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A B S T R A C T

Perioperative monitoring of cardiac function is beneficial for early detection of cardiovascular complications.
The standard of care for cardiac monitoring performed by trained cardiologists and anesthesiologists involves
a manual and qualitative evaluation of ultrasound imaging, which is a time-demanding and resource-intensive
process with intraobserver- and interobserver variability. In practice, such measures can only be performed
a limited number of times during the intervention. To overcome these difficulties, this study presents a
robust method for automatic and quantitative monitoring of cardiac function based on 3D transesophageal
echocardiography (TEE) B-mode ultrasound recordings of the left ventricle (LV). Such an assessment obtains
consistent measurements and can produce a near real-time evaluation of ultrasound imagery. Hence, the
presented method is time-saving and results in increased accessibility. The mitral annular plane systolic
excursion (MAPSE), characterizing global LV function, is estimated by landmark detection and cardiac view
classification of two-dimensional images extracted along the long-axis of the ultrasound volume. MAPSE
estimation directly from 3D TEE recordings is beneficial since it removes the need for manual acquisition of
cardiac views, hence decreasing the need for interference by physicians. Two convolutional neural networks
(CNNs) were trained and tested on acquired ultrasound data of 107 patients, and MAPSE estimates were
compared to clinically obtained references in a blinded study including 31 patients. The proposed method for
automatic MAPSE estimation had low bias and low variability in comparison to clinical reference measures.
The method accomplished a mean difference for MAPSE estimates of (−0.16 ± 1.06) mm. Thus, the results
did not show significant systematic errors. The obtained bias and variance of the method were comparable
to inter-observer variability of clinically obtained MAPSE measures on 2D TTE echocardiography. The novel
pipeline proposed in this study has the potential to enhance cardiac monitoring in perioperative- and intensive

care settings.
1. Introduction

The clinical standard for perioperative evaluation of heart function
is based on vital signs and clinical observations. This conventional
monitoring consists of measurements of blood pressure, heart rate, and
arterial oxygen saturation, and is imperative in the event of severe
illness. Nonetheless, the clinical care standard lacks direct monitoring
of heart function.

Surveillance of heart function by echocardiography can enhance
diagnosis accuracy and positively impact clinical decision-making [1,
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2]. Transesophageal echocardiography is a valuable and highly used
technique for the perioperative evaluation and monitoring of LV func-
tion [3] and is in recent times widely adopted in the operating theatre.
Since the ultrasound probe is placed in the esophagus during surgery,
the transducer is close to the heart and provides high-quality imaging of
anatomical cardiac structures. Additionally, since the probe is situated
stationary in the esophagus after placement, TEE acquisitions may re-
quire less manipulation by the clinicians during interventions compared
to standard transthoracic echocardiogram (TTE).
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Cardiologists or anesthesiologists assess LV systolic and diastolic
function by discrimination of the continuous imaging acquired by TEE.
LV function is estimated by visual appraisal of myocardial deformation
and excursion, as well as time-consuming quantitative analysis. The
clinical value and usage of LV monitoring by visual inspection of TEE
imaging is, nevertheless, restricted by four drawbacks:

1. Qualitative measures are dependent on subjective visual evalu-
ations, which results in observer variability.

2. Visual inspection of echocardiographic images is a procedure
of high complexity performed by experts, thus deviating the
cardiologist’s or anesthesiologist’s focus from other imminent
assignments during interventions.

3. Repeated manual evaluation of imagery by experts is expensive
in terms of both expert resources and hospital costs.

4. Due to the plenitude of acute tasks during interventions, the clin-
ical use of LV monitoring is strongly restricted or not practically
feasible.

Automatic estimation of LV function based on TEE imagery may
herefore be highly valuable for perioperative monitoring. Automatic
stimation of global LV function possesses the potential to increase
oth the clinical usage and diagnostic value of cardiac monitoring.
ncreased use of LV function surveillance in general intensive care
ettings may benefit patients with heart failure, myocardial infarc-
ion, hypertrophic cardiomyopathy, aortic stenosis, atrial fibrillation,
r other severe illnesses [4,5].

MAPSE is a robust measure of global LV longitudinal function and
epends on contractility and load [6]. MAPSE is a parameter with
igh reproducibility and low dependence on image quality [7], and
s proven to be a useful parameter for assessment of LV longitudinal
unction [8–10]. It has a high correlation with global longitudinal
train (GLS) [11], and is suggested as a surrogate for LV ejection
raction (LVEF) [12]. Since the apex is not always clearly visualized
n TEE recordings, MAPSE estimation results in increased feasibility
nd robustness compared to the estimation of LVEF. MAPSE is shown
o possess a high correlation with cardiovascular pathology when the
ardiac longitudinal function is affected, for instance, coronary artery
isease, myocardial infarction, and dilated cardiomyopathy [9,13–15].
eflecting the impaired longitudinal shortening, MAPSE is a sensitive
arly marker of systolic dysfunction in LV hypertrophy, while LVEF
ay remain preserved in the same situation [9,16,17]. Hence, auto-
atic estimation of MAPSE through TEE recordings could be valuable

or perioperative cardiac monitoring. MAPSE is therefore the chosen
ocus area of this study.

.1. Related works

Automated estimation of physiological parameters describing heart
unction has been employed in numerous studies earlier. Nordal [18]
btained a pipeline for MAPSE prediction on two-dimensional TEE
ltrasound images with mid-esophageal two chamber- (2C) and four
hamber (4C) views, with a mean difference of (−0.08 ± 1.38) mm com-

pared to clinically obtained measures. The proposed method proved
a promising potential for the use of machine learning in automated
MAPSE estimation. Nonetheless, the study contained limitations due to
the dependence on high-quality mid-esophageal 2C- and 4C echocar-
diographic images, and uncertainty in estimates by virtue of a small
dataset in both training and validation of the method. Storve et al.
[19] and Grue et al. [20] presented an approach for the detection of LV
dysfunction from color tissue Doppler apical four-chamber recordings
with MAPSE estimation. Grue et al. found that MAPSE ≤ 10 mm
detected LV dysfunction with a sensitivity of 82% and a specificity of
76%. The method is designed for transthoracic echocardiograms, and
thus less applicable for monitoring purposes.

Automatic alignment of 3D ultrasound volumes has been proven
2

possible through earlier publications. Orderud et al. [21] presented a
method for TTE data based on segmentation of the LV using a cou-
pled deformable model. Landmarks extracted from the segmentation,
corresponding to the apex and base, were used to align the volume.
Such an approach is not suitable for the TEE data available in this
study, since the apex is barely visible in the acquisitions. Veronesi et al.
[22] suggested a method for alignment based on long-axis measure-
ments through optical flow, but the pipeline was dependent on manual
interaction by the operator and thus not suited for a fully automatic
method.

3D segmentation and modeling of the mitral valve from 3D ul-
trasound recordings for evaluation of mitral valve (MV) morphology
have been proven possible in earlier studies [23–26]. Similarly, a set
of studies have performed localization of the mitral annulus from 3D
TEE data for detection or tracking of the mitral ring shape and motion,
and for transcatheter MV repair guidance [27–30]. Fully automatic
deep learning-based segmentation of the mitral annulus with TEE ul-
trasound acquisitions has previously been completed by Nordal [18]
and Andreassen et al. [31] with promising accuracy, for 2D and 3D
data. Classification of standard cardiac views in 2D and 3D TTE imagery
based on a convolutional neural network was proposed by Østvik et al.
[32]. The published method included an original and lightweight CNN
with real-time performance. The mitral annulus segmentation applied
in the current study is a continuation of the works presented by Nordal
[18] and Andreassen et al. [31], and the view classification applied
in the current study is completed with a modified version of the CNN
proposed by Østvik et al. [32]. The resulting pipeline provides fully
automatic MAPSE estimations on 3D TEE imagery, with no need for
assistance or probe adjustments.

1.2. Objectives

The overall research goal is to develop and establish a robust
non-harming method for automatic cardiac monitoring of global LV
function. Since the ultrasound probe must be in a neutral position
during a perioperative cardiac monitoring setting due to patient hazard,
the method must handle varying image quality. To achieve the aim of
the study, volume alignment, 3D segmentation of the mitral annulus
and classification of standardized cardiac views from 3D echocardiog-
raphy recordings are obtained and MAPSE is estimated through a set
of post-processing computations. Since the pipeline is based on 3D TEE
ultrasound recordings, the method is fully automatic, and no inference
by a physician is needed. The accuracy of the proposed methodol-
ogy is evaluated by comparison of estimates to clinical measures and
state-of-the-art methods.

2. Materials and method

2.1. Dataset and pre-processing

The dataset used in the development and evaluation of the method
is 3D TEE B-mode ultrasound images from the Echocardiography Unit,
Clinic of Cardiology at St. Olavs University Hospital in Trondheim,
Norway. The imaging was performed by cardiologists with expertise
in echocardiography. The scanners used to obtain the TEE data were
clinical scanners named GE Vivid E95. A 6VT-D probe was used for
recording purposes, provided by GE Vingmed, Horten, Norway. The
depth and angle of the ultrasound sector were adjusted such that the en-
tire LV was visualized. The frame rate of the acquired data varied from
4 to 36 frames per second (FPS), with a mean of 15 FPS. The ultrasound
probe was in a neutral position during acquisition to mimic conditions
present in the operating room (OR) during monitoring. Hence, the
available data are subject to a significant amount of foreshortening
and variable image quality compared to standard echocardiograms.
Additionally, respiratory movement of the heart is present. 3D TEE
echocardiography from a total of 107 patients were included in the

study. Several recordings were acquired for each patient, resulting in a
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Table 1
Overview of the 3D TEE dataset.

Train/Validate Test

Patients 76 31
Recordings 197 65
Frames 2448 855
Extracted images annotated for volume alignment 258 840 81 360
Extracted images annotated for view classification 395 280 131 580

total of 262 ultrasound recordings. Each recording included 3 cardiac
cycles in total.

The dataset was divided into a train set and a test set, as presented
in Table 1. The train set was used for training and validation of the
networks related to volume alignment and cardiac view classification,
and the test set was utilized to evaluate the volume alignment, cardiac
view classification and MAPSE estimation. A total of 33 out of the 262
recordings were excluded from the volume alignment dataset due to
insufficient image quality after evaluation by clinical experts. 25 out
of the 262 recordings were excluded from the dataset used for cardiac
view classification for similar reasons.

The collection and analyses of the ultrasound data were completed
with both informed patient consent and approval from the Regional
Committee for Medical and Health Research Ethics (REK) at St. Olavs
University Hospital. Consecutive patients scheduled for a routine exam
at the echo lab were included in the study. Hence, there was no
patient selection. The underlying cause of examination for the included
patients was related to a wide specter of cardiac diseases. No data
selection based on the diagnosis was performed. The obtained dataset
is therefore a simple random sample from a population being examined
at an echo lab with secondary care for the region.

The acquired data were anonymized, and the raw ultrasound beam
data were converted from the proprietary DICOM files and scan-
converted to isotropic 3D images by applying a polar to Cartesian
transformation. The Cartesian image data were exported to a set of
HDF5 files, together with metadata of the corresponding geometric
information and acquisition parameters.

MAPSE reference values for 3D recordings of all patients in the test
set were derived by cardiologists with expertise in echocardiography
in the clinically approved software named EchoPac (GE Vingmed Ultra-
sound, Horten, Norway). The reference MAPSE values were constructed
with the use of 2C-, 4C-, and long-axis (LAX) views, and two recordings
were utilized per patient. This resulted in a total of 62 recordings
with MAPSE references. All clinically obtained references were used
in the study to evaluate the model. Since EchoPac does not offer a
dedicated 3D MAPSE measurement tool, the MAPSE parameter was
determined in EchoPac by indicating the point on the standard planes
corresponding to the intersection with the mitral annulus. This proce-
dure was completed for the frames with the maximum and minimum
position of the annulus along the long-axis, per cardiac cycle. Hence,
clinical MAPSE reference measures were obtained for inferoseptal- and
anterolateral mitral annular points in 4C views, inferior and anterior
mitral annular points in 2C views, and inferolateral mitral annular
points in LAX views. The anteroseptal basal points from the LAX view
was discarded since these measures are error-prone due to a lack of
clear mitral annulus points in the presence of the LV outflow tract
(LVOT), and since it is common to avoid measuring MAPSE in these
sectors in the clinic [33]. Screenshots of EchoPac are given in Fig. 1 to
visualize how the reference MAPSE measures were obtained.

2.2. Pipeline

The complete pipeline of the proposed method is visualized in
Fig. 2. The 3D TEE ultrasound volumes were aligned automatically
along the long-axis with a novel method based on machine learning
to avoid foreshortened slices, geometric distortion and out-of-plane
3

Fig. 1. Screenshots from EchoPac used to obtain MAPSE reference measures. A 3D
render of the mitral valve is given on the left side, where the red line indicates the
slice used to produce the 2D images on the right. End-diastole (ED) is given in the two
upper images, and end-systole (ES) in the bottom two images. The horizontal lines on
the 2D slices indicates the annulus excursion of the inferoseptal segment, and gives the
MAPSE reference for the given segment. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Visualization of the MAPSE estimation pipeline.

movement. 2C-, 4C- and LAX views were automatically classified for a
complete orientation of the volume by a neural network, and to obtain
segmented MAPSE measures for clinical comparison. A discrete 3D
segmentation of the mitral annulus was obtained by landmark detection
based on deep learning for each frame in the recording, and a set of
post-processing computations was conducted to estimate global and
segmental MAPSE measures.

2.3. Volume slicing

Two-dimensional slices of the volumetric ultrasound recordings
were extracted by a GPU-accelerated method based on vectorization
to directly compute the indices. Given an ultrasound volume, defined
by Eq. (1), an image plane rotated 𝜃 degrees about the 𝑧-axis were
extracted by calculating the corresponding indices 𝐼 with the Einstein
summation convention according to Eq. (2). Images extracted by rota-
tion about the x- or y-axis were obtained with a similar method, by
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replacing the rotation matrix 𝑹(𝜃) and the matrices 𝑷 𝒊 for 𝑖 ∈ [0, 1, 2].

𝑽 = {(𝑥, 𝑦, 𝑧)|𝑥 ∈ [0, 𝑠𝑥], 𝑦 ∈ [0, 𝑠𝑦], 𝑧 ∈ [0, 𝑠𝑧]} (1)

𝑰 𝑖,𝑗,𝑘(𝜃) = 𝑹𝑖,𝑙(𝜃)𝑷 𝑙,𝑗,𝑘 +
𝑠
2

(2)

where:

𝑰 = the matrix of indices, with size 3 × 𝑠𝑥 × 𝑠𝑧.
𝑹𝑖,𝑙𝑷 𝑙,𝑗,𝑘 = the Einstein summation

𝑹(𝜃) =
⎡

⎢

⎢

⎣

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎤

⎥

⎥

⎦

𝑷 𝒊=𝟎 =
⎡

⎢

⎢

⎣

−𝑠𝑥∕2 ⋯ −𝑠𝑥∕2
⋮ ⋱ ⋮

𝑠𝑥∕2 ⋯ 𝑠𝑥∕2

⎤

⎥

⎥

⎦

𝑷 𝒊=𝟏 = 𝟎𝑠𝑥×𝑠𝑧

𝑷 𝒊=𝟐 =
⎡

⎢

⎢

⎣

−𝑠𝑧∕2 ⋯ 𝑠𝑧∕2
⋮ ⋱ ⋮

−𝑠𝑧∕2 ⋯ 𝑠𝑧∕2

⎤

⎥

⎥

⎦

𝑠 =
⎡

⎢

⎢

⎣

𝑠𝑥
𝑠𝑦
𝑠𝑧

⎤

⎥

⎥

⎦

A set of images rotated about the depth axis were extracted accord-
ing to a set of angles 𝜃𝑧, given by Eq. (3).

𝜃𝑧 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜃𝑧,1
𝜃𝑧,2
⋮
𝜃𝑧,𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(3)

where:

𝑛 = the number of rotations about the z-axis.
𝜃𝑧,𝑖 ∈ [0, 180]

𝑖 ∈ [1, 2,… , 𝑛]

2.4. Volume alignment

Since the ultrasound recordings were acquired with minimal infer-
ence by the cardiologists, the centerline of the volumetric data did not
cut through the true apex of the LV. Thus, 2D images extracted from
the volume rotated about the depth axis 𝑧 contained a shortened LV
long-axis and an incorrectly thick apex, a phenomenon known as LV
foreshortening. Foreshortening induces underestimation of LV length
and volume, and overestimation of global and regional LV function. To
minimize the foreshortening in the extracted ultrasound images, the
cardiac volume was aligned along the LV by a deep learning-based
method, as visualized in Fig. 2.

The proposed method for volume alignment of 3D ultrasound
recordings is based on a machine learning model designed to predict
numeric values proportional to the length of the LV for a set of images.
Since the ultrasound volume is defined within a triangular pyramid
shape of 60 degrees in the x- and y-axis, a total of 2 × 60 images
rotated about the respective axes were extracted. By feeding the set of
images to a 3D convolutional neural network (CNN), the relative length
of the ventricle for each image was predicted simultaneously. The x-axis
rotational angle 𝜃𝑥 and the y-axis rotational angle 𝜃𝑦, corresponding to
the planes with the longest ventricle, were computed as the peak of the
predicted distribution.

The deep neural network architecture adopted for volume alignment
in the study was a 3D CNN inception network, given in Fig. 3. The
proposed architecture combined convolutions, batch normalization,
non-linear activation units, and inception blocks. The second version
4

Fig. 3. Visualization of the network for volume alignment, where ‘Inception Block 1’
indicate a v2 inception block with a (5 × 5) convolution kernel route and ‘Inception
Block 2’ is an identical module without the (5 × 5) convolution kernel route.

Fig. 4. Illustration of discrete Gaussian distributions used as reference of the LV length
for x-axis and y-axis, where 𝜃𝑟𝑒𝑓𝑥 = 14 degrees and 𝜃𝑟𝑒𝑓𝑦 = −6 degrees.

of the inception blocks, introduced by Szegedy et al. [34], was mod-
ified for 3D input and utilized in this network. The model contained
comparatively few parameters relative to state-of-the-art networks,
which results in a reduced computational cost providing real-time
performance.

The CNN was trained as a supervised learning task on the training
set of annotated ultrasound images extracted 𝜃𝑥 and 𝜃𝑦 angles about
the x- and y-axis. The rotational angle resulting in an image with
the longest ventricle and a stationary apex was annotated as 𝜃𝑟𝑒𝑓𝑥
for x-axis rotations and 𝜃𝑟𝑒𝑓𝑦 for y-axis rotations. A discrete Gaussian
distribution with a peak at the annotated 𝜃𝑟𝑒𝑓𝑥 and 𝜃𝑟𝑒𝑓𝑦 was used as
reference throughout training of the CNN. The distribution consisted
of 60 numeric values describing the length of the ventricle for the 60
images from the input, where the underlying Gaussian distribution had
a standard deviation of 5 degrees, as visualized in Fig. 4.

Estimations of 𝜃𝑥 and 𝜃𝑦 were obtained by the peak of the proba-
bility values predicted by the model, with input images rotated about
the x- and y-axis, respectively. The volume was aligned by the spatial
affine transformation 𝑮 rotating the volume according to Eq. (4).

𝑮(𝜃, 𝑡⃗) = 𝑻 (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)𝑹𝒚(𝜃𝑦)𝑹𝒙(𝜃𝑥)𝑻 (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)−1 (4)

where:

𝑮 = the 4 × 4 affine transformation matrix
𝑻 = the translation matrix

𝑡⃗ =
⎡

⎢

⎢

⎣

𝑡𝑥
𝑡𝑦
𝑡𝑧

⎤

⎥

⎥

⎦

is the translation vector

= the 3D coordinates of the probe position.
𝑹 = the rotation matrix

𝜃 =
⎡

⎢

⎢

𝜃𝑥
𝜃𝑦
⎤

⎥

⎥

is the rotation vector.

⎣ 0 ⎦
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2.5. Cardiac view classification

To detect the planes corresponding to 2C-, 4C-, or LAX views,
a set of 2D images were extracted from the recording after volume
alignment. We have defined 2C-, 4C-, and LAX views to be rotated 60
degrees on each other, in line width the guidelines presented by Lang
et al. [35]. All three views could therefore be obtained through a
prediction of the LAX view, as visualized in Fig. 2. Presuming one single
optimal LAX view per volume, most of the extracted 2D images are
suboptimal LAX views, or not LAX views at all. Hence, the machine
learning model was designed to predict numeric values describing the
angular distance of each extracted image plane to the LAX view. The
cardiac view classification was in other words resolved as a regression
problem by predicting a discrete distribution.

The network adopted for cardiac view classification in the study was
a 3D CNN inception network. The proposed network had an identical
architecture to the network presented in Fig. 3, but with three times
bigger input- and output size. The model was trained by supervised
learning on the training set of annotated ultrasound images extracted
from 3D TEE recordings, rotated 𝜃𝑧 angles about the depth axis 𝑧 after
volume alignment. The annotated training dataset was a subset of the
acquired 3D TEE B-mode ultrasound recordings. The annotation of the
rotations corresponding to the LAX view, 𝜃𝐿𝐴𝑋𝑧 , was performed by
the first author and corrected by an expert cardiologist. The numeric
values describing the angular distance to the LAX view were given by
a discrete Gaussian distribution and used as reference during training
of the network. The Gaussian distribution had a peak at the annotated
𝜃𝐿𝐴𝑋𝑧 and a standard deviation of 5 degrees.

2.6. Mitral annulus segmentation

A discrete 3D segmentation of the mitral annulus was obtained
by detection of the intersection between the annulus and a set of 2D
images extracted from all frames of the recordings. To reduce the
runtime of the pipeline, images extracted within a region of 30 degrees
to 𝜃2𝐶𝑧 , 𝜃4𝐶𝑧 and 𝜃𝐿𝐴𝑋𝑧 and a step degree of 2 were utilized. The CNN
obtained by Nordal [18] were applied to predict probability maps of
the landmarks on each 2D image.

The probability maps were transformed to coordinate predictions
of the landmark in 2D image space by coordinate extraction. The
probability maps were converted to binary maps according to Eq. (5),
and the center of mass (CoM) of the binary maps resulted in a landmark
coordinate and were computed by Eqs. (6) and (7). If the entire binary
map was false, the corresponding landmark was discarded in further
computations.

𝑏̂𝑖,𝑗 =

{

1, if 𝑝̂𝑖,𝑗 > 𝑡
0, if 𝑝̂𝑖,𝑗 ≤ 𝑡

(5)

𝐶𝑜𝑀𝑥(𝑏̂) =
1
𝑁

𝑊
∑

𝑖=1

𝐻
∑

𝑗=1
𝑏̂𝑥𝑖,𝑗 (6)

𝐶𝑜𝑀𝑧(𝑏̂) =
1
𝑁

𝑊
∑

𝑖=1

𝐻
∑

𝑗=1
𝑏̂𝑧𝑖,𝑗 (7)

where:

𝑏̂ = the binary probability map
𝑡 = the threshold value

𝐶𝑜𝑀(𝑏̂) = the CoM for the binary probability map 𝑏̂

𝑏̂𝑥𝑖,𝑗 = the x-value of the binary probability map

at pixel (i,j)
𝑏̂𝑧𝑖,𝑗 = the z-value of the binary probability map

at pixel (i,j)
5

Fig. 5. Visualization of the predicted landmarks in 3D space distributed to the
respective cardiac views, at ES and ED. The lines connecting the scattered points
indicate the movement of the annulus through the cardiac cycle, related to the MAPSE
measure.

The landmark coordinates in image space were transformed to 3D
space by the inverse spatial affine transformation 𝑯 . 𝑯 corresponds
to the volume alignment transformation 𝑮 given in Eq. (4) combined
with the basic rotation matrix about the depth axis 𝑹𝒛(𝜃𝑧,𝑖) related to
the extraction of 2D images from the volume. The landmark coordi-
nates in image space were transformed to 3D coordinates according
to Eq. (8). Fig. 5 provides a visualization of the predicted mitral annulus
landmarks after transformation to 3D space.

𝑙 = 𝑯(𝜃, 𝑡⃗)−1𝑥⃗ = 𝑯(𝜃, 𝑡⃗)−1

⎡

⎢

⎢

⎢

⎢

⎣

𝐶𝑜𝑀𝑥
0

𝐶𝑜𝑀𝑧
1

⎤

⎥

⎥

⎥

⎥

⎦

(8)

where:

𝑙 = the landmark coordinate in R3

𝑯(𝜃, 𝑡⃗) = 𝑻 (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)−1𝑹𝒛(𝜃𝑧)𝑹𝒚(𝜃𝑦)𝑹𝒙(𝜃𝑥)𝑻 (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)

𝑥⃗ = landmark coordinates from image space in
homogeneous coordinates

𝑡⃗ =
⎡

⎢

⎢

⎣

𝑡𝑥
𝑡𝑦
𝑡𝑧

⎤

⎥

⎥

⎦

is the translation vector to the probe position

𝜃 =
⎡

⎢

⎢

⎣

𝜃𝑥
𝜃𝑦
𝜃𝑧

⎤

⎥

⎥

⎦

is the rotation vector

2.7. Post-processing computations

A set of post-processing computations were applied to obtain
MAPSE estimates based on the mitral annulus coordinates in 3D. A sub-
set of the predicted landmarks deviated from the true coordinate due
to noise corruption and inaccuracy in the annulus segmentation. The
3D Euclidean distance between all detected landmarks was computed
to reject outliers, where all landmarks with an anatomically unfeasible
distance to the closest neighbors were discarded. In addition, frame-
to-frame jumps of a predicted mitral annulus coordinate of more than
5 mm was considered unphysiological and discarded. If all annulus
coordinates of a mitral annular sector were discarded in more than 60%
of a cardiac cycle, the respective MAPSE estimate was also discarded.

The MAPSE estimates were calculated by evaluating the excur-
sion of the annulus through the cardiac cycle along a single line of
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movement. Since the annulus movement was not perpendicular to
the xy-plane, the landmarks were transformed such that the landmark
motion was parallel to the 𝑧-axis, given by Eq. (9). To obtain the
angles of rotation, 𝜃𝑥 and 𝜃𝑦, the line of best fit to the set of detected
3D landmarks from all frames of the recording was computed. This
procedure was completed separately per mitral annular sector. The
fitted line was obtained from the unitary matrix of singular value
decomposition, and 𝜃𝑥 and 𝜃𝑦 were given by the angle between the line
and the x- and y-axis.

𝑪(𝜃𝑥, 𝜃𝑦, ⃗̂𝑐) = 𝑹𝒚(𝜃𝑦)𝑹𝒙(𝜃𝑥)𝑻 (𝑐𝑥, 𝑐𝑦, 𝑐𝑧) (9)

where:

𝑪 = the rotation correction transformation
𝜃𝑥 = the rotation about the x-axis
𝜃𝑦 = the rotation about the y-axis
⃗̂𝑐 = the end coordinates of the connecting line
closest to the probe

𝑹 = the rotation matrix about a specified axis
𝑻 = the translation matrix

The Euclidean distance between the minimum and the maximum
movement of the annulus landmarks after rotation correction was cal-
culated for the CoM of each cardiac cycle of the ultrasound recordings
to obtain the MAPSE estimate. The numeric MAPSE estimates were
converted from voxel space to the metric system by multiplication of
the voxel size correction coefficient.

2.8. Experimental setup

The training of the neural networks was conducted on a computer
configuration consisting of an NVIDIA A10-24Q GPU with 23 GB VRAM
and 12 Intel® Xeon® Gold 6342 CPU @ 2.80 GHz CPUs. The pipeline
was evaluated on the test dataset with an 11th Gen Intel® Core™
i7-11850H @ 2.50 GHz CPU and an NVIDIA RTX A3000 Mobile GPU.

3. Results

3.1. Volume alignment

The training of the network used for volume alignment was com-
pleted with a batch size of 6 over 100 epochs. The loss function during
the training phase was given by the mean squared error (MSE) be-
tween the predicted distribution and the annotated reference Gaussian
distribution. The Adam optimizer, introduced by Kingma and Ba [36],
was the chosen optimization algorithm in the training of this network
and was chosen due to its effectiveness, fast convergence, as well as
excellent performance in benchmark tests. A learning rate 𝜇 = 0.0001
was chosen for the Adam optimizer, equal to the recommended 𝜇
by Kingma and Ba [36]. The three well-established data augmentation
techniques, referred to as random rotation, random crop and random
flip, were implemented and used in run-time throughout the training of
the networks. Additionally, we propose a data augmentation technique
designed specifically for the problem at hand. The array of the reference
Gaussian distribution, and the corresponding array of input images,
was shifted by a random number within the length of the array during
training. Such an augmentation ensured that the network learned to
identify long-axis images, and avoided a prediction resembling the
mean of the training data. The performance metrics from the training
of the model is visualized in Fig. 6. The network state at the epoch
where the validation loss flattens were saved and used for testing of
the method.

Volume alignment was applied on all volumes of the test dataset
to estimate the planes with longest ventricle about the x- and y-axis.
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Fig. 6. Performance metrics during training of the volume alignment model. The loss
plot indicate the MSE loss, and the plot of angular distance denote the rotational
distance from reference- to predicted angle.

Fig. 7. Bland-Altman plot of agreement of measures between reference and estimated
long-axis angle for x- and y-axis rotation.

Fig. 8. Example of reduced foreshortening due to volume alignment. The left image
represent a 2C view extracted from the raw volume, and the right image is of a 2C
view after volume alignment.

The agreement of measures between the estimated and reference long-
axis planes is visualized in a Bland-Altman plot, given in Fig. 7. The
method achieved a mean difference of (0.09 ± 3.59) degrees compared
to reference values.

The alignment of the volume reduced foreshortening in the majority
of the acquisitions, confirmed qualitatively through visual inspection of
extracted slices by a cardiologist with expertise in echocardiography.
Even the worst alignment predictions presented in Fig. 7 resulted in
an improved alignment and reduced foreshortening, compared to the
unaligned raw volumes. An example of a successful alignment is given
in Fig. 8. The complete volume alignment method had an inference
time of (2.10 ± 0.34) seconds per recording, including extraction of
120 images of the volume from one frame and alignment estimations
by the CNN.
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Fig. 9. Performance metrics during training of view classification model. The loss plot
indicate the MSE loss, and the plot of angular distance denote the rotational distance
from reference- to predicted angle.

Fig. 10. Bland-Altman plot of agreement of measures between reference and estimated
LAX view angle for depth-axis rotation.

3.2. Cardiac view classification

The training of the network used for cardiac view classification was
completed with a batch size of 2 over 100 epochs. The distribution
predicted by the model were compared to the reference Gaussian
distribution by computing the MSE, and functioned as the loss function
during the training phase. The estimated 𝜃𝑧 of the LAX view was given
by the peak of the predicted distribution. The performance metrics from
the training of the model is visualized in Fig. 9. The state of the network
was saved at the epoch where the validation loss stagnates, and used
later for testing of the method.

The LAX classification pipeline was evaluated on the test dataset
by comparison of angular distances between the annotated and esti-
mated LAX view. The proposed method achieved a mean difference of
(0.85±6.82) degrees, with an agreement between measures visualized in
Fig. 10. The complete LAX classification method had an inference time
of (3.17 ± 0.07) seconds per recording, including volume alignment,
extraction of 180 images of the volume from one frame and cardiac
view classifications by the CNN.

3.3. Mitral annulus segmentation

A discrete segmentation of the mitral annulus was obtained for all
recordings in the test dataset. The entire mitral ring was divided into six
sectors circumferentially based on the cardiac views. Each sector was
covered by 15 2D image slices intersecting with the annulus for every
3D volume in the recording. The landmark detection model predicted
the annulus coordinates in the 2D images, and in cases where the
predictions resulted in false binary maps, the corresponding landmark
was discarded. The number of predicted landmarks per volume for each
7

Fig. 11. Box plot of number of predicted mitral annulus landmarks for each mitral
annular sector per frame, where 15 is maximum number of landmarks possible to
predict.

Table 2
Table of mitral annulus segmentation performance per basal myocardial sector.

Myocardial wall Average number of
predicted landmarks per
frame Mean ± SD

Average percentage of
predicted landmarks
per frame

Anterolateral 9 ± 5 58%
Inferoseptal 11 ± 4 71%
Anterior 10 ± 5 63%
Inferior 10 ± 4 64%
Inferolateral 9 ± 4 58%

All sectors in total 57 ± 22 63%

sector, visualized in Fig. 11, indicates the stability and accuracy of
the annulus segmentation. The average number of predicted landmarks
out of the maximum possible number of landmark predictions is given
in Table 2. The segmentation of the mitral annulus had an inference
time of (0.70 ± 0.00) seconds per frame, including volume alignment,
extraction of 90 images from the volume, and landmark detections by
the CNN.

3.4. MAPSE estimation

The mitral annulus landmark predictions were post processed to
reject outliers, and to obtain the mitral plane excursion per cardiac
cycle. The post processing pipeline had an inference time of (1.13 ±
1.77) seconds per frame. The pipeline estimated MAPSE parameters
in a fully automated manner on the test dataset. MAPSE measures
were calculated for the basal myocardial sector of the inferoseptal-,
anterolateral-, inferior-, anterior- and inferolateral wall. The five basal
myocardial sectors utilized per recording in the test dataset resulted in
a total of 310 MAPSE measures. In addition, a global MAPSE estimate
was obtained by computation of the mean excursion for the mitral
annular sector of the inferoseptal-, anterolateral-, inferior- and anterior
wall.

A total of 46 out of the 310 MAPSE reference measures were
discarded by the cardiologists with expertise in echocardiography due
to unusable image quality. Additionally, 37 MAPSE references were an-
notated as uncertain due to difficulties with noise at atrium contraction,
suboptimal aligned volumes, annulus movement partially out of sector
and very low frame rate. The distribution of image quality annotated
by the cardiologists is given in Table 3.

The mean difference and standard deviation between automatically
estimated MAPSE values and the clinically obtained measures were
computed with and without the mitral annular sectors annotated as
uncertain. The feasibility of the method is also calculated, describing
the method’s ability to provide an estimate relative to the measures
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Table 3
Table describing the distribution of image quality in the test dataset.

Available Including uncertain
measures

Exclusively acceptable
quality

Number of mitral
annular sectors

310 264 227

Table 4
Table of mean difference, standard deviation and feasibility of MAPSE measures
between all reference and estimated values.

Myocardial wall MAPSE estimated
mean [mm]

MAPSE
md ± sd [mm]

MAPSE
feasibility

Anterolateral 8.65 ± 3.52 0.21 ± 1.74 82%
Inferoseptal 8.19 ± 2.94 −0.68 ± 1.66 89%
Anterior 7.15 ± 3.09 −0.62 ± 1.67 82%
Inferior 8.56 ± 2.97 0.01 ± 1.60 74%
Inferolateral 8.63 ± 3.65 −0.75 ± 1.74 64%
Global 8.01 ± 2.71 −0.16 ± 1.06 79%

Table 5
Table of mean difference, standard deviation and feasibility of MAPSE measures
between reference and estimated values of acceptable image quality.

Myocardial wall MAPSE estimated
mean [mm]

MAPSE
md ± sd [mm]

MAPSE
feasibility

Anterolateral 8.93 ± 3.55 0.15 ± 1.78 88%
Inferoseptal 7.88 ± 2.60 −0.63 ± 1.68 94%
Anterior 7.08 ± 2.75 −0.54 ± 1.59 86%
Inferior 8.65 ± 2.96 0.05 ± 1.51 81%
Inferolateral 8.66 ± 3.70 −0.81 ± 1.76 76%
Global 8.08 ± 2.71 −0.13 ± 1.04 87%

Fig. 12. Bland-Altman and correlation plot of reference and estimated global MAPSE
values. Global MAPSE values are computed by the mean of all cardiac cycles in
each recording, from 2C- and 4C views. MAPSE references annotated as uncertain are
included in this plot.

obtained by the expert cardiologist. Non-feasibility of MAPSE estimates
is caused by an insufficient number of predicted annulus coordinates
per mitral annular sector, for a given cardiac cycle. Annulus coordinates
were discarded if the complete probability map predicted by the CNN
was below a threshold value of 60%, as given by Eq. (5). In addi-
tion, estimated annulus coordinates with a movement between frames
above 5 mm were considered unphysiological and discarded. A MAPSE
estimate for a mitral annular sector were discarded if all predicted
coordinates were discarded in more than 60% of the respective cardiac
cycle.

Table 4 presents the mean difference, standard deviation and fea-
sibility of MAPSE estimates and references, including uncertain mea-
sures. Table 5 presents the same statistics, but exclusively for measures
with acceptable image quality. The uncertain MAPSE references were
excluded to evaluate the effect on feasibility, precision and accuracy.

The difference in measures, including uncertain measures, between
the automated estimates and the clinical references is visualized in
Figs. 12 and 13, for global and wall-specific MAPSE measures respec-
tively.
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Fig. 13. Bland-Altman plot and correlation plot of reference and estimated MAPSE
values per mitral annular sector. Wall-specific MAPSE values are computed by the
mean of all cardiac cycles in each recording, for the basal myocardial sector of the
inferoseptal-, anterolateral-, inferior-, anterior- and inferolateral wall. MAPSE references
annotated as uncertain are included in this plot.

4. Discussion

The MAPSE estimates computed automatically with the proposed
method do not show significant systematic errors when compared
to clinically obtained reference measures. The mean difference and
standard deviation of the estimations equal to (−0.16 ± 1.06) mm
is comparable to the inter-observer variability on clinically obtained
MAPSE measures on 2D TTE echocardiography [20,37].

The exclusion of ultrasound recordings in the test dataset with
borderline image quality had small affect on the mean difference and
standard deviation, as presented in Table 5. The feasibility of the
method, on the other hand, increased noticeably. This indicates that
the method filtered out the MAPSE estimates due to uncertainties in
own estimates. In the use case of the method, it is better to avoid
uncertain estimates at the cost of feasibility, to limit the number of
false predictions. For that reason, the observed behavior of the method
is beneficial.

The method for automatic alignment of ultrasound volumes ensures
a robust method less dependent on probe positioning and avoidance
of foreshortening during acquisition. It is expected that the method
handles acquisitions from the OR better with automatic alignment than
without, since the movement of the probe and the heart increases in
such a setting. As visualized in Fig. 6, the 3D CNN used in volume
alignment stagnates after approximately 20 epochs. A similar phe-
nomenon can be observed in Fig. 9, visualizing the performance metrics
during the training of the view classification model. To reduce this
phenomena, both L1 and L2 regularization of the networks weights
were tested. However, such regularization did not affect the stagnation
of the loss and were not pursued further. To avoid overfitting the
model, the network state at the epoch where the validation loss flattens
was used.

The presented method handles 3D ultrasound imagery by slicing the
volumes into 2D images. Spatial information related to morphophysiol-
ogy is lost in such an approach. Direct predictions in 3D with complete
volume input in the network architecture might have a positive impact
on the predictions. A 3D segmentation of the mitral annulus directly
on the ultrasound volume is also beneficial as it removes the need for
volume alignment. However, direct volume input in neural networks
requires a big dataset for training and validation. Additionally, direct
volume inputs are more difficult and computationally more expensive
to train. With the available data in this study, such a pipeline was
considered unfeasible.

The 3D segmentation of the mitral annulus is based on single-
image landmark detection and does not include temporal information
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in the predictions. It is expected that the prediction accuracy and
precision increase if temporal information from subsequent volumes
is introduced to the network architecture. Replacing the single image
detection with tracking is recommended for future work.

A potential limitation of the proposed method is the low temporal
resolution of 3D TEE ultrasound acquisitions. An average frame rate
of 15 can result in underestimations of MAPSE, since the ED and ES
may be absent in the recordings. This phenomenon has biggest affect
at ED, since the annulus motion is slower at ES. This applies equally to
both clinical measures and automatic estimates of MAPSE on 3D data.
The absolute value of the MAPSE measurements are consequently lower
due to the low temporal resolution. In addition, the agreement between
estimated and reference MAPSE measures may be artificially high due
to similar reasons. It is expected that underestimations of MAPSE are
reduced by computing the average over subsequent cardiac cycles, as
it is unlikely that the ED is absent in a set of subsequent cardiac
cycles. However, averaging introduces regression toward the mean,
which reduces the estimation accuracy. In comparison, 2D ultrasound
acquisitions usually have a temporal resolution of above 40 FPS. The
big drawback with 2D ultrasound acquisitions is the need for user
interaction during acquisition and is thus less suited for fully automatic
cardiac monitoring.

It is possible to increase the temporal resolution of ultrasound
recordings during the acquisition by adjustment of scanner settings.
The frame rate can be adjusted to 25–30 FPS by this approach, hence
decreasing the disadvantages of 3D acquisitions. Nevertheless, since
such an adjustment is at the expense of spatial resolution, the effects
on the precision and accuracy of the method are unknown. There was
seemingly no correlation between estimation accuracy and frame rate
in the available dataset, but it is recommended to investigate this
further in future work. The temporal resolution may also be improved
by reducing the acquisition depth. Ultrasound imaging of the entire
LV may be unneeded since the mitral annulus is located close to the
probe. Thus, a reduced acquisition depth may not decrease the annulus
segmentation performance. A reduced depth will, on the other hand,
negatively affect the alignment of the volume and might result in a
less stable and robust method.

The low frame rate also increases the dependence on stable and
accurate mitral annulus segmentation, since outliers have a higher rela-
tive impact on the MAPSE estimates. Nevertheless, since the application
of the proposed method is in a cardiac monitoring setting, the main
interest is intra-patient abrupt changes of the mitral plane excursion.
Hence, accurate absolute MAPSE estimates are not as important as
detecting the relative change in MAPSE in a perioperative setting.
Additionally, it is expected that mean MAPSE estimates from several
subsequent cardiac cycles improve the performance and stability of the
method, resulting in good enough measures to detect relative changes
between different time points throughout a perioperative- and intensive
care period.

The proposed method for MAPSE estimation is affected by the move-
ment of the heart during the acquisition since the ultrasound recordings
are non-stationary. Respiratory movement is the most common cause
of movement and may result in over- or underestimations of MAPSE.
The proposed method is only sensitive to movement present during
the systole, reducing the influence of movement on the final estimates.
There are no indications that this phenomenon has a big impact on
the MAPSE estimates in the given dataset. The impact of respiratory
movement may also be reduced by the computation of the mean
MAPSE through a complete respiratory cycle, which typically equals
5 heart cycles for patients on ventilators. Nevertheless, the impact of
heart movement during cardiac surgery might cause a higher estimate
variance.
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5. Conclusions

This study propose an automated method for functioning and robust
non-harming cardiac monitoring of global LV function through MAPSE
estimations. A novel pipeline for automatic alignment of ultrasound
volumes, automatic classification of 2C-, 4C- and LAX views and au-
tomatic 3D segmentation of the mitral annulus were implemented.
The excursion of the mitral annulus along the long-axis of the LV
were computed to obtain global and wall-specific MAPSE estimates.
The proposed method for MAPSE predictions achieved a mean differ-
ence of (−0.16 ± 1.06) mm compared to clinical reference measures,
which is lower than typical clinical inter-observer variability for MAPSE
estimation. The method is fast enough to supplement monitoring in
perioperative- and intensive care settings, and may potentially improve
the foundation for clinical decision-making.
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