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Abstract
Given a sequence of frequencies {λn}n≥1, a corresponding generalized Dirichlet series
is of the form f (s) =∑n≥1 ane−λns . We are interested in multiplicatively generated
systems, where each number eλn arises as a finite product of some given numbers
{qn}n≥1, 1 < qn → ∞, referred to as Beurling primes. In the classical case, where
λn = log n, Bohr’s theorem holds: if f converges somewhere and has an analytic
extension which is bounded in a half-plane {�s > θ}, then it actually converges
uniformly in every half-plane {�s > θ + ε}, ε > 0. We prove, under very mild
conditions, that given a sequence of Beurling primes, a small perturbation yields
another sequence of primes such that the corresponding Beurling integers satisfy
Bohr’s condition, and therefore the theorem. Applying our technique in conjunction
with a probabilisticmethod, we find a system of Beurling primes forwhich bothBohr’s
theorem and the Riemann hypothesis are valid. This provides a counterexample to a
conjecture of H. Helson concerning outer functions in Hardy spaces of generalized
Dirichlet series.
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1 Introduction

For an increasing sequence of positive frequencies λ = {λn}n≥1, and a generalized
Dirichlet series

f (s) =
∑

n≥1

ane−λns,

the abscissas σc, σu, and σa of point-wise, uniform, and absolute convergence are
defined as in the classical theory of Dirichlet series [12]. In this article we wish to
find sets of frequencies such that the analogue of a theorem of Bohr [4] holds: if
σc( f ) < ∞ and f has a bounded analytic extension to a half-plane {�s > θ}, then
σu( f ) ≤ θ . The problem of finding frequencies for which the abscissas of bounded
and uniform convergence always coincide, which originated with Bohr and Landau
[18], has recently been revisited [2, 20] with the context of Hardy spaces of Dirichlet
series in mind. Indeed, Bohr’s theorem is essentially a necessity for a satisfactory
Hardy space theory, see [19, Ch. 6].

An important class of frequencies were introduced by Beurling [3]. Given an arbi-
trary increasing sequence q = {qn}n≥1, 1 < qn → ∞, such that {log qn}n≥1 is linearly
independent over Q, we will denote by Nq = {νn}n≥1 the set of numbers that can be
written (uniquely) as finite products with factors from q, ordered in an increasingman-
ner. The numbers qn are known as Beurling primes, and the numbers νn are Beurling
integers. The corresponding generalized Dirichlet series are of the form

f (s) =
∑

n≥1

anν−s
n .

There are a number of criteria to guarantee the validity of Bohr’s theorem for
frequencies {λn}n≥1. Bohr’s original condition asks for the existence of c1, c2 > 0
such that

λn+1 − λn ≥ c1e−c2λn+1 , n ∈ N. (1)

Landau relaxed the condition somewhat: for every δ > 0 there should be a c > 0 such
that

λn+1 − λn ≥ ce−eδλn+1
, n ∈ N. (2)

Landau’s condition was recently relaxed further by Bayart [2]: for every δ > 0 there
should be a C > 0 such that for every n ≥ 1 it holds that

inf
m>n

(

log

(
λm + λn

λm − λn

)

+ (m − n)

)

≤ Ceδλn . (3)

For frequencies of Beurling type, λn = log νn , these conditions have natural reformu-
lations. For example, Bohr’s condition (1) is equivalent to the existence of c1, c2 > 0
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such that

νn+1 − νn ≥ c1ν
−c2
n+1. (4)

Conditions (1)–(4) are usually very difficult to check for any given Beurling sys-
tem, since they involve the distances between the corresponding Beurling integers.
Furthermore, they often fail. This is especially true if one wants to retain properties
of the ordinary integers, such as the asympotic behaviour of the counting function
Nq(x) =∑νn≤x 1, see e.g. [11] for the subtleties that arise already when dealing with
a finite sequence q = (q1, . . . , qN ) of Beurling primes.

One motivation for considering Beurling integers is to investigate the properties of
the q-zeta function

ζq(s) =
∑

n≥1

ν−s
n =

∏

n≥1

1

1 − q−s
n

,

and their interplay with the counting functions

Nq(x) =
∑

νn≤x

1, πq(x) =
∑

qn≤x

1.

As an example, Beurling [3] himself showed that the condition

Nq(x) = ax + O

(
x

(log x)γ

)

, for some γ >
3

2
, (5)

implies the analogue of the prime number theorem,

πq(x) :=
∑

qn≤x

1 ∼ x

log x
. (6)

We refer to [10] for a comprehensive overview of further developments.
In Sect. 2 we begin with a preparatory result which is interesting in its own right.

It states that starting with the classical set of primes numbers we can add almost any
finite sequence of Beurling primes while retaining the validity of Bohr’s theorem.

Theorem 1.1 Let {pn}n≥1 be the sequence of ordinary prime numbers and let N ≥ 1.
Then Bohr’s condition (1) holds for the Beurling integers generated by the Beurling
primes

q = {pn}n≥1

⋃
{q j }N

j=1,

for almost every choice (q1, . . . , qN ) ∈ (1,∞)N .

Sequences of Beurling primes of the type considered in Theorem 1.1 previously
appeared in [17].

Our next result requires more careful analysis.
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Theorem 1.2 Let q = {qn}n≥1 be an increasing sequence of Beurling primes such that
q1 > 1 and σc(ζq) < ∞. Then, for every A > 0 there exists a sequence of Beurling
primes q̃ = {q̃n}n≥1 for which Bohr’s condition (1) holds and

|qn − q̃n| ≤ q−A
n , n ∈ N.

Combining our techniques with a probabilistic method from [6], which refined
previous work of Diamond, Montgomery, Vorhauer [9] and Zhang [23], we are able
to construct a system of Beurling primes that satisfies Bohr’s theorem as well as
the analogue of the Riemann hypothesis. Specifically, we say that a Beurling system
satisfies RH if the corresponding Beurling zeta function ζq(s) has an analytic non-
vanishing extension to �s > 1/2, except for a simple pole at s = 1, of zero order in
any substrip �s > σ0, σ0 > 1/2. This latter property means that for every ε > 0 and
σ > σ0,

ζq(σ + i t) = Oε(|t |ε), |t | → ∞.

Theorem 1.3 There exists a system of Beurling primes q = {qn}n≥1 such that:

(i) The system satisfies RH.
(ii) The prime counting function πq(x) satisfies

πq(x) = li(x) + O(1),

where li(x) =
x∫

1
(1 − u−1) (log u)−1 du.

(iii) The integer counting function Nq(x) satisfies

Nq(x) = ax + Oε(x1/2+ε), for all ε > 0,

for some a > 0.
(iv) The corresponding Beurling integer system satisfies Bohr’s condition.

Note that there are examples of Beurling systems such that ζq has a non-vanishing
meromorphic extension to �s > 1/2 of infinite order in any substrip �s > σ0,
1/2 < σ0 < 1, see [5]. On the other hand, if ζq does not vanish and has finite order
in every such substrip, then it is actually of zero order, and thus the corresponding
Beurling system satisfies RH. Therefore (ii) and (iii) actually imply (i). The latter two
statements can both be deduced from [16, Theorem 2.3].

The proofs of our results investigate how well “irrational numbers” may be approx-
imated by fractions of Beurling integers. We will comment further on this kind of
Diophantine approximation problems in Sect. 3. In Sect. 3 we will also return to the
original idea behind our work. There has been an interest in studying Hardy spaces
of generalized Dirichlet series since the 60s [8, 13, 14]. However, to our knowledge,
except for examples that are very closely related to the ordinary integers, there has not
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been any discussion of the existence of Beurling primes q satisfying the prime number
theorem such that Bohr’s theorem holds true for the corresponding Hardy spaceH∞

q .
This is in spite of the fact that Bohr’s theorem is crucial for a meaningful theory of
the Hardy spaces Hp

q , 1 ≤ p ≤ ∞.
Since other aspects of the function theory of Hardy spaces do not depend on the

choice q of Beurling primes, the motivation for Theorem 1.3 was to find a canonical
Beurling system Nq which allows us to assume the Riemann hypothesis in the Hp

q -
theory. As a specific function theoretic application, we construct an outer function,
or synonymously, a cyclic function, f ∈ H2

q which has a zero in its half-plane of
convergence,

f (s) = 1

ζq(s + 1/2 + ε)
, 0 < ε < 1/2. (7)

The existence of such an f constitutes a counterexample to a conjecture posed by
Helson [15].

Notation

Throughout the article, we will be using the convention that C denotes a positive
constant which may vary from line to line. We will write that C = C(�) when the
constant depends on the parameter �.

2 Proof of themain results

Lemma 2.1 Suppose that {qn}n≥1 is a Beurling system such that dn := νn+1 − νn 	
ν−C

n+1. Then, for every ε > 0 and for almost every q ′ > 1, the Beurling system
{qn}n≥1 ∪ {q ′} has a distance function satisfying

d ′
n = ν′

n+1 − ν′
n 	 ν−C

′
n+1 , n ∈ N, (8)

where C ′(q ′, q) = max
(
C, 2σc(ζq) − 1 + ε

)
.

Proof Let x0 > 1. First we will prove that the setM of all numbers q ′ ≥ x0 such that
there exist infinitely many triples ( j, n, m) ∈ N3 with

∣
∣
∣
∣(q

′) j − νn

νm

∣
∣
∣
∣ ≤ ν−C0

n ν−C0
m , C0 = σ(ζq) + ε,

has measure zero. Since

∣
∣
∣
∣
∣
q ′ −

(
νn

νm

) 1
j

∣
∣
∣
∣
∣
≤ x1− j

0

∣
∣
∣
∣(q

′) j − νn

νm

∣
∣
∣
∣ ,
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we have that M ⊂ lim supm,n, j �m,n, j , where, for j, n, m ≥ 1,

�m,n, j =
[(

νn

νm

) 1
j − x1− j

0 ν−C0
n ν−C0

m ,

(
νn

νm

) 1
j + x1− j

0 ν−C0
n ν−C0

m

]

.

The Borel–Cantelli lemma thus shows that |M| = 0, since

∑

m≥1

∑

n≥1

∑

j≥1

|�m,n, j | ≤ 2x0
x0 − 1

ζq (C0)
2 < ∞.

Fix a number q ′ ∈ [x0,∞) \ M such that log q ′ is not in the (countable) set
spanQ{log qn}. Note that the set of such numbers has full measure in [x0,∞), and that
x0 > 1 is arbitrary. By construction, there are finitely many triples ( j, n, m) such that

∣
∣
∣
∣(q

′) j − νn

νm

∣
∣
∣
∣ ≤ ν−C0

n ν−C0
m . (9)

For these exceptional triples, the left-hand side is at least positive, since log q ′ /∈
spanQ{log qn}. Therefore

∣
∣
∣
∣(q

′) j − νn

νm

∣
∣
∣
∣	 ν−C0

n ν−C0
m

for all ( j, n, m) ∈ N3.
Now we consider two arbitrary consecutive Beurling integers generated by the

prime system {qn}n≥1 ∪ {q ′},

ν′
n+1 = (q ′)aνm, ν′

n = (q ′)bνl .

If a = b, then l = m − 1 and

ν′
n+1 − ν′

n 	 ν−C
m ≥ (ν′

n+1

)−C
,

by the hypothesis on the distances dn for the original Beurling system. Otherwise, if,
say, b < a, then

∣
∣ν′

n+1 − ν′
n

∣
∣ = (q ′)bνm

∣
∣
∣
∣(q

′)a−b − νl

νm

∣
∣
∣
∣	 ν

−C0
l ν−C0+1

m (q ′)b 	 (
ν′

n+1

)−C
′
.

where C
′ = 2σc(ζq) − 1 + ε. 
�

Proof of Theorem 1.1 The proof is a direct consequence of Lemma 2.1. 
�
In order to prove Bohr’s theorem for more general Beurling systems, we need to
control the constant in the distance estimate (8), which comes from the exceptional
triples satisfying (9).
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Proof of Theorem 1.2 Fix a small ε > 0 and x0 ∈ (1 + ε/2, 1 + ε). Consider first any
Beurling system Nρ = {νn}n≥1 generated by Beurling primes such that ρ1 > 1 + ε

and σc(ζρ) < ∞. For a number σ∞ > max(2, A) to be chosen in a moment, let

N =
⋃

m≥2

⋃

n≥2

⋃

j≥1

�m,n, j ,

where �m,n, j is defined as in the proof of Lemma 2.1,

�m,n, j =
[(

νn

νm

) 1
j − x1− j

0 ν−σ∞
n ν−σ∞

m ,

(
νn

νm

) 1
j + x1− j

0 ν−σ∞
n ν−σ∞

m

]

.

Then |N | ≤ C(ε)
(
ζρ(σ∞) − 1

)2
. Furthermore, for x > 2, let

Ix = [x − x− σ∞
2 , x + x− σ∞

2 ].
Note that if σ∞ is sufficiently large, σ∞ ≥ C(ε), then

(
νn

νm

) 1
j + x1− j

0 ν−σ∞
n ν−σ∞

m ≤ 4

3
νn and x − x− σ∞

2 ≥ 2

3
x .

Thus, Ix ∩ �m,n, j �= ∅ only if νn ≥ x/2. Therefore

|Ix ∩ N | ≤
∑

m≥2
j≥1

νn≥ x
2

|�m,n, j | ≤ C(ε)
(
ζρ(σ∞) − 1

) ∑

νn≥ x
2

ν−σ∞
n

≤ C(ε)
(
ζρ(σ∞) − 1

)
ζρ

(σ∞
4

)
x− 3σ∞

4 .

We will construct a sequence of Beurling systems such that

(
ζρ(σ∞) − 1

)
ζρ

(σ∞
4

)
≤ 1 (10)

for the number σ∞ > 0, still to be chosen later. Therefore

|Ix ∩ N | ≤ C(ε)x− σ∞
4 |Ix |, (11)

We conclude that whenever x is sufficiently large, Ix �⊂ N .
To include triples where νn or νm equals one in our considerations, we increase the

power σ∞. The inequality

∣
∣
∣
∣x

j − νn

νm

∣
∣
∣
∣ ≤ ν−3σ∞

n ν−3σ∞
m (12)

implies, whenever x ≥ x0, that
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∣
∣
∣
∣
∣
x −

(
νn

νm

) 1
j

∣
∣
∣
∣
∣
≤ x1− j

0

∣
∣
∣
∣x

j − ν2nνm

ν2mνn

∣
∣
∣
∣ ≤ x1− j

0

(
ν2mνn

)−σ∞ (
ν2nνm

)−σ∞
.

Therefore M ⊂ N , where M this time denotes the set of all x ≥ x0 for which there
exists an exceptional triple ( j, n, m) ∈ N3 such that (12) holds.

Now let q be a sequence of primes in the statement of Theorem 1.2, assuming that
ε < q1 − 1. As described, we will only be able to effectively apply (11) when x is
sufficiently large, say, x ≥ B = B(ε) = C(ε)4 +2, where C(ε) in this instance refers
to the same constant as in (11). Let N be such that {q1, . . . , qN } = (1, B) ∩ q. Then,
as a corollary of Theorem 1.1, we already know that there exists an increasing finite
sequence of primes {q̃1, . . . q̃N }, q̃1 > 1, such that |q j − q̃ j | ≤ q−A

j , j = 1, . . . , N ,

and such that Bohr’s condition holds for {ν(N )
n }n≥1 = N{q̃1,...q̃N }. Further, we choose

σ∞ so large that

∣
∣
∣ν

(N )
n+1 − ν(N )

n

∣
∣
∣ ≥

(
ν

(N )
n+1

)−6σ∞
, n ∈ N,

and

(
ζq ′(σ∞) − 1

)
ζq ′
(σ∞

4

)
≤ 1, (13)

where q ′ = {q̃1, . . . q̃N , qN+1 − 1, qN+2 − 1, qN+3 − 1, . . .}.

This is made possible by the hypothesis that σc(ζq) < ∞, since

ζq ′(σ ) ≤
∏

j≥1

1

1 − (q ′
j )

−σ
≤ ζq

( σ

C

)
, σ > 0, C ≥ sup

n≥1

log(qn)

log(q ′
n)

.

From here we proceed by induction. Suppose that q̃1, . . . q̃k have been chosen,
where k ≥ N , with corresponding Beurling integers {ν(k)

n }n≥1 = N{q̃n}k
n=1

satisfying
that

∣
∣
∣ν

(k)
n+1 − ν(k)

n

∣
∣
∣ ≥

(
ν

(k)
n+1

)−6σ∞
.

We apply the preceding discussion to the Beurling primes ρ = {q̃1, . . . q̃k} and x =
qk+1, concluding that there exists a number q̃k+1 ∈ Iqk+1 such that

∣
∣
∣
∣
∣
q̃ j

k+1 − ν
(k)
n

ν
(k)
m

∣
∣
∣
∣
∣
≥
(
ν(k)

n

)−3σ∞ (
ν(k)

m

)−3σ∞
, ( j, n, m) ∈ N3.
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By the same argument as in the last paragraph of the proof of Theorem 1.1 the Beurling
system {ν(k+1)

n }n≥1 = N{q̃n}k+1
n=1

, then satisfies that

∣
∣
∣ν

(k+1)
n+1 − ν(k+1)

n

∣
∣
∣ ≥

(
ν

(k+1)
n+1

)−6σ∞
, n ∈ N.

At each step of the construction, (14) ensures that (10) holds. We hence obtain a

sequence q̃ = {q̃n}n≥1, satisfying that |q̃n − qn| ≤ q
− σ∞

2
n as well as Bohr’s condition

(1), specifically,

|ν̃n+1 − ν̃n| ≥ (ν̃n+1)
−6σ∞ , n ∈ N.

where {ν̃n}n≥1 = Nq̃ . 
�
To prove Theorem 1.3, we shall combine the proof of Theorem 1.2 with the

probabilistic construction of [6, Theorem 1.2]. Let

F(x) = li(x) =
x∫

1

1 − u−1

log u
du

and set xn = F−1(n). We select the nth Beurling prime qn randomly from the interval
[xn, xn+1] according to the probability measure d li(x)|[xn ,xn+1]. That is, we consider a
sequence of independent random variables Qn , representing the coordinate functions
(q1, q2, . . . ) �→ qn , with cumulative distribution function

∫ x
xn

d li(u) = li(x) − n,
xn ≤ x ≤ xn+1. Formally, the probability space is X = ∏∞

n=1[xn, xn+1], and by
appealing to Kolmogorov’s extension theorem, we can equip X with a probability
measure d P such that

P

(

A ×
∞∏

n=k+1

[xn, xn+1]
)

=
∫

A
d li(u1) · · · d li(uk),

for everyA ⊆ [x1, x2] × · · · × [xk, xk+1].
Proof of Theorem 1.3 Let A > 1.Wewill show the existence of a sequence of Beurling
primes q = {qn}n≥1 generating integers Nq = {νn}n≥1 with the following properties:

(a) The Beurling zeta function ζq(s) can be written as

ζq(s) = seZ(s)

s − 1
,

where Z(s) is an analytic function in {�s > 1/2}which in every closed half-plane
{�s ≥ σ0}, σ0 > 1/2, satisfies

|Z(s)| �σ0

√
log(|t | + 2), s = σ + i t .
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(b) The Beurling integers satisfy |νn − νm | ≥ (νnνm)−A whenever n �= m.

Suppose that ν, μ are relatively prime Beurling integers, (ν, μ) = 1, satisfying
|ν −μ| < (νμ)−A. Let qk be the largest prime factor of νμ. Without loss of generality
qk | ν and qk � μ, and let j be such that ν = q j

k ν′ where qk � ν′. Then

∣
∣
∣q

j
k − μ

ν′
∣
∣
∣ <

1

q Aj
k (ν′)1+AμA

,

so that
∣
∣
∣
∣qk −

(μ

ν′
)1/ j

∣
∣
∣
∣ <

1

q(A+1) j−1
k (ν′)1+AμA

≤ 1

x (A+1) j−1
k (ν′)1+AμA

.

This motivates the following definitions. For k, j ≥ 1 and

q1 ∈ [x1, x2], q2 ∈ [x2, x3], . . . , qk−1 ∈ [xk−1, xk],

we set

Mk, j (q1, . . . , qk−1)

=
⋃

ν,μ∈N(q1,...,qk−1)

[
(μ

ν

)1/ j − 1

x (A+1) j−1
k ν1+AμA

,
(μ

ν

)1/ j + 1

x (A+1) j−1
k ν1+AμA

]

,

and we consider the events

Bk, j = {(q1, q2, . . . ) : qk ∈ Mk, j (q1, . . . , qk−1)
}
.

DenotingX = (x1, x2, . . . ), the Lebesguemeasure ofMk, j (q1, . . . , qk−1) is bounded

by 2ζX (1 + A)ζX (A)x1−(A+1) j
k . Note that πX (x) = li(x) + O(1), and so ζX (s) has

abscissa of convergence 1. Hence, for the probability of Bk, j we have

P(Bk, j ) =
x2∫

x1

d li(u1)

x3∫

x2

d li(u2) . . .

xk∫

xk−1

d li(uk−1)

∫

[xk ,xk+1]∩Mk, j (u1,...,uk−1)

d li(uk)

≤ 2ζX (1 + A)ζX (A)

x (A+1) j−1
k

.

In particular,
∑∞

k=1
∑∞

j=1 P(Bk, j ) < ∞.
We also consider the events

Ak,m =
{

(q1, q2,. . . ) :
∣
∣
∣

k∑

n=1

q−im
n −

xk∫

x1

u−imd li(u)

∣
∣
∣≥8

√
xk

log xk

(√
log xk +√logm

)
}

.
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In the proof of [6, Theorem 1.2] it was shown that also
∑∞

k=1
∑∞

m=1 P(Ak,m) < ∞.
Hence, by the Borel–Cantelli lemma we have with probability 1 that the sequence
(q1, q2, . . . ) is contained in only finitely many of the sets Ak,m and Bk, j . Take any
such sequence q.

Note that by construction, πq(x) = li(x)+ O(1). As q is contained in only finitely
many Ak,m , we obtain that

∣
∣
∣
∣
∣
∣

∑

qn≤x

q−i t
n −

x∫

x1

u−i t d li(u)

∣
∣
∣
∣
∣
∣
�
√

x

log(x + 1)

(√
log(x + 1) +√log(|t | + 1)

)
,

x ≥ 1, t ∈ R. (14)

For x = xk and t = m ∈ Z this is clear. If x ∈ (xk, xk+1), then both terms in the
absolute value of (14) change by at most O(1) upon replacing x by xk . Hence the
bound also holds for any t = m ∈ Z and arbitrary x ≥ 1. To obtain the bound for
t ∈ (m, m + 1), we write

∑

qn≤x

q−i t
n =

x∫

x1

u−i(t−m) d

(∑

qn≤u

q−im
n

)

,

x∫

x1

u−i t d li(u) =
x∫

x1

u−i(t−m) d

( u∫

x1

v−im d li(v)

)

,

and integrate by parts.

The bound (14) implies (a). Indeed, setting 
q(x) = πq(x) + πq (x1/2)
2 + · · · , we

have

log ζq(s) =
∞∫

1

x−s d
q(x) = log
s

s − 1
+

∞∫

1

x−s d
(
πq(x) − li(x)

)

+
∞∫

1

x−s d
(

q(x) − πq(x)

)
.

Let σ ≥ σ0 > 1/2. In the second integral we integrate by parts and use (14) to see
that it is Oσ0

(√
log(|t | + 2)

)
. The third integral is Oσ0(1) for σ ≥ σ0 > 1/2, since


q(x) − πq(x) is non-decreasing and � √
x/ log x .

Now let k1, k2, . . . , kl be the exceptional integers of the construction. Thenq /∈ Bk, j

for all j and k �= k1, . . . , kl . We simply remove the corresponding Beurling primes
from the system: q̃ = q\{qk1 , . . . , qkl }. As ζq̃(s) = ζ(s)(1 − q−s

k1
) · · · (1 − q−s

kl
), (a)

remains valid for ζq̃(s). Finally, every two distinct Beurling integers νn �= νm from
Nq̃ satisfy |νn − νm | ≥ (νnνm)−A. For if this were not the case, then, by the argument
at the beginning of the proof, the largest prime factor qk of νnνm/(νn, νm)2 would be
contained in some Mk, j (q1, . . . , qk−1), which is impossible by construction.
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Every point in Theorem 1.3 has now been proven, except for (iii). However, since
ζq̃(s) is of zero order in {�s > σ0} for every σ0 > 1/2 by (a), this follows from a
standard application of Perron inversion, see [16, 23]. 
�

3 Further discussion

3.1 Diophantine approximation and Beurling integers

Using theBorel–Cantelli theorem to study the irrationality of real numbers is a standard
technique of Diophantine approximation. The irrationality measure μ(x) of a real
number x ∈ R is defined as the infimum of the set

Rx =
{

r > 0 :
∣
∣
∣x − m

n

∣
∣
∣ <

1

nr
for at most finitely many pairs (m, n) ∈ N × N

}

.

For a Beurling system Nq = {νn}n≥1, we may also introduce the irrationality measure
μq(x) of a real number x ∈ R as the infimum of the set

Rx =
{

r > 0 :
∣
∣
∣
∣x − νm

νn

∣
∣
∣
∣ <

1

νr
n
for at most finitely many pairs (m, n) ∈ N × N

}

.

Then, by slightly modifying the proof of Lemma 2.1, we obtain the following
proposition.

Proposition 3.1 Let q = {qn}n≥1 be a sequence of Beurling primes with σc(ζq) < ∞.
Then, for almost every x ∈ R, it holds that

μq(x) ≤ 2σc(ζq).

In the classical case, Dirichlet’s approximation theorem therefore implies that
μ(x) = 2 for almost every x ∈ R. We also recall Roth’s theorem [7], which states
that μ(x) = 2 for every algebraic irrational number. It would be very interesting to
develop corresponding results in the context of Beurling integers.

3.2 Hardy spaces of Dirichlet series and a conjecture of Helson

For a sequence q of Beurling primes, we introduce the Hardy space H2
q as

H2
q =

⎧
⎨

⎩
f (s) =

∑

n≥1

anν−s
n : ‖ f ‖2H2

q
=
∑

n≥1

|an|2 < ∞
⎫
⎬

⎭
.
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More generally, for 1 ≤ p < ∞, we define Hp
q as the completion of polynomials

(finite sums
∑

anν−s
n ) under the Besicovitch norm

‖P‖Hp
q

:=
⎛

⎝ lim
T →∞

1

2T

T∫

−T

|P(i t)|p dt

⎞

⎠

1
p

.

The function theory of these spaces originated with Helson [14], and was, in the
distuingished case where q is the sequence of ordinary primes, continued in very
influential papers of Bayart [1] and Hedenmalm, Lindqvist, and Seip [13]. More gen-
erally, there is a developing theory of Hardy spaces of Dirichlet series

∑
ane−λns

whose frequencies are related to other groups than T∞, but we shall restrict our atten-
tion to frequencies given by Beurling primes. A cornerstone of the theory is that there
is a natural multiplicative linear isometric isomorphism between Hp

q and the Hardy
space H p(T∞) of the infinite torus [8, 15]. However, more is needed in order to iden-
tify H∞(T∞) with H∞

q , the space of Dirichlet series
∑

anν−s
n which converge to a

bounded function in C0 = {�s > 0}. In fact, Bohr’s condition is typically used in
order to establish this isomorphism [20].

In identifying Hp
q with H p(T∞) one is naturally led to consider twisted Dirichlet

series

fχ (s) =
∑

n≥1

anχ(νn)ν−s
n ,

where a point χ ∈ T∞ is interpreted as the completely multiplicative character
χ : Nq → T such that χ(qn) = χn . Helson [15] proved that if f ∈ H2

q and the associ-
ated frequencies satisfy Bohr’s condition, then fχ (s) converges inC0 for almost every
χ ∈ T∞. Helson went on to make a conjecture, which we state only in the special
case that the frequencies correspond to a Beurling system. Recall that f ∈ H2

q is said

to be outer (or cyclic) if
{

f g : g ∈ H∞
q

}
is dense inH2

q .

Conjecture If Nq is a Beurling system that satisfies Bohr’s condition and f is outer
inH2

q , then fχ never has any zeros in its half-plane of convergence.

Suppose now that the Beurling primes q are chosen as in Theorem 1.3, so that we
have the Riemann hypothesis at our disposal, and consider the Dirichlet series

f (s) = 1

ζq(s + 1/2 + ε)
,

for some 0 < ε < 1/2. Through a routine calculation with coefficients, one checks
that f , f 2, 1/ f , 1/ f 2 ∈ H2

q . Therefore, there are polynomials pn which converge to
1/ f inH4

q , so that

‖1 − pn f ‖H2
q

≤ ‖ f ‖H4
q
‖1/ f − pn‖H4

q
→ 0, n → ∞.
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Thus, f is outer. On the other hand, it has a zero at s = 1/2− ε. To disprove Helson’s
conjecture it only remains to prove that f converges in C0.

Proposition 3.2 The reciprocal 1/ζq of the Beurling zeta function converges in {�s >

1/2}.
Proof The reciprocal 1/ζq is of zero order in {�s > σ0}, for every σ0 > 1/2. This
is clear from the proof of Theorem 1.3, but it is also well known that this can be
deduced from (ii) and (iii) using the Borel–Carathéodory and the Hadamard three
circles theorems,

log ζq(σ + i t) = O
(
(log |t |)α) , α ∈ (0, 1), (15)

uniformly for 1
2 < σ0 ≤ σ ≤ 1. See for example [16, Theorem 2.3] or [22, Theo-

rem 14.2]. Since we have Bohr’s condition, the standard argument [21, Section 9.44]
with Perron’s formula then shows that 1/ζq is convergent in the half-plane where it is
analytic with zero order. 
�
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