asymptotics and an increasing number of
realizations of the GRF, we expect the parameters to be consistently estimable.

These issues motivate an exploration of two aspects of the data: (1) the density of observations
nd (2) the number of realizations (replicated observation of these spatial locations). For (1), we
se low density with 100 locations, high density with 10000 locations, and full observation of the
rid with 27000 locations. This corresponds to 1%, 37%, and 100% of the total spatial locations,
espectively. For (2), we consider 1 realization, 10 realizations, and 100 realizations. This gives a
otal of nine different settings for the amount of data. We use 100 repetitions for each setting,
here the observed locations are randomly drawn in each trial.
First, for each data setting and repetition, we simulate from SI, SA, and NA and generate data

ccording to Eq. (17). Then for each dataset, we estimate the parameters of the corresponding model
sing maximum likelihood. Finally, the estimated parameters are compared with their true value.
or SI and SA, we consider root mean square error (RMSE) for each parameter separately since there
re few parameters to show. For NA, we summarize the error in the spatially varying coefficients
y the average RMSE across space since the individual parameters are less interesting than whether
e capture the correct spatially varying functions.
Table 1 shows RMSE between the parameter values in each model and their values inferred in

he nine different data settings. The estimates are obtained using the inference method described
n Section 3.3 with the observation model in Eq. (17). For a further analysis of the results, Table S2
n Appendix C presents the relative RMSE which also considers the scale of the parameters. Note
hat some parts of the table are omitted to simplify the presentation of the results for the reader as
he removed values are not of interest to the conclusion of the study. From Table 1 we observe that
I and SA perform well with dense data or multiple realizations, but for sparse data, SI requires 10
ealizations while SA requires 100 realizations. For NA, much more data is required and we need to
bserve the whole grid with 10 or more realizations. There is a large discrepancy between 10000
bserved points (37%) and 27000 (100%), so it would be interesting to investigate where in this
ange reasonable estimates are obtained. However, we leave this for future work. We also note that
hese results are specific to the chosen covariance structures, and further investigation would be

nteresting to evaluate behavior over a large range of scenarios.

9
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Table 1
The Root Mean Square Error (RMSE) of parameter estimates for SI, SA, and NA from 100 repetitions
for each data setting, which varies the number of observed locations (No. loc.) and the number of
replicated observations of these locations (No. real.).

No. loc. 100 10000 27000

No. real. 1 10 100 1 10 100 1 10 100

St
at
.I
so

. log κ 0.761 0.168 0.055 0.147
log γ 0.796 0.160 0.065 0.044
log τ 2.515 0.649 0.187 0.067

St
at
io
na

ry
An

is
ot
ro
pi
c

log κ 0.993 0.185 0.093 0.097 0.038
log γ 7.583 43.234 0.454 0.218 0.080
|vx| 1.317 0.972 0.469 0.189 0.071
|vy| 1.252 0.730 0.461 0.144 0.036
|vz | 1.183 0.571 0.256 0.077 0.028
|ρ1| 1.110 0.862 0.263 0.119 0.038
|ρ2| 1.413 0.610 0.297 0.074 0.028
log τ 1.816 1.253 0.194 0.169 0.031

N
on

-S
ta
tio

na
ry

An
is
ot
ro
pi
c log κ 2.620 0.864 0.329 0.245

log γ 2.664 1.248 0.566 0.497
|vx| 3.253 0.675 0.459 0.447
|vy| 3.962 0.615 0.363 0.356
|vz | 1.655 0.594 0.290 0.250
|ρ1| 0.221 0.797 0.336 0.274
|ρ2| 0.642 1.130 0.716 0.622
log τ 1.146 0.016 0.006 0.005

5. GRF prior for statistical sampling of the ocean

5.1. Motivation

We aim to determine the three-dimensional extent of a plume in the ocean by combining fore-
asts from a numerical ocean model with in-situ measurements from an autonomous underwater
ehicle (AUV). In this particular application, we consider a freshwater plume in the ocean. Forecasts
roduced by numerical ocean models provide physically realistic and detailed behavior for the
cean. They can accurately capture many large-scale features, but local behavior such as plumes
reated by freshwater discharge will not be accurate. On the other, an AUV can sample accurately
ocally, but the observations will be sparse for the region of interest.

We aim to construct a prior based on the numerical ocean model that informs prior beliefs about
he ocean. Then we will update this prior with in-situ measurements by the AUV, to provide a
rediction of the current state of the ocean. In this paper, we assume a spatial prior and do not
nclude a dynamical model. This means that we assume that operation time is short enough that
he ocean mass is reasonably stable. It is common practice in ocean sampling with AUVs not to
se dynamical models (Fossum et al., 2019, 2021), and the simulation from the numerical ocean
odels suggests that behavior is stable around 2–3 h, but we will investigate the effect this has on
redictions when performing cross-validation.
There are two steps in our approach. Step 1 is to estimate a stationary GRF prior and a non-

tationary GRF prior based on a simulation from the numerical ocean model as described in
ection 5.2. Step 2 is to combine each of the estimated priors with an observation model, and
valuate the predictive ability on in-situ observations from AUV as described in Section 5.3. The
RFs that we estimate based on the numerical ocean model can be viewed as statistical emulators

f the ocean.

10
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Fig. 5. The area of operation in Trondheimsfjorden at Ladehammaren just outside of Trondheim, Norway. The compass
shows the cardinal directions relative to the map.

5.2. The numerical ocean model and the GRF prior

The model training data used in this application is from a forecast produced by the ocean model
SINMOD. Data is provided by SINTEF Ocean which developed and ran the simulation. SINMOD is a
three-dimensional numerical ocean model based on primitive equations that are solved using finite
difference methods on a regular grid with horizontal cell sizes of 20 km×20 km and is nested in
everal steps down to 32 m × 32 m. Moreover, it uses z* vertical layers which allow for varying grid
esolutions depending on the depth and help capture the higher variability of the surface. SINMOD is
riven by atmospheric forces, freshwater outflows, and tides, and it provides numerical simulations
f multiple variables such as salinity, temperature, and currents. The reader is referred to Slagstad
nd McClimans (2005) for a more detailed description of the method.
The area of operation is located in Trondheimsfjorden at Ladehammaren just outside of Trond-

eim, Norway, and the operation time was May 27, 2021, between 10:30 and 14:30. The outlined
rea in Fig. 5 indicates the operational area which covers 1408 m × 1408 m in the horizontal plane.

At the southeast side of this field, the Nidelva river flows into the fjord. This causes a very complex
salinity field that is unfeasible to describe with a stationary covariance model. Therefore, we will
use the numerical simulations from SINMOD to estimate a non-stationary GRF. As demonstrated in
the simulation study, complex covariance structures can reliably be estimated based on such dense
data.

In this application, we will focus on univariate modeling of the salinity and we choose the fine-
scale horizontal grid sizes hx = 32m hy = 32m, which in total gives N = 45 and M = 45 grid
nodes for both the numerical and the statistical model. Moreover, in the vertical plane, we use
1-meter increments between the depth layers, i.e., h = 1m. To avoid any major effects of the
z
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Fig. 6. Five timesteps of the dataset simulated with the numerical ocean model SINMOD for May 27, 2021. The timestamps
are displayed over their respective timesteps. The N-arrow is the cardinal north.

boundaries in this direction P = 11 depth layers are used resulting in a depth range of 0.5 m to
0.5 m. SINMOD outputs z t , t = 0, 1, 2, . . . , 143, which are vectors of salinity values in all cells
n the three-dimensional grid at different time points throughout the whole May 27, 2021. The
imesteps are 10 minutes, and Fig. 6 shows five timesteps from SINMOD for the top six depth layers
uring the operation. Note that the varying vertical layers in the numerical model are either with
.5 m or 1 m increments, so the SINMOD simulations do not require any additional modification to
it within our statistical model.

We first estimate the model

z t = Φz t−1 + ϵt , t = 1, . . . , 143,

here Φ is a diagonal matrix of AR(1) coefficients. The diagonal entries of Φ are estimated with
aximum likelihood separately for each spatial location such that Φ̂ii =

∑143
t=1 zt,izt−1,i/

∑143
t=1 z

2
t−1,i

or i = 1, . . . ,NMP , where zt,i is the value in cell i at time t . We then compute empirical innovations
ˆt = z t − Φ̂z t−1, t = 1, . . . , 143. These empirical innovations describe the spatial covariance
structure for short-term changes in salinity.

We fit the flexible non-stationary anisotropic model with 190 parameters, θ̂NA = (αlog κ , αlog γ , αvx

αvy , αvz , αρ1 , αρ2 , log σ 2
N ), and the stationary anisotropic model with 8 parameters, θ̂SA = (log κ2,

og γ , vx, vy, vz, ρ1, ρ2, log σ 2
N ), to the assumed independent realization from a GRF ϵ̂1, . . . .ϵ̂143. Note

hat there are NMP = 22275 spatial locations and the 144 empirical innovations cover the whole
ay of May 27, 2021. Figs. 7(b) show the resulting variance of the spatial effect and Fig. 7(c) the
patial correlation with location (x, y, z) = (22, 10, 0) of the non-stationary anisotropic model. The
ame figures of the stationary anisotropic model can be found in Appendix C, Fig. S3.
In the next step, we construct the expected value of the GRF using the time average of the

hole day, µ =
∑143

t=0 z t/144. The mean is shown in Fig. 7(a) and shows the overall tendency
or freshwater near the river outlet and saltwater further out in the ocean. We choose the prior

η = µ + e, (18)

here we combine the fixed mean vector, µ, with a new realization, e, of the estimated stationary
nisotropic model or the non-stationary anisotropic model. This is a spatial prior on a 32m×32m×
m resolution.

12
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Fig. 7. Prior field (a) found from SINMOD simulations, the variance of the spatial effect (b) and spatial correlation of
oint [22,10,0] (marked) (c) in the non-stationary anisotropic model. The N-arrow is the cardinal north.

.3. In-situ data collection and emulator evaluation

In-situ measurements were made with the AUV on May 27, 2021, between 10:30 and 14:30.
he AUV followed 9 pre-planned paths within the area of operation: two intersects at 0.5 m depth
ne northbound and one north-westbound starting from the river, two zig-zags in each depth layer
0.5 m,2 m,5 m), and one up-and-down pattern in depth ranging from 0.5 m to 10.5 m moving
orth-westbound starting from the river. The design was chosen to explore three depth levels in
etail with zig-zag patterns combined with an up-and-down pattern to collect measurements also
t other depths. This is not constructed based on any optimality criterion, and we chose a fixed
esign so that model comparison is not biased by decisions made by the AUV during sampling.
ig. 8 displays the locations of the measurements in the top 5 layers of the field.
The AUV is moving at 1.5 m/s and continuously samples the salinity. This means that multiple

easurements are made within each 32m × 32m × 1m grid cell. Observations are represented as
i, i = 1, . . . , nobs, whereby yi is the average value of the measurements in grid cell i. Therefore,
ig. 8 shows that even though the AUVs zig-zag path was fixed at 2 m and 5 m depth, the majority
f these measurements were allocated to the cell with centers at 1.5 m and 4.5 m depth rather than
t 2.5 m or 5.5 m. The observations are then combined with the prior in Eq. (18) using

yi|η, σ 2
N

ind
∼ N (aT

i η, σ 2
meas), i = 1, . . . , nobs,

η ∼ N (µ,Q−1
Prior),

where ai selects the correct grid cell, Q−1
Prior is the estimated precision matrix for the GMRF, and the

Gaussian likelihood with nugget variance σ 2
meas describes measurement noise and sub-grid variation.

In general, we would estimate σ 2
meas using a trial run, but here, we estimated σ 2

meas using the average
mpirical variance over all observed grid cells in the total dataset. Note that we have not accounted
or the uncertainty in the AUVs positions in these models. As the AUV dive, it loses its GPS signal
nd only relies on estimated location. When the GPS signal is returned a linear interpolation is made
o account for drift but no uncertainty is included.

We evaluated the two priors, or emulators, by randomly ordering the 9 segments and then
equentially including more observations to predict the remaining hold-out data. The random
13
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Fig. 8. Measurement locations of the AUV in the top 6 depth layers of the spatial field on May 27th, 2021, in
Trondheimsfjorden at Ladehammaren just outside of Trondheim, Norway. The N-arrow is the cardinal north.

permutation of the segments was done repeatedly to determine the variation in scores over different
paths. This scheme evaluates the AUVs’ ability to predict future observations while maintaining the
sequential structure of measurements. Fig. 9 shows that the non-stationary model provides a better
prior for the salinity in the ocean than the stationary model. The differences are largest when little
data is available, which is consistent with the idea that the prior is most important in this case.
The non-stationary model can leverage knowledge about which areas are most uncertain using the
spatially varying marginal variance and update the prior based on expected similarities from the
spatially varying anisotropy. The improvements are seen both in point predictions through RMSE
and in predictive distributions as measured by CPRS (Gneiting and Raftery, 2007).

Note that the standard deviations in both RMSE and CRPS are increasing after about 70% of
observed data to 95% of observed data. This is partly because there are dynamic changes in salinity
during the operation time. The pre-planned path which consisted of an up-and-down pattern in
depth ranging from 0.5 m to 10.5 m was captured later than the others, and the measurements
in this path are not well predicted by earlier measurements. This causes an increased variation
between folds for 70% observed data and higher. It would be interesting to investigate if space–time
models can account for the dynamic changes. Fig. S4 in the Appendix shows the cross-validation
repeated without this segment. There is still a slight increase in standard deviation for a high
proportion of observed data. This is because between-fold variation is increasingly emphasized as
more and more data is collected since there are only eight possible choices for the segment placed
last in the shuffled paths.
14
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Fig. 9. The root mean square error (RMSE, top) and the continuous ranked probability score (CRPS, bottom) of predictions
from the stationary anisotropic (orange) and non-stationary anisotropic models (blue) given different proportions of
observed data (5%, 95%). The error bars are the standard deviations of the different measures under random permutations
of the 9 segments. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

6. Discussion

We extend the class of SPDE-based GRFs introduced in Fuglstad et al. (2015a) to three-
dimensional space by overcoming two key issues: parametrization and computation. For the
former, we developed a specification of spatially varying anisotropy through a spatially varying
15
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baseline isotropic dependence, and two orthogonal spatially varying vector fields that describe
extra dependence. This allows for an interpretable description of the 3 × 3 positive definite matrix
escribing anisotropy. For the latter, we use a finite volume method to construct a GMRF that
pproximates the solution of the SPDE.
Specifying spatially varying marginal variance and spatially varying anisotropy requires specify-

ng 7 spatially varying real functions. In this paper, we expand each function with a clamped B-spline
asis. If each function uses P3 basis functions, this gives in total 7P3 coefficients. As demonstrated

in the simulation study, an unpenalized estimation of these parameters requires a densely observed
area and multiple realizations. Application of the new models in data-sparse situations will require
penalties that restrict the regularity of the 7 spatially varying functions. However, more research is
needed to come up with a practical way to determine the appropriate strength of penalization for
each of the functions.

While we did not experience any practical issues with the chosen way to describe the two
orthogonal vector fields, the construction has a ‘‘gimbal lock’’ type issue. If one vector field points
exactly along the z-axis, there is no unique choice for the second vector field. A potential way
to avoid this issue is by describing the orientation of the two orthogonal vector fields through
quaternions or Euler–Rodrigues parameters.

Moving from two-dimensional space to three-dimensional space introduces an asymptotically
higher computation cost as a function of grid size. For a regular three-dimensional grid with
N nodes, the computational cost is O(N2) compared to O(N3/2) in two-dimensional space. This
ncreased computational cost arises from increased fill-in in the Cholesky factor. However, the
pplication demonstrates that the use of a grid size of N = 22275 is unproblematic even for
eal-time updates on an AUV.

In this paper, we have considered regular three-dimensional grids with cubical grid cells.
revious work has considered tetrahedral mesh using finite element methods (Zhang et al., 2016),
nd software is available for creating tetrahedral meshes (Lindgren et al., 2022, Sec. 6.4). Tetrahedral
eshes may have computational benefits if the domain of interest is far from cubical since one
an use fewer grid cells in the discretization. Further, they have the potential to better describe
athymetric boundaries such as the sea bed, or boundaries such as islands. A major motivation
or deriving the finite volume method matrices in this paper is the desire to later extend them to
pace–time with advection–diffusion equations. Finite volume methods have advantages in local
onservation and stabilization of fluxes with approaches such as upwind schemes. Further, finite
olume methods avoid the mass lumping step required for finite element methods. An interesting
uture direction of study would be to develop the theoretical properties, which are not currently
nown, for the finite volume approach for this class of SPDEs.
For the predictions of salinity in the Trondheim’s fjord, we see the highest improvement of the

omplex GRF prior compared to an isotropic GRF, for sparse in-situ measurements. As more data
s collected, the difference between the models decreases. This suggests that the key advantage of
raining the more complex GRF is encoding prior physical knowledge to more effectively update
nowledge about unobserved locations. Salinity was used as an example, but in general, the same
pproach could be used to map other biologically interesting quantities such as phytoplankton (Fos-
um et al., 2019). The GRFs developed in this paper are a step forward in quantifying beliefs
bout unobserved regions in the ocean, which is essential for optimal decisions and more effective
utonomous sampling (Fossum et al., 2021).
In future work, it would be interesting to add a dynamic component to the model to capture

hysical processes such as diffusion and advection. However, this substantially increases computa-
ional cost, and it is not clear to which degree an advection field from a numerical model should be
rusted and which boundary conditions are best in an advection-dominated problem. Future work
ay also consider whether non-Gaussian random fields (Bolin and Wallin, 2019) would lead to any

mprovements. The new class of GRFs shows great promise for encoding prior knowledge about a
henomenon in a computationally efficient way. However, overfitting is an important issue, and we
ust consider ways to penalize the complexity. In particular, we need to consider ways to allow

lexibility in an area where it is needed such as a river outlet and restrict flexibility in areas where
e expect stationarity.
16
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ppendix A. General properties

.1. Marginal variance

Here, we will derive the expression for the marginal variance in a general sense and then specify
t for three-dimensional spaces with exponential covariance functions. The SPDE considered in this
ork is

(κ2
− ∇ · H∇)α/2u(s) = W(s), (S1)

where s ∈ D ⊆ Rd a spatial location in the domain of dimension d and α = ν + d/2 where ν > 0 is
the smoothness. Any solution of this SPDE is a Matérn field and let σm > 0 be its marginal standard
deviation; then, its covariance function is

r(s1, s2) =
σ 2
m

2ν−1Γ (ν)
(κ∥H−1/2(s1 − s2)∥)νKν(κ∥H−1/2(s1 − s2)∥). (S2)

The transfer function of the SPDE is

g(w) = (κ2
+ wTHw)−α/2.

sing this and by including the spectral density of standard Gaussian white noise in Rd is (2π )−d,
he spectral density of the solution of the SPDE is

fS(w) = (2π )−d(κ2
+ wTHw)−α.

astly, to find the marginal variance of the field the integral of the spectral density is made over Rd

s

σ 2
m =

∫
Rd

fS(w)dw.

Including the change of variables w = κH−1/2z the expression becomes

σ 2
m = (2π )−d

∫
Rd
(κ2

+ κ2zT z)−α det(κH−1/2)dz

= (2π )−d
∫
Rd

κd−2α(1 + zT z)−α det(H)−1/2dz (S3)

α=ν+d/2
= (2π )−dκ−2ν det(H)−1/2

∫
Rd
(1 + zT z)−αdz,

which by specifying a exponential covariance in R3 with α = 2, ν = 1/2 and d = 3 is

σ 2
m =

1
8πκ

√
det(H)

.

ote that the integral in is solved by converting to polar coordinates as∫
1

dz =

∫ π

sin(φ)dφ
∫ 2π

dθ
∫

∞ ρ2
dρ = π2.
R3 (1 + zT z)2 0 0 0 (1 + ρ2)2

17
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A.2. Covariance function

Evaluating Eq. (S2) at ν = 1/2 and including the expression for the marginal variance the
ovariance function can be formalized as

r(s1, s2) =

√
2
π

1
8πκ

√
det(H)

√
κ∥H−1/2(s1 − s2)∥K 1

2
(κ∥H−1/2(s1 − s2)∥).

hen, consider the modified Bessel function of the second kind

Kn(z) =

√
π

2z
e−z

(n −
1
2 )!

∫
∞

0
e−t tn−1/2

(
1 −

t
2z

)n−1/2

dt,

and evaluate this at order 1/2 gives

K 1
2
(z) =

√
π

2z
e−z .

The covariance function can then be formalized as

r (s1, s2) =

√
2
π

σ 2
m

√
κ∥H−1/2(s1 − s2)∥

×

√
π

2 · κ∥H−1/2(s1 − s2)∥
exp

(
−κ∥H−1/2(s1 − s2)∥

)
(S4)

=σ 2
m exp

(
−κ∥H−1/2(s1 − s2)∥

)
.

.3. One-dimensional clamped B-splines

We illustrate the construction of 1-dimensional B-splines using the interval [A, B] ∈ R. Let
= t0 < t1 < · · · < tm = B be the knot points. Then the zero-order B-splines are constructed

recursively as

Bi,0(t) =

{
1, ti ≤ t ≤ ti+1,

0, otherwise,
t ∈ [A, B],

for i = 0, . . . , p−1. Let r denote the order of the B-splines. The first- and second-order basis splines
are constructed as

Bi,r (t) =
t − ti

ti+r − ti
Bi,r−1(t) +

ti+r+1 − t
ti+r+1 − ti+1

Bi+1,r−1(t), t ∈ [A, B],

for i = 0, . . . , p − r − 1.
Using the r-order B-spline basis, we construct a function g : [A, B] → R by

g(t) =

p−r−1∑
i=0

αiBi,r (t).

where α0, . . . , αp−r−1 ∈ R are coefficients. We use a clamped spline where g ′(A) = g ′(B) = 0 and
need the additional requirement that α0 = α1 and αp−r−2 = αp−r−1.

A.4. Integrated likelihood

The distribution of z = (u, β) is given by

z|θ ∼ N (0,Q−1
z ),

and the observation model is

y|z, θ, σ 2
∼ N (Sz, I σ 2).
N n n N
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From this the distribution of z given some observations y is

π (z|θ, σ 2
N , y) ∝ π (z, θ, σ 2

N , y)
= π (θ, σ 2

N )π (z|θ)π (y|θ, σ 2
N , z)

∝ exp
(

−
1
2
zTQzz −

1
2
(y − Sz)TInσ−2

N (y − Sz)
)

∝ exp
(

−
1
2

(
zT

(
Qz + σ−2

N STS
)
z − 2zTSTy · σ−2

N

))
∝ exp

(
−

1
2
(z − µC )

TQC (z − µC )
)

⇓

z|θ, σ 2
N , y ∼ Nn

(
µC ,Q

−1
C

)
Here, QC = Qz+STS·σ−2

N is the conditional precision matrix and µC = Q−1
C STy ·σ−2

N is the conditional
mean.

Then, integrating out z from the joint distribution gives

π (θ, σ 2
N , y) =

π (θ, z, σ 2
N , y)

π (z|θ, σ 2
N , y)

=
π (θ, σ 2

N )π (z|θ)π (y|θ, σ 2
N , z)

π (z|θ, σ 2
N , y)

,

here the left-hand side does not depend on z such that it may be evaluated for any given value.
et us evaluate it for z = µC such that

π (θ, σ 2
N , y) ∝

π (θ, σ 2
N )π (z = µC |θ)π (y|θ, σ 2

N , z = µC )
π (z = µC |θ, σ

2
N , y)

∝π (θ)
|Qz |

1/2
|In · σ−2

N |
1/2

|QC |
1/2 exp

(
−

1
2
µT

CQzµC

)
× exp

(
−

1
2
(y − SµC )

TIn · σ−2
N (y − SµC )

)
.

The last term π (z|θ, σ 2
N , y) is removed since it is equal to 1. Thereby, conditioning on y and taking

the log we have the log-likelihood

log(π (θ, σ 2
N |y)) =Constant + log(π (θ, σ 2

N )) +
1
2
log(det(Qz)) +

n
2
log(σ−2

N ) (S5)

−
1
2
log(det(QC )) −

1
2
µT

CQzµC −
1

2 · σ 2
N
(y − SµC )

T(y − SµC ).

A.5. Gradient of the log-likelihood

This section is similar to the derivation of the gradient presented in the supplementary material
of Fuglstad et al. (2015b).

log(π (θ, τN |y)) =Constant + log(π (θ, τN )) +
1
2
log(det(Qz)) +

n
2
log(σ−2

N )

−
1
2
log(det(QC )) +

1
2
µT

CQCµC −
τN

2
yTy.

ote that the last two terms are rewritten for simplicity in the gradient calculation and that the
ariance of the Gaussian noise term, σ 2 is re-parametrized with its inverse τ = 1/σ 2 (precision).
N N N
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Derivatives of the log-likelihood are taken with respect to θi, the elements of θ, and the precision
on log scale as log(τN ).

The first term is a constant and therefore its derivative is zero with respect to any of the
parameters. The next term, the penalty or the prior of the parameters, is not used in this paper
and otherwise depends on the choice of penalty so gradient calculation is not specified for this
term.

To continue note the derivatives of the precision matrix

∂QC

∂θi
=

∂Qz

∂θi
and

∂QC

∂ log(τN )
= STSτN ,

hich is used in the following derivations. First, the derivatives with respect to θi are considered.
he derivative of the log determinant terms are

∂

∂θi
(log(det(Q)) − log(det(QC ))) =Tr

(
Q−1 ∂Q

∂θi

)
− Tr

(
Q−1

C
∂Q
∂θi

)
=Tr

(
(Q−1

− Q−1
C )

∂Q
∂θi

)
,

nd the derivative of the quadratic terms are

∂

∂θi

(
1
2
yTyτN +

1
2
µT

CQCµC

)
=

∂

∂θi

(
1
2
µT

CQCµC

)
= −

1
2
yTτNSQ−1

C

(
∂QC

∂θi

)
Q−1

C STτNy

= −
1
2
µT

C

(
∂Q
∂θi

)
µC .

hen, combining these the derivative of the log-likelihood with respect to θi is

∂

∂θi
log(π (θ, τN |y)) =

∂

∂θi
log(π (θ, τN )) +

1
2
Tr

(
(Q−1

− Q−1
C )

∂Q
∂θi

)
−

1
2
µT

C

(
∂Q
∂θi

)
µC

Next, the derivative with respect to the log precision, log τN , is considered. The derivative of the
og determinant terms are

∂

∂ log(τN )

(
n
2
log(τN ) −

1
2
log(det(QC ))

)
=

n
2

−
1
2
Tr

(
Q−1

C
∂

∂ log(τN )
QC

)
=

n
2

−
1
2
Tr

(
Q−1

C STS · τN
)

urther, the derivative of 1/2yTy · τN with respect to log(τN ) is just the same expression so the
emaining quadratic term becomes

∂ 1
2µ

T
CQCµC

∂ log(τN )
=

∂ 1
2y

TτNSQ−1
C STτNy

∂ log(τN )

=yTτNSQ−1
C ST

∂τN

∂ log(τN )
y −

1
2
yTτNSQ−1

C
∂QC

∂ log(τN )
Q−1

C STτNy

=µT
CS

TτNy −
1
2
µT

CS
TSµCτN ,

and then, by adding the last quadratic term, the expression simplifies to

−1/2yTy · τN + µTSTy · τN −
1
µTSTSµ · τN = −

1
(y − Sµ )T(y − Sµ ) · τN .
C 2 C C 2 C C
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c
c
Q
c
s
d

A

B

i
c

Finally, combining all these terms we have the derivative of the log-likelihood with respect to
log(τN ):

∂ log(π (θ, τN |y))
∂ log(τN )

=
∂ log(π (θ, τN ))

∂ log(τN )
+

n
2

−
1
2
Tr

(
Q−1

C STS · τN
)

−
1
2
(y − SµC )

T(y − SµC ) · τN

Note that the derivative of QC can be calculated quickly and it is derived from a series of
hain rules; first on QC , then on A and AH, and finally within H. The most computationally heavy
alculation in the gradient of the log-likelihood is to calculate the inverses in the difference
−1

−Q−1
C . However, since this term is multiplied with the derivative of Q with respect to θi, which

arries the non-zero structure of Q, only elements of Q−1 and Q−1
C which correspond to the non-zero

tructure of Q need to be calculated. This is done by calculating a partial inverse of two matrices as
escribed in Rue and Held (2010).

ppendix B. Derivation

.1. Discretization

To find the local solution of the SPDE the domain D = [A1, B1] × [A2, B2] × [A3, B3] is divided
nto equally sized rectangular cubes or cells. We use M cells to divide [A1, B1] in the x-direction, N
ells on [A2, B1] in y-direction and P cells on [A3, B3] in z-direction. The cells have sides parallel to
each axis of size hx = (B1 −A1)/M , hy = (B2 −A2)/N , and hz = (B3 −A3)/P . The cells are assigned an
index with regards to their cell number along each axes starting from number 0; i ∈ [0,M] along
x, j ∈ [0,N] along y, and k ∈ [0, P] along z. For a specific cell, its domain can be denoted as

Ei,j,k = [ihx, (i + 1)hx] × [jhy, (j + 1)hy] × [khz, (k + 1)hz],

and Fig. S1 shows this cell and its closest neighbors. Furthermore, as a regular grid is employed the
volume of a cell is V = hxhyhz .

To further define the local solution of the SPDE we denote the faces of a grid cell as σ F
i,j,k (front),

σ B
i,j,k (back), σ L

i,j,k (left), σ R
i,j,k (right), σ U

i,j,k (up) and σ D
i,j,k (down) with their respective face centers

si,j−1/2,k, si,j+1/2,k, si−1/2,j,k, si+1/2,j,k, si,j,k+1/2 and si,j,k−1/2. Fig. S2 describes the different faces of a
cell.

B.2. Local solution of the SPDE

Note that this description is an extension to three dimensions of the derivation described
in Fuglstad et al. (2015a), and the reader is referred to there for further details. To locally solve
the SPDE a finite volume scheme is derived. First, Eq. (S1) is integrated over a cell Ei,j,k as∫

Eijk

κ2(s)u(s)ds −

∫
Eijk

∇ · H(s)∇u(s)ds =

∫
Eijk

W(s)ds, (S6)

where ds is a volume element. The integral of the Gaussian white noise on the right-hand side is a
Gaussian variable with mean zero and variance equal to the volume of a cell which is independent
of neighboring cells. Let zijk be an standard Gaussian variable; then, Eq. (S6) becomes∫

Eijk

κ2(s)u(s)ds −

∫
Eijk

∇ · H(s)∇u(s)ds =
√
Vzijk.

Then, applying the divergence theorem to the second integral with the divergence operator gives∫
κ2(s)u(s)ds −

∮
(H(s)∇u(s))Tn(s)dσ =

√
Vzijk.
Eijk ∂Eijk
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T
κ

Fig. S1. One cell Ei,j,k in the discretization with its closest neighbors; Ei+1,j,k , Ei−1,j,k , Ei,j+1,k , Ei,j−1,k , Ei,j,k+1 , and Ei,j,k−1 .

he first integral is approximated by letting k2ijk be the average value of the continuous function
2(s) within a cell, i.e. κ2

ijk = 1/V
∫
Eijk

κ2(s)ds, resulting in

Vκ2
ijkuijk −

∮
∂Eijk

(H(s)∇u(s))Tn(s)dσ =
√
Vzijk. (S7)

To describe the solution of the second integral it is divided into integrals over each surface as∮
∂Eijk

(H(s)∇u(s))Tn(s)dσ = W L
ijk + W R

ijk + W B
ijk + W F

ijk + WU
ijk + WD

ijk, (S8)

or W dir
ijk =

∫
σdir
ijk

(H(s)∇u(s))Tn(s)dσ , where dir denotes the surface; R (positive x-direction), L
(negative x-direction), B (positive y-direction), F (negative y-direction), U (positive z-direction), and
D (negative z-direction). Now, an approximation of this surface integral over each face is required.
It is assumed that the gradient of u(s) is constant over each face and equal to the value at the
center of each face. The resulting scheme for the gradient on each face is described in Table S1.
Furthermore, let H be approximated by its value at the center of the face, and then, we have the
22
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a

a

w
E

t

Fig. S2. One cell Ei,j,k of the discretization with all its faces; σ F
i,j,k (front), σ B

i,j,k (back), σ L
i,j,k (left), σ R

i,j,k (right), σ U
i,j,k (up),

nd σ D
i,j,k (down) each with its respective face centers.

pproximation

W dir
ijk =

∫
σdir
ijk

∇u(s)TH(s)n(s)dσ

≈∇u(cdirijk )
TH(cdirijk )n(c

dir
ijk )

∫
σdir
ijk

dσ (S9)

=∇u(cdirijk )
TH(cdirijk )n(c

dir
ijk )A(σ

dir
ijk ),

here cdirijk is the center of face dir in the cell Eijk, and A(σ dir
ijk ) is the area of the face. Combining

q. (S9) with the scheme of ∇u(cdirijk ) from Table S1, and denoting the components of H as

H(s) =

⎡⎣H11(s) H12(s) H13(s)
H21(s) H22(s) H23(s)
H31(s) H32(s) H33(s)

⎤⎦
he approximations for each face become

Ŵ R
i,j,k =

hyhz

[
H11(si+1/2,j,k)

u(si+1,j,k) − u(si,j,k)
]

+

hx
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Table S1
Numerical scheme of the partial derivative with respect to x, y and z of uijk on the
different faces of cell Eijk .

Face Scheme

σ R
i,j,k

∂
∂x u(si+1/2,j,k) ≃

1
hx

(
u(si+1,j,k) − u(si,j,k)

)
∂
∂y u(si+1/2,j,k) ≃

1
4hy

(
u(si+1,j+1,k) + u(si,j+1,k) − u(si+1,j−1,k) − u(si,j−1,k)

)
∂
∂z u(si+1/2,j,k) ≃

1
4hz

(
u(si+1,j,k+1) + u(si,j,k+1) − u(si+1,j,k−1) − u(si,j,k−1)

)
σ L
i,j,k

∂
∂x u(si−1/2,j,k) ≃

1
hx

(
u(si,j,k) − u(si−1,j,k)

)
∂
∂y u(si−1/2,j,k) ≃

1
4hy

(
u(si,j+1,k) + u(si−1,j+1,k) − u(si,j−1,k) − u(si−1,j−1,k)

)
∂
∂z u(si−1/2,j,k) ≃

1
4hz

(
u(si,j,k+1) + u(si−1,j,k+1) − u(si,j,k−1) − u(si−1,j,k−1)

)
σ B
i,j,k

∂
∂x u(si,j+1/2,k) ≃

1
4hx

(
u(si+1,j+1,k) + u(si+1,j,k) − u(si−1,j+1,k) − u(si−1,j,k)

)
∂
∂y u(si,j+1/2,k) ≃

1
hy

(
u(si,j+1,k) − u(si,j,k)

)
∂
∂z u(si,j+1/2,k) ≃

1
4hz

(
u(si,j+1,k+1) + u(si,j,k+1) − u(si,j+1,k−1) − u(si,j,k−1)

)
σ F
i,j,k

∂
∂x u(si,j−1/2,k) ≃

1
4hx

(
u(si+1,j,k) + u(si+1,j−1,k) − u(si−1,j,k) − u(si−1,j−1,k)

)
∂
∂y u(si,j−1/2,k) ≃

1
hy

(
u(si,j,k) − u(si,j−1,k)

)
∂
∂z u(si,j−1/2,k) ≃

1
4hz

(
u(si,j,k+1) + u(si,j−1,k+1) − u(si,j,k−1) − u(si,j−1,k−1)

)
σ U
i,j,k

∂
∂x u(si,j,k+1/2) ≃

1
4hz

(
u(si+1,j,k+1) + u(si+1,j,k) − u(si−1,j,k+1) − u(si−1,j,k)

)
∂
∂y u(si,j,k+1/2) ≃

1
4hy

(
u(si,j+1,k+1) + u(si,j+1,k) − u(si,j−1,k+1) − u(si,j−1,k)

)
∂
∂z u(si,j,k+1/2) ≃

1
hx

(
u(si,j,k+1) − u(si,j,k)

)
σ D
i,j,k

∂
∂x u(si,j,k−1/2) ≃

1
4hz

(
u(si+1,j,k) + u(si+1,j,k−1) − u(si−1,j,k) − u(si−1,j,k−1)

)
∂
∂y u(si,j,k−1/2) ≃

1
4hy

(
u(si,j+1,k) + u(si,j+1,k−1) − u(si,j−1,k) − u(si,j−1,k−1)

)
∂
∂z u(si,j,k−1/2) ≃

1
hx

(
u(si,j,k) − u(si,j,k−1)

)

hyhz

[
H21(si+1/2,j,k)

u(si+1,j+1,k) + u(si,j+1,k) − u(si+1,j−1,k) − u(si,j−1,k)
4hy

]
+

hyhz

[
H31(si+1/2,j,k)

u(si+1,j,k+1) + u(si,j,k+1) − u(si+1,j,k−1) − u(si,j,k−1)
4hz

]
,

Ŵ L
i,j,k =

hyhz

[
H11(si−1/2,j,k)

u(si−1,j,k) − u(si,j,k)
hx

]
+

hyhz

[
H21(si−1/2,j,k)

u(si,j−1,k) + u(si−1,j−1,k) − u(si,j+1,k) − u(si−1,j+1,k)
4hy

]
+

hyhz

[
H31(si−1/2,j,k)

u(si,j,k−1) + u(si−1,j,k−1) − u(si,j,k+1) − u(si−1,j,k+1)
4hz

]
,

Ŵ B
i,j,k =

hxhz

[
H12(si,j+1/2,k)

u(si+1,j+1,k) + u(si+1,j,k) − u(si−1,j+1,k) − u(si−1,j,k)
4hx

]
+

hxhz

[
H22(si,j+1/2,k)

u(si,j+1,k) − u(si,j,k)
hy

]
+

hxhz

[
H32(si,j+1/2,k)

u(si,j+1,k+1) + u(si,j,k+1) − u(si,j+1,k−1) − u(si,j,k−1)
]

,

4hz
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l
l

w
i

Ŵ F
i,j,k =

hxhz

[
H12(si,j−1/2,k)

u(si−1,j,k) + u(si−1,j−1,k) − u(si+1,j,k) − u(si+1,j−1,k)
4hx

]
+

hxhz

[
H22(si,j−1/2,k)

u(si,j−1,k) − u(si,j,k)
hy

]
+

hxhz

[
H32(si,j−1/2,k)

u(si,j,k−1) + u(si,j−1,k−1) − u(si,j,k+1) − u(si,j−1,k+1)
4hz

]
,

ŴU
i,j,k =

hxhy

[
H13(si,j,k+1/2)

u(si+1,j,k+1) + u(si+1,j,k) − u(si−1,j,k+1) − u(si−1,j,k)
4hx

]
+

hxhy

[
H23(si,j,k+1/2)

u(si,j+1,k+1) + u(si,j+1,k) − u(si,j−1,k+1) − u(si,j−1,k)
4hy

]
+

hxhy

[
H33(si,j,k+1/2)

u(si,j,k+1) − u(si,j,k)
hz

]
,

ŴD
i,j,k =

hxhy

[
H13(si,j,k−1/2)

u(si−1,j,k) + u(si−1,j,k−1) − u(si+1,j,k) − u(si+1,j,k−1)
4hx

]
+

hxhy

[
H23(si,j,k−1/2)

u(si,j−1,k) + u(si,j−1,k−1) − u(si,j+1,k) − u(si,j+1,k−1)
4hy

]
+

hxhy

[
H33(si,j,k−1/2)

u(si,j,k−1) − u(si,j,k)
hz

]
,

Ŵ T
i,j,k =

hxhy

[
H13(si,j,k+1/2)

u(si+1,j,k+1) + u(si+1,j,k) − u(si−1,j,k+1) − u(si−1,j,k)
4hx

]
+

hxhy

[
H23(si,j,k+1/2)

u(si,j+1,k+1) + u(si,j+1,k) − u(si,j−1,k+1) − u(si,j−1,k)
4hy

]
+

hxhy

[
H33(si,j,k+1/2)

u(si,j,k+1) − u(si,j,k)
hz

]
,

Ŵ B
i,j,k =

hxhy

[
H13(si,j,k−1/2)

u(si−1,j,k) + u(si−1,j,k−1) − u(si+1,j,k) − u(si+1,j,k−1)
4hx

]
+

hxhy

[
H23(si,j,k−1/2)

u(si,j−1,k) + u(si,j−1,k−1) − u(si,j+1,k) − u(si,j+1,k−1)
4hy

]
+

hxhy

[
H33(si,j,k−1/2)

u(si,j,k−1) − u(si,j,k)
hz

]
.

Next, a vectorization of the discretization is made; first moving along the z-direction, then
along x-direction, and lastly along the y-direction. Let us denote this with the common index
l = j · M · P + i · P + k so sijk = sj·M·P+i·P+k = sl which gives u(sijk) = ul and κ2(sijk) = κ2

l , and
et the last index be L = (N − 1)MP + (M − 1)P + P − 1. Further, the vectorization results in the
inear system of equations

(DVDκ2 − AH )u = D1/2
V z, (S10)

here DV = V · IMNP , Dκ2 =
[
κ2
0 , . . . , κ

2
l , . . . , κ

2
L

]
IMNP , and z ∼ N (0, IMNP ). For simplicity the

ndices of the neighbors are denoted k = k + 1, k = k − 1, j = j + 1, j = j − 1, i = i + 1, and
p n p n p
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w

in = i − 1. The development of AH is done by the sum Ŵ L
ijk + Ŵ R

ijk + Ŵ B
ijk + Ŵ F

ijk + ŴU
ijk + ŴD

ijk and
accounting for the index in uijk to form the linear relationship. In the following, non-zero elements
of the (jMN + iP + k)-th row of AH are formalized, and the index in (AH)_ denotes the column being
assigned. The resulting coefficient with the point itself is

(AH)j·M·P+i·P+k = −
hyhz

hx

[
H11(si+1/2,j,k) + H11(si−1/2,j,k)

]
−

hxhz

hy

[
H22(si,j+1/2,k) + H22(si,j−1/2,k)

]
−

hxhy

hz

[
H33(si,j,k+1/2) + H22(si,j,k−1/2)

]
,

ith the six closest neighbors are

(AH )j·M·P+i·P+kp =
hxhy

hz
H33(si,j,k+1/2)

+
hy

4

[
H31(si+1/2,j,k) − H31(si−1/2,j,k)

]
+

hx

4

[
H32(si,j+1/2,k) − H32(si,j−1/2,k)

]
(AH )j·M·P+i·P+kn =

hxhy

hz
H33(si,j,k−1/2)

−
hy

4

[
H31(si+1/2,j,k) − H31(si−1/2,j,k)

]
−

hx

4

[
H32(si,j+1/2,k) − H32(si,j−1/2,k)

]
(AH )j·M·P+ip·P+k =

hzhy

hx
H11(si+1/2,j,k)

+
hy

4

[
H12(si,j,k+1/2) − H12(si,j,k−1/2)

]
+

hz

4

[
H13(si,j+1/2,k) − H13(si,j−1/2,k)

]
(AH )j·M·P+in·P+k =

hzhy

hx
H11(si−1/2,j,k)

−
hy

4

[
H12(si,j,k+1/2) − H12(si,j,k−1/2)

]
−

hz

4

[
H13(si,j+1/2,k) − H13(si,j−1/2,k)

]
(AH )jp·M·P+i·P+k =

hxhz

hy
H22(si,j+1/2,k)

+
hx

4

[
H23(si,j,k+1/2) − H23(si,j,k−1/2)

]
+

hz

4

[
H21(si+1/2,j,k) − H21(si−1/2,j,k)

]
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c

a

(AH )jn·M·P+i·P+k =
hxhz

hy
H22(si,j−1/2,k)

−
hx

4

[
H23(si,j,k+1/2) − H23(si,j,k−1/2)

]
−

hz

4

[
H21(si+1/2,j,k) − H21(si−1/2,j,k)

]
,

and with the twelve closest diagonals are

(AH )j·M·P+ip·P+kp =
hy

4

[
H31(si+1/2,j,k) + H13(si,j,k+1/2)

]
,

(AH )j·M·P+in·P+kn =
hy

4

[
H31(si−1/2,j,k) + H13(si,j,k−1/2)

]
,

(AH )j·M·P+in·P+kp = −
hy

4

[
H31(si−1/2,j,k) + H13(si,j,k+1/2)

]
(AH )j·M·P+ip·P+kn = −

hy

4

[
H31(si+1/2,j,k) + H13(si,j,k−1/2)

]
,

(AH )jp·M·P+i·P+kp =
hx

4

[
H32(si,j+1/2,k) + H23(si,j,k+1/2)

]
,

(AH )jn·M·P+i·P+kn =
hx

4

[
H32(si,j−1/2,k) + H23(si,j,k−1/2)

]
,

(AH )jn·M·P+i·P+kp = −
hx

4

[
H32(si,j−1/2,k) + H23(si,j,k+1/2)

]
,

(AH )jp·M·P+i·P+kn = −
hx

4

[
H32(si,j+1/2,k) + H23(si,j,k−1/2)

]
,

(AH )jp·M·P+ip·P+k =
hz

4

[
H21(si+1/2,j,k) + H12(si,j+1/2,k)

]
,

(AH )jn·M·P+in·P+k =
hz

4

[
H21(si−1/2,j,k) + H12(si,j−1/2,k)

]
,

(AH )jn·M·P+ip·P+k = −
hz

4

[
H21(si+1/2,j,k) + H12(si,j−1/2,k)

]
,

(AH )jp·M·P+in·P+k = −
hz

4

[
H21(si−1/2,j,k) + H12(si,j+1/2,k)

]
.

Note that the corner points are not included in this scheme. Denoting A = DVDκ2 − AH, Eq. (S10)
an be written as

z = D−1/2
V Au,

nd thus, the joint distribution of u is

π (u) ∝ π (z) ∝ exp
(

−
1
2
zTz

)
π (u) ∝ exp

(
−

1
2
uTATD−1

V Au
)

π (u) ∝ exp
(

−
1
2
uTQu

)
.

Here, Q = ATD−1
V A which is a sparse matrix of 93 non-zero elements per row. This corresponds to

the point, the 18 closest neighbors, and their 18 closest neighbors. Then removing duplicates results
in 93 points.
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m
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w
c

Table S2
The Relative Root Mean Square Error (RRMSE) of parameter estimates for SI, SA, and NA from 100
repetitions for each data setting, which varies the number of observed locations (No. loc.) and the
number of replicated observations of these locations (No. real.).

No. loc. 100 10000 27000

No. real. 1 10 100 1 10 100 1 10 100

St
at
.I
so

. log κ 0.473 0.105 0.034 0.091
log γ 0.869 0.175 0.071 0.048
log τ 0.546 0.141 0.041 0.015

St
at
io
na

ry
An

is
ot
ro
pi
c

log κ 0.946 0.176 0.089 0.092 0.036
log γ 10.940 62.373 0.655 0.315 0.115
|vx| 0.693 0.512 0.247 0.100 0.037
|vy| 0.894 0.522 0.330 0.103 0.026
|vz | 2.957 1.428 0.641 0.192 0.070
|ρ1| 0.793 0.616 0.188 0.085 0.027
|ρ2| 2.354 1.016 0.495 0.123 0.047
log τ 0.394 0.272 0.042 0.037 0.007

N
on

-S
ta
tio

na
ry

An
is
ot
ro
pi
c log κ 2.119 0.698 0.266 0.198

log γ 2.901 1.359 0.617 0.542
|vx| 1.292 0.268 0.182 0.178
|vy| 1.573 0.244 0.144 0.141
|vz | 0.585 0.210 0.103 0.088
|ρ1| 2.211 7.970 3.361 2.741
|ρ2| 1.071 1.884 1.194 1.038
log τ 0.249 0.003 0.001 0.001

Appendix C. Additional figures and tables

In Section 4, we ran a simulation study investigating the amount of data required to estimate
odels of different complexity. The results of this simulation study were presented in Table 1 which
howed the root mean square errors (RMSEs) of the parameter estimates for different data settings.
he parameters can be at different scales so the RMSE might not be sufficient for the interpretation
f the results. Therefore, Table S2 is included and shows the relative root mean square error (RRMSE)
f the parameters.
For the non-stationary model, the relative errors are not so easily available as some of its

arameters are zero. To account for this, the NA model Table S2 shows the average RMSE of the
arameters for each spline function relative to the average parameter value of each spline function
nd not the average RRMSE of the parameters for each spline function. To clarify the RRMSE for the
tationary models are

RRMSE(θ̂i) = RMSE(θ̂i)
/

|θi|,

here θ̂i is the estimated ith element of θ = (log κ2, log γ , . . . , log σN ). Then for the non-stationary
ase, we have

RRMSE(α̂g ) = RMSE(α̂g )
/

|αg |

=

p∑
RMSE(αgj )

/ p∑
|αgj |.
j=1 j=1
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s

Fig. S3. Prior field (a) found from SINMOD simulations, the variance of the spatial effect (b) and spatial correlation of
point [22,10,0] (c) in the stationary anisotropic model. The N-arrow shows the cardinal north.

Here, αg denotes the p-dimensional vector of parameters for an arbitrary spline function g(·) in the
et of all parameters for all the spline functions

θ = (ακ , αγ , αvx , αvy , αvz , αρ1 , αρ2 ),

and j specifies the index of the parameter from that arbitrary spline function.
In the application, Section 5, we estimate the parameters of a non-stationary anisotropic and

stationary anisotropic model on a simulated dataset from the numerical ocean model SINMOD. The
resulting properties of the non-stationary model are presented in Fig. 7 in Section 5.2 since this
is the main focus of the applications. The properties of the stationary anisotropic model fit on the
same dataset are presented in Fig. S3. The marginal variance in Fig. S3(b), which should be constant
for this stationary model, shows some variability caused by the boundary conditions. Notice that
this boundary effect is also bigger in the direction of the strongest dependency directions seen in
the south and north corners. Notice also the large discrepancies between the correlations in these
two models, Fig. S3(c) and Fig. 7c, as the stationary anisotropic model kind of captures an average
correlation within the field.

In Fig. 9 in Section 5, we observed an increase given more data in the standard deviation of
the root mean square error of predictions under random permutation after about 70% of observed
data. We noted that this was due to our assumption that the model is purely spatial given a small
operation time, and that the last segment in the field test (the up and down pattern) did not fit well
within this assumption. Fig. S4 shows the same results as Fig. 9 but with the last segment removed.
Here, we observe a slight reduction of this effect but admit that there is still an increase. This is
because all or most of the held-out data comes from the same segment.
29
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B

B

Fig. S4. The root mean square error (RMSE, top) and the continuous ranked probability score (CRPS, bottom) of predictions
from the stationary anisotropic (orange) and non-stationary anisotropic models (blue) given different proportions of
observed data (5%, 95%). The error bars are the standard deviations of the different measures under random permutations
of 8 segments. Here, one segment is removed. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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