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Summary

Turbines, the backbone of numerous industries for power generation, assume a
critical role in ensuring seamless operations and a continuous power supply to
the system. Their uninterrupted working conditions and performance are crucial
to providing continuous power to the system. The impact of turbine tripping due
to various factors can lead to substantial economic losses, operational downtime,
and decreased production efficiencies. Therefore, early identification of poten-
tial turbine failures becomes paramount in optimizing resource allocation and
reducing costly disruptions. In this context, the present thesis endeavors to com-
prehensively analyze and preprocess real-world data, aiming to develop a robust
predictive model for turbine failure.

This study embarks on a two-fold approach to achieve its objectives effect-
ively. Initially, the raw sensor data is transformed, enabling exploration and experi-
mentation with diverse methodologies to attain precise predictions. Subsequently,
machine learning techniques, including Multi-Layer Perceptron (MLP), Convolu-
tional Neural Network (CNN), Logistic Regression, Support Vector Machine (SVM)
and K-Nearest Neighbor (KNN), are employed to forecast turbine failure within a
sixty-minute timeframe before it occurs.

The implemented methods demonstrate promising results, with the models
achieving better accuracy in comparing actual and predicted turbine failures within
the 60-minute window.

The implications of this research are profound, particularly in enhancing pro-
active maintenance practices and resource management strategies within indus-
trial settings. By adapting to the predictive capabilities of these models, industries
can implement well-timed maintenance actions and prepare contingency plans,
thereby effectively lessening potential losses resulting from turbine failures. The
findings thus signify a major advancement in the domain of predictive analysis
for turbine failure detection, imparting long-term benefits to industrial processes
and overall operational resilience.
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Chapter 1

Introduction

The detailed background of the thesis is discussed in this chapter. Furthermore,
the objectives and future scope of this work will be explored. Finally, the thesis
structure will also be covered in this chapter. There is a confidentiality agreement
for not disclosing the data which will be mentioned at the end of this chapter.

1.1 Background and Motivation

A turbine is known to be a device that converts the energy from flowing fluids like
combustion gases, steam, or air into rotational motion, which can then be used to
generate electricity through a generator [1]. Turbines find applications in various
fields, such as wind power, hydropower, heat engines, and propulsion. Turbines
are extremely important because approximately all electricity is produced by turn-
ing mechanical energy from a turbine into electrical energy via a generator. [2].
Gas turbines are particularly popular due to their many advantages. They have
lower operational costs compared to other low-carbon emission options like nuc-
lear and renewable energy. This makes gas turbines an attractive and cost-effective
solution for producing greener energy. Additionally, gas turbines are reliable, and
efficient, and experience minimal operational failures and downtime. They re-
quire less frequent maintenance, and their use of lubricating oil is relatively low,
contributing to cost savings. Gas turbines also produce power and energy quickly
due to their high operating speed, leading to faster service and further cost bene-
fits. [3]
Considering these factors, the gas turbine industry is expected to see significant
growth in the future. According to a study by Technavio [4], the market size is
projected to increase by 2.54 billion USD from 2020 to 2025, with a Compound
Annual Growth Rate (CAGR) of 1.88 percent [5].
Despite these advantages, there are some challenges that the gas turbine industry
faces. Competition from newer and more advanced energy sources is one such
challenge. Moreover, the overall efficiency of gas turbine plants is relatively low,
at around 20 percent, due to the presence of exhaust gases containing residual
heat. This leads to high temperatures, resulting in a shorter lifespan for major

1
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components. On one hand, meeting the required efficiency is a challenge, then
there is the tripping of turbines which has become a major challenge to over-
come. Tripping of a turbine is a term used for sudden failure and fast closures of
turbine valves [6]. Industries are spending fortunes to be able to design a mech-
anism that can help predict failures.
To address some of these challenges, the use of machine learning becomes essen-
tial. By training models based on normal operations, anomalies can be detected,
which can then be used to predict potential failures. Predictive maintenance al-
lows for proactive measures to be taken before a breakdown occurs, ensuring
smooth and uninterrupted operations. This approach can add significant value to
the industry, helping to maintain schedules and prevent costly disruptions.
In the context of the Industrial Revolution 4.0, Prognostic and Health Manage-
ment (PHM) systems play a crucial role. PHM is an engineering discipline that
deals with ensuring smooth working in terms of the behavior and functions of
different mechanical systems [7]. The PHM systems are designed to effectively
identify any deviations from the normal operating condition of industrial com-
ponents and predict potential faults before they occur. By addressing these chal-
lenges, PHM systems offer the potential to significantly reduce the likelihood of
severe failure events, thereby enhancing the overall safety of industrial machinery
[8]. This concept is not new in the industry. This has been practiced for several
years using traditional methods and relying on data-driven approaches. Recently
there has been a major shift in the methods of approaching these kinds of prob-
lems. There is a major shift towards Machine Learning and Deep learning-based
problem-solving techniques and they show promising results [9] [10].
In conclusion, gas turbines offer numerous advantages in energy production, and
their market is expected to grow in the coming years. Despite facing challenges,
implementing machine learning techniques for predictive maintenance can im-
prove efficiency and reliability, making gas turbines an increasingly attractive
choice for meeting industrial energy demands. The motivation behind this thesis is
twofold. Firstly, it seeks to effectively process industrial raw data, transforming it
into a more useful format. This data transformation serves multiple purposes, fa-
cilitating the implementation of machine learning and deep learning algorithms,
as well as supporting various data analysis methods. Secondly, the research fo-
cuses on the application of Machine Learning (ML) and Deep Learning (DL) tech-
niques in Prognostic and Health Management (PHM). Unlike traditional methods
that are often constrained by specific applications, ML and DL techniques offer
promising solutions to overcome these limitations and enhance flexibility [11].
They demonstrate the capability to handle unlabelled and complex noisy real-
world data, thus providing a robust and adaptable approach to PHM.

Extensive research has been conducted in traditional and expansive domains
such as Prognostics and Health Management (PHM) [12] and Remaining Useful
Life (RUL) [13] estimation, which primarily focuses on the inherent wear and
maintenance-related failures of machinery. However, it is essential to recognize
that machine failure can also result from a number of factors, where individual
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components contribute to operational halts.
Advancements in sensor technology and the Internet of Things (IoT) [14] have

enabled the gathering of extensive data, thus facilitating the detection of fluc-
tuations in sensor readings. This wealth of data opens avenues for proactively
identifying impending failures before they transpire. This forms the central im-
petus driving the focus of this thesis.

1.2 Scope

The scope of this thesis revolves around developing an advanced predictive mech-
anism for industrial turbines, leveraging the power of Machine Learning (ML) and
Deep Learning (DL) techniques. The primary objective is to transform raw data
obtained from turbine sensors and other relevant sources into a useful format, en-
abling the implementation of accurate and reliable predictive models for turbine
failure and then use it for prediction model.
The first phase of the research is focused on data preprocessing and cleaning. This
involves handling missing values, outlier detection, and data normalization to en-
sure the quality and consistency of the dataset. Data transformation techniques
are applied to prepare the raw data for ML and DL algorithms.
Next, a comprehensive review of ML and DL methods is conducted to identify the
most suitable models for turbine failure prediction. Convolutional Neural Net-
works (CNN), Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), Lo-
gistic Regression, and K-Nearest Neighbor (KNN) are evaluated to determine their
efficacy in capturing patterns and anomalies in the turbine data for prediction.
The research involves model training and optimization, where various hyperpara-
meters are tuned to achieve the best performance. Validation and testing of the
developed models are carried out using real-world turbine data. The performance
of each model is measured based on metrics like accuracy, precision, recall and
F1 score.
In summary, this thesis aims to establish an efficient and accurate predictive main-
tenance system for industrial turbines by transforming raw data into a useful
format and implementing state-of-the-art ML and DL techniques. The results of
this research will contribute to improving turbine performance, reducing down-
time, and enhancing operational efficiency in industrial applications.

1.3 Objective and Goals

According to Yu [15] data preparation and cleaning is a crucial step in neural
network modeling and data analysis. It is a stepping stone in generating useful
results which is intended for this thesis. Using cleaned data can help us imple-
ment different techniques for prediction. Our objective for this thesis is to answer
the following research question.
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Figure 1.1: Set Diagram of Thesis Scope

Research Question 1: How a raw sensor data be used for data analysis, pre-
diction, and further research?
In any data-driven research or project, the initial data is typically in its raw form,
which can vary in formats depending on its source. The critical step in the data
preprocessing phase is to transform this raw data into a desired format that is
suitable for further analysis and research. This transformation process is essential
to ensure that the data becomes accessible, interpretable, and usable for various
data analysis techniques and other research objectives. The primary focus of this
thesis is to address the readability and exploration of the provided raw data. This
entails examining the data closely to understand its structure, characteristics, and
potential patterns. By gaining insights into the data, researchers can identify po-
tential issues, such as missing values or outliers, and devise appropriate strategies
for data cleaning.

Research Question 2: What methods and procedures can be implemented to
transform raw data into a useful format according to the need?
Data cleaning involves handling inconsistencies, errors, and any discrepancies
present in the raw data. By applying data cleaning techniques, the data is pre-
pared for subsequent analyses, ensuring its reliability and accuracy. Furthermore,
transformation techniques are applied to reformat the data into a standardized
and cohesive representation that suits the specific research requirements. The ul-
timate goal is to create a high-quality dataset that allows researchers to delve
deeper into the data and extract meaningful information. By making the data more
manageable and interpretable, it becomes easier to apply various data analysis
methodologies, including statistical analysis, machine learning, and deep learn-
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ing algorithms. Considering the importance of data preparation in neural network
data analysis, there are multiple researches and literature about this topic but it’s
all scattered and there is no systematic approach[15].
This thesis emphasizes the crucial process of data cleaning and transformation,
aiming to convert raw data into a well-structured and usable format. By address-
ing data quality issues and reformatting the data appropriately, researchers can
harness the full potential of the dataset for conducting comprehensive analyses
and advancing various research topics effectively.

Research Question 3: How Machine Learning and Deep Learning can be used
to predict advanced failure?
Presently, there is a substantial volume of research dedicated to the analysis of
machine equipment failure, reliability assessments, and predictive maintenance.
Employing a machine learning/deep learning approach offers a viable method for
predicting failures and identifying critical parameters that contribute to failure
prediction [16]. This thesis aims to use different techniques in order to predict
turbine failures with acceptable accuracy.

Research Question 4: How ML and DL can improve the current maintenance
strategies and improve efficiencies?
The use of data by production tools has exponentially increased in recent years.
Processed data when analyzed can bring out useful information. ML and DL have
emerged as promising tools in predictive maintenance [17]. It is now possible to
harvest data for making fault detection and diagnosis and in our case prediction
to minimize downtime and increase the utilization rate [18]. The data recorded
by machines are normally based on date time templates and can therefore prove
vital for predictive modeling [19]. Condition monitoring along with predictive
maintenance can help us avoid several economic losses resulting from running
tripping [20].

1.4 Thesis Structure

The structure for the thesis is compiled as follows:

Chapter 1 - Introduction: In this chapter I described the overview of the thesis
and explained the motivation behind working on this topic

Chapter 2 - Literature Review: In this chapter I explained the literature stud-
ies related to my thesis. It also includes all the related work done so far. This liter-
ature helped me build the foundation of my research and complete the project. It
explores the data analysis and different techniques used for the prediction model.

Chapter 3 - Theory: This chapter explains the theory behind the terminolo-
gies, technologies, methodology, and algorithms used in the thesis. It also men-
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tions the definitions to have a better understanding of its uses and applicability.

Chapter 4 - Methodology: I have explained the methodology used in the
thesis. It includes data collection, data cleaning, and implementation details.

Chapter 5 - Discussion: This chapter discusses the results, data foundation,
and its implications

Chapter 6 - Conclusion: I have concluded this thesis by stating the answers
to the research questions, and stating the contribution of this thesis.

1.5 Confidentiality Agreement

The research work done in this thesis is carried out in collaboration with NTNU
and DNV. In order to successfully execute the project, a non-disclosure agreement
was signed to protect the company’s valuable data and domain knowledge. Be-
cause of this reason, sensitive information is withheld from this thesis. Chapters
3 and 4 will describe the collection of the data and the methods implemented but
this agreement binds us not to disclose the data itself. Moreover, the thesis does
not mention the code for the same purpose.



Chapter 2

Literature Review

This chapter discusses the research being done about the prediction models and
the related work done so far. This chapter presents the work in Prognostics and
Health Management, preventive and predictive maintenance, how ML and DL
algorithms can help to make informed decisions about maintenance, and finally
the uses of ML and DL in optimizing prediction models. At the end of this chapter,
there will be a discussion about how this thesis differentiates from the traditional
PHM model but can be used as a base for our thesis.

The modern world’s industries are rapidly advancing. We’re currently experi-
encing what’s known as the 4th industrial revolution, where there are big changes
happening in technology, industries, and how things are done. This revolution in-
volves using automation and digital technology to connect the digital world with
how society works and how people behave. A big part of this is bringing together
technologies like artificial intelligence, machine learning, and advanced robotics,
which makes it hard to tell where the physical world ends and the digital world
starts [21]. This idea also includes integrating these technologies into physical
things like machines and systems. These technologies collect a lot of information
using different sensors, which is part of what’s called the Internet of Things (IoT).
All this information can then be used to help make decisions. Because there’s so
much information being exchanged, the decisions that are made can be more re-
liable and made faster [22].

A lot of researchers are interested in carrying out research work in the main-
tenance domain. PHM (Prognostics and Health Management), CBM (Condition-
Based Maintenance) [23], and PdM (Predictive Maintenance) are interrelated
terms used particularly for this purpose. Predictive maintenance is fundamentally
centered on anticipating potential system breakdowns by identifying early indic-
ators of failure, thus enabling a proactive approach to maintenance. Beyond the
goal of preempting failures, its objective extends to addressing faults, even when
an immediate risk of failure is not imminent [24]. That’s where the ML and DL
help us. It reads the trend and indicators and tells us where we deviated. It makes
up a promising tool for maintenance [25]. There is a visible trend of growing
interest in research revolving around several topics including but not limited to

7
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compressors [26], electrical systems [27], bearings and gears [28], and batteries
[29].

There are several competitions with participants around the globe aiming at
addressing fault diagnosis/classification. PHM conference data challenge held in
2022 addressed the same issue, where participants were required to diagnose
faults by providing sensor data [30]. IEEE Conference on PHM is another forum
sponsored by IEEE. It provides a platform where a wide range of ideas from in-
terdisciplinary fields are presented and discussed. The latest conference is held in
the year 2023 [31].

The primary focus of PHM systems is to effectively identify when industrial
systems are not working normally or to foresee the potential occurrence of faults.
By implementing efficient PHM methods, the likelihood of severe failure events is
also significantly reduced [32]. Deep Learning has garnered considerable atten-
tion in this context. Deep Learning possesses remarkable automated learning cap-
abilities and the ability to tackle sensitive issues with high accuracy. It shows the
widespread adaptability and utility, applicable across various data inputs within
PHM [33]. The challenge we are addressing is to align with a scenario where we
aim to predict when turbines might suffer failure before they actually occur. Nu-
merous deep learning models hold promise in this regard. This section provides
an introduction to diverse approaches undertaken in the realm of prognostics and
prediction techniques.

Time series forecasting has proven highly effective in predicting faults, and dis-
eases, and evaluating potential risks within the domain of bodily health. This fore-
casting technique involves projecting future values and conditions through math-
ematical and statistical models, informed by specific input values [34]. Among
the widely recognized algorithms for classification, the Random Forest has re-
cently gained popularity and showed good results. This algorithm performs bet-
ter in both classification and regression problems. It employs a technique known
as bagging, creating subsets from training samples, selected randomly with the
possibility of repetitions. While it demonstrates resilience against overfitting and
performs well with extensive datasets, it is important to note that it might have
slightly slower training times [35]. Bikku et al. harnessed the potential of Multi-
Layer Perceptron (MLP) as a supervised learning method to unveil hidden pat-
terns. It was based on historical medical data. Their employment of MLP in clas-
sification facilitated precise analysis and risk assessment of medical data [36]. A
notable illustration of MLP’s application is Sharifi et al.’s utilization of an artificial
intelligence network based on Multi-Layer Perceptron for early-stage diagnosis of
chronic kidney disease in 2020. This helped in successfully achieving a remarkable
98% diagnostic accuracy [37]. Artificial Neural Network (ANN) is characterized
by its input, hidden, and output layers. It is comprised of different processing ele-
ments known as neurons or nodes and constitutes a sophisticated data processing
system. Through training, it constructs complex regression networks linking in-
puts to outputs. When skillfully constructed, ANN can yield precise and efficient
pattern recognition. The outcomes derived from this framework hold significance
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for prognostics and diagnostics. Demonstrating the potential of ANN, Biswanath
et al. applied it to fault diagnosis of bearings, utilizing time domain features. Their
work underscores the efficacy of Neural Networks in diagnosing faults within the
time domain [38].

Recurrent Neural Network (RNN), a subclass of ANN, is tailored to address
such challenges and is notably effective in prognostic tasks [39]. RNN functions
by retaining output from processing nodes and feeding it back to the model, en-
abling self-learning and accurate predictions [40]. In the realm of RNNs, Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) hold prominence,
frequently utilized for prognostic tasks and yielding improved outcomes [39]. C-
MAPSS stands as a widely adopted dataset of turbofan engines, developed by
NASA. This dataset is universally acknowledged as a benchmark resource for pro-
gnostics [41]. Huihui et al. employed Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) models for health assessment and prognostics within the
framework of Prognostics and Health Management (PHM). Their work yielded
satisfactory outcomes, further validated through application to the C-MAPSS data-
set [42].

Ikram et al. [43] undertook a novel path involving a Deep Learning-based ap-
proach. Their innovation entailed the fusion of a Convolutional Neural Network
(CNN) with Bi-Directional Long Short Term Memory (BDLSTM), applied to a mul-
tivariate time series for Remaining Useful Life (RUL) predictions. By integrating
CNN and BDLSTM, spatial data features were effectively extracted, boosting the
BDLSTM’s predictive capabilities. BDLSTM operated in both forward and back-
ward directions through distinct Long Short Term Memory (LSTM) pathways, the
latter path helped minimize the data noise and smoothen forecasts. The potency
and precision of this hybrid model were subsequently assessed through the utiliza-
tion of the C-MAPSS dataset, showcasing marked enhancements over alternative
regression models. The model’s efficacy was gauged employing the Root Mean
Square Error (RMSE) metric [43].

Auto-encoders represent a type of neural network that operates in a feed-
forward manner, where the inputs are equated to the outputs. Their function
involves compressing input data from a higher-dimensional state into a lower-
dimensional code. This lower-dimensional representation is then utilized to recon-
struct the original data with minimal error. In essence, auto-encoders autonom-
ously learn to map input data through an iterative process involving encoding
and decoding phases. This methodology was effectively employed by Chong Zhou
et al. to detect noise and outliers in data, subsequently eliminating undesirable
features that contributed to anomaly detection [44]. Concurrently, Convolutional
Neural Networks (CNNs) have also been harnessed across a spectrum of chal-
lenges related to predicting remaining useful life. In a notable instance, Babu et
al. applied a Deep Convolutional Neural Network-based regression model [45] to
forecast the remaining lifespan of turbofan engines. By leveraging convolutional
layers and pooling across the temporal dimension of multi-channel sensor data,
this model adeptly extracted features from the raw signal sensor information. The
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results underscored the efficiency and precision of this approach in facilitating ac-
curate predictions.



Chapter 3

Theory

This chapter comprises the theory behind the methodology employed in this thesis.
It consists of the main definitions and concepts used. It starts with defining tur-
bines, the type with which we are working, failure occurrences, and their types,
and then it discusses the techniques and algorithms used to work on this problem.

3.1 Gas Turbines

A turbine is a machine designed to transform the energy contained within a flow-
ing fluid into mechanical energy. This conversion process typically involves dir-
ecting the fluid through a series of fixed passages or vanes, dispersed using pas-
sages containing blade-like structures affixed to a central rotor. By configuring the
fluid flow to exert a tangential force, known as torque, upon the rotor blades, the
rotor undergoes rotation, enabling the extraction of mechanical work [46]. Tur-
bines mainly exhibit two primary classifications based on their operational mech-
anism: impulse and reaction. Additionally, turbines are broadly categorized into
four main types [47], characterized by the nature of the propelling fluid: steam
[48], gas [49], water [50], or wind [51]. These distinct types of turbines serve
various purposes, all fulfilling a pivotal role in power generation.

The confidentiality agreement binds us not to disclose the details of the tur-
bine. So instead of diving into the details of its model and characteristics, the
overview is mentioned. We are dealing with the gas turbine in this thesis. The
source of the data is provided using sensor readings. Generally, all the turbines
share the same principle. The turbine comprises a complex arrangement of altern-
ating stationary and rotating blades, each with an aerofoil cross-section. As high-
temperature combustion gas expands within the turbine, it imparts rotational mo-
tion to the blades in motion. These rotating blades serve a dual purpose: propelling
the compressor to draw in additional pressurized air for the combustion process
and simultaneously driving a generator, producing electricity [52].

11
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3.2 Sudden Failure and its Implications

Sudden failure of the turbine is termed as tripping. When a turbine is working
in normal conditions and suddenly, for an unknown reason, it gets stopped, then
it is called a running trip, which is addressed in this thesis. It has far-reaching
implications for the overall production and efficiency of the whole unit. It can
have a severe impact on the safety and reliability of the engine [53]. For example,
a single large gas turbine in a power generation unit can approximately generate
300 MW of electricity. If we equate this with the wholesale price of 200 pounds
per MWh, it would generate revenue of 1.4m pounds [54]. Furthermore, a large
sum of money is spent on unplanned repairs and maintenance due to tripping
[55]. So in the event of tripping, the operator not only faces the cost of repair but
also the loss of a huge sum of revenue during the duration of the outage.

Sudden failures or tripping events can arise from a range of factors and are not
very uncommon occurrences. To mitigate potential losses, researchers are dedicat-
ing significant resources toward preemptively detecting such failures. Substantial
research efforts have already been directed toward this proactive identification. A
variety of neural networks, along with machine learning and deep learning meth-
odologies, are being employed to anticipate and pinpoint faults and failures ahead
of time. These algorithms are designed to identify the anomaly and compare it
with the normal conditions to predict the failure. The common causes for turbine
failures are but are not limited to, the over-speeding of turbines, the turbine be-
coming unbalanced or disturbed due to high vibrations, failure in the lubrication
system, or low vacuum [56].

3.3 Maintenance

While our thesis predominantly centers on the preemptive identification and pre-
diction of failures, it’s worth noting that the broader realm of maintenance and
failure avoidance correlates with our research topic in one way or another. To un-
derstand this it is imperative to grasp the overarching concept of maintenance,
encompassing its diverse categories and their application rationale. This section
aims to provide information about the maintenance type which are normally di-
vided into three main categories. The three main types are preventive mainten-
ance, reactive or corrective maintenance, and predictive maintenance [57]. The
figure below gives us clarity on the types of maintenance.
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Figure 3.1: Types of Maintenance

3.3.1 Preventive Maintenance

Preventive maintenance embodies a proactive approach to maintaining the equip-
ment and making sure machines run smoothly. It includes a complete structure
regimen of scheduled inspections, servicing, and repairs designed to avert failures
and prolong the operational life of assets. This strategic approach seeks to reduce
downtime, lower repair expenses, and elevate the overall dependability and ef-
fectiveness of systems. However, if the frequency of preventive maintenance inter-
vention is too high, it can also come with huge costs and waste resources without
any need. There should be an informed decision-making process that results in
balancing between the cost and preventive maintenance [58].

Sandrina et al. presented a case study [58] to find the optimized model for
the preventive maintenance decision-making process. The flow chart of her case
study is shown in the figure 3.2.

Figure 3.2: Process sequence for preventive maintenance decision through main-
tenance optimization model [58]

The main purpose of preventive maintenance is to lower the probability of
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tripping equipment. It helps in extending the lifetime as well. There are normally
two types of preventive maintenance-based schedules, Calendar or time-based
preventive maintenance which is completed at regular intervals with the help
of preventive maintenance software and another type is usage-based preventive
maintenance where the machine’s statistics are used to determine the schedule
of maintenance [59]. Another concept that is widely used in the field of reliabil-
ity engineering, particularly in preventive maintenance is Mean Time To Failure
(MTTF). It is an estimate of the duration a system is projected to operate prior to
encountering failure. It refers to the span during which a system is likely to func-
tion without failing. MTTF holds significance as a fundamental gauge of system
reliability, facilitating managerial assessments of the operational duration, that
non-repairable assets can sustain before encountering interruptions [60].

3.3.2 Corrective Maintenance

Corrective maintenance (CM) involves fixing or replacing equipment once it breaks
down. When equipment fails, CM tasks aim to find the problem and fix it so that
the equipment can be used again and production can continue. High-priority tasks
are dealt with first, especially if they impact safety or production. CM tends to be
cheaper initially as it requires fewer resources and tools. However, it’s not very ef-
ficient and can become more expensive over time. Failures often cause major prob-
lems that need extensive repairs, making the time it takes to fix them longer [61].
Moreover, CM doesn’t address the underlying causes of equipment failures, lead-
ing to more frequent breakdowns. This means the time between failures (MTBF)
will be shorter compared to proactive maintenance, where MTBF is the average
time between system breakdowns [62]. In simpler terms, you’ll see more frequent
equipment issues with CM.

3.3.3 Predictive Maintenance

With all the technological advancements and the emergence of Industry 4.0, there
has been an exponential increase in the usage of sensors that are constantly facilit-
ating the manufacturing operations and services industry. Predictive maintenance
has gained a lot from these technological improvements by using algorithms that
can detect and predict future equipment failures in real-time. In recent years,
there’s also been more focus on algorithms that help make decisions based on
these predictions of failures [63].

Predictive maintenance is an advanced approach that shows promise in fore-
seeing how long equipment can still function by analyzing data from sensors at-
tached to the equipment. This method has become extremely important for in-
dustries because modern manufacturing involves many complex activities, and
this method helps predict when equipment might fail. When aiming to create
smart manufacturing systems, the ability to detect, understand, and predict equip-
ment failures is based on information collected from equipment sensors. Predict-
ive maintenance essentially involves digging into data to build models that use
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machine learning to understand and predict the condition of equipment. It of-
fers techniques like Condition-Based Maintenance (CBM), Prognostics and Health
Management (PHM), and Remaining Useful Life (RUL) [64]. The market size for
predictive maintenance has been growing rapidly. Figure 3.3 shows the estimated
growth over the period of a few years.

Figure 3.3: Size of predictive maintenance market and its forecast up to the year
2030 in billion US dollars [65]

3.4 Prognostics and Health Management

When we delve into the context of Industry 4.0, a significant phase that many
successful companies are participating in, Prognostics and Health Management
(PHM) assumes a crucial role in maintaining operations. These systems serve to
identify if any part of an industrial system is behaving differently than usual and
to predict with efficiency when a fault might arise. Incorporating these systems
within industries doesn’t just prevent major failures and research hiccups, but also
curtails the substantial costs linked to such events. Additionally, recognizing that
industries allocate substantial resources to maintain their assets, there’s substan-
tial potential for savings through more planned maintenance [66]. A typical PHM
pipeline looks like the one below.
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Figure 3.4: Overview of a typical PHM Pipeline

Recent research indicates that an average factory or facility spends about 5-20
percent of its entire production capacity on maintenance activities. What’s more,
according to the International Society of Automation (ISA) [67], the collective cost
of unplanned failures across various industry sectors is estimated at a staggering
647 billion USD annually. Strikingly, even with these costs, a significant portion of
industries, approximately 93 percent in the European region, remain dissatisfied
with their existing maintenance strategies. This underscores the critical value of
PHM systems and the urgent need for their adoption and implementation [66].

The initial phase of the Prognostics and Health Management (PHM) process
involves choosing the right sensors and devices. These are placed in the most suit-
able spots, and the frequency at which they gather data is optimized. A communic-
ation system connecting these sensors to databases is established. This facilitates
both real-time monitoring of machine health and the later processing of data. One
commonly used solution in industries is the Open Platform Communication Uni-
fied Architecture (OPC UA), which is a well-known communication protocol [68].
It ensures the secure sharing of information between sensors, industrial assets,
and the cloud. In general, prognostics can be categorized into four different ap-
proaches:

Reliability-based Approach: This approach has different names and can also
be called an Experience-based Approach, Life usage Model, or Statistical Reliability-
based Approach. This method is primarily applied to components that aren’t crit-
ical, aren’t monitored closely, and lack a physical model. These components are
produced in large quantities. In this approach, evaluating the condition of each
individual component in real-time, while accounting for operational and envir-
onmental factors, isn’t taken into account. Instead, it relies solely on extensive
historical data about a group of similar components and the average frequency at
which they fail [69].
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Physics-based Prognostics: In this method, a kind of mathematical picture,
called a physical model, is created for the system or part. This model helps us
understand how the system or part might fail or get worse over time. To make
this model, we need to really understand how the system or part works. We also
need to know how it’s used and the stresses it goes through during its lifetime [69].

Data-driven Prognostics: The data-driven approach primarily uses tools from
artificial intelligence (AI) that are already available. These tools can be used with
just small changes. This method is favored by developers of systems that pre-
dict future events (prognostics) because it is cost-effective and doesn’t need a lot
of understanding about how things work physically. Among the Prognostics and
Health Management (PHM) community, the data-driven approach is more com-
monly used than the physics-based one. This is because data-driven methods can
be quickly put into action and used for different applications [69]. In the data-
driven approach, the first step is to figure out what went wrong when a system
fails. This helps not only in making predictions but also in improving how the sys-
tem is designed. The second step uses processed data and existing models of the
system or analysis of how it could fail. It uses a set of algorithms to update models
that show how the system’s condition is getting worse, and it predicts when the
system will fail. The third step uses these predictions along with the costs and
benefits of different maintenance actions. This helps decide when and how to do
preventive maintenance in order to keep operating costs low and risks minimal.
All three of these tasks need to be done in real-time and change as the situation
changes [70].

Hybrid Approach: A hybrid approach is when we put together two different
methods: one based on data and the other based on how things work physically.
This combination helps us get the most accurate results. If one method doesn’t
have enough information, the other method can fill in the gaps. This mixing can
happen in two ways. We can do it before estimating how much longer something
will work (that’s called pre-estimate), or after we’ve made that estimate using
both methods (that’s called post-estimate) [69].

3.5 Machine Learning and Deep Learning

These Prognostics and Health Management (PHM) systems heavily depend on Ma-
chine Learning (ML) and Deep Learning (DL) methods. They gather a vast amount
of data through inexpensive and easily accessible sensors, which then power the
models. The general idea is that larger datasets lead to better model perform-
ance. However, in practice, it’s not as straightforward. With larger datasets, the
time needed to prepare the data for prediction also increases. But to understand
how PHM works, we first need to understand the basic concepts of ML.

Machine learning is about making computers learn and improve on their own
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by using experiences. It’s a fast-growing field that combines computer science and
statistics, and it’s central to artificial intelligence and data science. Machine learn-
ing is an ever-growing field because of new algorithms, and innovative ideas, plus
the huge amount of data available online and the ability to do computations at a
low cost. Many areas, like science, technology, and business, have started using
data-focused machine-learning techniques. This leads to decisions being based
more on solid evidence in various aspects of life, such as healthcare, manufactur-
ing, education, finance, law enforcement, and marketing [71]. Machine Learning
uses various methods (algorithms) to solve problems related to data. Data scient-
ists emphasize that there’s no single algorithm that works perfectly for all situ-
ations. The choice of algorithm depends on the specific problem you’re dealing
with, how many factors are involved, and the type of model that fits the situation
the best [72]. ML is normally categorized based on four categories depending on
the nature of learning.

Supervised Learning: Supervised learning stands out because it relies on hav-
ing labeled training data. This label is like a guide for the learning system, telling
it what category the data belongs to. Usually, these labels are like tags that show
what class something falls into, especially in cases where we’re trying to classify
things. With the help of these labeled examples, supervised learning algorithms
create models. These models can then be used to categorize new data that doesn’t
have labels. The foundation of our understanding of supervised learning is based
on the idea of minimizing risks [73].

Self-supervised Learning: Self-supervised learning is a type of learning where
we use the data itself to create labels for training, without needing humans to
provide these labels. It’s like supervised learning, but there’s no direct human in-
volvement. Instead, we generate labels from the input data using certain rules or
patterns. For instance, in a video, we predict the next frame based on the frames
before it, or in text, we guess the next word from the words that came before.
This approach helps machines learn patterns and structures in data even when
we don’t have predefined labels from humans.

Unsupervised Learning: Unsupervised learning involves the machine getting
inputs but not having any labeled outputs or rewards from its surroundings. This
might sound strange because it seems like the machine won’t know what to learn
without feedback. However, we can create a formal system for unsupervised learn-
ing by assuming that the machine’s aim is to create useful ways of representing the
input. These representations can be used to make decisions, predict future inputs,
share information with other machines, and more. Think of unsupervised learning
as the machine discovering patterns in the data beyond just random noise. Two
basic examples of unsupervised learning are clustering (grouping similar things)
and dimensionality reduction (simplifying data) [74].
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Reinforcement Learning: Reinforcement learning is about getting better at
something by trying different things and learning from mistakes. It introduces a
reward-based system. Even though we’re making advancements in artificial learn-
ing systems, a lot of them still rely on being taught by experts who show them what
to do. But this isn’t always possible or practical, especially when getting the right
examples is hard or expensive. Reinforcement learning lets machines learn by do-
ing and experiencing, rather than just being told what to do by a teacher [75].

Supervised learning is being applied to our data. Typically supervised learning
is further divided into two main categories that differ based on their nature.

Regression: Regression is a method in statistics that helps us understand how
a certain thing we’re interested in (called the dependent variable) is connected
to one or more other things (known as independent or explanatory variables). A
regression model can reveal whether changes in the thing we’re interested in are
linked to changes in these other factors. It helps us figure out how these variables
interact and influence each other [76].

Classification: A classification algorithm is a type of supervised learning method.
It learns from a set of labeled data to assign new, unlabeled data into different cat-
egories or classes. In classification, we teach the algorithm using existing data, and
then it can use that knowledge to sort new data into predefined groups or classes.
This is often used when we want to categorize things based on their characterist-
ics or attributes[77].

The basic concepts of algorithms used in this thesis are discussed below in
detail and their implementation is discussed in the next chapter.

3.5.1 Feed Forward Neural Network

It is a supervised learning algorithm that is mainly used for regression and clas-
sification problems. The multilayer perceptron is a type of neural network that
finds use in various tasks like recognizing patterns, classifying items, and solving
regression problems. However, how you design the architecture of these networks
really affects how quickly they learn. Among neural network models, the Mul-
tilayer Perceptron is the most commonly used, particularly when trained with the
back-propagation algorithm. This algorithm is key to how the network learns and
improves its accuracy over time [78]. Usually, the information flows in a neural
network from the input side to the output side. There’s no looping back; what a
neuron produces doesn’t impact itself. This setup is known as feedforward archi-
tecture. Some layers, which don’t interact directly with the input or output, are
called hidden layers. There’s a debate in the reference material about whether the
initial layer (the input layer) should be considered a separate layer in the network.
This is because its sole job is to pass the input signals to the higher layers, without
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actually processing the inputs [79].
The MLP layers are graphically represented in simplified form in the following

figure.

Figure 3.5: Layers in MLP

An artificial neuron’s fundamental component is called a perceptron. It’s like
a building block for more complex operations in artificial neural networks. The
perceptron is mainly responsible for classifying things into two categories: one
marked as "positive class" (which is often represented as 1) and the other as "neg-
ative class" (which is often represented as -1).

The perceptron uses a simple mathematical operation called a decision func-
tion to make a decision. This function considers the input values (represented
as x) and their corresponding weight values (represented as w). These weights
determine the importance of each input value in the decision-making process.

The decision function itself is a linear combination of these input values and
their associated weights. It’s like multiplying each input value by its corresponding
weight and then adding up these products. This total is then compared to a certain
threshold value to determine whether the input data should be classified as the
positive class (1) or the negative class (-1).

Figure 3.6: Input values x, and weights w
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Weights cause the rotation of the decision line while bias causes the transla-
tion.

net = w1 x1 + ...+wm xm + b = wt x + b (3.1)

f (net) = 1 i f net >= 0 (3.2)

f (net) = −1 otherwise (3.3)

The process begins by initializing the weights either to 0 or to small random
values. Then, for each training sample (denoted as x(i)), several steps are taken.
First, the output value is calculated based on the current weights. After that, the
weights are adjusted to improve the model’s performance. These two steps (cal-
culating output and updating weights) are repeated iteratively until the model’s
performance converges to a satisfactory level. This sequence of actions is followed
to refine the model’s accuracy and enhance its ability to make predictions effect-
ively.

△w j = η(t
i − y i)x i

j (3.4)

w j = w j +△w j (3.5)

△b = η(t i − y i) (3.6)

b = b+△b (3.7)

In order to get the output, the sum of weighted inputs is passed through an
activation function. The basic architecture is shown in the figure below.

Figure 3.7: Basic architecture of artificial neuron

An activation function, also referred to as a transfer function, is a critical com-
ponent in a neural network that helps determine the output of a node or neuron
within the network. It plays a role in deciding whether the neuron should "fire"
(produce an output) or not based on the input it receives. Essentially, it helps the
neural network make decisions, like answering "yes" or "no" to certain conditions
[80]. The activation function takes the result of the calculations performed by the
neuron and transforms it into a format that’s easier to work with. Depending on
the specific function used, this transformation could map the results to a range
between 0 and 1, or between -1 and 1, or other possibilities.

Activation functions can be divided into two main types.
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1. Linear Activation Function
As the name suggests, this function is basically a linear function and the output is
not limited to any range.

Figure 3.8: Linear Activation Function

2. Non-linear Activation Function
Nonlinear activation functions are widely employed in various machine learning
models, particularly in neural networks. These functions play a crucial role in en-
abling models to capture complex relationships in data and make accurate predic-
tions. Unlike linear activation functions that produce a simple linear relationship
between inputs and outputs, nonlinear activation functions introduce more intric-
ate and flexible patterns, allowing the model to understand and adapt to diverse
types of data. The most popular linear functions are shown below.

Figure 3.9: Nonlinear Activation Function

A sigmoid function is a mathematical function known for its distinctive "S"-
shaped curve. This function converts values within a certain range into numbers
ranging from 0 to 1. This unique property of the sigmoid function maps real num-
bers onto the interval between 0 and 1, and holds practical significance in data
science and other domains [81]. Its equation is written below.

f (x) =
1

1+ e−x
(3.8)
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The rectified linear activation function, often referred to as ReLU, is a function
characterized by being linear for positive inputs, outputting the input itself, and
producing 0 for negative inputs. It has gained popularity as a default activation
function in various neural network types due to its advantageous impact on train-
ing ease and performance enhancement. By addressing the vanishing gradient
problem, ReLU accelerates learning and contributes to improved model perform-
ance [82]. The equation is given below.

f (x) = max(0, x) (3.9)

The hyperbolic tangent activation function, often called Tanh, is akin to the
sigmoid function, sharing the same S-shaped curve. Accepting any real input, Tanh
yields outputs between -1 and 1. Inputs with larger positive values result in out-
puts closer to 1, while smaller negative inputs produce outputs closer to -1. [83].

f (x) =
ex − e−x

ex + e−x
(3.10)

In the backward pass of neural network training, a technique called back-
propagation is commonly employed. Backpropagation involves propagating the
error from the output layer back through the network towards the input layer.
This process allows the calculation of error gradients in each layer, which in turn
helps adjust the weights and biases accordingly. Various implementations of gradi-
ent descent can be utilized for optimizing training. Some common approaches are:

Stochastic Gradient Descent (SGD): This approach calculates error and up-
dates parameters for each training example. A variant called mini-batch SGD is
often used, where a batch of samples is taken before parameter updates.

Adagrad: It’s a variant of SGD with individual learning rates for each para-
meter. This can adaptively adjust the learning rate based on the parameters, boost-
ing it for sparse features and reducing it for others.

RMSProp: Similar to Adagrad, RMSProp incorporates individual learning rates.
It uses a moving average of squared gradients to normalize the gradient, con-
trolling the step sizes in training.

Adam Optimizer: This is a more recent variation of RMSProp. It considers
both the average of gradient moments and second moments. It’s designed to im-
prove upon the shortcomings of other optimizers.

These optimization techniques play a crucial role in adjusting the neural net-
work’s parameters during training for better performance.

One challenge in machine learning is the risk of overfitting, which can be
likened to the process of memorization. When a model is overfitted, it becomes
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excessively complex in its attempt to capture patterns. To counter this issue, arti-
ficial neural networks (ANNs) often employ a regularization technique known as
dropout. The concept of dropout involves temporarily deactivating a portion of
neurons during each training phase, compelling the network to learn diverse data
representations. Dropout is parameterized with a value ranging between 0 and
1, where 0 means no neurons are deactivated and 1 signifies all are deactivated.
Detecting overfitting can be done by observing if the model’s performance on test
data begins to improve disproportionately. To prevent this, another common tech-
nique called early stopping is used. This method aims to halt the training process
before overfitting takes hold. These regularization strategies, dropout and early
stopping, are both employed in this research.

3.5.2 Support Vector Machine:

A support vector machine (SVM) is a computational technique used in machine
learning to classify or label different objects based on examples. To elaborate, an
SVM is capable of learning from a set of examples and assigning appropriate labels
to various objects. For example, it can be trained to identify instances of fraudulent
credit card transactions by studying a dataset containing numerous instances of
both fraudulent and non-fraudulent credit card activities. Similarly, an SVM can
also be employed to recognize handwritten digits, such as numbers, by analyz-
ing a large dataset containing scanned images of handwritten digits like zeroes,
ones, and other numerals. In both scenarios, the SVM learns patterns and features
from the provided data to make accurate predictions or classifications [84]. It is
very helpful in solving multi-domain applications in big environments. SVMs can
be mathematically complex and computationally expensive but can yield better
results [85].

Support Vector Machines (SVMs) are considered to be a powerful machine-
learning technique used in various applications. Their approach can be broken
down as follows [86]:

Class Separation: The main goal is to find the best possible hyperplane that
separates the two classes in a way that maximizes the margin between them. This
margin is the distance between the hyperplane and the closest data points from
each class, known as support vectors. The hyperplane’s position is optimized to
ensure maximum separation.

Overlapping Classes: In cases where the data points of the two classes aren’t
perfectly separable, the SVM introduces a "soft margin." Data points that fall on
the "wrong" side of the margin are assigned lower weights to reduce their influ-
ence on the classification decision.

Nonlinearity: When the data isn’t linearly separable in its current feature
space, SVMs use kernel techniques to project the data into a higher-dimensional
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space where it becomes linearly separable. This enables the SVM to find optimal
separating hyperplanes in the transformed space.

Problem Formulation: The entire task can be formulated as a quadratic op-
timization problem. This mathematical problem aims to find the optimal hyper-
plane that maximizes the margin while considering the soft margin and kernel
projections. Various optimization techniques can be applied to solve this problem.

Figure 3.10: Classification of linearly separable case, adopted from [86]

SVMs have different variants and applications:

v-Classification: This variant allows you to control the number of support vec-
tors using an additional parameter "v," which approximates the fraction of support
vectors.

One-Class Classification: This model focuses on identifying the support of a
distribution, making it useful for outlier or novelty detection.

Multi-Class Classification: SVMs are inherently designed for binary classi-
fication. To handle multi-class problems, techniques like one-against-one are em-
ployed, where separate binary classifiers are trained for each pair of classes, and
the final class is determined through voting.

ε-Regression: In regression tasks, where the goal is to predict continuous val-
ues, SVMs aim to maximize the margin between data points and the regression
line. The ε-regression variant ensures that data points fall within a certain dis-
tance from the regression line.

v-Regression: Similar to v-Classification, this modification of the regression
model involves adjusting the regression formulation to control the number of sup-
port vectors.
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3.5.3 Convolutional neural network

A convolutional neural network (CNN) stands out as a highly influential model
within the umbrella of deep learning. Due to its remarkable successes in various
domains such as computer vision and natural language processing [87], CNN has
garnered substantial interest from both academic and industrial circles over re-
cent years. Its name is derived from the mathematical operation of convolution
that os performed on matrices. CNNs consist of several layers: convolutional, non-
linearity, pooling, and fully-connected. Among these layers, only the convolutional
and fully-connected layers possess parameters. The pooling and non-linearity lay-
ers lack parameters. The CNN demonstrates impressive efficacy in addressing ma-
chine learning challenges [88]. The basic architecture of CNN is visualized in the
figure below.

Figure 3.11: Basic architecture of CNN

These layers and their associated terms are explained below: [89].

Convolutional Layers:

Convolutional layers are a fundamental part of a Convolutional Neural Network
(CNN). These layers are comprised of filters and feature maps. Filters act much
like neurons, having weighted inputs and producing an output. They scan over
fixed-size patches of input data, which is referred to as a receptive field or patch.
Depending on their position in the network, they can take input from either pixel
values (if at the input layer) or from feature maps produced by previous layers.
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Figure 3.12: A visual representation of Convolutional Layers

Feature Maps:

A feature map is the result of applying a filter to the previous layer’s output. The
filter is moved across the input data, one pixel at a time, producing activation that
forms the feature map. The stride determines the movement distance of the filter
for each activation. Overlapping fields (by a width of field - 1) help cover the input.
Zero padding can be added around the input data to avoid losing information at
the edges. Each activation in the feature map collects outputs from a receptive
field.

Zero Padding:

Zero padding is used to address the loss of pixels around the image’s perimeter
when applying convolutional layers. It involves adding pixels with zero values at
the boundary of the image. This compensates for the reduction in size that suc-
cessive convolutional layers can cause. It involves the altering of spatial dimen-
sionality of convolutional layers’ output. It can be calculated using the formula
[89]:

(V − R) + 2Z
S + 1

(3.11)

V represents the volume, R is the receptive field size, Z is the amount of zero
padding size, and S is the stride.

Pooling Layers:

Pooling layers follow convolutional layers and are employed to down-sample the
feature maps. They help consolidate the knowledge gained from previous layers
and avoid overfitting. Pooling layers use smaller receptive fields than convolu-
tional layers, often with non-overlapping strides. Their main purpose is to sim-
plify and generalize feature representations. They can use simple operations like
averaging or taking the maximum to create their own feature maps.
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Figure 3.13: Example of max pooling with a 2x2 filter and a stride of [2,2]

Flattening:

Flattening refers to the straightforward procedure of transforming a two-dimensional
data matrix, such as a 2D image or array, into a one-dimensional vector. This
transformation is performed to ensure that the data is in a suitable format for
processing in a fully connected layer of a neural network. For instance, if the in-
put to the fully connected layer is initially a 5x5 matrix, the flattening process
converts it into a single, straight vector containing 25 individual data points. This
vector arrangement facilitates the subsequent calculations and operations in the
neural network.

Figure 3.14: Building block of CNN with flatten layer

Fully Connected Layers:

The fully-connected layer in a neural network consists of neurons that are directly
linked to neurons in the two neighboring layers. Unlike other layers that might
have connections only within their own layer or to specific parts of adjacent lay-
ers, the fully connected layer establishes connections between all neurons of one
layer to all neurons of the next layer. This arrangement mirrors how neurons are
typically organized in traditional Artificial Neural Networks (ANNs).
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3.5.4 Logistic Regression

Logistic Regression is also referred to as a logit model. It is commonly applied in
predictive analytics and classification tasks. Logistic regression is utilized to es-
timate the probability of a specific event, such as voting or not voting, based on
a set of independent variables within a dataset. The dependent variable, being
a probability, is restricted to fall between 0 and 1. In logistic regression, a logit
transformation is employed on the odds, which represents the probability of suc-
cess divided by the probability of failure [90]. It started off with its applications
in Biological sciences in the early twentieth century. Now it’s commonly used in
various social sciences applications [91].

In terms of Machine Learning, Logistic regression stands as a supervised learn-
ing algorithm predominantly employed for classification purposes, aiming to fore-
cast the probability of an instance belonging to a specific class. Its nomenclature,
"logistic regression," originates from its application in classification algorithms.
This designation as "regression" arises from its utilization of the linear regres-
sion function’s output as input. However, logistic regression distinguishes itself by
employing a sigmoid function to estimate the probability for the specified class.
Notably, linear regression yields a continuous value, which can take any numeric
value, while logistic regression predicts the likelihood of an instance belonging to
a particular class or not [92].

Based on categorical responses, logistic regression can be divided into the fol-
lowing types[90]:

1) Binary Logistic Regression: Binary logistic regression is used when the
response or dependent variable has two possible outcomes, typically represented
as 0 or 1. For instance, this could be predicting whether an email is spam (1) or
not spam (0), or if a tumor is malignant (1) or not malignant (0). It’s the most
common and widely used approach within logistic regression. The model calcu-
lates the probability of an instance belonging to the positive class (1) and makes
predictions based on a chosen threshold.

2) Multinomial Logistic Regression: Multinomial logistic regression is em-
ployed when the response variable has three or more possible outcomes, and these
outcomes have no specific order or ranking. For example, predicting a person’s
preferred movie genre among three or more categories like action, comedy, or
drama. This type of regression helps determine the likelihood of an instance fall-
ing into each category, providing insights into the relative influences of various
factors on the outcomes.

3) Ordinal Logistic Regression: Ordinal logistic regression is utilized when
the response variable has three or more possible outcomes, and these outcomes
follow a meaningful order or hierarchy. Common examples include grading scales
(A to F) or rating scales (1 to 5). The model predicts the likelihood of an instance
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falling into or above a certain category in the ordered scale. It considers the order
of categories and estimates the cumulative probabilities of an instance falling into
or below each category.

There are a few assumptions [92] needed to take into account before applying
logistic regression:

a) Independent Observations: Logistic regression assumes that each obser-
vation in the dataset is independent of one another. In other words, the occurrence
or non-occurrence of an event (the binary outcome) for one observation does not
influence the occurrence for another. This implies no correlation or dependence
between input variables, ensuring the observations are distinct and unrelated.

b) Binary Dependent Variable: Logistic regression assumes that the depend-
ent variable, which is what we’re trying to predict, is binary or dichotomous. It
must have two possible outcomes, usually denoted as 0 and 1 (or ’no’ and ’yes’,
’negative’ and ’positive’, etc.). For scenarios with more than two categories, multi-
nomial logistic regression or softmax functions are used to handle multiple classes.

c) Linearity Relationship between Independent Variables and Log Odds:
Logistic regression presupposes a linear relationship between the independent
variables (features) and the logarithm of the odds of the dependent variable.
This means the effect of the predictors on the log odds of the event happening
is linear. However, this assumption can sometimes be relaxed or adjusted through
techniques like feature engineering or transformations to meet the linearity as-
sumption.

d) No Outliers: The assumption is that there should be no significant outliers
in the dataset. Outliers can unduly influence the estimation of the model para-
meters and the overall performance. Robust techniques may be used to handle
potential outliers if they exist.

e) Large Sample Size: Logistic regression assumes a reasonably large sample
size to produce stable and reliable estimates. A large sample size ensures that the
estimated coefficients are more likely to represent the true population parameters.
Although what constitutes a ’large’ sample size can vary, a guideline is typically
having at least ten events per predictor variable for reliable results.

These assumptions collectively help to ensure the validity and reliability of the
logistic regression model and the insights derived from it. However, it’s important
to note that in practical scenarios, these assumptions may be relaxed or managed
appropriately based on the context and the nature of the data.
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3.5.5 K-Nearest Neighbor

The k-Nearest Neighbor (k-NN) algorithm is a fundamental and widely used tech-
nique in machine learning. Despite its simplicity, it’s highly effective and finds ap-
plications across a broad range of domains. The increasing availability of diverse
data types such as free text, images, audio, and video has fueled renewed interest
in k-NN, making it particularly relevant[93].

Traditionally, data search involved exact matching algorithms. However, with
the advent of diverse data types, similarity search algorithms like k-NN have
gained prominence. In k-NN, we search a database to find the most similar ele-
ments to a given query element. Similarity is defined using a distance function,
and the search aims to find the nearest neighbors to the query based on this sim-
ilarity measure.

The basic version of the k-NN algorithm operates under the assumption that all
instances correspond to points in an n-dimensional space. The nearest neighbors
of an instance are typically defined using the standard Euclidean distance.

To understand the k-NN algorithm further, let’s delve into the process. Suppose
we have an instance described by a vector hx, f(x)i, where f is the true concept
function that maps each instance x to its correct class value f(x). In other words,
f(x) provides the correct class label for each instance x. In this instance, x can also
be represented by a feature vector.

(a1(x), a2(x), ...an(x)) (3.12)

When we apply the k-NN algorithm, we start by defining a value for k, which
represents the number of nearest neighbors to consider. For a given instance x, the
algorithm identifies the k instances from the dataset that are closest to x based
on the defined distance metric. The most common distance metric is Euclidean
distance, although other distance metrics can be used based on the problem.

d(x i , x j) =

√

√

√

n
∑

r=1

(ar(x i)− ar(x j))2 (3.13)

Once the k nearest neighbors are identified, the algorithm assigns the class
that appears most frequently among these neighbors as the predicted class for the
instance x. This majority vote mechanism helps in the classification of new data
points.
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Figure 3.15: Inclusion of more neighbors based on K numbers in KNN. Image ref.
[93]

The K-Nearest Neighbor algorithm is a simple yet powerful technique that
finds applications in various domains. It operates on the principle of similarity,
where instances are compared based on defined distance metrics, and the class of
an instance is predicted based on the majority class of its k nearest neighbors. It’s
a versatile algorithm that remains relevant in the evolving landscape of diverse
data types and applications.
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Method and Results

This thesis mainly aims to translate the raw sensor data to make it useful for ana-
lysis and utilize the same data to predict turbine failures one hour prior to the
actual event. So far, the background, related work, and the theory behind the
work are presented. This section is more focused on explaining the data, inter-
preting it and the methods employed to clean and analyze the data, and finally,
the algorithms implemented in order to generate results. The results of each al-
gorithm are mentioned in their respective sections, but there is a comprehensive
discussion in the next section. The flow of the process of this project is shown in
the figure below.

Figure 4.1: Flow diagram of the thesis

33
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4.1 Data

The project’s data was sourced from DNV, a firm specializing in testing, certific-
ations, and technical consultation for energy industry enterprises. To safeguard
valuable insights and proprietary knowledge, a confidentiality agreement is in
place preventing the complete disclosure of this data. Specifics like fault types,
units, and the details that could give out the information that points to their loc-
ations and customers, remain undisclosed due to their sensitive nature and the
company’s need to uphold confidentiality. However, the project’s outcomes, res-
ults, and conclusions remain unaffected by the decision not to reveal or share the
raw data.

4.1.1 Challenges with Data

If we divide the data provided in sensor log files based on their nature, there are
main two types. The first type of data contains the failure details of the turbines
including failure timeline, unit, failure reason, whether it was normal stoppage
or running failure, and stoppage reason. The second type of data has sensor val-
ues spanning over 5 years stored in thousands of xls files. This dataset comprises
sensor readings obtained from three distinct gas turbine units, spanning a compre-
hensive time frame of five years, specifically documented between the years 2013
and 2017. Notably, alongside this sensor data, there exists a thoroughly main-
tained log file that meticulously logs every occurrence of each of these gas tur-
bines experiencing a trip or shutdown event throughout this extensive five-year
duration. Considering the huge amount of data, the data was compressed and
downsized in order to make it easy to process and maintain. Due to this downs-
izing, a lot of instances were missing through the data files that struck a huge
challenge in reading, analyzing, and processing the data. Consequently made it
harder to perform machine learning or deep learning algorithms. It’s pertinent to
mention that all this invaluable data was stored and provided within Excel files,
and the subsequent data retrieval and manipulation were achieved through the
utilization of the Pandas data frame, a powerful tool for data handling in the Py-
thon programming environment.

To provide a comprehensive overview of the dataset that has been made avail-
able, it’s essential to note that it consisted of a substantial collection of 1708 Excel
files, each thoroughly documenting sensor log data. Each of these files, in turn,
represents the detailed log information associated with an individual sensor, ded-
icated to a specific unit, and pertaining to a distinct year within the expansive time
span of five years. The abundance of data within this dataset undoubtedly held
immense value, as it is well-established that the performance of data-driven al-
gorithms tends to improve proportionally with the volume of data they are trained
on. However, it is important to acknowledge that this dataset also presented sev-
eral noteworthy challenges. The sheer volume of data made the process of analysis
a considerably intricate task. Furthermore, as a result of downsizing, a consider-
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able portion of data was missing, leading to an irregular distribution over the tem-
poral domain. Additionally, the recording frequency of data varied significantly
from one sensor to another. This discrepancy in data acquisition intervals presen-
ted a formidable challenge when attempting to establish a meaningful comparison
across all these sensors on a uniform time axis.

4.1.2 Data Interpretation

The analysis of turbine failures entailed a comprehensive examination of data per-
taining to various factors, including the year, unit, months, and total operational
hours preceding each turbine trip, as illustrated in Figure 4.2. The details of each
graph are explained below:

Figure 4.2: Comprehensive Analysis of Turbine Failures

Running Trips Over the Years: Throughout the years, instances of running
trips were meticulously recorded for each turbine unit. Interestingly, Unit 2 ap-
peared to experience a notably higher frequency of running trips in comparison
to Unit 1 and Unit 3, as visually depicted in the second graph of Figure 4.2.

Root Causes of Running Trips: Running trips were the outcome of various
underlying reasons, presumably the triggers for these failures. To discern these
root causes, sensor readings were harnessed, facilitating their identification. The
count of failures attributed to each specific cause was meticulously documented
and presented in a graph.

Duration of Operation Before Tripping: The operational duration of the tur-
bines before encountering a trip displayed considerable variability. Some turbines
came to a halt within a mere 3 hours of operation, while others tripped after an
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extensive runtime of over 16 hours. These varying operational durations are visu-
ally represented in the third graph of Figure 4.2.

Month-wise Failure Instances: The occurrence of failures was also assessed
in relation to specific months, offering insights into any discernible patterns. The
resulting month-wise failure instances are effectively conveyed in the last graph.

If we look into the year-wise trends, there was a spike in the year 2016, and
unit 2 had the most instances in that year. This trend can be observed in figure
4.3

Figure 4.3: Yearly comparison of the count of turbine failures against their re-
spective units

Moreover, a detailed examination of compiled sensor data revealed compel-
ling trends in the changing sensor values over time leading up to a turbine trip.
In most instances, a notable and abrupt alteration in sensor values was observed
in close proximity to the time of tripping. Notably, an intriguing pattern emerged,
where in certain cases, these changes were detected more than sixty minutes prior
to the actual failure, potentially serving as an early warning mechanism for pre-
dicting impending failures. There were also a few instances where such changes
manifested just before a trip, supporting the notion that it’s likely a combination
of behavioral shifts in multiple sensors rather than a single parameter acting as
the sole precursor to a failure. These comparative trends can be observed in Figure
4.4.



Chapter 4: Method and Results 37

Figure 4.4: Response of sensors when the turbine is approaching toward failure
event

To enhance the data preparation process, we adopted a systematic approach.
We initiated this process by isolating instances of turbine failures attributed to
running trips. For each of these instances, we augmented the dataset by incor-
porating a timestamp encompassing the entire day, meticulously distributed at
one-minute intervals. This time data was then harmoniously integrated with the
dataset. The reason for distributing time series data with one-minute intervals is
to create a uniform benchmark to easily compare sensor values.

Consequently, for each minute within the time domain, we diligently aggreg-
ated the values from all sensors, thereby facilitating a more streamlined and com-
prehensive comparative analysis. This complete procedure resulted in the creation
of 14 distinct datasets, each uniquely characterized by the combination of a spe-
cific turbine unit and a corresponding year’s worth of sensor data.

The total input features of each unit with respect to the year are shown in the
table 4.1.

Table 4.1: Number of input features of each unit with respect to its year of failure

Unit 2013 2014 2015 2016 2017

1 No data 106 106 128 127
2 102 106 106 128 127
3 160 165 165 163 167
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Due to the inherently irregular distribution of sensor data across the time
series, the dataset, after being integrated with the turbine-tripping timestamps,
exhibited a notable presence of missing values. A significant portion of the sensors
either contained sparse data or lacked data altogether for extended time intervals.
This intricacy posed a substantial challenge as many machine learning models re-
quire complete datasets to perform effectively; missing values can lead to errors
during model execution. Given the generation of 14 distinct datasets, the extent
of missing values varied across them.

The table 4.2 provides a comparative overview of the missing values within
each dataset. The process of addressing these missing values is a pivotal aspect
of this project, demanding careful consideration. Merely filling in missing values
with arbitrary numbers is an oversimplified solution, particularly when confronted
with a dataset rich in missing cells. Consequently, alternative and more intricate
strategies for handling missing data must be explored to ensure the model’s ac-
curacy and reliability.

Table 4.2: Percentage of missing values in turbine sensor data each year

Unit 2013 2014 2015 2016 2017

1 N/A 79.5% 86.5% 81.0% 91.2%
2 95.1% 82.2% 96.8% 82.1% 85.2%
3 83.7% 86.9% 92.2% 78.5% 78.4%

Upon aggregating all the sensor data, we ended up with 14 distinct datasets,
each corresponding to a particular year and unit. These units are denoted by the
turbine names, essentially representing individual units. Following this, we amal-
gamated the data for each unit into a single dataset. This process entailed consol-
idating yearly data for each unit, encompassing all failure instances, and augment-
ing the dataset for more robust training. As a result, we obtained three separate
datasets. Nevertheless, the issue of missing values persisted, and the extent of this
problem can be gauged by consulting the table 4.3.

Table 4.3: Percentages of missing values and their corresponding number of
sensors

Missing values Unit 1 Unit 2 Unit 3

Between 0% and 20% 0 0 0
Between 20% and 40% 5 2 13
Between 40% and 60% 19 19 9
Between 60% and 80% 12 14 37
Between 80% and 100% 69 67 92

Different techniques are employed to manage missing values depending on



Chapter 4: Method and Results 39

the nature of the project. The techniques are discussed along with the processing
methods in the next section.

4.2 Data Processing

The data retrieved from the sensors exhibited an inherent non-uniform distribu-
tion across the entire time frame. The data acquisition frequency for certain sensor
readings did not align with the frequency of data collection for other sensors. Con-
sequently, when we attempted to combine these values, we encountered a signi-
ficant challenge marked by the emergence of numerous missing data points. This
non-uniformity in data with respect to time intervals resulted in the absence of
values for various sensors at specific time instances. The precise extent of miss-
ing values for each unit has been thoughtfully detailed in the previous section’s
tabular representation 4.2.

Addressing the issue of missing values emerged as the most substantial obstacle
during the data cleaning and preprocessing phase. Dealing with missing data ne-
cessitates the application of various techniques, the selection of which is important
and based on the nature of the problem at hand. The ensuing discussion delves
into these methods, explaining how they can be judiciously employed to minimize
the impact of missing data on our analysis and modeling processes. Understand-
ing the cause behind missing data is a critical step in addressing and managing it
effectively. The type of missing data informs the appropriate strategies for hand-
ling it, and there are three primary categories [94] to consider.

Missing Completely At Random (MCAR): In MCAR scenarios, the absence
of data is entirely arbitrary and unrelated to any underlying factors or variables.
This means that missing values are essentially sprinkled randomly throughout
your dataset, and there is no discernible pattern or connection to other observed
or unobserved variables.

Missing At Random (MAR): The term "Missing At Random" can be somewhat
misleading because data falling into this category is not truly random. Instead,
MAR data are systematically different from the rest of the observed data, but this
difference can be explained by other variables that you have collected. In essence,
the likelihood of data being missing is associated with the values of other observed
variables, but not with the specific value that is missing.

Missing Not At Random (MNAR): MNAR data are absent for reasons directly
related to the values themselves. This type of missing data is particularly import-
ant to identify, as it may indicate that certain subsets or groups within your sample
are underrepresented. Consequently, your sample may not accurately reflect the
broader population you are studying.

Understanding these distinctions among the types of missing data is pivotal
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for choosing the most suitable strategies to address them and ensuring that your
data analysis remains robust and unbiased. Following are some of the techniques
used to eliminate the missing value problem.

1) Deletion The use of suppression techniques is a common strategy in hand-
ling missing data. These techniques involve making decisions about whether to
remove specific values or entire variables that contain missing observations or in-
stances. However, it’s crucial to recognize that the act of entirely removing cases
with missing data can have varied consequences depending on the nature of the
data and the specific problem at hand. This can potentially introduce bias into the
subsequent data analysis, which can distort the results. Therefore, the selection of
an appropriate suppression technique is of paramount importance to ensure that
any bias is minimized. There are three methods [95] used for eliminating values.

List-wise deletion: This is the most common method used for eliminating
data. This method includes removing the entire case having missing values. This
is called full case or available case analysis.

Pairwise deletion: Instead of eliminating all the cases with missing values, we
only remove the data when the variable needed for the analysis contains missing
values.

Removal of variables: If there is a missing rate of any feature above a certain
level or percentage, then we remove the case otherwise we fill in missing values
with other techniques

2) Replacing Missing Values with the Average: One approach to handling
missing data involves replacing the missing values with the average of all the
available values for a specific input feature. This method is particularly effective
when there are only a few missing values, and the data shows a consistent pattern
without significant fluctuations. In such cases, calculating the average of the vari-
able in question and using it to fill in the gaps can provide meaningful imputations.

3) Substituting with a Constant Value: Alternatively, missing values can be
replaced with a constant number. If there’s a reasonable estimate for the missing
value, it can be used as a direct replacement. However, when no specific estim-
ation is available, a constant value can be chosen to substitute for the missing
data. Over time, the model can learn to handle these constant values effectively.
Collaborating with domain experts can aid in selecting suitable constant values
[96], aligning with the specific context of the data under consideration.

4) Substituting missing values using interpolation: Interpolation is another
method for addressing missing values, offering flexibility through various tech-
niques provided by libraries like Pandas. Interpolation methods include polyno-
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mial, linear, and quadratic approaches [97]. Linear interpolation, being the de-
fault, is often a good choice. The choice of interpolation method depends on the
nature of the problem.

Figure 4.5: Filling out values using linear interpolation [98]

5) Substituting with the Last Available Value: There is another option to
fill out missing values. The last values provided can be continued to fill out the
blanks. We have used this methodology in our data. The reason for opting for this
method is purely based on the nature of the data and the way it was maintained.
To downsize the data, a lot of fields having the same value for a period of time
were removed. So it was mutually decided to carry forward the same value to fill
out the missing values.

Up to this point, we’ve delved into the data challenges and explored poten-
tial solutions to address them. It’s evident that for any algorithm to be effectively
applied, a complete dataset is imperative. To pave the way for the application
of algorithms, a predefined benchmark was introduced, serving as the criteria
for incorporating input features into the data preparation process. The following
paragraphs elaborate on the steps involved in this procedure.

Removing Input Features: It is crucial to address the issue of missing values
in the dataset as these values can introduce errors into our model. Additionally,
erroneous values can introduce bias, potentially leading to incorrect predictions.
To mitigate these issues, a thoughtful approach was taken.

Input features that exhibited a substantial number of missing values were care-
fully evaluated. Those features with an excessive amount of missing data were
deemed problematic, as they could significantly skew the model’s performance.
As such, these features were removed from the dataset to maintain the integrity
of the analysis. For features with missing values falling below a certain threshold,
an alternative strategy was employed. If the quantity of missing values for a par-
ticular feature exceeded this predefined limit, the feature was excluded from the
dataset. This careful selection process was undertaken to safeguard against in-
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troducing bias into the model. To illustrate, consider Table 4.3, which highlights
the sensors with missing values. In the data cleaning and preprocessing phase, a
systematic approach was employed. A simple for loop, complemented by if con-
ditions, was utilized to identify and filter out input features exhibiting missing
values exceeding the 60% threshold. Consequently, from the initial pool of dif-
ferent sensors, a few sensors remained after this filtering process. While this may
appear to be a significant reduction, it was necessary to ensure the quality and
accuracy of the dataset, ultimately leading to more reliable model outcomes.

Filling in Values: Shortlisted sensors based on the count of data have been
taken for implementation of the ML model. The remaining sensors have relatively
less amount of missing values that can be handled using the methods mentioned in
the previous section. Based on the methods already discussed, filling out the values
using the last value in a cell was employed. Specifically, one can opt to continue
the last observed value to fill in the gaps left by missing entries. This particular
methodology was judiciously employed in our data processing. The reason under-
lying the selection of this method is tied to the inherent characteristics of the data
given and the manner in which it was curated and maintained. To provide a more
detailed perspective, the decision to utilize this approach is taken from a thorough
understanding of the dataset’s nature and logic. Since at the time of extracting the
data, a concerted effort was made to reduce the dataset’s size while minimizing
redundancy. Consequently, various fields that exhibited consistent values over ex-
tended time intervals were then removed, thus contributing to data reduction.

In light of this context, it was collectively determined that continuing the last
value to replace missing entries was a wise strategy. As such, adopting a mechan-
ism that sustains the continuity of these values within the dataset was not only
logical but also reflective of the dataset’s inherent characteristics. In essence, this
approach aligns with the overarching objective of preserving the dataset’s fidelity
while addressing the challenge of missing data. By seamlessly extending the last
known values to occupy the vacated positions, we ensure that the dataset main-
tains its temporal coherence and remains a reliable foundation for subsequent
analyses and modeling.

4.3 Implementation

This project was implemented using Excel files and Python using Jupyter Note-
book. Models were trained on a normal PC. A few public libraries and the models
are explained in this section along with the normalization technique, splitting into
training and testing and hyperparameter optimization.

4.3.1 Libraries Used

As the accessibility of information continues to expand, Python emerges as an in-
dispensable asset for expediting the creation of data analysis models[99]. Python,
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renowned for its high-level programming capabilities, is meticulously crafted to
be exceptionally comprehensible for human programmers and equally adept at
facilitating seamless data processing for computers. Beyond the intrinsic merits of
the language itself, the vibrant community that orbits the myriad tools and librar-
ies available for Python renders it exceptionally appealing, particularly within the
domains of data science, machine learning, and scientific computing[100].

Indeed, Python’s versatile prowess is substantiated by a comprehensive KDnug-
gets poll, according to which after surveying over 1800 participants to discern
their preferences in the fields of analytics, data science, and machine learning.
According to survey results, Python not only upheld its preeminent status but
emerged as the most extensively employed programming language throughout
the year 2019. The volume of data generated and amassed in modern times has
reached new heights. This surge in data production underscores the critical de-
mand for tools that exhibit both exceptional performance and user-friendliness.
One of the prevailing strategies to harness Python’s inherent advantages, consid-
ering its user-friendly nature, while maintaining computational efficiency, is the
development of high-performing Python libraries. These libraries are particularly
designed to implement lower-level code, having widened the scope of the access-
ibility of Python with the computational might required to efficiently handle the
huge volumes of data [101]. The main libraries that helped in carrying out the
project are defined as follows.

• Pandas: Pandas stands as a Python package of remarkable utility, delivering
swift, pliable, and articulate data structures mainly crafted to simplify the
handling of data that is relational or labeled. Its mission revolves around
being the cornerstone of high-level functionality, setting the stage for the
seamless execution of real-world data analysis tasks within the Python eco-
system [102].

• Numpy: NumPy serves as a general-purpose array-processing toolkit with
a broad range of applications. At its core, it offers a high-efficiency, multi-
dimensional array structure, complemented by a suite of essential utilities
tailored for manipulating these arrays. This package is suitable for scientific
computation in Python, fueling a wide array of applications. Furthermore,
it’s an open-source software solution, contributing to its widespread adop-
tion and collaborative development [103].

• Scikit-Learn: Scikit-Learn is a Python library best known for its solid imple-
mentations of a diverse array of machine learning algorithms. This library
excels in delivering highly efficient versions of a comprehensive selection
of widely used machine-learning techniques. It is an open source commer-
cially usable and accessible to everybody in various contexts. It can be quite
helpful in various applications which are but not limited to Classification,
Regression, Clustering, model selection, and pre-processing [104].
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• Keras: Keras stands out as a user-friendly, high-level deep learning API, ori-
ginally crafted by Google for the efficient implementation of neural net-
works. Primarily coded in Python, Keras simplifies the sensitive process of
working with neural networks. Additionally, it offers support for various
backends for neural network computation. Keras is particularly popular for
its ease of use and learnability. It boasts a Python front end with a notably
high level of abstraction. Although this design choice makes Keras some-
what slower than certain other deep learning frameworks, it shines as an
excellent choice for beginners in the field of deep learning due to its ap-
proachable nature [105].

• Tensorflow: TensorFlow is an open-source library designed to facilitate nu-
merical computations with Python. It’s tailored for accelerating the devel-
opment of machine learning and neural network applications, streamlining
tasks such as data acquisition, model training, prediction serving, and res-
ult refinement. Within TensorFlow, an extensive array of neural networks,
are bundled together. They become accessible through familiar program-
ming metaphors, enabling users to leverage their power. This versatile lib-
rary employs Python and JavaScript to offer an intuitive front-end API for
application development. Concurrently, it executes these applications effi-
ciently using high-performance C++, resulting in a potent framework for
machine learning and deep learning projects [106].

• PyTorch: It is an open-source framework used for different machine learn-
ing problems. This framework is based on the Python programming lan-
guage and leverages the Torch library. While Torch is another open-source
library notable for crafting deep neural networks, it employs the Lua script-
ing language. This combination renders PyTorch a favored choice among
deep learning researchers. Its primary objective is to expedite the transition
from research experimentation to practical deployment. PyTorch boasts sup-
port for more than 200 distinct mathematical operations, amplifying its pop-
ularity. This framework has garnered increasing attention due to its capa-
city to streamline the development of artificial neural network models. Data
scientists and researchers predominantly utilize PyTorch for their investig-
ations and applications in artificial intelligence (AI) [107].

The next subsections explain the implementation of these methods and librar-
ies in this project.

4.3.2 Reading the Data

The data was initially stored in CSV (Comma-Separated Values) files, commonly
accessible through applications like Excel. In our Python program, we utilized
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Pandas, an open-source library. Pandas ingested this data, seamlessly transform-
ing it into a Pandas data frame. This conversion facilitated ease of access and
analysis through various command lines. Furthermore, it granted us the capabil-
ity to effortlessly insert and delete columns as needed during the data processing.
As mentioned earlier, we had prepared three different data sets to train. Each
data set consists of a one-dimensional array consisting of input features and one
column for target features. Each row is divided into time stamps. In our case,
time stamps are distributed by a minute value. Using Pandas, Numpy, and Mat-
plotlib, the data was analyzed unit-wise, reason-wise, and month-wise. Different
comparisons were made and plotted. This processing and visualization helped us
in making certain decisions. For instance, the total duration turbines operate is
shown in the third graph of figure 4.2. It explained that most of the turbine fail-
ure instances occurred within three hours of their operation. So, for each failure
instance, three hours of their work were taken into account in our data analysis.
The trend in the graphs 4.4 shows us that the anomalous behavior of different
sensors is quite prominent and they tend to deviate from their original values
within the three-hour time frame which further enforces our decision to limit our
time frame.

4.3.3 Normalization

Machine learning algorithms perform optimally when working with data sets hav-
ing a consistent scale. Normalization, a common technique used in Machine learn-
ing, plays an important role, especially when the dataset contains input features
spanning disparate ranges. In this project, the dataset exhibited features having
values in different units. While normalization isn’t always obligatory, its utiliza-
tion can significantly increase the model’s robustness and enhance overall per-
formance. Furthermore, it serves as a means to mitigate the influence of outliers,
that might disproportionately affect the model’s behavior [108]. At its core, the
primary aim of normalization is to standardize the numeric values across the data-
set, ensuring they conform to a shared scale. This transformation harmonizes the
data without distorting the underlying differences in value ranges. Min-max scalar
is used for normalization purposes in this project

Mathematically, normalization can be calculated using the following formula:
[109]

Xn =
X − Xmin

Xmax − Xmin
(4.1)

Where Xn is the value of normalization, Xmax is the maximum value of the
feature and Xmin is the minimum value of the feature.

There is another technique used for the same purpose. It’s called standardiza-
tion scaling. Standardization scaling is also referred to as Z-score normalization.
It entails centering values around the mean and scaling them to possess a unit
standard deviation. In practical terms, this transformation centers the attribute’s
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distribution at zero and ensures a standard deviation of one. The mathematical
procedure for standardization involves subtracting the feature’s value from the
mean and then dividing it by the standard deviation [109].

Mathematically, it can be expressed as:

X ′ =
X −µ
σ

(4.2)

Here, µ is the mean value of the feature and σ represents the standard devi-
ation of feature values.

4.3.4 Train, Test Split

The train-test split technique serves the purpose of evaluating the performance of
machine learning algorithms when applied to new, unseen data that wasn’t part
of the training process. It’s a straightforward and efficient method that provides
insights into how various machine learning algorithms perform in the context of
your predictive modeling task. This technique is particularly useful in scenarios
where you’re dealing with extensive datasets, training a computationally expens-
ive model, or needing a rapid and reliable estimate of your model’s performance
[110]. The protocol of data splitting in training and testing is based on two as-
sumptions. The first is to maintain the dataset in a perpetually static state to facil-
itate the assessment of various machine-learning algorithms or models, and the
second is to assume the existence of a comprehensive collection of annotated data
accessible to researchers or professionals in the industry [111].

4.3.5 Hyper Parameter Optimization

Hyperparameter optimization is of paramount importance in the context of neural
networks. While neural networks have proven incredibly effective in various ap-
plications, they come with a significant challenge: training them can be inefficient
and akin to a brute force method. Neural networks start with random initializa-
tion and are trained on vast datasets to achieve accuracy. However, achieving this
accuracy is not solely a matter of using neural networks; its efficiency depends
on the consideration of model design, algorithm design, and most importantly,
hyperparameter selection [112].

Hyperparameters are settings that govern how a neural network learns and
generalizes from data. They include values like learning rates, batch sizes, and
the number of hidden layers. Choosing appropriate hyperparameters significantly
impacts the network’s performance. Traditionally, researchers have relied on ex-
perience to select these hyperparameters, drawing from past projects to inform
their decisions [112]. While this pragmatic approach often leads to workable set-
tings, it may not necessarily yield the most optimal ones. The importance of hy-
perparameter optimization lies in its ability to systematically search for the best
hyperparameter settings. This process goes beyond intuition or past experiences
and employs algorithms and techniques to explore a broader range of possibilities.
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It enhances the credibility of the chosen hyperparameters by providing a logical,
data-driven basis for their selection. As neural networks become more prevalent in
research and commercial applications, the efficiency and effectiveness of hyper-
parameter optimization become increasingly critical. It ensures that the neural
network operates at its full potential, delivering the best possible results for a
given task while reducing the resource-intensive trial-and-error process that can
come with hyperparameter selection based solely on experience.

4.3.6 Success Parameter

Machine learning metrics play a crucial role in objectively assessing the perform-
ance of a trained machine learning model. These metrics serve as a means to an-
swer the fundamental question: "How effectively is my model performing?" They
are indispensable tools for conducting thorough model evaluations. The landscape
of machine learning offers a diverse array of metrics tailored to various applica-
tions. These metrics can be broadly categorized into two groups, classification and
regression, each catering to specific types of predictions within machine learning
models [113]. Below, we delve into some of the well-known classification metrics
commonly utilized in this context.

A: Confusion Matrix

Upon acquiring and processing our data through a series of essential steps includ-
ing cleaning and pre-processing, the subsequent challenge arises - assessing the
efficacy of our model. The effectiveness of the model profoundly influences its
performance, an aspect of utmost importance. This is precisely where the Con-
fusion Matrix assumes a pivotal role. The Confusion Matrix serves as a corner-
stone in evaluating the performance of machine learning classification models.
In the realm of machine learning classification problems involving two or more
output classes, the Confusion Matrix emerges as a fundamental tool for perform-
ance evaluation. Essentially, it presents a structured table comprising four distinct
combinations of predicted and actual values.

Figure 4.6: Confusion Matrix
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To understand the figure 4.6 following terminologies need to be understood
[114].

True Positive (TP): In the context of classification models, a True Positive (TP)
occurs when the model’s prediction aligns with the actual data. In other words,
the predicted value matches the actual value, or the predicted class corresponds
to the actual class. Specifically, TP arises when the actual value is positive, and
the model successfully predicts it as positive. This outcome signifies an accurate
positive prediction.

True Negative (TN): True Negative (TN) signifies a correct prediction align-
ment between the model and the actual data. When the predicted value matches
the actual value, or the predicted class aligns with the actual class, and both are
negative, it is classified as TN. In essence, TN arises when the actual value is
negative, and the model accurately predicts it as negative, demonstrating precise
negative predictions.

False Positive (FP) - Type 1 Error: False Positive (FP), also referred to as a
Type I Error, occurs when the model makes an incorrect positive prediction. In this
scenario, the actual value is negative, signifying the absence of what the model
predicted. However, the model mistakenly predicts a positive value. This error
type is termed Type I because it involves a false positive prediction, where posit-
ivity is falsely attributed.

False Negative (FN) - Type 2 Error: False Negative (FN), known as a Type
II Error, arises when the model makes an inaccurate negative prediction. In this
instance, the actual value is positive, indicating the presence of the predicted at-
tribute. Nevertheless, the model erroneously predicts a negative value, failing to
recognize the actual positive condition. This error type is referred to as Type II be-
cause it involves a false negative prediction, where negativity is falsely ascribed.

B: Precision-Recall Curve

The precision-recall curve serves as a graphical representation of how a single clas-
sifier’s precision and recall values change across various thresholds. In essence, it
illustrates how the precision and recall of a classifier are influenced by different
decision thresholds. To clarify, when utilizing classifiers like logistic regression,
these thresholds are typically linked to the predicted probability of an observa-
tion being classified as belonging to the positive class. In logistic regression, for
instance, if an observation is predicted to fall into the positive class with a prob-
ability greater than 0.5, it’s categorized as positive. However, the choice of this
probability threshold isn’t fixed at 0.5; it can span the entire range from 0 to 1.

The precision-recall curve provides a visual representation of how altering this
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threshold affects the classifier’s performance. It enables us to observe how changes
in the threshold impact precision and recall, allowing us to make informed de-
cisions about selecting the optimal threshold for a particular problem. In essence,
it aids in the exploration of various threshold settings to achieve the best trade-off
between precision and recall based on the specific requirements of the problem
at hand [115].

C: Roc Curve

ROC curve, which stands for "receiver operating characteristic curve," is a graph-
ical representation used to assess the performance of a classification model across
various classification thresholds. This curve specifically illustrates how well a model
can distinguish between positive and negative instances [116]. It relies on two key
parameters:

True Positive Rate (TPR): This indicates the proportion of true positive predic-
tions (correctly identified positive instances) out of all actual positive instances.
In simpler terms, it measures how effectively the model identifies positive cases.

False Positive Rate (FPR): This represents the proportion of false positive
predictions (incorrectly identified positive instances) out of all actual negative
instances. It gauges how often the model incorrectly identifies negative cases as
positive.

The ROC curve is constructed by plotting the True Positive Rate (TPR) on the
vertical axis against the False Positive Rate (FPR) on the horizontal axis. Each point
on this curve corresponds to a different classification threshold. As you adjust this
threshold, you change how the model classifies instances as positive or negat-
ive. Lowering the threshold generally results in classifying more items as positive,
which in turn increases both the number of True Positives and False Positives. The
area under the ROC curve (AUC) is a single numeric value that summarizes the
overall performance of the model. It quantifies the entire two-dimensional area
enclosed by the ROC curve. A higher AUC indicates that the model is better at
distinguishing between positive and negative instances across various thresholds.
Essentially, it serves as a convenient way to compare the overall discriminatory
power of different models, with a higher AUC suggesting a better-performing
model in terms of classification accuracy.

E: Precision, recall, and F1-score

Precision, Recall, and F1 Score are important metrics in evaluating the perform-
ance of a classification model, particularly in situations where you need to make
a trade-off between different aspects of prediction accuracy [117].
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Precision: Precision measures the accuracy of positive predictions made by the
model. It answers the question: "Out of all the instances that the model predicted
as positive, how many were actually correct?" In other words, it calculates the
percentage of true positive predictions among all positive predictions. Precision
is particularly useful when you want to minimize the number of false positives,
which are instances where the model incorrectly predicts a positive outcome.

Precision=
TruePosi t ives

TruePosi t ives+ FalsePosi t ives
(4.3)

Recall: Recall, sometimes called Sensitivity or True Positive Rate, assesses how
well the model identifies all the actual positive cases. It answers the question: "Out
of all the actual positive instances, how many did the model correctly predict
as positive?" In essence, it calculates the percentage of true positive predictions
among all actual positive instances. Recall is valuable when you want to minimize
false negatives, which are instances where the model fails to predict a positive
outcome when it should have.

Recal l =
TruePosi t ives

TruePosi t ives+ FalseNegatives
(4.4)

F1 Score: The F1 Score is a measure that combines both Precision and Recall
into a single metric. It represents the harmonic mean of Precision and Recall. This
harmonic mean is used because it gives more weight to lower values. The F1 Score
helps find a balance between Precision and Recall. In situations where you aim
for high Precision and high Recall simultaneously, the F1 Score can guide you. If
either Precision or Recall becomes extremely low, the F1 Score will also decrease,
indicating an imbalance in the model’s performance.

F1Score =
2 ∗ Precision ∗ Recal l

P recision+ Recal l
(4.5)

4.4 Models Architecture

4.4.1 CNN

The architecture and parameters of the model were mostly found through trial
and error. Experiments were done using different activation functions. We used
RMSProp, Adam, SGD and the results were quite similar with slight differences.
Adam was then chosen to get the results. The learning rate was selected to be
0.0001, giving us the desired learning curve. The following architecture was ad-
opted after exploring several architectures for hyperparameter tuning.

Each model was trained on the parameters for each unit mentioned below.
To assess the performance of the models, the ROC curve, Precision-Recall curve,
Learning curve, Precision score, Recall score, and F1 score were calculated and
displayed
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There are three datasets that are trained using different models, starting with
implementing CNN on Unit 1. To get optimized results different parameters were
experimented with. Although there was not a huge difference in results between
these optimizers, Adam seemed to perform a little better. So, Adam with a learn-
ing rate of 0.0001 was used as an optimizer for Unit 1. Parameters for Unit 1 using
CNN is mentioned in table 4.4 and performance is measured using precision, re-
call, and F1 score mentioned in table 4.5

Parameters Unit 1 Unit 2 Unit 3

Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
Input Layer 27 25 46

Total Parameters 98,817 90,625 180,737
Total Layers 5 5 5

Table 4.4: Optimized Hyperparameters using CNN

Performance Measurement Unit 1 Unit 2 Unit3
Precision 0.92 0.84 0.83

Recall 0.98 0.96 0.98
F1-Score 0.95 0.90 0.90

Table 4.5: Precision, Recall and F1 Score for Unit 1, Unit 2 and Unit 3 trained
using CNN

The performances of this model can also be visualized using the ROC curve
and Precision-Recall Curve shown in figures 4.7, 4.8 and 4.9. The definitions and
calculations of these curves are explained in section 4.3.6.
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(a) ROC Curve (b) Precision Recall Curve

Figure 4.7: ROC and Precision-Recall Curve for CNN implemented on Unit 1
dataset

(a) ROC Curve (b) Precision Recall Curve

Figure 4.8: ROC and Precision-Recall Curve for CNN implemented on Unit 2
dataset

(a) ROC Curve (b) Precision Recall Curve

Figure 4.9: ROC and Precision-Recall Curve for CNN implemented on Unit 3
dataset
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4.4.2 MLP

Considering the available data set, different parameters were used to carry out
experiments. We first tried to make the model a bit complex with multiple hidden
layers, but the model started overfitting early. So, it made more sense to train the
model with a simple and less complicated structure. To avoid overfitting, we had
to apply early stopping using TensorFlow.

Just like the CNN, this model was also experimented with different paramet-
ers. Performance measurement was done using Precision, Recall, and F1 score.
Different optimizers including Adam, RMSprop, Adagrad, Nadam, and SGD were
tried and there was not a huge difference in the results. Adam performed slightly
better with a learning rate of 0.001. Parameters for this model are summarized in
table 4.6 and the performance is mentioned in table 4.7

Parameters Unit 1 Unit 2 Unit 3

Optimizer Adam Adam Adam
Learning rate 0.001 0.001 0.001
Hidden Layers 1 1 1

Input Layer 27 25 46
Total Parameters 929 7,489 10,177

Table 4.6: Optimized Hyperparameters using MLP

Performance Measurement Unit 1 Unit 2 Unit3
Precision 0.81 0.82 0.79

Recall 0.91 0.95 0.98
F1-Score 0.86 0.88 0.87

Table 4.7: Precision, Recall, and F1 Score for Unit 1, Unit 2, and Unit 3 trained
using MLP

The performances of this model can also be visualized using the ROC curve
and Precision-Recall Curve shown in figures 4.10, 4.11 and 4.12.
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(a) ROC Curve (b) Precision Recall Curve

Figure 4.10: ROC, Precision-Recall Curve and Learning curve for MLP implemen-
ted on Unit 1 dataset

(a) ROC Curve (b) Precision Recall Curve

Figure 4.11: ROC, Precision-Recall Curve and Learning curve for CNN implemen-
ted on Unit 2 dataset

(a) ROC Curve (b) Precision Recall Curve

Figure 4.12: ROC, Precision-Recall Curve and Learning curve for CNN implemen-
ted on Unit 3 dataset
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4.4.3 SVM

SVM is a relatively simpler model for classification problems. Although it only sup-
ports binary classification problems, it is a string choice for classifying datasets.
Sklearn provides SVM which can easily be imported using a single liner. Hyper-
parameters are optimized using the hit-and-trial method. The linear kernel was
manually selected after experimenting with linear, rbf, and poly.

The performance for this model is summarized in the table 4.8

Performance Measurement Unit 1 Unit 2 Unit3
Precision 0.81 0.81 0.77

Recall 0.95 0.98 0.97
F1-Score 0.88 0.89 0.86

Table 4.8: Precision, Recall, and F1 Score for Unit 1, Unit 2, and Unit 3 trained
using SVM

The performances of this model can also be visualized using the ROC curve
and Precision-Recall Curve shown in figures 4.13, 4.14, and 4.15.

(a) ROC Curve (b) Precision Recall Curve

Figure 4.13: ROC and Precision-Recall Curve curve for SVM implemented on Unit
1 dataset
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(a) ROC Curve (b) Precision Recall Curve

Figure 4.14: ROC and Precision-Recall Curve curve for SVM implemented on Unit
2 dataset

(a) ROC Curve (b) Precision Recall Curve

Figure 4.15: ROC and Precision-Recall Curve curve for SVM implemented on Unit
3 dataset

4.4.4 Logistic Regression

The concept and assumptions behind Logistic Regression are discussed in detail in
the section Theory (For reference see section 3.5.4). Keeping in mind the assump-
tions, logistic regression was implemented on the data sets. Sklearn provides the
single-liner implementation of logistic regression using Sklearn linear model. The
performance for this model is summarized in the table 4.9.
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Performance Measurement Unit 1 Unit 2 Unit3
Precision 0.82 0.81 0.77

Recall 0.93 0.98 0.97
F1-Score 0.87 0.89 0.86

Table 4.9: Precision, Recall, and F1 Score for Unit 1, Unit 2, and Unit 3 trained
using Logistic Regression

The performances of this model can also be visualized using the ROC curve
and Precision-Recall Curve shown in figures 4.16, 4.17, and 4.18.

(a) ROC Curve (b) Precision Recall Curve

Figure 4.16: ROC and Precision-Recall Curve curve for Logistic Regression im-
plemented on Unit 1 dataset

(a) ROC Curve (b) Precision Recall Curve

Figure 4.17: ROC and Precision-Recall Curve curve for Logisitc Regression im-
plemented on Unit 2 dataset
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(a) ROC Curve (b) Precision Recall Curve

Figure 4.18: ROC and Precision-Recall Curve curve for Logistic Regression im-
plemented on Unit 3 dataset

4.4.5 KNN - K-Nearest-Neighbour

K-NN so far is the most consistent model giving us better results among the models.
For this model, four neighbors were selected to train the data set. The concept
behind its implementation is discussed in detail in section 3.5.5. The performance
for this model is summarized in the table 4.10.

Performance Measurement Unit 1 Unit 2 Unit3
Precision 0.97 0.94 0.89

Recall 0.98 0.95 0.95
F1-Score 0.98 0.95 0.92

Table 4.10: Precision, Recall, and F1 Score for Unit 1, Unit 2, and Unit 3 trained
using KNN

Graphical representation of the performance of this model is shown using the
ROC curve and Precision-Recall Curve shown in figures 4.19, 4.20, and 4.21.

(a) ROC Curve (b) Precision Recall Curve

Figure 4.19: ROC and Precision-Recall Curve curve for K Nearest-Neighbor im-
plemented on Unit 1 dataset
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(a) ROC Curve (b) Precision Recall Curve

Figure 4.20: ROC and Precision-Recall Curve curve for K Nearest-Neighbor im-
plemented on Unit 2 dataset

(a) ROC Curve (b) Precision Recall Curve

Figure 4.21: ROC and Precision-Recall Curve curve for K Nearest-Neighbor im-
plemented on Unit 3 dataset
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Discussion

This chapter serves as a comprehensive summary and reflection on the findings
discussed in the preceding chapter. This chapter offers a brief but comprehensive
discussion on the outcomes of the predictive model. Not only does it delve into the
results obtained, but it also contemplates potential research that can stem from
this study.

Addressing the issue of missing data is a crucial aspect of this research. Im-
puting missing values with arbitrary numbers could potentially distort the model’s
performance and affect the results. The approach adopted in this thesis, involving
the use of the last recorded value for filling missing entries, was deemed more
pragmatic and in line with real-world scenarios. The process of preparing the data,
originating from the raw sensor data, unravels numerous pathways for different
kinds of analysis. This data provides a base for new research including anomaly
detection and remaining useful life which are paramount to Industry 4.0.

The core objective of this thesis was to explore the feasibility of predicting
turbine failures during their operational phase utilizing sensor values. This ex-
ploration entailed training machine learning and deep learning models on the
sensor data. The premise for this approach was grounded in the established ob-
servation that sensors exhibit prominent deviations from their baseline values as
they approach a failure state. This deviation is discussed in the section methods
and results. Leveraging this characteristic, the models were able to discern and
predict impending failures based on deviations from the normal values. One of
the main objectives of this study was to give us the prediction one hour prior to
its failure. The tables 5.1, 5.2, 5.3 given below provide the information about the
results of different units

60



Chapter 5: Discussion 61

Parameters CNN MLP SVM Logistic Regression KNN
Precision 0.92 0.81 0.81 0.82 0.97

Recall 0.98 0.91 0.95 0.93 0.98
F1-Score 0.95 0.86 0.88 0.87 0.98

Table 5.1: Comparison of Precision, Recall and F1 Score between different models
for Unit 1

Parameters CNN MLP SVM Logistic Regression KNN
Precision 0.84 0.82 0.81 0.81 0.94

Recall 0.96 0.95 0.98 0.98 0.95
F1-Score 0.90 0.88 0.89 0.89 0.95

Table 5.2: Comparison of Precision, Recall and F1 Score between different models
for Unit 2

Parameters CNN MLP SVM Logistic Regression KNN
Precision 0.83 0.79 0.77 0.77 0.89

Recall 0.98 0.98 0.97 0.97 0.95
F1-Score 0.90 0.87 0.86 0.86 0.92

Table 5.3: Comparison of Precision, Recall and F1 Score between different models
for Unit 3

Five different models were implemented that are CNN, MLP, SVM, Logistic Re-
gression, and KNN. Comparison of the results among different models gives us a
better understanding of using those models to get the results. The score of differ-
ent success parameters of around 90% shows the effectiveness of these models
and the impact that they can create in the industry. With 90% accurate results of
the failure, prediction can help industries save a lot of resources.
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Conclusion

This research aimed to explore various ways of data analysis and machine learning
to utilize turbine sensor values in order to predict failures. Based on the results, it
can be safely summarized that these techniques have the prospective to enhance
and upgrade currently employed systems for effectively utilizing industrial re-
sources and improving productivity. The methods and models for data processing
and prediction complement each other and serve as a powerful tools. Research
on the prediction model showed that it is possible to predict when the turbines
are going to fail during the running phase. The methods suggested here are use-
ful in giving valuable insights into the conditions of the turbine by utilizing them
together. The explored cases give a foundation where a company can invest in
developing a system where sensors can be recorded and fed into the models that
can generate results based on which important decisions can be taken with high
accuracy. There were four research questions mentioned earlier that are repeated
and answered again in the context of this research.

Research Question 1: How a raw sensor data be used for data analysis,
prediction, and further research?
In every data-centric research or project, the initial dataset usually exists in its
raw, unrefined state, often presenting diverse formats based on its origin. A pivotal
phase in data preprocessing involves converting this raw data into a specific format
suitable for subsequent analysis and exploration. This transformation is vital to en-
sure that the data becomes accessible, understandable, and applicable for various
data analysis techniques and research objectives. Machine learning models do not
accept incomplete data sets and to make them useful, different techniques need
to be implemented. The central objective of this thesis revolves around enhan-
cing the readability and exploration of the original raw dataset. The raw sensor
data is transformed into an organized set of values. Having no missing values
and outliers, the input features establish the ground for data analysis. One of the
primary focuses of this thesis is also to address the readability and exploration of
the provided raw data. This entails examining the data closely to understand its
structure, characteristics, and potential patterns. By gaining a deeper understand-
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ing of the data, researchers can pinpoint potential challenges, like absent values or
anomalies, and formulate suitable strategies for data refinement. Future recom-
mendations can be to use this data for improving maintenance strategies, calcu-
lating remaining useful life, detecting anomalies, and using this data, the reason
of failure can also be detected which can further help in devising strategies.

Research Question 2: What methods and procedures can be implemented
to transform raw data into a useful format according to the need?
Data cleaning encompasses the task of addressing inconsistencies, errors, and dis-
crepancies within the raw dataset. This process involves employing specific tech-
niques to prepare the data for subsequent analyses, ensuring its credibility and
precision. Furthermore, transformation techniques are applied to reformat the
data into a standardized and cohesive representation that suits the specific re-
search requirements. The ultimate goal remains the same, to allow researchers,
to carry out their research and extract meaningful outcomes and to make the data
serve as a basis for further data analysis and experimentation. it becomes more
feasible to apply diverse data analysis methodologies, encompassing statistical
analysis, machine learning, and deep learning algorithms. This thesis underscores
the vital processes of data cleaning and transformation, endeavoring to convert
raw data into a structured and practical format. There is always a thin line and
can easily create a bias. So, it is very important that the credibility of the data
should remain intact while cleaning or processing the data. Different techniques
for data cleaning and processing were discussed earlier, that can be employed
depending on the nature of the work. Different sensor files were combined and
the data was sorted according to the date and year it was recorded. For uniform
incremental of time values, the data was transformed into a time series data with
an incremental value of one minute. Then the missing values that occurred as a
result of this transformation were filled by using the last recorded value. It is dis-
cussed in detail in the section methodology. In short, this thesis underscores the
vital processes of data cleaning and transformation, endeavoring to convert raw
data into a structured and practical format. By addressing data quality concerns
and structuring the data appropriately, researchers can unlock the dataset’s full
potential, conducting thorough analyses and advancing a multitude of research
domains effectively.

Research Question 3: How Machine Learning and Deep Learning can be
used to predict advanced failure?
Currently, a significant amount of research is dedicated to analyzing failures in
machine equipment, assessing reliability, and predictive maintenance. Utilizing
a machine learning or deep learning approach provides a promising means to
predict failures and pinpoint crucial parameters that influence failure prediction.
There are a number of machine learning and deep learning models that are used
for classification problems. It can give us a myriad of options and combinations to
choose from. However, choosing a model for a specific problem required a deep
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understanding of the concept used behind that particular model. The main reason
is that the models can have specific requirements in order to perform. Five dif-
ferent models were chosen that were relevant to this particular problem. Their
concept and technicalities are discussed in detail in the theory section. CNN, MLP,
SVM, Logistic Regression, and K-NN. The results were then compared in the pre-
vious section to have a better understanding. The aim of this thesis was to employ
various techniques to predict turbine failures with a satisfactory level of accuracy
using these models.

Research Question 4: How ML and DL can improve the current mainten-
ance strategies and improve efficiencies?
The utilization of data by production tools has witnessed a remarkable increase
in recent years. When processed and analyzed, this data can unveil valuable in-
sights. Machine Learning (ML) and Deep Learning (DL) have emerged as power-
ful tools in the domain of predictive maintenance. They enable the extraction of
crucial information for fault detection, diagnosis, and prediction, ultimately min-
imizing downtime and enhancing utilization rates. It can help us predict sudden
failures, breakdown routines, and remaining useful life and can help in prognosis
and health monitoring. Combining condition monitoring with predictive main-
tenance is instrumental in mitigating economic losses that stem from operational
disruptions. This thesis employed a model to predict sudden running failures one
hour prior to the actual failure will give ample time to diagnose where the issue
is, prepare the maintenance tools, prepare for backup if needed and everything is
done with minimal loss. With the data prepared, even the reason for failure can
be predicted in advance.

6.1 Contribution

The use of machine learning and deep learning models in predicting certain out-
comes plays a vital role in Industry 4.0. It has been of great interest to a lot
of people. The comprehensive exploration directed toward data analysis of raw
sensor values and predicting failures of turbines makes this thesis unique, which
is also an integral part of power generation in industries. This research combined
data analysis and machine learning models to predict failures. The main contri-
butions are:

• Proposed method to transform the raw values into meaningful data set, that
provided the basis for further research and data analysis. It contributed by
providing thorough research on different techniques to process data and
analyze it to make certain decisions.

• A lot of research is done on measuring the remaining useful life and health
of equipment, this thesis focused on using sensor values in predicting the
sudden failure of turbines which might be deviated from its routine break-
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down. These failures are hard to detect since they are unexpected stoppages
and they can occur at any time without any apparent reason.

• Results indicate that it is possible to detect unexpected and sudden stop-
pages well before time, it also is feasible to predict failures one hour prior
which is adequate time to prepare for back up arrangements.
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