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Preface 

This thesis is submitted to the Norwegian University of Science and Technology (NTNU) for partial fulfillment 

of the requirements for the degree of Philosophiae Doctor. 

This Ph.D. study was carried out in the framework of a cotutelle agreement between NTNU and the University 

of Bologna (UNIBO). The work was carried out at the Department of Mechanical and Industrial Engineering 

at NTNU, in Trondheim, Norway, and at the department of Civil, Chemical, Environmental, and Material 

Engineering at UNIBO, in Bologna, Italy. Professor Nicola Paltrinieri from NTNU and Professor Valerio Cozzani 

from UNIBO co-supervised the activities. NTNU and UNIBO jointly funded the doctoral work. 

The target audience of this work includes researchers and practitioners interested in the following areas: Risk 

Assessment and Management, Dynamic Risk Management, Machine Learning methods in chemical and 

process safety, evaluation and monitoring of safety barriers, predictive and diagnostic methods to improve 

the performance of industrial alarm systems, consequence prediction of accidents involving dangerous 

substances, frequency evaluation in domino scenarios. 
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Summary 

Large amounts of hazardous substances are handled and stored in chemical facilities, elevating the risk of 

accidental releases with potentially disastrous consequences. Over the past three decades, there has been a 

significant evolution in the domain of safety science, leading to the standardization and widespread 

implementation of Risk Managment (RM) frameworks designed to identify, quantify, evaluate, control, and 

manage the risk associated with industrial activities involving hazardous substances. However, canonical RM 

techniques suffer several limitations, such as their inherent staticity and inability to update the risk picture 

in evolving and degrading systems. To overcome these limitations, recent research has proposed to move 

toward a more dynamic and proactive approach to process safety, named Dynamic Risk Management (DRM), 

which aims at capturing risk variations in industrial facilities, taking into account the performance of the 

control system, safety barriers, inspection and maintenance activities, and the human factor. This paradigm 

shift raises the need for dynamic and inherently updatable tools to capture the intricate dynamics between 

risk-influencing factors. In this context, Machine Learning (ML) techniques emerge as valuable tools due to 

their inherent ability to make predictions under uncertainty and model complex nonlinear relationships 

between features. However, the potential of these techniques in the context of DRM is still scarcely explored. 

Therefore, this Ph.D. study seeks to contribute to the development of ML methods to enhance and support 

DRM. 

Specifically, this investigation formulates and presents practical ML-based methods to address critical tasks 

in DRM, namely consequence prediction, frequency evaluation, and monitoring of safety barriers. In addition, 

this study delves deep into the broader implications of adopting ML technologies, such as the intricate 

relationship between human expertise and AI, critically examining their respective contributions in the future 

of Risk Management. Different ML algorithms have been explored, including classification, clustering, 

regression, and Natural Language Processing. Diverse data sources have been utilized, such as alarm data, 

process data, and accident data. The contributions of this research include: 

• the assessment of recent advancements of ML in the domain of safety and reliability; 

• the development of classification models to predict the consequences of major accidents;  

• the investigation of ML models to aid Risk Based Inspection of hydrogen systems; 

• the use of regression models to predict the Time-To-Failure of tanks exposed to external fire; 

• the exploration of classification models and natural language processing algorithms to monitor and 

improve the performance of industrial alarm systems; 

• the integration between traditional risk assessment tools, data-driven models, and resilience analysis 

to evaluate safety barriers in environmental-critical facilities; 

• the analysis of the involvement between ML and human actors in Risk Management. 
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Proposed methods have been tested on real-world case studies to demonstrate their efficacy. The results 

indicate that ML methods can be used to take advantage of the wealth of heterogeneous data made available 

by the widespread digitalization of industrial sectors in order to extract safety-relevant knowledge and 

provide critical support to DRM. Limitations and challenges have been acknowledged and discussed, 

including the challenges linked to imbalanced and cost-sensitive classification, the importance of data quality 

and sound preprocessing procedures, model interpretability, quantification of prediction uncertainty, and 

the challenges related to model selection and hyperparameters tuning. While the trajectory of progress 

suggests an increasing adoption of AI tools, domain knowledge and human expertise remain pivotal, ensuring 

effective oversight of intelligent systems, understanding the limitations of ML models, and contextualizing 

their predictions. 
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This doctoral thesis is a collection of articles and it is structured in two main parts: 

• Part I, the main report, interrelates the articles and summarises the research performed during the 

entire PhD study; 

• Part II, where the articles published within the Ph.D. study are collected. 

It is suggested to read the two parts in the proposed order. However, they are independent and can be read 

in any order. 
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Part I: Main report 
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1. Introduction 

Major accidents involving dangerous substances can severely impact human health, the environment, and 

company finances. Within the chemical and process industry, large quantities of hazardous substances are 

stored and handled during daily operations, elevating the risk of accidental releases with potentially 

disastrous consequences. However, while industrial activities have always carried significant risks, there were 

no standardized measures in place to manage the risk posed by hazardous substances before the second half 

of the sixties (Kletz, 2012; Pasman et al., 1992). At that time, handling and storing dangerous substances were 

regulated by traditional occupational safety and good engineering practices (Abdul Aziz and Mohd Shariff, 

2017). Later, a series of terrible accidents – including Woodbine (1971), Seveso (1976), Bhopal (1984), and 

Pasadena (1989) – highlighted the need to go beyond the existing standard and develop a different approach 

to prevent major accidents and their consequences. Those unfortunate events were the driving force for the 

formulation and development of modern safety management programs (Abdul Aziz and Mohd Shariff, 2017), 

leading to the establishment of what is now called Process Safety Management (PSM) (Khan et al., 2016). 

During the last three decades, the discipline of Risk Management (RM) – defined as the study of methods, 

tools, and techniques aimed at identifying, quantifying, and controlling risk – has witnessed extraordinary 

growth, leading to its adoption and codification in international standards and regulations. Notable examples 

include the ISO 31000 standard (International Organization for Standardization (ISO), 2018) providing 

guidance on the selection and application of various techniques to model uncertainty and manage risk, the 

API 750 RP  and Process Safety Management standards (American Petroleum Institute, 1991; Canadian 

Society for Chemical Engineering, 2012), focusing on process hazards, and the European Directive 

2012/18/EU (European Parliament Council of the European Union, 2012), providing guidelines on the control 

of major-accident hazards and defining regulatory requirements for industrial facilities handling dangerous 

substances.  

In spite of the progress made in the field of RM, accidents involving dangerous substances still occur (Pasman 

and Fabiano, 2021), suggesting that traditional risk management techniques may not be sufficient in 

controlling risk. For example, consider the terrible ammonium nitrate explosion that occurred in Beirut 

(2020), causing more than 200 fatalities and 6000 injuries (El Zahran et al., 2022; Pasman et al., 2020), or the 

chlorine gas leak that occurred in Aquaba, Jordan (2022) taking the life of 13 and injuring more than 260 

(Gritten, 2022). In fact, several authors have highlighted that canonical risk management techniques have 

inherent limitations (Villa et al., 2016), such as the inability to capture the risk variations resulting from 

changes in operative conditions. In other words, RM methods apply static reasoning to describe a dynamic 

environment, capturing a static risk picture that does not reflect the intricate dynamics between Risk 

Influencing Factors. In order to solve these limitations, recent research has proposed to go beyond traditional 

RM frameworks toward a more dynamic and proactive approach to process safety, called Dynamic Risk 
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Management (DRM). This new discipline advocates for methods and techniques that can capture risk 

variations in evolving and degrading systems, taking into account the performance of the control system, 

safety barriers, inspection and maintenance activities, the human factor, and procedures  (Khan et al., 2016).  

DRM relies on the ability to monitor operative conditions and update the risk picture as new observations 

become available (Paltrinieri et al., 2014a). To this end, new and inherently updatable methods are needed, 

in opposition to the static tools currently in use in traditional risk management frameworks. In this context, 

most research has focused on Bayesian Networks and Petri nets to model the relationships between Risk 

Influencing Factors and update the risk picture  (Kabir and Papadopoulos, 2019). Other approaches have 

proposed the use of Dynamic Fault Trees (Gascard and Simeu-Abazi, 2018), Monte Carlo simulation (Rabiti 

et al., 2013), and Markow models (Sievers and Madni, 2022). However, the research on DRM is still in its 

infancy. The literature appears scattered and lacks cohesion; there are few contributions on the topic, 

highlighting an urgent need for new, proactive tools to capture the dynamics of unsafe interactions in 

increasingly complex and interconnected systems (Zio, 2018). 

The digitalization of industrial systems has revolutionized the manufacturing industry. The widespread use 

of remote sensing, Internet of Things technologies, and cloud storage has tremendously increased the ability 

to monitor and control industrial processes (Lee et al., 2019). At the same time, advancements in computing 

technologies and the advent of new data analysis tools open interesting opportunities to learn from data and 

extract safety-relevant knowledge. For example, the advent of Artificial Intelligence (AI) and Machine 

Learning (ML) is catalyzing a profound transformation in our world. These technologies are not only reshaping 

our daily interactions and digital experiences but are also announcing a new era for industrial processes 

(Peres et al., 2020). ML methods hold great potential to advance the research on DRM (Paltrinieri et al., 

2019), allowing the development of inherently updatable, proactive, and dynamic techniques that can 

capture the intricate dynamics of complex phenomena and predict how changes in process conditions affect 

the risk picture. However, the idea of integrating ML into a DRM framework is relatively recent, and the topic 

is still largely unexplored, missing the chance to push the research on DRM methods, which seems to stagnate 

and not keep the peace with technological advancements (Pasman and Fabiano, 2021). 

In this context, this thesis aims to contribute to the research on investigating ML methods to support the 

ambitious objectives of DRM within the chemical and process industry. This entails exploring the potentials 

and limitations of ML techniques, suggesting practical solutions for addressing various DRM tasks, and 

examining the implications and prospective roles of ML and humans in the future of DRM. After defining the 

state of the art of ML methods in safety and reliability, this research explores practical ML-based 

methodologies to support different phases of DRM, such as consequence evaluation, frequency evaluation, 

and monitoring of safety barriers. In addition, the investigation is complemented with considerations on the 

future of risk management, specifically focusing on the roles of humans and machines in the future of process 

safety. 
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This manuscript is organized as follows. Section 2 describes the research background, providing a brief 

introduction to Risk Management, Dynamic Risk Management, and Machine Learning. Section 3 and 4 

describe the aim and scope of this investigation, defining research questions, and revealing the connection 

between publications and objectives. Section 5 focuses on the research methodology, providing details on 

the characteristics of the research approach adopted and on quality assurance criteria. Section 6 describes 

the methods utilized within this Ph.D. study. The contributions of this PhD study are reported in Section 7 

and discussed in Section 8. Finally, conclusions are drawn in Section 9, along with ideas for future research.
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2. Research background

This section offers a comprehensive background for the Ph.D. study. It aims to establish the context of the 

investigation by emphasizing the present state of research on the subject, underscoring existing limitations, 

and identifying knowledge gaps. Specifically, Section 2.1 delves into Risk Management and Dynamic 

Risk Management, detailing their frameworks, activities, and associated challenges. Meanwhile, 

Section 2.2 focuses on Machine Learning, outlining its fundamentals, describing various ML approaches, 

and highlighting its potential in supporting and enhancing DRM. 

2.1. Risk Management and Dynamic Risk Management 

Risk management (RM) refers to the set of “coordinated activities to direct and control an organization with 

regard to risk” (International Organization for Standardization (ISO), 2018). In other words, it concerns 

quantifying, evaluating, prioritizing, and controlling the risk associated with a particular activity. The 

development and establishment of RM as a scientific discipline began approximately 30 to 40 years ago, 

driven by the need to regulate the design and operations of high-risk industrial activities (Aven, 2016), such 

as nuclear, chemical, and process industries. Today, RM is a widely-accepted and established process, 

described and codified in international standards (International Organization for Standardization (ISO), 

2018), and adopted by international regulations, such as the Directive 2012/18/EU of the European 

Parliament and Council (European Parliament Council of the European Union, 2012). 

The RM process comprises five main activities, as represented in Figure 1 and discussed in Section 2.1.1.  
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Figure 1. Overview of the Risk Management framework highlighting the role of Safety Barriers in risk treatment. Adapted from 
(Petroleum Safety Authority, 2013) 

2.1.1. The Risk Management process 

The Risk Management process comprises the following activities: 

1. Scope definition; 

2. Risk assessment; 

3. Risk treatment; 

4. Communication and consultation; 

5. Monitoring and review. 

The first activity involves specifying the boundaries of the analysis. Since the risk management process can 

be applied at various levels within the plant lifecycle, such as design, construction, and operation, clarity 

regarding the scope is paramount. This involves understanding the objectives to be addressed and aligning 

them with organizational objectives. Also, organizations must define the level and type of risk they are willing 

to accept in relation to their objectives and external constraints (e.g., regulatory requirements). 
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The second activity, namely risk assessment, aims to quantify the risk levels related to a particular activity. 

This involves identifying the hazards (step 2.1 in Figure), estimating the frequency and the potential 

consequences of unwanted events (steps 2.2 and 2.3 in Figure), calculating a risk measure (step 2.4 in Figure) 

and comparing the risk levels with the established risk criteria to determine whether the risk is acceptable 

(step 2.5). Risk assessment may be considered one of the most challenging and time-consuming parts of the 

RM process (Lees, 2012). It requires specialized knowledge and the use of articulated techniques, such as 

Hazard and Operability study (HAZOP), Failure Mode and Effect Analysis (FMEA), Layer of Protection analysis 

(LOPA), Bow-Tie analysis, dispersion models, fire and explosion models. Also, the analysis must consider the 

presence and effects of preventive and protective measures, also called safety barriers, installed to prevent, 

mitigate, or control unwanted events (Sklet, 2006). In fact, barrier assessment and management is an integral 

part of Risk management (Petroleum Safety Authority, 2013) and requires an in-depth understanding of 

technical, operational, and organizational measures installed to reduce risk, including safety-critical 

equipment, such as the alarm system and fire protection devices, as represented in Figure 2. 

 

Figure 2. Layers of defense against a possible accident. Adapted from (Center for Chemical Process Safety, 2010). 

The third activity, called Risk treatment, allows the selection and implementation of additional preventive 

and protective measures to lower the risk and meet the risk acceptance criteria. When the residual risk is 

deemed acceptable, this activity guides the formulation of a strategy to manage and operate safety barriers, 

along with performance criteria to measure their performance. 
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The fourth activity involves recording, reporting, and communicating the outcome of the analysis to internal 

and external stakeholders in order to (i) ensure that risk management activities are communicated and 

disseminated across the organization and (ii) enable risk-informed decision-making. 

The last activity, called “Monitoring and review”, ensures that the risk management process and its outcomes 

are periodically reviewed and improved to guarantee their quality. This is a continuous activity that 

permeates the entire Risk Management process. It assumes particular importance in the operational phase, 

ensuring that the plant operations align with assumptions, requirements, and technical conditions. The 

monitoring and review activity aims to ensure that conditions within the plant do not deviate from the 

assumptions made during the risk assessment activity, guaranteeing that estimated risk levels remain valid 

through the entire plant lifecycle. This multifaceted activity involves monitoring the performance levels of 

safety barriers, coupled with the formulation of precise protocols that solidify technical integrity, covering 

areas like startup, shutdown, inspection, and maintenance procedures. The activity acts as a bulwark against 

potential deviations and loss of control over risk-influencing factors, effectively preventing the potential 

transformation of unforeseen deviations into incidents or accidents. Furthermore, the monitoring and review 

phase ensures that valuable lessons are derived from incidents, should they occur, preventing their 

reoccurrence and improving the effectiveness of the RM process. 

2.1.2. Limitations of traditional risk management 

While playing a pivotal role in controlling risks and ensuring safe operations, RM remains a relatively young 

and ever-evolving discipline with some inherent limitations (Villa et al., 2016).  

Firstly, traditional RM appears not to offer and support an effective learning strategy, resulting in the 

reoccurrence of similar accidents. In fact, several authors have pointed out that “the chemical industry as a 

whole does not learn from its past mistakes” (Chung and Jefferson, 1998). After more than 10 years, Pasman 

(2009) and Le Coze (2013) noted that little progress has been made; similar accidents keep happening, and 

organizations struggle to derive and apply lessons from past accidents. 

Another limitation of RM is that it produces static results, while the risk is dynamic and varies as the plant 

ages and operative conditions change (Kalantarnia et al., 2009). In fact, Risk Assessment – one of the core 

activities of risk management – returns a static risk picture, which is limited to reflect the risk level in a very 

specific plant configuration, but cannot be used to estimate how the risk varies with time. Due to the 

substantial efforts demanded by the techniques used to assess risk levels, the Risk Assessment activity is 

typically re-iterated only every five years, in conjunction with major changes in the plant configuration or 

operation, or after major accidents (European Parliament Council of the European Union, 2012). However, 

conditions within process plants are dynamic and constantly evolving (Paltrinieri and Reniers, 2017). 

Equipment ages and degrades, and operational conditions can be altered due to technical failures, feed 

variability, wrong settings, improper methods,  and human actions (Hashemi et al., 2014), such as the 
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misinterpretation of an alarm. In this context, traditional RM lacks in comprehensively addressing potential 

issues, as its instruments are not designed to be easily updatable and capture fluctuations in risk arising from 

process deviations (Kalantarnia et al., 2009). 

Another criticism of the RM process is that formal probabilistic risk analysis techniques, such as fault trees 

and event trees, rely on “hard” logic (e.g., “AND” and “OR” gates in bow-tie diagrams) to represent causal 

connections that are “soft” and “partial” in nature (Vatn, 2012). In other words, traditional RM techniques 

lack the capacity to effectively depict uncertain causal connections among risk-influencing factors, 

particularly when it comes to human and organizational factors, which are notably challenging to describe in 

probabilistic contexts (Vinnem et al., 2012). Furthermore, the increasing complexity of industrial facilities 

presents substantial obstacles, as conventional RM methods struggle to consider the interplay among the 

risk-influencing factors;  as their number increases, they become arduous to model and incorporate into the 

traditional framework (Villa et al., 2016). 

2.1.3. Dynamic Risk Management 

In response to the acknowledged limitations and criticisms leveled at the conventional RM process, recent 

research has shifted its focus toward investigating and shaping what is referred to as “Dynamic Risk 

Management” (DRM). This new discipline aims to proceed beyond the canonical RM process toward the 

definition of tools and methods that can capture the dynamic evolution of process conditions and their effect 

on risk levels (Paltrinieri et al., 2014a). 

Two of the main characteristics that differentiate DRM from its static counterpart are (Khan et al., 2016): 

• the utilization of a Dynamic Risk Assessment (DRA) activity, in opposition to the static Risk 

Assessment process discussed in Section 2.1.1; 

• strengthened and more efficient monitoring and review practices that allow for (i) simultaneous 

monitoring of numerous interconnected process variables, (ii) continuous tracking of process and 

operational modifications, and (iii) extraction and application of insights from previous failures and 

incidents. 

Dynamic Risk Assessment refers to a set of methods “that update estimated risk of a deteriorating process 

according to the performance of the control system, safety barriers, inspection and maintenance activities, 

the human factor, and procedures” (Khan et al., 2016). The difference between traditional RA and DRA lies 

in the tools used to produce the risk picture. DRA makes use of tools and techniques that are designed to be 

updatable, while the methods used in RA are static and difficult to update. This distinction becomes clearer 

with an analogy borrowed from the realm of photography: consider RA as resembling an older Polaroid 

camera. While capable of capturing multiple images, the intervals between shots are constrained by the 

camera’s mechanical limitations, rendering it unsuitable for capturing dynamic subjects. In contrast, Dynamic 

Risk Assessment (DRA) can be likened to a modern digital camera. Involving fewer moving components and 
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minimized downtime, it facilitates rapid image capture, akin to capturing even the most nuanced subject 

movements. Another important distinction is that DRA methods should be designed to consider information 

from the plant operations (e.g., from sensor measurements, maintenance activities, alarm logs) and about 

past failures and incidents. Such information is made available thanks to an improved monitoring and review 

phase. Therefore DRM involves a continuous exchange of information between the plant (e.g., from sensor 

measurements, maintenance activities, alarm logs) and DRA techniques in order to update the risk picture as 

conditions changes. As such, DRM strongly relies on data, both present – reflecting current process conditions 

– and past – shedding light into accident precursors and enabling proactive countermeasures. 

In recent years, research into Dynamic Risk Management (DRM) has experienced remarkable growth, largely 

propelled by technological advancements that have become deeply established within the manufacturing 

industry. Notably, the progress in remote sensing and the Internet of Things (IoT) has enabled the collection 

of a multitude of process variables. Concurrently, enhancements in storage capacities have facilitated the 

retention of extensive process data spanning numerous years. The development of accident databases has 

made information about past accidents easily accessible. Meanwhile, improved computational capabilities 

have opened doors to deploying advanced techniques such as Computational Fluid Dynamics (CFD), Finite 

Element Method (FEM), Digital Twins, Montecarlo simulations, Bayesian Networks (BN), and Machine 

Learning. Exploiting these enabling technologies, many researchers have harnessed their potential to craft 

tools suited for DRM. Notable examples include the use of Bayesian Networks for Dynamic Risk Assessment 

(Dimaio et al., 2021; Kalantarnia et al., 2009; Khakzad et al., 2018; Vinnem et al., 2012; Zeng et al., 2020; Zeng 

and Zio, 2018), the so-called DyPASI method for the dynamic identification of hazards (Paltrinieri et al., 2013), 

the Risk Barometer (Hauge et al., 2015; Paltrinieri et al., 2014b) for the monitoring of safety barriers and 

assessment of early deviations and accident precursors, and early attempts to leverage Machine Learning 

techniques and support DRA (Paltrinieri et al., 2019).  

However, despite the notable advancements, DRM may still be considered in its early stages. It is an 

ambitious and largely unexplored topic, facing challenges in garnering industrial backing and widespread 

adoption (Taleb-Berrouane and Pasman, 2022). Overcoming obstacles and limitations of existing DRM 

methods is imperative, including addressing the intricacies of modeling complex dependencies among risk 

factors and moving beyond point-based probability values, which overlook the inherent uncertainty tied to 

probability estimations (Khan et al., 2016).  

2.2. AI and Machine Learning 

Artificial Intelligence (AI) may be defined as “the part of computer science concerned with designing 

intelligent computer systems” (Barr and Feigenbaum, 1981). As the definition suggests, AI is a vast and ever-

changing field with different domains, methods, and applications such as Natural Language Processing, 

Computer Vision, Expert Systems, Robotics, and more (Finlay and Dix, 2020). Among the different branches 
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of AI there is Machine Learning (ML), which refers to “a set of methods that can automatically detect patterns 

in data, and then use the uncovered patterns to predict future data, or to perform other kind of decision 

making under uncertainty” (Murphy, 2012). In other words, Artificial Intelligence indicates the broader set of 

technologies designed to mimic the capabilities of the human mind, while Machine Learning may be seen as 

a subset of AI focusing on computer programs that improve their performance through experience. 

Machine Learning methods can be broadly divided into four macro categories: Supervised Learning, 

Unsupervised Learning, Semi-supervised Learning, and Reinforcement Learning. The choice of the most 

appropriate method depends on many factors, such as the nature of the problem under assessment, data 

availability, and the expected output. A brief description of each ML category is provided below and 

summarized in Table 2. 

Supervised Learning makes use of a set of existing observations to uncover the system dynamic and learn a 

mapping between input and output variables (Sammut and Webb, 2017a). The approach is used when the 

problem involves the prediction of an output measure, also called the “label”, given a set of input variables, 

also called the “features”. This approach is called “supervised” because it involves training an ML model using 

a labeled dataset, where each observation is associated with a corresponding output label. In other words, 

during the training process, the algorithm is “supervised” by providing the correct answers for a set of input 

data. Depending on whether the label is categorical or real-valued, there are two primary examples of 

Supervised Learning: Classification and Regression. Classification is used when the problem requires the 

categorization of observations into one or more classes. Instead, regression approaches are used when the 

problem involves the prediction of a real-valued label. 

Unsupervised Learning is used when no output measure is available or when the aim of the analyses is 

knowledge discovery rather than knowledge-based learning (Sammut and Webb, 2017b). In this approach, 

unlabeled observations are fed to the learner, which seeks to find latent structure in the feature space with 

little or no supervision. In other words, the model is not constrained to fit an expected output. Instead, it is 

free to explore the feature space in search of correlations and hidden structures between features, hence 

the term “Unsupervised”. Common examples of Unsupervised approaches are Clustering and Dimensionality 

Reduction. The former is used to group observations into clusters so that similar observations fall within the 

same cluster (Han et al., 2011). The latter is used to find low-dimensional structures hidden in high-

dimensional observations (Van Der Maaten et al., 2009). 

Semi-supervised Learning is used when there exists partial labeled information (van Engelen and Hoos, 2020). 

In other words, only a limited number of the samples have associated a label. This situation is frequent in 

real-world scenarios, where observations are abundant, but the labeling process is both time-consuming and 

resource-intensive, resulting in a scarcity of labeled data and a surplus of unlabeled data (Zhu, 2017). Semi-

supervised algorithms typically use labeled data to guide the learning process, helping the model understand 

the relationships between input features and their corresponding outputs. Meanwhile, unlabeled data aids 
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in capturing the underlying structure and patterns within the data. By incorporating information from both 

labeled and unlabeled examples, the model can make more accurate predictions and better generalize to 

new, unseen data points. 

Supervised, Unsupervised and Semi-supervised learning algorithms aim to map data from input features to 

outputs by minimizing a relevant cost function. Reinforcement Learning (RL) stands apart by introducing an 

agent and environment (Li, 2017). The agent makes decisions and takes actions in an environment to optimize 

rewards or penalties. Unlike other machine learning paradigms, RL typically doesn’t require labeled pairs or 

training samples. RL involves the definition of environmental and agent states, possible actions, and 

transition probabilities. Rewards or penalties characterize state transitions after actions. The agent’s goal is 

to maximize cumulative rewards while interacting with the environment, honing effective strategies to 

achieve specific tasks. 

Table 2. Summary of the five ML macro-categories. 

ML category Learning strategy Required input Tasks 

Supervised By examples Labeled examples • Classification 

• Regression 

Unsupervised By exploration Unlabeled examples • Clustering 

• Dimensionality reduction 

• Anomaly detection 

• Discover hidden patterns 

Semi-supervised Hybrid Labeled and unlabeled examples • Classification 

• Regression 

• Clustering 

Reinforcement Trial and error Agent-environment interaction • Skills acquisition 

• Optimize decision-making 

• Control strategies 

Machine Learning offers several potential advantages to overcome the challenges and limitations of actual 

RM strategies and proceed further to achieve the ambitious goals of DRM. Particularly: 

• ML is designed to make predictions under uncertainty. Considering that risk is uncertainty regarding 

events and their consequences (Aven and Renn, 2009), it appears evident that ML may offer valuable 

tools and techniques to support Risk Management. 

• ML can model complex nonlinear relationships among features, which is crucial considering the 

increasing complexity and interconnectedness of industrial environments. 

• ML models can generalize to previously unseen scenarios, which is highly relevant to process safety, 

where rare and unexpected events are common challenges.  
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• ML appears to be a valuable tool to take advantage of the wealth of heterogeneous data made 

available by the widespread digitalization of industrial processes in order to extract and retain safety-

relevant information. 

• ML learning models offer fast predictions, making them well-suited for handling large volumes of 

high-frequency data, effectively addressing the dynamic nature demanded by DRM techniques. 

The potential utilization of ML to enhance risk management has captivated safety researchers for the past 

two decades. In 1992, Diekmann (1992) stated that “future approaches to risk analysis will certainly rely more 

on the advances being made in artificial intelligence and the cognitive sciences”. While ML has been 

effectively employed in tasks like fault detection, diagnosis, and anomaly detection (Xu and Saleh, 2021), its 

application in the domain of DRM remains relatively underexplored, particularly in the context of chemical 

and process engineering (Hegde and Rokseth, 2020). Although recent contributions have showcased notable 

progress (Paltrinieri et al., 2019), the landscape remains fragmented, with numerous unaddressed topics and 

untapped potentialities. 
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3. Research questions

This Ph.D. project is motivated by the need to overcome the constraints of conventional RM methods and 

the requirement for the development of proactive strategies in process safety. AI and Machine Learning 

present a promising opportunity for crafting tools suited for DRM. Nevertheless, this area remains relatively 

underexplored. 

Dynamic Risk Management presents ambitious goals and necessitates addressing several challenges, 

including the requirement for dynamic methodologies capable of modeling intricate, nonlinear relationships 

between risk-influencing factors. In this context, Machine Learning holds a significant potential to improve 

and support DRM, particularly in the light of the prevailing digitization trends, the advances in computational 

capabilities, and the evolution of sophisticated data analytics algorithms. Despite these promising prospects, 

the exploration of ML within DRM is advancing at a measured pace. It is still unclear how and to what extent 

ML can contribute to the DRM paradigm. In this context, the research question that this project aims to 

answer is: 

“How can advancements in digital technologies and Machine Learning be harnessed to effectively 

address the objectives of Dynamic Risk Management?” 

Moreover, given the criticality of the “Risk Assessment” and “Monitoring and review” activities, and 

considering the burden associated with the tools traditionally employed to address these tasks, main 

research question can be segmented into three distinct subquestions, each delving into a specific facet of 

DRM. In particular: 

Question 1.1. “How can machine learning algorithms be developed or adapted to analyze historical 

accident data for more accurate consequence evaluation? 

Question 1.2. “What methodologies can be employed to use machine learning techniques for 

frequency estimation in risk assessment?” 

Question 1.3. “How can machine learning models be designed and implemented to continuously 

monitor, evaluate, and enhance the effectiveness of safety barriers?” 

The three research subquestions deal with the tangible impact of ML in enhancing and supporting DRM 

activities. However, in a rapidly advancing technological age, investigating the coexistence and synergies 

between ML and human expertise, as well as understanding the potential and limitations of ML approaches 

in guiding decision-making, stands as a crucial point of exploration in paving the way forward for effective 

and innovative Risk Management strategies. Therefore, in addition to exploring potential applications, it is 

crucial to investigate the broader implications of adopting this technology. Hence, a fourth research 

subquestion is considered: 

Question 1.4. “What are the potential and limitations of ML in supporting risk-based Decision-

Making?” 
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4. Objectives and scope 

The primary goal of this thesis is to contribute to the development of ML methods to enhance and support 

DRM within the chemical and process industry. This entails investigating the potentials and limitations of ML 

techniques, suggesting practical solutions for addressing various DRM tasks, and examining the implications 

and prospective roles of ML and humans in the future of DRM. To accomplish this goal, the following 

objectives are outlined, derived from the research questions presented in Section 3. 

Objective 1. Evaluate the current state of the art, identify gaps, potential areas, and limitations of ML 

techniques in the domain of Risk Management. 

Objective 2. Develop ML-based methods to support and promote Dynamic Risk Management. 

Objective 2.1. Explore the use of ML to extract safety-relevant knowledge from heterogeneous data 

sources and predict the consequences of major accidents; 

Objective 2.2. Investigate Machine Learning-based models to support the frequency evaluation of 

accidents involving dangerous substances; 

Objective 2.3. Explore ML methods to monitor, evaluate, and improve the performance of safety barriers. 

Objective 3. Investigate the potential and limitations of ML in supporting risk-based decision-making. 

Throughout this Ph.D. research, innovative tools and methodologies have been developed, highlighting the 

potential of ML in Dynamic Risk Management. However, it is crucial to highlight that the project does not 

address the practical challenges of deploying these techniques in real-world scenarios, especially the 

potential constraints on storage and computational resources. Moreover, the potential risks and 

cybersecurity concerns arising from these algorithms are not delved into in this study. Often, the proposed 

models aim to showcase the feasibility of the approach rather than being the definitive best in their category. 

Before any considerations can be made toward their full-scale integration into industrial IT systems, it is 

imperative that they undergo extensive testing in a real-world environment. 

4.1. Overview of publications in relation to the research objectives 

The connections between the publications achieved during the Ph.D. project (reported in Part II of the 

present document) and the objectives of the Ph.D. study are illustrated in Figure 3. Specifically, Article I 

contributes to Objective 1 by offering a review of the existing literature concerning the utilization of ML 

techniques to enhance the safety and reliability of engineered systems.  

Articles II to IV cover Objective 2.1 by proposing the use of classification models for predicting the severity 

of major accidents involving dangerous substances. In addition, Article IV partially addresses Objective 3 by 

describing the potential of ML techniques to aid risk-based inspection and maintenance activities. Article V 

proposes regression models to predict the Time-To-Failure of atmospheric tanks exposed to external fire, 
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supporting frequency evaluation in domino scenarios and, thus, addressing Objective 2.2. In addition, the 

methods described in Article V are specifically developed to account for the effect of safety barriers, 

providing a practical contribution to Objective 2.3. Articles VI to IX contribute to Objective 2.3 by focusing 

on ML methods to improve and monitor industrial alarm systems, providing proactive tools to address alarm 

chatter, evaluate the response of control room operators, and perform online classification of alarm floods. 

It is also worth noting that Article VIII partially addresses Objective 3 because it discusses the use of 

classification models to support and guide control room operators by providing live feedback on the efficacy 

of their actions. Articles X and XI further contribute to Objective 2.3 by describing a hybrid approach, 

featuring traditional risk assessment techniques, regression models, and resilience analysis, aimed at 

evaluating alternative safety barrier configurations in environmentally critical facilities. 

The last contribution, Article XII, delves deep into Objective 3, exploring the intricate interplay between 

human expertise and AI, critically examining their respective contributions. The discussion is supported by 

an interesting case study involving the use of unsupervised learning to categorize countries based on their 

similarity toward natural disaster exposure. 

 

Figure 3. Illustration of the objectives of this thesis and their link with the publications reported in Part II. 
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5. Research methodology

Research methodology refers to a systematic approach that guides the resolution of a research problem. It 

can be viewed as the scientific study of how research is conducted (Kothari, 2004). In essence, research 

methodology involves understanding how research is systematically planned, executed, and validated.  

This section describes the methodology adopted in this Ph.D., providing details about the type of research 

conducted (Section 5.1), interdisciplinarity characteristics (Section 5.2), type of research approaches utilized 

in each publication (Section 5.3), and criteria utilized to ensure the quality of the scientific production (Section 

5.4). Table 3 provides a summary of the research approaches and quality assurance methods adopted in each 

article. 

Table 3. Overview of the research approach and quality assurance criteria for each article included in this Ph.D. thesis. 

Article no. Research approach Quality assurance 

I Mixed - Submitted to a peer-reviewed journal
- Expert judgment

II Quantitative - Publication in a peer-reviewed journal
- Expert judgment
- Test on a real case study

III Quantitative - Publication in a peer-reviewed journal
- Expert judgment
- Test on a real case study

IV Qualitative - Publication in a peer-reviewed conference
- Expert judgment

V Quantitative - Submitted to a peer-reviewed journal
- Expert judgment
- Test on a real case study

VI Quantitative - Publication in a peer-reviewed conference
- Expert judgment
- Test on a real case study

VII Quantitative - Publication in a peer-reviewed journal
- Expert judgment
- Test on a real case study

VIII Quantitative - Publication in a peer-reviewed conference
- Expert judgment
- Test on a real case study

IX Quantitative - Publication in a peer-reviewed conference
- Expert judgment
- Test on a real case study

X Quantitative - Publication in a peer-reviewed conference
- Expert judgment
- Test on a real case study
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XI Quantitative - Publication in a peer-reviewed journal 
- Expert judgment 
- Test on a real case study 

XII Mixed - Publication in a peer-reviewed conference 
- Expert judgment 
- Test on a real case study 

5.1. Research types 

The Frascati Manual (OECD, 2015) defines three types of research activities: 

• Basic research; 

• Applied research; 

• Experimental development. 

Basic research refers to experimental or theoretical work undertaken primarily to acquire new knowledge of 

the underlying foundations of phenomena and observable facts, without any particular application or use in 

view. Applied research indicates original investigation undertaken in order to acquire new knowledge. It is, 

however, directed primarily towards a specific, practical aim or objective. Finally, experimental development 

refers to systematic work, drawing on knowledge gained from research and practical experience and 

producing additional knowledge, which is directed to producing new products or processes or to improving 

existing products or processes. 

Furthermore, research activities must possess five fundamental criteria (OECD, 2015); these include: 

• Novelty; 

• Creativity; 

• Uncertainty; 

• Systematic approach; 

• Transferability and/or reproducibility. 

The research activities carried out within this Ph.D. predominantly align with the concept of applied research, 

particularly evident in the context of Objective 2, which is notably specific and pragmatic. The majority of the 

published articles are supplemented with real-world case studies, underscoring their explicit applicability. 

Nonetheless, some investigations also transcend into the domain of fundamental research due to their 

broader scope and engagement with underlying principles. For instance, the publications supporting 

Objective 3 delve into the potential and limitations of ML techniques in the context of RM and risk-based 

decision-making, tackling foundational topics such as expanding digitalization, the role of data-driven 

methodologies in enhancing safety and reliability, and the interplay of humans within the digital safety 

paradigm. Therefore, the research pursuits of this Ph.D. exhibit a hybrid character, positioning them at the 

confluence of applied and basic research. 
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Moreover, the research activities carried out within this Ph.D. adhere to the five fundamental criteria 

outlined above. Specifically, the research aimed to address gaps in knowledge and to propose innovative 

techniques and methodologies (novelty criterion). The methods employed and their applications showcase 

originality and are grounded in non-obvious concepts (creativity). The outcomes of the analyses were not 

predetermined, often necessitating adjustments in the research goals and a certain degree of trial and error 

to achieve the desired results (uncertainty). Furthermore, the research activities were meticulously planned 

and executed with a systematic approach. The findings have been disseminated through publication in peer-

reviewed conferences and journals, contributing to their transferability. Additionally, the approaches, 

methods, and algorithms employed have been thoroughly documented, ensuring their reproducibility. 

5.2. Interdisciplinarity 

Interdisciplinarity stands as an essential requirement for addressing intricate phenomena present in reality 

(Stoop et al., 2017). Safety in the chemical and process industry is certainly a multifaceted field that deals 

with complex phenomena and requires a broad set of knowledge, including an understanding of the design 

and operations of industrial plants, physical phenomena, behavioral science, regulations, and statistical 

modeling. Furthermore, this research concerns the use of Machine Learning algorithms, increasing the 

complexity and introducing elements of data science and programming. Therefore, this Ph.D. study meets 

the requirements of interdisciplinary research (Pruzan, 2016) 

5.3. Research approach 

Research activities follow three primary approaches (Creswell, 2014): 

• quantitative; 

• qualitative; 

• mixed. 

These approaches, although distinct, can sometimes overlap. Quantitative and qualitative methods both 

involve using data to enhance understanding, with the former relying on numbers and the latter on words 

(Creswell, 2014). Actually, quantitative research focus on confirming relationships between measurable 

variables, often through statistical analysis. On the other hand, qualitative research interprets textual data 

gathered from interviews and observations. The mixed research approach combines both quantitative and 

qualitative methods. This synthesis aims to offer a thorough understanding of research problems, capitalizing 

on the strengths of each approach. By merging statistical rigor with interpretive insight, mixed research 

bridges the insights from pure quantitative and qualitative approaches (Johnson and Christensen, 2015). 

Most of the research activities carried out in this Ph.D. follows a quantitative approach since they offer formal 

analyses supported by case studies. Only three articles (i.e., I, XII, and IV) follow mixed and qualitative 

approaches. Specifically, article I follows a mixed method since it couples narrative review (NR) with the 
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statistical findings of a systematic review (SR). Similarly, Article XII may be considered mixed since it provides 

a narrative discussion on foundational issues supported by data from a specific case study. On the contrary, 

Article IV follows a qualitative approach since it discusses how the methods described in Articles II and III  

may be used to support Risk-Based Inspection (RBI) methodologies. 

5.4. Quality assurance 

The Articles presented in Part II have either been published or are currently undergoing revision in peer-

reviewed journals or conferences. This rigorous process ensures that the research meets stringent scientific 

standards and undergoes meticulous evaluation by an impartial team of subject matter experts. The constant 

guidance of the two supervisors has ensured the quality of results and methodologies, as they have not only 

provided crucial support but also delivered critical feedback that has refined the outcomes of this research. 

Furthermore, collaborative efforts with co-authors from other departments and institutions have 

substantially enhanced the significance and overall quality of the research. Additionally, all the proposed 

methodologies were rigorously tested through real-world case studies, affirming their quality and 

applicability.
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6. Research method 

This section provides a brief overview of the methods utilized during the Ph.D. study. Additional details on 

these methods can be found in the publications (Article I – Article XII). 

6.1. Narrative and systematic review 

Literature reviews play an important role in research, offering insights into previous work, avoiding 

redundant efforts, and highlighting potential areas for new research. Two main methodologies for 

conducting literature reviews are the Narrative Review (NR) and the Systematic Review (SR). Ferrari (2015) 

describes a Narrative Review as a summarization of previous literature, focusing on identifying existing 

research, preventing redundancy, and pinpointing uncharted study domains. Typically, an NR introduces the 

content, scope, and objectives, followed by a structured search of literature based on chosen criteria, and 

culminates in a comprehensive discussion and conclusion, similar to conventional scientific publications. In 

contrast, a Systematic Review adopts a more rigorous and reproducible approach, seeking to answer well-

defined research questions through systematic identification, selection, and critical appraisal of pertinent 

studies. The PRISMA Statement (Preferred Reporting Items for Systematic Review and Meta-Analysis) 

(Liberati et al., 2009) describes a comprehensive framework for conducting a systematic review. The process 

involves four phases: 

1. Identification of relevant articles through database screening. 

2. Screening of the records’ title and abstract to remove duplicates and unrelated articles 

3. Eligibility assessment of screened records based on manual analysis of the full-text articles. 

4. Inclusion and analysis of the eligible records. 

This method mandates transparent documentation of every step, from the exact search queries to the 

chosen filters, databases, and exclusion criteria. Moreover, the systematic exploration of broad databases in 

SRs typically yields a substantial number of articles. Consequently, dedicated software and tools are regularly 

utilized to analyze these data.  

While both methodologies aim to synthesize existing literature, the NR offers a broader, more descriptive 

perspective, whereas the SR is more structured, focused, and exhaustive in its approach. It must be noted 

that despite the thoroughness of SR, the possibility of omitting relevant articles always exists, emphasizing 

the need for meticulousness and acknowledging inherent limitations. 

In Article I, a hybrid methodology is adopted, aiming to merge the advantages of both narrative and 

systematic reviews. More details on the specific methods and findings can be found in Section 7.1. 
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6.2. Data preparation 

Data preparation encompasses a range of activities focused on gathering, cleaning, transforming, and 

manipulating data to facilitate subsequent analyses and ensure that data are well-suited for ML algorithms 

(Abdallah et al., 2017). It serves as the foundation upon which all subsequent analyses are built, significantly 

impacting the validity and reliability of the outcomes. Poorly prepared or preprocessed data can introduce 

noise, bias, or inaccuracies, ultimately skewing the results, affecting the model performance, and leading to 

potentially erroneous conclusions (Jain et al., 2020). Therefore, a meticulous approach to data preparation 

and preprocessing is not just advisable but essential for the integrity of any study making use of ML 

techniques. 

Typically, data preparation involves the following activities: 

1. Data gathering; 

2. Feature selection; 

3. Data cleaning; 

4. Data transformation; 

5. Data partitioning. 

A brief overview of each activity is provided in the following paragraphs. 

6.2.1. Data gathering 

Data must be extracted from relevant data sources or created through simulations. Specifically, data may 

come from one of three sources: 

a. Extracted from historical databases at the real plant: In this scenario, data are extracted directly from 

the plant storage systems. The type and amount of data to extract are generally guided by 

experience, although some guidelines may be found in the literature (Stanula et al., 2018). 

Constraints of the specific system under study must also be considered, as many plant components 

may have limitations on the volume of data that can be extracted. It is crucial to ensure that the data 

adequately represent the phenomena being studied. If the plant allows for real-world testing and 

experimentation, a meticulously planned Design of Experiments (DOE) should be implemented to 

maximize the information obtained while minimizing the data and experimental needs. Real alarm 

data from a plant for ammonia production were used in Articles VI, VII, and VIII, while process data 

from a waste incineration facility were used in Articles X and XI.  

b. Extracted from digital repositories: In this case, data have already been sourced and made available 

online. The data might have undergone some level of preprocessing or manipulation, which could 

improve their quality and reduce the time needed for further preprocessing. However, these 

datasets are generally less customizable, limiting the ability to acquire additional or different types 

of data. Articles II, III, and XII deal with data extracted from digital accident databases. 
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c. Generated through computer simulations: Data can also be produced using computational methods 

such as CFD simulations, FEM, or process simulators. This option offers the highest degree of 

customizability, as it allows the researcher to explore different aspects of the studied phenomena. 

Nevertheless, the simulation setup should be carefully designed to maximize information yield while 

minimizing computational load. Simulated alarm data are used in Article IX, while data from a 

lumped-parameter model are used in Article V. 

Regardless of the source, the data-gathering process usually results in a tabular-like dataset 𝒟, where each 

row represents an individual observation and each column indicates a characteristic or feature of the studied 

phenomena. Depending on the data collection methods, the dataset may contain numerous redundant or 

irrelevant features that require removal, a topic covered in the subsequent section. 

6.2.2. Feature selection 

Feature selection is a crucial step in the machine learning pipeline, aimed at identifying the most relevant 

variables, or “features”, for a given problem. This step is critical because choosing the right features can 

drastically improve model performance, while irrelevant, redundant, and noisy features can significantly 

affect the model performance (Wang et al., 2016). Techniques for feature selection often include statistical 

methods, like mutual information or chi-squared tests, as well as algorithmic approaches, such as recursive 

feature elimination and LASSO (Least Absolute Shrinkage and Selection Operator) (Li et al., 2016). These 

techniques help in removing redundant or uninformative features, thus simplifying the model, speeding up 

training, and improving interpretability. Feature selection is often a  manual and somewhat experimental 

process (Witten et al., 2011). It typically involves trial and error, where different subsets of features are 

evaluated for their effectiveness in prediction, and the model is refined accordingly. This iterative nature 

makes feature selection both an art and a science, requiring a deep understanding of the domain, the data 

at hand, and the nuances of various selection techniques. 

6.2.3. Data cleaning 

Data cleaning is the process of detecting and rectifying corrupt or inaccurate records within a dataset (Chu, 

2018). this practice addresses various data inconsistencies that could adversely affect the learning process, 

such as missing values, duplicated records, erroneous entries, and non-standardized representations of 

identical data (García et al., 2015). One common issue in data cleaning is the removal of duplicated or 

irrelevant observations. Duplicate records can distort statistical analyses and yield inaccurate 

representations of the data. Likewise, irrelevant observations can dilute the information content of the 

dataset and introduce noise into the ML models. Therefore, it is crucial to meticulously identify and remove 

these types of data to maintain the dataset integrity. Handling missing values is another critical aspect of 

data cleaning. The strategy for dealing with missing data depends on the type of data (e.g., numerical or 

categorical) and the nature of missing data (e.g., missing at random or not). In cases where missing values do 
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not significantly affect the dataset size or representativeness, entire observations may be removed. Likewise, 

if a feature is largely affected by missing values, it may be excluded from the dataset. As a general guideline, 

a missing rate lower than 15 % allows the elimination of missing instances without impacting the learning 

procedure (Strike et al., 2001). If the rate is higher, more advanced methods are recommended for managing 

the missing information  (Acuña and Rodriguez, 2004). For instance, missing values could be replaced with a 

constant value, such as the most frequent feature value for categorical data or the mean for numerical data. 

More sophisticated techniques, like interpolation or imputation, can also be employed to estimate missing 

values based on other dataset features (Donders et al., 2006). 

6.2.4. Data transformation 

Data transformation involves altering and consolidating raw data to enhance the efficiency of mining 

processes and facilitate easier pattern recognition by ML algorithms (Han et al., 2012). The transformation 

serves not only to enhance data interpretability but also to adapt the data to the requirements of the chosen 

machine learning methodologies. For example, Neural Networks and many other ML algorithms require 

numerical input. If the dataset contains categorical features, these must be converted into a numerical 

format using techniques like one-hot and multi-hot encoding, label encoding, and hashing (Hancock and 

Khoshgoftaar, 2020). 

Additionally, numerical data may be categorized or discretized to make data more interpretable or 

meaningful (Ramírez‐Gallego et al., 2016). An example would be converting a continuous numerical attribute 

like time of day into discrete intervals (“8-12 A.M.") or descriptive categories (“Morning” or “First work 

shift”). Discretization offers several advantages, such as reducing computational complexity and potentially 

improving algorithmic efficiency (Witten et al., 2011). However, it must be noted that discretization can also 

lead to loss of information. Careful consideration must be given to the number and range of categories used, 

as poorly chosen bins could hide significant trends or patterns in the data.(Witten et al., 2011). However, it 

must be noted that discretization can also lead to loss of information. Careful consideration must be given to 

the number and range of categories used, as poorly chosen bins could hide significant trends or patterns in 

the data. 

Normalization is another crucial step in data transformation, especially for algorithms sensitive to the scale 

of input features. Methods like min-max scaling and z-score normalization are used to standardize numerical 

attributes to fit within a specified range, thus preventing any single feature from disproportionately 

influencing the model’s performance. Normalization is particularly important for algorithms that utilize 

distance metrics, like nearest-neighbor classifiers, to ensure that features with a larger scale do not dominate 

those with a smaller scale. (Han et al., 2012). For example, if one feature is in the range of 0 to 1 and another 

is in the range of 0 to 1000, the latter feature could disproportionately affect the distance calculations, 

leading the algorithm to give it more importance than it may deserve. Also, feature scaling is essential for 
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algorithms that rely on gradient descent, like Neural Networks, because it facilitates convergence and speeds 

up the learning phase (Sola and Sevilla, 1997). 

Other transformation techniques can be highly beneficial depending on the nature of the problem at hand, 

such as dimensionality reduction techniques like Principal Component Analysis (PCA) or ISOMAP (Vlachos, 

2017), and noise reduction techniques (Xiong et al., 2006). 

6.2.5. Data splitting 

The dataset 𝒟 needs to be split into a set of independent datasets in order to allow for a fair and unbiased 

evaluation of the model’s performance and assess its ability to generalize over unseen data. Data splitting is 

predominantly done in supervised learning frameworks because the main objective is to train a model on 

one subset of the data (training set) and then evaluate its performance on another, unseen subset (testing 

set) using labeled outcomes. In unsupervised learning, where the primary tasks often include clustering, 

there are no predefined labels to predict or evaluate against, making data splitting for performance 

evaluation less applicable.  

The simplest data-splitting method is the so-called Holdout technique (Raschka, 2018), which involves 

splitting the dataset into two mutually disjoint subsets 𝒟𝑡𝑟𝑎𝑖𝑛 and 𝒟𝑡𝑒𝑠𝑡 

 𝒟 = |
𝒟𝑡𝑟𝑎𝑖𝑛

𝒟𝑡𝑒𝑠𝑡
| (1) 

𝒟𝑡𝑟𝑎𝑖𝑛 is used to train the model, while 𝒟𝑡𝑒𝑠𝑡 is utilized to evaluate its performance. Conventionally, 𝒟𝑡𝑟𝑎𝑖𝑛 

encompasses 80 % of the total observations, leaving the remaining 20 % for  𝒟𝑡𝑒𝑠𝑡. Before the split, the 

observations (i.e., rows of 𝒟) are shuffled to increase randomness and support an unbiased evaluation. The 

splitting procedure must be designed to prevent any information leakage from 𝒟𝑡𝑟𝑎𝑖𝑛 to 𝒟𝑡𝑒𝑠𝑡. For instance, 

when normalization is part of data preprocessing, it is essential to ensure that data are normalized after 

splitting, with 𝒟𝑡𝑒𝑠𝑡 being normalized solely using the statistical parameters (e.g., min, max, mean, and 

variance) from 𝒟𝑡𝑟𝑎𝑖𝑛. In other words, 𝒟𝑡𝑒𝑠𝑡 should mimic an independent set of observations, resembling 

new data input during real-world applications. 

Beyond the basic holdout approach, there are more sophisticated splitting methodologies that offer a deeper 

and more balanced model evaluation. One such method is the “𝑘-fold cross-validation” (Hastie et al., 2009), 

which divides the dataset 𝑘 mutually disjoint subsets. In this method, a single subset is used for testing, while 

the remaining 𝑘-1 subsets are employed for training. This process is replicated 𝑘 times, each instance utilizing 

a different test subset in order to provide a more comprehensive evaluation of the model’s performance. 

6.3. Machine Learning 

The following paragraphs describe the Machine Learning algorithms utilized throughout this Ph.D. project. 

Specifically, Section 6.3.1 describes classification and regression techniques, Section 6.3.2 focuses on 

clustering, and Section 6.3.3 illustrates Natural Language Processing. 
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6.3.1. Classification and regression 

Classification and regression algorithms aim to build a mathematical model that approximates the 

relationship between the features of an observation (𝑋𝑖) and its label (𝑌𝑖). This mathematical model may be 

approximated to a function (𝑓) with learnable parameters (𝜃) that convert the features of an observation 

into its label: 

𝑌𝑖 ≈ 𝑓(𝑋𝑖 , 𝜃) (2) 

The nature of the label depends on the specific problem at hand: 𝑌𝑖  is categorical in classification tasks, while 

in regression, 𝑌𝑖  is numerical. The internal structure of the function 𝑓, also called the “model”, depends on 

the specific ML algorithm chosen. 

Classification algorithms are utilized in Articles II, III, VI, VII, and VIII, while regression models are used in 

Articles V, X, and XII. Specifically, Articles II and III, aligning with Objective 2.1, propose the use of 

classification algorithms to predict the severity of accidents associated with hazardous substances. Articles 

VI, VII, and VIII, relevant to Objective 2.3, introduce classification models for monitoring and improving 

industrial alarm systems (see Sections 7.5 and 7.6 for more details). Article V, supporting Objective 2.2, 

describes a regression model to predict the Time-To-Failure of atmospheric tanks subjected to external fires 

(see Section 7.4). Finally, Articles X and XI, addressing Objective 2.3, describe how regression algorithms 

may be used to build data-driven process simulation models and support the evaluation of safety barriers in 

environmental-critical facilities (see Section 7.8). 

6.3.1.1. Training and evaluation 

The development of the ML model revolves around two phases: training and evaluation. In the training 

phase, the algorithm is provided with observations from 𝒟𝑡𝑟𝑎𝑖𝑛, where each observation consists of a set of 

features (𝑋𝑖) and an associated label (𝑌𝑖). The model adjusts its internal weights to map the features to their 

corresponding labels based on the provided training data. The tuning procedure aims to identify the optimal 

set of weights (𝜃∗) that minimizes the error between true labels (𝑌) and the predictions made by the model 

(𝑌̂) 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

[ℓ(𝑌, 𝑓(𝑋, 𝜃))] (3) 

where 𝑓(𝑋, 𝜃) = 𝑌̂ represents the model predictions, and ℓ indicates the loss function –i.e., a measure that 

quantifies the error between true and predicted labels. The choice of the most appropriate loss function 

depends on the specific problem at hand. A widely used loss function for regression tasks is the Mean Squared 

Error (𝑀𝑆𝐸) 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑁

𝑖=1
(4) 

where 𝑁 indicates the number of observations included in the training dataset. Instead, the Cross-Entropy 

(𝐶𝐸) is often used for classification tasks 
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𝐶𝐸 = −
1

𝑁
∑ ∑ 𝑦𝑖𝑗 log(𝑝𝑖𝑗)

𝑀

𝑗=1

𝑁

𝑖=1
(5) 

where 𝑀 represents the number of classes, 𝑦𝑖𝑗  is a binary indicator that takes value 1 if observation 𝑖 belongs 

to class 𝑗, and 𝑝𝑖𝑗  represents the model’s predicted probability that observation 𝑖 belongs to class 𝑗. 

After training, the model must be evaluated on a new, independent set of observations to test its prediction 

and generalization capabilities. The aim of the evaluation phase is to ensure that the model offers accurate 

and robust predictions, confirming that it can generalize the lesson learned during training to new, unseen 

data, and identifying issues like overfitting and underfitting (Goodfellow et al., 2016). During the evaluation 

stage, the observations included in 𝒟𝑡𝑒𝑠𝑡 are fed to the model, which predicts their labels according to the 

knowledge extracted from the training dataset. Predicted labels are compared to true labels to evaluate the 

model performance. A variety of performance metrics may be utilized to quantify the prediction capabilities. 

For example, some of the most widely used performance metrics for regression tasks include the MSE (Eq. 

4), the Root Mean Squared Error (RMSE), and the coefficient of determination (𝑅2) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (6) 

𝑅2 = 1 −
∑ (𝑌𝑖 − 𝑌̂𝑖)𝑁

𝑖=1
2

∑ (𝑌𝑖 − 𝜇)𝑁
𝑖=1

2
(7) 

where 𝜇 indicates the mean of the true labels. 

Instead, the performance of a classifier is evaluated based on the number of correct and wrong predictions. 

For example, consider a binary classification problem where observations belong to two mutually exclusive 

classes, namely “1” and “0”. When the model makes a prediction for a given observation, there are four 

possible outcomes: 

 

• TP = True Positive –i.e., 𝑌̂𝑖 = 1, 𝑌𝑖  = 1; 

• TN = True Negative –i.e., 𝑌̂𝑖  = 0, 𝑌𝑖  = 0; 

• FP = False Positive –i.e., 𝑌̂𝑖 = 1, 𝑌𝑖  = 0; 

• FN = False Negative –i.e., 𝑌̂𝑖 = 0, 𝑌𝑖  = 1. 

The sum of True Positives and True Negatives yields the number of correct predictions, whereas the sum of 

False Positives and False Negatives provides the number of incorrect predictions. True Positives, True 

Negatives, False Positives, and False Negatives are typically condensed into more meaningful metrics: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(10) 
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The choice of the most appropriate metrics largely depends on the problem under assessment. Different 

metrics offer various perspectives, and multiple metrics might be considered depending on the specific 

context or objectives. For example, suppose the problem involves the prediction of rare events (classes). In 

that case, the accuracy might not truly reflect the model’s performance since a high accuracy can be obtained 

by always predicting the most frequent class. Here, precision and recall should be considered. Likewise, if the 

classes have unequal misclassification costs, meaning that misclassifying observations that belong to class 

“1” has more severe consequences than misclassifying observations of the other class, more emphasis should 

be put on the recall. Often, Precision and Recall are considered together in the so-called F-score measure 

(𝐹𝛽) 

𝐹𝛽 = (1 + 𝛽2)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙
(11) 

where 𝛽 ∈ ℝ+ is a coefficient that determines the tilt toward precision or recall. If 𝛽 > 1, the metric is recall-

oriented, meaning that the Recall is considered to be 𝛽 times more important than Precision. On the contrary, 

if 𝛽 < 1, the metric is precision oriented. Also, it is worth mentioning that specific training and evaluation 

strategies are available to address class imbalance (Hasib et al., 2020) and cost-sensitive classification 

(Fernández et al., 2018). 

6.3.1.2. Models 

With the rapid evolution of machine learning, there has been a proliferation of models for classification and 

regression. The model defines the mathematical structure of the function 𝑓 in Eq. (2) and the specific 

optimization procedure in Eq. (3). There are two main categories of models: parametric and non-parametric. 

Parametric models make an assumption on the functional form of 𝑓 (e.g., linear, exponential) and have a 

fixed number of internal parameters (i.e., weights). Instead, non-parametric models do not make any 

assumption on the form of  𝑓, and their number of parameters is flexible and dependent on the number of 

training samples. 

Three parametric models have been used and applied to address different problems in this Ph.D. project: 

linear models, Neural Networks (NNs), and Wide&Deep models, which are hybrid models comprising a linear 

part and a Neural Network part.  

Linear models represent the labels as a linear combination of the features: 

𝑌𝑖 = 𝛽0 + ∑ 𝑥𝑗 ∙ 𝛽𝑗

𝐾

𝑗=1
(12) 

Where 𝐾 ∈ ℕ represents the total number of features, 𝛽0 and 𝛽𝑗 indicate the model weights, and 𝑥𝑗 

represents the 𝑗th feature of the 𝑖th observation. Linear models are considered one of the simplest models 

in ML, and they are often used as a baseline to compare and evaluate the performance of more complex 

models. However, although simple, linear models are still widely used because they are fast, robust, 

interpretable, and perform well on large datasets (Brink et al., 2016). 
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Neural Networks are directed acyclic graphs that describe the relationship between features and labels 

through a set of nonlinear transformations of linear combinations. They can be described as a series of 

interconnected layers, where each layer contains multiple nodes or "neurons", as shown in Figure 4.  

 

Figure 4. Graphical representation of a Neural Network with K inputs (orange), three hidden layers (blue), and one output (green). 

𝑍𝑖
𝑗
indicates the j-th neuron in the i-th hidden layer, xi represents the i-th input, and y indicates the output. Calculations are shown on 

the bottom, where 𝜎 represents a nonlinear function, Wi indicates the matrix of the weights of the i-th layer, and bi represents the 
vector of the biases of the i-th layer. 

The first layer (orange in Figure 4), also called the input layer, receives the raw input data, with each neuron 

representing a single feature of an observation. After the input layer, there are one or more hidden layers 

(blue in Figure 4). Neurons in hidden layers are real-valued entities that are calculated through a nonlinear 

transformation of the linearly combined units in the previous layers. Specifically, a generic layer 𝑍𝑖 ∈ ℝ𝑀×1 

with 𝑀 neurons is computed as follows: 

𝑍𝑖 = 𝜎(𝑊𝑖 ∙ 𝑍𝑖−1  + 𝑏𝑖) (13) 

where 𝜎 is a nonlinear function, 𝑊𝑖 ∈ ℝ𝑁×𝑀 is the matrix of the weights, 𝑍𝑖−1 ∈ ℝ𝑁×1 is the layer preceding 

𝑍𝑖, and 𝑏𝑖 ∈ ℝ𝑀×1 is the vector of the biases. Finally, the output layer returns the model predictions. Neural 

networks excel at modeling complex, non-linear relationships. Their ability to generalize to new data and 

automatically extract relevant features from raw input sets them apart from many traditional algorithms. 

However, their intricate structures render them "black boxes," obscuring their decision-making processes 

and raising concerns about interpretability. Moreover, they demand significant computational resources, 

especially during training, which might necessitate specialized hardware. Also, Neural Networks are prone to 

overfitting and typically require large amounts of labeled data to perform optimally. 

Wide&Deep models feature a linear part and a Neural Network part, as shown in Figure 5. 
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Figure 5. Illustration of the Wide&Deep model. xLi indicates the i-th input the linear part of the model (yellow), while xDj represents the 
j-th input of the Neural Network part (blue). Adapted from (Cheng et al., 2016). 

During the training phase, linear and NN parts are jointly trained, meaning that the weights of the models 

are optimized simultaneously  (Cheng et al., 2016). This hybrid model has proven to combine the advantages 

of the linear and Neural Network models, minimizing their drawbacks and enhancing their qualities. 

6.3.2. Clustering 

Clustering algorithms aim to group observations into clusters in such a way that observations in the same 

clusters are similar to each other and different from the observations included in different clusters (Shultz et 

al., 2011). Classification and clustering both involve grouping observations. However, in classification, 

observations are provided with their true labels, and the goal is to learn the relationship between features 

and labels; it is a supervised technique with a clear map of how data should be categorized. Clustering, 

however, ventures into the territory of unsupervised learning. Without any knowledge of the true labels 

associated with observations, clustering algorithms explore the dataset, identifying patterns and groups 

based on inherent similarities. In essence, while classification operates with established categories, clustering 

discovers potential categories within the data itself. However, it is worth mentioning that some clustering 

methodologies have been adapted to utilize labeled examples (Qin et al., 2019). These approaches are not 

covered in this section since they were not used during this Ph.D. research. 

The development of a clustering algorithm is different from their supervised counterparts. The concepts of 

training and evaluation persist, but they manifest differently compared to classification tasks. Firstly, in 

clustering there is no requirement to split the data into training and evaluation sets, since the primary focus 

is on understanding the existing data, and there is no information regarding the true labels. Therefore, the 
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entire dataset 𝒟 is used to train the model, which identifies patterns and groupings without explicit external 

guidance or predefined labels. Secondly, the evaluation phase typically involves assessing the quality of the 

learned clusters using various metrics or visual examinations rather than measuring the accuracy against 

known ground truth labels, as is done in classification. 

The evaluation of a clustering relies on metrics that quantify the “quality” of a cluster without any apriori 

information. Therefore, the process is inherently more challenging than its supervised counterpart (Palacio-

Niño and Berzal, 2019). One widely used quality metric is the Silhouette index (𝑆) (Rousseeuw, 1987), which 

estimates how close each point in one cluster is to the points in the neighboring clusters. The Silhouette index 

is computed for each data point and is given by the formula 

𝑆(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max{𝑎(𝑖), 𝑏(𝑖)}
(14) 

where 𝑎(𝑖) is the average distance between the 𝑖th observation in a cluster and the other observations in 

the same cluster, and 𝑏(𝑖) is the smallest average distance between the 𝑖th observation in a cluster and an 

observation in a different cluster. The Silhouette index ranges between -1 and 1. A large value indicates that 

an observation aligns well with its assigned cluster and is distinctly separate from other clusters. Further, the 

average silhouette index provides insight into the overall quality of the clustering configuration. Specifically, 

an average silhouette value near 1 suggests optimal clustering. A value nearing 0 indicates potential overlap 

between clusters, while a value close to -1 implies that observations may have been grouped incorrectly. 

The realm of data clustering is rich with a variety of algorithms. The K-means clustering algorithm is among 

the most widely employed clustering methods. This model was used in Article XII to group countries based 

on their similarities in natural disaster exposure (see Section 7.9 for more details).  It evaluates the similarity 

between observations based on their distance to the nearest centroid (Mannor et al., 2011). Prior to training, 

the number 𝐾 ∈ ℕ+ of centroids (i.e., clusters) must be specified by the user. During training, the temporary 

position of centroids is randomly initialized, and observations are assigned to the nearest centroid. 

Consequently, a cluster consists of observations that are closest to a particular centroid. Subsequently, the 

algorithm follows these main steps: 

1. For each of the 𝑘 clusters, compute the new centroid coordinates, which are obtained as the mean 

of the features of the observations assigned to a cluster. 

2. Reassign observations to the nearest centroid, leading to potential changes in cluster memberships. 

This process is repeated until either (i) no observation shifts from one cluster to another after step 2 or (ii) 

the number of iterations exceeds a user-defined threshold. In other words, K-means clustering aims to group 

data by minimizing the within-cluster-sum-of-squares, which represents the distance between each data 

point and the cluster centroid. Often, the Euclidean distance is used to measure the distance between 

observations; therefore, the problem of finding the best clustering configuration {𝐶1, ⋯ , 𝐶𝐾} may be 

formulated as  
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
{𝐶1,⋯,𝐶𝐾}

(∑
1

|𝐶𝑘|

𝐾

𝑘=1
∑ ∑ (𝑥𝑖,𝑗 − 𝑥𝑖′𝑗)

2𝑝

𝑗=1𝑖,𝑖′∈𝐶𝑘

) (15) 

where 𝑘 ∈ {1, 2, ⋯ , 𝐾}, 𝐶𝑘 indicates the observations included in the 𝑘th cluster, |𝐶𝑘| represents the total 

number of observations in 𝐶𝑘, 𝑖 and 𝑖′ indicate two distinct observations in 𝐶𝑘, and 𝑝 ∈ ℕ+ is the number of 

features of an observation (James et al., 2021). 

K-means is a popular, efficient, and interpretable clustering algorithm. However, it is not robust to outliers 

and noise. Additionally, the results of the clustering procedure are affected by the initialization of centroids, 

thus leading to potential convergence to local minima rather than a global solution. Also, one of the main 

disadvantages of K-means is that the number of clusters needs to be specified in advance. Determining an 

appropriate value for 𝐾 is not trivial and often necessitates iterative exploration. For example, the clustering 

procedure may be repeated 𝑁 times with an increasing number of clusters (e.g., from 2 to 10). Subsequently, 

the optimal number of clusters might be identified by examining the average Silhouette index, seeking the 

number of clusters that maximizes this metric (Rousseeuw, 1987). An alternative evaluative approach 

involves plotting the number of clusters against their associated within-cluster sum of squares. Here, the 

point at which the rate of decline attenuates, often referred to as the “elbow”, can provide an indication of 

the optimal number of clusters (Shi et al., 2021). 

6.3.3. Natural Language Processing 

Natural Language Processing (NLP) refers to the broad set of methods and algorithms that aims to learn, 

understand, and produce human language (Hirschberg and Manning, 2015). The capabilities of such models 

have tremendously increased during the last few decades thanks to the advancements in Deep Learning and 

computational capabilities (Otter et al., 2021). Much progress has been made from the first neural network 

for Next Word Prediction and vectorial representation of words proposed by Bengio et al. (2003) to the 

ground-breaking OpenAI’s GPT-4 (OpenAI, 2023). Today, NLP models have become ubiquitous in our lives in 

many ways, such as text autocompletion (Chen et al., 2019), translation engines (Wang et al., 2022), fraud 

and fake news detection (Chen et al., 2017; de Oliveira et al., 2021), sentiment analysis (Solangi et al., 2018), 

and chatbots (Caldarini et al., 2022). 

NLP algorithms were used in Article IX, specifically addressing Objective 2.3, to detect hidden correlations 

between alarms and perform online identification of alarm floods. More details on the specific application 

are provided in Section 7.7, while the following focuses on the algorithm used for the analysis, namely 

word2vec. 

Word2vec (Mikolov et al., 2013) belongs to the branch of NLP that studies methods to represent words as 

vectors of real numbers in a high-dimensional space. This task, also called word representation and 

embedding, aims to represent words and their contextual relationships in a machine-understandable 

manner. In fact, as discussed in Section 6.2.4, most ML models cannot process categorical data (i.e., words), 

which must be converted into numerical features prior to the analysis. Simple techniques such as one-hot 
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encoding may work well with tabular data, where features typically assume a relatively limited number of 

unique categorical values. However, human language is highly articulated, the vocabulary comprises 

thousands of words, leading to a sparse and inefficient representation. Also, one-hot encoding and other 

simple encoding techniques cannot represent semantic information, which is a substantial limitation when 

dealing with human language. Therefore, the dynamic and rich nature of natural language necessitates more 

sophisticated methods, like word2vec, to capture the depth and breadth of linguistic relationships. 

Word2vec takes a large corpus of text as input and learns to predict the context in which words occur based 

on their co-occurrence patterns. It offers two variants: Continuous Bag-of-Words (CBOW) and Skip-Gram. 

The CBOW model predicts the target word given the surrounding context words, while the Skip-Gram model 

predicts the context words given the target word. In Article IX, the Skip-gram architecture was used. 

However, before describing the model functioning, it is worth clarifying the meaning of “target” and 

“context” words. 

In general, the context of a word in a sentence may be described by the words preceding and succeeding it. 

Considering that alarm floods are ordered sequences of alarms, and alarms are presented to operators as 

words (i.e., LI201.LL to indicate a low-level alarm triggered by the level indicator 201), we assume that the 

context of an alarm in an alarm flood sequence may be defined by the alarms preceding and succeeding it.  

Specifically, consider an alarm flood ℱ made of 𝑁 alarms, ℱ =< 𝑎1, 𝑎2, ⋯ , 𝑎𝑁 >, where 𝑎𝑖  indicates the 𝑖th 

alarm, and let 𝜔 ∈ ℕ+be a user-defined variable. The “context” alarms of the target alarm 𝑎𝑖  are the 𝜔 alarms 

that precede and follow 𝑎𝑖, as shown in Figure 6.   

 

Figure 6. An example of target and context alarms in a flood. Here, 𝑎𝑖 represents the ith alarm, ℱ represents the incoming alarm flood, 
and ω is the user-defined parameter to determine the number of context alarms. Adapted from (Tamascelli et al., 2023) 

The Skip-Gram architecture of the word2vec model tries to predict the context alarms (red in Figure 6) that 

appear in a given window around a target alarm (green in Figure 6). The structure of Skip-Gram is shown in 

Figure 7.  
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Figure 7. Illustration of Skip-gram model, where the input layer is a K dimensional one-hot encoded representation of 𝑎𝑖, the 
embedding layer ℎ𝑖 is the 𝑉 dimensional representation of 𝑎𝑖, and the output layer is the conditional probability p(𝑎𝑘|𝑎𝑖), 𝑘 = 1, ⋯ , 𝐾. 
𝒲𝑖𝑛 and 𝒲𝑜𝑢𝑡 are the internal weights of the model. 𝒮 is the softmax transformation function. 

The model is a single-layer neural network that transforms a word (i.e., an alarm) (Input layer in Figure 7) 

into a vector of reals of dimension 𝑉 ∈ ℕ+ (Embedding layer in Figure 7) and returns the conditional 

probability of each alarm in the vocabulary being a context alarm (Output layer in Figure 7). Here, the 

vocabulary contains all the unique alarms configured in the plant. Specifically, the model takes as an input 

the one hot-encoded representation (𝒳 in Figure 7) of an alarm, say 𝑎𝑖  in Figure 7, and performs the following 

calculations 

  ℎ𝑖 = 𝒳 ⋅ 𝒲𝑖𝑛 11 

  𝓎 = ℎ𝑖 ⋅ 𝒲𝑜𝑢𝑡
𝑇 12 

  𝓎𝑝 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝓎) =
|

|

𝑝(𝑎1|𝑎𝑖)

𝑝(𝑎2|𝑎𝑖)

⋮

𝑝(𝑎𝐾|𝑎𝑖)

|

|
13 

Where ℎ𝑖 represents the embedding layer, 𝒳 indicates the one-hot encoding representation of 𝑎𝑖, 𝒲𝑖𝑛 and 

𝒲𝑜𝑢𝑡 are 𝐾 × 𝑉 matrices of the model’s internal weights, and 𝓎𝑝 represents the model output. Here, 𝐾 ∈

ℕ+ indicates the number of alarms in the vocabulary, and 𝑉 is a user-defined parameter that determines the 

size of the word embedding. Each row of 𝒲𝑖𝑛 contains word embedding of a specific alarm, whereas rows of 

𝒲𝑜𝑢𝑡 represent the contextual relationships between alarms. Together, 𝒲𝑖𝑛 and 𝒲𝑜𝑢𝑡 represent the 

model’s internal weights 𝜃 

  𝜃 = [𝒲𝑖𝑛, 𝒲𝑜𝑢𝑡] 14 

During the training process, the model iterates through alarms in an alarm flood, and 𝜃 is updated iteratively 

using backpropagation and stochastic gradient descent to minimize the negative log-likelihood of the 

observed context alarms given the target alarm. That is 

  𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

(−𝑙𝑜𝑔 ∏ 𝑝(𝑎𝑐|𝑎𝑖)

𝑐

) 15 
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Where 𝜃 indicates the updated model weights and 𝑐 represents the index of the true context alarm of 𝑎𝑖. In 

other words, referring to the example shown in Figure 6, 𝑐 = {𝑖 − 2, 𝑖 − 1, 𝑖 + 1, 𝑖 + 2}. 

After training, the vectors learned by word2vec capture semantic and syntactic similarities between alarms. 

Furthermore, the model can be used to predict the most probable contextual alarms given a target alarm as 

described (Eq. 13). These interesting properties have been leveraged to develop an alarm flood classification 

framework, where an ensemble of word2vec models is trained to learn contextual similarities between 

alarms generated by different fault conditions, and eventually used to identify the root cause of new alarm 

floods. 
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7. Contributions 

This section provides a concise overview of each Article, encapsulating key insights and principal findings. 

The connection between the Articles and the objectives outlined in Section 4 and represented applying a top-

down approach in Figure 3 is represented using a bottom-up approach in Figure 8, in order to better evidence 

the contribution of each single publication to the objectives outlined above. In the following paragraphs, 

articles are presented and discussed according to their topic. 



42 
 

 

Figure 8. Bottom-up approach to the link with research objectives of the Articles published within the Ph.D. study (reported in Part II). 
Articles are grouped into nine contributions according to their topic. 

7.1. Article I: determine the current state of ML for safety and reliability of 

engineering systems 

This article addresses the first objective by offering a review of the existing literature concerning the 

utilization of ML techniques to enhance the safety and reliability of engineered systems. The analysis 
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integrates a narrative review with statistical findings from a systematic review. The primary goal of this study 

is to give a comprehensive overview of the subject, elucidating trends, gaps, and potential opportunities for 

advancement. The examination delves into ML methods applied to diverse safety and reliability topics, 

encompassing fault detection and diagnosis, anomaly detection, system prognosis, reliability analysis, and 

risk assessment. By extracting and filtering relevant manuscripts from the Web of Science Core Collection 

database (Clarivate, 2022), a total of 273 pertinent articles were identified and analyzed. The narrative review 

provides comprehensive insights into each topic, including methodologies, challenges, and limitations. In 

parallel, the systematic review offers a statistical-oriented perspective, shedding light on the distribution of 

ML categories, tasks, data types, preprocessing methods, and algorithms. 

This hybrid approach, combining narrative and systematic analyses, permits to take advantage of the benefits 

of the two approaches. The narrative section provides readers with an in-depth overview of existing ML 

techniques for addressing the selected topics, guiding them toward the most relevant methods. In contrast, 

the systematic part supplies a statistical overview of current trends, providing interesting insights into the 

current landscape, highlighting gaps, and offering valuable perspectives that could shape the future role of 

ML in the realm of safety and reliability. 

Some of the most relevant findings of this study are as follows: 

• Supervised Learning is the most utilized approach for safety and reliability, primarily due to its ease 

of implementation and interpretability. 

• Unsupervised and semi-supervised approaches, although perceived as more challenging, have the 

potential to address complex dynamics and rare event patterns. 

• Most papers focus on fault detection, diagnosis, and location, followed by anomaly detection. Less 

emphasis has been placed on Risk Assessment, system prognosis, and reliability analysis. 

• Different ML categories are favored for different domains. For instance, supervised classification is 

prevalent in fault detection, while unsupervised and semi-supervised methods are prominent in 

anomaly detection and risk assessment. 

• Support Vector Machines, Neural Networks and Decision Trees are the most commonly used models. 

Decision Trees offer interpretability, while more complex models like Neural Networks tend to 

achieve better performance at the expense of being less interpretable. 

• Industrial, experimental, and simulated data are the most common, reflecting the increasing 

digitalization of industrial processes and IoT technologies. 

• Regulatory frameworks are evolving, with the European Commission proposing regulations on AI in 

safety-critical applications. Ensuring regulations keep pace with technology advancements is crucial. 

• The availability and quality of data play a pivotal role in accurate predictions and model reliability. 

Overall. The results confirm the growing prominence of ML in safety and reliability research, showcasing its 

potential to enhance safety and reliability in high-risk applications. 
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7.2. Articles II and III: predict the consequences of major accidents 

Articles II and III align with Objective 2, specifically addressing Objective 2.1, which concerns the 

development of ML methods to estimate the consequences of major accidents. Traditional methods for 

consequence estimation are ill-suited for dynamic frameworks as they require specialized models, such as 

emission, dispersion, fire, and explosion models, often requiring computationally intensive techniques (e.g., 

Computational Fluid Dynamics and Finite Element Analysis) for accurate estimates. In this context, articles II 

and III investigate the use of classification models (see Section 6.3.1) to (i) extract information from accident 

databases and (ii) use the acquired knowledge to predict the severity of major accidents in terms of number 

of fatalities and injuries. These contributions aim to showcase the potential of ML models in utilizing historical 

accident data and develop intuitive and computationally inexpensive models for consequence estimation. 

Article II establishes the foundational principles for applying ML to this task, while Article III takes a step 

forward by considering the issue of Transfer Learning (Pan and Yang, 2010), illustrating how knowledge 

extracted from a broad accident database can be harnessed to forecast the outcomes of technology-specific 

accidents. 

Article II introduces a generic framework for the development of ML models for the categorization of 

accidental events based on the number of people involved. The models are trained on historical accident 

data to learn the relationship between accident characteristics and accident consequences. The algorithms 

take as an input a set of intuitive accident features (e.g., the type and quantity of substance released, the 

accident type, the cause and origin of the release, the population density) and output the number of people 

involved in the accident. Five consequence categories (Table 4) are considered to reflect severity categories 

used by risk matrices and other risk analysis methods (ARAMIS project team, 2004). A One-vs-Rest approach 

is adopted. 

Table 4. Accident consequence categories. 

Severity Category Description 

NO no killed/injured 

1 – 10 from 1 to 10 killed/injured 

10 – 100 from 10 to 100 killed/injured 

100 – 1000 from 100 to 1000 killed/injured 

> 1000 more than 1000 killed/injured 

The article comprehensively encompasses all essential methodological phases, ranging from the extraction 

and preprocessing of data to the model evaluation. Also, hyperparameter tuning is discussed. The proposed 

approach is rigorously tested through a practical case study, utilizing accident data from the Major Incident 

Data Source (MHIDAS) database (AEA Technology, 1999). This contribution introduces innovative and 

valuable insights that hold potential in the creation of dynamic tools that may be employed to (i) assess the 

severity of different accident scenarios based on a set of readily available features, (ii) discriminate between 
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different severity levels and direct efforts to prevent/mitigate high criticality scenarios, and (iii) estimate the 

consequences of new accident scenarios without relying on computation-intensive techniques and detailed 

modeling. 

Article III builds upon the foundation established in Article II, expanding its horizons to assess the potential 

of ML algorithms in transferring knowledge extracted from a broad accident database to predict the 

consequences of accidents involving specific substances. This study delves into the realm of Meta-Learning, 

often referred to as “learning to learn”, which involves techniques aimed at emulating human capacity for 

generalizing and recalling prior experiences to enhance the efficiency of learning new tasks (Vanschoren, 

2018). While humans inherently possess transfer learning abilities, drawing on past experiences to tackle 

novel challenges, ML algorithms do not exhibit the same proficiency in this area (Pan and Yang, 2010). Thus, 

this research investigates Transfer Learning capabilities in extending ML applications for learning from 

historical accident data. A novel methodology is introduced, leveraging insights from general accident 

databases to forecast outcomes in technology-specific accident scenarios. The efficacy of the approach is 

evaluated using the Major Hazard Incident Data Service (MHIDAS) database for initial learning, while a 

tailored database capturing accidents within ammonia production is utilized for evaluating the Transfer 

Learning capabilities. In addition to expediting the development of consequence prediction models by 

minimizing data requirements, this approach enhances the generalization capabilities of machine learning 

algorithms.  

7.3. Article IV: investigate the use of ML for hydrogen Risk Based Inspection 

Article IV investigates the potentiality of ML methods to aid Risk Based Inspection (RBI) of equipment 

working in pure hydrogen environments. Specifically, it focuses on ML methods to estimate the 

consequences of accidents involving hydrogen, leveraging the findings of Articles II and III, and proposing a 

practical application of the methods described in those studies. Similar to Articles II and III, this contribution 

addresses Objective 2.1. In addition, by providing ML tools to aid maintenance activities, this contribution 

partially addresses Objective 3, which concerns the interplay between ML and human activities, exploring 

potential and limitations of utilizing ML techniques to support risk-based decision-making.  

The study focuses on addressing safety challenges associated with the growing adoption of hydrogen 

technologies. The peculiar thermophysical characteristics of hydrogen and its potential use in densely 

populated areas pose new challenges to ensure safety through the entire hydrogen value chain. In this 

context, the significance of inspection and maintenance activities cannot be overstated, as they play a pivotal 

role in safeguarding the physical integrity of equipment functioning with pure hydrogen. These efforts are 

vital to avoiding potential catastrophic consequences arising from hydrogen releases.  

Within the RBI framework, determining the Consequence of Failure (CoF) associated with specific equipment 

is essential for estimating risk levels and, subsequently, prioritizing inspection and maintenance activities 
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toward the most critical apparatuses. Existing methods for the estimation of the CoF require the 

incorporation of numerous input parameters or assumptions tailored to each distinct case. Article IV 

describes a simplified approach, where ML is used to take advantage of the historical accident data and 

provide a reliable estimate of the CoF without the need for intricate methodologies. The discussion maintains 

a qualitative outlook, highlighting the benefit of ML techniques to aid RBI but also stressing limitations, such 

as the lack of data regarding hydrogen accidents. In fact, while accident databases focusing on hydrogen have 

recently been developed (Wen et al., 2022), there still appears to be a significant data shortage, prompting 

the exploration of data from diverse sources and the potential application of Transfer Learning techniques. 

7.4. Article V: predict the Time-To-Failure of atmospheric tanks exposed to external 

fire 

Article V aligns with Objective 2 and specifically addresses Objective 2.2, which focuses on the development 

of ML methods to estimate the frequency of undesired events. Specifically, this contribution proposes ML-

based tools for estimating the Time-To-Failure (TTF) of atmospheric tanks exposed to external fire.  

Atmospheric tanks, commonly used for storing flammable liquids, present a significant risk due to the large 

quantities of hazardous substances involved. As industrial facilities grow more complex and densely packed, 

the risk of fire-triggered domino scenarios increases, emphasizing the need for effective escalation 

probability quantification. Established methodologies for the estimation of the escalation probability take as 

input the TTF of the unit targeted by fire (Cozzani et al., 2005). Unfortunately, the quantification of the TTF 

through rigorous modeling (i.e., by CFD and FEM simulations) is often excluded from risk assessment studies 

due to the need for highly specialized knowledge and computational resources. Empirical correlations have 

been proposed for faster calculation, enabling the Dynamic Risk Analysis of domino scenarios triggered by 

fire. However, such correlations suffer several issues, such as their restrictive assumptions and inability to 

consider the effect of safety barriers (e.g., deluge systems). 

Article V addresses these limitations by introducing ML models that can (i) provide an accurate and fast 

estimate of the TTF of atmospheric tanks exposed to external fire, and (ii) consider the effect of mitigation 

barriers. To this end, a lumped parameter model called RADMOD (Landucci et al., 2009) was used to simulate 

a large number of fire scenarios, encapsulating diverse atmospheric tanks subject to various fire conditions. 

The resulting failure data were used to train a Neural-Network model for the prediction of the TTF. The 

proposed ML model takes as an input the tank geometry (i.e., shell thickness, tank height, diameter, filling 

level), the fire characteristic (i.e., the total heat flux targeting the tank), and the characteristics of the safety 

measures (i.e., the barrier activation time and effectiveness) and outputs the TTF. Hyperparameter tuning 

strategies were implemented to ensure optimal performance. In addition, a model-agnostic method for the 

estimation of confidence intervals was implemented to enrich the model output and enable better-informed 

decision-making. The model achieved an RMSE equal to 1.66s for unmitigated scenarios (mean TTF = 269s), 
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and 71s for mitigated scenarios (mean TTF = 645s). The results were compared with existing simplified 

correlations for the calculation of the TTF (Landucci et al., 2009; Yang et al., 2023), proving the superior 

performance of the proposed NN model. 

7.5. Articles VI and VII: predict alarm chatter. 

Articles VI and VII align with Objective 2 and specifically address Objective 2.3, which focuses on the 

development of ML methods to monitor, evaluate, and improve the performance of safety barriers. 

Specifically, this contribution explores the use of ML to develop proactive tools for improving the 

performance of industrial alarm systems. 

As depicted in Figure 2, industrial alarm systems are one of the first layers of protection in preventing process 

deviations from escalating into hazardous events. Ideally, alarms should inform control room operators about 

dangerous deviations from normal operating conditions. However, improper alarm design may severely 

impact the efficacy of the alarm system (Izadi et al., 2009), leading to periods of intense alarm activity, also 

called alarm floods. During a flood episode, a large number of alarms are triggered in a short time span, 

impeding control room operators from identifying the causes of the abnormality and providing adequate 

response. Many of the alarms during such flood events are known as “chattering alarms” – i.e., alarms that 

rapidly transition between active and not active state in a short period of time (ANSI/ISA, 2016). Therefore, 

detecting and removing alarm chatter is paramount to decrease the number and severity of flood episodes. 

Chattering alarms may be defined as alarms that produce three or more records in one minute (Kondaveeti 

et al., 2010). They pose a significant nuisance to control room operators by significantly inflating the alarm 

count. Currently, chattering alarms are only addressed and removed retrospectively (e.g., during periodic 

audits). Hence, a proactive method that predicts future chattering based on past and current process 

conditions could greatly enhance alarm system performance. This proactive approach would empower 

control room operators with predictive insights, facilitating preventive measures and enabling real-time 

monitoring of the alarm system, as opposed to the conventional reactive approach that addresses alarm 

chatter only after it occurs. 

In this context, Articles VI and VII investigate how classification models can be used to predict future alarm 

chatter. While Article VI outlines a preliminary methodology, Article VII offers a comprehensive analysis by 

exploring diverse algorithms and delving deeper into the results. The approach described in these studies 

involves training ML classification models on historical alarm data in order to identify whether an alarm will 

exhibit chattering within the next hour. The algorithms take the characteristic of an alarm as an input (e.g., 

the instrument that triggered the alarm, the time of activation, the type of alarm) and output a binary label 

(𝑌𝑖  in Eq. (2)) assigning a value of 1 if the alarm is going to show chattering within the next hour, and 0 

otherwise. Historical alarm data are used to train the model, learning how present and past process 

conditions affect alarm behavior. The methodology has been demonstrated in a real case-study, taking 
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advantage of historical alarm data from an ammonia production plant. Three classification algorithms have 

been tested and compared: logistic regression, Feed Forward Neural Network, and a hybrid model 

incorporating both linear and Neural Network components. The results indicate that while all models exhibit 

remarkable performance, the Logistic Regression algorithm outperforms the others, offering accuracy, 

precision, and recall larger than 0.93. 

7.6. Article VIII: support control room operators’ response to alarms 

Article VIII explores the use of ML methods to support control room operators and improve the performance 

of industrial alarm systems. Specifically, it focuses on ML methods to predict the effectiveness of operators’ 

actions following process alarms. Similar to Articles VI and VII, this contribution addresses Objective 2.3, as 

it proposes ML-based approaches to improve the performance of industrial alarm systems. Contrary to 

Articles VI and VII, which focus on technical solutions to identify future alarm chatter, Article VIII explores 

how ML may be used to support and guide the operators by providing live feedback on the efficacy of their 

actions. Therefore, Article VIII also addresses Objective 3, which concerns the interplay between ML and 

human activities, exploring potential and limitations of utilizing ML techniques to support risk-based 

decision-making. 

In industrial alarm system, alarms are often configured with different levels of criticality. For instance, a 

process variable may be associated with a low-level alarm (LL), a very-low-level alarm (LTRP), a high-level 

alarm (HH), and a very-high-level alarm (HTRP). When a low criticality alarm is triggered (i.e., LL and HH) the 

operators should acknowledge the alarm, diagnose the situation, and eventually take corrective actions in 

order to restore normal operations. However, if corrective measures are not adequate to tackle the issue, 

the deviation may worsen, triggering critical alarms (i.e., LTRP or HTRP), leading to a plant shutdown or more 

serious consequences. In this context, Article VIII proposes an ML-based approach to predict whether a 

critical alarm will reoccur within 30 minutes after a low-criticality alarm is acknowledged the control room 

operators. Specifically, when an operator acknowledges an alarm, the ML algorithm takes as an input the 

features of the alarm being acknowledged, such as the instrumentation that triggered the alarm, the value 

of the process variable, and the timestamp, and returns a binary label that takes the value 1 if the algorithm 

predicts that a critical alarm will occur within 30 minutes, or 0 otherwise. Therefore, the ML model provides 

live guidance on the effectiveness of the operation actions, informing that different (\more effective) 

measures are required to resolve the situation. The model, specifically a Wide&Deep classification algorithm, 

was trained on a real industrial database. Threshold tuning was performed to increase the recall, which is the 

most meaningful metric considering the criticality of producing false negatives. Obtained recall and precision 

are 0.9 and 0.34, respectively. The results are promising, but several limitations need to be addressed. For 

instance, the dataset is heavily imbalanced, meaning that most alarms in the dataset have label equal to 0 

(i.e., they did not lead to a more critical alarm after the acknowledgment), while only a few events have label 
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equal to 1. This significantly impacts the model’s ability to learn from the minority class, leading to overfitting 

and high bias toward the majority class. 

7.7. Article IX: online classification of alarm floods 

Article IX aligns with Objective 2 and specifically addresses Objective 2.3, which focuses on the development 

of ML methods to monitor, evaluate, and improve the performance of safety barriers. Similar to Articles VI 

and VII, this contribution explores the use of ML for improving the performance of industrial alarm systems. 

Specifically, Article IX focuses on ML methods to identify the most likely causes of alarm floods. 

As previously mentioned, alarm floods (AFs) are periods of intense alarm activity characterized 10 or more 

annunciated alarms per 10 minutes per operator (ANSI/ISA, 2016). AFs are often cited in accident reports as 

contributing factors in major accidents, raising the need for better strategies to design, maintain, and operate 

industrial alarm systems. Unfortunately, identifying the causes of AFs is extremely challenging due to the 

large volume of triggered alarms, which often bury critical alarms under a plethora of uninformative ones, 

preventing the operators from diagnosing the issue. 

Online AF classification deals with the development of methodologies and algorithms to identify and 

categorize ongoing alarm floods. This allows for the early detection of potential root causes of abnormal 

conditions, thereby enabling plant operators to initiate corrective actions before situations worsen. Such 

online AF classification methods integrate well into a Dynamic Risk Management (DRM) framework, as they 

provide diagnostic tools that enable continuous monitoring of industrial alarm systems. 

Article IX introduces a novel approach to online AF classification through the use of Natural Language 

Processing (NLP) algorithms. The problem is reframed as an ‘authorship identification’ task, based on the 

assumption that different fault categories produce unique ‘fingerprints’ in the form of AF patterns. This is 

akin to how a text written by a particular author has distinctive characteristics, such as word usage, sentence 

structure, and length. In this view, a fault category (e.g., a valve stuck in an open position, or a malfunction 

of a specific control loop) can be considered an author describing a story related to the plant. Similar to how 

human authors use words to communicate, a fault communicates through alarms. Specifically, it produces 

episodes of AF, which can be regarded as a sentence of words. In other terms, we assume that a fault category 

uses alarms as words that form sentences (AFs), and these sentences are unique to that particular author 

(fault category). Consequently, the flood classification problem can be treated as an authorship identification 

problem, where an NLP model is trained on the writings of a specific author (fault) and then used to 

determine if a new flood belongs to that same author (fault category). Specifically, an ensemble of 

𝒩 word2vec models (see Section 6.3.3) was employed to learn contextual similarities between alarms in 

historical AFs, where 𝒩 ∈ ℕ+ represents the number of fault categories considered. A scoring system was 

also proposed to evaluate model predictions based on their ability to identify the correct contextual 

similarities, ultimately allowing the identification of the most probable fault category. 
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The approach has been tested on simulated alarm data and yielded encouraging results, achieving an 

accuracy rate higher than 0.77 for four out of the six fault categories examined. Despite these positive 

outcomes, the models were less effective in identifying AFs from two specific fault categories, indicating 

areas for future research. Potential improvements could include hyperparameter tuning, alternative NLP 

models, or a more sophisticated scoring system using metrics like Term Frequency-Inverse Document 

Frequency (TF-IDF) to assign greater importance to crucial alarms. 

7.8. X and XI: safety barrier assessment in environmental-critical systems 

Articles X and XI align with Objective 2, specifically addressing Objective 2.3, which focuses on the 

development of ML methods to monitor, evaluate, and improve the performance of safety barriers. These 

articles outline a robust, digitally-based framework that dynamically assesses safety barriers in 

environmentally critical industrial facilities. The proposed approach leverages traditional hazard-

identification techniques, data-driven simulation models, and resilience analysis to assess the efficacy of 

safety barriers, enabling the comparison between design alternatives and removing the need for on-site 

testing or simulation through first-principles models. 

Facilities with a considerable potential to harm the environment – such as Waste-to-Energy (WtE) plants – 

operate under strict pollution control guidelines, often deploying Flue Gas Treatment (FGT) systems to 

mitigate emissions of hazardous pollutants like nitrogen oxides (NOX), hydrogen chloride (HCl), and sulfur 

dioxide (SO2). In this context, it is critical to ensure that FGT systems perform as intended and that safety 

barriers installed to prevent or mitigate excessive emissions are correctly designed and operated. However, 

there is no established methodology to evaluate and optimize the performance of safety barriers in 

environmental critical systems. Current industry practices heavily depend on empirical analyses and 

extensive on-site testing, which not only are resource-intensive but also present challenges for maintaining 

regulatory compliance. Addressing this gap, Articles X and XI introduce a novel method that fuses 

conventional hazard analysis, a digital model of the FGT system, and resilience analysis. This hybrid approach 

enables the identification, simulation, and evaluation of safety barriers that may prevent or mitigate 

excessive emissions in case of process deviations. 

While Article X lays the foundational methodology and explores a basic case study, Article XI improves the 

framework and deepens the analysis, critically discussing the merits and constraints of this approach. The 

methodology employs a dual-tool strategy: it integrates classic risk assessment tools –used for identifying a 

set of critical scenarios that may lead to exceeding the emission limits and proposing additional safety 

measures– with modern, data-driven modeling techniques –used for the simulation of hazardous scenarios 

and assessment of the safety barriers, thereby sidestepping the need for unpractical field tests or first-

principles models. The digital model effectively acts as a ‘digital twin’ of the actual facility, allowing for 

simulations that mimic real-world disturbances and assess the effectiveness of safety barriers. Resilience 
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analysis supports the evaluation by providing quantitative metrics to compare different barrier 

configurations, thus aiding risk-informed decision-making. 

7.9. Article XII: investigate the role of ML and humans in the future of risk 

management. 

Article XII addresses Objective 3, which delves into the synergy between ML and human interventions, 

examining the advantages and challenges of leveraging ML methods to support risk-based decision-making. 

Specifically, the article delves into the intricate relationship between human expertise and AI, critically 

examining their respective contributions. It raises important questions about whether ML can autonomously 

control risks and to what extent human involvement will continue to be crucial in the future of Risk 

Management. 

The article discusses the evolving landscape of risk management, particularly as it enters its "4.0 phase" 

(Pasman and Fabiano, 2021) characterized by the increasing integration of cyber-technological systems and 

enhanced computational capabilities. While these advancements offer promising benefits like early warnings 

and proactive strategies, the article raises questions about whether digital risk management can fully live up 

to its promises. This contribution questions if recent advancements in AI and ML will eventually lead to a so-

called “no-brainer” Risk Management, indicating a condition in which the responsibility for human and 

system safety is entirely moved to the machine, relegating humans to the role of observators or mere 

executors of the decisions taken by the machines. 

To investigate these issues, the article describes an interesting case study involving the use of unsupervised 

learning –specifically, clustering algorithms– to categorize countries based on their similarity toward natural 

disaster exposure. The multifaceted nature of the associated RIFs, including environmental, social, and 

geopolitical elements, makes this a complex issue, even for experts in the field. This study aims to explore 

the effectiveness of clustering algorithms in extracting meaningful insights from disaster databases. The goal 

is to identify countries with similar exposure to natural hazards, thereby creating opportunities for 

knowledge sharing between nations. Concurrently, the research seeks to evaluate the level of autonomy 

achievable by ML algorithms, questioning the need for human involvement. This dual focus provides a 

forward-looking perspective on the evolving role of human and machine collaboration in risk management. 

Using data from the EM-DAT database, the k-Means clustering algorithm was applied (see Section 6.3.2). The 

results indicate that clustering algorithms can discern meaningful patterns, yielding informative clusters of 

countries with shared risk profiles, thus highlighting the potential for inter-country knowledge exchange. 

However, the most intriguing findings arising from the analysis of the case study concern the interplay 

between ML and human involvement. Despite its analytical power, ML does not eliminate the uncertainties 

intrinsic to risk assessment. Uncertainty persists in data adequacy, modeling choices, and prediction 

interpretations, necessitating ongoing human oversight throughout the entire ML lifecycle. In essence, ML 
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introduces new layers of uncertainty that demand human expertise for effective management. Hence, the 

study concludes that ML technologies should complement, not replace, human involvement in the Risk 

Management framework. This aligns with the European Commission's principles of 'trustworthy AI' 

(European Commission, 2021), which advocates for explainable AI that prioritizes interpretability, avoids 

information overload, and ensures transparency. The role of humans in employing these tools is thus more 

pivotal than ever, reinforcing the idea that ML serves as an aide, not a replacement, to human judgment. 
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8. Discussion

In this section, the contributions previously described are discussed. The discussion is divided according to 

the three main objectives of this thesis: evaluate the current state of the art of ML techniques in the domain 

of RM (Section 8.1), develop ML-based methods to support and promote DRM (Section 8.2), examine the 

interplay between Machine Learning and human actors in the future of Risk Management ( Section 8.3)  

8.1. ML techniques in the domain of safety and reliability 

Article I focused on investigating the current state of the art of ML applications for safety and reliability. 

Results suggest that since 2010, and particularly after 2017, the interest in ML has witnessed a remarkable 

surge. Several catalysts are behind this phenomenon, including the emergence of more sophisticated ML 

algorithms, advancements in computational power, greater accessibility to knowledge resources, and the 

availability of user-friendly tools that facilitate the development of advanced algorithms. Increased 

availability of labeled data due to advances in digitalization and simulation technologies has paved the 

dominance of supervised learning. However, it is pivotal to underline that this abundance primarily involves 

fault detection and diagnosis, which make large use of supervised techniques. In contrast, areas like risk 

assessment, given the infrequency of catastrophic events, face a notable data scarcity challenge, pushing the 

research toward unsupervised methods.  

The analysis of the relevant literature reveals a pronounced tilt toward fault detection, diagnosis, and 

anomaly detection. In contrast, domains like risk assessment, system prognosis, and reliability analysis 

remain relatively unexplored. This bias may be explained by considering that industrial systems frequently 

encounter faults and anomalies, leading to a richer dataset on these occurrences. Risk assessment, 

conversely, focuses on less frequent, large-scale mishaps. Such events, spreading across systems and deeply 

connected to human actions, showcase a diverse spectrum of initiating factors and consequences. 

Harnessing data-driven strategies to address risk assessment is, thus, inherently intricate, given the 

multifaceted dynamics and the diverse nature of the involved phenomena. 

In general, the findings indicate that ML is an emergent, influential trend in safety and reliability. With its 

ability to make predictions under uncertainty, ML can improve a wide range of domains, including predictive 

maintenance, early warning systems, and process monitoring. Yet, it is also worth acknowledging limitations 

and research gaps. Primarily, the challenge of training supervised models on infrequent events, hindered by 

the scarcity of labeled data. Also, a notable observation is that the use of ML for risk assessment in the 

chemical and process industry is largely unexplored, indicating a potential knowledge gap and underscoring 

the need for further exploration. Lastly, a detailed analysis of the research dynamics reveals potential 

bottlenecks. While several research groups are visibly active, inter-group collaborations seem sparse. Such a 
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segmented landscape can hinder the free flow of ideas and best practices. Amplifying collaborative initiatives 

is essential, as it can pave the way for interdisciplinary breakthroughs and accelerate the impact of ML on 

safety and reliability. 

8.2. ML-based methods to support and promote Dynamic Risk Management 

In this investigation, several methods have been developed to support different phases of DRM, including 

consequence evaluation (Articles II to IV), frequency estimation (Article V), and monitoring of safety barriers 

(Articles V to IX).  

Overall, the findings indicate that ML possesses the ability to derive safety-critical insights from data, 

subsequently leveraging this knowledge to enhance essential DRM tasks. These methods can capture the 

influence of subtle and uncertain RIFs, which are difficult or impossible to model through canonical risk 

management techniques. Most of the computational burden associated with the development of ML 

algorithms is required to train and optimize the models, while deployment and inference are relatively 

inexpensive both in terms of computational resources and time. In addition to continuous monitoring, ML 

also facilitates ongoing training. New observations can be seamlessly integrated into the models, consistently 

updating and refining their knowledge base, and enabling them to capture the dynamics of evolving and 

degrading processes. This makes these techniques particularly suitable for DRM applications thanks to their 

fast predictions and their inherent characteristic of upgradability. 

In addition, ML models, especially deep learning variants, have a unique capability to distill complexity. They 

can decipher and represent high-dimensional data spaces, extracting patterns and relationships from vast 

amounts of data that might be unintuitive to humans or that may be challenging to model through first 

principles. By modeling complex systems with fewer inputs, ML can help practitioners in the field of DRM. 

For example, instead of measuring many parameters (some of which might be hard to measure directly), 

they can focus on a select few, making the process more efficient and actionable. This is particularly useful 

in real-world industrial contexts where certain measurements can be costly, time-consuming, or technically 

challenging. 

Diving deeper into the merits of each contribution, Articles II to IV demonstrate that ML has the capability 

to glean insights from historical accident data, subsequently harnessing the acquired knowledge to forecast 

the severity of new scenarios. These contributions address a critical gap in process safety, standing as a 

pioneering endeavor in learning from the past and applying Transfer Learning to Chemical Process Safety, 

unlocking safety-related insights embedded in accident data. These methods are particularly relevant for 

DRM as they ensure that lessons from the past are not forgotten. In addition, they hold great potential to 

support dynamic methods for risk analysis. For example, they integrate well into Dynamic Probabilistic Risk 

Assessment (DPRA) frameworks, where the use of Dynamic Event Trees and Monte Carlo simulations often 

requires the evaluation of many accidental scenarios. The resulting computational burden is one of the main 



55 
 

challenges of DPRA. In this context, the methods proposed in this study can guide the analysis toward the 

most critical scenarios, significantly reducing the need for rigorous simulations. Nevertheless, while the 

results are promising, various challenges arose during the investigations. For example, the performance of 

the models decreased as more severe consequences were considered, revealing the challenges linked with 

learning from rare events, such as those causing a large number of fatalities or involving specific substances, 

like Hydrogen. In fact, dataset imbalance is confirmed as one of the main obstacles to supervised 

classification, hindering the model’s ability to learn infrequent events. This limitation may be partially 

mitigated by tuning the model parameters, as shown in Articles II and III. However, more advanced 

techniques, such as oversampling or class weighting, are needed to address the issue and allow the model to 

learn rare occurrences. In addition, classification schemes with unequal misclassification costs present 

unique challenges, such as the need for employing a multi-metric evaluation. In fact, reliance on metrics like 

accuracy can be misleading, as it might not reflect the true model performance. Thus, a comprehensive 

assessment, taking into account multiple metrics, becomes imperative to ensure the reliability and suitability 

of the classification scheme. Furthermore, the contributions on consequence predictions highlight the crucial 

role of data quality. The results demonstrate that incomplete or uncertain accident data markedly influence 

model performance. This underscores the limitations of many existing accident databases, which frequently 

contain inconsistent or incomplete information, stressing the importance of the data preprocessing activities, 

as discussed in Section 6.2. 

Article V showcases the capabilities of Neural Networks in predicting the TTF of atmospheric tanks exposed 

to external fires. The model's ability to forecast TTFs, while accounting for the impact of mitigation measures, 

paves the way for improved risk assessments and evaluation of cascading effects. For example, the approach 

can significantly benefit dynamic frameworks for the calculation of escalation probabilities in domino 

scenarios. Currently, these frameworks rely on simplified correlations that link the characteristics of fire 

scenarios to the TTF. However, such correlations provide an incomplete overview of the phenomena, not 

accounting for safety barriers, and producing inaccurate results. The approach proposed in this study 

addresses these limitations by providing a fast, accurate, and inherently dynamic tool. In addition, the 

calculation of confidence intervals permits a better understanding of the robustness of the predictions, 

allowing more informed judgments based on the level of confidence. Predictions are computationally 

inexpensive, and the required input is intuitive and easy to obtain, making the approach well-suited for the 

dynamic assessment of domino scenarios. The results highlight how the synergy between digital simulations 

and ML models can mitigate computational demands, ultimately expediting and improving predictions for 

complex accident scenarios. However, in spite of the promising results, it is also worth acknowledging some 

limitations of the proposed approach. For instance, simulated data used to train the model come from a 

lumped parameter model, which may introduce errors in estimating the TTF values. Incorporating more 

rigorous TTF data, such as those obtained from large-scale experimental set-ups and/or validated CFD and 
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FEM models, could enhance the performance of the models. Also, it has been observed that the evaluation 

of mitigated scenarios is more challenging, requiring a more complicated model, and leading to relatively 

larger errors than unmitigated scenarios. In this view, more efforts should be directed toward optimizing the 

network or testing more advanced ML algorithms. 

Articles VI to IX focus on the development of data-driven models for monitoring, evaluating, and improving 

safety barriers. In spite of the diverse approaches and applications, the studies show great potential, proving 

that ML models can learn from heterogeneous data and enable dynamic evaluation of safety barriers. 

Specifically, Articles VI to IX focus on industrial alarm systems, demonstrating how to harness ML techniques 

to build predictive methods that can link past and present process conditions to future alarm behavior. These 

versatile and dynamic tools can provide real-time guidance to control room operators and support the 

decision-making process under various scenarios. For instance, the approach detailed in Articles VI and VII 

offers early warnings for alarm chatter, allowing operators to investigate the issue in advance and eventually 

silence alarms before they become a nuisance. These models also forecast the end of a chattering sequence, 

letting operators promptly reactivate alarms and reducing the frequency of manual checks. Also, these 

techniques can consider the interaction between technical systems and operators’ actions, as discussed in 

Article VIII, factoring in the complex interplay between these two actors in their predictions. Article IX 

significantly contributes to the field of online flood identification by proposing a novel, efficient, and accurate 

method. The findings suggest that ML, especially NLP algorithms, holds considerable promise in addressing 

alarm floods by offering fast and adaptive diagnostic tools that can improve safety in daily operations. The 

major limitations of these approaches are, again, issues related to data imbalance, especially considering 

Article VIII, which deals with infrequent events (i.e., the reoccurrence of a critical alarm after an operator 

acknowledgment), and the inherent challenges linked with unbalanced misclassification costs. 

Articles XI and XII, focusing on data-driven process simulation models for the evaluation of safety barriers 

in environmental-critical facilities, showcase the potential of ML techniques to learn the dynamics of 

industrial processes directly from plant data, eliminating the need for unpractical and dangerous field tests. 

This approach goes beyond the conventional, static perspective on safety barriers (i.e., effective – not 

effective, with a context-independent Probability of Failure) towards a dynamic vision of the risk, where the 

effectiveness of safety barriers is closely linked to the dynamics of the underlying phenomena. This 

underscores the potential of data-driven models to complement and enrich traditional risk management 

methods, thereby enhancing environmental safety and achieving outcomes that are otherwise unfeasible 

through traditional approaches. Moreover, the innovative use of resilience analysis for the dynamic 

evaluation of safety barriers, along with the adoption of inherently updatable digital models, constitutes a 

substantial contribution to the domain of DRM. 
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8.3. Potential and limitations of Machine Learning in supporting risk-based 

decision-making. 

This Ph.D. study highlights the potential of ML in achieving DRM, forecasting a future enriched by synergistic 

human-ML interactions. Article IV, for instance, shows how ML algorithms can learn from past data to guide 

control room operators, providing timely and informative feedback on the effectiveness of their actions. In 

addition, Article VIII demonstrates the potential of ML in supporting risk-based inspection and maintenance, 

which is a safety-critical and traditionally human-centric activity. Thanks to its inherent ability to model the 

complexity of unsafe interactions, taking into account heterogeneous data sources and diverse risk-

influencing factors, ML offers significant potential to support risk-based decision-making. By analyzing vast 

and diverse datasets, ML techniques can extract safety-relevant knowledge, providing decision-makers with 

intuitive and contextually relevant insights on the present and future status of the system, improving risk 

communication, and thereby paving the way towards better-informed decisions. 

As the role of ML in CPS expands, the interplay between human decisions and machine feedback will 

intensify, with ML predictions becoming increasingly integrated in the decision-making process. This evolving 

landscape prompts inquiries into the future roles of both humans and machines, questioning whether the 

decision process could be entirely moved to the machine, and investigating the limitations employing ML 

algorithms in safety-critical applications. In this context, Article XII investigates whether advancements in 

ML might render human judgment obsolete. In this regard, the findings reveal that while ML addresses 

uncertainty, it does not eradicate it. On the contrary, uncertainty persists in other forms, such as the 

uncertainty in data used to train the model, in the reliability of the model itself, and in the significance and 

interpretability of the model’s predictions. In other words, notwithstanding the undisputed potential of ML 

techniques to manage the uncertainty related to unwanted events, it must be acknowledged that these 

techniques introduce new sources of uncertainty that must be understood and managed. 

For example, there is uncertainty concerning data used to train the model, specifically regarding the 

significance and completeness of data. Ensuring that data encompasses all the necessary information and 

accurately represents the phenomena being assessed often hinges on human expertise. While automation 

can streamline certain aspects, human design remains integral to the data pipeline, particularly in selecting 

pertinent features and determining the most appropriate preprocessing techniques. Furthermore, despite 

rigorous efforts to ensure data completeness and relevance, there may be occasions when the process 

conditions deviate significantly from those seen during training. While the model will continue to generate 

outputs, their reliability may be in question. In these instances, human expertise is crucial to interpret the 

situation, contextualize the predictions, recognize the model’s limitations, and, if appropriate, ignore the 

model's recommendations. 
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Another layer of uncertainty stems from the ML model itself. Considering the vast array of ML algorithms at 

our disposal, model selection becomes crucial. While automated model selection tools are available, 

depending solely on them can lead to skewed conclusions. For example, during the preliminary investigation 

of the approach demonstrated in Article V, several regression models were tested, including Random Forest. 

Notably, this model consistently overperformed the Neural Networks described in the article. However, a 

more in-depth analysis, supported by human expertise and domain knowledge, uncovered that Random 

Forest regressors struggle to accurately predict the TTF of events when tested with features beyond the 

bounds of their training data. In simpler terms, while Random Forest performed admirably when the 

scenarios matched the training distribution, its efficacy degraded when presented with new, unfamiliar 

scenarios. In this situation, an automated model selection algorithm might have concluded that RF was the 

best model, overlooking its severe limitations in novel situations. This underscores the indispensable role of 

human insight in tailoring modeling choices to the unique challenges of a problem. 

Lastly, uncertainty is intrinsically tied to the interpretation of the model outputs. Specifically, human 

expertise is required to contextualize the results, taking into account modeling choices and the characteristics 

of the algorithm. Trust in the results becomes a concern due to the prevalence of black-box algorithms among 

the best-performing techniques. Methods to estimate prediction confidence are needed to address this 

issue. In this context, safety practitioners must gain a solid understanding of ML methodologies. Similarly, 

data scientists venturing into tools for high-risk sectors need to be thoroughly grounded in the safety aspects 

of their applications. 

In light of these considerations, this study indicates that we are not close to a “no-brainer” condition, where 

the responsibility for safety-related decisions will be entirely moved to the machine. Conversely, while 

advanced ML algorithms offer valuable insights, human judgment remains at the heart of the decision-

making process. These observations align with the EU proposal for a regulatory framework governing 

Artificial Intelligence (European Commission, 2021), which underscores the crucial role of human supervision, 

particularly for AI systems that hold a high-risk profile, like those overseeing the management and 

functioning of critical infrastructure. The European Union's recommendations support a 'human-in-the-loop' 

approach, emphasizing that AI platforms must be crafted to ensure that individuals entrusted with 

supervisory duties have the capability to execute the following tasks: 

a) fully understand the capacities and limitations of the high-risk AI system and be able to duly monitor 

its operation; 

b) remain aware of the possible tendency of automatically relying or over-relying on the output 

produced by a high-risk AI system (automation bias), in particular for high-risk AI systems used to 

provide information or recommendations for decisions to be taken by natural persons; 

c) be able to correctly interpret the high-risk AI system’s output, taking into account in particular the 

characteristics of the system and the interpretation tools and methods available; 
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d) be able to decide, in any particular situation, not to use the high-risk AI system or otherwise 

disregard, override or reverse the output of the high-risk AI system; 

e) be able to intervene on the operation of the high-risk AI system or interrupt the system through a 

stop button or a similar procedure. 

This idea of human-machine cooperation integrates well into the concept of sustainable, human-centric, and 

resilient industry embedded into Industry 5.0 (European Commission Directorate-General for Research and 

Innovation et al., 2021). Furthermore, the emphasis on human involvement underscores the importance of 

interdisciplinarity, blending safety science with digital technologies. This demands professionals who are 

well-versed in safety-related concerns and also have a clear understanding of the intricacies and limitations 

of ML models.
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9. Conclusions 

The primary goal of this thesis is to advance the knowledge of ML techniques to support DRM in the chemical 

and process industry. A preliminary analysis of the relevant literature reveals that although data-driven 

techniques are gaining traction among safety researchers, the landscape appears relatively scattered, with 

many challenges and obstacles that need to be addressed, including difficulties linked with learning from rare 

events, trust issues arising from black-box models, and sparse inter-group collaborations limiting research 

interdisciplinarity. In this vein, this study aimed at providing a practical contribution to the research on ML 

methods in DRM, specifically addressing three critical tasks: consequence prediction, frequency evaluation, 

and monitoring of safety barriers. The investigation concretized into a set of dynamic and inherently 

updatable methods and tools that have great potential to advance the research on DRM and proceed toward 

a more proactive and dynamic approach to process safety. The contributions show how ML methods can be 

used to take advantage of the wealth of data made available by the widespread digitalization of industrial 

sectors in order to extract and retain safety-relevant knowledge. ML has demonstrated its effectiveness in 

capturing complex process dynamics and the intricate interplay between RIFs, such as the interactions 

between technical systems and human operators, or the multifaceted relationship between accident 

features and its consequences. Given the escalating complexity and interconnectedness of industrial 

facilities, ML emerges as a feasible alternative to first-principle modeling, which often proves cost-prohibitive 

or not applicable in such scenarios. 

A broad spectrum of ML methodologies, spanning from classification and regression to clustering and NLP 

algorithms, have been applied and discussed. This underlines the rich diversity within the ML domain, 

offering a comprehensive array of tools adaptable to the needs of various challenges in DRM. Also, a variety 

of data types have been utilized, including numerical, categorical, mixed, and event sequences, proving the 

flexibility of ML methods in analyzing heterogeneous data sources. The flexibility of these tools showcases 

the immense potential of ML, underlining its distinct capability to develop predictive solutions that 

seamlessly correlate past and current process conditions to anticipated risk levels. In addition to the 

advantages of ML techniques, limitations of data-driven approaches have also been thoroughly discussed, 

including challenges linked to imbalanced and cost-sensitive classification, the importance of good quality 

data and sound data preprocessing, model interpretability, quantification of prediction uncertainty, and the 

challenges related to model selection and hyperparameters tuning. 

In addition to proposing novel technical solutions, this research also provided insights into the potential and 

the limitations of adopting ML to support risk-based decision-making. While the trajectory of progress 

suggests an increasing adoption of intelligent systems, human expertise will remain pivotal in addressing the 

uncertainties introduced by ML algorithms. This envisions a collaborative paradigm of human-machine 

synergy rather than rivalry. Expertise and domain knowledge will be paramount, ensuring that humans 
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exercise appropriate oversight and grasp the model limitations. This understanding will enable safety 

practitioners to effectively contextualize predictions and, when necessary, disregard machine-driven 

suggestions. 

Nonetheless, while this study has made significant advances in addressing knowledge gaps, the research on 

ML in the realm of Risk Management remains nascent. The methodologies outlined in this investigation 

represent a preliminary—yet promising—integration between these two domains. Future efforts should be 

directed at refining the presented approaches and venturing into alternative solutions. Additionally, it is 

imperative to recognize that there are other potential avenues for improvement not explored in this 

research, but which will likely be relevant in the future of risk management. These include the application of 

ML techniques to Human Reliability Analysis (HRA) – for instance, fatigue detection aided by computer vision, 

dynamic estimation of human error probability, and monitoring of maintenance activities aided by smart 

devices. Another promising area is automated inspection and maintenance of industrial equipment through, 

e.g., remotely operated or autonomous drones. Cybersecurity concerns, encompassing both the potential of 

ML in preventing malicious intrusions and the vulnerabilities introduced by incorporating ML algorithms into 

industrial IT systems, also require attention. 

Notwithstanding the limitations and scope for further improvements, this Ph.D. research has effectively 

addressed all the established objectives. It has broadened the understanding of ML methods within the 

context of CPS, provided practical tools and strategies to assist a variety of DRM tasks, offered valuable 

perspectives on the challenges associated with the integration of ML techniques, and provided insights into 

the evolving roles of humans and intelligent systems in the future of safety sciences. 
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Annex – Report of the academic activities carried out during the doctoral path 

and list of publications 

In fulfillment of the requirements of the University of Bologna concerning the content of the Ph.D. thesis, the 

present annex reports an outline of the activities and the list of the publications. These were extensively 

discussed in the main body of this thesis. 

Activity 1. A literature review on Artificial Intelligence and Machine Learning methods was conducted and 

submitted for publication in a peer-reviewed journal (Article I). The review focuses on Machine 

Learning techniques in fault and anomaly detection, reliability analysis, system diagnosis and 

prognosis, risk analysis, and risk assessment of engineering-related systems. Systematic and 

narrative approaches have been utilized to provide a quantitative and qualitative analysis of the 

state of the art. 

Activity 2. Machine Learning classification models were used to learn from accident databases and use the 

acquired knowledge to predict the consequences of major accidents involving dangerous 

substances (Article II). These algorithms take a range of easily accessible and informative accident 

characteristics as input and estimate the number of fatalities and injuries caused by the accident. 

The models’ capability to transfer learning across databases has also been investigated (Article 

III). Finally, the potential application of this methodology for Risk-Based Inspection (RBI) in pure 

hydrogen environments has been examined (Article IV). 

Activity 3. A Neural Network-based method for estimating the Time-To-Failure (TTF) of atmospheric tanks 

exposed to external fires was developed (Article V). The algorithm is trained using data from a 

lumped-parameter model and can be used to predict TTF under both unmitigated and mitigated 

conditions. Predictions are paired with confidence intervals to reflect the level of uncertainty 

involved. 

Activity 4. Machine Learning (ML) techniques for monitoring and improving industrial alarm systems were 

investigated. Specifically, the research focused on developing ML models for several key areas, 

such as (i) the prediction of nuisance alarms (Articles VI and VII), (ii) the evaluation of control 

room operator actions (article VIII), and (iii) the utilization of Natural Language Processing (NLP) 

algorithms to detect the causes of alarm floods (article IX). 

Activity 5. A methodology for the evaluation of safety barriers in environmentally critical facilities was 

developed (Articles X and XI). The proposed method integrates conventional risk assessment 

tools with data-driven process simulation models, showcasing the potential of digital technologies 

to enable a dynamic and proactive approach to process safety. 
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Activity 6. The candidate explored the present and future role of humans in the context of digital safety. An 

example of unsupervised clustering of natural events has been described and discussed (article 

XII). The findings underscore the ability of Machine Learning to complement and support 

traditional risk management approaches. Nonetheless, human expertise remains indispensable 

for managing the added uncertainty arising from ML algorithms and interpreting the data to 

transform recommendations into concrete actions. 
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a b s t r a c t 

Learning from past mistakes is crucial to prevent the reoccurrence of accidents involving dangerous sub- 

stances. Nevertheless, historical accident data are rarely used by the industry, and their full potential is 

largely unexpressed. In this setting, this study set out to take advantage of improvements in data sci- 

ence and Machine Learning to exploit accident data and build a predictive model for severity prediction. 

The proposed method makes use of classification algorithms to map the features of an accident to the 

corresponding severity category (i.e., the number of people that are killed and injured). Data extracted 

from existing databases is used to train the model. The method has been applied to a case study, where 

three classification models – i.e., Wide, Deep Neural Network, and Wide&Deep – have been trained and 

evaluated on the Major Hazard Incident Data Service database (MHIDAS). The results indicate that the 

Wide&Deep model offers the best performance. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

1.1. Background 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

force for the formulation and development of modern safety man- 

agement programs ( Hanida and Azmi, 2017 ). 

In the ever-changing field of process safety, it has always been 
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Learning from the past has always played a significant role

in driving innovation and promoting advancements. Undoubtedly,

mistakes are a part of human nature, but we all have inherent abil-

ities to learn from them. Though, deriving a lesson and applying

the acquired knowledge to avoid recurring errors is not as trivial

as it may appear. History tends to repeat itself, and lessons may

be ignored or forgotten ( Paltrinieri et al., 2013 ). 

Different human activities have different tolerance for errors.

Within the chemical industry, significant effort s have been put

in avoiding mistakes and ensuring safe operations. However, be-

fore the second half of the sixties, the words “process safety”

and “loss prevention” did not exist ( Kletz, 2012 ; Pasman et al.,

1992 ); handling and storing dangerous substances were regulated

by traditional occupational safety and good engineering practice

( Hanida and Azmi, 2017 ). Later, a series of terrible accidents –

including Woodbine (1971), Seveso (1976), Bhopal (1984), and

Pasadena (1989) – highlighted the need to go beyond the exist-

ing standard and develop a different approach to prevent ma-

jor accidents and their consequences ( Hanida and Azmi, 2017 ;

Pasman et al., 1992 ). Those unfortunate events were the driving
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0098-1354/© 2022 The Authors. Published by Elsevier Ltd. This is an open access a
lear that lessons derived from past accidents would have been 

rucial to ensure safer design and operations ( Pasman, 2009 ). Af- 

er the investigations on the Piper Alpha disaster in 1988, Lord 

ullen (1990) stated the following: “I am convinced that learn- 

ng from accidents and incidents is an important way of improv- 

ng safety performance”. Also, the European Parliament and Coun- 

il Directive 2012/18/EU ( European Union, 2012 ) stresses the need 

o learn from past accidents or near misses. Still, learning, ap- 

lying, and retaining the acquired knowledge is not an easy task 

 Jefferson et al., 1997 ; Pasman, 2009 ). 

Chung and Jefferson (1998) stated that “it is widely recog- 

ized that the chemical industry as a whole does not learn from 

ast accidents”. More than ten years later, the situation has not 

hanged much ( Mannan and Waldram, 2014 ). Process safety has 

ertainly improved over the last 40 years, but progress has been 

low ( Pasman and Fabiano, 2020 ). Automation, production tech- 

ologies, IT, and computer simulations have witnessed extraordi- 

ary growth over the last decade. The tide of digitalization and 

he advent of Industry 4.0 are re-shaping the manufacturing pro- 

ess. Likewise, process safety is moving toward the so-called Safety 

.0 ( Pasman and Fabiano, 2020 ). However, loss prevention and risk 

anagement struggle to keep pace, especially when it comes to 

earn and apply the lesson from past accidents. Accidents still hap- 

en, as evidenced by the explosion and fires that occurred at the 

ing Dih Chemical factory on the 7th of July 2021 in Bangkok, 

nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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where one person was killed, more than 60 were injured, and

thousands evacuated ( Al Jazeera, 2021 ). 

Undoubtedly, digitalization has brought new and effective

means of information storage and transfer. The creation of digi-

tal accident databases, such as MHIDAS ( AEA Technology, 1999 ),

eMARS ( European Commission, 2022 ), and NRC ( United States En-

vironmental Protection Agency, 2020 ), has made information re-

trieval quick and easy. However, these are hardly used by the

industry ( Pasman, 2009 ) because they are often not detailed

enough or because effort s must be invested into translating case-

specific information into a lesson. So, even if information has

been made largely available, its potential remains unexploited.

Pasman (2009) argued that the problem with learning from past

accidents is not knowledge availability. Instead, the problem is that

knowledge is not absorbed by individuals, nor is retained by com-

panies. Humans do not absorb information as machines do. If a

person is not interested in learning, he/she will ignore the mes-

sage ( Pasman, 2009 ). Furthermore, even if the lesson is learned, it

may be forgotten in few years because “organizations do not learn

from the past or, rather, individuals learn but they leave the orga-

nization, taking their knowledge with them, and the organization

as a whole forgets” ( Kletz, 1993 ). 

The abundance of accident data offers a great opportunity to

learn from past errors. However, the current learning process has

significant limitations and appears incapable of seizing this oppor-

tunity. Therefore, there is a strong need for new tools and tech-

niques to extract and retain knowledge from accident data. In

this context, advancements in computer science and artificial in-

telligence have led to the construction of algorithms capable of

extracting knowledge from data ( Brink et al., 2016 ). On top of

that, research has been focused on Machine Learning (ML) tech-

niques. Currently, in the field of safety and risk assessment, Ma-

chine Learning algorithms have been proposed for fault detec-

tion and diagnosis ( Xu and Saleh, 2021 ; Zope et al., 2019 ), system

prognosis ( Carvalho et al., 2019 ; Paolanti et al., 2018 ), diagnosis

and prognosis of industrial alarm systems ( Langstrand et al., 2021 ;

Tamascelli et al., 2021 ; N. 2020 b), and Dynamic Risk Assessment

( Paltrinieri et al., 2020 , 2019 ). Although the topic is still young and

fragmented ( Xu and Saleh, 2021 ), several authors have argued that

AI and Machine Learning will play an increasingly important role

in the future of process safety ( Alcides et al., 2018 ; Lee et al., 2019 ;

Pasman and Fabiano, 2020 ). 

Since learning from major accidents is deeply affected by hu-

man factors, one may argue that an artificial learner would be a

good support to enhance learning opportunities. Machine Learning

algorithms could be trained to link accident characteristics (e.g.,

substances and equipment involved, release magnitude, population

density) to accident consequences – e.g., the number of people in-

volved. Such predictive models would be a quick, effective, and

inexpensive means of supporting risk-based decision-making and

process safety. Nonetheless, the analysis of process accident data

through ML algorithms is still a largely unexplored topic. In this

context, this investigation aims to contribute to this area of re-

search by exploring the use of Machine Learning methods to an-

alyze and extract knowledge from historical accident data. This

study responds to specific and compelling needs for tools to ex-

tract knowledge from past accidents, retain and easily recall such

knowledge for future use. The authors believe that the approach

described in this study may provide safety managers and practi-

tioners with advanced predictive models that may significantly im-

prove decision making, accident prevention, and accident mitiga-

tion, representing an essential step toward Safety 4.0. What users

can learn from the approach described herein is to (i) evaluate the

criticality of different accident scenarios based on a set of simple

and readily available features, (ii) discriminate between different

criticality levels and direct effort s to prevent/mitigate high critical-
Computers and Chemical Engineering 162 (2022) 107786 

ty scenarios, (iii) estimate the consequences of new accident sce- 

arios without resorting to computation-intensive techniques (e.g., 

FD models) and detailed modeling. 

.2. Objectives 

The purpose of this study is to determine whether Machine 

earning methods might be used to exploit the knowledge embed- 

ed in accident databases and predict the outcomes of new acci- 

ents and incidents. Specifically, the research focuses on classifi- 

ation algorithms and their ability to capture the relationship be- 

ween accident features and consequences to humans in terms of 

eople injured or killed. 

There are three primary aims of this study: 

• to propose and describe a methodology for the analysis of acci- 

dent databases through Machine Learning classification models; 
• to describe how these models might be used to predict the 

severity category of process accidents; 
• to test and compare different models, highlighting the advan- 

tages and limitations and discussing optimization strategies. 

In order to achieve objectives 1 and 2, a generic framework 

as been developed, which might be promptly adapted for use 

n different accident databases and ML models. The methodology 

as been applied to a test case in order to reach the third objec- 

ive. Specifically, three classification models (i.e., Wide, DNN, and 

ide&Deep) have been trained and tested on a generic accident 

atabase – i.e., the Major Hazard Incident Data Service (MHIDAS). 

.3. Related works 

Several studies have proposed Machine Learning meth- 

ds to extract safety-critical information from historical data 

nd predict the outcomes of accidental events. For instance, 

arkar et al. (2020) used six different classification algorithms to 

redict injury severity of accidents that occurred in a steel man- 

facturing plant; investigation reports and inspection reports col- 

ected in a time period of 3 years are used to train and evaluate 

he models. Phark et al. (2018) discussed the application of naïve 

ayes classifiers and Multi-Layer Perceptron for predicting the is- 

uance of emergency evacuation orders after the release of toxic 

ubstances. A method for the semiautomatic retrieval of Natech 

cenarios from the National Response Center database has been 

roposed by Luo et al. ( X. 2020 ), which employed Long Short-Term 

emory and Convolutional Neural Network as classification mod- 

ls. 

Also, several studies focused on Natural Language Process- 

ng (NPL) and Machine Learning methods to analyze acci- 

ent narratives and extract useful information. For example, 

urian et al. (2020) proposed a Machine Learning approach to clas- 

ify unstructured accident reports into basic accident types (e.g., 

health/safety”, “leak/spill”, “operation”). Also, they proposed NPL 

lgorithms to derive a more informative and helpful set of key- 

ords from raw accident reports. Jing et al. (2022) used Word2Vec 

 Mikolov et al., 2013 ) and bidirectional Long Short Term Memory 

eural network (Bi-LSTM) with an attention mechanism to (i) ana- 

ze the correlation between accidents and extract accident pre- 

ursors, causes, and high-frequency types of chemical accidents, 

nd (ii) automatically classify accident reports into their respec- 

ive accident type (i.e., “fire”, “explosion”, “poisoning”, and “other”). 

 proprietary dictionary was developed to improve word segmen- 

ation and classification performance. Bi-LSTM was also used by 

ang and Whao (2022) to extract and estimate the frequency of 

ontributory factors from confined space accident reports. The au- 

hors used BERT algorithm to build word embedding and a BiL- 

TM with a conditional random field (CRF) to classify accidents 
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based on their contributory factors (e.g., improper tool, gas detec-

tion, inadequate supervision). Since the approach is fully super-

vised, manual intervention by experts is needed to extract fun-

damental characteristic of accidents and their contributory factors.

Instead, a semi-supervised approach was proposed by Ahadh et al.

( 2021 ) to automatically classify accident reports from different

domains based on user-defined topics. The approach is domain-

independent and requires minimal human intervention. The au-

thors proposed to extract domain-relevant keywords from a do-

main corpus (e.g., guidelines, standard manuals, scholarly articles,

and Wikipedia pages) and identify the accident cause (e.g., “Ex-

ternal force”, “Equipment Failure”, “Incorrect Operation”) or other

user-defined accident characteristics from accident narratives. A

guided version of the Latent Dirichlet Allocation ( Jelodar et al.,

2019 ) algorithm was used to extract the accident features. 

Although the investigations described above represent a valu-

able attempt to extract information from accident reports, their in-

tent and methodology differ significantly from the approach de-

scribed in this study. For instance, unstructured accident narra-

tives are analyzed, while this study focuses on structured accident

databases. In addition, the primary aim of those studies is to au-

tomate the extraction of key pieces of information from unstruc-

tured text and, therefore, to reduce the need for manual interven-

tion by experts, which is time-consuming and expensive. Instead,

the algorithms proposed in our study are not designed to extract

generic accidents characteristics (e.g., the substance involved, the

cause, the amount of substance released) since this information

is already available in the structured database used for the anal-

ysis. Instead, this study seeks to extract higher-level knowledge,

which experts cannot extract by simply reading accident reports.

Specifically, the proposed algorithms aim to capture and quantify

the relationship between accident features and consequences in

terms of people killed and injured. In other words, the objective

is to extract knowledge from historical accident reports to build

a mapping between accident features and accident consequences.

The method presented in this study can be used to perform pre-

dictions; given a short list of accident features, the model returns

the number of people involved in the accident. Instead, the studies

described above take a large text (i.e., accident narratives) as an

input and extract key information. In other words, their aim is not

knowledge extraction to predict the outcome of accidental events;

they just mimic the knowledge discovery process of a human

reader. 

Similar to this study, Chebila (2021) proposed a Machine

Learning-based method to predict whether accidents involving

dangerous substances will cause damage to humans, the environ-

ment, and material assets. Specifically on the consequences on

people, a set of binary classifications was performed using six

different models in order to predict the occurrence of at least

one injured or killed. The study concluded that Random For-

est ensures the best performance. Also, Neural Networks pro-

vided good results, but they proved to be less effective than

Random Forest in dealing with unbalanced datasets. The inves-

tigation by Chebila (2021) shares some features with this study,

such as the overall intent and the approach; however, there are

also significant differences. For instance, the approach proposed

by Chebila (2021) did not distinguish between injuries and killed,

while the present study considers these outcomes separately. Fur-

thermore, the present study uses a set of multiple discrete out-

come variables to differentiate accidents according to their severity

(i.e., from 1 to 10 killed, from 11 to 100 killed, etc.). On the other

hand, a greater number of classification models were used and

tested by Chebila (2021) , which also considers more targets (i.e.,

the environment and material assets). Finally, different databases

are used; eMARS was used by Chebila (2021) , while this study fo-

cuses on MHIDAS. 
Computers and Chemical Engineering 162 (2022) 107786 

The chemical and process industry is not the only industrial 

ector that has been involved in this line of research. For example, 

erassis et al. (2020) proposed the use of a Multiple Correspon- 

ence Analysis in conjunction with Bayesian Networks to classify 

ining accidents as fatal or non-fatal. The approach was tested 

n an occupational accident database and allowed the identifica- 

ion of the factor contributing most to the accident severity. A 

ifferent approach has been developed by Yedla et al. (2020) to 

redict the number of days away from work after a mining acci- 

ent. The method makes use of regression and classification mod- 

ls – such as Logistic Regression, Decision Trees, Random Forests, 

nd Artificial Neural Networks – to predict the number of days 

way from work and the degree of injury. Similarly, Choi et al. 

2020) demonstrated that accident data could be used to build 

lassification models for the prediction of the likelihood of mor- 

ality in the event of an accident in a construction site. 

Several studies have also focused on the transportation indus- 

ry. In the analysis proposed by Zhang et al. (2018) , four different 

achine Learning algorithms were compared based on the ability 

o predict the severity of crashes that occurred in freeway seg- 

ents. The study concluded that Machine Learning models pro- 

uce better performance than traditional statistical methods in this 

pecific task. Also, the results suggested that Random Forest and 

-Nearest Neighbors were the best models. Assi et al. (2020) in- 

estigated the use of Feed Forward Neural Networks and Support 

ector Machine to predict the severity level of traffic crashes. In 

ddition, the study investigates the use of fuzzy c-means clustering 

o enhance the model prediction capabilities. A similar approach 

as proposed by Wahab and Jiang (2019) , which focused on the 

rediction of motorcycle crash severity using Decision Trees, Ran- 

om Forest (RF), and Instance-Based Learning. Also, Burnett and 

i (2017) demonstrated the use of Machine learning classification 

echniques to predict the levels of injuries and fatalities in aviation 

ccidents. The analysis concluded that Artificial Neural Networks 

erformed better than the other models. 

Overall, a search of the literature revealed that the attention 

f the scientific community has only recently focused on the ap- 

lication of Machine Learning methods for accident severity pre- 

iction. The idea of utilizing process data to update the risk pic- 

ure has already been proposed in past works – e.g., ( Landucci and 

altrinieri, 2016 ). However, the growing body of research on Ma- 

hine Learning methods indicates that the approach may play a 

ignificant role in the future of safety assessment and manage- 

ent in several areas. Also, the search revealed that there is a no- 

able paucity of studies investigating the application of such meth- 

ds to accidents involving dangerous substances. In this context, 

his is the first study to propose a Machine Learning-based method 

o predict the consequences of accidents involving dangerous sub- 

tances in terms of people killed and injured. Only one similar 

tudy was found in the literature ( Chebila, 2021 ), which only con- 

idered whether or not the accident damaged people, therefore 

acking the level of detail provided in this investigation. In addi- 

ion, this study makes use of a set of multiple discrete outcome 

ariables to estimate the number of people involved, therefore pro- 

iding a much more detailed and valuable output. 

.4. Outline 

The paper is organized into 7 Sections. Section 2 presents the 

ethodology, including the pre-processing of accident data and the 

achine Learning simulations. The test case is described in section 

 , which also includes a description of the database used for the 

imulations. Section 4 presents a selection of the most representa- 

ive findings, while the full results are provided separately in the 

upplementary material. Results are discussed in section 5 , which 
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Fig. 1. Methodology workflow. Colors represent two main stages: Data pre- 

processing (orange), and Machine Learning Simulations (green). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Accident consequence categories. 

Category Description 

NO no killed/injured 

1 - 10 from 1 to 10 killed/injured 

10 - 100 from 10 to 100 killed/injured 

- 1000 from 100 to 1000 killed/injured 

> 1000 more than 1000 killed/injured 
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also highlights the limitations of the study and provides sugges-

tions for future works. Finally, conclusions are drawn in section 6 . 

2. Method and data 

The overall workflow of the methodology developed to analyze

and extract knowledge from accident databases through Machine

Learning techniques is outlined in Fig. 1 . The method involves two

main steps: data pre-processing and Machine Learning simulations.

In the first step, raw accident data are converted in a suitable for-

mat for Machine Learning analyses. Next, part of accident data is

used to train the Machine Learning classification algorithm. Finally,

the trained model is used to predict the severity of new events.

Predictions are compared with expectations in order to assess the

model performance and discuss optimization strategies. A detailed

description of the methodology is provided in the following 2 sec-

tions. 

The method has been demonstrated on a test case study using

three classification models, namely Wide, Deep Neural Network,

and a hybrid Wide&Deep model. The algorithms were trained and

evaluated separately on the same datasets, and their performance

was compared to highlight their strength and limitations. It is

worth mentioning that this is the first study that takes advantage

of these algorithms to predict the consequences of process acci-

dents with a high level of detail. Also, this is the first study that

investigates the use of a hybrid Wide&Deep model for the analysis

of accident data. 

2.1. Accident database and features selection 

Accident data are extracted from the data source and stored in

a convenient format, such as a CSV file. The database has a matrix-

like shape where each row represents an event and each column

an attribute of the event (e.g., the date, the substance involved, the

incident type). 

Some of the attributes included in the database may not be

meaningful or useful for the analyses; these attributes must be

removed (step 1.1 in Fig. 1 ). In general, the database should con-

tain only attributes that link event characteristics to event conse-

quences. After removing unnecessary attributes, the database must

be prepared for the Machine Learning simulations (step 1.2 in

Fig. 1 ). This task requires three steps: 

• Missing data must be imputed or removed because most Ma-

chine Learning models cannot process null values. Different

techniques have been developed to impute or remove missing

values based on the type and characteristics of the data (i.e.,

numerical or categorical, random or not random). An overview

of the most used methods can be found in Brink et al. (2016) ,
Bruha (2017) , and Makaba and Dogo (2019) . In this study, miss- 

ing values have been substituted by the user-defined string 

“Na”. This should allow the model to deal with uncertainty and 

learn the impact of missing values on the outcome measure. 
• Attributes that may contain more than one entry must be split 

so that each column in the database contains only one entry. 
• The attributes indicating the Number of People that are In- 

jured (NPI) and Killed (NPK) must be converted into their re- 

spective severity categories. To this end, a set of consequence 

categories are considered to reflect severity categories used by 

risk matrices and other risk analysis methods ( ARAMIS project 

team, 2004 ) ( Table 1 ). 

After these steps, a clean version of the original database is ob- 

ained, which is eventually used for the simulations. The Machine 

earning algorithms are trained to classify accidents into one of the 

ategories described in Table 1 , therefore predicting the severity of 

ccidental events with a high level of detail. 

.2. Machine learning simulations 

Machine Learning (ML) refers to a class of computer algo- 

ithms designed to gain experience from data and leverage the ac- 

uired knowledge to perform accurate predictions, reveal correla- 

ions between variables, and identify hidden patterns and trends 

 Brink et al., 2016 ; Hastie et al., 2009 ). In other words, Machine 

earning concerns training a machine to learn from past under- 

tanding ( Schottenfels, 2019 ). 

There are three macro-categories of Machine Learning algo- 

ithms: Supervised Learning, Unsupervised Learning, and Rein- 

orcement Learning ( Murphy, 2012 ). Supervised Learning is used 

hen the problem involves the prediction of an outcome measure 

ased on one or more input variables ( Hastie et al., 2009 ). Instead, 

f no output measure is applicable, Unsupervised Learning algo- 

ithms may be used to analyze input data and reveal relationships 

nd patterns with little or no human intervention ( IBM Cloud Ed- 

cation, 2020 ; Jukes, 2018 ). In Reinforcement Learning, the learner 

e.g., an industrial robot) is not passively analyzing input data; in- 

tead, it collects data from the environment through a set of ac- 

ions, and a reward system is used to guide the learning process 

 Stone, 2017 ). 

In this study, both the input (i.e., the features of an event) and 

he outcome measure (i.e., the event severity) are available and 

eported in the data source. Therefore, Supervised Learning algo- 

ithms are a natural choice. Further, the objective of this study 

s to categorize (i.e., classify) accidents based on their severity of 

onsequences, which may be expressed in terms of the number of 

eople that are killed or injured in the event - for this reason, two 

istinct sets of simulations are performed. Therefore, the problem 

s a classification task. However, a regression approach may also be 

ossible and should be investigated by further research. 

.3. Classification: training and evaluation 

The aim of a classification algorithm is to classify objects into 

wo or more categories ( Drummond, 2017 ). An object is described 

y a set of features (i.e., meaningful attributes of the object, say 
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Fig. 2. Schematic representation of a Deep Neural Network. Orange, blue, and green 

circles represent input features (X i ), hidden units ( Z j 
i 
) , and labelsY k . Adapted from 

Tamascelli et al. (2020a) . 
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X ) and one label (i.e., its category, say Y ); in this study, releases of

dangerous substances are the objects. 

At first, the clean database is divided into two parts: the train-

ing database and the evaluation database (step 2.2 in Fig. 1 ). The

former comprises 80% of the events, and the remaining part (20%)

forms the latter. Next, the training database is fed to the algorithm,

which tunes the internal parameters of a function f in order to find

the optimal mapping between features and corresponding labels

( James et al., 2013 ). The function f is also called the model of the

Machine Learning algorithm ( TensorFlow.org, 2020a ). 

Y ≈ f ( X ) (1)

Where: 

• X = N × M matrix of the features. N is the number of objects,

and M is the number of features; 
• Y = N × 1 vector of the labels; 
• f = function with tunable parameters. 

This phase is the so-called training phase (2.3 in Fig. 1 ). Next,

unlabeled objects are fed to the trained model, which predicts the

corresponding labels according to the following equation. 

f ( X i ) = 

ˆ Y (2)

Where: 

• X i = 1 × M vector of the features of the unlabeled object i ; 
• ˆ Y = label probabilities produced by the model for the object i . 

Finally, predicted labels are compared with the true labels to

evaluate the performance of the model. This phase is the so-called

evaluation phase (steps 2.4 in Fig. 1 ). The batch of objects used to

evaluate the algorithm is the evaluation database. 

It is worth noting that the output of the model (i.e., ˆ Y i ) is

not a single label but a vector that contains the label probabili-

ties ( James et al., 2013 ). In other words, if K different categories

are possible, ˆ Y i is a K × 1 vector whose elements represent the

probability of each category. In order to convert label probabilities

into one predicted label, a probability decision threshold is used

( Google, 2020a ), which is often 0.5 by default. 

3. Models 

Different models are available to perform a classification task.

In this study, a Linear model, a Deep Neural Network, and a hybrid

Wide&Deep model are used to demonstrate the approach. 

3.1. Linear model 

The Linear model represents the labels as a linear combination

of features ( James et al., 2013 ). Therefore, Eq. (1) can be written

as: 

Y ≈ β0 + 

M ∑ 

j=1 

β j X j (3)

Where: 

• Y = label; 
• β0 = bias; 
• X j = a feature; 
• β j = weight of the j-th feature. 

Linear models are robust, fast, easy to interpret, and suitable

for analyzing large datasets ( Brink et al., 2016 ; Hastie et al., 2009 ;

James et al., 2013 ). On the other hand, they cannot capture nonlin-

ear relationships between features. Also, linear models cannot infer

the impact of combinations of features that have not occurred in

the past ( Cheng et al., 2016 ). 
.2. Deep neural network 

Deep Neural Networks (DNNs) are directed acyclic graph- 

cal models consisting of densely interconnected units 

 Goodfellow et al., 2016 ). A visual representation of a DNN is 

hown in Fig. 2 . 

In these models, the features of an object (orange circles in 

ig. 2 ) are converted into label probabilities (green circles in Fig. 2 ) 

hrough a series of linear combinations and nonlinear transfor- 

ations ( Hastie et al., 2009 ). In between the Input and Out- 

ut layers, a series of interconnected hidden units (blue circles 

n Fig. 2 ) is arranged into one or more hidden layers (e.g., H1, 

2, and H3 in Fig. 2 ). The unit of a generic hidden layer H i is 

btained by a nonlinear transformation of the linearly combined 

nits of the previous layer. In this study, the Rectified Linear Unit 

 TensorFlow.org, 2020b ) is used to perform the nonlinear transfor- 

ation. Further details and formulas behind Neural Networks may 

e found in Goodfellow et al. (2016) and Hastie et al. (2009) . 

DNNs have good generalization capabilities and can capture 

onlinear relationships between features ( Goodfellow et al., 2016 ). 

s a drawback, they are sensitive to poor quality input data and 

re prone to overfitting and overgeneralization ( Brink et al., 2016 ; 

oodfellow et al., 2016 ; Hastie et al., 2009 ). In addition, the com- 

utational cost required for training a DNN is larger if compared to 

impler models ( Goodfellow et al., 2016 ). 

.3. Wide&Deep 

In an attempt to combine the advantages of the Linear and 

eep models, Cheng et al. (2016) developed the Wide&Deep 

odel, whose structure is displayed in Fig. 3 . 

The model comprises a Linear part (top of Fig. 3 ) and a Deep 

art (bottom of Fig. 3 ). During the training phase, the Linear and 

eep models are jointly trained –i.e., predicted labels (green cir- 

les in Fig. 3 ) are obtained by combining the outputs of both mod- 

ls, and the weights of the models are optimized simultaneously 

 Cheng et al., 2016 ). Usually, the linear part of the model takes 

s in input a small set of crossed-features ( Cheng et al., 2016 ), 

hich are synthetic features obtained by taking the cartesian prod- 

ct of two or more features ( Google, 2020b ). On the contrary, the 

eep part uses all available features (X D in Fig. 3 ). Hence, the Deep 

art is a full-size DNN model, while the Linear part integrates and 

complements the weaknesses of the deep part with a small num- 

er of cross-product” ( Cheng et al., 2016 ). As an example, the fea- 
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Fig. 3. Schematic representation of a Wide&Deep model, which consists of a deep 

part (bottom) and a wide part (top). The deep part is a DNN and takes as an input 

a full set of features (X Di ). The wide part is a Linear model and takes as an input a 

small set of crossed-features (X Li ). 

ture X L1 in Fig. 3 is obtained by crossing X D1 and X D2 . In general, 

the hybrid nature of the Wide&Deep model ensures good memo- 
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rization (Linear part) and generalization (Deep part) capabilities. 

3.4. Performance metrics 

The performance of a Classification algorithm is assessed during

the evaluation phase. For instance, the classification may consider

classes “Y” and “N”, respectively positive and negative. Whenever

the model predicts the class of an object, there are four possible

outcomes: 

• TP = True Positive –i.e., predicted label = Y , true label = Y ; 
• TN = True Negative –i.e., predicted label = N , true label = N ; 
• FP = False Positive –i.e., predicted label = Y , true label = N ; 
• FN = False Negative –i.e., predicted label = N , true label = Y . 

The sum of True Positives and True Negatives represents the

number of correct predictions, while the sum of False Positives and

False Negatives indicates the number of wrong predictions. 

True Positives, True Negatives, False Positives, and False Nega-

tives are used to obtain three performance indicators: 

Accuracy = 

T P + T N 

T P + T N + F P + F N 

(4)

P recision = 

T P 

T P + F P 
(5)

Recall = 

T P 

T P + F N 

(6)

Accuracy represents the fraction of objects that have been cor-

rectly classified. Precision indicates the success rate of a positive

prediction. Recall denotes the fraction of actual positives that have

been correctly identified. 

Accuracy alone is not informative if the problem involves the

identification of rare classes –i.e., when the dataset is class imbal-

anced ( Google, 2020c ); in these situations, Precision and Recall are

more representative of the model performance ( Google, 2020d ). In
Computers and Chemical Engineering 162 (2022) 107786 

ddition, if the cost for a False Negative is higher than the cost for 

 False Positive, the Recall is the most meaningful metric. 

Rather than considering Precision and Recall individually, one 

ay aggregate them into the so-called F-score ( Chinchor, 1992 ). 

 β = 

(
1 + β2 

)
· P recision · Recall (

β2 · P recision 

)
+ Recall 

(7) 

here: 

• β = non-negative real number. 

If β = 1, the score represents the harmonic mean between Pre- 

ision and Recall ( Han et al., 2012 ). If β > 1, the score is Recall 

riented ( Sasaki, 2007 ), meaning that the Recall is considered to 

e β times more important than Precision. 

Finally, it is worth mentioning that the metrics and indicators 

resented depend on the probability decision threshold (section 

.2.1). In fact, the decision threshold might be tuned in order to 

ptimize the model (step 2.5 in Fig. 1 ) ( Google, 2020a ). For exam- 

le, if the decision threshold is lowered, the model may produce 

ore positive predictions. As a result, the Recall might increase, 

ut the Precision might decrease ( Scikit-learn.org, 2020 ). In fact, 

ctions aimed at increasing Recall often lower the Precision, and 

ice-versa ( Google, 2020d ). 

A convenient means of displaying the effect of the decision 

hreshold is the Precision-Recall curve –i.e., a plot where each 

oint represents the couple Precision vs. Recall at a specific de- 

ision threshold ( Murphy, 2012 ). A convenient means of summa- 

izing the information in the Precision-Recall curve is the area un- 

er the curve (AUC P-R) ( Murphy, 2012 ), which takes values be- 

ween 0 and 1. Being independent on the decision threshold, the 

UC PR is considered a more comprehensive indicator of the model 

erformance if compared with Accuracy, Precision, and Recall. In 

eneral, a large AUC P-R value indicates good performance ( Scikit- 

earn.org, 2020 ). 

.5. Test case analysis 

An accident database was used to validate the proposed 

ethodology and compare the performance of the models. A brief 

escription of the database and Machine Learning simulations are 

rovided in the following sections. 

. MHIDAS 

Founded in 1986 by the UK Safety and Reliability Directorate 

SRD) and the Health and Safety Executive (HSE), the Major Hazard 

ncident Data Service (MHIDAS) is an accident database that con- 

ains records of more than 8900 incidents involving hazardous ma- 

erials ( AEA Technology, 1999 ). Initially, the database included only 

vents that involved the ignition of flammable substances. Later, 

he scope was widened to include toxic gas dispersion and those 

ncidents that “have the potential to produce an off-site impact”

 AEA Technology, 1999 ). The database had been managed and up- 

ated by AEA Technology until the early 20 0 0s, when it was even- 

ually decommissioned. Incident data are entirely drawn from pub- 

ic domain sources, such as accident reports, newspapers, and jour- 

als ( Harding, 1997 ); this ensures the widest dissemination but, as 

 drawback, it raises issues of missing, incomplete, or biased infor- 

ation and inconsistencies ( Harding, 1997 ). 

.1. Attributes distribution 

Accidents in MHIDAS are described by a list of 22 different 

ttributes. Some attributes have a strong link, such as the type 

f substance released and its quantity. Other attributes may have 
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Table 2 

Accident attributes used in the Machine Learning simulations. ∗ marked attributes are Multiple entry fields (e.g., “Release” AND “Pool Fire” for IT, 

“Flammable” AND “Toxic” for MH). 

Attribute Description 

DA Date Date of the incident. 

LO Location Town, region, and country of the incident 

GC General Cause The general cause - or causes - which triggered the event (e.g., Mechanical failure, Human Error) 

SC Specific Cause The specific cause - or causes - which triggered the event (e.g., Brittle fracture, Overpressure, Fire) 

GOG General Origin Area of the plant where the incident originated from (e.g., Process, Storage, Warehouse) 

SOG Specific Origin Equipment that originated the incident (e.g., Pump, Vessel, Pipeline) 

MN Material Name ∗ Names of dangerous substances involved in the incident 

MH Material Hazard ∗ The hazard class of the substances involved (e.g., Toxic, Explosive, Corrosive, Oxidizing) 

MC Material Code ∗ Four-digit code of the substance involved 

QY Quantity The amount of substances released (tons) 

IS Ignition Source Type of ignition source (e.g., hot surface, flares, boilers) 

IT Incident Type ∗ Incident typology (e.g., Release, BLEVE, Physical Explosion) 

NPE Evacuated Number of people that are evacuated 

PD Population Density Population density in the Area (i.e., “Rural” for low - sparse population, “Urban” for highly populated Area) 

NPI Injured Number of people that are injured in the incident 

NPK Fatalities Number of fatalities in the accident 
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a weaker link, such as the date and the location of the acci-

dent. However, date and location may be an indirect measure of

the socioeconomic status of the area. As is known, industrializ-

ing and impoverished countries are more exposed to industrial

risk due to intense urbanization, disordered industrialization, and

less elaborate safety measures ( Souza et al., 1996 ). For example,

the Bhopal disaster ( Kalelkar, 1988 ) and the recent Beirut explo-

sion ( Pasman et al., 2020 ) are infamous events where unsatisfac-

tory safety measures and uncertain emergency planning had con-

tributed to the accident. Therefore, the date and location have not

been removed from the database. 

In this study, six attributes were discarded during the Feature

Selection phase. As a result, only the attributes listed in Table 2

have been used for the analyses. The reason for this choice is avail-

ability and completeness; that is, these attributes are reported na-

tively in the accident database used to perform the analysis, and

they provide a synthetic but exhaustive description of the accident,

from its causes to consequences. 

The first 14 attributes in Table 2 represent the input of the Ma-

chine Learning models (i.e., the features). Instead, the last two at-

tributes are the outputs of the models. 

It is worth examining the frequency distribution of some of

these attributes more in detail because the performance of the Ma-

chine Learning models is deeply affected by the characteristics of

the dataset. The frequency distribution of attributes General Ori-

gin, Incident Type, General Cause, Specific Cause, Material Name,

and the number of people affected (i.e., NPI and NPK) is shown in

Fig. 4 . 

The figure indicates that most of the incidents involved releases

or explosions and subsequent fires ( Fig. 4 b), which often occurred

during the transportation of the substance ( Fig. 4 a). Also, a signifi-

cant part of the incidents originated in the process and storage ar-

eas of chemical plants ( Fig. 4 a). The most frequent incident causes

are “Impact”, “Mechanical”, and “Human” failures Fig. 4 e. Also, it

is worth noting that the missing value frequency (“Na”) is high for

the attributes General Cause and Specific Cause. This may be due

to the public domain nature of the database because such techni-

cal and sector-specific information is rarely reported in newspapers

and journals. Finally, Fig. 4 f indicates that most of the incidents in

the database did not cause any injured or killed. Also, the number

of records in the database decreases as a larger number of peo-

ple involved is considered; that is, the rarity of events increases

with the severity of the consequences. Furthermore, incidents that

resulted in injuries are more frequent than those that caused fatal-

ities. It is also worth mentioning that the consequence category “>

10 0 0” is not shown in Fig. 4 f because there are only 5 and 13 ac-
idents with more than 10 0 0 killed or injured, respectively; there- 

ore, the box would not have been visible. 

.2. Simulations 

The Machine Learning models have been trained and tested on 

HIDAS as described in section 2.2. Specifically, the database has 

een split into a training dataset containing 7100 events and an 

valuation dataset containing 1872 events. Next, two sets of bi- 

ary classifications have been performed. The first set focuses on 

redicting the number of people that are killed in the accident 

i.e., NPK), while the second focuses on the number of people 

hat are injured (i.e., NPI). Within each set of simulations, distinct 

inary classifications were performed for each consequence cat- 

gory and model using different iteration steps, which represent 

he number of times the training dataset is fed to the model dur- 

ng the training phase ( TensorFlow.org, 2020c ). A large number of 

teration steps simulate a more extensive database, and therefore 

ay improve the learning phase. However, the model may over- 

t the training data if a large number of iteration steps are used 

 TensorFlow.org, 2021 ). In this study, a number of iteration steps 

qual to 20 0, 20 0 0, 20,0 0 0, and 20 0,0 0 0 were used in order to 

ssess the effect of different iteration steps on the model perfor- 

ance. 

. Results 

The full results of the study are provided in the supplemen- 

ary material. A selection of the most representative findings is 

isplayed in Fig. 5 and Fig. 6 , which show the AUC P-R, Recall, Ac- 

uracy, and Precision for the category NPI and NPK, respectively. 

 decision threshold equal to 0.5 is used to obtain the Accuracy, 

recision, and Recall values. 

The results shown in Fig. 5 and Fig. 6 have been obtained using 

he iteration steps displayed in Table 3 . The simulations have been 

elected based on the AUC PR value – i.e., the number of steps 

hat led to the highest AUC PR has been selected and shown in 

his section. If two simulations had comparable AUC PR values, the 

ne with the highest Recall has been chosen. 

. Discussion 

This paragraph is divided into two sections. In the first sec- 

ion, the feature selection phase will be described more in detail; 

pecifically, the choice of the attributes listed in Table 2 will be 

iscussed, the limitations of the approach will be highlighted, and 
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Fig. 4. Frequency distribution of the attributes GOG (a), IT (b), GC (c), SC (d), MN (e), NPK and NPI (f). “Na” refers to missing values, “Other” refers to attribute codes that 

have not been represented in the figure. 

Table 3 

Number of iteration steps used to obtain the metrics in Fig. 5 (i.e., Number of People that are 

Injured “NPI”) and Fig. 6 (i.e., Number of People that are Killed “NPK”). 

Category Models NO 1 – 10 10 – 100 100 – 10 0 0 > 10 0 0 

NPI ( Fig. 5 ) Wide 200 20,000 2000 2000 200,000 

Deep 2000 2000 20,000 200 200 

Wide&Deep 200 20,000 200 2000 20,000 

NPK ( Fig. 6 ) Wide 20,000 20,000 200 200,000 200,000 

Deep 2000 2000 20,000 200 200 

Wide&Deep 2000 200,000 2000 200 200,000 

recommendations will be drawn. In the second part, the discussion 

of the results will be specifically addressed. 

6.1. Attributes selection and the need for a standardized taxonomy 

As previously stated, the reasons behind the selection of the 

 

 

 

 

 

 

cident), Critical Events (i.e., Top Events), and Major Events (i.e., 

Thermal radiation, Overpressure, Toxic effects, Missiles). Taking the 

generic Bow-Tie structure proposed by the ARAMIS project as a ref- 

erence ( ARAMIS project team, 2004 ), it might be argued that the 

attributes described in Table 2 can be mapped into the diagram 

so that each intermediate event is described by one or more at- 

tributes. Fig. 7 clarifies this insight. The Bow-Tie in the figure is 

d
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8 
attributes described in section 2.1 are convenience and complete-

ness. Regarding the last motivation, it is worth analyzing the role

of each attribute in more detail. To this end, a graphical represen-

tation – such as a bow-tie diagram – can be a helpful support.

Bow-ties are clear and direct means of indicating the causal re-

lationships between Undesirable Events (i.e., the causes of an in-
ivided into nine different intermediate events, as suggested by 

he ARAMIS framework. The codes describing the names of these 

vents are shown at the top of Fig. 7 . The attributes used in the 

achine Learning simulations ( Table 2 ) may be used to describe 

ach event of the Bow-Tie, as shown at the bottom of Fig. 7 . 
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Fig. 5. Area Under the Curve Precision-Recall (AUC PR) (a), Recall (b), Accuracy (c), and Precision (d) obtained from a small selection of simulations for the category “Number 

of People that are Injured” (NPI). Labels are represented on the x-axis. Recall, Precision, and Accuracy are obtained at threshold = 0.5. 

Fig. 6. Area Under the Curve Precision-Recall (AUC PR) (a), Recall (b), Accuracy (c), and Precision (d) obtained from a small selection of simulations for the category “Number 

of People that are Killed” (NPK). Labels are represented on the x-axis. Recall, Precision, and Accuracy are obtained at threshold = 0.5. 

9 
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Fig. 7. Schematic representation of a Bow-Tie diagram. Names of intermediate events (top side) are defined according to MIMAH methodology ( ARAMIS project team, 2004 ). 

Database attributes listed in Table 2 are associated with each intermediate event (bottom side). The bold dashed line indicates that the Number of People that are Evacuated 

(NPE) may act as a safety barrier between the Major Event (ME) and the accident consequences. 

The attributes Date (DA) and Location (LO) may provide back- 

ground information for the accident causes; therefore, they are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

system would terribly improve the use of advanced analysis meth- 

ods whose potential is not fully exploited due to the differences 
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10 
represented at the bottom-left side of the diagram. Proceeding to

the right, the attribute General Cause (GC) may describe the Un-

desirable Event (UE) that started the incident. The Specific Cause

(SC) may be associated with both Detailed Direct Causes (DDC)

and Direct Causes (DC). General and Specific Origin (GOG and SOG)

may describe the Necessary and Sufficient Cause (NSC). The Critical

Event (CE) may be defined by the type of substances involved (i.e.,

Material Hazard, Material Code, and Material Name) and by the

quantity of substance released (QY). On the event tree side, the at-

tributes Quantity (QY), Ignition Source (IS), and Incident Type (IT)

may be used to describe the events Secondary and Tertiary Criti-

cal Events (SCE and TCE), Dangerous Phenomena (DP), and Major

Event (ME). The effect of Major Events on humans are described by

the attributes Population Density (PO), Number of People that are

Injured (NPI), and Number of People that are Killed (NPK), which

are on the rightmost side of the diagram. Finally, the Number of

People that are Evacuated (NPE) may indicate the effectiveness of

the Emergency Response Plan. For this reason, NPE is represented

in Fig. 7 as a safety barrier that mitigates the harmful effects of a

Major Event. 

In conclusion, the attributes provide a synthetic but rather ex-

haustive description of the incident, from its causes to conse-

quences on humans. Therefore, it appears reasonable to use this

set of attributes for the Machine Learning simulations. However,

there is not a globally accepted standard methodology for record-

ing accidents into digital databases. That is, different databases use

different sets of attributes and taxonomies; this implies that prior

to applying the method described in this work to other accident

databases, one must convert attributes and taxonomies to match

those described in Table 2 , which is a difficult and time-consuming

task. Instead, one may decide to use a different set of attributes

and taxonomy, but the issue will not be solved because the model

will still be limited to one of many taxonomies. For these reasons,

it would be advisable that institutions and academics discuss and

propose a standardized system to record accidents, incidents, and

near misses into digital databases. Such a harmonized recording
etween existing databases. 

In this work, MHIDAS has been used despite being decommis- 

ioned and no longer updated. The authors believe that this choice 

oes not affect the validity of the analysis since the database has 

 well-organized and rational structure and contains records of a 

arge number of incidents and accidents that occurred worldwide 

n more than a decade. Indeed, there are more recent and updated 

atabases that it may be beneficial to analyze, such as eMARS 

 European Commission, 2022 ), ARIA ( Bureau for Analysis of In- 

ustrial Risks and Pollutions, 2022 ), ZEMA ( Bundesministerium für 

mwelt Naturschutz Bau und Reaktorsicherheit, 2022 ), and FACST 

 Unified Industrial and Harbour Fire Department, 2022 ). However, 

heir use would not guarantee more reliable and accurate results. 

he exhaustive and informative set of attributes used in MHIDAS 

implifies the analyses and avoids time-consuming and expensive 

ata pre-processing. Instead, different datasets may require extra 

fforts to extract the most relevant features from limited native ac- 

ident representation. 

. Discussion of results 

The results reported in Fig. 5 and Fig. 6 suggest that each per- 

ormance metric follows a particular trend. Specifically, the AUC PR 

ppears to decrease as the task involves the identification of ac- 

idents with an increasing number of people involved, as shown 

n Fig. 5 a and Fig. 6 a. The trend might be explained by consider- 

ng the rarity of events with a large number of people involved. 

n fact, the frequency distribution of the attributes NPI and NPK 

section 3.1.1) highlights that the number of events in the database 

ecreases as the number of people that are injured or killed in- 

reases. As a result, the performance of the models may have de- 

raded because there are fewer chances to learn from events that 

ave never or rarely occurred. 

A similar trend is observed for the metrics Precision and Re- 

all. The only exception is the label “100 – 10 0 0” of the cate- 

ory NPK ( Fig. 6 b), for which the Deep and Wide&Deep models 
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Table 4 

Example of two similar accidents that led to different classification results. Only the most relevant features are 

displayed. 

ID MN1 IT1 IT2 GOG1 SOG2 GC1 GC2 IS1 Result 

1 Crude Oil Contrel Fire Transport Pipeline Mechanical Human Electric TP 

Pipelin
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2 Crude Oil Contrel Na Transport 

produced a Recall higher than the label “10 – 100”. The trend

might be explained with the same considerations made for the

AUC PR; that is, the performance of the models degrades as rarer

events are considered because there are fewer chances to learn

from the data. The relatively high Recall value shown by the Deep

and Wide&Deep for the label “100 – 10 0 0” in Fig. 6 b may be ex-

plained by considering that the evaluation database contains only

7 events labeled as “100 – 10 0 0”; therefore, detecting a few of

them would make a significant difference in terms of Recall. In

fact, the Deep and Wide&Deep models could identify 2 of the 7

target events, which explains the Recall value of 0.28. The rea-

son for this unexpected behavior may lie in the advanced abstrac-

tion capabilities of these models, which might be able to capture

the correct feature combinations leading to these rare events. The

characteristics of the datasets may also have played a role. Specifi-

cally, considering the label “100 – 10 0 0”, the ratio of events in the

training dataset/events in the evaluation dataset is 2.86; instead,

the ratio is 1.9 for the label “10 – 100”. This means that the mod-

els have more chances to learn and fewer chances to be tested on

the label “100 – 10 0 0” than on the label “10 – 100”. Further tests

must be performed to verify this insight and assess whether a dif-

ferent label distribution in the training and evaluation databases

will change the performance of the models. 

The results shown in Fig. 5 c and Fig. 6 c suggest that the model

accuracy increases as a larger number of people involved is con-

sidered. However, it is worth recalling that high accuracy does not

imply good performance when the task involves the identification

of rare events. For instance, if there are only a few examples of

a specific label in the training dataset, the model could achieve a

high Accuracy by predicting that no event in the dataset has that

specific label. That is, ignoring extremely rare labels would pro-

duce better results in terms of accuracy. Therefore, one possible ex-

planation for Accuracy behavior is that the model “confidence” in

performing positive predictions decreases when it deals with rare

events; as a result, the model may conclude that ignoring the label

and not performing any positive prediction may be more efficient,

as the accuracy would not be affected. 

In order to investigate the above-mentioned hypotheses and

provide more insights into how the models performed their pre-

dictions, examples of correct and incorrect classification have been

studied more in detail. The analysis has focused on the results ob-

tained by the Wide&Deep model on the category “NPK” and label

“1 – 10” at 20 0,0 0 0 iteration steps. The results have been screened

in order to identify groups of similar events (i.e., with similar fea-

tures) that contain examples of True Positives (i.e., critical events

correctly identified) and False Negatives (i.e., undetected critical

events). In order to reduce the number of events to screen, only

those involving crude oil have been analyzed. This substance has

been selected because it is well represented in both the training

and evaluation dataset. In fact, crude oil is the most frequent sub-

stance in the training dataset (639 events) and the third most fre-

quent in the evaluation dataset (99 events). The analysis of the

evaluation dataset reveals that two events that caused from 1 to 10

fatalities share most of their features. However, the model correctly

classified only one of them, while the other generated a False Neg-

ative. These events have been examined more in detail to find a

possible reason for this error. Table 4 displays the most relevant

features of these accidents. 
e Mechanical Na Nonignite FN 

The events involved a continuous release (i.e., “Contrel” in IT1, 

able 4 ) caused by a mechanical failure of a pipeline. The most 

otable difference is that the first event involved a fire while the 

econd release did not ignite (i.e., “Nonignite” in IS1, Table 4 ). Con- 

erning the second event, one may argue that a release of Crude 

il from a pipeline without ignition is unlikely to cause killed. In 

act, six other events in the evaluation dataset involved the re- 

ease of crude oil from pipelines without ignition, and none caused 

ny fatalities. All of these events have been correctly labeled by 

he model (i.e., True Negatives). A search for similar events in the 

raining database reveals that 112 events involved the continuous 

elease of crude oil without ignition, and all but two did not cause 

ny fatalities. The two events that resulted in fatalities were caused 

y sabotage, which may justify a high death toll. Also, the analysis 

f the results produced by the Wide model for the same category 

nd label shows that the algorithm performed the same kind of 

redictions for these events. This evidence suggests that the mis- 

lassification of event 2 in Table 4 may be explained by at least 

wo factors: (i) the event is extremely rare since there is no other 

ecord of a similar event in the dataset, and (ii) the event descrip- 

ion in MHIDAS may not be accurate enough to clarify the circum- 

tances surrounding the fatalities. This indicates that the combina- 

ion of features that rarely or never occurred in the training dataset 

ay seriously affect the model performance. The development of 

odels with better generalization capabilities may partially over- 

ome this limitation. In addition, a better-balanced and more com- 

rehensive database may considerably improve the prediction ca- 

abilities of data-driven models. The model inability to classify the 

econd event in Table 4 indicates the possibility to further improve 

he taxonomy used in MHIDAS. In fact, despite being rational and 

nformative, it cannot fully explain those incidents where fatalities 

re not caused by physical effects, such as exposure to thermal ra- 

iation, toxic levels in ambient air, and overpressure. 

In order to further investigate the role of class distribution 

mong training and test datasets, additional analysis has been per- 

ormed considering ammonia as a reference substance. In fact, am- 

onia is the most frequent substance in the evaluation database 

ith 153 events. However, only 137 events involving ammonia are 

ound in the training dataset, and only 14 caused 1 to 10 fatali- 

ies. Instead, 29 events in the evaluation dataset caused the same 

mount of deaths. The discussions made so far may suggest that 

he imbalance between train and test datasets could have signifi- 

antly degraded the performance of the algorithm. In fact, the re- 

ults confirm this insight; only 4 of the 29 critical events have 

een correctly classified by the Wide and Wide&Deep models. This 

esult proves that label and feature balance among training and 

valuation datasets is crucial for ensuring good prediction perfor- 

ance. 

The number of missing features may also play a significant role 

n determining the performance of the models. Intuitively, events 

ith more missing features may be more difficult to classify due 

o the uncertainty surrounding the accident characteristics. As a 

esult, the models may lack essential information to learn from or 

redict the outcomes of these incomplete observations. To confirm 

his insight, the frequency distribution of missing values among 

he correct and incorrect predictions made by the Wide&Deep 

odel on the same category and label discussed above has been 

ssessed and represented in Fig. 8 . 
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Fig. 8. Missing feature distribution among correct and wrong predictions made by 

the Wide&Deep model (category = “NPK”, label = 1 – 10). 

The x-axis in Fig. 8 represents the number of missing features, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Scoring system multipliers. 

Label Multiplier 

NO 1 

1–10 2 

10–100 3 

100–1000 4 

> 1000 5 
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and the height of the bars shows the percentage of correctly (blue)

or wrongly predicted events (red). The chart suggests that a cor-

relation exists between missing values and classification perfor-

mance. Specifically, events with a low number of missing features

(i.e., 0, 1, and 3) are more likely to be correctly predicted. In con-

trast, events with a large number of missing features (i.e., ≥ 4)

are more frequently misclassified. However, it is worth mention-

ing that the events with 2 missing features are more likely mis-

classified despite the low number of missing values. This abnormal

behavior may be due to random effects in data distribution since

most of the events in the training dataset have 2 missing features.

Notwithstanding this anomaly, data appear to confirm that a high

number of missing features has a negative impact on the model

prediction capabilities. 

As previously mentioned, one of the objectives of this study is

to compare the performance of different models. The Wide model

assumes a linear association between inputs and labels, while the

Deep and Wide&Deep models can capture nonlinear relationships

between features. The Bow-Tie representation shown in Fig. 7 sug-

gests that the number of interactions between attributes increases

as we consider an attribute that is far from the event to pre-

dict – the final outcome in this case. For this reason, the Deep

and Wide&Deep may potentially provide better performance due

to their ability to capture the effects of combinations of features.

However, the results in Fig. 5 , Fig. 6 , and supplementary material

indicate that there is not a single model that outperforms the oth-

ers. In fact, the Deep model produces the best AUC PR and Re-

call for the label “NO” of the category “NPI” ( Fig. 5 a); however,

the other models show larger Accuracy and Precision values for

the same label of the category “NPK” ( Fig. 6 a). In addition, it may

happen that a model produces the highest metric for the category

NPI and the lowest metric for the category NPK; as an example,

the deep model produces the largest Recall for the label “1 – 10”

of the category NPI ( Fig. 5 b) and the smallest value for the same

label of the category NPK ( Fig. 6 b). To further complicate the com-

parison, the number of iteration steps must be taken into account.

Therefore, a scoring system was developed to rank and compare

the models. The aim is to assign a score to each model accord-

ing to its performance; two scores are obtained for each model:

one for the category NPI and one for the category NPK. In order
o simplify the method, the scoring system takes into account only 

he AUC PR, which is the most significant metric in this context. 

he process involves 8 steps: 

• A category is selected (e.g., NPI). 
• A number of iteration steps is selected (e.g., 200). 
• The AUC PR values of the simulation performed for the pair 

category-number of iteration steps are selected and used in the 

following steps. 
• For each label, the models are ranked based on the AUC PR val- 

ues. Baseline scores are assigned to each model. 
• 3 if the model produced the largest AUC PR, 
• 2 if the model ranked second, 
• 1 if the model produced the smallest AUC PR. 
• Multipliers are assigned to each baseline score based on the 

severity category of the label ( Table 5 ) - a model is “rewarded”

when it outperforms the others on the identification of severe 

accidents. 
• For each model, the scores obtained in step 5 are summed to 

obtain a partial score that indicates which model performs bet- 

ter on the pair category – number of iteration steps. 
• Steps from 2 to 6 are repeated for each number of iteration 

steps. Partial scores of each model are summed to obtain a cat- 

egory score that indicates which model performs better on the 

category chosen in step 1. 
• Steps from 1 to 7 are repeated for the other category. 

The application of the procedure leads to the scores displayed 

n Table 6 . The scoring system suggests that the best model in the 

ategory NPI and NPK is the Wide&Deep, followed by the Wide 

nd Deep models. Obviously, the same ranking is obtained consid- 

ring the overall score, which is the sum of the scores obtained in 

he categories NPI and NPK. 

It is not surprising that the Wide&Deep model performed bet- 

er than the others. In fact, the hybrid model combines the ad- 

antages of both the Linear and Deep models, as described in sec- 

ion 2.2.2.3. Nevertheless, a relatively unexpected result is that the 

inear model performs better than the more sophisticated Deep 

odel. This may suggest that the problem considered in this study 

equires stronger memorization capabilities rather than general- 

zation. As already discussed, Deep models are prone to overfit- 

ing and overgeneralization. In addition, they need high-quality in- 

ut data to perform as intended. The quality of MHIDAS database 

s sufficient, but certainly not excellent considering its public do- 

ain nature. Also, such advanced models may need more opti- 

ization and hyperparameters fine-tuning to perform adequately. 

n the contrary, the linear part of the Wide&Deep model may 

dd stability and robustness to the algorithms, partially overcom- 

ng the issues related to the deep part. Apparently, the results indi- 

Table 6 

Scores assigned to the models. 

Model Score NPI Score NPK Overall score 

Wide 134 108 242 

Deep 80 99 179 

Wide&Deep 146 153 299 
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Fig. 9. Precision-Recall curve of the Deep model for the label 1 – 10 (NPK) at 20 0 0 

integration steps. THOLD represents the decision threshold. 

cate that the approach benefits from a model capable of assessing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. F 1 , F 1.5 , and F 2 curves obtained by the Deep model for the label 1 – 10 

(NPK) at 20 0 0 integration steps. F 1.5 , and F 2 show a global maximum for Thresh- 

old = 0.011. F 1 has a maximum at Threshold = 0.031. 

is presented in Fig. 10 , which describes three F-scores: F 1 , F 1.5 , 
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13 
the weights of each feature (or groups of features) independently

rather than generalizing over all the features. A further study with

more focus on the optimization of the model internal parame-

ters (e.g., different number of hidden layers and units, activation

function, learning decay) is suggested to test whether a different

configuration of the Deep and Wide&Deep models would improve

their performance. 

In addition to these general considerations, it is worth dis-

cussing the role of the decision threshold in more detail. The Re-

call, Precision, and Accuracy values shown in Fig. 5 and Fig. 6 are

obtained using a threshold equal to 0.5. One must bear in mind

that low Recall and Precision values do not necessarily indicate

poor performance; if the AUC PR is large enough, fine-tuning the

decision threshold may improve the performance significantly. For

example, consider the performance of the Deep model for the la-

bel “1 – 10” of the category NPK at 20 0 0 integration steps ( Fig. 6 ).

The model produces a Recall close to 0 ( Fig. 6 b). But, the AUC PR

value is in line with the other models ( Fig. 6 a). This suggests that

a threshold of 0.5 may not be the best choice. In order to visu-

alize the effect of this parameter on the performance metrics, the

Precision-Recall curve is shown in Fig. 9 . 

Each point of the blue curve in Fig. 9 represents the Precision

and Recall values at a specific threshold (THOLD). The red mark

indicates Precision and Recall obtained using a threshold equal to

0.5 (i.e., the values shown in Fig. 6 for the Deep model and la-

bel “1 – 10”). The orange mark highlights that if the threshold is

lowered to 0.165, the Deep model produces a Recall equal to 0.33

and a Precision of 0.41, which are in line with those obtained by

the Wide and Wide&Deep models for the same label and category.

This confirms that the Recall and Precision obtained using 0.5 as a

threshold may not be representative of the model performance. In

addition, it might be argued that misclassifying a “Deadly” accident

as “Not Deadly” is more critical than misclassifying a “Not Deadly”

event as “Deadly”; that is, False Negatives must be avoided, while

False Positives may be tolerated. In this context, a good model

must produce a high Recall, while a low precision might be con-

sidered acceptable and, to a certain extent, conservative. Therefore,

the decision threshold may be further tuned in order to maxi-

mize a Recall oriented F-score (e.g., F 1.5 or F 2 ), as explained in sec-

tion 2.2.3. The effect of the decision threshold on the F-measure
nd F 2 . 

From the data in Fig. 10 , it is apparent that the recall-oriented 

 1.5 and F 2 scores show a maximum for a decision threshold equal 

o 0.011. Instead, the F 1 score reaches its maximum at a threshold 

f 0.031. The green mark in Fig. 9 indicates that decreasing the de- 

ision threshold to 0.011 allows the Deep model to achieve a Recall 

qual to 0.91 and a Precision of 0.29, which means that the model 

an identify 9 out of 10 events that caused 1 – 10 killed with a pre- 

ision of 29%. The performance is significantly improved consider- 

ng that the same model can identify only 3 out of 100 events us- 

ng 0.5 as a decision threshold (red mark in Fig. 9 ). As a drawback, 

he Precision has dropped from 0.41 to 0.29. However, Precision is 

ot as crucial as Recall. In this study, a key requirement is that the 

odel produces the fewest possible False Negatives (i.e., the Recall 

ust be small) in order to prevent overlooking severe accidents. 

 small number of False Positives (i.e., a large Precision), although 

esirable, is not critical. Therefore, the significant improvement in 

ecall obtained through threshold tuning appear to compensate for 

he relatively small decrease in Precision. 

In general, the results shown in Fig. 5 and Fig. 6 and the im- 

rovement obtained by an accurate threshold tuning suggest that 

he approach described in this study may be used to predict and 

iscriminate the outcomes of accidents involving dangerous sub- 

tances in terms of people injured and killed. The high level of de- 

ail, the ease of use, and the classification speed are some of the 

ost significant benefits of this method. Furthermore, no earlier 

tudy prosed a Machine Learning approach for severity prediction 

hat reached such a high level of detail. In addition to discriminat- 

ng between injuries and fatalities, the algorithms proposed in this 

nvestigation provide additional information about the number of 

eople involved. The detail level offered by these algorithms may 

ermit the definition of more accurate preventive and mitigative 

ctions and provides more practical and concrete support to safe 

esign and operations. 

. Conclusions 

The main goal of the current study was to demonstrate the 

se of Machine Learning techniques to (i) analyze and extract rele- 

ant knowledge from existing chemical accident databases and (ii) 
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use the acquired knowledge to predict the outcomes of new ac-

cidental events. A generic approach has been proposed, which re-

lies on classification algorithms to predict the outcomes of chem-

ical accidents in terms of people killed and injured. The method

has been tested on a specific database, namely MHIDAS. To this

end, three classification models have been used and compared, i.e.,

Wide, Deep, and Wide&Deep; the results indicate that the latter

ensures the best performance. 

The following conclusions can be drawn from the present study.

Firstly, the results suggest that advanced analysis methods may be

used to exploit existing accident data and perform predictions on

the severity of new accidents. Secondly, the performance of the

model largely depends on the quality of input data and the nature

of the model itself. That is, if accident data are incomplete or un-

certain, the choice of a model with advanced abstraction and gen-

eralization capabilities over a memorization-oriented model may

not be advisable due to the risk of overgeneralization and overfit-

ting. Thirdly, the performance of the model also depends on data

availability. That is, the performance of the models degrades if ex-

tremely rare events are considered. Finally, the fine-tuning of the

decision threshold to maximize a Recall-oriented F-measure may

be an effective means of improving the performance of the algo-

rithms, partially overcoming the issues of data scarcity and allow-

ing the identification of more critical accidents. 

However, although the results of the study appear promis-

ing, it is worth acknowledging some limitations. For instance, the

approach has been tested on a specific database; further works

should investigate whether the method might be applicable to dif-

ferent accident databases or industrial sectors. Also, it would be

advisable to assess whether the knowledge extracted from a spe-

cific database might be used directly on different databases. A

companion paper is proposed by Tamascelli et al. (2021) to inves-

tigate this topic. Another potential limitation is the choice of the

attributes and taxonomy used to describe the accidents; the moti-

vations behind this choice have been discussed in detail, but there

is no guarantee that a different set of attributes would not improve

the performance. In addition, the study reveals that the absence of

an unambiguous and standardized system for recording accident

data is a substantial obstacle to the spread of data-driven predic-

tive methods. Therefore, the authors strongly encourage coopera-

tion between institutions and academics to address this issue and

exploit the potential of advanced analysis methods. 

Notwithstanding the limitations, this is the first study that uses

multiple discrete outcome variables and different ML models to

predict the severity category of accidents involving dangerous sub-

stances. Therefore, this investigation makes a major contribution

to research on Machine Learning methods for safety management

and assessment in the chemical industry. In general, the approach

may support the development of advanced predictive tools and

represent an essential step toward Safety 4.0. More specifically, the

techniques herein discussed may support hazard identification and

consequence evaluation by providing a quick, practical, and easily

understandable indication of the potential consequences of a re-

lease. Also, the approach may be used to identify the most im-

portant factors contributing to the accident severity. Finally, the

method allows a reactive response to accidents by providing es-

sential information to the emergency response team. 
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A B S T R A C T   

Learning from the past is essential to improve safety and reliability in the chemical industry. In the context of 
Industry 4.0 and Industry 5.0, where Artificial Intelligence and IoT are expanding throughout every industrial 
sector, it is essential to determine if an artificial learner may exploit historical accident data to support a more 
efficient and sustainable learning framework. One important limitation of Machine Learning algorithms is their 
difficulty in generalizing over multiple tasks. In this context, the present study aims to investigate the issue of 
meta-learning and transfer learning, evaluating whether the knowledge extracted from a generic accident 
database could be used to predict the consequence of new, technology-specific accidents. To this end, a classi
fication algorithm is trained on a large and generic accident database to learn the relationship between accident 
features and consequence severity from a diverse pool of examples. Later, the acquired knowledge is transferred 
to another domain to predict the number of fatalities and injuries in new accidents. The methodology is eval
uated on a test case, where two classification algorithms are trained on a generic accident database (i.e., the 
Major Hazard Incident Data Service) and evaluated on a technology-specific, lower-quality database. The results 
suggest that automated algorithms can learn from historical data and transfer knowledge to predict the severity 
of different types of accidents. The findings indicate that the knowledge gained from previous tasks might be 
used to address new tasks. Therefore, the proposed approach reduces the need for new data and the cost of the 
analyses.   

1. Introduction 

Learning from the past is essential for the advancement of every 
human activity, especially when mistakes may lead to disastrous con
sequences. In fact, lessons learned from past mistakes are vital to ensure 
safe operations in high-risk industries (Pasman, 2009). During the last 
decade, significant efforts have been made by regulators, academics, and 
industrials in order to avoid the re-occurrence of accidents involving 
dangerous substances. As an example, the Directive 2012/18/EU of the 
European Parliament and of the Council (European Union, 2012), also 
known as Seveso-III directive, stresses the importance of an effective 
learning strategy by introducing new requirements and providing 
guidelines for cross-organizational learning (Weibull et al., 2020). As an 
example, paragraph 4(c) of Annex II states that the safety report must 
include a “review of past accidents and incidents with the same 

substances and processes used, consideration of lessons learned from 
these, and explicit reference to specific measures taken to prevent such 
accidents” (European Union, 2012). Also, the directive requires Member 
States to investigate root causes of major accidents, and report their 
findings in the European Commission’s eMARS database (European 
Commission, 2022). 

Notwithstanding the undisputed importance of this topic, several 
authors highlighted that “the chemical industry as a whole does not 
learn from past accidents” (Chung and Jefferson, 1998). More than 10 
years later, Pasman (2009) and Le Coze (2013) stated that little progress 
had been made; similar accidents reoccur, and organizations appear to 
struggle in deriving, retaining, and applying the lessons learned from the 
past. As an example, one might consider accidents related to ammonia 
production and utilization. In spite of its toxicity, ammonia is still an 
essential building block for the synthesis of nitrogen-based fertilizers, 
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explosives, household cleaning solutions, and other chemicals (Patta
bathula and Richardson, 2016). Globally, there is an ever-increasing 
demand for ammonia, which is mainly produced in large-scale plants, 
where significant quantities of dangerous substances (e.g., ammonia, 
methane, hydrogen, carbon monoxide) are handled and stored during 
daily activities. Ammonia was also proposed as a green fuel for maritime 
transportation (Chiong et al., 2021). For this reason, ammonia produc
tion may be considered a representative example of industrial activities 
that have a large potential to cause major accidents. Khan and Abbasi 
(1999) analyzed 1744 accidents that occurred between 1928 and 1997; 
the results indicate that ammonia was responsible for most events. For 
instance, the failure of a storage tank in Potchefstroom, South Africa, 
caused the release of 30 tons of anhydrous ammonia, which rapidly 
formed a gas cloud with a diameter of about 150 m. Eighteen people 
died during the accident, and 34 suffered serious injuries (Khan and 
Abbasi, 1999; Lonsdale, 1975). Since the late ‘90 s, the fundamentals of 
ammonia production have not changed much (Verma et al., 2019). 
Therefore, some may expect that the lesson learned from those accidents 
would have drastically lowered their occurrence. But unfortunately, this 
has not happened. Accidents still occur within the ammonia 
manufacturing industry: recent examples are those that took place in 
Phulpur, India (Pandya, 2020), and La Pobla de Mafumet, Spain (Eu
ropean Commission, 2019), causing two and one fatalities, respectively. 

Learning from past accidents is still a new field (Le Coze, 2013), 
which lacks integration and standardization. An effective learning 
strategy relies on the interaction between organizations, institutions, 
and employees; several steps are needed to ensure the success of the 
process, and several obstacles must be faced. One may argue that human 
factors prevent an effective learning strategy (Pasman, 2009). In facts, 
humans have proven to have inherent generalization skills (Torrey and 
Shavlik, 2014) – i.e., the ability to transfer the knowledge gained in a 
specific task to a different domain – but there is a limit to the amount of 
data that can be processed and stored in our brain. Also, human learning 
may be biased and affected by emotions and interests (Weibull et al., 
2020). 

The idea of using data to update the risk picture has already been 
proposed in the past. For example, Landucci and Paltrinieri (2016) 
proposed a methodology to update the leak frequency based on tech
nical, operational, human, and organizational factors. Recent advance
ments in IT, data science, and computational technology have led to the 
development of a new form of learning, named Machine Learning (ML), 
which relies on automated algorithms to extract knowledge from data. 
The growing interest in these algorithms has also affected the fields of 
safety and reliability. Several studies have proposed Machine Learning 
methods for predictive maintenance (Carvalho et al., 2019; Ge et al., 
2017; Xu and Saleh, 2021), fault detection and diagnosis (He et al., 
2005; Tian et al., 2015; Xu and Saleh, 2021; Zhong et al., 2014), diag
nosis and prognosis of industrial alarm systems (Langstrand et al., 2021; 
Tamascelli et al., 2021, 2020), and Dynamic Risk Analysis (Paltrinieri 
et al., 2020, 2019). 

On top of that, recent studies have focused on the application of ML 
methods to extract safety–critical knowledge from the abundance of 
accident data stored in the form of accident databases. Studies by Che
bila (2021) and Tamascelli et al. (2022) suggest that classification al
gorithms might be used to acquire and retain knowledge about past 
accidents by analyzing existing databases. Specifically, these algorithms 
might be used to predict the consequences of an accident in terms of 
fatalities and injuries. In general, the approach suggests that artificial 
learners may partially overcome the limitations linked with the role of 
human factors in the learning framework. However, a major limitation 
of these studies is that they do not investigate whether the knowledge 
gained by these algorithms could be transferred to other domains. That 
is, the algorithms proposed in these studies have been trained and tested 
using data from a particular accident database, which is eMARS (Che
bila, 2021) and MHIDAS in (Tamascelli et al., 2022). There is no guar
antee that the knowledge extracted from these databases could be used 

to predict the outcomes of events from different data sources. In fact, 
humans have inherent transfer learning skills, but most Machine 
Learning algorithms cannot generalize over multiple tasks (Pan and 
Yang, 2010). A data-driven approach may overcome the issues related to 
the limited memorization and data processing skills of human beings, 
but whether these algorithms might be tailored to multiple tasks remains 
an open question. 

In an attempt to address the challenges outlined above, a relatively 
new research line has focused on the so-called meta-learning (also 
known as learning to learn), which is a subfield of Machine Learning that 
focuses on “learning from prior experience in a systematic, data-driven 
way” (Vanschoren, 2018). The approach attempts to mimic the human 
ability to generalize and recall past experiences to increase the learning 
efficiency of new tasks (Griffiths et al., 2019). That is, meta-learning 
techniques aim to exploit the knowledge gained from previous tasks to 
improve and speed up the learning of new tasks (Lemke et al., 2015). 
These techniques may assist crucial and time-consuming stages of the 
Machine Learning Lifecycle (Ashmore et al., 2019), such as model se
lection (Stefana and Paltrinieri, 2021) and hyperparameters selection 
(Vanschoren, 2018). Several approaches have been developed to reach 
this goal; among them, there is the so-called Transfer Learning, which 
investigates methods to transfer knowledge from one task to another 
(Torrey and Shavlik, 2014). Depending on the problem under assess
ment, Transfer Learning may be divided into three categories: inductive, 
transductive, and unsupervised Transfer Learning (Pan and Yang, 2010). 

This study set out to investigate the potential of inductive Transfer 
Learning to enhance and extend the scope of Machine Learning appli
cations. To this end, a novel approach has been developed to leverage 
the knowledge extracted from nonspecific accident databases and pre
dict the outcomes of technology-specific accidents. In particular, clas
sification algorithms are trained on generic accident databases to learn 
the relationships between accident features and accident severity. Later, 
the pre-trained models are used to predict the outcomes of different, 
technology-specific accidents. Finally, performance metrics are pro
duced to quantify and evaluate the success of the Transfer Learning 
procedure, and optimization strategies are proposed. The approach has 
been applied to a specific test case. A generic database named Major 
Hazard Incident Data Service (MHIDAS) (AEA Technology, 1999) has 
been used for the learning process. A specifically developed database 
reporting accidents involving ammonia releases has been used to test the 
generalization capabilities of the pre-trained model. The latter was 
developed in the present study by collecting data on accidents that 
involved ammonia or related substances. 

The approach presented in this work will significantly accelerate the 
development of models for consequence prediction by reducing the need 
for new data and improving the generalization capabilities of Machine 
Learning algorithms. Furthermore, to the best of the authors’ knowl
edge, there is no study in the field of process safety making use and 
investigating the potential role of Transfer Learning in the field of 
Chemical Process Safety. Therefore, this study makes a major contri
bution to research on the application of data-driven methods to extract 
safety-relevant knowledge hidden in accident data. 

The overall structure of the study takes the form of six sections, 
including this introductory chapter. Section 2 provides the literature 
review. Section 3 describes the methodology, including data pre- 
processing, model training, transfer learning, performance evaluation, 
and optimization strategies. Section 4 describes the test case used to 
apply and evaluate the methodology. Results are presented and dis
cussed in Section 5. Finally, conclusions are drawn in Section 6. 

2. Related works 

The use of Machine Learning to analyze accident data has gained 
traction in recent years (Sarkar and Maiti, 2020). Most of the studies on 
this topic pursue one of the following objectives: prediction of conse
quence severity, identification of influencing factors, or identification of 
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accident type. Also, based on the data source used for the analysis, we 
may distinguish between studies that analyze structured databases and 
those that focus on unstructured accident narratives. The research on 
this topic has focused on many industrial sectors, such as transportation 
(aviation, road, rail, and maritime), construction, mining, and petro
chemical. However, a recent review on Machine Learning in occupa
tional accident analysis (Sarkar and Maiti, 2020) concluded that most 
studies focus on road accidents (36.6 % of the analyzed articles), fol
lowed by construction sites (22 %), mining (6.9 %), aviation (5.2 %), 
manufacturing (5.2 %), and process industry (4.7 %). 

In the context of chemical and process industries, some studies 
focused on the analysis of structured databases (e.g., MHIDAS). For 
example, Phark et al. (2018) demonstrated the use of classification al
gorithms to predict whether an emergency evacuation order would be 
issued after a release of toxic substances. In this study, the Hazardous 
Substances Emergency Events Surveillance dataset (HSEES) and the 
National Toxic Substance Incidents Program (NTSIP) were used to train 
and compare two classification algorithms: Naïve Bayes and Multi-Layer 
Perceptron (MLP). The results indicate that MLP achieves high accuracy 
on this specific task. Three years later, Chebila (2021) investigated the 
use of classification algorithms to predict the outcomes of major acci
dents involving dangerous substances in terms of consequences to 
humans, the environment, or material assets. To this end, the author 
analyzed the Major Accident Reporting System dataset (eMARS) (Eu
ropean Commission, 2022) with six different binary classification al
gorithms. The results indicate that the Random Forest (RF) offered the 
best performance in the prediction of damages to humans and the 
environment, while the Neural Network performed better in the “ma
terial damage” category. In spite of their remarkable performance, the 
models proposed by Chebila (2021) were not designed to discriminate 
between fatalities and injuries or to consider multiple severity levels. To 
overcome this limitation, Tamascelli et al. (2022) proposed a classifi
cation framework based on multiple discrete outcome variables to 
categorize accidents according to their severity (e.g., from 1 to 10 fa
talities, from 11 to 100 fatalities, from 1 to 10 injuries). In this study, 
MHIDAS was used as a data source, and three classification algorithms 
were tested and compared: Linear, Deep Neural Network (DNN), and a 
hybrid Wide&Deep model. The study demonstrated the potential of ML 
algorithms to differentiate between different severity levels. However, 
the authors mentioned that data availability and poor data quality are 
significant obstacles to the diffusion of ML for consequence prediction. 
Similarly, Gangadhari et al. (2022) took advantage of rough set theory 
and classification algorithms to predict the outcome of accidents in the 
Oil&Gas industry. The authors considered four severity categories, 
namely “Near Miss”, “Minor”, “Major”, and “Catastrophic”. Accident 
reports were drawn from different sources and manually converted into 
a set of structured fields. Five classification algorithms were tested and 
compared. Hyperparameter tuning was performed to increase the model 
performance. The results indicate that the best model is XGbost (Chen 
and Guestrin, 2016), which returned an F1 score larger than 0.9 in every 
category. In spite of the good results, the authors mentioned that manual 
pre-processing of accident reports is extremely time-consuming; there
fore, there is a need for techniques that can (i) automatically extract 
meaningful and accurate information from accident reports, or (ii) 
reduce the need for labeled data. A different approach was proposed by 
Nakhal A et al. (2021), who coupled ML and Business Intelligence (BI) to 
analyze MHIDAS and build a dynamic visualization tool that may 
greatly simplify information retrieval and facilitate the visualization of 
connections between accident characteristics. All of the articles 
mentioned so far take advantage of structured databases, such as 
eMARS, MHIDAS, HSEES, and NTSIP. Still, researchers have also 
focused on the analysis of unstructured accident narratives. Most of this 
research focuses on extracting accident features (e.g., the accident type, 
or the contributory factors) from textual accident reports in order to 
decrease the need for manual intervention. For example, Luo et al. 
(2020) proposed a semi-automatic algorithm to extract Natech events 

from the National Response Center (NRC). The method relies on a 
keyword extraction phase followed by a recurrent neural network for the 
classification of accident reports into different Natech categories (e.g., 
“Flood”, “Hurricane”, “Earthquake”). Kurian et al. (2020) investigated 
keyword extraction and classification algorithms to categorize un
structured accident reports based on the incident type (e.g., “Leak/ 
Spill”, “Operation”, “Communication”). Jing et al. (2022) developed a 
method to identify the accident type (e.g., “Fires”, “Explosions”, 
“Poisoning”) from unstructured chemical accident reports. They used a 
Natural Language Processing technique named word2vec to extract 
word embeddings and a Bidirectional Long Short Term Memory network 
(Bi-LSTM) with an attention mechanism to identify the accident cate
gory. Finally, Wang and Zhao (2022) focused on the extraction of 
contributory factors in confined space accidents. Accident reports were 
collected from websites such as safehoo.com and ichemsafe.com. In this 
study, Bidirectional Encoder Representations from Transformers (BERT) 
is used to extract word embeddings, which are eventually fed to a Bi- 
LSTM for the classification of contributory factors (e.g., “Improper 
tool”, “Ventilation”, “Inerting”). It is worth mentioning that most of the 
studies that focus on unstructured accident reports require manual 
intervention for labeling or converting unstructured reports into struc
tured data. Certainly, these techniques have great potential to reduce the 
need for manual intervention in later stages (i.e., when new accident 
reports are analyzed). However, it is still unclear whether these models 
might be used to analyze reports that are different (in the content or in 
the format) from those used to train the models. 

Apart from the chemical industry, it is also worth mentioning some 
contributions from other sectors, such as the transportation, mining, and 
construction industry. Significant efforts have been directed toward the 
analysis of road crashes (Assi et al., 2020; Kushwaha and Abirami, 2022; 
Wahab and Jiang, 2019; Zhang et al., 2018), aviation incidents (Andrei 
et al., 2022; Burnett and Si, 2017; Tanguy et al., 2016; Xu et al., 2020), 
and maritime incidents (Cakir et al., 2021; Lu et al., 2022; Rawson and 
Brito, 2022). In addition, many studies have focused on consequence 
prediction and influencing factors identification in construction sites 
(Choi et al., 2020; Goh and Chua, 2013; Poh et al., 2018; Tixier et al., 
2016; Zhu et al., 2021), and mining operations (Gerassis et al., 2020; 
Kahraman, 2021; Palma et al., 2021; Yedla et al., 2020). 

The literature analysis highlights several challenges that need to be 
addressed to advance the research on Machine Learning methods to 
predict the consequences of major accidents. Firstly, the research has 
mainly focused on the transportation, construction, and mining in
dustries; few studies have analyzed accidents in the chemical industry. 
Secondly, data labeling and manual processing of unstructured reports 
are extremely time-consuming. Therefore, there is an urgent need for 
techniques that can automatically label accident reports or decrease the 
need for labeled data. In this context, Transfer Learning is particularly 
appealing because it may reduce the need for labeled data. To date, 
however, most studies do not investigate the model capability to transfer 
knowledge between different domains (e.g., different types of acci
dents). Therefore, a question remains unanswered; to what extent a 
model trained on a specific accident dataset can generalize the lesson to 
predict the outcome of accidents drawn from different sources? This 
study provides an exciting opportunity to address these challenges and 
advance our knowledge of Machine Learning models for consequence 
prediction. Firstly, this investigation is one of the few contributions that 
focus on the chemical industry. Secondly, only one other study used 
MHIDAS to develop predictive models (Tamascelli et al., 2022). 
Furthermore, a novel database on ammonia accidents is described in this 
study. Thirdly, this is one of the few contributions that investigates the 
potential of Transfer Learning in the analysis of accident databases with 
ML tools. To the best of the authors’ knowledge, only Goldberg (2022) 
applied Transfer Learning in his recent work on Machine Learning 
techniques to automatically label accident narratives. However, there 
are significant differences between the approach presented in this study 
and the investigation described by Goldberg (2022). For example, this 
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study analyzes structured accident data while unstructured accident 
narratives are used by Goldberg (2022). Also, occupational incidents are 
examined by Goldberg (2022), while this study focuses on major acci
dents involving dangerous substances. 

3. Methodology 

Fig. 1 reports the overall workflow of the methodology developed to 
extract information from an accident database (Source Database in 
Fig. 1) and use the acquired knowledge to predict the consequences of 
events included in a different database (Target Database in Fig. 1). The 
method involves four phases, each divided into several steps: 

Phase 1. Source database creation (orange in Fig. 1); 
Phase 2. Target database creation (blue in Fig. 1); 
Phase 3. Model selection and training (green in Fig. 1); 
Phase 4. Transfer Learning and optimization (ochre in Fig. 1). 

In the first two phases, two databases are created: the first database 
(i.e., source) contains a large number of diverse accident data (i.e., non- 
technology-specific, non-substance-specific, and non-industry-specific), 
the second database (i.e., target) encloses accidents that occurred 
within a specific industry or involved a specific substance. In the third 
phase, a Machine Learning classification model is trained on the source 
database to learn the relationship between accident features and acci
dent consequences in terms of fatalities and injuries. Finally, the pre- 
trained model predicts the outcomes of the events in the target data
base. Performance metrics are obtained, and optimization strategies are 
undertaken in order to fit the model to the new task. 

3.1. Source database creation 

Accident data from single or multiple data sources (step 1 in Fig. 1) 
are collected and used to populate the source database. Ideally, the 
source database should contain a large number of events that occurred 
in different industrial sectors (e.g., onshore and offshore), during 
different activities (e.g., processing, storage, transportation), and 
involving different substances. Data must be stored in tabular format, 
where rows represent accidental events and columns represent accident 

features (e.g., the date of the accident, the type of accident, and the 
substance involved). 

Next, accident data must be pre-processed and cleaned (step 2 in 
Fig. 1). Accident features that are not considered important or infor
mative must be removed. Also, accidents must be reported according to 
a uniform terminology. In addition, missing values must be removed or 
imputed because they are not recognized by Machine Learning algo
rithms. In this regard, one may refer to the extensive data-science 
literature, which offers many examples of missing values imputation 
techniques (Brink et al., 2016; Bruha, 2017; Makaba and Dogo, 2019). 

Most data sources use integers to represent the number of fatalities 
and injuries. Since this study focuses on predicting the consequence 
category of the accident rather than the exact number of people 
involved, a set of categories are created in order to label the accidents 
according to their severity. As an example, one category might include 
incidents that caused no fatalities or injuries. Another category might 
contain accidents that caused from 1 to 10 fatalities or injuries, and so 
forth. The number and size of the categories can be adjusted to fit the 
user needs and the characteristics of the databases. 

3.2. Target database creation 

The target database should focus on specific accidents, such as those 
involving a particular substance. This is required in order to evaluate the 
capability of the model to generalize over different tasks. For the same 
reason, it would be preferable to use multiple data sources to populate 
the target database (step 4 in Fig. 1). However, if accidents are drawn 
from a single data source, it is critical to ensure that such data source 
was not used in the creation of the source database. Also, besides case- 
specific procedures, it is critical to ensure that source and target data
bases share the same structure. In other words, the databases must have 
the same number of attributes and same terminology; this requirement is 
represented by the connection between steps 2 and 5 in Fig. 1. 

The procedure described above leads to the creation of two databases 
(i.e., source and target, steps 3 and 5 in Fig. 1) which are in the proper 
format for use in the Machine Learning simulations. 

3.3. Model selection and training 

According to Murphy (2012), Machine Learning is defined as “a set of 
methods that can automatically detect patterns in data, and then use the 
uncovered patterns to predict future data, or to perform other kind of 
decision making under uncertainty”. That is, the term Machine Learning 
includes all the algorithms that can automatically extract knowledge 
from data and use that knowledge to make accurate predictions (Brink 
et al., 2016). The choice of the most appropriate algorithm depends on 
many factors, including the nature of the problem under assessment, 
data characteristics and availability, computational time requirements, 
and the expected output (Brink et al., 2016; Hastie et al., 2009; James 
et al., 2013; Khediri et al., 2012). In this study, the algorithm has to 
predict the severity of an accident given its main features, such as the 
amount of substance released and the equipment that originated the 
accident. Regression and classifications appear to be two feasible ap
proaches to address this problem. Regression models could be used if the 
focus is on predicting the exact number of people involved in the acci
dent. Instead, classification models should be used if the emphasis is on 
the prediction of a severity category (i.e., whether the accident has 
caused no fatalities/injuries, or whether the number of people involved 
is between 10 and 100). In this study, a classification approach has been 
adopted in order to reflect the implementation of severity categories in 
Risk Analysis techniques –e.g., the risk matrix proposed in (ARAMIS 
project team, 2004). Nevertheless, it would be advisable to investigate 
the use of Regression algorithms in further works. 

3.3.1. Model training 
Classification algorithms aim at categorizing objects into two or 

Fig. 1. Methodology workflow.  
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more pre-defined categories. Briefly, the purpose of a classification al
gorithm is to learn the relationship between the features (i.e., mean
ingful attributes) of the object that must be classified, and its label (i.e., 
its category). 

The development of the algorithm involves a training phase, where 
the algorithm “learns” the relationship between features and labels, and 
an evaluation phase, where the algorithm is tested against the ability to 
predict the labels of previously unseen objects. Often, the learning 
element of a classification algorithm is a function with tunable param
eters (f). During the training phase, these internal weights are adjusted 
to find the optimal mapping between features (X) and labels (Y), as 
shown in the following equation (James et al., 2013). 

Y ≈ f (X) (1) 

In this study, the source database is used to train the Machine 
Learning model (step 6 in Fig. 1); that is, the entire database is fed to the 
model. During this phase, the user might decide to reiterate the training 
in order to simulate a more extensive database. In other words, the 
source database could be fed to the model multiple times. The number of 
reiterations over the source database is called the “number of iteration 
steps”. A large number of iteration steps may improve the performance 
because the model has more chances to learn. In contrast, there is a risk 
of overfitting the model (TensorFlow.org, 2021). 

3.3.2. Model description 
The function f in Eq. (1) is the so-called model of the Machine 

Learning algorithm. In this study, two distinct models have been used to 
demonstrate the approach: a Linear model and a Deep Neural Network. 
Nevertheless, the methodology may be promptly adapted for use with 
different models. 

3.3.2.1. Linear model. Linear models describe the labels as a linear 
combination of features (James et al., 2013). That is, Eq. (1) can be 
written as (Hastie et al., 2009): 

Y = α0 +
∑N

i=1
xiαi = XT α (2)  

Where: 

Y = label; 
α0 = intercept (or bias); 
αi = coefficient (or weight); 
xi = feature; 
X= (N + 1)-vector of features = [1 , x1 , x2 ,⋯, xi , ⋯, xN ]; 
α= (N + 1)-vector of bias and weights =[α0, α1 , α2 , ⋯, αi , ⋯, αN ].

Linear models are one of the most simple and yet used methods 
(James et al., 2013). They are fast, robust, and suitable for analyzing 
large datasets (Hastie et al., 2009). The model coefficients can be easily 
accessed and compared to assess the relative importance of each feature 
(Brink et al., 2016). 

As a drawback, linear models cannot capture nonlinear relationships 
between features and cannot interpret combinations of features that 
never occurred during the training phase (Cheng et al., 2016). 

3.3.2.2. Deep model. The Deep model relies on Deep Neural Networks 
(DNNs) – i.e., multi-layer artificial networks whose creation had been 
loosely inspired by neuroscience (Goodfellow et al., 2016). The model 
consists of densely interconnected units that mimic the functioning of 
neurons in nervous tissues. These units – also called hidden units – are 
organized in hidden layers (Brink et al., 2016). These networks are also 
called Feedforward Neural Networks because information flows from 
features to labels through hidden units in a single direction (Goodfellow 
et al., 2016). Fig. 2 displays the structure of a Deep Neural Network. 

The input layer of a DNN is the vector of the features (orange in 
Fig. 2, X in equation (1)). The output layer contains the labels (green in 

Fig. 2, Y in equation (1)). Between the input and output layers, there are 
one or more hidden layers (H1, H2, and H3 in Fig. 2), each comprising 
several hidden units (Zk

i in Fig. 2). The mapping from features to labels 
involves both linear combinations and nonlinear transformations. 

The number of hidden units and hidden layers are design parameters. 
In general, deeper and wider networks perform better, but the compu
tational effort required to train the model increases as more hidden units 
and layers are used (Hastie et al., 2009). 

Deep Neural Networks have good generalization capabilities and can 
capture nonlinear relationships between features (Goodfellow et al., 
2016). For these reasons, they are widely used in meta-learning ap
proaches (Vanschoren, 2018). On the other hand, they are prone to 
overfitting and overgeneralization, and they are sensitive to poor- 
quality and missing input data (Goodfellow et al., 2016; Hastie et al., 
2009). 

3.4. Transfer Learning and optimization 

3.4.1. Transfer learning 
Torrey and Shavlik (2014) define Transfer Learning as “the 

improvement of learning in a new task through the transfer of knowl
edge from a related task that has already been learned”. Pan and Yang 
(2010) classify Transfer Learning techniques into three categories: 
inductive, transductive, and unsupervised transfer learning. The cate
gorization is based on label availability. Inductive transfer is used when 
the labels of source and target events are available. Instead, transductive 
learning is used if only source events are labeled. On the other hand, if 
source and target events are not labeled, unsupervised transfer is used. 
In this study, inductive transfer learning is used because both source and 
target datasets are labeled (i.e., the number of people involved in each 
event is known). 

In inductive transfer learning, a model L is initially trained on one 
or more source tasks t (e.g., classification of accidental events of a broad 
and generic dataset). In this phase, the model configuration θ is tuned to 
perform well on t; as a result, an updated configuration θ* is obtained. 
Finally, the pre-trained model L θ* is optimized to fit a new task tnew (e. 
g., classification of substance-specific accidents). If the tasks t and tnew 

are relatively similar, the optimization of L θ* will require less effort 
than starting from scratch (Torrey and Shavlik, 2014), especially in 
cases where tnew has a limited amount of data (Donahue et al., 2014). 

In this study, the model trained on the source database (i.e., L θ* ) is 
used to predict the labels of the events included in the target database 

Fig. 2. Schematic representation of a DNN with three hidden layers (H1, H2, 
H3), P input features (Xi), and two output labels (Y1 and Y2). 
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(step 8 in Fig. 1). The success of the operation depends on different 
aspects, including the quality of the source dataset and the similarity 
between the datasets (Vanschoren, 2018). Furthermore, the No-Free 
Lunch theorem states that “if an algorithm does particularly well on 
average for one class of problems then it must do worse on average over 
the remaining problems” (Wolpert and Macready, 1997), which means 
that there is no single algorithm that is universally best for different 
tasks (Yang, 2014). Thus, it is not guaranteed that the model that per
forms best on the source task will produce better results on the target 
task. 

3.4.2. Performance evaluation 
After the Transfer Learning procedure, the algorithm performance is 

assessed by comparing predicted and true labels (step 9 in Fig. 1). From 
now on, the letter “Y” will be used to identify a positive prediction (e.g., 
“Deadly”) and the letter “N” will be used for a negative prediction (e.g., 
“Not Deadly”). Four metrics can be defined to take into account different 
outcomes:  

• TP = True Positive –i.e., predicted label = Y, true label = Y;  
• TN = True Negative –i.e., predicted label = N, true label = N;  
• FP = False Positive –i.e., predicted label = Y, true label = N;  
• FN = False Negative –i.e., predicted label = N, true label = Y. 

In addition, these metrics are used to build three performance in
dicators: 

Accuracy =
TP + TN

TP + TN + FP + FN
(3)  

Precision =
TP

TP + FP
(4)  

Recall =
TP

TP + FN
(5) 

Accuracy is the fraction of objects that have been correctly classified. 
Precision represents the “success rate” of a positive prediction. Recall 
indicates the fraction of real positives that have been correctly 
predicted. 

In general, the performance of an algorithm cannot be evaluated by 
considering only one indicator (Brink et al., 2016). High accuracy does 
not ensure good performance because different problems have different 
requirements. For instance, if the problem involves the identification of 
classes that occur rarely, the indicator that must be optimized is the 
Recall (Brink et al., 2016). 

3.4.2.1. Class probability and decision threshold. It is worth recalling that 
classification algorithms consider a certain grade of uncertainty when 
performing predictions. The model does not provide a single predicted 
label. Rather, the algorithm calculates the probabilities of each category 
(James et al., 2013). For example, if accident events are classified, Y in 
Eq. (1) is not a single label (i.e., “Deadly” or “Not Deadly”) but a two- 
dimensional vector that contains the probability of each category (e. 
g., [P(Deadly) = 0.8, P(Not Deadly) = 0.2]). Therefore, a decision 
threshold is needed to convert probabilities into the predicted label. By 
default, a threshold value of 0.5 is used –i.e., if the probability of the 
class “Deadly” is greater than 0.5, the algorithm concludes that the ac
cident resulted in fatalities. The decision threshold is a design parameter 
that may be tuned to optimize the algorithm based on the problem under 
assessment (Zhang et al., 2020). 

3.4.3. Optimization 
Further optimization of the pre-trained model is required to fit the 

target task (step 10 in Fig. 1). This need for optimization is common to 
most meta-learning approaches and arises from the intrinsic differences 
between tasks (Vanschoren, 2018). If the tasks are similar, fewer efforts 

will be required to offset the differences and learn the target task. 
There are different methods to optimize and improve the perfor

mance of a Machine Learning algorithm, including hyperparameters 
tuning, thresholding, and optimizer tuning (Brink et al., 2016; Good
fellow et al., 2016; Hastie et al., 2009; James et al., 2013). In this study, 
attention has been directed toward thresholding because of its easy 
implementation. Other techniques, such as hyperparameters tuning or 
optimizer tuning, are beyond the scope of the work. 

Thresholding (or threshold moving) consists in varying the decision 
threshold to optimize one of the metrics described in Section 3.4.2. 
Lowering the threshold causes the Recall to either increase or remain 
constant. Instead, Precision may fluctuate when the threshold is 
decreased. Usually, reducing the threshold causes the Precision to 
decrease because more False Positives may be generated. That is, Pre
cision can be traded for Recall (Goodfellow et al., 2016) and vice-versa, 
but it is uncommon to improve both metrics by varying the threshold. 

Precision-Recall (PR) curves are valuable means for evaluating how 
Precision and Recall change with the decision threshold. An example of 
a PR curve is shown in Fig. 3. The coordinates of points in the curve 
represent the values of Precision and Recall obtained using a specific 
decision threshold. The rightmost side of the curve (i.e., Recall = 1) is 
obtained at threshold = 0. In this case, every object in the evaluation 
database is labeled as “Y”; therefore, FN is equal to 0 in Eq. (5). The 
leftmost side of the curve (i.e., Recall = 0) is obtained at threshold = 1, 
which means that all the objects are labeled as “N”; therefore, TP is 0 in 
Eq. (5). 

The Area Under the Curve Precision-Recall (AUC PR) is a compre
hensive indicator of the model performance and, by extension, of the 
success of the transfer-learning procedure. The larger the area under the 
curve (i.e., closer to 1), the higher Precision and Recall values can be 
obtained. By default, the model returns Precision and Recall values 
obtained at threshold = 0.5. Nevertheless, the decision threshold may be 
changed to improve the Recall or/and the Precision, depending on the 
problem under assessment. For example, if the problem requires iden
tifying rare or critical categories, the threshold might be lowered to 
increase the Recall. 

One may decide to adjust the threshold to achieve a target value of 
Recall or Precision. Instead, Precision and Recall might be considered 
together in the so-called F-score (Chinchor, 1992): 

Fig. 3. Precision-Recall curve of the Deep model for the label 1 – 10 (NPK) at 
2000 integration steps. THOLD represents the decision threshold. 
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Fβ = (1 + β2) •
Precision • Recall

(
β2 • Precision

)
+ Recall (6) 

Where: 

β = non-negative real number. 

The parameter β serves as a weight. If β = 1, the F-score represents 
the harmonic mean between Precision and Recall (Han et al., 2012). 
Therefore, F1 is mostly used when Precision and Recall are equally 
important. If  β > 1, the measure is Recall-oriented (Sasaki, 2007). For 
example, β = 2 means that Recall is twice as important as Precision 
(Chinchor, 1992). If β < 1, the measure is Precision-oriented. 

The F-score assumes values between 0 and 1: the higher, the better 
the performance. Fβ depends on the Precision and Recall values, which 
ultimately depend on the decision threshold. Thus, the best threshold 
might be identified as the one that maximizes the F-score. 

4. Test case analysis 

The following paragraphs describe the test case set out to demon
strate the approach. The first two paragraphs illustrate the datasets used 
as source and target databases. The last paragraph describes the Ma
chine Learning simulations. 

4.1. Source database: MHIDAS 

Accident data extracted from MHIDAS has been used to build the 
source accident database, as described in Section 3.1. MHIDAS is an 
accident database founded in 1986 by the Safety and Reliability Direc
torate (SRD) and the Health and Safety Executive (HSE). It contains 
information about industrial incidents involving dangerous substances 
that “resulted in, or had the potential to produce, a significant impact on 
the public at large” (AEA Technology, 1999). Data are drawn from 
public domain sources (e.g., newspapers, journals, published reports) to 
grant the broadest dissemination. AEA Technology had been responsible 
for maintaining and updating the database from its foundation until the 
early 2000s, when the database was no more updated. The latest version 
of the database contains records of more than 8900 incidents from over 
95 countries, covering a time span from the first years of the 20th cen
tury until the late nineties (AEA Technology, 1999). 

Most of the events reported took place in the 1990s in the US and 
Europe, since it was easier to access incident information from these 
areas. The public domain nature of the database also affects its quality 
and completeness (Harding, 1997). For example, generic information –i. 
e., the date, the location, and the number of fatalities– are typically 
described in detail, while more specific ones –i.e., the incident type and 
the ignition source– may not be reported. In fact, the biggest limitations 
of MHIDAS are inaccuracy and missing information (Tauseef et al., 
2011); for example, more than 40 % of the events in MHIDAS do not 
have any information on the causes of the accident (Tamascelli et al., 
2022). However, the overall quality of the database is sufficient for the 
purposes of this study. 

Incidents in MHIDAS are described by a list of attributes, each 
providing a piece of information about an incident (e.g., the location, the 
substances involved, the number of people involved). An attribute is 
described by one or more codes (i.e., standardized keywords). In total, 
22 attributes are used in the database, which are not equally meaningful 
for the purpose of this study (e.g., the Accession Number, a unique 
identifier assigned to each record, and the number of hard copy refer
ences for the incident have not been considered since they do not convey 
any useful information from the safety perspective). In total, sixteen 
attributes have been selected for use in the source database (Table 1). A 
reduced version of the database was thus obtained, which contains 16 
columns and 8972 rows. The first 14 columns represent accident fea
tures, and the last two columns (i.e., NPI and NPK in Table 1) represent 

the labels. Finally, the number of fatalities and injuries are converted 
into their respective consequence categories. To this end, the idea of 
“class of consequences” as used in risk matrices (ARAMIS project team, 
2004) has inspired the creation of three consequence categories in order 
to label the accidents according to their severity, as shown in Table 2. 
For example, if an accident caused 5 fatalities and 70 injuries, NPK is “1 
– 10”, and NPI is “10 – 100”. In addition, columns referring to multiple- 
features entries have been split so that each column includes one entry 
only. For instance, it has been found that the maximum number of en
tries for the feature “Incident Type” is three. Therefore, three columns 
have been used to represent this feature in the database (i.e., “IT1”, 
“IT2”, and “IT3”). Finally, missing values have been substituted by the 
string “NaN”. 

It is worth mentioning that the selection of attributes presented in 
Table 1 was manual and mainly guided by domain knowledge. In fact, 
each attribute represents a meaningful piece of information about an 
incident. Together, the keywords provide a synthetic but rather 
exhaustive description of the incident, from its causes to consequences 
on humans. For example, the attributes Date (DA) and Location (LO) 
may indicate something about the socio-economic status of the area 
affected by the incident. For example, Souza et al. (1996) highlighted 
that impoverished countries are more exposed to industrial risk. This 
insight is also confirmed by several accident reports, including the 
Bhopal disaster (Kalelkar, 1988) and the recent Beirut explosion (Pas
man et al., 2020). Further, the ten attributes after “Location” in Table 1 
focus on technical details, such as the origin, the source, the substance 
released, and the accident type. The effects on humans are described by 
the attributes Population Density (PO), Number of People Injured (NPI), 
and Number of People Killed (NPK), while the Number of People 
Evacuated (NPE) may indicate the effectiveness of the Emergency 
Response Plan. 

Table 1 
Selection of meaningful attributes used in this study. A brief description of each 
attribute is provided. * = Multiple entry fields (e.g., “Release” AND “Pool Fire” 
for IT, “Flammable” AND “Toxic” for MH).  

Attribute Description 

DA Date Date of the incident. 
LO Location Town, region, and country of the incident 
GC General Cause The general cause - or causes - which triggered the event 

(e.g. Mechanical failure, Human Error) 
SC Specific Cause The specific cause - or causes - which triggered the event 

(e.g. Brittle fracture, Overpressure, Fire) 
GOG General Origin Area of the plant where the incident originated from (e.g. 

Process, Storage, Warehouse) 
SOG Specific Origin Equipment that originated the incident (e.g. Pump, 

Vessel, Pipeline) 
MN Material 

Name* 
Names of dangerous substances involved in the incident 

MH Material 
Hazard* 

The hazard class of the substances involved (e.g. Toxic, 
Explosive, Corrosive, Oxidizing) 

MC Material Code* Four-digit code of the substance involved 
QY Quantity The amount of substances released (tons) 
IS Ignition Source Type of ignition source (e.g. hot surface, flares, boilers) 
IT Incident Type* Incident typology (e.g. Release, BLEVE, Physical 

Explosion) 
NPE Evacuated Number of people evacuated 
PD Population 

Density 
Population density in the Area (i.e. “Rural” for low - 
sparse population, “Urban” for highly populated Area) 

NPI Injured Number of people injured in the incident 
NPK Fatalities Number of people killed in the accident  

Table 2 
Accident consequence categories.  

Category Description 

NO no fatalities/injuries 
1–10 from 1 to 10 fatalities/injuries 
10–100 from 10 to 100 fatalities/injuries  
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4.2. Target database: The Ammonia Plant Accident Database 

To the best of the authors’ knowledge, a specific database exclusively 
reporting accidents that affected ammonia production plants is not 
available. Thus, a new database was created – called the Ammonia Plant 
Accident Database – by collecting information about accidents and in
cidents from different sources. Only events that occurred in plants for 
ammonia production or in plants where similar technologies are used (e. 
g., Desulphurization, Reforming, Syngas Upgrading) were included in 
the database. The latter data were included to enrich the statistical 
significance of the database. Data on more than 140 relevant events 
were included in the database. The data were derived from nine main 
data sources, which are displayed in Table 3 together with the number of 
events found in each source. Specific checks were carried out to avoid 
the inclusion of duplicates and, in case, the entry was attributed to the 
database that provides the largest number of significant attributes. 

The Ammonia Plant Accident Database (i.e., the target database) and 
the source database share the same structure, as suggested in Section 
3.2. Specifically, each accident is described through a list of attributes 
(Table 1) and attribute codes, which have been entirely derived from the 
source database. 

The frequency distribution of attribute codes in the target database 
(e.g., the fraction of incidents that lead to fire rather than explosion, or 
that involved syngas rather than ammonia) is a key piece of information 
to support the analysis, to interpret the results, and to highlight the 
limits of the database. As an example, the frequency distribution of the 
attributes General Origin, Incident Type, General Cause, Specific Cause, 
Material Name, and Number of People Affected are displayed in Fig. 4. 

Most of the incidents in the target database involved the release of 
Ammonia or Syngas (Fig. 4.e and Fig. 4.b) within the Process area of the 
plant (Fig. 4.a). Mechanical failures and Human factors are the most 
frequent cause of accidents (Fig. 4.c). Fig. 4.f reveals that more than 80 
% of the incidents had caused no injuries or fatalities. Considering the 
more severe accidents, the number of fatalities is always smaller than 
the number of injured, and the frequencies decrease as the number of 
people affected increases. No accident causing more than 100 injuries or 
fatalities is found in the database. 

It is important to stress that most of the accidents in the target 
database are derived from a few different sources (Table 3). More than 
half of the events have been extracted from two sources only: the NRC 
database (United States Environmental Protection Agency, 2020) and 
the Ammonia Plant Safety and Related Facilities (AIChE, 2001). Thus, 
the overall features of the database are likely to be affected by the 
characteristics of these two sources. For instance, the NRC database does 
not always include the causes or the origin of the accident. Observing 
Fig. 4, it is clear how the characteristics of NRC affect the target data
base; the attributes that describe the cause and origin of the accident are 
not always registered (Fig. 4.c, and d). 

Finally, it should be remarked that each source used to build the 
target database has its own way of describing an accident –e.g., different 
keywords, attributes, and codes. Thus, the detail level and the quality of 
information vary across different sources. In some instances, it has not 
been simple to find the most representative set of attribute codes 
because the original report uses different keywords or because the 
needed information is completely missing. Significant efforts are needed 
to gather and ensure consistency between data from different sources 
(Parmiggiani et al., 2022). It has been observed that accident reports 
were often not clear and incomplete, especially regarding detailed in
formation. The database is affected by a significant incidence of missing 
values –i.e., “NaN” in Fig. 4. The attributes that describe the cause and 
the origin of the incident (e.g., GC, SC, GOG, SOG) show a high incidence 
of missing values. For instance, nearly 15 % of the incidents in the target 
database contain no information about the General Origin or the Inci
dent Type (Fig. 4.a and Fig. 4.b). Additionally, General and Specific 
causes (Fig. 4.c and Fig. 4.d) show missing values frequency larger than 
20 %. The incidence of missing values in the ammonia database is larger 
than in MHIDAS (Tamascelli et al., 2022), and the overall quality is thus 
lower. 

4.3. Model training and Transfer Learning 

The models described in Section 3.3.2 have been trained on the 
source database and evaluated on the target database, as described in 
Sections 3.3 and 3.4. The Deep Neural Network used in this study has 
three hidden layers, with 1024, 512, and 256 hidden units, respectively. 
The optimizers used in the Wide and Deep models are Ftrl and Adagrad 
(TensorFlow.org, 2020a, 2020b), respectively. 

Two sets of binary classifications have been performed. The first set 
aims to identify the number of fatalities (i.e., NPK), the latter focuses on 
the number of people injured (i.e., NPI). 

It is worth mentioning that each simulation has been performed 
using different iteration steps. Specifically, 200, 2000, 20000, and 
200’000 steps have been used. Therefore, a set of 4 binary classifications 
have been performed for each combination of model (Wide or Deep), 
label category (NPI or NPK), and label (“NO”, “1–10”, “10–100”). Five 
steps have been followed to complete a simulation:  

1. a model is selected;  
2. a label category is selected;  
3. a label is selected;  
4. an iteration step is selected;  
5. the model is trained on the source dataset;  
6. the pre-trained model is evaluated on the target dataset. 

The steps described above are reiterated in order to cover all possible 
combinations of model, label category, label, and iteration steps. Per
formance metrics and performance indicators are obtained for each 
simulation in order to evaluate the success of the Transfer Learning 
procedure. Finally, optimization strategies are assessed. 

5. Results and discussion 

The complete set of results of the transfer learning procedure is re
ported in the supplementary material. A selection of the most note
worthy simulations is displayed in Fig. 5 and Fig. 6, which focus on the 
category “NPI” and “NPK” respectively. In both figures, the performance 
indicators AUC PR, Recall, Accuracy, and Precision are displayed for 
each label and model. 

The results displayed in Fig. 5 and Fig. 6 have been selected based on 
the AUC PR value. Specifically, the number of iteration steps that led to 
the largest AUC PR has been selected. The number of iteration steps used 
to obtain the metrics in Fig. 5 and Fig. 6 is shown in Table 4. The AUC PR 
has been chosen because it is independent of the decision threshold and 
representative of the potential model performance; in other words, it is 

Table 3 
Number of events collected, per source, and source weight in the Ammonia Plant 
Accident Database. Source weight represents the contribution of each source to 
the database.  

Source Events Weight 
[%] 

NRC (United States Environmental Protection Agency, 2020) 39 27.9 
Ammonia Plant Safety and Related Facilities (AIChE, 2001) 31 22.1 
eMARS (European Commission, 2022) 21 15 
Aria (Bureau for Analysis of Industrial Risks and Pollutions, 

2022) 
12 8.6 

MHIDAS (AEA Technology, 1999) 11 7.9 
JFKD (Japan Science and Technology Agency, 2005) 10 7.1 
Lees’ (Lees, 2004) 5 3.6 
ZEMA (Bundesministerium für Umwelt Naturschutz Bau und 

Reaktorsicherheit, 2022) 
5 3.6 

OSHA (EU-OSHA, 1994) 4 2.8 
Other 2 1.4  
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one of the most comprehensive indicators of the success of the Transfer 
Learning procedure. Therefore, Fig. 5 and Fig. 6 provide a visual rep
resentation of the best performances achieved by the models in absolute 
terms, allowing a qualitative comparison between the algorithms. 

From the data in Fig. 5 and Fig. 6, it is apparent that there is not a 
single model that outperforms the others in every simulation. For 
example, the Wide model shows an AUC PR higher than the Deep model 
in the category 1 – 10 NPI, while the opposite happens in category NO 
NPI (Fig. 5.a). Also, the Deep model outperforms the wide model in 
category 1 – 10 NPI (Fig. 5.a), while the opposite happens in category 1 – 
10 NPK (Fig. 6.a). The same behavior is also evident in the complete set 
of results. Therefore, a scoring system has been used to rank the model 
performance and identify the best algorithm for this specific task. 
Briefly, the ranking system is designed to reward the model that pro
duces the larger AUC PR in the most critical categories (i.e., those 

referring to events that caused a large number of fatalities or injuries). 
The procedure generates a score for each model and label category. By 
summing the scores of the two categories (i.e., the one calculated for 
“NPK” and the one for “NPI”), it is possible to obtain an overall measure 
of the model performance; larger scores indicate better performance. 
Table 5 reports the results of the scoring system. The Wide model offered 
the best performance in both categories and obtained the highest overall 
score. This finding may seem unexpected since DNNs are advanced 
models with inherent generalization and abstraction capabilities. In fact, 
the consequence of an accident results from the combination of many 
intermediate events. Thus, the Deep model was supposed to perform 
better on a Transfer Learning task due to the ability to capture inter- 
feature relationships and nonlinearities. 

However, DNNs are prone to overfitting and overgeneralization, and 
they need high-quality input data to perform as intended. The quality of 

Fig. 4. Frequency distribution of the attributes GOG (a), IT (b), GC (c), SC (d), MN (e), NPK and NPI (f) (see Table 1 for the description of the attributes). Attribute 
codes are represented on the x-axis. “NaN” refers to missing values, “Other” refers to attribute codes that have not been represented in the figure for the sake 
of brevity. 
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the source dataset is sufficient, but certainly not excellent considering 
the origin of the data (i.e., MHIDAS) and the limited details available. In 
addition, the target database has a high incidence of missing and un
certain values. The combination of relatively poor-quality input data 
and inherent model sensitiveness may have caused performance 
degradation. Differently, the more robust Wide model seems to have 
learned and assigned the right weights to the most significant and 
accessible features. 

The results suggest that the approach benefits from a model capable 
of assessing the weights of each feature (or groups of features) inde
pendently, rather than generalizing over all the features. Linear models 
seem to be particularly suitable for addressing the problem considered in 
this study, especially when the dataset has uncertain and missing data. 
Future research should test whether higher-quality databases may 
improve the performance of the models. In addition, the Deep models 
may need more optimization and hyperparameters tuning to perform 
adequately. A different number of hidden units and layers, a different 
optimizer, learning decay, and optimization function may be tested to 
overcome the limitations of the Deep model and enhance its qualities. 

In addition to these general considerations, the results in Fig. 5 and 
Fig. 6 offer interesting insights. A particular trend can be identified for 
the AUC PR curves: in most cases, the Area Under the Curve decreases as 
more critical events are considered. This fact is evident in Fig. 6.a, where 
AUCs decrease as a larger number of people involved is considered. Such 
behavior has also been observed and discussed by (Tamascelli et al., 
2022). In fact, the knowledge gained by a classification algorithm 
largely depends on the quantity and quality of examples provided during 
the training phase. If the training database contains only a few examples 
of a particular label, the algorithms have little chance to learn. Since 
accidents with a high death toll are rare, the behavior of the AUC PR 
seems reasonable. Nevertheless, a few exceptions can be identified. For 
example, Fig. 5.a shows that the AUC PR produced by the models for the 

category 10–100 is larger than the AUCs for the category 1–10. In this 
case, the AUCs obtained for the most critical (and rare) label are unex
pectedly large. This might be explained considering the extreme rarity of 
these events. In fact, only three events in the Ammonia database caused 
10–100 injuries. Therefore, identifying two of these events would 
significantly improve the performance of the algorithm. 

It is also worth noting that the accuracy follows a particular trend: 
the indicator tends to increase as more critical labels are considered. The 
reason for this is that when rare events are considered, high accuracy 
can be achieved by always performing a negative prediction. As an 
example, consider the label 10–100 in Fig. 6. Accuracy is almost 1 but 
Recall and Precision are 0 because the model never performed a positive 
prediction. In fact, the model made 127 correct predictions out of a total 
of 128 (only one event has 10–100 as a label). The accuracy is large, but 
the model failed to identify the critical event. This is an example of why 
accuracy alone is meaningless when considering unbalanced datasets. 

As previously discussed, if the approach involves the identification of 
rare and critical events, a large Recall is desirable. Fig. 5 and Fig. 6 (and 
the rest of the results in the supplementary material) show Recall values 
obtained using a decision threshold equal to 0.5, which does not guar
antee the best performance. A low Recall does not imply model inade
quateness. Provided that the AUC PR is not zero, the decision threshold 
may be lowered to increase the Recall (as shown in Section 3.4.3). 

As an example, consider the performance of the Deep model in Fig. 6. 
The Recall is zero for the label 1–10, and so is the Precision. This means 
that none of the fourteen events with label 1–10 were correctly identi
fied. The model produced True Negatives and False Negatives only, as 
shown in Fig. 7 (i.e., the model never predicted the class “Y”). This 
happened because the raw probability values for the label “Y” were al
ways smaller than 0.341, which is smaller than the standard decision 
threshold used to produce the metrics in Fig. 6. 

However, the AUC PR is larger than 0 for the same model and label 

Fig. 5. Area Under the Curve Precision-Recall (a), Recall (b), Accuracy (c), and Precision (d) obtained from a small selection of simulations for the label category 
“Number of People Injured” (NPI). Labels are represented on the x-axis. Recall, Precision, and Accuracy are obtained at threshold = 0.5. 
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(Fig. 6.a). This suggests that Recall can be increased by lowering the 
decision threshold. The PR curve produced by this specific simulation 
has been shown in Fig. 3. The curve indicates that if the decision 
threshold is larger than 0.341, Precision and Recall will be zero because 
no positive prediction is generated (red mark in Fig. 3). If the decision 
threshold is decreased, more events are labeled as “Y”, and more TP 
and/or FP are generated. In this example, the point at threshold = 0.317 
(green in Fig. 3) appears to be a good balance between high Recall and 
acceptable Precision. The F-score analysis confirms this insight. Specif
ically, F1, F1.5, and F2 curves are shown in Fig. 8. 

A decision threshold equal to 0.317 maximizes the Recall-oriented 
F1.5 and F2 measures. Instead, F1 shows a maximum for threshold =
0.3173, which has not been considered further. The number of TN, FP, 
TP, and FN obtained with threshold = 0.317 is displayed in Fig. 9. 

The metrics in Fig. 9 indicate that 8 out of 14 events that caused 1–10 
fatalities have been correctly identified (TP in Fig. 9). According to Eq. 
(5) and (4), the Recall is 0.57, and the Precision is 0.29, as shown in 
Fig. 3. As a drawback, reducing the threshold has generated 20 False 
Positives, whose nature has been studied: 

Fig. 6. Area Under the Curve Precision-Recall (a), Recall (b), Accuracy (c), and Precision (d) obtained from a small selection of simulations for the label category 
“Number of People Killed” (NPK). Labels are represented on the x-axis. Recall, Precision, and Accuracy are obtained at threshold = 0.5. 

Table 4 
Numbers of iteration steps used to obtain the results presented in Fig. 5 and 
Fig. 6. “NPI” and “NPK” respectively indicate the simulations for the Number of 
People Injured and Killed.  

Models Category NO 1 – 10 10 – 100 

Wide NPI 200 200 2000 
Deep NPI 2000 20′000 20′000 
Wide NPK 200′000 20′000 2000 
Deep NPK 200 2000 200  

Table 5 
Scores assigned to the Wide and Deep model performances.  

Model Score NPI Score NPK Overall score 

Wide 55 68 123 
Deep 50 41 101  

Fig. 7. Confusion Matrix produced by the Deep model for the label 1 – 10 
(NPK) at 2000 integration steps. From top-left clockwise: True Negative (TN), 
False Positive (FP), True Positive (TP), and False Negative (FN) are obtained 
using a probability threshold equal to 0.5 and color-coded according to the 
color bar on the right. 
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• One of the False Positive involved the release of a relevant quantity 
of ammonia (10 to 100 tons) but did not cause any injuries or fa
talities. In this case, the model might have mislabeled the event 
because large releases are more likely to cause at least one fatality. In 
fact, the model has labeled the event as potentially critical, which 
may be considered correct, even if the accident did not have tragic 
outcomes.  

• Six events among the False Positives had caused 1–10 injured, which 
may indicate that those events had the potential to cause a low 
number of fatalities as well. Mislabeling these types of incidents is 
not deemed to be critical.  

• Five False Positives have a large incidence of missing values (40 to 41 
features out of 47 are not available). It seems reasonable and con
servative to label uncertain events as potentially critical. 

Hence, reducing the threshold to 0.317 has undeniably improved the 
performance considering that the same model produced null Precision 
and Recall (Fig. 7). It is worth mentioning that the model did not have 
any prior knowledge of the events included in the target task. Thus, the 
predictions rely entirely on the knowledge extracted from the source 
task. In this situation, a degree of uncertainty in the predictions appears 
to be reasonable. Therefore, it is not surprising that the metrics derived 
from the standard decision threshold are not satisfactory. However, the 
optimization process described in this example demonstrates that even if 
the pre-trained model may seem inadequate (i.e., a low Recall is pro
duced), thresholding and F-score optimization may be used to improve 
the performance and fit the model to the target task. In general, the 
results suggest that the classification of rare and technology-specific 
accidents through Machine Learning may benefit from a meta-learning 
approach, which would enable knowledge transfer from generic and 
readily available accident databases. Furthermore, this approach may 
assist the industry in retaining the knowledge derived from past acci
dents more effectively. 

In spite of the promising results, this study presents some limitations. 
Firstly, it must be recalled that this research has only considered acci
dents involving dangerous substances; therefore, the accident features 
described in Table 1 and the consequence categories proposed in Table 2 
may not be suitable for different kinds of accidents. Nevertheless, the 
authors believe that the methodology is sufficiently generic to be 
extended to other industries and incidents. Another limitation is that the 
accident features presented in Table 1 may not be the most meaningful 
in this context. In fact, feature selection was manual and mainly guided 
by domain knowledge. Future research should investigate the effect of 
different sets of features and different feature representations. Secondly, 
this study has only examined two classification algorithms (i.e., linear 
and DNN); it may be worth testing different models such as Support 
Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). 
Furthermore, the DNN hyperparameters have not been optimized (e.g., 
number of layers and neurons, activation function, learning decay); 
more efforts should be directed toward hyperparameter tuning to 
identify the best network configuration. Thirdly, the Transfer Learning 
approach described in this study involves training on the source dataset 
and evaluation on the target database. This simple strategy was chosen 
to assess if the models could transfer knowledge to previously unseen 
events. It would be interesting to examine if an additional training phase 
on a small number of events drawn from the target dataset might 
significantly improve performance. Finally, further studies need to be 
carried out to investigate the potential of different learning strategies, 
such as regression or unsupervised learning. 

Notwithstanding these limitations, the method described in this 
study might be used in combination with traditional techniques in 
different stages of the risk assessment and management framework. For 
example, the approach might be used to support the hazard identifica
tion phase, where information retrieval is critical, in order to avoid 
repeating mistakes in design or operations. Also, the ease of use and the 
intelligibility of results are interesting characteristics that may support 
the employees’ training process and improve risk perception and 
awareness. Finally, the model might be a useful support for risk priori
tization and residual risk management. 

6. Conclusions 

A data-driven method to extract, retain, and transfer knowledge from 
past industrial accidents involving dangerous substances is developed. 
Specifically, this study suggests that the knowledge extracted from 
generic accident databases might be used to predict the outcomes of 
technology-specific accidents in terms of injuries and fatalities. The 

Fig. 8. F1, F1.5, and F2 curves obtained by the Deep model for the label 1 – 10 
(NPK) at 2000 integration steps. F1.5, and F2 show a global maximum for 
Threshold = 0.317. F1 has a maximum at Threshold = 0.3173. 

Fig. 9. Confusion Matrix produced by the Deep model for the label 1 – 10 
(NPK) at 2000 integration steps. A decision threshold equal to 0.317 is used. 
From top-left clockwise: True Negative (TN), False Positive (FP), True Positive 
(TP), and False Negative (FN) are color-coded according to the color bar on 
the right. 
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method has been tested on two datasets: MHIDAS and the Ammonia 
Plant Accident Database. Two different Machine Learning classification 
models (i.e., Wide and Deep) have been used. The Wide model offered 
the best performance in the Transfer Learning process. The challenges 
linked to the identification of rare and critical events have been dis
cussed. An example of F-score optimization through thresholding has 
been described to stress the importance of threshold tuning in dealing 
with class-imbalanced datasets. Despite the limitations imposed by the 
quality and quantity of available data, the method leads to satisfactory 
performance. The results suggest that automated algorithms can learn 
from historical accident data sources and use the acquired knowledge to 
perform predictions on different types of accidents. The approach pro
posed in this study reduces the need for new data and improves the 
generalization capabilities of classification algorithms, and therefore 
makes an important contribution to the development of Machine 
Learning tools for improving process safety. More in general, the study 
indicates that improvements in IT and Industry 4.0 technologies offer 
interesting opportunities to integrate and support traditional risk 
assessment techniques with data-driven approaches, which are often 
faster to implement and cheaper in terms of working hours and required 
level of expertise. Furthermore, this study fits perfectly with the human- 
centric perspective of Industry 5.0 (Commission et al., 2021); ML tech
niques are not intended to substitute human judgment or threaten the 
role of safety practitioners. On the contrary, the methods proposed in 
this study have been designed to complement existing risk management 
techniques and provide practical support to workers. 
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The alarm system plays a vital role to ensure safety and reliability in the process industry. Ideally, an alarm 
should inform the operator about critical conditions only and provide guidance to a set of corrective actions 
associated with each alarm. During alarm floods, the operator may be overwhelmed by several alarms in a 
short time span, and crucial alarms are more likely to be missed during these situations. Most of the alarms 
triggered during a flood episode are nuisance alarms –i.e. alarms that do not convey any new information to 
the operator, or alarms that do not require operator actions. Chattering alarms that repeat three or more times 
in a minute and redundant or duplicated alarms are common forms of nuisance alarms. Identifying such 
nuisance alarms is a key step to improve the performance of the alarm system. Recently, advanced 
techniques for alarm management have been developed to quantify alarm chatter; although effective, these 
techniques produce relatively static results. Machine learning algorithms offer an interesting opportunity to 
analyse historical alarm data and retrieve knowledge, which can be used to produce more flexible and 
dynamic models, as well as to predict alarms behaviour. The present study aims to develop a machine 
learning-based algorithm for chattering prediction during alarm floods. A modified approach based on run 
lengths distribution has been developed to evaluate the likelihood of future alarm chatter. The method has 
allowed categorizing historical alarm events as alarms that will (or will not) show chattering in the future. 
Finally, categorized alarms have been used to train a Deep Neural Network, whose performance has been 
evaluated against the ability to predict alarm chatter. Overall, the Neural Network has shown good prediction 
capabilities and most of the chattering alarms were correctly identified. 

1. Introduction

The advent of the Distributed Control System (DCS) has undeniably improved flexibility and safety of chemical 
plants, but some issues have arisen as well. In the analog days, installing new alarms used to cost around 
1000 $/alarm (Katzel, 2007), including purchase and hard wiring of each alarm and the corresponding 
annunciator panels (Shaw, 1993). Nowadays, alarms are managed by the DCS. The cost for installing new 
alarms has dropped and physical panels are not required anymore (Katzel, 2007). The digitised installation 
has improved the flexibility of the alarm system but as a drawback, a large number of alarms are now present 
in most process system (Shaw, 1993). As a consequence, more than often the number of alarms displayed 
are unmanageable by the operator. Recently, standard manuals such as ANSI/ISA (2016) and EEMUA 191 
(2013) have addressed the problem of poor alarm management in modern chemical plants, providing 
guidelines and suggestions. According to these standards, the average alarm annunciation rate should not 
exceed 6 alarms/hour per operator console to be considered manageable. Unfortunately, in most chemical 
plants, the alarms rate is much higher than the suggested value (Kondaveeti et al., 2013).  
Alarm floods are “conditions during which the alarm rate is greater than the operator can effectively manage 
(e.g. more than 10 alarms per 10 minutes)” (ANSI/ISA, 2016). During a flood episode, an operator may have 
to acknowledge and resolve hundreds of alarms in a short period. Clearly, an effective response is impossible 
in such a chaotic situation. Typically, a majority of the alarms in a flood episode are nuisance alarms (i.e. that 
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do not communicate any new information) (ANSI/ISA, 2016). Several types of nuisance alarms exist (e.g. 
chattering, fleeting and stale alarms). Chattering alarms are alarms “that repeatedly transitions between active 
state and inactive state in a short period of time” (ANSI/ISA, 2016). Therefore, chattering alarms have the 
potential to produce a large count of alarms and reducing their number is a key step to improve the 
performance of the alarm system during alarm floods. Kondaveeti et al. (2013) proposed a method for 
quantifying alarm chatter based on run lengths distributions. Although effective, this technique produces static 
results (i.e. chattering is quantified based on historical alarm data, but no conclusion can be drawn about the 
alarm future behaviour). In a modern context, where computer technologies and Industry 4.0 solutions are 
rapidly expanding among different sectors, the need for more dynamic and flexible models is real. In the 
current scenario, chemical plants produce and store an immense amount of data (Balasko and Abonyi, 2007), 
modern computers have outstanding calculation capability, and data science techniques have come a long 
way. We now have the technical capability and the tools to process a vast amount of data. However, process 
data is mainly archived and not analysed or explored to mine for information and knowledge. The availability 
of multivariate statistical and  Machine Learning techniques now offers the opportunity to “learn” and extract 
knowledge from past data (Liu et al., 2018). 
For the reasons mentioned above, the objective of this study is to overcome the limitations of the existing 
methods for chattering quantification and to propose a Machine Learning based method for chattering 
prediction. Specifically, the Chattering Index approach proposed by (Kondaveeti et al., 2013) has been 
modified to obtain a Dynamic Chattering Index, whose results are then used to train a Deep Neural Network 
model. The efficacy of the proposed method is evaluated by application to an industrial case data set 
consisting of alarm data from an ammonia production plant. 

2. Alarms from ammonia production plant 

An industrial alarm database has been considered to support the analyses. Specifically, alarm data from a 
section of an ammonia production process (Topsoe.com, 2020) is analysed. Due to the large quantity of 
hazardous substances stored and handled during normal activity, the plant has been classified as an “upper 
tier” Seveso III establishment. Extensive use of methane, hydrogen, and ammonia (anhydrous and aqueous 
solution) occurs in the plant section. Furthermore, due to the intrinsic properties of the processes involved, 
severe operating conditions (i.e. high pressure and high temperature) are often associated with corrosive 
substances. Additional information about ammonia production and the considered site can be found at: (Aika 
et al., 2012; Yara Italia S.p.A, 2016). 

The alarm database consists of alarm data collected during an observation period of more than four months. 
Each row of the database represents an alarm event (26,473 observations in total), and each column (thirty-
six in total) represents a piece of information about the alarm (i.e. an “attribute”). A list of the most meaningful 
attributes is presented in Table 1. 

Table 1 - Alarm database attributes 

Attribute  Meaning 
Time Stamp Date and time (GMT) of the alarm event.  
Source The source that triggered the alarm. It might be a measuring instrument or a PLC function.
Jxxx The safety interlock logic associated with the alarm. 
Message The message that is shown to the operator contains the following five attributes: 

1. the Source; 
2. a concise description of the equipment involved; 
3. the safety interlock logic (Jxxx); 
4. the value and units of measures of the process variable; 
5. the Alarm Identifier (e.g. HHH, HTRP, LLL, LTRP, ACK, etc.) 

Active Time Date and time (GMT) of the first alarm occurrence. 
Data Value The value of the process variable. 
Eng. Unit The units of measure of the process variable.  

The Alarm Identifier (point 5. of the “Message” attribute) is a code that defines the alarm status. Examples of 
Alarm Identifiers are “HHH” (which means that the measured variable has exceeded the “high level” setpoint), 
“HTRP” (the measured variable has exceeded the “very high level” alarm setpoint and automatic block 
intervention procedures might be triggered), “IOP” (which indicates an instrumental failure or out-of-range 
measure), “LLL” and “LTRP” (same as “HHH” and “HTRP” but referring to a “low/very low level”). 
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According to Kondaveeti et al. (2010), an alarm event is uniquely identified by three attributes only: Time 
Stamp, Source, and Alarm Identifier. 
The combination of a “source” and an “alarm identifier” is called a “unique alarm”. The time-distribution of the 
alarms has been assessed and represented in Figure 1. 

 

Figure 1 – Alarms time distribution 

More than 96 % of the alarms registered in the database occurred within one month only (green line ‘window’ 
in Figure 1) when a considerable number of floods and chattering alarms must have occurred. In fact, only ten 
alarm sources (out of 194 in total) were responsible for more than 80 % of the alarms recorded.  

3. Method 

This section aims to describe the approach to define the Dynamic Chattering Index. Information about Deep 
Learning and the related simulations is provided in the sub-section that follows. 

3.1 The Dynamic Chattering Index 

Using the alarm database as a source of data, all the Unique alarms (e.g. FI209B IOP, LI318 LTRP, etc.) are 
identified, and alarm data are represented as binary sequences (Kondaveeti et al., 2010). Given a generic 
unique alarm that raised n times during the observation period, each alarm event (i.e. 1 in the binary 
sequence) can be identified by an index i in such a way that the first occurrence has i = 1, the second has i = 
2, …, the last one has i = n. The Dynamic Chattering Index related to a generic alarm event with index i can 
be obtained through the following steps: 

1. All the alarm events occurred before the event i are removed from the binary sequence. The same is 
done to the events that occurred more than one hour after the event i. Data that have not been 
removed are stored in a new binary sequence, which contains the alarm event i and all the alarm 
events happened within one hour. For example, if the unique alarm event i occurred at 10:00:00, the 
reduced binary sequence will contain events that happened between 10:00:00 and 11:00:00.   

2. Based on the reduced binary sequence identified during step 1, the run-lengths (i.e. the “time 
difference in seconds between two consecutive alarms on the same tag” (Kondaveeti et al., 2013)) 
are calculated. Therefore, if the unique alarm occurs n times within one hour (i.e. the reduced binary 
sequence contains n 1’s), and if the binary sequence does not contain the last alarm recorded during 
the observation period, n run-lengths are calculated. A run length is represented by the letter r. 

3. The alarm count (i.e. the number of alarms with run-length equal to r) is obtained. The alarm count is 
represented by the symbol nr.  

4. The probability (Pr) of an alarm having a run-length equal to r is calculated: 

Pr=
nr∑ nrrϵN

      ∀ r ϵ N (1) 

One value of Pr is calculated for each unique run-length (e.g. P2 for r = 2 s, P3 for r = 3 s, etc.). 
5. Finally, The Dynamic Chattering Index related to the alarm event i is calculated: 

ψD= ෍ Pr
1

r
r∈N

     ∀ r ϵ N (2) 

6. The steps above are repeated ∀ i ∈ [1, n - 1]. 
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Through the steps above, each of the first n - 1 occurrences of the unique alarm of concern is associated with 
a Dynamic Chattering Index (the last occurrence is excluded from the calculation). Then, the procedure is 
repeated for each unique alarm. The Dynamic Chattering Index assumes values between 0 and 1. The larger 
the index (i.e. the closer to 1), the higher the alarm chatter within one hour. According to Kondaveeti et al. 
(2013), an index value equal to 0.05 has been used as a threshold to categorise alarms into “Chattering” and 
“Not Chattering”; if an alarm event has ψD ≥ 0.05, the alarm will show chattering in an hour. 

3.2 Machine Learning simulations 

A Deep Neural Network (DNN) has been trained and evaluated against the ability to predict alarm chatter. 
Specifically, the purpose of the algorithm is to classify alarms into two categories: “Chattering within one hour” 
or “Not Chattering within one hour”. A database has been created containing both features (i.e. meaningful 
attributes of an alarm event) and labels (i.e. values or categories that the model must predict). Each row of the 
database represents an alarm event. The first thirteen columns represent an attribute of the alarm (i.e. a 
feature), the fourteenth column contains the labels associated with each alarm event. A label can be either “1” 
if the alarm will show chattering within one hour (i.e. ψD ≥ 0.05) or 0 if the alarm will not show chattering within 

one hour (i.e. ψD < 0.05). The features are presented in Table 2. 

Table 2 – Alarm’s features 

Attribute  Meaning 
Y, M, d, H, m, S Year, Month, Day, Hour, …, Second of the alarm event 
SO The alarm Source  
ID The alarm Identifier 
CN The alarm Condition Name (i.e. the alarm identifier of the original alarm from the same

Source) 
JX The safety interlock logic associated with the alarm 
ATD Time between the alarm event and its recovery 
VAL The value of the process variable 
UNI The units of measure of the process variable 

Next, the database has been shuffled (i.e. rows have been randomly rearranged to improve data distribution) 
and divided in two, to obtain two distinct databases: the first database (i.e. the training database) comprises ¾ 
of the original database, the remaining part constitutes the second database (i.e. the evaluation database). 
Finally, the labels have been removed from the evaluation database. 
The databases have been used to train and evaluate the Deep Neural Network, whose generic architecture is 
shown in Figure 2. 

 

Figure 2 - Artificial neural network architecture (Bre et al., 2018) 

During the training phase, the algorithm receives as an input both the features (Input in Figure 2) and the 
associated labels (Output in Figure 2). During the process, the features are linearly combined and converted 
through non-linear functions (i.e. activation functions) into derived features (i.e. hidden units; h1, h2, hn in 
Figure 2), which constitute the hidden layer of the Neural Network (Hastie et al., 2009). ReLU rectifier has 
been used as an activation function in this work. The weights of the functions are optimised to best represent 
the relationship between features and labels (Hastie et al., 2009). Adagrad optimiser has been used for this 
purpose. 
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The Deep Neural Network used in this work has three hidden layers with 1024, 512 and 256 hidden units, 
respectively. After the training, the algorithm is evaluated against the ability to predict the labels of the data 
included in the evaluation database (i.e. to predict the labels of alarm events that the algorithm has never 
“seen” before). The Machine Learning algorithm has been developed using TensorFlow r1.15. 

4. Results 

An example of the results obtained through the Dynamic Chattering Index approach is displayed in Table 3. 

Table 3 – Dynamic Chattering Indices for FI227A LLL (Reduced version) 

Time Stamps FI227A LLL ψDሺFI227A LLLሻ
…  …  …  

2017-09-09 16:18:09 1 0.072 

2017-09-09 16:18:11 1 0.071 

2017-09-09 16:24:01 1 0.051 

2017-09-09 16:24:03 1 0.018 

2017-09-09 16:24:47 1 0.012 

…  …  …  

Specifically, the table includes a small portion of the Dynamic Chattering Indices related to the unique alarm 
FI227A LLL. The alarm warns that the flow indicator FI227A has measured a value lower than the “low level” 
setpoint. The first two columns of the table are the binary representation of the unique alarm (zeroes have 
been removed from the binary sequence for visualisation purposes). The last column of the table contains the 
Dynamic Chattering Indices associated with each of the alarm events. The first three indices (marked in red) 
indicate that the alarm will show chattering behaviour within one hour after the alarm occurrence.  

The results of the Machine Learning simulation are shown in the Confusion Matrix displayed in Figure 3. 

 

Figure 3 – DNN simulation Confusion Matrix  

The metrics “TN” (i.e. True Negative) and “TP” (i.e. True Positive) together represent the number of correct 
predictions. “FP” (i.e. False Positive) and “FN” (i.e. False Negative) represent the number of wrong 
predictions. The total number of predictions can be obtained by summing all the metrics discussed above. 
Therefore, the algorithm produced 6393 predictions (i.e. number of alarm events in the evaluation database); 
5990 of them were correct while 403 were incorrect. Besides, three additional metrics have been calculated:  

Accuracy = 
TP+TN

TP+TN+FP+FN
 = 0.937 (3) 

Precision = TP

TP+FP
= 0.929 (4) 

Recall = TP

TP+FN
 = 0.926 (5) 

The Accuracy is the ratio between the correct predictions and the total number of predictions. The Precision is 
the fraction of correct positive predictions (i.e. predicted label = 1 and true label = 1). The Recall is the fraction 
of real positive correctly predicted. Accuracy, Precision and Recall are bounded between 0 and 1; the closer to 
1, the better the algorithm performance. 
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5. Discussion

5.1 Dynamic Chattering Index

The Dynamic Chattering Index evaluates the likelihood of alarm chatter within a defined time interval (e.g. 1 
hour). The method produces coherent results in most applications, but it may behave unexpectedly when few 
alarms occur within the time interval. Specifically, the index is sensitive to the combination of high probability 
and short run-lengths, a situation that may arise when few alarms occur in fast sequence within the time 
interval (Tamascelli, 2020). In these situations, just a couple of alarms with run-length less than 5 s could be 
enough to produce an index greater than 0.05 (i.e. chattering). Therefore, future research will be devoted to 
the development of a more reliable method for the dynamic quantification of alarm chatter. 

5.2 Machine Learning simulations 

The DNN model reveals excellent prediction capability. More than 93 % of the total predictions were correct, 
and more than 92 % of the chattering alarms were correctly identified. Despite the remarkable performance, 
the Deep Neural Network has not been optimised. For instance, future research will certainly investigate 
whether the use of a different set of features, as well as a different optimiser or a different set of 
hyperparameters (e.g. the number of hidden units), may lead to better results. As a long-term objective, future 
research will be devoted to the development of a method to integrate the Machine Learning model on a real 
industrial alarm system. 

6. Conclusions

A method for Dynamic chattering assessment has been developed and the results have been used to train 
and evaluate a Deep Neural Network. The model has been tested against the ability to predict alarm chatter. 
Good results have been obtained using a “standard” model (i.e. not optimized). As previously argued, Poor 
alarm rationalization, chattering and alarm floods are common issues in chemical plants. In this context, 
Machine Learning models may meet the need for flexible, dynamic and Industry 4.0 oriented tools. Currently, 
chattering alarms are only addressed retrospectively; existing techniques can identify past alarm chatter but 
cannot predict future chattering based on actual plant conditions. Instead, the Machine Learning approach 
described in this work suggests that past alarm data can be used to extract knowledge and to predict alarms 
behaviour. These advanced models might be valuable tools in supporting the operator response during critical 
events. 

References 

Aika K., Christiansen L. J., Dybkjaer I., Hansen J. B., Nielsen P. E. H., Nielsen A., Stoltze P., Tamaru K. , 2012, 
Ammonia: catalysis and manufacture. Springer Science & Business Media. 

ANSI/ISA , 2016, ‘ANSI/ISA–18.2–2016 Management of Alarm Systems for the Process Industries’, ANSI/ISA. 
Balasko B., Abonyi J. , 2007, ‘What Happens to Process Data in Chemical Industry? From Source to Applications – 

An Overview’, Hungarian Journal of Industrial Chemistry, 35, pp. 75–84. doi: 10.1515/133. 
Bre F., Gimenez J. M., Fachinotti V. D. , 2018, ‘Prediction of wind pressure coefficients on building surfaces using 

artificial neural networks’, Energy and Buildings, 158, pp. 1429–1441. doi: 10.1016/j.enbuild.2017.11.045. 
EEMUA , 2013, ‘EEMUA Publication 191 Alarm systems - a guide to design, management and procurement’. 
Hastie T., Friedman R., Tibshirani J. , 2009, The Elements of Statistical Learning. Springer-Verlag New York. doi: 

10.1007/978-0-387-84858-7. 
Katzel J. , 2007, Control Engineering | Managing Alarms. Available at: www.controleng.com/articles/managing-

alarms (Accessed: 23 January 2020). 
Kondaveeti S. R., Izadi I., Shah S. L., Black T. , 2010, ‘Graphical representation of industrial alarm data’, IFAC 

Proceedings Volumes. IFAC, 11(PART 1), pp. 181–186. doi: 10.3182/20100831-4-fr-2021.00033. 
Kondaveeti S. R., Izadi I., Shah S. L., Shook D. S., Kadali R., Chen T. , 2013, ‘Quantification of alarm chatter based 

on run length distributions’, Chemical Engineering Research and Design. Institution of Chemical Engineers, 
91(12), pp. 2550–2558. doi: 10.1016/j.cherd.2013.02.028. 

Liu J., Kong X., Xia F., Bai X., Wang L., Qing Q., Lee I. , 2018, ‘Artificial intelligence in the 21st century’, IEEE 
Access, 6(April), pp. 34403–34421. doi: 10.1109/ACCESS.2018.2819688. 

Shaw J. A. , 1993, ‘DCS-based alarms: Integrating traditional functions into modern technology’, ISA Transactions, 
32(2), pp. 177–181. doi: 10.1016/0019-0578(93)90039-Y. 

Tamascelli N. , 2020, A Machine Learning Approach to Predict Chattering Alarms. University of Bologna - NTNU. 
Topsoe.com , 2020, Ammonia. Available at: www.topsoe.com/processes/ammonia (Accessed: 4 April 2020). 
Yara Italia S.p.A , 2016, Relazione di riferimento della Yara Italia S.p.A. dello stabilimento di Ferrara. Available at: 

va.minambiente.it/it-IT/Oggetti/Documentazione/1905/10478. 

192



115 

Article VII. 

Tamascelli, N., Paltrinieri, N., & Cozzani, V. (2020). Predicting Chattering Alarms: A Machine Learning 

Approach. Computers & Chemical Engineering, 143, 107122. 

https://doi.org/10.1016/j.compchemeng.2020.107122. 

https://doi.org/10.1016/j.compchemeng.2020.107122




Computers and Chemical Engineering 143 (2020) 107122 

Contents lists available at ScienceDirect 

Computers and Chemical Engineering 

journal homepage: www.elsevier.com/locate/compchemeng 

Predicting chattering alarms: A machine Learning approach 

Nicola Tamascelli a , b , Nicola Paltrinieri b , ∗, Valerio Cozzani a 

a Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy 
b Department of Mechanical and Industrial Engineering, NTNU, Trondheim, Norway 

a r t i c l e i n f o 

Article history: 

Received 29 July 2020 

Revised 30 September 2020 

Accepted 5 October 2020 

Available online 6 October 2020 

Keywords: 

Machine Learning 

Data Mining 

Alarm management 

Alarm floods 

Chattering alarms 

Chattering prediction 

a b s t r a c t 

Alarm floods represent a widespread issue for modern chemical plants. During these conditions, the num- 

ber of alarms may be unmanageable, and the operator may miss safety-critical alarms. Chattering alarms, 

which repeatedly change between the active and non-active states, are responsible for most of the alarm 

records within a flood episode. Typically, chattering alarms are only addressed and removed retrospec- 

tively (e.g. during periodic performance assessments). This study proposes a Machine-Learning based ap- 

proach for alarm chattering prediction. Specifically, a method for dynamic chattering quantification has 

been developed, whose results have been used to train three different Machine Learning models – Linear, 

Deep, and Wide&Deep models. The algorithms have been employed to predict future chattering behavior 

based on actual plant conditions. Performance metrics have been calculated to assess the correctness of 

predictions and to compare the performance of the three models. 

© 2020 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

The digital revolution and the advent of Distributed Control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by a faulty control valve, which was stuck in a closed position. Un- 

fortunately, the control system erroneously indicated that the valve 

was open, and operators had not been able to identify the prob- 
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Systems have undeniably improved the flexibility of industrial

alarm systems ( Shaw, 1993 ). Installing new alarms has become rel-

atively simple and economical ( Katzel, 2007 ), but the misconcep-

tion that more alarms would improve safety and reliability persists

in some cases. On the contrary, too many alarms can negatively

affect the performance of the alarm system and prevent an ade-

quate operator’s response ( Kondaveeti et al., 2013 ; Laberge et al.,

2014 ). Unsatisfactory alarm rationalization is expressed by episodes

where an excessive number of alarms are triggered in a short pe-

riod ( ANSI/ISA, 2016 ; EEMUA, 2013 ; Laberge et al., 2014 ). A specific

term is coined to define a period of intense alarm activity – an

“alarm flood” ( Beebe et al., 2012 ). Hundreds or even thousands of

alarms may be triggered during a flood episode, causing a substan-

tial distraction to the operators, and increasing the risk of missing

critical alarms ( Laberge et al., 2014 ). 

Several studies, accident reports, and standard manuals have

cited alarm floods as a contributing factor to financial loss, in-

juries, and deaths in the chemical industry ( Beebe et al., 2012 ;

EEMUA, 2013 ; Stanton and Barber, 1995 ), including the investiga-

tion report on the explosion in Pembroke Refinery on the 24 July

1994 ( Health and Safety Executive, 1997 ). The accident was caused
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em. Due to the blocked valve, the liquid had accumulated inside a 

ebutanizer column, causing the pressure to increase over the PSV 

etpoint. A liquid-vapor stream entered the flare pipe that even- 

ually broke since it was not designed to handle liquids. Roughly 

0 to 20 tons of partially vaporized flammable materials were re- 

eased and mixed with air, forming a flammable cloud that ignited 

nd exploded 4 hours after the valve failure, and 20 seconds af- 

er the pipe rupture. As a consequence, 26 workers were injured, 

nd the refinery was severely damaged: £48 million were spent 

n rebuilding the damaged plant, to which the costs of prolonged 

usiness interruption should be added. During the accident, alarms 

ere notified to the operators at the rate of one every two to 

hree seconds. Approximately 275 alarms were triggered in the last 

leven minutes before the accident, without a concrete effect on 

he possibility of preventing the accident. 

Most of the alarm events within a flood episode are produced 

y alarms that oscillate between the active and not active state 

ith high frequency –i.e., chattering alarms. Standard manuals 

ave been published ( ANSI/ISA , 2016 ; EEMUA , 2013 ), providing 

uidelines for proper alarm rationalization and management, sug- 

esting strategies for chattering and floods reduction. Still, chatter- 

ng alarms are only addressed and removed retrospectively. Rather 

han addressing the problem after chattering has happened, a 

ethod to predict future chattering based on actual process con- 

itions would significantly improve the performance of the alarm 
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Definitions 

Accuracy the ratio of number of correct 

predictions to total number of 

predictions. 

Alarm flood a condition during which the 

alarm rate is greater than the 

operator can effectively manage 

(e.g., more than 10 alarms per 10 

minutes). 

Alarm identifier a code defining the alarm status. 

Alarm source a field device, control system, 

or Human Machine Interface that 

can trigger a change in the alarm 

status. 

Binary Database a database where unique alarms 

data are represented as sequences 

of 0’s and 1’s at one-second sam- 

pling. 

Chattering alarm an alarm that repeatedly transi- 

tions between the active and the 

not active states in a short period 

(e.g., 3 or more alarm records in 

one minute). 

Chattering Index an index to quantify the amount 

of chattering that a unique alarm 

has shown over a certain time pe- 

riod. 

Dynamic Chattering Index an index to quantify the amount 

of chattering that a unique alarm 

has shown up to one hour after 

each alarm event. 

Example the description of an alarm event 

in terms of features and related 

label. 

Feature a meaningful attribute of an 

alarm event. 

Label the category of an alarm event 

– “Y” for “Chattering within one 

hour”, “N” for “Not Chattering 

within one hour”. 

Nuisance alarm an alarm that annunciates exces- 

sively, unnecessarily, or does not 

return to normal after the opera- 

tor action is taken. 

Precision the fraction of positively pre- 

dicted labels that are, in fact, pos- 

itive. 

Probability Threshold an adjustable parameter used to 

convert raw predicted probabili- 

ties into predicted labels. 

Recall the fraction of real positive labels 

correctly predicted. 

Run Length the time difference in seconds 

between two consecutive alarm 

events from the same unique 

alarm. 

Unique alarm the unique combination of an 

alarm source and an identifier. 

Unlabeled examples the description of an alarm event 

in terms of a list of features. 

system. Nevertheless, predictive methods based on first principles

would be complicated to obtain because many variables influence
Computers and Chemical Engineering 143 (2020) 107122 

he dynamics of the system ( Ahmed et al., 2013 ). In this multivari- 

te context, a statistical data-based approach appears to be more 

easible. Chemical plants produce a large quantity of process and 

larm data on a daily basis ( Reis and Kenett, 2018 ). Thus, the use 

f Machine Learning techniques appears to be an interesting op- 

ortunity to extract knowledge from these data and to build pre- 

ictive models. Various researches have focused on the develop- 

ent of Machine Learning algorithms for fault detection and diag- 

osis ( Mahadevan and Shah, 2009 ; Miao et al., 2013 ; Zhong et al., 

014 ), risk assessment ( Paltrinieri et al., 2019 ), process simulation 

 Aleixandre et al., 2015 ; Zhang et al., 2010 ), and dimensionality re- 

uction ( Ge et al., 2017 ). However, to the best of our knowledge, 

here is not a direct application of these algorithms for alarm chat- 

er prediction. 

The present study proposes a Machine Learning approach for 

hattering prediction. An industrial alarm database has been used 

o support the analysis. Initially, a modified version of the Chat- 

ering Index proposed by Kondaveeti et al. (2013) has been devel- 

ped and used to classify historical alarm events as “Chattering 

ithin an hour” or “Not Chattering within an hour” (i.e., alarms 

hat will/will not show chattering within one hour after an alarm 

vent). The results of this method, named Dynamic Chattering In- 

ex, have been used to train and evaluate three different Machine 

earning classification models –i.e., Linear, Deep, and Wide&Deep 

odels. Each algorithm has been trained and assessed indepen- 

ently on the same dataset. Performance metrics have been calcu- 

ated to assess the correctness of predictions and to compare the 

erformance of the three models. 

The paper is organized in 8 Sections. Section 2 provides 

n overview of industrial alarms and alarm databases, includ- 

ng definitions of nuisance alarms, chattering, and alarm floods. 

ection 3 focuses on the database used in this work; a brief de- 

cription of the plant section that generated the alarms is also 

rovided. Section 4 describes the methodology, which includes 

he preprocessing of alarm data, the development of the Dy- 

amic Chattering Index, the Machine Learning models, and the 

erformance metrics that have been used to evaluate the models. 

ection 5 provides a detailed description of the Machine Learn- 

ng simulations. The results of the simulations are presented in 

ection 6 and discussed in Section 7 . Finally, conclusions are sum- 

arized in Section 8 . 

. Alarms in the chemical industry 

Disturbances of various nature cause inherent process fluctua- 

ion during daily operations. Typically, minor deviations are man- 

ged by the Basic Process Control System (BPCS), and process oscil- 

ations are maintained to an acceptable level. However, situations 

ay arise where automatic systems fail to restore normal opera- 

ions, and human intervention is needed. In these circumstances, 

larms inform the operator that process conditions are significantly 

eviating from their normal operating state ( ANSI/ISA, 2016 ). Each 

larm should support a timely and effective response by providing 

uidance to a set of corrective actions. 

.1. Nuisance, chattering and alarm floods 

If an alarm does not convey any new information, or if no cor- 

ective action is possible, the alarm is ineffective. These types of 

larms are called “nuisance” and are often caused by poorly man- 

ged alarm systems ( ANSI/ISA, 2016 ; Kondaveeti et al., 2010 ). Dif- 

erent types of nuisance alarms can be identified (e.g., Chattering, 

leeting, Stale alarms)( ANSI/ISA, 2016 ), but in this study the at- 

ention has been directed to chattering alarms – i.e., alarms that 

repeatedly transitions between the active state and the not active 

tate in a short period of time” ( ANSI/ISA, 2016 ). A rule of thumb 
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Table 1 

Selection of the most common and significant alarm attributes presented to the operator. 

Attribute Description 

Timestamp Date and time (GMT) of the alarm event. 

Source The source that triggered the alarm. It might be a measuring instrument or a PLC function. 

Jxxx The safety interlock logic associated with the alarm, where “xxx” is a three digits code. 

Alarm Identifier A code that defines the alarm status (e.g. “HHH”, “HTRP”, “LLL”, “IOP”, “HHH Recover”, “ACK”). 

Data Value The value of the process variable. 

Eng. Unit The units of measure of the process variable (e.g. “ % ”, “°C ”, “ KPa ”). 
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to determine chattering behavior is three or more alarm records

(from the same alarm source) in one minute ( Kondaveeti et al.,

2010 ). 

Besides, alarm floods –i.e., periods when the alarm rate ex-

ceeds 10 alarms/operator per ten minutes time interval– are an-

other common issue in modern alarm systems ( ANSI/ISA, 2016 ;

Laberge et al., 2014 ). Due to the intense alarm activity, hundreds

of alarm records may be produced in a short time. The workload

caused by flood episodes is often overwhelming: the operator can-

not provide an appropriate response, and crucial alarms are likely

to be missed ( Ahmed et al., 2013 ). Usually, most of the alarms in-

side a flood episode come from a limited number of alarm sources

( ANSI/ISA, 2016 ). Furthermore, alarm floods are strongly related to

chattering alarms due to their potential to cause a large number

of alarm events in a short time span. For this reason, identifying

and removing chattering alarms is a crucial step to improve the

performance of the alarm system and to avoid flood episodes. 

2.2. Alarm attributes 

Alarm events are described through a list of attributes. Each at-

tribute defines a characteristic of an event such as the time of the

alarm occurrence (i.e., the Timestamp), the Source that triggered

the alarm, the alarm status, and more. Table 1 describes a list of

attributes that are most frequently presented to the operator. It is

worth mentioning that different com panies use different messages

and different sets of alarm attributes. The table is thus a selection

of the most common and significant alarm attributes. 

When an alarm is triggered, a message appears on the operator

console. An example is: 

“LI 01 LEVEL D01 J434 PV = 98 , 0 % HHH ”

The alarm message reports the source of the alarm (the level

indicator 01), a brief explanation of the measured variable (the

level in drum 01), the associated safety function (J434), the value

of the process value (98 %) and finally, the alarm status (High Level

–i.e., “HHH”). 

For a more comprehensive understanding of the following anal-

yses, the alarm identifier must be described more in detail. The

identifiers “HHH” and “HTRP” inform that the measured variable

has exceeded the “high” and “very high” threshold respectively,

“LLL” and “LTRP” refer to the “low” and “very low” threshold, “IOP”

informs about an instrumental failure or out-of-range measure,

“ACK” indicates that the operator has acknowledged the alarm. The

alarm identifier may include the word “Recover” (e.g. “HHH Re-

cover”, “LTRP Recover”), that indicates that the original alarm has

been recovered (i.e., the alarm is not active anymore). In addition,

two more attributes must be described, the Active Time Delta and

the Condition Name, which have been used in the analyses but are

not listed in Table 1 . The Active Time Delta (ATD) is the number of

seconds between an alarm and its recovery. The Condition Name

(CN) is the alarm identifier of the initial alarm event (e.g., if the

alarm is an “LLL Recover”, CN will be “LLL”). 

In spite of the variety of different attributes, an alarm event

is uniquely identified by three attributes only ( Kondaveeti et al.,

2010 ): 
1. Time Stamp; 

2. Source; 

3. Alarm Identifier. 

lso, the combination of an alarm source and an identi- 

er (e.g., “LI01 HHH”, “PI103 LTRP”) is called a unique alarm 

 Kondaveeti et al., 2010 ). 

.3. Alarm databases 

Chemical plants produce a massive amount of data on a daily 

asis ( Kordic et al., 2010 ). Alarm events are continuously recorded 

nd stored in alarm databases, which are characterized by a large 

earch-space and may contain years of alarm data ( Kordic et al., 

010 ). Typically, alarm events are collected as chronologically or- 

ered time sequences ( Weiss, 2010 ). Each row of the database rep- 

esents an event, and each column represents an attribute of the 

larm event. Obviously, there is not a single database format: dif- 

erent companies use different Distributed Control Systems (DCS). 

he format, the codes and the set of displayed features may vary 

ccordingly. Typically, an alarm database contains more features 

han those presented in Table 1 , but most of these additional fea- 

ures are either redundant or not useful for the analyses. 

The analysis of the alarm history is a crucial step in monitor- 

ng the alarm system performance ( ANSI/ISA, 2016 ). Periodic study 

f the alarm database allows the production of performance met- 

ics and the detection of nuisance alarms. An example of a per- 

ormance metric suggested by ANSI/ISA (2016) is the “Percentage 

f time the alarm system is in a flood condition”, which must be 

ower than 1 % to grant stable operations. Furthermore, the stan- 

ard states that chattering alarms must not be tolerated, and ac- 

ions must be taken to resolve any chattering that occurs. Nev- 

rtheless, due to the complexity and quantity of data in alarm 

atabases, the extraction of relevant information is not trivial and 

sually requires time and resources ( Kordic et al., 2010 ). 

. Case-study: ammonia production plant layout and alarms 

The industrial alarm database used in this study is provided 

y an international chemical company and consists of alarm data 

hat were collected in a plant section for ammonia synthesis. The 

rocess involves the manipulation of a significant amount of dan- 

erous substances (e.g., methane, hydrogen, ammonia), and se- 

ere operating conditions are often required (e.g., high temper- 

ture, high pressure, corrosive fluids). According to the Direc- 

ive 2012/18/EU of the European Parliament and of the Council 

 European Union, 2012 ), the plant has been classified as an upper- 

ier establishment due to its potential to cause major accidents. 

The ammonia production plant comprises four sections: 

1. Desulfurization and Reforming; 

. Water-Gas Shift, CO2 Removal, and Methanation; 

. Ammonia synthesis and Cooling circuit; 

. Anhydrous ammonia storage, Pipeline, and Loading/unloading 

tankers. 

Fig. 1 shows a schematic representation of the plant layout 

or ammonia production, excluding storage, loading, and unloading 
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Fig. 1. Simplified process scheme of the ammonia production plant considered. 

(Section 4). Natural Gas, Air, and Steam are used as raw materi- 

als for ammonia synthesis, according to the following exothermic 
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reaction: 

N 2 + 3 H 2 � 2 NH 3 �H 

0 
r [ 25 °C ] = − 92 . 44 

KJ 

mol 
(1)

The reaction is carried out in two catalytic reactors arranged in

series. The required nitrogen comes from process air, which en-

ters the secondary reforming reactor. The hydrogen is produced

through natural gas steam reforming in two distinct reforming

stages. The first stage (primary reformer) is a vertical, side fired,

proprietary reactor. The second stage (secondary reformer) is an

autothermal adiabatic reactor. Typical temperature and pressure of

the gas stream leaving the reforming section are 10 0 0 °C and 25 -

40 bar, respectively ( Jennings, 1991 ). The catalysts used in the re-

forming reactors and in the downstream sections are sensitive to

sulfur compounds ( Aika et al., 1995 ). To avoid catalyst deactivation

and poisoning, sulfur compounds are removed from natural gas in

two reactors arranged in series. Similarly, carbon oxides must be

removed because they are poisonous to the catalyst ( Aika et al.,

1995 ). For this reason, carbon monoxide is converted into carbon

dioxide in two Water-Gas Shift reactors. Carbon dioxide is then re-

moved in an absorption column where a Vetrocoke solution is used

as a solvent ( Giammarco and Giammarco, 1973 ). Finally, the resid-

ual amount of carbon oxides is removed in a Methanation reactor.

The process stream leaving the methanator, which has the required

purity for ammonia production, is compressed and sent to the am-

monia synthesis loop, where ammonia is synthesized and liquefied

through subsequent cooling and expansion units. Due to thermo-

dynamic and kinetic constraints, the ammonia synthesis has low

single-pass conversion ( Jennings, 1991 ). Therefore, part of the gases

released during the liquefaction process, which consists mainly of

unreacted compounds, are recycled back to the reactors. 

3.1. The alarm database 

The alarm database of the ammonia plant contains alarm events

collected between July 2017 and November 2017. In total, 26 473

alarm events (rows of the database) occurred during the obser-
Alarms are not evenly spread over the observation period. The 

larm daily annunciation rate is shown in Fig. 2 . Over 96 % of the 

larm events included in the database occurred between Septem- 

er and October 2017. The unusually high alarm rate was caused 

y a total power outage, which led to an unintended plant shut 

own. The plant instability and the abnormal alarm annunciation 

ate persisted over one month after the blackout, due to the emer- 

ency shutdown and the subsequent startup procedure. During the 

vent, a significant number of alarm floods occurred. Therefore, the 

nalyses described in this work have focused on that specific time- 

apse (September 9th to October 9th). Over the period of concern, 

89 alarm sources produced a total of 25572 alarms. More than 72 

 of them were triggered by ten alarm sources only, as shown in 

ig. 3 . 

. Methodology 

The approach follows the steps depicted in Fig. 4 . 

.1. Data preprocessing 

Raw alarm data must be prepared for the analysis. 

.1.1. Attribute selection and data cleaning 

The columns of the database that are either empty or not useful 

or the analysis have been removed (step 1.1 in Fig. 4 ). For exam- 

le, the column “PlantHierarchy” contains standardized codes that 

efer to a specific plant inside the production site. The column has 

een removed because every alarm considered in this study comes 

rom the ammonia production plant. 

Machine Learning algorithms cannot process null (missing) val- 

es. For this reason, columns including null values were further 

nalyzed, and, when relevant, null values were substituted by spe- 

ific input values. Several techniques exist to impute missing val- 

es ( Hastie et al., 2009 ). If the value is relevant for the analysis, 
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Fig. 2. Alarms’ daily annunciation rate. Each circle represents the number of alarms that occurred during one day. 

Fig. 3. The ten alarm sources with the larger alarm count over the observation period (September – October 2017). 

one may decide to replace it with the mean or median of the non- 

missing values ( Brink et al., 2016 ). If the missing value is not rel- 

evant, or if there is no way to guess the value through statistical 

calculations, it might be replaced with a user-defined global con- 

stant ( Han et al., 2012 ). For example, the column “Eng. Unit” (see 

Table 1 ) contains a considerable amount of missing value due to 

 

 

 

 

 

1.4 in Fig. 4 ). According to Kondaveeti et al. (2010) , the binary rep- 

resentation of a unique alarm is an array whose elements rep- 

resent one-second-spaced time bins. For a one-month-long ob- 

servation period, the array has 25920 0 0 elements (i.e., seconds 

in one month). The value of an element of the array can be ei- 

ther “1” or “0”. A “1” in the sequence indicates that the unique 
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alarms that are not associated with a measuring instrument (e.g.

alarm generated by ad-hoc logics). Therefore, it has been decided

to replace the missing values in the column with the symbol “– ”

(step 1.2 in Fig. 4 ). 

As a result, a “clean” database is obtained (step 1.3 in Fig. 4 ),

which contains only meaningful attributes and no missing values. 

4.1.2. Binary Database creation 

Unique alarms (i.e. the unique combination of an alarm source

and an identifier) have been represented as binary sequences (step
larm occurred at that very moment. On the contrary, a “0” means 

hat the unique alarm did not happen. In this way, alarm oc- 

urrences are represented as 1’s in the array. Finally, binary se- 

uences are grouped in a matrix (step 1.5 in Fig. 4 ). Rows con- 

aining zeroes only can be safely removed by the Binary Database 

 Kondaveeti et al., 2010 ). 

Although it is not compulsory, representing alarm data as bi- 

ary sequences will greatly simplify the calculation of the Dynamic 

hattering Index. 
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Fig. 4. Workflow of the analysis carried out. Colors represent three main stages. Stage 1 (orange): Data preprocess, Stage 2 (blue): Dynamic Chattering Indices calculation, 

Stage 3 (green): Machine Learning simulations. Each stage is divided into several steps, which are arranged chronologically and identified by two numbers (e.g., 1.1, 2.2, 3.5). 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 

Fig. 5. Schematic representation of a unique alarm. Red sticks represent alarm 

events. Seconds between two subsequent sticks represent a run-length. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.). 

4.2. The Dynamic Chattering Index 

The mathematical formulation of the Dynamic Chattering Index 

is based on the method described by Kondaveeti et al. (2013) for 
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the calculation of the Chattering Index. Both indices rely on the

run-lengths distribution to quantify alarm chatter. A run-length is

the “time difference in seconds between two consecutive alarms

on the same tag” ( Kondaveeti et al., 2013 ). As an example, the run-

lengths related to a fictitious unique alarm are shown in Fig. 5 . 

In the figure, the red marks represent an alarm event (i.e., a “1”

in the binary sequence), the number of seconds between two con-

secutive marks (i.e., the time between two subsequent “1’s” in the

binary sequence) represent a run-length. Intuitively, considering

the whole observation period, if a unique alarm has a high num-

ber of short run-lengths, it is highly probable that the alarm has

shown chattering. The alarm sequence described in Fig. 5 indicates

Chattering because the alarm has occurred six times in less than

30 seconds. The Chattering Index in Kondaveeti et al. (2013) is 

ψ = 

∑ 

r ∈ N 

P r 
1 

r 
(2)

where 

• r is a natural number that represents a run-length [s] (e.g. r = 5,

7, 10, 13 for alarm data in Fig. 5 ); 
P r = 

n r ∑ 

r ∈ N n r 
(3) 

here 

• n r is the number of run lengths equal to r seconds (e.g. n 5 = 2 

and n 7 = n 10 = n 13 = 1 for alarm data in Fig. 5 ); 
•

∑ 

r ∈ N 
n r represents the total number of run-lengths, which is 

one less than the unique alarm’s occurrences over the obser- 

vation period (e.g., the alarm in Fig. 5 occurred 6 times, the 

summation is equal to 5). 

The Chattering Index indicates the mean frequency of annun- 

iation of a unique alarm ( units of ψ are alarms 
s ) , and it assumes 

 value between 0 and 1. A threshold value is needed to as- 

ess whether a unique alarm has shown chattering during the 

bservation period. Kondaveeti et al. (2013) propose a threshold 

alue equal to 0.05 (i.e., ψ ≥ 0.05 indicates alarm chatter). For in- 

tance, considering the example presented in Fig. 5 , the probabili- 

ies ( Eq. (3) ) are P 5 = 

2 / 5 and P 7 = P 10 = P 13 = 

1 / 5 . The Chattering 

ndex ( Eq. (2) ) is: 

 = 

2 

5 

· 1 

2 

+ 

1 

5 

·
(

1 

7 

+ 

1 

10 

+ 

1 

13 

)
= 0 . 26 ≥ 0 . 05 (4) 

hich confirms that the alarm has shown Chattering behavior. 

In fact, once the observation period is defined, a single ψ is 

btained for each unique alarm. Although meaningful, the index is 

elatively static: observing the Chattering Index, one can determine 

hether the unique alarm has shown Chattering, but no further 

onclusion can be drawn (e.g., when exactly the alarm has shown 

hattering). To overcome this limitation, the Chattering Index ap- 

roach has been modified, and the Dynamic Chattering Index has 

een developed. The core idea is to calculate a regular Chattering 

ndex every time a unique alarm occurs (i.e., every time a “1” is 
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found in the binary representation of the alarm). Another key fea-

ture is that the calculations of the Dynamic Chattering Index in-

volve only alarm events that occurred up to one hour after the

alarm event of concern. If a unique alarm has n 1’s in the binary

sequence, n-1 Dynamic Chattering Indices are calculated (the last

event is excluded from the calculation). By this procedure, each “1”

in the binary sequence is associated with a Dynamic Chattering

Index, which quantifies the amount of chatter that the alarm has

shown during the following hour. 

Considering a generic alarm event with index i, the calculation

of the Dynamic Chattering Index involves four steps (step 2.1 in

Fig. 4 ). 

1. The largest index k that meets the condition ( Time stam p k −
Time stam p i ) ≤ 1 h is selected, and the binary sequence is re-

duced in such a way that only alarm events having index

j ∈ [ i , k ] are taken. 

2. The run-lengths (r) and the number of run-lengths (nr) of the

reduced binary sequence are calculated. It is worth noting that

as long as the reduced binary sequence does not include the

last alarm event (i.e., if k < n), one run-length can be obtained

for each of the alarms in the reduced sequence (i.e., the last el-

ement of the sequence is also included in the run-lengths cal-

culations). 

3. Probabilities are calculated according to Eq. (3) . 

4. The Dynamic Chattering Index of the alarm event is calculated

according to Eq. (2) . 

The steps presented above are repeated ∀ i ∈ [ 0 , n − 1 ] to ob-

tain the n - 1 Dynamic Chattering Indices of the unique alarm of

concern. Finally, the procedure is repeated for each of the unique

alarms in the Binary Database. 

The same threshold value discussed above has been used for

alarm classification. If an alarm event has ψ D ≥ 0.05, the unique

alarm will show chattering within one hour. 

Eventually, a Dynamic Chattering Index has been calculated for

each alarm event (step 2.2 in Fig. 4 ). The use of a threshold al-

lows classifying alarms into two categories, “Chattering within one

hour” and “Not Chattering within one hour”. This result has been

used to train and evaluate the Machine Learning algorithms that

will be described in the following section. 

4.3. Machine Learning 

Machine Learning (ML) can be defined as “computational meth-

ods using experience to improve performance or to make accurate

predictions” ( Mohri et al., 2012 ). Due to the ever-increasing com-

putation capabilities of modern calculators and to the development

of computer technologies, the number of ML algorithms and their

applications have witnessed extraordinary growth during the last

few years ( Liu et al., 2018 ). Despite the immense number of dif-

ferent algorithms, there are only three categories of ML methods,

which are: Supervised Learning, Unsupervised Learning, and Rein-

forcement Learning. Within the present work, Binary Classification

algorithms have been used, which fall into the Supervised Learning

category. 

A Classification algorithm takes as an input a list of features

(i.e., meaningful attributes) of the object that must be classified

and returns a label (i.e., the class of the object). For instance, these

algorithms are employed to classify emails into “Spam” and “Not

Spam” while, in the present study, the algorithm aims to classify

alarm events into “Chattering within one hour” or “No Chattering

within one hour”. If the objects are classified into two classes only,

the problem is called Binary Classification. 

The selection of the most relevant features is a crucial step, and

it may significantly affect the performance of the algorithm. The
Computers and Chemical Engineering 143 (2020) 107122 

election of the set of features that best represent the problem un- 

er assessment is mostly guided by experience, and a trial and er- 

or approach is often required ( Brink et al., 2016 )(step 3.5 in Fig. 4 ). 

The Machine Learning Classification workflow is presented in 

ig. 6 . Two distinct stages are necessary to build and test the algo- 

ithm: Training and Evaluation. 

During the training stage (step 2 in Fig. 6 ), the algorithm re- 

eives a set of examples. An example is a list of features (e.g., the 

ttributes of an alarm event) and the related label. From the exam- 

les, the algorithm “learns” the relation between features (Y) and 

abels (X) by optimizing the weights of an internal function (f). 

 = f ( X ) (5) 

The weights are adjusted by an optimization algorithm, which 

ims to minimize the “distance” between f (X) and Y. Different 

ypes of functions exist, as well as different optimization methods. 

Later, during the evaluation phase (step 3 in Fig. 6 ), a new 

eries of unlabeled examples (i.e., only features) are fed to the 

rained algorithm, which predicts the labels. Finally, the perfor- 

ance of the algorithm is quantified by comparing predicted labels 

ith true labels (step 4 in Fig. 6 ). 

It is worth mentioning that the raw output of a Classification 

lgorithm is not a label, but the label’s probability ( Brink et al., 

016 ). For example, the algorithm used in this work returns the 

ikelihood of a unique alarm being “Chattering within one hour”

r “Not chattering within one hour”. A threshold is needed to con- 

ert probabilities into the final label, which is 0.5 by default (i.e., if 

he “Chattering within one hour” label’s probability is ≥ 0.5, the 

odel will label the alarm as “Chattering within one hour”). The 

robability threshold is an adjustable parameter, and it can signif- 

cantly affect the model’s performance ( Google, 2020a ). 

.3.1. Models 

A model can be defined as “a function with learnable 

arameters that maps an input to an output. The optimal param- 

ters are obtained by training the model on data. A well-trained 

odel will provide an accurate mapping from the input to the de- 

ired output” ( TensorFlow.org, 2020a ). Basically, the model defines 

he mathematical structure of the function f in Eq. (5) . Three differ- 

nt models have been used in this study: a Linear model, a Deep 

eural Network, and a Wide&Deep model. 

.3.1.1. Linear model. Linear models represent the labels as a linear 

ombination of the features ( Hastie et al., 2009 ). 

 = β0 + 

p ∑ 

j=1 

X j β j (6) 

here: 

• Y = labels ; 
• X = [ X 1 , X 2 , . . . , X p ] = the features vector ; 
• X j = a feature ;
• β0 = intercept (or bias) ;
• βj = coefficient (or weight) . 

In this representation, each feature has its own weight. There- 

ore, the model can assess how much a feature weights on the cal- 

ulation of the label, but it cannot quantify the influence of com- 

inations of features. This limitation is partially solved by cross- 

ng two or more features to create a new, more meaningful, syn- 

hetic feature ( Google, 2020b ). Despite that, the linear model lacks 

n generalization, and it cannot interpret the combination of fea- 

ures that never occurred during the training phase ( Cheng et al., 

016 ). 

Although simple, the model is widely used ( James et al., 2013 ) 

ecause it is robust, fast, and performs well on large datasets. Fur- 

hermore, the weights values are easily accessible, allowing the 

https://developers.google.com/machine-learning/glossary/
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Fig. 6. Binary Classification Workflow. 1 - the database is divided into Training and Evaluation Databases. 2 - Training Database is fed to the ML model; a trained model is 

obtained. 3 - Evaluation Database is fed to the trained model, which predicts the labels. 4 - performance metrics are calculated. 

user to evaluate which features are more meaningful for the prob- 

lem under assessment ( Brink et al., 2016 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Deep Neural Network with P features (orange circles), and three hidden lay- 

ers (H1, H2, H3), which contain M, N, and S hidden units, respectively. The output 

layer (green circles) contains two labels (Y1 and Y2). (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.). 

function is the linear rectifier ( TensorFlow.org, 2020d ). 

σ ( x ) = max ( 0 , x ) (9) 

According to Eqs. (7) and (8) , the activation function converts 

the linearly combined units of a layer into the hidden units of the 

following layer; this allows the model to capture non-linear inter- 

features relationships and strengthen its generalization capabilities. 

f

(

r

8 
The model employed in this work uses FTRL algorithm as an

optimizer ( TensorFlow.org, 2020b ). 

4.3.1.2. Deep Neural Network. Deep Neural Networks consist of in-

terconnected layers. The first layer of the network is the vector of

the features (X), and the last layer is the vector of the labels (Y).

Between the first and the last layer there are the so-called hid-

den layers (H). Each hidden layer is made of a certain number of

hidden units (Z). The number of hidden layers and hidden units

is a design parameter that can greatly affect the performance of

the algorithm. Generally speaking, it is better to use a large num-

ber of hidden layers and units. As a drawback, bigger networks

require more computational effort than networks with few layers.

The model used in this work has three hidden layers, with 1024,

512 and 256 hidden units, respectively. A schematic representation

of a Neural Network is shown in Fig. 7 . 

The connections (i.e., solid lines) in Fig. 7 represent non-linear

transformations. For example, the hidden units of the first and sec-

ond hidden layers can be calculated as follows 

Z 1 i = σ
(
α0 i + αT 

i X 

)
i = 1 , . . . , M (7)

Z 2 i = σ
(
γ0 i + γ T 

i Z 1 
)

i = 1 , . . . , N (8)

where: 

• α0i , γ0j = biases ;
• αi , γi = vectors of model coefficients ; 
• Z k 

i 
= the i − th hidden unit of the k − th hidden layer ;

• Z 1 = [Z 
1 
1 , Z 1 2 , Z 1 3 , . . . , Z 1 M 

] ;
• σ = activation function . 

Biases and coefficients are optimized during the training of the

algorithm. The model employed in this work uses Adagrad algo-

rithm as an optimizer ( TensorFlow.org, 2020c ), and the activation
Deep Neural Networks represent state-of-the-art algorithms 

or audio-video processing (i.e., speech and image recognition) 

 Brink et al., 2016 ; Hastie et al., 2009 ) and their applications are 

apidly spreading among different sectors. Although flexible, these 
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Fig. 8. Wide&Deep model, made of a linear (left) and a Deep (right) parts. The 

linear part takes K features (red circles). The Deep part is made of 3 hidden layers 

(blue circles) with M, N, and S hidden units, and takes P features (orange circles). 

The output layer (green circles) contains two labels (Y1 and Y2). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.). 

models may over-generalize and detect non-existent relationships 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Alarm features used in the simulations. Features names have been 

coded for concision purposes. Codes are represented in the first column 

and described in the second column. The last two columns represent 

the features format used in the linear and Deep models. 

Feature Description Format 

Linear Deep 

Y Year of the alarm event Num. Num. 

M Minute of the alarm event Num. Num. 

D Day of the alarm event Num. Num. 

H Hour of the alarm event Num. Num. 

m Minute of the alarm event Num. Num. 

S Seconds of the alarm event Num. Num. 

SO Source (see Table 1 ) Categ Dense 

ID Identifier (see Table 1 ) Categ. Dense 

CN Condition Name (see Section 2.2 ) Categ Dense 

JX Alarm Safety function (see Table 1 ) Categ. Dense 

ATD Active Time Delta (see Section 2.2 ) Num. Num. 

VAL Data Value (see Table 1 ) Num. Num. 

UNI Eng. Unit (see Table 1 ) Categ. Dense 
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between features. Furthermore, they are harder to optimize com-

pared with simpler models (e.g., the linear model). 

4.3.1.3. Wide and Deep model. In an attempt to overcome the lim-

itations of the models discussed above, Cheng et al. (2016) pro-

posed a hybrid model, which is composed of a Wide part (i.e.,

linear) and a Deep part (i.e., Deep Neural Network), as shown in

Fig. 8 . 

During the training phase, the parameters of the linear and

deep parts are optimized simultaneously using FTRL and Adagrad

algorithms. The linear part of the model could comprise both raw

features and crossed-features; in this work, only crossed-features

are used. The hybrid model has proven to combine the advantages

of the linear model (e.g., robustness, memorization capability) and

the Deep model (e.g., generalization, flexibility) minimizing their

drawbacks ( Cheng et al., 2016 ). 

4.3.2. Performance indicators 

The performance of a classification algorithm can be assessed

by comparing predicted labels and true labels. For concision pur-

poses, the label “No Chattering within one hour” will be referred

to as the label “N”, while “Chattering within one hour” will be re-

ferred to as the label “Y”. Three metrics have been used to assess

the performance 

Accuracy = 

TP + TN 

TP + TN + FP + FN 

(10)

Accuracy = 

TP 

TP + FP 
(11)

Accuracy = 

TP 

TP + FN 

(12)

where 

• TP = True Positive –i.e. predicted label = Y, true label = Y; 
• TN = True Negative –i.e. predicted label = N, true label = N; 
• FP = False Positive –i.e. predicted label = Y, true label = N; 
• FN = False Negative –i.e. predicted label = N, true label = Y. 
The summation of TP and TN represents the number of cor- 

ect predictions and the summation of FN and FP is the number 

f wrong predictions. The Accuracy is the number of correct pre- 

ictions divided by the total number of predictions, the Precision 

s the fraction of correct positive predictions, and the Recall is the 

raction of real positive correctly predicted; the metrics assume 

alues between 0 and 1; the larger the value, the better the metric. 

As it has already been discussed, Machine Learning algorithms 

se a probability threshold to determine the predicted label. There- 

ore, changing the probability threshold can greatly affect the al- 

orithm’s performance as it modifies the values of TP, TN, FP, 

nd FN. Unfortunately, Precision and Recall are often in tension 

 Google, 2020a ), changes in the threshold that aim to increase the 

recision may cause the Recall to decrease, and vice versa. 

It is worth noting that all the metrics discussed above must be 

onsidered to evaluate the performance of a Machine Learning al- 

orithm ( Google, 2020c ). A high Accuracy alone is meaningless and 

oes not necessarily indicate good performances. In this work, “le- 

itimate” alarms (i.e., that are not going to show chattering) must 

ot be labeled as chattering ones. Therefore, the Precision is the 

etric that must be optimized. 

. Simulations 

Three simulations have been performed, one for each model 

escribed in Section 4.3.1 . The Machine Learning algorithms have 

een built using TensorFlow r1.15 ( TensorFlow.org, 2020e ) running 

n Python 3.7.4 ( Python.org, 2019 ). The first step to build the 

achine Learning algorithms is the feature selection (step 3.1 in 

ig. 4 ). A preliminary screening has already been performed during 

Attribute selection and data cleaning” (section 11) when the not 

seful columns have been removed from the raw alarm database. 

till, there is no guarantee that the algorithms will perform bet- 

er if all columns of the “clean” database are used as features. As 

reviously argued, feature selection often requires a trial and er- 

or approach. Different features have been tested. The best set (i.e., 

he one that has generated the best performance) is presented in 

able 2 , which contains the name and description of each feature. 

After features selection, the alarm database has been re- 

rganized and converted into a new database (step 3.2 in Fig. 4 ), 

hich contains only the features listed in Table 2 . Each row of the 

ew database represents an alarm event, each of the first thirteen 

olumns represents a feature, and the last column contains the la- 

els. A label can be either “Y” (if ψ D ≥ 0.05 –i.e., the unique alarm 

ill show chattering within one hour) or “N” (if ψ D < 0.05 –i.e., 

he unique alarm will not show chattering within one hour). 
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Fig. 9. Confusion matrices of the linear (a), Deep (b), and Wide&Deep (c) models. The label “N” means “No chattering within one hour”, “Y” means “Chattering within one 

hour”. TN, FP, TN, and FN are obtained using a probability threshold equal to 0.5 and color-coded according to the color bar on the right. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.). 

Fig. 10. Precision-Recall curves of the linear (a), Deep (b), and Wide&Deep (c) models. Probability thresholds between 0 and 1 have been used. Points of the curves represent 

the couple Precision – Recall at a specific threshold. Proceeding from Recall = 0 to Recall = 1, the threshold decreases from 1 to 0 in a non-linear fashion. Red markers indicate 

Precision = 0.9, which is obtained at Threshold = THOLD. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.). 

Next, the database has been divided into two sections, to ob- 

tain the training database and the evaluation database (step 1 in 

Fig. 6 ). The first part, which contains ¾ of the alarm data, has been 

used to train the models, and the second part ( ¼ of the database) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dition to the features in Table 2 . The Deep model and the deep 

part of the Wide&Deep model use the features in Table 2 , but no 

crossed features (because Deep models have intrinsic generaliza- 
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to evaluate them. The last column of the evaluation database has

been removed and stored as a separate variable. This prevents the

model from gaining access to the actual labels during the evalu-

ation. Additionally, since chattering alarms are not spread evenly

throughout the original database, the database has been shuffled

before the division (i.e., rows have been randomly rearranged). 

Prior to starting the simulations, one must ensure that the fea-

tures are fed to the algorithm in a proper format. While Machine

Learning models accept numerical features as an input, strings of

characters (e.g., the features Identifier, Source, and Eng. Unit in

Table 1 ) cannot be fed directly into the model and must be con-

verted into a categorical or dense format. Non-numerical features

that are fed to the linear model have been converted into categor-

ical features ( TensorFlow.org, 2020f ). On the contrary, Deep Neural

Networks do not accept categorical features as an input. Therefore,

non-numerical features have been mapped into dense features

( TensorFlow.org, 2020g ). The last two columns of Table 2 sum-

marize the features format used in the linear and deep models.

Furthermore, three crossed features have been used in the linear

model and in the linear part of the Wide&Deep model, which are

[SO x CN x JX], [SO x CN x ID], and [VAL x UNI]. This enables the

linear model to assess non-linear relationships between features.

In summary, the Linear model uses three crossed features in ad-
hree crossed features only. 

Finally, the models have been trained and evaluated, as shown 

n Fig. 6 (step 3.3 in Fig. 4 ). After the simulations, the algorithm 

rovided raw label probabilities, which have been converted into 

redicted labels using 0.5 as a threshold (step 3.4 in Fig. 4 ). Next, 

redicted labels have been compared with true labels (i.e., the la- 

els that the model should have predicted), the number of TP, TN, 

P, and FN has been calculated. Accuracy, Precision, and Recall of 

he model have been obtained according to Eqs. (10) –(12) . Finally, 

he performance metrics have been calculated again using different 

robability thresholds in order to study the effect of this parameter 

n the final results. 

. Results 

The number of TP, TN, FP, and FN are presented in Fig. 9 , which 

ontains three confusion matrices, one for each model. The axes 

f a confusion matrix represent the true labels and the predicted 

abels. From top left clockwise, the elements of a confusion matrix 

re the number of true negatives, false positives, true positives, and 

alse negatives. A probability threshold equal to 0.5 has been used. 

Metrics in Fig. 9 indicate that the number of correct predictions 

s one order of magnitude higher than the number of wrong pre- 

ictions. Moreover, the number of False Positives is always lower 
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Table 3 

Accuracy, precision, and recall achieved by the Ma- 

chine Learning models. Metrics are obtained using 

a probability threshold equal to 0.5. 

Model Accuracy Precision Recall 

Linear 0.947 0.941 0.938 

Deep 0.937 0.929 0.926 

Wide&Deep 0.919 0.919 0.892 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Fictitious alarm sequence. Each row represents an alarm event. 

The last column contains the Dynamic Chattering Index of the 

event i (first row the table). The symbol “ \ ” indicates a value 

that is either not calculated or not relevant for the analysis. 

Index Timestamp Run-length [s] ψ D 

i 09/09/2017 16:07:24 3 0.069 

i + 1 09/09/2017 16:07:27 234 \ 
i + 2 09/09/2017 16:11:21 133 \ 
i + 3 09/09/2017 16:13:34 1559 \ 
i + 4 09/09/2017 16:39:33 2160 \ 
i + 5 09/09/2017 17:15:33 \ \ 
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than the number of False Negatives. The Accuracy, Precision, and

Recall achieved by each algorithm are shown in Table 3 . 

Values in Table 3 indicate that the linear model produces the

largest metrics. Similarly, the Deep model achieves a better perfor-

mance than the Wide&Deep model. 

Fig. 10 , shows the Precision-Recall (P-R) curves of the three

models calculated using different probability thresholds. 

As previously stated, classification algorithms provide the la-

bel probability of the events that are included in the evaluation

database. A threshold value is needed to convert probabilities into

labels. If the threshold is equal to 0, every alarm event in the eval-

uation database will be labeled as “Y”. Oppositely, if the threshold

is equal to 1, every alarm event in the evaluation database will be

labeled as “N”. Lowering the threshold causes the Recall to either

decrease or to remain constant. Instead, Precision may increase or

decrease when the threshold is reduced. Each point of the blue

curves in Fig. 10 represents the Precision and Recall values ob-

tained using a specific threshold. For a specific model (panels a, b,

and c in Fig. 10 ), thresholds larger than THOLD ensures a Precision

larger than 0.9. 

7. Discussion 

The Chattering Index proposed by Kondaveeti et al. (2013) is a

valuable tool for addressing Chattering alarms retrospectively, but

it does not fulfill the need for dynamicity required to achieve the

objectives of the study. In fact, the Chattering Index quantifies the

amount of chattering that an alarm has shown over the entire ob-

servation period: results are static, meaning that the index can be

used to measure the chattering severity, but it does not provide

any information about when, or why, the chattering has happened.

For these reasons, the index has been modified, and a dynamic ap-

proach has been developed. 

The Dynamic Chattering Index aims at quantifying the likeli-

hood of alarm chatter after each alarm occurrence, linking past

and actual process conditions to future alarm behavior. A threshold

has been used to classify alarm events in two categories, “Chatter-

ing within one hour” and “Not chattering within one hour”. The

Dynamic version of the Chattering Index provides a more detailed

picture of the alarm system performance if compared to the Chat-

tering Index: the former classifies alarm events, the latter classi-

fies unique alarms. In future works, the Chattering Index may be

used to strengthen the Machine Learning simulations since it rep-

resents a meaningful piece of information about the past behavior

of a unique alarm. For instance, one Chattering Index may be cal-

culated for each alarm event in the database, taking into account

only alarms that occurred before each event. This index may be

used as a new feature in the Machine Learning simulations, allow-

ing the model to learn the relation between past and future chat-

tering. The approach has not been pursued in this study because

the authors decided to exclude synthetic features (i.e., that requires

calculation) and focus the attention on ready-to-use features (i.e.,

directly provided by the alarm system). 

The Dynamic Chattering Index method requires to select a

threshold (for alarm classification) and the length of the time in-
erval (to obtain the reduced binary sequence, according to step 1 

f the procedure described in Section 4.2 ). In this work, a time in- 

erval equal to 1 h has been used because it appears to be a good 

alance between dynamicity (that cannot be achieved using large 

ime intervals) and statistical relevance (that cannot be achieved 

sing short time intervals). However, the choice has been arbitrary 

nd guided by general considerations. For example, longer time in- 

ervals (e.g., 2 hours or more) may cause the index to detect Chat- 

ering even if it only appears in the last minutes of the time se- 

uence. As a result, the index would indicate chattering for two or 

ore hours while the alarm would not exhibit chattering for most 

f the time. Oppositely, shorter time intervals (e.g., 30 minutes or 

ess) may cause the index to overestimate short run lengths and 

o detect chattering were no – or low – chattering exists; this is- 

ue partially affects also the index used in this study. In fact, the 

ynamic Chattering Index relies strongly on statistical methods, 

hich perform better when a large amount of data is analyzed. 

nlike the Chattering Index, which considers the entire observa- 

ion period, the Dynamic Chattering Index calculations involve a 

elatively short time interval. It may happen that the unique alarm 

nder assessment occurred a few times during the hour, and this 

ould lead to unexpected results. For instance, few alarm events in 

he reduced binary sequence will produce relatively large proba- 

ilities, since the denominator in Eq. (3) will be small. Besides, if 

ome of the few run-lengths involved in the calculation are short 

e.g., 1 – 10 s), the combination of short run-lengths and large 

robabilities will cause Eq. (2) to produce a large Dynamic Chat- 

ering Index, most likely higher than 0.05 Tamascelli et al., 2020 . 

As an example, consider alarm data represented in Table 4 . The 

alculation of the Dynamic Chattering Index of the event i includes 

ll the alarms in Table 4 except the last one (because it happened 

ater than one hour after the event i). Observing the run-lengths, 

ne may conclude that the alarm did not show chattering since 

hey appear to be long enough, and the 3 seconds long run-length 

lone does not seem sufficient to suggest chattering. Despite that, 

he calculation of the Dynamic Chattering Index leads to an unex- 

ected result. In particular, the run-length count and the probabili- 

ies are nr = 1 and P r = 

1 / 5 ∀ r. Therefore, the Dynamic Chattering 

ndex is 

 D = 

1 
5 

·
(

1 
3 

+ 

1 
234 

+ · · · + 

1 
2160 

)
= 0 . 067 + 8 . 5 · 10 

−4 

+ · · · + 9 . 2 · 10 

−5 = 0 . 069 

(13) 

Which is greater than 0.05, and suggests chattering within one 

our. Focusing on how each run-length impacts the index calcula- 

ion, one can observe that a run-length equal to 3 s alone produces 

 contribution of 0.067, which is greater than 0.05. This behavior 

s due both to an extremely short run length and to large proba- 

ilities (caused by few alarms being triggered during the observa- 

ion period). Usually, if many alarms occurred within the observa- 

ion period, the effect of a few short run-lengths is mitigated by a 

mall probability value. Instead, if few alarms were triggered, the 

robability increases, the mitigation effect stops, and an unreliably 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

t

c

P

c

u

q

d

n

S

o

-

t

t

e

h

t

t

(

c

2

3

m

t

e

n

F

b

q

(

c

F

e

t

h

d

c

t

t

t

w

o

t

w

“

q

b

“

m

t

s

s

q

12 
N. Tamascelli, N. Paltrinieri and V. Cozzani 

high ψ D is produced. The issue might be avoided by excluding ex-

tremely short run-lengths or extending the time interval. The first

solution has the disadvantage of ignoring extreme chattering be-

havior, and the second may cause loss of dynamicity. For the rea-

sons mentioned above, future research should be devoted to the

improvement of the Dynamic Chattering Index calculation in order

to achieve higher reliability. For example, alarm sequences affected

by the issues described above might be isolated, and different in-

dices with different time intervals (e.g., 30 minutes, 1 hour, and

2 hours) might be tested on these sequences to assess which one

performs better (i.e., which one does not overestimate the effect

of few, extremely short, run lengths). Also, the Dynamic Chatter-

ing Index described in this study might be modified to take into

account the number of alarm events considered in the calculation

–e.g., a weighting function might be created to dampen the effects

of the combination of few alarms and short run lengths. In addi-

tion, indices calculated with different time intervals may be aggre-

gated and used together to obtain a single, more comprehensive,

and informative index. 

The results of the Dynamic Chattering Index approach have

been used to train three Machine Learning models for Chattering

prediction. The models have shown good performances in predict-

ing alarm chatter: results in Table 3 indicate that a high Accu-

racy can be achieved while maintaining high Precision. These flexi-

ble and dynamic tools may significantly improve the operators’ re-

sponse in different situations. During alarm floods, early warning

of chattering may be delivered to the operator, who may decide to

silence the alarm before it becomes a nuisance. In addition, the

models could warn that the chattering is going to end (i.e., the

model predicts an “N” after a sequence of “Y”), and the operator

may decide to restore the alarm without the burden of checking

it periodically. During normal operations, early warnings of chat-

tering may allow the operator to investigate the issue in advance,

and the ability to detect the end of a chattering sequence would

prevent the alarm from being forgotten in a silenced status. In gen-

eral, the models could help to increase risk awareness by providing

quick and ready-to-use information and by reducing the need for

manual intervention. 

When the standard probability threshold is used (i.e., 0.5),

the linear model qualifies as the best model since it produces

the largest metrics ( Table 3 ). Deep and Wide&Deep models show

slightly smaller metrics and may need more optimization to im-

prove their performance. On the contrary, the simpler but more ro-

bust linear model has performed better without the need of a spe-

cific optimization. The reasons why this has happened are diverse.

For instance, DNN and Wide&Deep models are prone to overgen-

eralization and may detect inter-feature relationships where no re-

lationship exists. The problem described in this study may need a

model that is better at memorizing (e.g., Linear) rather than gener-

alizing (e.g., DNN, Wide&Deep). Future research should investigate

whether different optimization strategies (e.g., different hyperpa-

rameters, learning decay, activation functions) could improve the

performance of advanced but sensitive models such as the Deep

and Wide&Deep. 

P-R curves in Fig. 10 suggest that precisions larger than 0.9

can always be achieved while maintaining the Recall close to

0.9 by varying the probability threshold. If the threshold is fur-

ther reduced (i.e., below 0.05 for the linear model, 0.29 for the

Deep, and 0.41 for the Wide&Deep), the Precision drops signif-

icantly. The selection of the best threshold (i.e., threshold tun-

ing) strongly depends on the specific problem under assessment

(e.g., unbalanced/balanced dataset, cost-sensitive/insensitive classi-

fication)( Brink et al., 2016 ; Google, 2020d ; Ling and Sheng, 2008 ).

Misclassifying legitimate alarms (FP) is more critical than mis-

classifying chattering alarms (FN) as a False Positive may cause

the operator to silence a legitimate alarm. Therefore, False Pos-
Computers and Chemical Engineering 143 (2020) 107122 

tives must be avoided, and Precision must be increased. Unfor- 

unately, increasing the Precision often causes the Recall to de- 

rease ( Brink et al., 2016 ). The best threshold must ensure a high 

recision while maintaining the Recall to an adequate level. Ac- 

eptable thresholds may be identified by selecting minimum val- 

es of Precision and Recalls, but selecting the best threshold re- 

uires more considerations. Often when classification errors have 

ifferent criticality, a process similar to cost-benefit analysis is 

eeded to identify the best threshold value ( Ling and Sheng, 2008 ; 

heng and Ling, 2006 ). Other approaches involve the optimization 

f the weighted harmonic mean between Precision and Recall (F β
 measure)( Chai, 2005; Paltrinieri et al., 2020 ). 

As a final note on thresholds and P-R curves, it is worth noting 

hat the linear model provides Precisions greater than 0.90 when 

hresholds between 1 and 0.05 are used. This means that when- 

ver the model predicts the label “1” (i.e., “Chattering within one 

our”), it produces a large probability value, which is often larger 

han 0.95 (i.e., 1 - 0.05). In other words, the linear model is ex- 

remely “confident” when predicting chattering alarms. 

Focusing on the Linear model, the nature of wrong predictions 

i.e., FN and FP) has been studied more in detail. Three leading 

auses of error have been identified: 

1. The model could not identify the beginning of a chattering se- 

ries. 

. The model could not identify the end of a chattering series. 

. The model labels all the events of the unique alarm of concern 

as “Y” or “N”. 

Cause 1 occurs when the model fails to identify the first ele- 

ent of a Chattering sequence or, in other words, it fails to de- 

ect the first unique alarm event labeled as “Y” after one or more 

vents labeled as “N”. Fig. 11 clarifies this insight. As one might 

otice, the first event of the chattering sequence (the red dot in 

ig. 11 ) has been incorrectly labeled (true label is Y, predicted la- 

el is N), and a False Negative has been produced as a conse- 

uence. Later in time, the model has correctly identified chattering 

green dots). Also, the model has correctly predicted the end of the 

hattering sequence, which occurred at 13:56:00 (not displayed in 

ig. 11 ). 

Cause 2 occurs when the model fails to identify the last el- 

ment of a Chattering sequence. Fig. 12 provides an example of 

his. The last two unique alarm events of the series (red dots) 

ave been incorrectly labeled (the true label is N, while the pre- 

icted label is Y), and two False Positive have been produced as a 

onsequence. 

Regarding cause 3, it may happen that if the true labels related 

o a unique alarm are strongly unbalanced (i.e., mostly “Y” or “N”), 

he model will deduce that all the events produced by that par- 

icular unique alarm must be labeled as “Y” or “N”, depending on 

hich is the most frequent. For instance, this behavior has been 

bserved for both the unique alarms “LI315 IOP” and “TI542 IOP”: 

he first produced a total of 18 alarm events and only 5 of them 

ere “Not Chattering within one hour”, the latter produced only 4 

Chattering within one hour” events out of 38 in total. As a conse- 

uence, the algorithm has predicted that all the events produced 

y “LI315 IOP” must be labeled as “Y”, and events produced by 

TI542 IOP” must be labeled as “N”. 

Poor data distribution, as well as the use of too small datasets, 

ay play a crucial role in causing the issues described above. For 

his reason, it might be worthwhile to consider a more exten- 

ive database for further analyses. Besides, different sets of features 

hould be tested to resolve the misidentification of chattering se- 

uences boundaries. 
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Fig. 11. Detail of a Chattering sequence produced by the unique alarm FI234 LTRP. Colored dots represent alarm events (alarm state = “ON”). True label is “Y” for all the 

events in the figure. Blue dots refer to alarm events included in the Training database, other colors refer to events included in the Evaluation database. Red dots indicate a 

wrong prediction (a False Negative), green dots indicate a correct prediction (a True Positive). (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.). 

Fig. 12. Detail of a Chattering sequence produced by the unique alarm FI234 LTRP. Colored dots represent alarm events (alarm state = “ON”). True labels of the last three 

elements are “N”, other events have “Y” as True labels. Blue dots refer to alarm events included in the Training database, other colors refer to events included in the 

Evaluation database. Red dots indicate a wrong prediction (a False Positive), green dots indicate a correct prediction (a True Positive). (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.). 

8. Conclusions 

A Machine Learning method for chattering prediction was de- 

veloped. Analyses have involved the formulation of the Dynamic 

Chattering Index to perform a preliminary classification of his- 

torical alarm data. This new index overcomes the limitations of 

 

 

 

 

 

 

 

 

 

 

and actions might be taken by the operator to avoid this event. 

Consequently, the workload would be reduced, and the risk of 

alarm floods would be minimized. In general, the approach demon- 

strates that advanced analysis techniques can be used to extract 

knowledge from historical data and perform accurate predictions. 

A data-driven approach for process monitoring and control appears 
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the Chattering Index, providing more flexible and dynamic results,

which can be used to link actual process conditions to future alarm

behavior. 

Three different Machine Learning models –Linear, Deep, and

Wide&Deep– have been trained and evaluated. The models have

been tested on the ability to predict future chattering behavior

based on actual process conditions. The performance metrics and

the P-R curves indicate robustness and good prediction capability

of the models. The method may be used to build an online tool for

chattering prediction and decision-making support. For instance,

the algorithm could provide early warnings of possible chattering,
o be a valuable and interesting opportunity to exploit process data 

nd increase process safety and stability. 
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Digitalization has significantly improved productivity and efficiency within the chemical industry. Distributed 
Control Systems and extensive use of sensor networks enable advanced control strategies and increase 
optimization opportunities. On the other hand, chemical plants are increasingly complex, equipment is highly 
interlinked, and it is more difficult to describe the system dynamics through first principles. Finding the root 
causes of process upsets and predicting dangerous deviations in process conditions is often challenging. 
Advanced and dynamic tools are needed to grant safe and stable operations in such a complex and 
multivariate environment. In this context, Machine Learning techniques may be used to exploit and retrieve 
knowledge from the large amount of data that chemical plants produce and store on a daily basis. Data-driven 
methods may be adopted to develop predictive models and support a proactive approach to process safety. 
The study aims to develop Machine Learning techniques to improve the response of control room operators 
during critical events. Specifically, alarm data originated in an upper-tier Seveso site have been collected, 
cleaned, and analyzed to identify periods of intense alarm activity. Alarm behavior following operator 
responses has been evaluated to assess whether the actions were adequate to prevent future alarm 
occurrences. In doing so, alarm events that reoccur within 30 minutes after an operator acknowledgment have 
been identified and labeled. Subsequently, a hybrid classification algorithm was trained to predict the 
probability that a critical alarm reoccurs after being acknowledged by the operator. This predictive tool might 
be used to support the operator’s decision-making process and focus his/her attention on critical alarms that 
are more likely to occur again in the near future. 

1. Introduction
The alarm system is one of the first layers of protection to prevent process deviations from escalating into 
accidents (Stauffer and Clarke, 2016). Still, there are inherent difficulties in designing, operating, and 
maintaining an efficient alarm system (Goel et al., 2017), which includes both technical (e.g., sensors, DCS, 
actuators) and human functions (e.g., operators). Alarms inform control room operators about dangerous 
deviation from normal operating conditions so that appropriate corrective actions could be taken. On the other 
side, operators should be provided with enough time to detect the issue, diagnose the situation, and 
determine/implement corrective actions (ANSI/ISA, 2016). Still, manual intervention by operators is subject to 
human error; improper procedures, worker fatigue, and lack of operator training may prevent an adequate 
response (Exida, 2009). In fact, several accident reports have highlighted that improper alarm management 
and inaccurate operator actions play a significant role in the development of process accidents. For example, 
poor alarm prioritization and an excessive alarm annunciation rate contributed to the Texaco Milford Haven 
explosion, where 26 workers were injured (Health and Safety Executive, 1997). Also, the non-detection of a 
loss of coolant led to the Three Mile Island Accident (United States Nuclear Regulatory Commission, 2018), 
where alarms rang, warning light flashed, but no operator could diagnose the situation. In an attempt to 
rationalize and provide a methodology for a more effective design and management of alarm systems, 
standard manuals have been published, such as ISA 18.2 (ANSI/ISA, 2016) and EEMUA 191 (EEMUA, 2013). 
Still, much remains to be done (Goel et al., 2017). The advent of the Third Industrial Revolution has already 
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brought changes and improvements to the industry. Chemical plants are more productive, more automated, 
more flexible, and safety systems are more advanced. Nevertheless, some issues have arisen as well. 
Modern DCS allows the configuration of new alarms with few clicks of mouse (Katzel, 2007). As a result, a 
larger number of alarms are installed, and the workload for operators has increased to the point where they 
are often overwhelmed by nuisance alarms (Kondaveeti et al., 2013). In addition, chemical plant complexity 
has increased, and control/safety functions are more intricate. As complexity increases, failures are more 
likely to occur, and root causes of process upsets are more difficult to detect (Wall, 2009). Therefore, it may be 
challenging for control room operators to find the appropriate set of corrective actions in a reasonable time. An 
intelligent tool to assess and predict the effectiveness of operators’ actions would be of great support in 
dealing with critical situations. In this context, advancements in IT, IoT, and computer science have led to the 
development of intelligent computer-based algorithms to extract knowledge from data and support knowledge-
based decision-making. In fact, a massive amount of process and alarm data are produced and stored on a 
daily basis (Reis and Kenett, 2018). Machine Learning algorithms may be used to “mine” these data and 
create predictive models for, e.g., fault detection e fault diagnosis (Tian et al., 2015), predictive maintenance 
(Carvalho et al., 2019), Dynamic Risk Assessment (Paltrinieri et al., 2019), modeling and simulation 
(Aleixandre et al., 2015).  
This work focuses on the application of Machine Learning techniques for predicting the probability that a 
critical alarm reoccurs after being acknowledged by an operator. In this way, the operator’s attention would be 
driven to alarms that are more likely to occur again in a short time. Alarm data from an ammonia production 
site have been used to evaluate the proposed methodology. 

2. Alarm database: structure and features
Alarm records originated in an ammonia production plant have been used to test the proposed methodology. 
Alarms that occurred between July and November 2017 have been extracted and stored in a CSV file (i.e., the 
alarm database), which contains 26,473 alarm records described by means of 39 different attributes. That is, 
the database may be considered a 26,473x39 matrix, where each row represents an alarm event, and each 
column represents an attribute (i.e., a feature) of an alarm event. A reduced version of the database was 
described and used by Tamascelli et al. (2020a, 2020b). In the present study, the whole dataset has been 
used.Most of the alarms in the database occurred between 09/09/2017 and 09/10/2017, when a total power 
outage forced an emergency plant shutdown. During this critical event, the alarm annunciation rate often 
exceeded 1000 alarms/day, and the workload for control room operators increased drastically. 
Each alarm event is described by a list of attributes. A comprehensive description of the attributes may be 
found in Tamascelli et al. (2020b). However, only three attributes are needed for uniquely identifying an alarm 
event: 

1. Timestamp;
2. Source;
3. Identifier.

The Timestamp is the date and time of the alarm occurrence. The Source represents the instrument or logic 
function that generated the alarm. An example of a Source is LI315 (i.e., the level indicator in the control loop 
315). The Identifier indicates the alarm status. Nine different identifiers are found in the database, as shown in 
Table 1. 

Table 1: Alarm Identifiers 

Identifier Meaning 
HHH The measured variable has exceeded the high alarm setpoint 
HTRP The measured variable has exceeded the very-high alarm setpoint 
LLL The measured variable has exceeded the low alarm setpoint 
LTRP The measured variable has exceeded the very-low alarm setpoint 
ALM Generic alarm 
IOP Instrument failure or out-of-range measure 
ACK The operator has acknowledged the alarm 
NR A generic alarm is terminated (it refers to an earlier ALM alarm) 
Recover Alarm terminated (it refers to an earlier HHH, HTRP, LLL, LTRP, or IOP 

alarm) 
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In addition to alarms per se, the database keeps track of two different events: the acknowledgment of an 
alarm by an operator and the recovery of an alarm. The former is described by the Indicator “ACK”, the latter 
by “Recover” or “NR” depending on the Identifier of the original alarm. 

3. Methodology
The method follows three main steps: Data pre-processing, Target identification, and Machine Learning 
simulations. 

3.1 Data pre-processing 

Alarm attributes (i.e., columns of the database) that have not been deemed relevant for the analyses have 
been discarded. For example, empty columns have been removed, as well as columns that show the same 
value for each event in the database. Also, redundant attributes have been removed. 
Next, missing values have been substituted by the value “0”. This has been done because most Machine 
Learning algorithms do not tolerate missing values (Brink et al., 2016). The choice of the value “0” is arbitrary; 
a different numerical or categorical value (i.e., a text string) would be equally effective (Han et al., 2012). In 
doing so, one must ensure that the chosen value is outside of the domain of the attribute affected by missing 
values (i.e., the attribute should never take values equal to the one selected for the substitution). 
Finally, it may happen in industrial databases that different measurements have different units. For example, 
one may find that some of the pressure measurements are expressed in “bar”, while others in “atm”. 
Whenever this happens, it is critical to ensure that attribute values referring to homogeneous physical 
quantities are expressed into common measurement units. Also, numerical values should be normalized in 
order to suppress scale effects (e.g., using min-max scaling) (Brink et al., 2016). 

3.2 Target identification 

The database must be analyzed to find and highlight events where an operator has acknowledged an alarm, 
but still, another alarm from the same Source occurs within 30 minutes. Events that meet this criterion are 
called Target events. The time window has been selected in accordance with the approach mentioned in the 
PETRO-HRA Guideline, which evaluates the 30 minutes criterion as the time required for action from the 
operator (Stauffer and Clarke, 2016). A binary categorical variable is assigned to each event in the database 
to highlight Targets. The binary variable is called the Label of an alarm event, and it assumes the values 
“YES” or “NO” depending on whether the event is a Target or not. Therefore, if the database contains n 
events, n Labels are generated, stored in a vector, and appended to the alarm database. Table 2 clarifies the 
role of Labels. 

Table 2: Fictitious alarm sequence from LI315. 

Timestamp Source Identifier Attribute 4 . . .  Attribute n  Label 
01/01/2021 00:00:00 LI315 LLL --- . . . --- NO 
01/01/2021 00:03:00 LI315 LLL ACK --- . . . --- NO 
01/01/2021 00:19:00 LI315 LLL Recover --- . . . --- NO 
01/01/2021 01:30:00 LI315 LLL --- . . . --- NO 
01/01/2021 01:15:00 LI315 LLL ACK --- . . . --- YES 
01/01/2021 01:40:00 LI315 LTRP --- . . . --- NO 

The table shows a fictitious alarm sequence from LI315. Data are organized as described in section 2, except 
for the last column, which contains the Labels. The second-last event of the series has “YES” as a label since 
another alarm from the same Source (LTRP) has occurred less than 30 minutes after acknowledging the 
previous low-level alarm (LLL). On the contrary, the first ACK event in Table 2 has “NO” as a label because 
the alarm has been recovered after 16 minutes (LLL Recover). 

3.3 Machine Learning simulations 

A Wide&Deep classification model has been trained and evaluated on the alarm database. The purpose of the 
algorithm is to classify alarm events into two categories: Target (i.e., Label = “YES”) and Not Target (i.e., 
Label = “NO”). That is, the model would predict whether an acknowledgment will be followed by another alarm 
from the same Source (Label = “YES”) or not (Label = “NO”). The workflow to set up and perform the Machine 
Learning simulations is illustrated in Figure 1. Two steps must be followed to complete a classification task: 
training and evaluation. During training, ⅔ of the alarm database is fed to the Wide&Deep model (arrow T1 in 
Figure 1), which “learns” the relationship between the features of an event (i.e., the attributes) and its Label. 
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The process involves the joint optimization of two distinct models (Cheng et al., 2016): a Linear model and a 
Deep Neural Network. The structure of a Wide&Deep model is illustrated in Figure 1. Mathematics and 
technical details behind the model are out of the scope of this work and may be found in Cheng et al. (2016). 

Figure 1: Training and evaluation of the Wide&Deep model. 

In general, the algorithm aims at optimizing the internal parameters of a function f to best represent the 
relationship between features of an event (X), and its Label (Y): 

f (X) ≈ Y  (1) 

The function f in Eq(1) comprises a linear part, where features are linearly combined and mapped into Labels, 
and a Deep part, where features are linearly combined and transformed into derived features (i.e., hidden 
units or “neurons” of the DNN) through nonlinear transformations. The parameters used to set up the model 
are the same as those used by Tamascelli et al. (2020b). After training, a trained model is obtained (T2 in 
Figure 1). Next, the model is evaluated. Labels are removed from the rest of the database, which is fed to the 
trained model (E1 in Figure 1). The algorithm takes as an input the features of each event and returns the 
probability of the Label being “YES” or “NO” (E2 in Figure 1). By default, a probability decision threshold equal 
to 0.5 is used to convert Label probabilities into Labels (i.e., if the probability of Label “YES” is greater than 
0.5, the event will be labeled as “YES”). Finally, predicted Labels are compared with true Labels to assess the 
model performance. 

4. Results
The target identification procedure (step 3.2) highlighted that a total of 119 events meet the requirements to be 
classified as Target. The training database comprises 17,649 alarm events, of which 78 belong to the Target 
category. The evaluation database contains 8824 events, of which 41 belong to the Target category. 
After the evaluation phase, three metrics have been calculated in order to assess the performance of the 
model: 

Accuracy = 
TP+TN

TP+TN+FP+FN
 = 0.995 (2) 

Precision = TP

TP+FP
= 0.5 (3) 

Recall = TP

TP+FN
 = 0.049 (4) 

Where TP identifies a True Positive (i.e., the model predicted the label “YES”, and the true Label of the event 
is “YES”), a TN identifies a True Negative (i.e., predicted Label = “NO”, real Label = “NO”), FP identifies a 
False Positive (predicted Label = “YES”, real Label = “NO”), and FN identifies a False Negative (i.e., predicted 
Label = “NO”, real Label = “YES”). Therefore, the sum of TP and TN indicates the number of correct 
predictions, while FN and FP show the number of wrong predictions. 

5. Discussion
Metrics presented in Eq(2), Eq(3), and Eq(4) indicates that 99.5 % of the prediction were correct. 
Nevertheless, this result does not imply satisfactory performance. In fact, only 41 out of 8824 events in the 
evaluation database have “YES” as a true Label. Therefore, the model would have achieved an Accuracy 
greater than 99 % by always predicting the Label “NO”. This happens because de dataset used for the 
simulation is imbalanced, meaning that there are only a few examples of Target events within the database. In 
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this situation, Precision and Recall offer more information than Accuracy. Furthermore, it should be considered 
that mislabelling a Target event as a non-Target one is more critical than labeling a “NO” event as “YES”. 
Thus, Recall is the most meaningful metric to consider in this specific task. A large precision is desirable but 
not as important as a high Recall. Precision in Eq(2) indicates that 50 % of the “YES” predictions were correct, 
and the Recall in Eq(4) shows that only 4.9 % of the Target event were correctly identified (i.e., 2 out of 41). 
Evidently, the rarity of Target events must have affected the learning process and contributed to the 
uncertainty of predictions. However, these metrics have been calculated using a standard probability decision 
threshold equal to 0.5. There is no guarantee that this value will lead to the best performance. Thus, the 
decision threshold has been varied from 0 to 1; every time the threshold has been changed, predicted labels 
are calculated again, and so are Precision and Recall. Figure 2 illustrates how Precision and Recall change 
with the decision threshold. Lowering the threshold to 0.012 would increase the Recall from 0.049 to 0.9 and 
decrease the Precision from 0.5 to 0.34. As previously mentioned, Recall is the most important metric to 
consider in this problem. Thus, the performance would significantly improve since the increase in Recall is five 
times larger than the decrease in Precision. 

Figure 2: Precision–Recall curve produced by the Machine Learning simulation. Coordinates of points on the 
curve represent Precision and Recall obtained using different decision thresholds (THOLDs). The Red mark 
represents the point at threshold = 0.5. The green mark represents the point at threshold = 0.012. 

It is worth noting that 0.012 is a relatively small threshold. However, most of the predicted probabilities are 
lower than 0.012. More than 80 % of the prediction probabilities are smaller than 0.1, and only 110 events 
over 8824 have a probability larger than 0.012. This suggests that the model is relatively unconfident, which 
may be due to the rarity of the event considered. Still, 90 % of the Target event lies within those 110 events, 
which is an encouraging result considering the size of the dataset. In this situation, lowering the threshold to 
such a low value seems an acceptable compromise considering how probabilities are distributed. Future 
works should investigate whether training the algorithm with more alarm data would partially overcome the 
issues related to the rarity of Target events and eventually improve the model confidence. Additional tests 
should also be performed to assess whether different sets of features or different Machine Learning models 
would be better suited for the problem under assessment. Moreover, it is worth stressing that the analyses rely 
entirely on historical alarm data. Further tests are needed to assess the algorithm performance in a real 
environment. For example, the model may be integrated into the plant DCS in order to analyze live streams of 
alarm data; this would allow evaluating the model effectiveness and highlighting its possible limitations. 

6. Conclusions
This work proposes a data-driven method to extract knowledge from historical alarm data and perform 
predictions on the effectiveness of control room operators’ actions. A real industrial database has been used 
to support the analyses. A Wide&Deep classification model has been trained and evaluated on the database. 
The model aims at predicting whether or not the operator’s acknowledgment of an alarm will be followed by 
another alarm from the same Source within 30 minutes. In this way, the model would indirectly predict the 
effectiveness of the operator’s action and eventually drive his/her attention to alarms that are more likely to 
occur again in a short time. The issues related to the identification of rare unwanted events (such as those 
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considered in this work) have been discussed. Results show that even if performance may seem inadequate, 
a high Recall value may be obtained by lowering the decision threshold. After this simple adjustment, the 
model performance has improved considerably, and more than 90 % of the Target events have been correctly 
identified. Further investigations should be performed to evaluate the viability of the study in real-time 
applications. However, the approach suggests that Machine Learning may be used to extract relevant 
information from historical alarm data and use the acquired knowledge to support the control room operators 
proactively. 
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Abstract—Alarm floods are periods of intense alarm activity
that may hinder control room operators’ ability to diagnose and
respond to process abnormalities. In this context, a method to
guide and assist operators during alarm floods would provide
critical support in preventing abnormalities from escalating
into serious accidents. Therefore, this study introduces a novel
approach for the online classification of alarm floods based on
their fault categories. Historical alarm data are used to train
an ensemble of Natural Language Processing models, specifically
word2vec, which learn contextual relationships between alarms
under different fault conditions. As a new alarm flood appears,
the models predict the most probable context alarms by exploiting
the knowledge gained during training. Finally, a scoring system
is proposed to reward the models that make correct predictions
and eventually identify the most probable fault category. The
efficacy of the method has been tested on simulated alarm data
from the Tennessee Eastman Process benchmark. The results are
encouraging, as the models achieved relatively high accuracy in
most fault categories.

Index Terms—Alarm Floods, Online Classification, Word2vec.

I. INTRODUCTION

Alarm systems are integral to modern process plants en-
suring their safe and efficient operation, necessitated by their
increasing complexity and the demanding production require-
ments [1], [2]. The advances in digital technology have intro-
duced complex monitoring and alerting capabilities, making
it convenient to design and configure alarms. However, the
ease of adding alarm points has resulted in numerous alarm
management problems, including alarm floods - the presence
of a large number of alarms beyond what a plant operator can
efficiently handle at a time. The industrial standards, ISA [3]
and EEMUA [4], define an Alarm Flood (AF) as a period
having 10 or more annunciated alarms per 10 minutes per
operator and recommend that an operator shall receive no more
than 6 alarms/hour.

During AFs, operators may be overwhelmed by the numer-
ous alarms distracting them from addressing critical alarms

This work was partially supported by the Natural Sciences and Engineering
Research Council of Canada.

and ongoing abnormalities, resulting in potentially dangerous
situations. AFs have contributed to catastrophic incidents,
including the Three Mile Island (1979), Chernobyl disaster
(1986), Texaco Refinery (1994), among others. In addition to
compromising safety, the presence of AFs can significantly
reduce the efficiency and performance of alarm systems.
Due to the complex connectivity and interactions, the fault
originating at one point can lead to a cascade of alarms.
Furthermore, alarm sequences originating from the same fault
category are expected to be similar, and analyzing AFs based
on the alarms and their sequential order can provide insights
into the root causes of the associated abnormalities. However,
this task is challenging due to the presence of noise and
varying fault conditions, which can lead to mismatches in
alarm sequences. Therefore, advanced techniques are needed
to effectively analyze AFs through accurate pattern matching
and similarity calculation.

Research interest in AF analysis, classification, and pre-
diction has increased over the recent years [5]. Based on
the implementation, these methods can be broadly classified
into offline and online techniques. Offline techniques identify
similar similar AF sequences based on various similarity
metrics to provide decision support for operators. Cheng et
al. modified the Smith-Waterman algorithm to identify similar
AF patterns [6]. The computational complexity of the approach
in [6] was addressed through a local alignment approach based
on the basic local alignment search tool (BLAST) in [7]. The
order-ambiguity of alarms in AF sequences was addressed
using extended term frequency-inverse document frequency
(TF-IDF)-based clustering approaches [8] and a modified Pre-
fixSpan algorithm considering AFs as time-stamped sequences
in [9]. Manca et al. used dynamic causal dependencies of
highly affected process variables for early detection of AFs.

Online alarm flood analysis uses advanced machine learning
techniques to identify and classify ongoing alarm floods, en-
abling early detection of potential root causes of abnormal con-
ditions, and enabling plant operators to take corrective actions
before the situation escalates. Various approaches have been
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proposed, such as incremental dynamic programming [10],
a binary series classification using Support Vector Machines
and k-Nearest Neighbors [11], and Exponentially Attenuated
Component Analysis that prioritizes alarms triggering earlier
in the alarm flood [12]. Furthermore, operator assistance
systems were developed using a Natural Language Processing
(NLP) technique, namely, bag-of-words in [13] and real-time
pattern matching and alarm ranking approach in [14]. Finally,
Wang et al. utilized HAZOP analysis to identify abnormal
scenarios and built an online model for process monitoring
using a Bayesian network of process variables in [15].

Despite the advances in the field of data mining and com-
putational technology, online alarm flood classification remain
under-explored in the literature. This can be attributed to
the computational complexity of advanced algorithms, which
limits their implementation in online settings. Recently, the
field of machine learning has made progress in proposing
simple and robust Natural Language Processing (NLP) tech-
niques, which are applied to various tasks such as chatbot
development, language translation, sentiment analysis, text
generation, question answering, and more. For example, the
latest release of the GPT (Generative Pre-trained Transformer)
series by OpenAI [16], GPT-4 brings a new approach to
language models that can provide better results for NLP
tasks. Nevertheless, there are still few studies that utilize
NLP techniques for the online classification of alarm floods.
Motivated by the above problem and the gap in the literature,
we propose a novel and computationally efficient approach
for the online classification of alarm floods using word2vec,
an advanced NLP technique. The main contributions are:

1) The most probable alarms in the ongoing alarm flood
are predicted by capturing the contextual relationships
between the alarms in different fault conditions.

2) To reduce the computational complexity, a scoring sys-
tem is utilized to classify the ongoing alarm floods,
thereby removing the need for an additional classifica-
tion or clustering algorithm.

The rest of the paper is organized as follows. Section II
presents the detailed steps involved in the online classification
of alarm floods. The effectiveness of the proposed method
is demonstrated via a case study in Section III, followed by
concluding remarks in Section IV.

II. METHODOLOGY

Details of the proposed method for the online classification
of AFs using the word2vec algorithm are presented in this
section, where the approach has two main stages, namely,
offline training of the models and online AF predictions.

A framework of the method is provided in Fig. 1, where the
steps in offline training of the models are shown in blue and the
steps in online AF prediction are shown in green. Specifically,
the offline stage involves the preprocessing of alarm data and
training of an ensemble of word2vec models using a cluster
of similar AFs; whereas, in the online stage, the ongoing AF
is analyzed using trained models to predict the most probable

A&E Data

Pre-processing of A&E Data

Ensemble of N 
Word2vec Models

Alarm Flood Extraction

Word2vec Model Training

Cluster-1

Clusters of similar AF sequences

Prediction of 
Contextual Alarms

Scoring System

Alarm Flood Classification

Ongoing 
Alarm Flood 

Cluster-2 Cluster-N

Offline Stage

Online Stage

Fig. 1: Framework of the proposed method, consisting of two
main stages, namely, offline training of the model (highlighted
in blue) and online alarm flood classification (highlighted in
green). The algorithm classifies the ongoing alarm flood F as
belonging to a known fault category Λm.

alarm and a scoring system is introduced to classify the AF
into specific fault categories.

A. Offline Stage - I: Data Pre-processing & AF Extraction

In the offline stage, an ensemble of word2vec models is
trained using alarm floods sequences extracted from historical
Alarm & Event (A&E) data, where the calculations are per-
formed in three steps, including the pre-processing of A&E
data, alarm flood extraction, and model training.

1) Pre-processing of A&E Data: To systematically extract
the contextual relationships between alarms, the historical data
is pre-processed to obtain an ensemble of word2vec models.
An A&E log is a chronologically ordered series of alarm
events in textual form, where an alarm event is defined as

E = (a,m, t), (1)
where a ∈ A is the alarm, m = {0, 1} is the status of
the alarm at time t ∈ T . Here, A represents the set of
alarms configured in the plant, and T is the time duration
for which the A&E data was collected. Furthermore, an alarm
a is characterized by an alarm tag and identifier as a = (α, ν),
where α is the alarm tag, which contains the information about
the area and component to which the alarm is configured, and
ν provides the details about the type of alarm. For instance,
the alarm “PI100.LL” is a combination of the alarm tag
PI100 (indicating Pressure Indicator belonging to control loop
number 100) and the identifier “LL” (indicating an analog
alarm LowLow). Thereafter, chattering alarms are identified
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and discarded because such alarms are typically a result of
noise or disturbance in the process.

2) Alarm Flood Extraction: An A&E log may contain
sequences of alarms due to multiple process faults and dis-
turbances. As mentioned in Section I, the alarm sequences
are considered to be similar if they originated from the same
fault category. Therefore, labeled clusters of similar alarm
sequences, with pre-identified fault categories are taken as the
input to the offline stage. Define an alarm sequence from the
A&E log as

S = ⟨E1, E2, · · · , E|S|⟩, (2)

where, Ek represents the kth alarm event, k = 1, 2, · · · |S|; the
operator ⟨·⟩ indicates a sequence; and the operator | · | gives
the size of the alarm sequence. If the analysis focuses only on
the alarms triggered (m = 1) and the time of occurrence is
not considered, the alarm sequence can be represented as

S = ⟨a1, a2, · · · , a|S|⟩, (3)
where S is in the form of strings (textual data). Consider the
A&E log consists of alarm sequences from N fault categories,
Λ = {Λ1,Λ2, · · · ,ΛN}, and it is assumed that there exists at
least one alarm sequence in each fault category, Λi. The alarm
sequences associated with Λi can be grouped into a cluster Ci

Ci = {Si,1,Si,2, · · · ,Si,|Ci|}, (4)
where, Si,j represents the jth alarm sequence in the cluster
associated with the Λi. Here, |Ci| ≥ 1 or Ci ̸= ∅. Finally, the
clusters of alarm sequences from the N fault categories are
collected into a set as

C = {C1, C2, · · · , CN}. (5)
Thereafter, AF sequences are extracted from these clusters

following the definition in [3]. An AF starts when the alarm
rate (namely, the number of alarms within a time window
∆t) exceeds an upper threshold τmax and ends when the
alarm rate drops below a lower threshold τmin. Therefore,
a binary indicator σ is defined to differentiate between alarms
that belong (σ=1) and do not belong (σ=0) to a flood. The
indicator σ of an alarm event Ek can be defined as

σ(Ek) =


1, if Γ ≥ τmax,

1, if Γ ≥ τmin and σ(Ek−1) = 1,

0, if Γ < τmin,

(6)

where Γ denotes the alarm count within tk+∆t. The indicator
σ is used to extract AFs from each alarm sequence. As a result,
clusters of alarm sequences in (5) are converted into clusters
of alarm floods as

Fi,j = {Fi,j,1,Fi,j,2, · · · ,Fi,j,|Fi,j |}, (7)
where, Fi,j,k represents the kth flood extracted from Si,j . It
is worth noting that an alarm sequence S may contain more
than one AF depending on process dynamics. Afterward, the
AF sequences are represented in the form of a list of strings as
in (3), by removing the time stamps associated with the alarms
to be compatible with the requirements of the word2vec model.

B. Offline Stage - II: Preliminaries & Model Training

Some preliminaries of the word2vec algorithm and the
detailed steps for training the model are provided.

0
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0
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a2

a3

ai

aK

p(a1| ai)

p(a2| ai)
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hi,1

Input

(1×K)

Embedding (hhii)

(K × V) (V × K)
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× × Θ

Fig. 2: The framework of Skipgram model, where the input
layer is a K dimensional one-hot encoded representation of
ai, the embedding layer hi is the vector representation of ai,
and the output layer is the conditional probability p(ak|ai),
k = 1, 2, · · · ,K. Win and Wout are the internal weights of
the model. Θ is the softmax transformation function.

1) Word2vec Algorithm: The proposed work utilizes a
widely used NLP model “word2vec”, that transforms words
in a text into fixed-length vectors (word embeddings) cap-
turing their semantic and syntactic relationships in a high-
dimensional vector space [17]. In semantic analysis, this model
is used to predict contextual words in textual data, where
the context of a word in a sentence is described by the
words preceding and succeeding it. In this study, we consider
that a cluster of similar AFs is analogous to a collection
of topic-specific texts, where alarms are analogous to the
words composing sentences. Therefore, the word2vec model
is adapted to suit alarm flood applications to predict context
alarms, where the context of an alarm in an alarm sequence
is defined by the abnormal situation that triggered the alarm
(namely, the fault category). Specifically, the context of an
alarm ai in an alarm sequence S is featured by the alarms
occurring within a short temporal vicinity of ai or in other
words, the alarms preceding and succeeding ai. This study
uses the Skipgram architecture of the model to predict context
alarms based on an input set of alarms, defined as target
alarms [17]. Fig. 2 provides the framework of the Skipgram
architecture, where the input to the model is a one-hot encoded
representation of an alarm ai, and the model is a single-
layer Neural Network that converts the target alarm ai into
a vector hi of cardinality V and generates the output layer
of conditional probabilities p(ak|ai), k = 1, 2, · · · ,K. Here,
K = |A|, the number of unique alarms configured in the
system. Thereafter, the model is trained to be used for online
alarm flood classification.

2) Model Training: Each cluster of AFs is utilized to
train a word2vec model as in [17], such that each model
learns contextual similarities between alarms based on the fault
category associated with the AF. The model is trained using
the cluster of AFs to obtain two matrices Win,Wout ∈ RK×V,
representing internal weights. Here, K is the number of unique
alarms configured and V is a user-defined parameter represent-
ing the cardinality of the word embedding. Each row of Win

contains word embedding of a specific alarm, whereas rows
of Wout represent contextual information between alarms.
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Fig. 3: An example of target and context alarms in a flood.
Here, ai represents the ith alarm, Fi,j,k represents the incom-
ing alarm flood, and ω is the user-defined parameter (window
size) to determine the number of context alarms.

Thereafter, Win and Wout are tuned to learn the contextual
relationship between alarms.

One model is trained on each AF cluster, where it iterates
over the alarms in each flood sequence. The concept of
“context alarm” and “target alarm” is better explained using
Fig. 3, where an example of an alarm sequence of an ongoing
AF is analyzed. As the model iterates over each alarm in the
flood, the alarm currently being analyzed (ai) is referred to as
the “target alarm” and the alarms in the vicinity of ai, namely,
ai−2, ai−1, ai+1, and ai+2, are referred to as the “context
alarms”. The user-specified parameter ω ∈ N+ (window size)
determines the number of “context alarms”. The conditional
probability of an alarm ak being a context alarm for the target
alarm ai is obtained from the output yp as the softmax function
transformation Θ(·) of hi · WT

out given by [18],

yp = Θ
(
hi · WT

out

)
=


p(a1 | ai)
p(a2 | ai)

· · ·
p(aK | ai)

 , (8)

where, yp is a vector of dimension K, and satisfies that∑K
k=1 p(ak|ai) = 1. Afterward, the weights θ = [Win,Wout]

of the model are tuned to minimize the prediction error
(yp−ytrue). Here, ytrue is a one-hot encoded vector, with the
conditional probability of the true context alarm, p(ak | ai) =
1, and of the rest alarms is 0. The internal parameters of the
model are tuned to maximize the probability of predicting all
the correct context alarms based on

θ̂ = argmin
θ

(
−log

∏
c

p(ac | ai)

)
, (9)

where θ̂ represents the updated model weights, and c indicates
true context alarms. One word2vec model is trained for each
cluster Ci of similar AF, where the model embeds the contex-
tual relationships between alarms in a specific fault, resulting
in an ensemble of N models, Φ = {Φ1,Φ2, · · · ,ΦN}.
Therefore, it can be seen that a cluster Ci would be associated
with a fault Λi and a word2vec model Φi.

C. Online Stage: AF Prediction and Classification

In the online stage, the alarms in an ongoing AF are fed
to the ensemble of word2vec models obtained in the offline
stage. Each of the alarms is considered a target alarm and the
most probable context alarm is determined as the alarm with

Algorithm 1: Online AF Prediction and Classification
Input: F , Λ, Φ, ωt, n
Output: Λout

1 S = {s1 = 0, s2 = 0, · · · , s|Φ| = 0} ▷ Initialize scores

2 for ai in F do
3 Obtain the index i of ai in F
4 for Φj in Φ do
5 Find the index j of Φj in Φ
6 Calculate yp for ai from Φj by (8)
7 Obtain yp,i the top n predictions by (12)
8 Obtain the corresponding alarms µi by (13)
9 end

10 for apast in F [i− ωt : i] do
11 if apast ∈ µi then
12 sj = sj + 1 ▷ Increase the score
13 end

14 Calculate yp for apast from Φj by (8)
15 Obtain yp,past for apast by (12)
16 Obtain µpast by (13)
17 if ai in µpast then
18 sj = sj + 1 ▷ Increase the score
19 end
20 end
21 end
22 Find the index k of the highest score in S
23 The fault category Λout of F is the kth element of Λ
24 return Λout

the highest conditional probability in yp. Consider the ongoing
AF F ,

F = {a1, a2, ..., a|F|}, (10)

where, ai represents the ith alarm in F , i = 1, 2, · · · , |F|. The
N ensemble models predict the most probable context alarms
based on contextual relationships captured in the offline stage.
As the AF proceeds, the predictions are updated as

Yp = [yp,1, yp,2, · · · , yp,|F|], (11)
where, Yp is the matrix of predictions, obtained by the
concatenation of rank-ordered predictions yp,i, and i =
1, 2, · · · , |F|. Specifically, elements in yp,i are rearranged
(sorted) in descending order before concatenation. Thus, each
model returns a matrix of predictions Yp ∈ RK×|F|, where
each column represents the predictions corresponding to alarm
ai ∈ F . The top n predictions are selected from Yp as

Yp,n = [yp,1, yp,2, · · · , yp,|F|] = [π1, π2, · · · , πn]
T , (12)

where, yp,i is the ith column of Yp,n, and π1 (πn) is the first
(nth) row in Yp, and it satisfies that π1,i ≥ π2,i ≥ · · · ≥ πK,i,
where πi,j represents the (i, j)th value of Yp. Thereafter, the
alarms corresponding to each prediction are obtained in the
form of a matrix as

M = [µ1, µ2, · · · , µ|F|] = {ai,j |ai,j ≻ πi,j , a ∈ A}, (13)
where M is the matrix of alarms, µi is the ith column
of M, and the operator ≻ indicates that the alarm ai,j is
corresponding to the prediction value πi,j . Thus, the output of
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the model can be interpreted as a list of alarms rank-ordered
based on their likelihood of occurrence as a context alarm. In
other words, the first column of Yp,n represents the n most
probable context alarms of a1 ∈ F .

Furthermore, an incremental scoring system is introduced
to reward models for generating correct predictions. At the
beginning of the predictions, the scores are initialized to 0
and are incremented by one unit for each correct prediction.
The algorithm requires two user-specified parameters, namely,
ωt and n. Here, ωt ∈ N+ determines the number of context
alarms to be considered in the ongoing AF sequence. It has to
be noted that ωt has the same purpose as that of ω utilized in
the model training, as described in Section II-B, and it is not
necessary that ωt = ω. The parameter n ∈ N+ determines the
number of top predictions to be selected in (12) to identify
the most similar AF sequence.

If an AF is triggered due to a fault Λi, the model Φi ∈ Φ
trained on the cluster Ci corresponding to Λi would give the
most accurate predictions and hence would result in the highest
number of similar context alarms. This principle is utilized to
classify the ongoing AF, i.e., the AF is classified into the fault
category of the model with the highest score. Algorithm 1
summarizes the online AF Prediction and Classification.

III. CASE STUDY

The applicability and effectiveness of the proposed method
are demonstrated through a case study using simulated alarm
data from the benchmark Tennessee Eastman Process (TEP).

A. Description of the Simulated Data

The closed-loop simulator of the benchmark Tennessee
Eastman Process, developed by Bathelt et al. [19] was utilized
in this study. The alarm data was prepared following the proce-
dure in [12]. Specifically, seven faults Λ = {Λ1,Λ2, · · · ,Λ7}
were simulated by introducing disturbances as step inputs or
valve stiction. Four types of alarms were configured on 52 pro-
cess variables (PV), namely, “PV.HH” (High-High), “PV.H”
(High), “PV.L” (Low), and “PV.LL” (Low-Low), resulting
in 208 unique alarms. For each fault category, a set of 40
independent simulations were performed, where the duration
of each simulation was 10h and the faults were introduced
after 2h of steady-state operation. The chattering alarms were
identified and discarded. Alarm floods were extracted using
(6), and 7 clusters with 40 AF sequences each were obtained.
Here, the alarm sequences generated by a specific fault were
regarded as a cluster of similar alarm sequences. The number
of AF sequences in each fault category is as follows: |C1| = 41,
|C2| = 71, |C3| = 25, |C4| = 1, |C5| = 42, |C6| = 66,
and |C7| = 40. Due to insufficient AF sequences, cluster C4
associated with fault Λ4 was excluded from the analysis.

Thereafter, an ensemble of 6 word2vec models was trained
using a Leave-one-out cross-validation approach. Specifically,
the first 20 flood sequences of each fault category were
selected to evaluate the performance of the models. Therefore,
20 independent simulations have been performed such that in
each simulation, models were trained on all the AF sequences

0 100 200 300 400

Time [min]

Λ1

Λ2

Λ3

Λ4

Λ5

Λ6

Λ7

F
au

lt
ca

te
go

ry

Correct

Wrong

a) True category → Λ1

0 50 100 150

Time [min]

Λ1

Λ2

Λ3

Λ4

Λ5

Λ6

Λ7

F
au

lt
ca

te
go

ry

Correct

Wrong

b) True category → Λ2

Fig. 4: Online classification of two floods that originated from
fault category (a) Λ1 and (b) Λ2. The vertical lines represent
the result of the classification, where the correct (incorrect)
predictions are shown in green (blue).

except one (test sequence) and the last AF sequence was used
to evaluate the model performance and tuning. Subsequently,
the online alarm flood classification is performed using this
ensemble of word2vec models.

B. Results and Discussion

The models were trained using the open-source Python
library Gensim [20] v4.2.0 running on Python v3.9.12. For
the offline stage, the parameters used were ω = 5, V = 15,
and the number of epochs = 100, 000, which indicates the
number of iterations made by the model over the dataset. For
the online predictions and classification, the parameters used
were ωt = 3 and n = 10. Fig. 4 provides an example of the
output from the online prediction and classification stage. The
vertical lines represent the result of the classification, where
the correct (incorrect) predictions are shown in green (blue).
Fig. 4(a) shows the accurate prediction and classification of
the AF sequence to be associated with fault Λ1, without any
significant delay. However, the AF sequence in Fig. 4(b) was
classified into fault Λ2 after about 70 minutes.

To provide a comprehensive overview of the model per-
formance, the class-wise accuracy has been calculated by
considering all predictions obtained for each fault category.
In addition, to evaluate if the model was able to accurately
classify the AF sequence using the complete AF sequence, the
class-wise accuracy was determined by considering only the
last prediction (i.e., the last alarm of a flood sequence). These
performance metrics of the model using class-wise accuracy
are summarized in Table I. It can be seen that the models
achieve prediction accuracy above 0.85 (all predictions) and
0.90 (last predictions), respectively, in the identification of
fault categories Λ1, Λ3, and Λ5. The model performance is
satisfactory for category Λ6, which shows an accuracy of 0.77
considering all the predictions. However, the identification of
fault category Λ2 is particularly challenging (accuracy = 0.37).

Furthermore, the results indicate that the model performance
increases as the flood proceeds because the accuracy based
on the last prediction is always greater than the accuracy
based on all predictions. This behavior is especially evident
for categories Λ2 and Λ3 and it may indicate that most errors
are made during the early stages of AFs (see Fig. 4.b). This

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on December 22,2023 at 13:44:44 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Class-wise accuracy

Accuracy Type
Fault Categories Mean

AccuracyΛ1 Λ2 Λ3 Λ5 Λ6 Λ7

All predictions 0.98 0.37 0.89 1.0 0.77 0.001 0.67

Last prediction 1.0 0.55 0.9 1.0 0.85 0.00 0.72

could be explained by the lack of sufficient information at the
beginning of the AF. Finally, it is to be noted that the models
could not classify the sequences associated with the fault
Λ7 (accuracy=0.01), and those sequences (belonging to Λ7)
were always incorrectly classified into the fault Λ2. Further
investigation using process knowledge is recommended to
identify the reason for such a performance with fault Λ7.

In summary, the performance of the models is satisfactory,
which indicates that the proposed method can support the
operator in the real-time monitoring of AFs. The challenges
with lower accuracy values for two fault categories could be
attributed to the fact that model hyper-parameters were chosen
based on the best practices and were not tuned for this specific
process or application. The model performance is expected
to improve from an exhaustive hyper-parameter tuning using
a grid-search algorithm. Further research is recommended to
improve the detection performance during the early stage
of the AF, employing different NLP algorithms, such as
BERT [21] and XLNET [22].

IV. CONCLUSIONS

This study presents a novel approach for online alarm flood
classification using the word2vec algorithm and historical
A&E data. The method articulates in two phases, namely,
offline training and online predictions. In the offline stage, the
contextual relationships between alarms are captured to train
an ensemble of word2vec models using clusters of labeled
AF sequences. In the online stage, the most probable context
alarms are predicted using the trained ensemble of models,
and the AF is classified into appropriate fault categories using
a scoring system. Unlike other methods in AF classification,
this study utilizes the NLP algorithms not only to learn hidden
relationships between alarms but also to perform the classifi-
cation of ongoing AFs without any classifiers or clustering
algorithms, thereby reducing the computational complexity.
The approach has been tested on simulated alarm data obtained
from the benchmark TEP. The models achieved accuracy in the
range of 0.77 to 1.0 in four out of six categories. Additionally,
the results indicate that the model performance improves as
the AF proceeds, leading to more accurate predictions as more
information is available.

Further research is recommended to optimize the model
parameters and improve the accuracy during the early stage
of AFs. Additional investigation using process knowledge is
required in the two fault categories resulting in poor predic-
tion accuracy. Notwithstanding these limitations, the approach
shows the potential of NLP algorithms in alarm flood analysis
and makes a significant contribution to the novel line of
research using NLP models for online AF classification.
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Municipal Solid Waste Incineration plants must comply with stringent emissions standards. Flue gas treatment 
technologies are essential to ensure compliance and protect human health and the environment. Although the most 
recent research has focused on estimating the risk for human health and comparing different gas treatment 
strategies, few efforts have been directed toward the definition of a thorough methodology for identifying critical 
scenarios and evaluating safety barriers. In this context, this study aims at filling this knowledge gap and 
investigating how traditional hazard identification techniques and novel approaches (data-driven process 
simulation models and Resilience analysis) may be used to (i) identify critical events that may lead to an overrun 
of emission limits, (ii) identify additional safety barriers that may prevent/mitigate such events, (iii) simulate the 
system behavior with and without additional safety barriers, and (iv) quantify the gain in performance and 
resilience and support decision-making. The methodology has been tested on a single-stage Dry Sorbent Injection 
(DSI) system. Actual data from a waste incineration plant have been used to develop the data-driven model. The 
results suggest that the method is particularly suited for evaluating and comparing design alternatives in industrial 
facilities where field tests are impractical or dangerous due to strict regulations and the inherent dangerousness of 
operations. 
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1. Introduction 

The rising global population and growing 
urbanization have driven a continuous rise in 
Municipal Solid Waste generation (Nanda and 
Berruti 2021). In addition, the increased 
awareness of sustainability and environmental 
issues has raised new challenges and concerns 
about waste management (Sabbas et al. 2003). 

Waste incineration is one of the most 
efficient and well-established methods to reduce 
the volume of non-recyclable wastes and recover 
energy from the process (Das et al. 2019). 
However, combustion gases may contain a 
significant amount of acidic compounds (e.g., 
HCl, SO2, HF), which must be removed before 
releasing the gas into the atmosphere. The 
growing concern for climate change and 
environmental degradation has led to the 
adoption of increasingly stringent and ambitious 
emission limits, which eventually pushed the 
industry to the development of more advanced 
and efficient gas treatment systems (Dal Pozzo, 
Guglielmi, et al. 2018). In this context, one of 
the most effective techniques to neutralize acidic 
compounds is the injection of dry alkaline 
sorbents, such as Ca(OH)2 and NaHCO3, into the 
flue gas (Dal Pozzo et al. 2017). 

Although considerable progress has been 
made in the area of pollution control, situations 
may arise where the gas treatment system cannot 
manage unexpected internal or external 
disturbances, which may lead to exceeding the 
emission limits. In these situations, non-
compliant plants may incur fines, loss of 
reputation, and environmental damage. 
Therefore, it is critical to ensure that potential 
sources of deviation are correctly identified, and 
strategies to improve the performance and 
robustness of the system are evaluated and 
eventually implemented. 

Nevertheless, most studies in the literature 
propose methodologies to assess the impact of 
MSWI emissions on human health (Meneses, 
Schuhmacher, and Domingo 2004; Morselli et 
al. 2011; Scungio et al. 2016), or to compare the 
effectiveness and efficiency of different gas 
treatment technologies (Bodénan and Deniard 
2003; Dal Pozzo et al. 2016). To the best of the 

authors' knowledge, no past study presented a 
thorough methodology to identify critical 
scenarios that may lead to an overrun of 
emission limits and evaluate the effectiveness of 
additional safety barriers to prevent or mitigate 
such events. 

In order to fill this knowledge gap, this study 
proposes a novel method based on the 
integration between traditional hazard 
identification approaches and novel techniques, 
such as data-driven models and resilience 
analysis. This new methodology may be used to 
(i) identify critical events that may lead to an 
overrun of emission limits, (ii) identify 
additional safety barriers that may 
prevent/mitigate such events, (iii) simulate the 
system behavior with and without additional 
safety barriers, and (iv) quantify the gain in 
performance and resilience 

The paper is organized into five sections. 
Section 2 describes the reference gas treatment 
system used to support and illustrate the 
analyses. The methodology is described in 
section 3, and the results are presented and 
discussed in section 4. Finally, conclusions are 
drawn in section 5. 

2. Gas Treatment System Description 
In order to support and describe the approach, a 
single-stage dry sorbent injection system is taken 
as a reference. The main equipment, controllers, 
and actuators are shown in Fig. 1. 
 

 
Fig. 1. Process scheme of the gas treatment system 
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Fig. 2. The digital model of the gas treatment plant described in Fig. 1. "DCS" indicates the Distributed Control 
System, and "DTS" indicates the Dry Treatment System.  
 
The combustion gas (stream 1 in Fig. 1) flows 
from the furnace into the in-line reactor (R-01). 
Here, the gas is mixed with the hydrated lime 
(stream 6), and acidic compounds are neutralized 
according to the following reactions: 

 (1) 

 (2) 

 (3) 

Next, the gas stream proceeds through the 
filter (F-01), where the spent sorbent (stream 9) 
is separated from the gas (stream 3). A feedback 
control loop and a PI controller are used to 
manipulate the sorbent flow rate by varying the 
speed of the screw feeder motor drive (M in Fig. 
1). The controlled variable is the acidic 
compound concentration downstream of the bag 
filter (AIC-01). 

The most critical and abundant acidic 
compound is HCl (Dal Pozzo et al. 2016). For 
this reason, this study focuses on HCl emissions, 
and the other compounds are not considered 
further. In Europe, MSWI plants fall under the 
Directive 2010/75/EU of the European 
Parliament and of the Council on industrial 
emissions (European Council 2010), which sets 
the half-hourly average HCl emission limit at 10 
mg/Nm3. That is, the average HCl concentration 
calculated over a 30-minutes time window must 
be lower than 10 mg/Nm3. 

3. Method 
The methodology comprises three steps: (i) 

identification of critical scenarios and additional 
safety measures, (ii) scenarios simulation, and 
(iii) performance and resilience analysis. The 
system in Fig. 1 is used to support the analysis. 
Also, the analyses focus on HCl only. However, 
the methodology has general validity and can be 
promptly adapted and extended to consider 
different chemical compounds and different gas 
treatment systems. 

3.1. Identification of critical scenarios and 
additional safety measures 

Historical plant data was analyzed to identify 
process deviations that caused a significant 
increase in the HCl concentration downstream of 
the gas treatment section. These unwanted 
events, namely "critical scenarios", were further 
examined to identify their causes and 
consequences. As a result, a list of critical 
scenarios was obtained. 

Later, a semi-structured interview was 
conducted with the plant manager and other 
experienced engineers working in the same 
sector. The objective of the interview was 
twofold. Firstly, to exclude improbable or less 
critical scenarios. Secondly, to discuss and 
propose a list of additional safety measures (e.g., 
safety barriers) that may prevent or mitigate the 
effects of such critical scenarios. 
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As a result, a list of credible critical scenarios 
and recommendations for additional safety 
measures is obtained. 

3.2. Scenario simulation 
A digital model of the gas treatment section 

was built to simulate (i) the system behavior 
during critical scenarios and (ii) the effect of the 
additional safety measures. One of the major 
advantages of this approach is the opportunity to 
evaluate different process configurations without 
the need for field tests, which are impractical due 
to strict regulations.  

The plant model depicted in Fig. 2 was 
developed using Matlab and Simulink, and 
comprises three main blocks: 

(i) Distributed Control System (DCS); 
(ii) Screw feeder; 

(iii) Dry Treatment System (DTS). 

The block "DCS" is designed to mimic the 
plant control logic. It takes as input the HCl 
concentration in the gas stream entering the 
system and the HCl concentration in the stream 
leaving the treatment section. A PI controller 
compares the two measures and delivers a signal 
to the "Screw Feeder block", which calculates 
the corresponding sorbent mass flow rate. 

The block "DTS" represents the core of the 
model. It converts the molar flow rates of HCl 
and sorbent entering the system into the HCl 
concentration in the gas leaving the system. In 
other words, the block mimics the neutralization 
reaction described by Eq. (1). 

The modeling of the neutralization process 
through first principles would pose significant 
difficulties because of the complexity of the 
phenomena involved (e.g., convection, diffusion 
in a solid porous media, reaction kinetics, 
thermodynamic equilibria) and other external 
and internal factors that are difficult to control 
and monitor (e.g., thickness and reactivity of the 
filter cake, the composition of the flue gas, 
changes in the sorbent structure) (Giacomo 
Antonioni et al. 2016; Dal Pozzo, Moricone, et 
al. 2018).  

This study proposes a data-driven model to 
derive the process dynamic directly from 
historical data and avoid the limitations of a first 
principle approach. Specifically, the HCl molar 

flow rate in the outlet flue gas  is 
calculated as follows: 

 

 

Where: 

�  = outlet HCl molar flow rate 
at time ; 

� ) = inlet HCl molar flow rate at 
time ; 

�  = HCl conversion at time ; 
�  = model parameters. 

The conversion  at a given time instant t is 
calculated according to the empirical model 
proposed by Antonioni et al. (2011): 

 

Where  represents the ratio between the 
sorbent flow rate injected at time  and the 
stoichiometric sorbent demand required to 
neutralize the HCl entering the system at time t. 
The exponent n is an adjustable parameter 
obtained from fitting actual plant data. In this 
study, n = 5. 

The model calculates  as the sum 
of two contributions: autoregressive and 
exogenous. The first contribution takes into 
account the value of  up to three 
timesteps in the past. The second summation 
takes into account the fraction of unreacted 

 at the current time and up to two 
timesteps in the past. The regression parameters 

 and  can be learned from historical data by, 
e.g., Least Squares minimization; they represent 
the weights of the different contributions in Eq. 
(4). In this study, these parameters were set 
manually for demonstration purposes. Equal 
weights were assigned to the autoregressive and 
exogenous parts. Specifically, the weights are: 
a1=b0=0.3, a2=b1=0.15, and a3=b2= 0.05. 
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3.3. Performance and resilience analysis 
The results of the simulations were used to 

calculate performance and resilience metrics,  
which ultimately allow the evaluation of the 
safety measures.  

In this study, the resilience of the gas 
treatment system may be interpreted as the 
capacity to perform its purpose in a variety of 
adverse conditions. Resilience analysis was used 
because it represents an interesting attempt to go 
beyond the canonical safety approach – which 
focuses primarily on failures and probabilities of 
failures – and evaluate the system based on the 
ability to "function under both expected and 
unexpected conditions rather than just to avoid 
failures" (Hollnagel et al. 2010). 

Over the past two decades, several metrics 
have been proposed to quantify the resilience of 
engineered systems (Yodo and Wang 2016). 
Many resilience metrics rely on a time-
dependent function representing the system 
performance (Hosseini, Barker, and Ramirez-
Marquez 2016). The typical trend of the 
performance metric φ(t) after a disruptive event e 
is represented in Fig. 3.  

 

 
Fig. 3. Time trend of system performance after a 
disruptive event. “RL” indicates the Resilience Loss 
(Eq. (7)), te and tf indicate the event occurrence and 
the recovery time. 

 
is 

formulated as follows: 

 

Where  is the half-hourly HCl 
concentration at time ,  = 10 mg/Nm3 is the 
law limit, and 7.5 mg/Nm3 is the controller 
setpoint increased by 10 %. In words,  = 1 if 

stays within ±10 % of the controller 
setpoint. When  deviates more, the 
system is degrading and  decreases. If 

 increase further and exceeds the law 
limit, the system has failed to fulfil its purpose, 
and therefore  = 0. 

The Resilience Loss metric (RL) is used to 
quantify the (non)resilience of the system 
(Bruneau et al. 2003). RL represents the loss in 
performance after event e. Geometrically, it can 
be interpreted as the area between the curves φ =  
1 and φ = φ(t) – i.e., the shaded area in Fig. 3; 
that is: 

 

Where  and  indicate the time occurrence of 
event e and the recovery time, as indicated in 
Fig. 3.  

One RL is calculated for each simulated 
scenario and additional safety measure. The 
comparison between RL measures permits to 
quantify the effectiveness of additional safety 
measures. Intuitively, design solutions that 
exhibit smaller Resilience Loss are preferred. 

4. Results and Discussion 
The analysis of past events and the interview 

with the plant manager highlighted that an abrupt 
increase in the HCl concentration upstream of 
the treatment section is one of the most probable 
critical events. This scenario could be caused by, 
e.g., the delivery of a significant amount of high-
chloride waste. In addition, the installation of a 
furnace sorbent injection system was proposed 
as an additional safety measure that may prevent 
the critical scenario from escalating and 
exceeding the HCl emission limits. 

The functioning of the furnace sorbent 
injection was described by Biganzoli et al. 
(2015; 2015). In essence, this technology 
involves the injection of dolomitic powder 
directly into the furnace. It has been 
demonstrated that the system effectively reduces 
the acidic compound content and decreases the 
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workload for the subsequent gas treatment 
system (Dal Pozzo et al. 2020). In this study, 
furnace sorbent injection is proposed as an 
additional safety barrier that activates when a 
peak in the HCl concentration is detected. 

The digital model of the plant was modified 
in order to account for the effect of the furnace 
sorbent injection system. Firstly, the behavior of 
the system without additional safety barriers was 
simulated. The HCl peak was modeled as a pulse 
disturbance of duration 15 minutes and 
amplitude equal to 1, 3, 5.5, and 6 times the 
normal HCl concentration. Secondly, a new set 
of simulations was performed considering the 
response of the additional safety barrier. To this 
end, the furnace sorbent injection system was 
activated 2 minutes after the detection of the 
peak and deactivated when the peak ended. 
Different dolomitic sorbent feed rates were 
simulated. Specifically, the ratio (SR) between 
the actual sorbent flow rate and the 
stoichiometric demand was set to 1, 1.7, and 2.5. 

Fig. 4 and Fig. 5 show the most significant 
results obtained from the performance analysis. 
Fig. 4 displays the performance measure 
calculated for an HCl peak equal to 3 times the 
normal HCl concentration. Fig. 5 refers to a peak 
amplitude equal to 5.5 times the normal 
concentration. In each figure, the system 
performance obtained without safety barrier (i.e., 
SR = 0) and with the barrier (SR = 2.5) is 
displayed. 

  

 
Fig. 4. Performance analysis for peak amplitude 3x. 

 
Fig. 5. Performance analysis for peak amplitude 5.5x. 
 

Fig. 4 suggests that the system can manage 
HCl peaks equal to 3 times the normal 
concentration levels. In fact, the performance 
metric is always larger than zero, indicating that 
the half-hourly HCl concentration is always 
below the law limit. However, the system 
performance shows a slight degradation, 
especially when no additional safety barrier is 
installed (blue curve), which indicates that the 
disturbance can cause a significant deviation of 
the outlet HCl. The use of furnace sorbent 
injection with SR = 2.5 (orange curve) reduces 
the maximum degradation of the system and 
ensures faster recovery. 

Fig. 5 reveals that a peak of 5.5 times the 
normal HCl concentration causes the complete 
degradation of the system if no additional safety 
barrier is installed (blue curve). Specifically, the 
performance degrades rapidly after the event and 
eventually reaches 0 after 6 minutes, indicating 
that the emission limit has been crossed. On the 
other hand, the performance of the system with 
furnace sorbent injection (orange curve) is 
always larger than zero, indicating that the 
additional safety barrier would have avoided 
crossing law limits and ensured faster recovery. 

Performance curves were used to calculate 
the resilience loss according to Eq. (7). Table 1 
presents the results obtained from the RL 
analysis. 
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Table 1. Resilience Loss for different dolomitic 
sorbent feed rates (SR). Parentheses indicate the gain 
in RL with respect to the simulation without the 
additional safety barrier. 

RS RL (3x) RL (5.5x) 

0 196 1166 
1 187 (- 5 %) 1081.6 (- 7 %) 

1.7 170 (- 13 %) 943.4 (- 19 %) 

2.5 131 (- 33 %) 714.2 (- 39 %) 

 
The table above shows resilience losses for the 
two critical scenarios considered (i.e., HCl peak 
equal to 3x and 5.5x). Each row represents a 
specific feed rate of dolomitic sorbent in the 
furnace injection system, from 0 (no injection) to 
2.5. The data suggest that the furnace injection 
system decreases the resilience loss in every 
scenario. Therefore, the additional safety barrier 
can effectively relieve the effects of an abrupt 
increase in the inlet HCl concentration. As 
expected, the best results are obtained with 
larger dolomitic sorbent feed rates – i.e., 2.5 
times the stoichiometric demand. Moreover, the 
improvements in system resilience are more than 
linear with increasing SR. 

The results suggest that the proposed 
methodology can be used to (i) identify critical 
scenarios and additional safety measures and (ii) 
evaluate and compare the effectiveness of 
additional safety barriers without the need for 
field tests. 

In spite of the promising results, it is worth 
acknowledging a few limitations. Firstly, only 
one safety barrier has been explicitly modeled. 
Secondly, the data-driven model needs to be 
further refined to ensure high accuracy for long 
simulation times. Thirdly, the performance 
measure proposed in this study does not consider 
the cost associated with installing and operating 
additional safety barriers and different design 
configurations. Finally, it must be acknowledged 
that the current methodology does not consider 
the possible side effects of installing and 
maintaining an additional barrier, such as the 
increase in system complexity. Further studies 
need to be carried out to address these issues and 
take into account economic aspects (e.g., the 
purchasing and installation of the barrier, the 
cost for the dolomitic sorbent, maintenance 

costs) in order to provide a more comprehensive 
framework for the evaluation and comparison of 
safety barriers. 

5. Conclusions 
This study proposes a novel approach based 

on traditional hazard identification approaches, 
data-driven models, and resilience analysis to 
enhance environmental risk management in the 
Waste to Energy industry. The attention has been 
directed toward the flue gas treatment section of 
municipal waste incineration plants. HCl 
emissions have been considered as a critical 
parameter. The results show that the proposed 
method enables (i) the identification of critical 
scenarios and additional safety measures, and (ii) 
qualitative and quantitative comparison between 
different design alternatives. The effectiveness of 
different safety barriers may be compared, and 
the attention of safety practitioners could be 
directed towards the most effective 
configurations. The proposed methodology 
appears particularly suited for evaluating and 
comparing design alternatives in industrial 
facilities where field tests are impractical or 
dangerous due to strict regulations and the 
inherent dangerousness of operations 
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A B S T R A C T   

The failure of emission control systems in industrial processes undergoing emission regulations can cause severe 
harm to the environment. In this context, safety engineering principles can be applied to analyze process de
viations and identify suitable safety barriers to mitigate harmful emissions during critical events. However, the 
selection, design, and assessment of proper safety barriers may be complex due to several contingencies such as 
the inability to perform extensive field tests on systems under strict emission regulations. In this study, an 
approach is proposed to couple conventional hazard identification techniques with a digital model of a flue gas 
treatment system to support the identification and performance assessment of safety barriers for emission con
trol. Resilience analysis is used to evaluate the behavior of the most relevant safety barrier options, selected 
through a screening with conventional hazard identification tools. Barriers are simulated using the digital model 
of the system, gathering key information for their design and evaluation, and overcoming the limitations to field 
tests at the real plant. The methodology is illustrated with reference to acid gas removal in waste-to-energy 
facilities, a relevant example of an emission control system that is typically exposed to significant process 
deviations.   

1. Introduction 

Several industrial processes have the potential to cause significant 
harm to the environment if their routine emissions to air and water are 
not minimized thanks to the application of proper treatment systems. In 
analogy with the definition of safety-critical systems in the field of safety 
engineering (Daintith and Wright, 2008; Knight, 2002; Maurya and 
Kumar, 2020), these systems can be defined environmentally critical 
systems, as their failure or malfunction may result in an unacceptable 
environmental damage. 

Environmentally critical systems in the field of emission reduction 
need to exhibit: i) high performance, often corresponding to > 90% 
pollutant removal efficiency (e.g. see the Best Available Techniques 
reference documents of the European IPPC Bureau (European Com
mission, 2020)), and ii) high availability, according to the continuous 
operation of the plants on which they are installed. 

Flue gas cleaning in waste-to-energy (WtE) plants represents a rele
vant example of such systems. WtE facilities are subject to some of the 
more stringent emission standards among industrial sectors (Dal Pozzo 
et al., 2023c; Van Caneghem et al., 2019) for a variety of pollutants, 
including nitrogen oxides (NOX), acid pollutants such as hydrogen 
chloride (HCl) and sulfur dioxide (SO2), and trace elements such as 
mercury (Hg). In Europe continuous emission measurement at stack is 
prescribed for these pollutants (European Commission, 2020). There
fore, WtE flue gas treatment (FGT) systems have to meet low emission 
levels in continuous operation, typically in presence of high fluctuations 
of the pollutant concentrations in the raw flue gas, as a consequence of 
the wide variety over time of the composition of the waste fed to the 
plant (Dal Pozzo et al., 2016). 

In this context, the system is required to perform adequately during 
normal operating conditions and/or in the presence of external and in
ternal disturbances. Actually, deviations caused by sudden variations in 
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the composition of the waste feed or by malfunctions in FGT components 
can lead to a loss of control of pollutant emissions, which may result in 
exceeding the emission limit values (ELV). Therefore, it is critical to 
ensure that FGT systems are robust against unwanted events, thus 
safeguarding WtE systems with respect to the risk of environmental 
damage deriving from ELVs exceedance. However, specific methodolo
gies aimed at assessing and managing such risk are still missing. 

The chemical and process industry has developed and consolidated 
risk management techniques based on extensive experience in managing 
hazardous substances and safety-critical operating conditions (Khan 
et al., 2015). Many of these techniques have become routine in risk 
management and have been included in standards and guidelines 
(Delvosalle et al., 2006; International Organization for Standardization, 
2019, 2018). Nevertheless, these methods are not specifically conceived 
to evaluate and improve environmentally critical systems, and their 
application to such systems is not straightforward. As an example, the 
conventional approach towards the analysis and assessment of the 
environmental performance of FGT systems in current industrial prac
tice is highly empirical and is based on extensive test run campaigns at 
the plant, which have a critical limitation in the aforementioned need 
for continuous compliance with strict emission limits. Thus, an alter
native perspective is required to address the systematic assessment of 
critical events that may undermine the performance of FGT in WtE 
systems. 

Approaching the study of environmentally critical systems from a 
process safety standpoint, the loss of control of pollutant emissions may 
be considered a top event leading to the exceedance of the ELVs, caused 
by a set of initiating events (e.g., failures of technical systems). A Bow- 
Tie diagram may be used to represent such critical scenarios (CCPS and 
Energy Institute, 2018). Bow-tie diagrams are graphical tools including 
the causes (i.e., initiating events, on the left side of the diagram), the top 
event (in the center), and the consequences (on the right side of the 
diagram) of critical scenarios. Physical and non-physical measures 
intended to mitigate, prevent, or control such critical scenarios may be 
considered safety barriers (Sklet, 2006) and are usually represented in 
Bow-Tie Diagrams. A schematic representation of a Bow-Tie diagram is 
shown in Fig. 1. 

Safety barriers play a key role in ensuring the safety of process op
erations in safety-critical systems (Liu, 2020), thus may have an 
important role as well in the safe operation of environmentally critical 
systems. Several studies address the role and performance assessment of 
safety barriers in safety-critical systems (e.g. see Landucci et al., 2015 
and Misuri et al., 2021). However, to the best of the authors’ knowledge, 
there is no attempt to specifically address the estimation of safety barrier 
performance in environmentally critical systems, such as FGT plants. 
Actually, the analysis of the relevant literature, further discussed in the 
following (see Section 2), highlights two substantial gaps concerning 
safety barrier evaluation in environmentally critical systems. Firstly, 

there is little (if any) use of well-established risk management tech
niques derived from other industrial sectors with extensive experience in 
risk management (e.g., the chemical and process industry). Secondly, 
the advent of digitalization and digital technologies allows the devel
opment of dynamic and inherently updatable models that may be used 
for assessing the performance of safety barriers. Yet, such models are 
hardly used in the field of environmental risk management. 

In order to address the gaps evidenced above, the present study aims 
at presenting a specific innovative methodology combining conven
tional hazard identification techniques with a digital model of a FGT 
process in order to identify, simulate, and evaluate safety barriers that 
may prevent or mitigate excessive emissions in case of process de
viations. In the proposed methodology, hazard identification ap
proaches are used to screen possible process deviations and identify the 
most critical scenarios, which are then simulated using the digital model 
of the system with or without the application of safety barriers consid
ered for installation. Resilience analysis is then performed to obtain a 
dynamic measure of the barrier performance under different conditions 
and barrier configurations. The methodology is demonstrated by its 
application to a representative case study, addressing the acid gas 
removal in a WtE facility. Although the detailed procedure required for 
the application of some steps of the methodology is governed by the 
specific features of the case-study considered, the overall approach and 
the structure of the methodology have a general validity, allowing its 
application to other environmentally critical systems, aiming at the 
assessment of the effectiveness of safety barriers and the performance 
tuning of scalable safety barriers. 

The remainder of this paper is organized as follows. Section 2 out
lines the state of the art of safety barrier performance assessment in 
relation to dynamic risk assessment (DRA) and resilience engineering, 
which is the starting point of the developed methodology. Section 3 
presents the innovative methodology developed, in combination with its 
application to the case-study. The reference FGT facility used to test the 
approach is described in Section 4. Results are presented in Section 5 
and discussed in Section 6, which also highlights the limitations of the 
study and provides suggestions for future developments. Finally, con
clusions are drawn in Section 7. 

2. Safety barrier assessment in the perspective of DRA and 
resilience engineering 

Regardless of the specific field of application, most contributions 
estimate the performance of a safety barrier based on a set of indicators, 
such as barrier effectiveness and availability (Sklet, 2006). The effec
tiveness of a safety barrier represents its “ability to perform a safety 
function for a duration, in a non-degraded mode and in specified con
ditions” (De Dianous et al., 2004), while the availability represents the 
ability to perform its function while needed. Several studies focused on 

Fig. 1. A Bow-Tie diagram.  
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estimating the performance of safety barriers (Liu, 2020). For example, 
Landucci et al. (2015) proposed a method for the quantification of the 
effectiveness and availability of safety barriers during domino scenarios 
triggered by fire. The study was further refined by Bucelli et al. (2018) to 
consider the influence of harsh climate conditions in offshore facilities. 
Misuri et al. (2021) investigated the impact of Natural Hazards Trig
gering Technological Accidents (Natech) on barrier performance and 
proposed a method to modify the Probability of Failure on Demand of 
safety barriers to account for the effect of natural disasters. However, 
formal techniques treat safety barriers as static objects, with constant 
effectiveness and availability values. Such a static perspective cannot 
capture the dynamic features of the processes involved (e.g., degrada
tion, aging, overlooked hazards). In fact, most canonical methods in risk 
management are not designed to be easily updatable (Paltrinieri and 
Khan, 2020), which implies their inability to reflect the evolving 
real-world risk. The inherently static nature of conventional Risk 
Assessment methods has been often criticized by academics and prac
titioners, and is of specific concern in some environmentally critical 
systems, as WtE, which are inherently exposed to relevant modifications 
of operating conditions in time. Moreover, the advancements in indus
trial automation and robotics have increased the complexity and inter
connectedness of industrial plants (Villa et al., 2016). In an attempt to 
overcome these limitations, methods for safety barrier assessment have 
been directed towards the so-called Dynamic Risk Analysis (DRA), 
which deals with the development of methods that can provide the 
update of risk figures considering the variations in the performance of 
safety-critical systems, such as the control and alarm systems, safety 
barriers, and maintenance activities (Khan et al., 2016). In the context of 
DRA, safety barriers are no longer considered static units but dynamic 
entities, that interact with and are affected by a dynamic environment, 
and whose performance varies over time due to changes in internal and 
external conditions (Bubbico et al., 2020). Therefore, DRA aims to 
define methods and frameworks that are inherently updatable in order 
to consider new information and capture unsafe operating conditions 
among highly connected systems. A survey of existing literature in
dicates that there are only a few DRA methodologies that specifically 
address the dynamics of safety barriers. For instance, Han et al. (2019) 
employed Bayesian Networks to model the failure rate of safety barriers. 
They utilized historical failure data to establish a prior distribution for 
the barrier failure rate, which was eventually updated as new data 
emerged. Similarly, Sarvestani et al. (2021) applied Bayesian reasoning 
to assess the risks associated with LPG accidents. Also, Zeng et al. (2020) 
employed Bayesian Networks to trace the spatial-temporal progression 
of fire-related domino effects, integrating the influence of safety barriers 
directly into the network structure. However, such approaches often 
necessitate a significant amount of data, in particular concering system 
failures, for network calibration. Given the infrequent occurrence of 
such events, obtaining these data is challenging. Furthermore, expert 
elicitation is commonly used to determine probability distributions, 
introducing an additional layer of uncertainty. 

To the best of the authors’ knowledge, there has not been a dedicated 
study addressing the dynamic evaluation of barrier effectiveness within 
environmentally critical facilities. In this context, resilience engineering 
has gained significant importance among safety scientists, motivated by 
the need to manage risk in increasingly complex systems (Bergström 
et al., 2015). Similarly to DRA, resilience analysis focuses on capturing 
risk variability due to component failures, external disturbances, and/or 
dysfunctional interactions among system components (Leveson et al., 
2006). However, resilience puts more emphasis on the intrinsic ability of 
a system to “adjust its functioning prior to, during, or following changes 
and disturbances, so that it can sustain required operations under both 
expected and unexpected conditions” (Hollnagel et al., 2011). That is, 
resilience engineering approaches system safety from a slightly different 
perspective, which focuses on how systems absorb sudden disturbances, 
recover after disruptive events, and adapt to new conditions while 
maintaining acceptable performance (Yarveisy et al., 2020). Several 

studies have focused on resilience analysis to address safety of complex 
socio-technical systems (Patriarca et al., 2018). However, only a few 
contributions leverage resilience engineering to evaluate the perfor
mance of safety barriers (Bai et al., 2022; Sun et al., 2021; Thieme and 
Utne, 2017). In addition, no study has been proposed to address the 
safety of environmentally critical systems from a resilience perspective. 

DRA and resilience analysis rely on updatable models that can (i) 
grasp the system dynamics and (ii) consider the effects of unsafe in
teractions. However, the increasing complexity and interconnectedness 
of industrial plants prevent the development of rigorous modeling. For 
example, it is challenging to describe the dynamics of the acid gas 
neutralization mechanism occurring in an FGT plant through first 
principles due to the complexity of the phenomena involved (e.g., 
convection, diffusion in a solid porous media, reaction kinetics, ther
modynamic equilibria) and other external and internal factors that are 
difficult to control and monitor (e.g., thickness and reactivity of the filter 
cake, the composition of the flue gas, changes in the sorbent structure) 
(Antonioni et al., 2016; Dal Pozzo et al., 2018b). In this context, the 
emergence of digitalization in process industry can provide tools and 
methods to overcome such limitation (Kockmann, 2019). Thanks to the 
wealth of data typically available from plant sensors and measurement 
devices, it is possible to derive digital models of the pollutant removal 
processes of varying degree of complexity that can be used for process 
optimization purposes. Reliable data-driven models of different opera
tions in the WtE flue gas cleaning can be developed from representative 
datasets of past performance of the plant (Magnanelli et al., 2020; Pozzo 
et al., 2018) or compact test protocols (Bacci Di Capaci et al., 2022). Dal 
Pozzo et al. (2021) demonstrated how the use of a properly calibrated 
digital model reproducing the behavior of a real FGT system enables an 
extensive testing of alternative control strategies in a virtual environ
ment. The final application of the optimized control strategy tuned via 
the digital model to the real plant showed a significant reduction 
compared to the default control logic of the plant. The approach allowed 
to achieve such process control optimization with a minimal need for 
test runs at the real plant. 

Therefore, based on the above analysis of the relevant literature, the 
method developed in the present study introduces a dynamic evaluation 
of the barrier performance, allowing its update based on new data and 
knowledge becoming available during process operation. Moreover, a 
specific approach based on a digital model of the FGT system is devel
oped to allow testing the limits of system performance in a virtual 
environment, limiting the use of full-scale test-runs that may lead to 
hazardous conditions when approaching critical emission values. 
Finally, resilience analysis is applied to obtain a dynamic measure of the 
barrier performance. 

3. Methodology 

The approach proposed in this study is composed of six steps, which 
are outlined in Fig. 2 together with their inputs and outputs. The 
methodology relies on the integration between advanced risk manage
ment tools (e.g., hazard identification techniques) and innovative 
modeling methods (e.g., data-driven regression models). The former are 
used to define a set of critical scenarios and additional safety barriers 
that may prevent or mitigate such critical events. The latter allow the 
simulation of critical scenarios and of safety barrier performance 
without the need for field tests or first principles models. A detailed 
description of each step included in the methodology is given in the 
following. For the sake of clarity, the specific steps of the methodology 
addressing digital model development and safety barrier modeling are 
developed addressing the features of FGT systems in WtE, for which a 
case-study will be discussed in the following. 

3.1. Process layout definition and data collection 

In this step, relevant information on the process considered must be 
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collected and stored. The minimum set of data includes the following: 

1. Process Flow Diagrams (PFD) and Piping and Instrumentation Dia
grams (P&ID);  

2. Parameters of the control loops;  
3. Process data collected during different operating conditions. 

PFD and P&ID are required to determine the process layout and the 
control strategy. 

When considering a typical FGT section, this includes filters (i.e., 
fabric filters or electrostatic precipitators), reactors (e.g., spray driers, 
scrubbers, in-line reactors), injection devices (e.g., screw feeders), and 
measurement devices (e.g., thermocouples, flow meters, gas analyzers). 
An overview of the most used techniques for the reduction of acid gases 
is reported in Section 2.5.4 of the Best Available Techniques (BAT) 
Reference Document for Waste Incineration (European Commission, 
2019). 

In addition, it is critical to determine the control strategy adopted to 
regulate the injection of sorbent (e.g., feedback, feedforward, mixed 
hybrid control strategies). After the identification of the control strate
gies, the design parameters of controllers and actuators must be 
collected. That is, input-output models or, alternatively, transfer func
tions of controllers and actuators must be defined in terms of mathe
matical structure and parameters. This information may be provided by 

the plant personnel or may be available in technical manuals. 
Finally, process data from various operating conditions must be 

collected and stored. These data are required to build the data-driven 
model of the acid gas reduction mechanism. Therefore, it is critical to 
ensure that data are closely related to the reaction dynamics. With 
reference to Fig. 3, representing a general scheme of a FGT, the mini
mum set of process data may include:  

• The concentration of acid gases in the flue gas entering the system 
(stream number 1 Fig. 3), namely Cacid,in.  

• The concentration of acid gases in the clean gas leaving the system 
(stream number 3 in Fig. 3), namely Cacid,out .  

• The mass flow rate of the sorbent (stream number 2 in Fig. 3), namely 
ṁsorbent . 

Data come in the form of time series representing the evolution of 
process variables with time and may be stored in a matrix-like database 
D, whose columns represent process variables and rows indicate time 
instants. 

It is worth mentioning that the type and number of process variables 
available for collection and the total amount of observations largely 
depend on the specific application. Actually, different plants have 
different sensors and measuring points. However, the process variables 
mentioned above should be easy to obtain in most facilities (directly or 

Fig. 2. Overview of the methodology.  
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derived from other measured variables). 
The data collection process aims to capture the plant behavior during 

various operative conditions, including normal operations, distur
bances, and malfunctions. Thus, the dataset D should encompass a wide 
range of values for the process variables, maximizing information con
tent. It is thus crucial to adequately capture the variability and diversity 
of the process conditions to enable an accurate and robust model 
development. Sufficiently representative time-series should be avail
able, in the range of weeks up to month, depending on the features of the 
plant. Actually, most distributed control systems nowadays store long 
time series of process data (up to several years), thus providing sufficient 
information for the implementation of the method. 

Furthermore, process data should be sufficiently granular to allow a 
thorough investigation of the dynamics involved in the processes. An 
adequate level of granularity is essential to capture accurately the 
intricate temporal variations and interactions within the system. A 
minimum granularity, in terms of sampling time, of 1 min is usually 
adequate to ensure that the data capture the necessary temporal reso
lution, enabling a detailed analysis of the processes’ dynamics and 
facilitating accurate modeling. 

3.2. Development of a base plant model 

The base plant model (M ) is a digital model of system of concern. In 
the present study, the FGT section of a WtE was considered. The purpose 
of the model is to mimic the plant dynamics in terms of (i) control logic 
and actuators and (ii) acid gas reduction. In other words, the model 
takes as an input the concentration of acid gases in the flue gas at time t 
(i.e., Cacid,in(t)), and returns the concentration of acidic compounds in 
the clean gas at time t+1 (i.e., Cacid,out(t+1)): 

Cacid,out(t + 1) = M
(
Cacid,in(t)

)
(1) 

The digital model comprises several sub-models that mimic a specific 
plant function. For example, there may be sub-models to replicate the 
controller behavior, measuring instruments, the reaction dynamics, and 
so forth. The number and nature of the sub-models largely depend on the 
specific plant under consideration. The analysis of PFDs and P&IDs is 
essential to define the structure of M . In most plants, the digital model 
comprises at least three sub-models:  

• The sub-model g that mimics the actuator;  
• The sub-model f that mimics the controller action;  
• The sub-model h that mimics the reaction dynamics. 

In this case, Eq. (1) may be written as follows. 

Cacid,out(t + 1) = h
(
g(f (t) ),Cacid,in(t)

)
(2)  

Where f(t) represents the controller signal at time t, and g(f(t) ) indicates 
the manipulated variable at time t (e.g., ṁsorbent(t)). 

Data collected in step 1 of Fig. 2 allow the rigorous modeling of 
actuators and controllers. However, modeling the reaction dynamics 

through first principles is challenging. A viable solution to model the 
reaction mechanism is to rely on data-driven methods. Here, the idea is 
to leverage plant data collected in step 1 in Fig. 2 to build a data-driven 
model of the acid gas reduction mechanism. This model may take as an 
input (i) the concentration of acid gases entering the system and (ii) the 
sorbent flow rate, and return the concentration of acidic compounds in 
the clean gas leaving the system. 

The problem described in Eq. (2) belongs to the vast area of time- 
series forecasting (Box et al., 2015). Therefore, h may be considered a 
regression model that takes a set of observations as an input and returns 
the value of a target variable. The selection of the model h is a critical 
step to ensure adequate performance (Emmert-Streib and Dehmer, 
2019). However, a complete overview of available models and model 
selection techniques is unfeasible considering the vastity of the topic. 
The reader might refer to the literature on system identification (Ljung, 
2010, 1999) and data mining (Kotu and Deshpande, 2019; Torres et al., 
2020) to explore different modeling strategies. 

Regardless of the specific model, the development of h involves at 
least two steps: training and evaluation. Firstly, the dataset D (i.e., 
process data collected in step 1 of Fig. 2) is split into two parts, namely 

Dt and De, such that D =

⃒
⃒
⃒
⃒
Dt
De

⃒
⃒
⃒
⃒. Dt is used to train the model while De is 

used in the evaluation phase. Typically, Dt contains 80% of the obser
vations in D. Also, Dt may be conceptually divided into two parts. The 
first part (Xt) comprises the inputs of the model (i.e., Cacid,in(t) and 
ṁsorbent), the second part (Yt) comprises the variable that must be pre
dicted (i.e., Cacid,out(t+1)), such that Dt = |Xt Yt |. The same applies to De. 

Secondly, the model is trained. Training involves the optimization of 
the model’s internal parameters (θ) to minimize a loss function (l ). 

θ̂ = argmin
θ

[l (θ,Dtrain) ] (3) 

Where θ̂ represents the optimized model’s parameters. Some widely 
used loss functions include the Sum of Squared Residuals (SSR), the 
Mean Squared Error (MSE), Mean Absolute Error (MAE), Hubert Loss, 
and Log-cosh loss (Wang et al., 2022). As an example, if SSR is used, the 
loss function is: 

l (θ,Dtrain) =
∑N

i=1
(yt(t + 1) − h(xt(t), θ ) )2 (4) 

Where yt(t+1)ϵYt, N represents the number of observations in Dt, 
and xt(t) ∈ Xt. 

After training, the performance of the model must be evaluated using 
a new set of data. To this end, the model is used to perform predictions 
on the observations included in De. Eventually, performance indicators 
are calculated to quantify the prediction performance. For example, the 
Root Mean Squared Error (RMSE) may be calculated as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
M
∑M

i=1
(ye(t + 1) − h(xe(t), θ̂ ) )

2

√

(5)  

Where, ye(t+1)ϵYe, M represents the number of observations in De, and 
xe(t) ∈ Xe. 

A user-defined acceptance criterion may be defined to discriminate 
between acceptable and non-acceptable performance. For example, if 
the RMSE is smaller than a threshold, the model h may be considered 
adequate to simulate the reaction dynamics. 

It is worth mentioning that the procedure described above is inten
ded to be a quick overview of the steps required to train and evaluate the 
model. It is not meant to be the best strategy. For example, the so-called 
holdout method is described above to keep the description short. The 
reader may adopt more advanced evaluation methods, such as holdout 
with validation or cross-validation (Raschka, 2018). Also, Eq. (2) as
sumes that the input to the data-driven model are inlet concentration of 
acid gases and sorbent mass flow rate. Nevertheless, the method may be 
promptly adapted to consider more input data, such as the flue gas 
temperature, the flue gas volumetric flow rate, the pressure drop across 

Flue gas 
treatment
section
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̇

,

̇
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Fig. 3. General schematization of a flue gas treatment section for acid 
gas removal. 
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the filters, and so forth. 

3.3. Identification of critical scenarios and additional safety barriers 

The FGT section is analyzed to identify (i) critical scenarios and (ii) 
recommendations for additional safety barriers. In this context, critical 
scenarios are events that have the potential to cause a significant in
crease in the acid gas concentration downstream of the treatment sec
tion. In other words, the analysis aims at answering the following 
questions: 

1. Which critical events have the potential to cause a significant in
crease in acidic compounds in the clean gas leaving the treatment 
section (stream 3 in Fig. 3)?  

2. Which additional safety barriers may prevent or mitigate critical 
events? 

Traditional hazard identification techniques, such as HazOp, HazId, 
analysis of historical data, what-if analysis, and brainstorming (Mannan, 
2005), may be used to answer these questions. Data collected in step 1 in 
Fig. 2 (e.g., PFD, P&ID) and the operational experience of plant 
personnel are the starting point of the analysis. 

The selection of the actual hazard identification technique to be 
applied is guided by several factors, such as time constraints, objectives 
of the analysis, and the required level of detail (International Organi
zation for Standardization, 2019; Mannan, 2005). Structured techniques 
(e.g., HazOp) provide more information and a deeper understanding of 
the hazards. On the other hand, unstructured methods (e.g., brain
storming) are faster and cheaper, but a higher level of expertise may be 
required to ensure the quality and completeness of results. 

Often, the combined use of multiple hazard identification techniques 
leads to a more comprehensive risk identification (International Orga
nization for Standardization, 2019). However, regardless of the specific 
techniques adopted, the results of the analysis should provide:  

• A list of critical events, along with their causes and consequences on 
acid gas emission at stack;  

• A list of recommended safety barriers. 

Results may be condensed in a bow-tie diagram to provide a concise 
visual representation of critical events and safety barriers (CCPS and 
Energy Institute, 2018). The top event may be formulated as a “signifi
cant increase in the acidic compound concentration in the clean gas”. 
Among the end-point events on the right-end part of the diagram 
(consequences) specific possible outcomes of the top event should be 
listed (e.g., “half-hourly emission limit values exceeded”), while the 
leftmost part shows the causes of the top event. Recommended safety 
barriers should be included in the bow-tie to clarify their role in pre
venting or mitigating the critical event. 

3.4. Base model upgrade 

The base plant model developed in step 2 of Fig. 2 is designed to 
mimic the plant response during normal operating conditions. There
fore, modifications may be needed to simulate the effect of critical 
events and additional safety barriers identified (step 3 in Fig. 2). 

Depending on the nature and extent of modifications, there are two 
viable solutions to update the base plant model. These include:  

1. First principles modeling;  
2. Data-driven modeling using data from test-runs. 

If the modifications are associated with well-known systems where 
first principle models are available, it is possible to employ rigorous 
modeling techniques to incorporate the behavior of critical events and 
safety barriers. For example, if a critical event involves the failure of a 

control loop, the equations governing the controller can be modified to 
account for the faulty behavior. 

However, when the effect of critical events and additional safety 
barriers is uncertain and cannot be accurately described using rigorous 
models, data-driven methods may be used. Data from different facilities 
that have experienced similar failures or implemented similar safety 
barriers may be used to this aim. Clearly enough, if limited data are 
available, carrying out specific test runs on pilot facilities or on the 
actual plant may be considered as an alternative in case the safe oper
ation of the system may be granted. The reader is referred to previous 
studies (Bacci Di Capaci et al., 2022; Dal Pozzo et al., 2021) for details 
and discussion on the design of data collection campaigns for WtE flue 
gas cleaning systems. 

Regardless of the particular updating procedure, the simulation of 
critical events and safety barriers necessitates the modification of 
existing sub-models or the development of new sub-models. This process 
enables the creation of an upgraded model, denoted as M ′′, that can (i) 
simulate the effect of the critical events on the original gas treatment 
system and (ii) simulate the system response after the installation of all 
(or part of) the recommended safety barriers. 

3.5. Simulation of critical scenarios and safety barriers 

The upgraded model M ′′ is used to simulate the critical events 
identified in step 3 of the methodology (see step 5 in Fig. 2). Two distinct 
simulation runs are performed. 

The first run aims at evaluating the response of the original gas 
treatment system during critical scenarios. That is, all the barrier sub- 
models are excluded in this first run of simulations. In this phase, each 
critical event identified in step 3 of Fig. 2 is simulated to obtain the 
trends of Cacid,out(t) and ṁsorbent(t), describing the original plant response 
in the presence of critical disturbances. This first set of simulations is 
used as a benchmark to evaluate the improvements due to the imple
mentation of the additional safety barriers. 

The second group of simulations focuses on the system response after 
the installation of the safety barriers identified in step 3 of the procedure 
(see Fig. 2). To this end, the bow-ties produced are analyzed to identify 
relevant safety barriers for each critical event considered. Safety barriers 
are selected based on their ability to affect the operation of the specific 
critical event under consideration. As a result, a set of safety barriers is 
selected for each critical event. The upgraded plant model is then used to 
simulate the effect of safety barriers considering that only part of the 
barriers may be active during a critical event. That is, if a critical event is 
associated with a set of N safety barriers, the number of simulations 
required is 2N − 1. In each simulation, the model returns Cacid,out(t) and 
ṁsorbent(t), which are used to quantify the improvements due to the 
implementation of the safety barriers. 

3.6. Evaluation and comparison of safety barriers 

The output of the simulations provides a dynamic picture of the 
system behavior with different barrier configurations and during various 
critical events. These results can be used to evaluate the effectiveness of 
safety barriers, in both absolute and relative terms. In this context, the 
general definition of effectiveness introduced in Section 2 has to be 
declined for the specific problem of emission control as the ability of a 
safety barrier to ensure that the system complies with ELV. A set of in
dicators is built to evaluate the barrier effectiveness and allow for a 
quantitative comparison of alternatives. Resilience analysis is used to 
quantify the ability of the system to withstand external disturbances and 
to evaluate the improvements resulting from the installation of addi
tional safety barriers. 

Following the generic definition of resilience provided by Hollnagel 
et al. (2010), the resilience of the gas treatment system may be defined 
as its ability to fulfill its purpose in a variety of adverse conditions. In the 
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specific context of acid gas removal, the purpose of the system is to 
comply with ELV, and the adverse conditions refer to the critical scenarios 
identified in step 3 of the method (see Fig. 2). 

The literature offers many examples of quantitative resilience met
rics (Hosseini et al., 2016). Most of them rely on a time-dependent 
function φ(t) that reflects the performance of the system. This perfor
mance function (also called quality function) ranges between zero and 
one. The performance is zero if the system is in a completely degraded 
state or, in other words, if it cannot fulfill its purpose. On the contrary, if 
the system performs as expected, the performance is one. 

After a critical event, the system performance degrades, reaches a 
minimum, and eventually increases as mitigative actions restore normal 
operations, as exemplified in Fig. 4. 

The mathematical formulation of the performance metric depends on 
the problem under assessment. The performance of the treatment system 
with respect to the acid compound i (i.e., φi(t)) may be a user-defined 
function that satisfies the following requirements:  

• φi(t) = 0 if the half-hourly concentration of i exceeds the ELV; 
• φi(t) = 1 if the absolute deviation between the half-hourly concen

tration of i and the controller setpoint does not exceed 10%. 

The user can choose the type of function expressing the performance 
based on the problem requirements. The criteria for the selection of 
performance functions are discussed extensively elsewhere (Hosseini 
et al., 2016; Tran et al., 2017). In the case-study introduced in the 
following, an exponential function was used to penalize large deviations 
from the controller setpoint (see Section 4). 

Given the performance, the so-called Resilience Loss (RL) can be 
used to quantify the loss of resilience caused by a critical event. 

RLi =

∫ tf

te
[1 − φi(t) ]dt (6)  

Where RLi indicates the Resilience Loss with respect to the acidic com
pound i, te represents the time of occurrence of the critical event, and tf is 
the recovery time, as indicated in Fig. 4. The Resilience Loss ranges 
between zero and (tf − te). Values close to zero indicate that the system 
has not been significantly affected by the critical event. 

A performance function and a Resilience Loss can be calculated for 
each acid gas considered and each combination of critical scenarios and 
safety barriers. The performance metric φi(t) reflects the system dy
namics during the critical scenarios, while RL represents a quantitative 
indicator that reflects the system capacity to withstand internal or 
external disturbances. The comparison of φi(t) and RLi among alterna
tive configurations and to the benchmark simulations allows a quanti
tative comparison between alternative process configurations and the 
identification of the best-performing safety barriers. 

It is worth mentioning that other relevant features of the safety 
barriers, namely their availability and level of confidence, which are 
related to the reliability and availability of mechanical components and 
not to their process performance, are considered out of scope of the 
present analysis. 

4. Case study 

A full-scale case study was defined to demonstrate the application of 
the methodology and the potential use of the results obtained. The case 
study concerns an acid gas removal stage of the FGT section of Municipal 
Solid Waste Incinerator located in northern Italy. 

In WtE operation, the concentrations of hydrogen chloride (HCl) are 
typically higher of at least an order of magnitude than those of SO2 and 
HF (Dal Pozzo et al., 2023a). Hence, for the sake of simplicity, in the 
case-study only HCl removal will be considered, since in the current 
practice fulfilling the ELV of HCl is more critical. 

A process flow diagram of the specific FGT system considered in the 

case-study is reported in Fig. 5. As shown in the Fig. 5, the flue gas 
(stream 1 in Fig. 5) enters an entrained flow-reactor where a solid sor
bent (hydrated lime - stream 9) is injected into the flue gas. The 
entrained-flow stream of gas and solids (stream 2) enters the bag filter F- 
01, where solids (stream 4) are removed from the clean gas (stream 3). 
HCl in the gas stream is neutralized according to the following reaction: 

2HCl+Ca(OH)2 ↔ CaCl2 + 2H2O (7) 

The gas-solid reaction takes place in the entrained flow reactor (R- 
01) and in the cake formed on the filter bags (F-01). 

The sorbent mass flow rate is controlled by means of a simple feed
back control loop. Specifically, a PI controller (AIC 02) is used to 
regulate the speed of the feeder motors (M) based on the concentration 
of acidic compounds in the clean gas leaving the system (stream 3). Two 
screw feeders are installed in parallel. During normal operations, only 
one of the two screw feeders operates (T-01), while the other is used as a 
backup during maintenance or in case of failure of the main feeder. Low- 
speed alarms (SAL) are installed to detect a blockage or failure of the 
feeder, allowing a swift start-up of the backup feeder by the control 
room operator. The configuration shown in Fig. 5 is among the solutions 
most frequently installed for acid gas removal in European incinerators 
according to recent surveys (Beylot et al., 2018; Dal Pozzo et al., 2018a) 
and is listed among the BAT for acid gas treatment (European Com
mission, 2020). Thus, the case-study introduced is highly representative 
of the current industrial practice. 

The methodology outlined in Section 3 was applied to the analysis of 
the case study. First, the relevant documentation concerning the selected 
facility was collected, as indicated in step 1 of the methodology (see 
Fig. 2). Specifically, the plant personnel provided PFDs, P&IDs, Oper
ating and Control Philosophy, and details on the controller and actuator 
parameters. Furthermore, a data collection campaign was designed and 
performed to extract relevant process data from the plant Distributed 
Control System (DCS). In particular, the following process variables 
were collected with a sampling interval of 30 s:  

• Volumetric flow rate, temperature, and HCl concentration of the flue 
gas from the furnace (stream 1 in Fig. 5); 

Fig. 4. Typical behavior of the FGT system following a critical event.  
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• Volumetric flow rate, temperature, and HCl concentration of the 
clean gas (stream 3 in Fig. 5);  

• Mass flow rate of the sorbent (stream 9 in Fig. 5). 

A total of four days of observations were collected and stored in 
tabular format. The collected data were selected to maximize the in
formation stored in data, ensuring the adequacy and significance of the 
collected data. Matlab Simulink was used to develop the base plant 
model. Fig. 6 shows the model structure as it appears in the simulation 
environment. Specific sub-models were developed for each of the 
equipment items present in the process flow diagram of the plant section 
considered, shown in Fig. 5. 

The input to the base plant model is the molar flow rate of HCl 
entering the gas treatment system (stream 1 in Fig. 6). The “DCS” block 
mimics the controller behavior (i.e., AIC-02 in Fig. 5), returning the 
controller command (signal 2 in Fig. 6) based on the outlet HCl con
centration (signal 5 in Fig. 6). The “Screw feeder” block mimics the 
actuator behavior. It converts the command from the controller into the 
sorbent mass feed rate injected in the reactor (stream 3 in Fig. 6). 
Finally, the “Reaction” block represents the data-driven model of the 
acid neutralization mechanism. Specifically, the model used in this 
study is a linear Autoregressive with Extra Input model (ARX). The 

“Reaction” block takes as an input the sorbent feed rate and the molar 
flow rate of HCl in the flue gas (stream 1 in Fig. 6), and returns the molar 
flow rate of HCl in the clean gas (stream 4 in Fig. 6), which is eventually 
converted into the concentration of HCl leaving the system (signal 5 in 
Fig. 6). Further details on the base plant model used in this study are 
reported elsewhere (Dal Pozzo et al., 2021). 

HazOp analysis has been used to identify critical events that may 
lead to a significant increase in HCl emissions and the safeguards and/or 
safety barriers to be installed. 

Although the list of critical events identified through the HazOp 
represents a detailed description of the potential hazards present in the 
system, some of them may not be credible or may have a marginal 
impact on HCl emissions. Provided that quantitative information on the 
causal analysis of FGT systems failure is unavailable in the open litera
ture, an expert elicitation procedure was adopted to complement the 
HazOp analysis and validate the most relevant process deviations. 
Expert surveys have been recognized in literature as a relevant tool for a 
preliminary semi-quantitative evaluation of hazards and related safety 
barriers (Argenti et al., 2017; Hokstada et al., 1998; Misuri et al., 2020). 
An ad-hoc survey was prepared and administered to a group of experts 
with heterogeneous and relevant backgrounds (WtE plant operators, 
technology suppliers, consultants, academics) that were invited to 

Fig. 5. Process Flow Diagram of the FGT system for acid gas removal considered in the case-study. Red, green, and blue streams respectively indicate the flue gas 
entering the FGT section, the sorbent feed, and the compressed air used to inject the sorbent. 

Fig. 6. Translation of the reference FGT system in Fig. 5 into the simulation environment. Items h, g, and f respectively indicate the submodels that mimic the 
reaction mechanism, the screw feeders, and the control logic. Dashed lines indicate signals and continuous lines represent process streams. 
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participate anonymously. Considering the specific process scheme in 
Fig. 5, the experts were asked about the likelihood that given process 
deviations could trigger a loss of control event, resulting in a temporary 
overrun of the emission setpoint at stack (sufficient or not to exceed the 
half-hour emission limit value for the plant). Next, they were asked 
about the likelihood that given prevention or mitigation measures could 
avoid such loss of control events. The experts were able to express their 
answers on a scale 1–5, corresponding to a verbal scale of likelihoods of 
occurrence from "Extremely unlikely" (i.e., 1) to "(Virtually) certain" (i. 
e., 5). The transcription of the questionnaire, along with general data 
collected on the background of survey participants, are reported in the 
Supplementary Material. The results of the survey supported the iden
tification of the critical scenarios and safety barriers considered for 
implementation, as discussed in Section 3.3. 

Following the identification of critical scenarios and safety barriers, 
the base plant model was upgraded (step 4 in Fig. 2), and simulations 
were performed to evaluate the system response with and without the 
recommended safety barriers (step 5 in Fig. 2). Specifically, two sets of 
simulations were executed utilizing the upgraded plant model. The first 
set of simulations models the behavior of the original FGT system during 
critical scenarios in the absence of any additional safety barriers. The 
second set of simulations replicates the system response to critical events 
after the installation of safety barriers. At the end of each simulation, the 
upgraded plant model returns CHCl,out(t) the concentration of HCl in the 
clean gas leaving the plant during different critical events and under 
different system configurations (i.e., with or without safety barriers). 

After the simulations, the results were analyzed to evaluate the 
consequences of the critical events and the benefits derived from the 
installation of safety barriers. Specifically, the following performance 
metric was used to assess the performance of the system selected for the 
case-study: 

φHCl =

{
1 if CHCl,out(t) ≤ 7.15 mgHCl

/
Nm3

A • exp
(
− B • CHCl,out(t)

)
if CHCl,out(t) > 7.15 mgHCl

/
Nm3

(8) 

Where CHCl,out(t) indicates the half-hourly HCl concentration at stack 
at time t, and 7.15 mgHCl/Nm3 represents the controller setpoint 
increased by 10% to allow a limited oscillation of the controlled vari
able. The parameters A and B have been estimated through least squares 
minimization with the following boundary conditions: φ(7.15) = 1 and 
φ(10) = 0, where 10 mgHCl/Nm3 represents the ELV. The fitting pro
cedure leads to A = 3.360 • 107and B = 2.424, which implies φ(10) =

1 • 10− 3. The formulation of the performance metric was inspired by the 
understanding that the system ability to sustain external disturbances 
diminishes quickly as the concentration of HCl approaches the ELV. 
Therefore, the performance metric is designed to degrade exponentially 
after CHCl,out(t) exceeds the allowed level of oscillations and to approach 

0 when CHCl,out(t) reaches the ELV. 
Based on the above defined performance function, the resilience was 

calculated for each simulated scenario using Eq. (6), enabling quanti
tative assessment and comparison of safety barriers. 

5. Results 

In the following, the application of the methodology outlined in 
Section 3 to the case study introduced in Section 4 is illustrated. 

5.1. Critical scenarios and safety barriers 

The results of HazOp analysis, used to identify critical events that 
may lead to a significant increase in HCl emissions and the safeguards 
and/or safety barriers to be installed, have been condensed into a bow- 
tie diagram, which is shown in Fig. 7. It is worth mentioning that the 
bow-tie has been simplified for visualization purposes. The complete 
bow tie is reported in Figure A1. 

The results of the expert survey are shown in Fig. 8. Specifically, 
Fig. 8.a reports the results related to the credibility of the critical events 
identified by the HazOp. 

It should be remarked that the interviewees generally considered 
resilient the system in Fig. 5, as only three process deviations (inlet HCl 
spike +200%, critical waste composition, and clogging of reactant 
transport line) were deemed likely to cause a temporary overrun of 
emission setpoint, and only a single deviation (clogging of reactant 
transport line) was considered likely to cause an overrun severe enough 
to exceed the half-hour ELV. Among process deviations related to inlet 
flue gas composition, spikes of HCl were considered significantly more 
likely. This finding is in agreement with the high HCl to SO2 ratio 
typically found in waste-to-energy flue gases (Dal Pozzo et al., 2016) and 
supports the assumption to consider only HCl in the assessment (see 
Section 4). The clogging of the reactant transport line was considered 
the most critical process deviation, followed by failure/blockage of the 
screw feeder. However, it is worth noticing that an obstruction of the 
screw feeder was identified by the experts as the most frequent failure 
experienced in these systems (see section S2 of the Supplementary 
Material). 

Combining the information coming from the HazOp analysis and the 
expert survey, two critical scenarios were selected for the analysis:  

• Critical scenario 1: spike in inlet HCl concentration;  
• Critical scenario 2: failure of the screw feeder for reactant delivery. 

The survey allowed gathering information also on the effectiveness 
of possible safety barriers in the critical loss of control of acid gas 
emission scenarios discussed above. As shown in Fig. 8, the experts were 

Fig. 7. Simplified bow-tie diagram of the reference FGT system considered in the case-study.  
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1.0 2.0 3.0 4.0 5.0

Inlet HCl spike (+100%)

Inlet HCl spike (+200%)

Inlet SO2 spike (+100%)

Inlet SO2 spike (+200%)

Insufficient waste mixing in waste pit

Critical waste composition

Clogging of reactant transport line

Failure/blockage of screw feeder

Failure of flue gas measurement system

Level (1 = least likely, 5 = most likely)

1.0 2.0 3.0 4.0 5.0

Implementation of safety logics

Intervention on fabric filter settings

Addition of reactant injection in the furnace

Recirculation of solid residues

Level (1 = least likely, 5 = most likely)

a)

b)

How likely is it to cause … ?
Temporary overrun of emission setpoint (exceeding half-hour ELV)
Temporary overrun of emission setpoint (not exceeding half-hour ELV)

How likely is it to reduce … ? Occurrence of loss of control events

Fig. 8. Results obtained from the expert survey concerning: a) the likelihood of the critical process deviations identified by HazOp to generate loss of control events; 
b) the likelihood of the listed safety barriers to mitigate loss of control events. Numerical scale (1− 5) to be interpreted as in section S2 of the Supplementary Material. 
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asked to evaluate a set of safety barriers, assessing their likelihood to 
reduce the occurrence of loss of control events and to reduce the con
sumption of reactant required to mitigate such events. The safety bar
riers considered in the survey are listed in Table 1. 

The first two safety barriers in Table 1 share the common rationale of 
increasing the residence time of the solid reactant in the system, hence 
inducing higher solid conversion and increasing HCl removal at equal 
reactant consumption (Chibante et al., 2010). Although these in
terventions can help avoiding an excessive consumption of reactants in 
the control of HCl emissions, the experts consider these systems scarcely 
effective in reducing the frequency of loss of control events. 

Higher scores in terms of likelihood to reduce the occurrence of loss 
of control events were given to measures that increase redundancy in the 
FGT system: addition of a pre-treatment HCl removal stage in the 
furnace (mean score 3.9), and implementation of safety logics (mean 
score 3.8). The former class of measures is aimed at controlling the ef
fects of high acid gas loads from waste combustion (e.g., critical scenario 
1 identified in Section 5.1), while the latter is mainly focused on miti
gating the effects of failures of system components (e.g., critical scenario 
2 identified in Section 5.1). Therefore, a safety barrier for each of the 
two classes of interventions was selected as an example for the 
simulation. 

In the case of critical scenario 1, HCl peaks from waste combustion 
can effectively be mitigated by furnace sorbent injection (Biganzoli 
et al., 2015). The injection of dolomitic lime in the furnace, a widely 
applied retrofit solution to improve FGT performance (Dal Pozzo et al., 
2023b), was considered for application. 

In the case of critical scenario 2, the installation of a safety logic for 
the automatic activation of the backup feeder by a low-speed alarm was 
considered to mitigate the possible failure of the main screw feeder of 
the solid sorbent. It was assumed that such configuration can activate 
the backup screw feeder in 15 s, compared to at least 5 min in case of a 
manual intervention by plant operators, which is considered as the base 
case. 

5.2. Base model upgrade 

As discussed in Section 3.4, some modifications were introduced in 
the base plant model described in Section 4 in order to simulate the 
critical events and the additional safety barriers. 

In critical scenario 1, a single pulse disturbance was added to signal 1 
in Fig. 6 to simulate the critical scenario. The pulse was considered to 

start 35 min after the beginning of the simulation, and to have a dura
tion of 15 min and an amplitude of 3300 mgHCl/Nm3, which represents a 
deviation of 5.5 times the average HCl concentration levels in the flue 
gas of the reference plant. 

As discussed above, a safety barrier consisting in dolomitic lime in
jection in the furnace was introduced in the model to control the HCl 
concentration in the flue gas entering the FGT system in the presence of 
HCl spikes. According to Dal Pozzo et al. (2020), the following corre
lation can be used to link the dolomitic sorbent feed rate and the cor
responding HCl conversion: 

χ =
SR1.38 − SR
SR1.38 − 1

(9) 

where χ is the conversion of HCl and SR is the Stochiometric Ratio, 
representing the ratio between the actual feed rate of dolomitic sorbent 
and its theoretical demand to achieve full HCl removal according to 
stoichiometry (Vehlow, 2015). The exponent in Eq. (9) is an empirical 
parameter derived from tests at WtE facilities (Dal Pozzo et al., 2020). 
This correlation can be used to obtain the final HCl concentration in the 
flue gas leaving the furnace after the activation of the dolomitic lime 
injection system. However, it does not reveal the dynamic of the phe
nomenon. Therefore, a simplified data-driven approach was followed to 
obtain the time trend of the HCl concentration in the flue gas after the 
activation of the safety barrier. Specifically, non-linear least squares 
were used to fit 4th-order polynomial functions to experimental data. 
These data consist of 10 experimental runs of dolomitic lime injection 
performed at different SR values (see Dal Pozzo et al., 2020). The 
following procedure was used to obtain the optimal fitting:  

1. Experimental data were divided into three distinct groups based on 
their average SR value. Selected SR values are SR = 1, SR = 1.8, and 
SR = 2.5.  

2. Experimental data were scaled in the range (0, 1) through min-max 
normalization. 

ĈHCl(t) =
CHCl(t) − min(CHCl(t) )

max(CHCl(t) ) − min(CHCl(t) )
(10)  

Table 1 
List of the safety barrier types considered in the survey.  

Type of safety barrier Description 

Intervention on fabric filter 
settings 

Increase of the maximum allowable pressure drop 
at the fabric filter. Effect: fabric filter cleaning is 
stopped, allowing longer residence time of the reactant 
on filter bags and a temporary increase of reactivity in 
the system. 

Recirculation of solid residues Re-injection upstream of the fabric filter of part of 
the process residues collected by the filter. Effect: 
solid process residues, partially unreacted, which are 
normally sent to disposal, are recirculated, increasing 
the overall sorbent-to-acid gas ratio in the system. 

Implementation of safety 
logics 

Implementation of improved safety logics and 
backup safety systems (e.g., safety logics activating 
start-up of backup elements). Effect: failure of any 
element in the control loop triggers the intervention of a 
backup system that maintain the required feed rate of 
sorbent: e.g., automatic activation of backup sorbent 
feeders in case of fault of the primary feed control loop. 

Addition of reactant injection 
in the furnace 

Pre-treatment of flue gas in an additional reaction 
stage upstream of the existing FGT system. Effect: 
reactant injection in an additional injection point 
upstream of the FGT system is activated, curtailing 
spikes of acid gases coming from the combustion 
chamber before they enter the FGT system.  

Fig. 9. Effect of the safety barrier considered (dolomitic lime injection) on the 
HCl concentration in critical event 1. The concentration of HCL considering two 
different configurations of safety barrier (SR 1.8 and SR 2.5) is compared to the 
baseline concentration in the absence of safety barriers. 
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Where CHCl(t) represents the HCl concentration in the flue gas 
leaving the furnace after the activation of the sorbent injection sys
tem, and ĈHCl(t) indicates the scaled concentration.  

3. Scaled experimental data that belong to the same SR group were used 
to fit 4th-order polynomial functions through non-linear least 
squares. 

ĈHCl(t) = a • t4 + b • t3 + c • t2 + d • t + e (11)  

where a,b, c,d, and e represent the function parameters. 
The fitting procedure led to the parameters shown in Table A1, while 

the resulting fittings of experimental data is shown in Figure A2 in Ap
pendix 2. Now, the following equations are available: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CHCl(t) − min(CHCl(t) )
max(CHCl(t) ) − min(CHCl(t) )

= a • t4 + b • t3 + c • t2 + d • t + e

SR1.38 − SR
SR1.38 − 1

= 1 −
Cf

C0

(12)  

where Cf is the final HCl concentration and C0 is the initial concentra
tion. It is worth noting that the second equation is Eq. (9). Considering 
that in a simulation SR is user-defined, the parameters a, b, c, d, and e are 
known. Also, assuming that C0 = max(CHCl(t) ) represents the HCl con
centration when the furnace injection system starts and Cf =

min(CHCl(t) ) indicates the HCl concentration when the injection system 
stops, Eq. (12) can be used to calculate CHCl(t) and, therefore, to model 
the barrier dynamics. 

Fig. 9 shows the effect of the activation of dolomitic lime injection on 
critical event 1 (a 15-minute-long spike of HCl). The red curve in the 
figure (i.e., SR = 0) represents the HCl concentration in the flue gas 
entering the FGT system during critical scenario 1 when no safety barrier 
is activated. The orange and green lines show the system behavior after 
the installation of the safety barrier, which is activated two minutes after 
the beginning of the peak and stays active until the end of the distur
bance. Two different barrier configurations were investigated: SR = 1.8 
(orange line) and SR = 2.5 (green line). 

With respect to critical event 2, the failure of the screw feeder was 
simulated as a period of variable duration in which the sorbent mass 
flow rate (stream 3 in Fig. 6) is set to 0 kg/h. This is achieved by 
modifying the sorbent mass flow rate as follows: 

ṁsorbent(t) =

{
ṁsorbent(t) if t < tf ∨ t > tb

0 if tf ≤ t ≤ tb
(13)  

where tf = 45 min indicates the time of failure and tr represents the time 
of activation of the backup screw feeder. As mentioned in Section 5.1, in 
the base case it was assumed that the activation of the backup feeder is 
manual. A time window of 5 min (tb = tf + 300 s) seems plausible for 
operators to acknowledge the alarm, interpret the situation, and take 
action. 

The overall effect of the specific safety barrier identified for this 
event (automatic activation of the backup feeder) is to reduce the time 
required to activate the backup screw feeder. This behavior can be 
simulated by reducing tb in eq. (13). A response time of 15 s was deemed 
sufficient for the Safety Instrumented System to activate the backup 
feeder by plant personnel and instrumentation experts (tb = tf + 15 s) 
when the safety barrier is present. 

5.3. Simulation of critical scenarios 

Two sets of simulations were performed, as mentioned in Section 3.5. 
The first group of simulations evaluates the response of the original FGT 
system during critical scenarios (i.e., with no additional safety barrier). 
The second group of simulations aims to assess the system response after 
installing the safety barriers. 

The results of the simulations of the first critical scenario and safety 
barrier are shown in Fig. 10a. The red line represents the HCl concen
tration in the clean gas leaving the original FGT system during the first 
critical event (i.e., HCl peak). The orange and green lines indicate the 
response of the system in case of activation of the dolomitic lime 
injection. 

The system performance in the second critical scenario with and 
without considering the safety barrier is shown in Fig. 10b. Also in this 
case, the red line represents the response of the original system, while 
the green line indicates the system response with automatic activation of 
the backup screw feeder. 

5.4. Assessment and comparison of safety barriers 

In order to allow the qualitative and quantitative comparison of al
ternatives, the results of the simulations were used to compute the 

Fig. 10. Simulation of critical scenarios with and without safety barriers: a) critical scenario 1 with or without dolomitic lime injection, b) critical scenario 2 with or 
without automatic activation of the backup screw feeder. 
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resilience indicators defined in Section 3.6: the performance metric 
(φ(t)) and the Resilience Loss (RL). 

The time-trend of the performance indicator for the first critical 
event and safety barrier is shown in Fig. 11a. The red line represents the 
performance of the original system, and the orange and green lines 
indicate the performance after the installation of the dolomitic lime 
injection. 

Similarly, the results of the second critical event and safety barrier 
are shown in Fig. 11b. It is worth mentioning that in critical event 2 the 
performance of the original system (i.e., the red curve in Fig. 11b), 
defined by Eq.(8), drops to 10− 60, with HCl concentrations significantly 
higher the ELVs. In order to increase the readability of the plot in 
Fig. 11b, the lower limit of the y-axis was set at 10− 5. The values 
calculated for the Resilience Loss in each scenario are summarized in  
Table 2. 

6. Discussion 

In several industrial applications, the current practice concerning the 
optimization of full-scale industrial processes is highly empirical and 
based on test-runs. However, as discussed above, this approach could 
hardly be applied to investigate the system performance in the vicinity 
of emission limits due to the risk of exceeding emission limits during the 
tests and to the negative consequences related to such events. As shown 
in Sections 5.3 and 5.4, the use of a digital model combined to hazard 
identification techniques allowed the identification and dynamic simu
lation of critical events and, more importantly, the performance 
assessment of safety barriers. In particular, the results obtained show the 
possibility of simulating the dynamic behavior of environmentally 
critical systems with and without safety barriers, providing a quantita
tive feedback on the increase in the operability, environmental safety 
and resilience of the system deriving from the installation of such 

barriers. Thus, the proposed approach can offer to plant managers, 
control room operators, and safety practitioners a crucial support in the 
decision-making process for the installation of safety barriers. 

When considering the specific results obtained in the case-study, it is 
clear that in the case of the first critical event identified, as shown in 
Fig. 11a, the original system cannot withstand the deviations consid
ered. Actually, the performance (red line) decreases rapidly after the 
critical event and reaches a minimum of 2•10− 4, which indicates that 
the system could not comply with the ELVs. The performance curves 
obtained at SR = 1.8 (orange) and SR = 2.5 (green) show that a safety 
barrier consisting in a dolomitic sorbent injection system in the furnace 
has the potential to mitigate the first critical scenario. In fact, the min
imum performance increases if larger SRs are used. Also, the safety 
barrier ensures that the minimum performance occurs earlier, which 
indicates a faster recovery. However, the results also show that a sto
chiometric ratio equal to 1.8 (orange line) is insufficient to avoid 
exceeding emission limits. Indeed, the system performance briefly 
crosses the threshold of 1•10-3− 3 and reaches a minimum of 8.57•10− 4. 
On the contrary, the system performance obtained with SR equal to 2.5 
(green line) reaches a minimum of 5•10− 3, which implies that the 
emission limit has never been exceeded. This finding confirms that the 
proposed approach can not only evaluate the dynamic response of safety 
barriers, but also guide the optimal tuning of their configuration. It 
should also be remarked that carrying out test-runs at the existing fa
cility to explore system behavior in the conditions addressed would have 
been hardly feasible, since compliance to ELVs during tests is not 
granted. 

Regarding the second critical scenario, the original system undergoes 
a complete degradation of performance during the whole critical event 
(red line in Fig. 11b). On the contrary, the automatic startup of the 
backup feeder ensures a minimum performance of 6•10− 3, which gua
rantees compliance with the ELVs. 

The analysis of the performance metrics (Fig. 11) shows that the 
proposed safety barriers can effectively mitigate the critical scenarios 
considered in the case-study carried out. The Resilience Loss may be 
used to quantify the improvements brought by the additional safety 
barriers considered for implementation. Table 2 reveals that the dolo
mitic lime injection increases the system resilience by 21% (SR = 1.8), 
and by 33% (SR = 2.5) respectively when considering the first critical 
scenario. Similarly, the second safety barrier improves system resilience 
by 76%. It must be stressed these results do not suggest that the second 
safety barrier should be preferred over the first one. Actually, each safety 

Fig. 11. System performance as defined in Eq. (8) for a) critical scenario 1 with or without dolomitic lime injection and b) critical scenario 2 with or without 
automatic activation of the backup screw feeder. Dashed threshold line corresponds to ELV HCl concentration. In panel (b), the values of performance for the manual 
case fall below the lower limit for y-axis was set at 10− 5 to allow readability. 

Table 2 
Resilience loss for the two critical scenarios with and without safety barriers.  

Critical scenario Safety barrier RL [s] 

1 No  1651 
1 Dolomitic lime injection (SR=1.8)  1302 
1 Dolomitic lime injection (SR=2.5)  1103 
2 No  2072 
2 Automatic backup feeder  487  
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barrier is installed to deal with a specific event, which means that the 
second safety barrier does not affect the first critical scenario and vice 
versa. Performance comparison of design alternatives should be limited 
to those referring to the same critical event. 

It is also important to mention some limitations of the proposed 
approach that need to be considered. Firstly, it is evident that the pro
posed approach, being based on data-driven models, specifically ad
dresses the retrofitting of existing plants, rather than the design of new 
plants. Nonetheless, even when considering the case-study, the potential 
relevance of the method emerges, in spite of this limitation. Actually, in 
the framework of rapidly evolving regulations on emission control 
worldwide (Huang et al., 2021; Van Caneghem et al., 2019), existing 
WtE facilities need to increase the performance of their FGT systems in 
terms of both removal efficiency and reliability. 

Secondly, the proposed approach addresses specifically the quanti
fication of the effectiveness of the safety barrier. In addition to effec
tiveness, the assessment of safety barriers should take into account other 
criteria, namely response time, availability and level of confidence (de 
Dianous and Fievez, 2006). The response time, intended as the duration 
between the deployment of the safety barrier and the complete 
achievement of its safety function (de Dianous and Fievez, 2006), can be 
estimated from the results of the simulations (see again Fig. 11). The 
time between the detection of the ELV exceedance and the activation of 
the barrier is a required input of the simulations and, as discussed in 
Section 5.2, it can be obtained from tests (as in the case of dolomitic lime 
injection) or from operating experience (as in the case of the backup 
screw feeder). The time between the activation of the barrier and the full 
achievement of its safety function is an output of the simulations, as they 
are dynamic by nature and trace the evolution of barrier effectiveness 
over time. Conversely, aspects related to the level of confidence and the 
availability of the barrier are not assessed in the proposed approach, 
since they are associated with inherent properties and maintenance 
strategies of the barrier components and not with the effect of the safety 
barrier on the functionality of the FGT system, which is the key mech
anism addressed by the simulations. 

Thirdly, in the proposed approach, the evaluation of safety barriers is 
approached solely from an environmental perspective, while economic 
aspects have been disregarded in the case study. This choice aimed to 
demonstrate the feasibility and usefulness of the approach without 
introducing additional complexity. However, economic aspects must be 
considered when evaluating alternatives. For example, the user may 
combine performance and resilience assessment with cost-benefit anal
ysis or more comprehensive techniques such as Life Cycle Assessment 
(LCA) (International Organization for Standardization, 2006). Alterna
tively, further studies may focus on improving the performance metric 
proposed in Eq. (8) to consider the costs associated with a particular 
process configuration. 

Lastly, in the case-study a single barrier was considered for each 
critical event. On the one hand, a more realistic approach would be to 
consider and compare different safety barriers, from the safety, envi
ronmental and economic perspective. On the other hand, considering a 
single barrier provides a straightforward application of the methodology 
to different critical scenarios. Thus, since the intent of the case study is to 
provide a full-scale notional application of the methodology, the latter 
approach was privileged. Nevertheless, the approach developed and the 
specific models may be used as well to address the comparison and se
lection of safety barriers in a more comprehensive decision-making 
framework. 

All in all, the application of the methodology demonstrated the 

possibilities arising from the integration between hazard identification 
techniques (e.g., HazOp and Bow-Tie analysis) and advanced simulation 
tools (i.e., dynamic modeling and resilience analysis) in the context of 
environmental risk management. The proposed framework is flexible 
and different choices in terms of both risk identification and process 
modeling can be adopted, also depending on the characteristics of the 
reference system and the related data availability. 

Moreover, the analysis of the case study suggests that the dynamic 
modeling of critical events and evaluation of safety barriers through 
resilience analysis offers an interesting opportunity to improve envi
ronmental risk management. The approach goes beyond the static view 
of safety barriers (i.e., effective-not effective, and characterized by a 
context-independent Probability of Failure) towards a dynamic vision of 
the risk, where the effectiveness of safety barriers is closely linked to the 
dynamics of the underlying phenomena. The methodology fits perfectly 
in a Dynamic Risk Management framework since it is inherently 
updatable and can be reiterated to account for changes in the environ
ment (e.g., changes in process conditions or plant layout) (Grøtan and 
Paltrinieri, 2016) and to incorporate new information as they become 
available (e.g., considering new critical events as more knowledge is 
accessible) (Paltrinieri et al., 2014). 

7. Conclusions 

The approach described in this study offers a comprehensive and 
structured framework for the dynamic evaluation of safety barriers in 
environmentally critical facilities based on digital modelling. The 
method is based on a pre-defined flowcharts of activities, covering most 
of the risk management phases, from the identification of critical sce
narios to the evaluation of the system response. In addition, the method 
is sufficiently generic to allow some flexibility (e.g., with respect to 
modeling techniques and tools) in order to be adapted to diverse needs. 
The approach has several advantages and novelty elements, such as the 
focus on environmental risk management from a safety engineering 
perspective (which is often disregarded in the literature) and the inte
gration between traditional risk management techniques and modern 
data-driven models, which allows the definition and simulation of crit
ical scenarios and safety barriers that would be impossible to evaluate 
through first-principles or field tests. Furthermore, the methodology 
requires a relatively small set of data, which is often promptly available 
in most gas treatment facilities. In addition, the use of resilience analysis 
for the dynamic evaluation of safety barriers and the intrinsic updat
ability of the approach are further elements of novelty that contribute to 
dynamic risk management. The method has been tested on a full-scale 
real life industrial case study to demonstrate its feasibility and effec
tiveness. The results – which appear informative, yet easy to interpret – 
allow qualitative and quantitative evaluation and comparison of safety 
barriers. In the context of growing attention to environmental issues and 
widespread digitalization of production processes, this study suggests 
that data-driven models may effectively support traditional risk man
agement approaches to improve environmental safety and accomplish 
tasks that are impractical or impossible to perform through first 
principles. 
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Appendix 1. Results of the HazOp analysis 

The full results of the HazOp Analysis are condensed in the bow-tie diagram below.  
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Appendix 2. Supporting information on furnace sorbent injection  

Table A1 
Fitting parameters for different SR groups.  

Group a b c d e 

SR∼1 -3.09 × 10− 7 5.99 × 10− 5 -2.46 × 10− 3 -9.71 × 10− 4 9.83 × 10− 1 

SR∼1.8 -1.68 × 10− 6 1.33 × 10− 4 -2.50 × 10− 3 -3.16 × 10− 2 1.01 × 100 

SR∼2.5 -4.41 × 10− 7 -5.08 × 10− 5 5.60 × 10− 3 -1.37 × 10− 1 1.07 × 100 

Fig A2. Experimental data and fitting curves for SR~1 (a), SR~1.8 (b), SR~2.5 (c). Experimental runs are named xx_yy(zzz), where xx represents the day of 
collection, yy indicates the month, and zzz indicates the dolomitic sorbent feed rate in kg/h. The coefficient of determination of the fitting functions (R2) is displayed 
in the upper right corner. 

Appendix C. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.psep.2023.11.021. 
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Abstract: The overall risk management domain is stepping into its 4.0 phase by implementing and 

increasingly relaying on cyber-technological systems. Enhanced computational power provides the 

capability of processing collected databases for prediction and preparation purposes. In fact, early 

warnings can lead to suggestion for proactive strategies, or directly initiate the action of autonomous 

actuators ensuring the required level of system safety. But have we reached the promises of digital risk 

management yet, or will we ever reach them? A traditional view on safety defines it as the absence of 

accidents and incidents. A forward-looking perspective on safety affirms that it involves ensuring that 

"as many things as possible go right". However, in both the views there is an element of uncertainty 

associated to the prediction of future risks and, more subtle, to the capability of possessing all the 

necessary information for such prediction. This uncertainty does not simply disappear once we apply 

advanced Machine Learning (ML) techniques to the infinite series of possible accident scenarios, but it 

can be found behind modelling choices and parameters setting. In a nutshell, "there ain't no such thing 

as a free lunch", i.e., any model claiming superior flexibility usually introduces extra assumptions. This 

contribution will illustrate a case on climate-driven disaster data extracted from the Emergency Events 

Database (EM-DAT) where ML techniques are used to understand natural disaster mortality and 

unravel underlying causes and influential factors that can inform decision-making and be relevant for 

risk reduction efforts. This manuscript may allow to affirm with certain confidence that present risk 

management systems are not even close to a "no-brainer" condition in which the responsibility for 

human and system safety is entirely moved to the machine. However, this shows that such advanced 

techniques are progressively providing a reliable support for critical decision making and guiding 

society towards more risk-informed and safety-responsible planning. 

 

Keywords: Risk management, Climate hazards, Natural disasters, Machine Learning, Clustering 

 
 

1. INTRODUCTION 
 

At the beginning of the 90s, Prof. Diekmann [1] stated the following: "New analysis tools are emerging, 

which have the potential to allow complex risk analyses to be performed simply. These new tools, which 

are underpinned by decision analysis and, lately, expert-systems technology, may lead to powerful, yet 

simple, approaches to the representation of risky problems." Such optimistic prediction on the future of 

risk analysis was also accompanied by the suggestion of a possible interdisciplinary direction. "Future 

approaches to risk analysis will certainly rely more on the advances being made in Artificial Intelligence 

(AI) and cognitive sciences. New computer tools and knowledge-representation schemes will 

unquestionably lead to new techniques, insights and opportunities for risk analysis."  

 

In the same decade (1997), the Russian chess grandmaster Garry Kimovich Kasparov (former World 

Chess Champion, ranked world No. 1 from 1984 until his retirement in 2005) lost a chess game with 
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the chess playing computer Deep Blue by IBM, which was an example of Good Old-Fashioned 

Artificial Intelligence (GOFAI) [2]. On that game, Kasparov later stated the following: "Deep Blue was 

intelligent the way your programmable alarm clock is intelligent [3]. Not that losing to a 10-million-

dollar alarm clock made me feel any better."  

 

In general, risk management has tried to make use of AI, but it has unevenly progressed since the 

mentioned events. It neither respected Diekmann's prediction (methodological gaps are still present [4]), 

nor turned into "programmable-alarm-clock intelligence" thanks to the progressive refinement of 

Machine Learning (ML) models and the increase in available computing power [5]. 

 

This contribution aims to outline what AI, and in particular ML techniques, can bring to risk analysis 

and management by illustrative examples related to  climate-driven events (e.g., storms, floods, drought, 

heatwaves) . ML techniques are used to understand natural disaster mortality and unravel underlying 

causes and influential factors that can inform decision-making and be relevant for risk reduction efforts. 

 

1.1. Machine Learning and Big Data 

 

AI is intelligence demonstrated by machines and it is divided into sub-fields based on technical 

considerations, such as particular goals (e.g., "robotics" or "machine learning"), the use of particular 

tools ("logic" or artificial neural networks), or deep philosophical differences. 

 

This contribution focuses on the sub-field of Machine Learning (ML). ML refers to techniques aiming 

to program computers to learn from experience [6]. ML is known for providing meaning to raw data 

and solving practical problems in a reliable and efficient way. These problems require machine 

assistance since the amount of data and the complexity of the statistical patterns imply that humans 

would not be able to solve them via traditional techniques [7].  

 

ML rely on a collection of examples of some phenomena, to be used for training and finding patterns 

that can help make decisions and predictions for new, unseen information [8]. ML has several practical 

applications in present industrial processes [9], and it may be the key to unlocking the value of safety 

data to perform novel risk management systems. Therefore, a computer may run a ML algorithm to 

assess risks for safety-critical industries (e.g., Oil and Gas). It would allow processing a large amount 

of information in the form of indicators from normal operations and past undesired events (from 

mishaps to major accidents), which would be used for training the algorithm. Due to the subjectivity of 

risk definition [10], risk level cannot be assigned to each event with certainty and a supervised approach 

may be needed. Practical examples of ML adoption in risk management refer to predict system losses 

and possible risks in undesired cases [4]. Among the most used ML algorithm, one can find the 

clustering, used to reveal (in an unsupervised way) meaningful groups within a dataset based on 

underlying patterns or structures [11]. 

 

Increasing attention has been dedicated to monitoring safety barrier performance through indicators, as 

a way to assess and control risk. Indicators may report a series of factors: physical conditions of a plant 

(equipment pressure and temperature), number of failures of an equipment piece, maintenance backlog, 

number of emergency preparedness exercises run, amount of overtime worked, etc. [12]. Øien et al. 

[12], Paltrinieri et al.[13], [14], and Landucci et al. [15] have produced several reviews on risk and 

barrier indicators. They show that definition and collection of risk indicators have become consolidated 

practices in "high-risk" industrial sectors. Such trend towards definition and collection of higher 

numbers of indicators [16] demonstrates the mentioned challenge on big data process for risk level 

assessment.  

 

In recent years, several studies have focused on ML techniques to support natural disaster risk 

management. One widespread approach is the analysis of disaster databases and reports to extract 

relevant information and support risk-informed decision-making [17]. An exhaustive overview of ML 

applied to natural risk management may be found in [18], [19]. However, most of these investigations 

focus on illustrating the potential and effectiveness of their approaches. Still, little attention has been 
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paid to the role of ML and whether its extensive use will lead to a condition where the responsibility 

for human safety is entirely moved to the machine. This study attempts to bridge this knowledge gap 

by illustrating an example of ML for natural disaster risk management and evaluating the need for 

human knowledge to interpret and contextualize the results. 

 

1.2. Climate-driven natural disasters  

 

Data analysis of climate hazards can aid risk management by shedding light on disaster characteristics, 

challenges, differences amongst regions, and similar events. Climate hazard management denotes the 

systematic actions focused on reducing the negative effects of disasters [20].  

 

Mitigation measures contribute to climate hazard management by minimizing, monitoring, and 

reducing the probability of severe consequences, the corresponding avoidable impacts, and the 

unfortunate outcomes of natural hazards [21]. The risk for individuals inflicted by climate disasters 

differs based on societal vulnerability and exposure, and environmental conditions [22]. Climate change 

has forced more than 20 million people to move from their homes each year [23]. The development 

level of a country might affect the consequences of a natural disaster. It is often remarked how those 

living in poverty are hardest hit despite being the least responsible for climate change. 

 

The increasing frequency of natural hazards led to greater attention worldwide devoted to mapping and 

reducing natural risks [24], unraveling and explaining potential impacts on societies. Vulnerability in 

this context can be a risk factor, but also an outcome: disaster exposure may lead to poverty causing 

damage to assets and livelihoods [25]. Besides, larger climate-driven disasters often cause extensive 

property damages and a high number of fatalities. Research has shown that natural disaster-related 

damages and mortality have increased in the past decades [23], [26]. 

 

Further research is needed to develop systematic approaches on disaster causes and impacts to improve 

responses, anticipation capacity, design risk prevention and mitigating interventions prior to or 

following major climate hazards. The International Disaster Database (EM-DAT) developed by the 

Centre for Research on the Epidemiology of Disasters (CRED) gathers data on natural disasters and 

maps them into different classification categories, impacts, and causes.  

 

The study focuses on these climate-driven disasters in terms of societal impact, both on populations and 

properties, as they can be of relevance for industrial systems as well. EM-DAT is analyzed by using 

ML algorithm to investigate potential clusters of countries that show commonalities and subsequently 

can drive to common natural risk management mitigations.  

 

2. EXAMPLE OF ML-BASED FOR RISK MANAGEMENT 
 

2.1. EM-DAT database 

 

The EM-DAT database was created following the 1980's investigation by CRED. The study was carried 

out to serve the purposes of humanitarian action at national and international levels. The initiative aimed 

to rationalize decision-making for disaster preparedness, as well as provide an objective base to assess 

vulnerability and set priorities.  

 

The database is compiled from various sources, including United Nations agencies, non-governmental 

organizations, insurance companies, research institutes, and press agencies, e.g., United Nations 

Department of Humanitarian Affairs (UN-DHA), European Union Humanitarian Office (ECHO), 

International Federation of the Red Cross and Red Crescent, the Office of Foreign Disaster Assistance 

(OFDA-USAID), International Committee of the Red Cross and Red Croissant (ICRCRC, 

Switzerland), International Decade for Natural Disaster Reduction (IDNDR) [27].  

 

Currently, EM-DAT collects more than 25000 disasters between 1900 - 2020. All the events in the EM-

DAT database fulfill one or more of these entry criteria [27]:  
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- Deaths (10 or more people deaths) 

- Affected (100 or more people affected, injuries or homeless) 

- Declaration/Appeal (declaration by the country of a state of emergency and/or appeal for 

international assistance) 

 

The reported incidents worldwide involve 189 countries, distributed as follows:  

- About 15000 accidents are related to natural impacts (e.g., drought, extreme temperature, flood, 

landslide, storm, wildfire, etc.),  

- About 10000 accidents refer to technological impacts (i.e., industrial, transport, and 

miscellaneous impacts). 

Technological events have not been considered in this study, and attention has been directed toward 

natural disasters. More specifically, only climate-driven disasters are examined (e.g., storms, floods, 

droughts, heatwaves). Other types of natural disasters (e.g., geophysical, biological, and extra-

terrestrial) have been excluded from the analysis. 

 

The database incorporates 43 parameters (e.g., location, date, damage, fatalities, disaster type, origin, 

reconstruction cost, insured damage, appeal, impacts) to fully detail the characteristics of the accident 

and allow its analysis [27]. 

 

3. METHOD 
 

K-means is one of the most frequently used and effective clustering algorithms, as proved by results 

obtained in several diverse application contexts [28]. K-means has been used in this study to cluster 

countries found in EM-DAT, based on their similarity toward natural disaster exposure. The algorithm 

tries to group data by minimizing the within-cluster-sum-of-squares, which represents the distance 

between each data point and the cluster centroid [29]. Figure 1 depicts a flow chart in which explain the 

steps to perform a clustering algorithm. 

 

Figure 1. Flowchart of k-means-based clustering 

 
 

K-means is a partitioning algorithm that relies on the concept of distance and local optimization to 

perform clustering. One of the most common metrics to compute distances in k-means is the Euclidean 

distance, as it is flexible to accommodate different operational situations. Another characteristic of the 

algorithm is that it requires the user to specify the number k of clusters (step 1 in Figure 1). The 

algorithm will always converge, but it is vulnerable to local minima. This will depend on how centroids 
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are initialized. By running the algorithm with a specified number of clusters 𝑘, 𝑘 random samples from 

the dataset are allocated as cluster centroids.  

 

After the selection of k, the main steps of the k-means clustering algorithm are: 

- Initialization: the step to choose k initial centroids (step 2 in Figure 1) 

- Looping: iterative steps to stabilize centroids until reaching convergence or a maximum number 

of iterations (steps 3, 4, and 5 in Figure 1). This loop requires two sub-steps: 

o Assigning samples to their nearest centroid based on a selected distance measure. 

o Compute the mean of the assigned samples and create a new centroid. 

K-means with Euclidean distance has been used to map countries' clusters as they appear in the EM-

DAT database. 

 

Clusters must be validated to check the logical cohesion between the clustered items and to compare 

the separation among them. A useful metric for validating the significance of clusters is the silhouette, 

whose scores represent the distance from one sample to the samples in the neighboring clusters [30]. 

Silhouette coefficients range between -1 and 1 where values close to 1 indicate high compactness within 

the cluster, which in turn implies longer distances among the sample and the neighboring clusters. 

Silhouette scores close to 0 indicate overlapping clusters, while negative values indicate a possible 

misplacement of the sample [31]. 

 

Within this case study, the algorithm runs on a set of selected features considered relevant for the scope 

of the analysis: World region, Disaster count, Missing data, Gross Domestic Product based on 

Purchasing Power Parity (GDP PPP), Population density, Disaster type, Total deaths. It is worth 

mentioning that GDP PPP and Population Density data are not available in EM-DAT and have been 

retrieved from external sources [32], [33]. In addition, categorical features have been converted into 

numerical features and standardized through z-score normalization. 

 

4. RESULTS AND DISCUSSION 
 

4.1. Clusters  

 

The clustering algorithm allowed splitting the 189 countries involved in natural hazard accidents into 

40 clusters of varied sizes. Considering the relatively large number of clusters, a complete review would 

be impractical. Therefore, a selection of the most interesting clusters is presented. Two criteria have 

been considered in the selection: cumulative number of fatalities and cluster compactness. Also, clusters 

that comprise only one country are treated separately. 

The cluster with the highest cumulative number of fatalities and with more than two countries is: 

Cluster 1. Bangladesh, France, Germany, Japan, Poland, South Korea, and Vietnam. 

The cluster with the largest average intra-cluster silhouette score is: 

Cluster 2. Cayman Islands, Saint Kitts and Nevis, and Turks and Caicos Islands. 

On the other hand, the cluster with the smallest silhouette score is: 

Cluster 3. Jamaica, Madagascar, Mauritius, Sint Maarten. 

In addition, 11 clusters include only one country. Examples of these clusters are: 

Cluster 4. China; 

Cluster 5. India; 

Cluster 6. USA. 

Relevant information about the countries in each cluster is summarized in Table 1. For each country, 

Table 1 displays the number of fatalities, the most frequent and severe natural disaster types, the 

location, and the income group [34]. Clusters and countries are displayed in descending order of number 

of fatalities. 
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Table 1. Relevant information about the countries in the selected clusters 

 

The silhouette plot of the selected clusters is displayed in Figure 2. Clusters that comprise only one 

country have not been included because their silhouette score equals zero. 

 

Figure 2. Silhouette plot of the selected clusters. 

 
The average silhouette score of the selected clusters (red vertical line in Figure 1) is equal to 0.21. 

Instead, the average silhouette score is 0.24 if all the 40 clusters are considered. It is also worth noting 

that Poland, Mauritius, Jamaica, and Sint Maarten show negative silhouette scores. 

Cluster Country Fatalities Threats      (fatalities) Location Income [34] 

4 China 17.006.913 
Flood       (10.321.805) 

Drought     (6.503.534) 
East Asia  Upper-Middle 

5 India 4.515.665 
Cyclone        (160.575) 

Drought     (4.250.320) 
South Asia Lower-Middle 

1 Bangladesh 2.590.573 
Cyclone        (627.048) 

Drought     (1.900.018) 
South Asia Lower-Middle 

 Japan 50.565 
Cyclone          (32.838) 

Flood              (13.513) 
East Asia High 

 France 28.793 Heatwave       (27.517) Western Europe High 

 Vietnam 26.025 
Cyclone          (19.189) 

Flood                 (3644) 
Southeast Asia Lower-Middle 

 Germany 10.213 Heatwave          (9361) Western Europe High 

 South Korea 8932 Cyclone             (3727) East Asia High 

 Poland 2378 Cold wave         (2085) Central Europe High 

6 USA 41.359 Storm              (30.942) North America High 

3 Madagascar 3161 Cyclone             (2834) Sub-Saharan Africa Low 

 Jamaica 1391 
Flood                   (730) 

Cyclone               (604) 
Caribbean Upper -Middle 

 Mauritius 81 
Cyclone                 (28) 

Flash flood            (11) 
Sub-Saharan Africa Upper-Middle 

 Sint Maarten 4 Cyclone                   (4) Caribbean High 

2 Saint Kitts and Nevis 6 Cyclone                   (6) Caribbean High 

 Cayman Islands 2 Cyclone                   (2) Caribbean High 

 Turks and Caicos  0  Caribbean High 
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4.2. Discussion 

 

Data in Figure 2 and Table 1 allows some observations on cluster composition, similarities and 

differences between members of the same clusters, and opportunities for inter-country knowledge 

sharing. In the remainder of this section, each cluster will be briefly commented, similarities and 

differences will be discussed in terms of fatalities, disaster type, development level, and economic 

possibilities. The discussion will focus on investigating whether the proposed method has effectively 

grouped countries that show similarities and subsequently can drive to common natural risk 

management mitigations. 

 

The three most populous countries in the world – i.e., China, India, and the USA – belong to stand-

alone clusters and have not been considered similar to any other country in the dataset. This result is 

not surprising considering the unique characteristics of these countries in terms of location, area, 

exposure to natural threats, and economy. The number of fatalities in India and China is respectively 

one and two orders of magnitude larger than any other cluster. Also, China has a unique exposure to 

riverine floods and drought, which together caused 99% of the total number of fatalities (Table 1). India 

on the other hand is naturally exposed to severe droughts, which have caused more than 94% of the 

total deaths (Table 1). From an economic perspective, China has witnessed extraordinary growth in the 

last three decades and is currently the second-largest economy by GDP (Gross Domestic Product) in 

the world after the USA [35]. On the other hand, India is the sixth-largest economy, and its annual 

growth rate in terms %GDP has been larger than the USA but smaller than China since 1990 [36]. 

Geographically, China, India, and the USA are respectively the third, fourth, and seventh-largest 

countries by area [37], and they cross various climate zones [38]. In light of their unique characteristics, 

the grouping of these countries in stand-alone clusters appears reasonable. Also, a large body of research 

has focused on the study of climate-driven disasters in these countries [39]–[43]. Existing studies and 

governmental mitigation and response plans might be good opportunities to (i) share knowledge and 

lesson learned between these three countries and (ii) provide critical assistance to smaller, less-

developed countries which have similar exposure to climate-driven events (e.g., Vietnam concerning 

flooding and Bangladesh concerning storms and droughts). 

 

Regarding clusters with more than one country (i.e., clusters 1, 2, and 3), it can be observed that some 

clusters show apparent internal similarities while others are more difficult to interpret. For instance, 

cluster 2 was chosen because its members have the largest average similarity score (Figure 2), which 

indicates high compactness and separability [44]. Indeed, countries in this cluster, namely Saint Kitts 

and Nevis, Cayman Islands, and Turks and Caicos, are extremely similar: they all are archipelagos in 

the Caribbean Sea, classified as high-income countries, with a relatively low number of fatalities. Due 

to their location, the islands have been affected by several cyclones and storms. Nevertheless, the 

number of climate-related deaths is extremely low. Considering the already significant success of these 

countries in coping with tropical storms, there might be little scope for inter-country knowledge sharing. 

However, islands in different clusters with similar exposure to natural threats (e.g., Fiji Islands) may be 

inspired by the measures adopted by the countries in cluster 2. In other words, although knowledge 

transfer between countries in high-compact clusters may not appear interesting, there are still interesting 

learning opportunities for countries that have similar exposure but that were put in a different cluster 

due to significant differences in, e.g., the number of fatalities. 

 

Cluster 3 was selected for the low silhouette score of its members, which are Madagascar, Jamaica, 

Mauritius, and Sint Maarten. Three out of four countries show a negative silhouette score, indicating 

low compactness and separability [44]. However, it is still possible to spot some similarities between 

the members of this cluster, which are islands or archipelagos, relatively close to each other in pairs. In 

spite of the differences, a more detailed analysis might reveal hidden similarities and interesting 

learning opportunities. 

 

Cluster 1 was chosen because it shows the largest cumulative number of fatalities between clusters with 

more than two countries; therefore, it is definitely the most critical and interesting within the whole 

database. The cluster comprises Bangladesh, Japan, France, Vietnam, Germany, South Korea, and  
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Poland. Figure 2 shows that the members of this cluster have positive silhouette scores except for 

Poland, whose score is -0.04. Therefore, Poland may be considered an outlier and will not be considered 

further in the analysis. Interestingly, in spite of the relatively high compactness, cluster 1 appears rather 

heterogeneous. It comprises countries from different locations, with diverse socio-economic 

backgrounds and exposure to natural hazards. It is not trivial to identify similarities in this cluster. 

However, this should not be perceived as a limitation. On the contrary, comparing countries with both 

similarities and differences in disaster situations, demographics, and economy might be extremely 

interesting. It is not desirable to create 'perfect' clusters of countries for natural disaster comparison. A 

cluster of neighboring countries with the exact same possibilities and disaster situations is not advisable 

because there is little room for improvements and knowledge transfer. For cross-country learning to be 

relevant and helpful, it is beneficial that some countries are more exposed, developed, or prepared for 

disasters than others. However, countries should also exhibit some similarities in the disaster patterns 

and threats to facilitate comparison and the creation of actionable insights.  

In light of these considerations, clustering algorithms must be considered tools to reveal similarities and 

guide the analysis towards countries that may be more interesting to compare. However, in-depth 

analyses are still needed to make sense of data, interpret clusters, discover hidden similarities, and 

enable cross-country learning and knowledge transfer. In other words, clustering algorithms have the 

potential to greatly simplify the analysis by removing the need for manual screening. However, human 

intervention and expert knowledge are needed to convert groups of related countries into actionable 

insights. 

 

Considering the number of fatalities, Bangladesh can be regarded as an outlier due to its extreme history. 

The total number of climate-driven natural disaster fatalities in the country has been almost 2.6 million 

since the year 1900. Manual analysis of the EM-DAT database reveals that despite an increasing trend 

in the number of critical events, fatalities have decreased in recent times. Specifically, in the time period 

following 1992, the number of deaths has decreased, major outliers were less frequent, and resulted in 

fewer deaths. Nevertheless, tropical cyclones and storm surges have been particularly severe since 1900 

[45]. The decreasing fatalities in spite of an increasing number and severity of cyclones suggest a 

significant improvement in mitigating measures. From an economic point of view, Bangladesh is 

relatively less developed than the other members of the cluster. GPD value is larger than Vietnam's but 

significantly lower than the other counties. 

 

Vietnam is the fourth country in cluster 1 in terms of total fatalities. Similar to Bangladesh, the country 

is exposed to tropical cyclones and storms, although the number and severity of critical events are lower. 

Similar to Japan, a relevant part of the fatalities is caused by floods. Nevertheless, Vietnam has 

experienced a decreasing trend of fatalities in the past 20 years, although the decrease is less pronounced 

than in Bangladesh. From an economic point of view, Vietnam went from being one of the poorest 

countries in the world to becoming a lower-middle income country [35]. However, the development in 

Vietnam started later compared to other developed Asian countries like South Korea and Japan, but the 

growth rate has been faster than in Bangladesh [46]. 

 

Japan is the second country in cluster 1 in terms of total fatalities. Due to its location and geography, 

the country is particularly exposed to tropical cyclones, storms, localized rains, and floods [47]. 

However, the relatively large number of fatalities does not indicate unpreparedness or ineffective 

response to natural hazards. On the contrary, the continuous exposure to natural threats pushed the 

country towards increasingly effective mitigation measures [48], [49]. In fact, more than 82% of the 

total deaths were registered before 1960. After that year, the number of fatalities decreased drastically 

and has remained relatively stable. However, the trend has reversed during the last 20 years, and the 

number of fatalities has slowly returned to grow. This change may be related to the increasing frequency 

and severity of natural hazards. It is also worth mentioning that a relatively new type of event, namely 

heatwaves, has caused the most fatalities in the last ten years. Specifically, heat waves have caused 735 

deaths since 2010, while tropical cyclones and floods caused 591 and 447 fatalities over the same 

period. Interestingly, heatwaves caused only 135 events from 1900 to 2010. The recent increasing trend 

in the number of fatalities differentiates Japan from Bangladesh and Vietnam. From an economic point 
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of view, the Second World War had marked the beginning of extraordinary growth for Japan, which is 

currently one of the leading industrialized countries in the world. 

 

Germany and France have significantly fewer fatalities than Bangladesh and Japan, and they are the 

only European countries in the cluster. Another difference is that most fatalities in Germany and France 

occurred after 2000 and were primarily caused by heatwaves. For instance, the heatwave of 2003 is 

responsible for 68% and 92% of the total deaths registered in France and Germany, respectively. This 

may indicate that rising global temperatures and climate change have affected countries that were not 

significantly exposed to natural threats in earlier times [50]. France and Germany have strong and stable 

economies and are respectively the seventh and fourth countries in the world in terms of GDP [35]. 

 

South Korea is the country with the least number of fatalities in cluster 1. Like Japan and Vietnam, 

South Korea is exposed to storms and floods, which are responsible for most deaths. However, extreme 

events are less frequent and intense in South Korea than in the other Asian countries in cluster 1. Also, 

the dataset analysis reveals a downward trend in the number of fatalities. Overall, South Korea is less 

exposed to natural hazards than Japan, Vietnam, and Bangladesh. However, more frequent and severe 

events are expected in the future to the effect of climate change [51]. From an economic point of view, 

the country grew from being a lower-income before 1980 to be a high-income economy in 1995 and 

currently the tenth country in the world in terms of GDP. 

 

In light of the considerations made for countries in cluster 1, the following suggestions and learning 

opportunities may be identified: 

1. Vietnam and Bangladesh may be considered similar with respect to exposure to tropical cyclones. 

In addition, both the countries are low-middle income economies. Nevertheless, Bangladesh has 

been more successful in mitigating the effect of extreme events. Therefore, Vietnam could be 

inspired and learn from the affordable mitigating measures implemented in Bangladesh. 

2. Japan offers significant learning opportunities for Vietnam and Bangladesh because it has similar 

exposure and has invested many resources into natural disaster prevention and mitigation policies. 

Less developed countries could greatly benefit from the lessons learned by countries with more 

financial resources. 

3. The number of deaths in Bangladesh and Vietnam decreased during the last two decades, while the 

trend has inverted in Japan. This may be due to, e.g., increased elderly population, urbanization, 

and coastal moving, which all imply that more people are exposed to natural hazards. Future 

building and infrastructure plans should consider natural risks in order to avoid turning common 

hazards into major catastrophes due to demographic changes and population growth. 

4. Considering the effect of climate change and the increasing global temperatures, it might be 

beneficial for the countries that have not experienced severe heat waves (e.g., Vietnam and Korea) 

to learn from countries that have been severely affected (e.g., France and Germany) in order to 

improve awareness and preparedness to possible extreme temperature events in the future. 

5. Germany and Korea appear to be the less vulnerable countries in the cluster. Therefore, they should 

pay close attention to the current changes in trends and improve hazard preparedness. The less 

vulnerable, developed countries have economies that facilitate research on innovative mitigation 

measures. The focus should be to create low-cost, high-impact measures since natural disasters 

cause more harm to poorer countries and tend to worsen poverty and unemployment. 

 
In general, the countries in cluster 1 offered interesting insights and discussion points. This suggests 

that the clustering procedure has successfully identified groups of countries that share similar 

characteristics and can benefit from each other's experiences and lessons. However, it must be recalled 

that the analysis of clusters requires manual intervention and expert knowledge to, e.g., interpret and 

evaluate the results of the clustering procedure, identify hidden similarities and differences between 

countries, analyze trends and recognize learning opportunities. Therefore, the results from this example 

of ML clustering for risk management purposes show how the techniques used require a deep 

understanding of their benefits, limitations, and application boundaries. For this reason, this 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

contribution aims to convey the message that ML-based techniques must be considered as tools 

supporting and not substituting decision-making.  

 

Awareness and knowledge of these tools properties by the user is essential to effectively exploit their 

results. The role of the human as user of these tools is even more central than before. ML should not be 

intended as a way to replace the human, but only as an improved approach assisting the human. This is 

conform with the concept of trustworthy AI by the European Commission [52] promoting explainable 

AI (XAI) human centrality by means of interpretability, info-besity (overload of information) 

avoidance, and transparency. 

 

5. CONCLUSION 
 

Considering the widespread adoption of AI and ML algorithms, many wonder whether we are 

proceeding toward a "no-brainer" era, where machines will be in charge of critical decisions, and human 

knowledge will have only a marginal role. This issue is especially important in the context of risk 

assessment and management, where errors may result in fatalities and significant economic losses. This 

study suggests that we are not yet close to such a condition since humans still play a key role in the 

decision-making process. In addition, we claim that ML algorithms may provide critical support and 

better-informed decision-making if certain conditions are met. These conditions include knowing (i) 

what the algorithm does, (ii) how it does it, and (iii) what the limitations are. We discuss this topic 

through an example of clustering of climate-driven natural disasters. EM-DAT dataset is used as the 

data source, and k-means is used to group countries that share similar characteristics with respect to 

exposure to natural disasters. The cluster analysis revealed underlying causes and influential factors 

that can inform decision-making and enable cross-country learning. However, the objective of this 

investigation is not to present and discuss an example of "perfect" clustering. On the contrary, the 

overall intent is to show that effective deployment of ML models must consider the role of humans in 

the design of the algorithms and interpretation of the results. This study shows that human knowledge 

still plays a pivotal role in developing and implementing ML algorithms. For example, expert 

knowledge is required for features selection, model hyperparameters tuning, evaluation strategy 

selection, and, more importantly, cluster analysis and interpretation. These steps involve human 

intervention and, therefore, heavily rely on human knowledge. In light of these considerations, ML 

algorithms are to be considered (advanced) tools, and like most tools, they are only as good as their 

users. Therefore, AI and ML must be considered powerful and reliable tools to extract hidden patterns 

from data and provide suggestions to decision-makers; however, humans are still essential to interpret 

those suggestions and, eventually, convert recommendations into actions. 
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