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A B S T R A C T

This study examines the influence of probabilistic models for wave parameters in the joint environmental
model and hydrodynamic/soil models on extreme mudline bending moments for monopile-based wind turbines
at representative wind speeds, using the environmental contour method. For significant wave height, the
3-parameter Weibull model using the method of moments (MoM) provides the best fit to hindcast data
across different wind classes, for the statistical models and data considered in the study. The hybrid Log-
normal-Weibull (LonoWe) model also provides a reasonable fit but is sensitive to the transition point between
distributions. Both models yield the largest extreme responses, with differences of approximately 0.5–3.5%. The
3-parameter Weibull model with maximum likelihood estimation (MLE) and the 2-parameter Weibull model
result in less conservative contours, leading to up to 13% lower extreme responses, compared to LonoWe
and Weibull (MoM). Regarding peak period, both the Log-normal and 3-parameter Weibull models provide
reasonable fits, with the latter being more accurate near the steepness (breaking) limit. The stochastic variation
among maxima due to seed variability and the uncertainty in quantile estimates as a function of number of
samples was found to be crucial, particularly for severe sea states at the cut-out speed. Soil modelling is
particularly important when the turbine is parked and encounters peak wave periods close to the turbine’s
natural periods, while the effect of soil modelling on the extremes during turbine operation is negligible.
Additionally, the impact of diffraction becomes relatively important for short wave periods. However, it is
worth noting that the choice of load models has less impact on extreme responses compared to variations in
the contours caused by different statistical models or seed variability.
1. Introduction

Offshore wind turbine (OWT) foundation design shall ensure struc-
tural integrity against extreme environmental conditions (IEC, 2019).
Ultimate limit state (ULS) design checks require estimating long-term
extreme responses, represented by characteristic values with specified
target return period (IEC, 2019; DNV-GL (Det Norske Veritas - Ger-
manischer Lloyd), 2019). One approach is the full long-term analysis
(FLTA) (Naess and Moan, 2012), which considers the variability in the
environment and the short-term response, accounting for the contribu-
tion of all short-term conditions to the long-term response. The method
directly integrates the product of the joint probability density function
of a given environmental condition and the corresponding short-term
response probability distribution. FLTA is computationally prohibitive,
as it requires all combinations of environmental variables to be con-
sidered, i.e. in time-domain simulations or model tests, to capture the
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stochastic nature of the relevant responses (Baarholm et al., 2010).
Furthermore, it does not account for serial correlation in environmental
conditions, resulting in positive bias in estimated extreme responses (de
Hauteclocque et al., 2022; Mackay et al., 2021). For OWTs, the wind
shall be considered in addition to waves, increasing the number of
short-term conditions to be analysed (Agarwal and Manuel, 2009; Li
et al., 2016, 2019). Therefore, alternative approaches are commonly
applied to estimate extreme responses, such as the environmental con-
tour method (ECM) (Winterstein et al., 1993; Haver and Winterstein,
2009).

ECM is a simplification of general inverse reliability methods that
include the response conditional on the environment as an additional
variable. The method is widely used in offshore structural design,
and it is computationally efficient as it decouples the probabilistic
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description of the environment from structural design, approximating
long-term extreme responses by considering only a few critical short-
term conditions along the N-year contour. ECM typically consists of
constructing a joint distribution of metocean parameters, and then
establishing environmental contours. Different approaches exist for
both steps (described in Section 2.1), introducing uncertainties on the
resultant contours, and therefore, on the sea states to be analysed for
response estimation. The present study uses the global hierarchical
modelling approach (Haver, 1985; Haver and Nyhus, 1986; Haver,
1987; Mathisen and Bitner-Gregersen, 1990a; Bitner-Gregersen and
Haver, 1991a; Bitner-Gregersen, 2015a; Horn et al., 2018), and Inverse
first-order reliability method (IFORM), as those approaches are recom-
mended in current engineering design guidelines (IEC, 2019; DNV-GL
(Det Norske Veritas - Germanischer Lloyd), 2019; NORSOK, 2017).

Furthermore, using ECM on OWTs poses additional challenges,
discussed in Section 2.2. Firstly, OWTs are dynamically sensitive struc-
tures, and their response strongly depends on both wind and wave
conditions. Therefore, neglecting the stochastic nature of metocean
variables, e.g. of the peak period, introduces further uncertainty on re-
sultant responses (Haselsteiner et al., 2022; Ross et al., 2020). Secondly,
OWTs have non-monotonic behaviour to wind loads, and extreme
responses can occur when maximum wind loads, i.e. around the rated
speed, are combined with moderate but steep waves, close to the OWT
natural period (Valamanesh et al., 2015; Velarde et al., 2019). This
effect becomes increasingly important for larger OWTs, due to the
combined effect of higher wind loads, and their larger natural periods
that are close to primary wave periods. Consequently, high dynamic
excitation can lead to extreme responses for conditions with low peak
period/wave height, and high steepness. Therefore, representative joint
distribution models and contours are needed for a wide range of
metocean combinations, and not only for the tail of the distributions.

Having identified the critical sea states along the contours, the
magnitude of extreme responses is also largely dependent on the phys-
ical load models that are used in the simulation tools. The present
study focuses on the impact of hydrodynamic load and soil–structure
interaction modelling on the extreme responses in the foundation.

Morison’s equation (Morison et al., 1950) is widely used for hy-
drodynamic loads, assuming slender structures. For structures with
large dimensions relative to the incident wave wavelength, diffraction
effects become important, and design standards (IEC, 2019) suggest
using MacCamy and Fuchs’ model (MacCamy and Fuchs, 1954), which
can more precisely estimate hydrodynamic loads for larger monopile
foundations. Nevertheless, MacCamy and Fuchs is strictly applicable
only to linear waves, while extreme responses are typically governed
by nonlinear steep waves. Approaches such as higher order potential
flow simulations or computational fluid dynamics, which are able to
capture both near-field diffraction and nonlinear wave kinematics,
are too computationally expensive for use in aero-hydro-servo-elastic
simulation tools for assessing thousands of design load cases. To tackle
this limitation while maintaining computational efficiency, a new load
model that incorporates a frequency-dependent mass coefficient and
can be applied with higher-order wave kinematics has been developed
and validated against experimental results for irregular severe sea
states (Dadmarzi et al., 2024). In the present study, the relative sig-
nificance of diffraction on extreme responses is assessed by comparing
the conventional Morison’s equation with the new load model.

Soil–structure interaction between the foundation – the part of
the monopile below mudline – and the surrounding soil (hereafter
referred to as foundation modelling) for the design of monopile-based
OWTs is often modelled using 𝑝 − 𝑦 curves, as outlined in design
standards (IEC, 2019; DNV-GL, 2018). In this approach the pile is
represented as a beam, and the relation between the soil resistance
𝑝 to lateral displacement 𝑦 is modelled using a series of discrete,
ncoupled, nonlinear elastic springs along the pile. This method was
rimarily developed for slender, small-diameter piles with high length-
2

o-diameter ratios, subject to dominant axial loads (Reese and Matlock,
1956). Despite being widely employed (Leblanc et al., 2010; O’Kelly
and Arshad, 2016), the method’s adequacy to fully capture the mag-
nitude and character of the loads of monopile foundations has been
questioned (Leblanc et al., 2010; Doherty and Gavin, 2012; Bhat-
tacharya, 2014). It also lacks the ability to model important aspects
such as hysteretic soil damping. Consequently, alternative numerical
foundation models have been proposed for fully-integrated analyses of
monopile-based OWTs (Page et al., 2016). In the present study, the
relative importance of foundation modelling on extreme responses is
assessed by comparing the commonly used 𝑝 − 𝑦 approach with a non-
linear elasto-plastic macro-element model that incorporates hysteretic
effects, developed as part of the REDWIN project (Løkke, 2018), specifi-
cally for predicting the response of monopile-based OWTs in integrated
time-domain analyses (Page et al., 2017, 2018b,a, 2019).

Using ECM involves various statistical uncertainties that affect the
long-term extreme responses, with particular challenges when used
for OWTs. Concurrently, due to the continuous growth in the size of
monopiles, commonly used physical load models introduce uncertain-
ties in the extreme response estimates. The main aim of this study
is to investigate the impact of some uncertainties related to statisti-
cal and physical modelling on extreme responses of large diameter
monopile-based OWTs, and to provide a more thorough understanding
of their relative importance, when characteristic design responses are
estimated using ECM. For that purpose, two monopile-based OWT
models were considered, the DTU 10 MW (Bak et al., 2013) and the IEA
15 MW (Gaertner et al., 2020) turbines. The focus is on understand-
ing the variability in extreme responses when employing metocean
contours derived from different probabilistic models for joint distribu-
tions. Additionally, state-of-the-art foundation and hydrodynamic load
models, better suited for large-diameter monopiles, are compared with
models commonly used for small-diameter piles.

The paper is organized as follows: Section 2 gives a more thor-
ough literature review on the environmental contour method, and the
challenges related to the hydrodynamic load and foundation models
used for OWTs. Section 3 summarizes the hindcast data, the joint
environmental model and the procedure to establish the contours used
in the study. Section 4 presents the OWT simulation models, and the
load models compared in the study. Finally, Section 5 summarizes the
results and Section 6 concludes the paper with recommendations for
future work.

2. Literature review

2.1. Environmental contours

Establishing environmental contours typically firstly involves esti-
mating a statistical model to describe the joint distribution of metocean
parameters. This model is then used to establish the 𝑁-year con-
tours, which represent combinations of parameters with 𝑁-year return
period. It is worth noting that there are also methods that do not
require a joint distribution model to estimate contours (Derbanne and
de Hauteclocque, 2019; Mackay and de Hauteclocque, 2023). Once the
contours are established, the relevant response is estimated for various
conditions along the 𝑁-year contour. Typically, multiple 1-hour or 3-
hour stochastic time-domain simulations are carried out for different
sea states along the contours, and the characteristic response in each
sea state is then defined as the 85th–95th percentile of the distribution
of the (1-hour or 3-hour) maximum response conditional on sea state
to indirectly account for the short-term variability (Baarholm et al.,
2010; Haver et al., 1998; Kleiven and Haver, 2004; Muliawan et al.,
2012). Alternative approaches (NORSOK, 2017; Derbanne et al., 2017)
accounting for short-term variability are not discussed here. Finally, the
method assumes that the 𝑁-year maximum response can be approx-
imated by the highest characteristic response amongst the conditions

along the contour.
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Various methods can be employed to determine the joint dis-
tribution of metocean variables, including global hierarchical mod-
els (Haver, 1985; Haver and Nyhus, 1986; Haver, 1987; Mathisen and
Bitner-Gregersen, 1990a; Bitner-Gregersen and Haver, 1991a; Bitner-
Gregersen, 2015a; Horn et al., 2018), copula models (Vanem, 2016;
Zhang et al., 2018; Fazeres-Ferradosa et al., 2018; Lin et al., 2020), ker-
nel density estimates (Ferreira and Guedes Soares, 2002; Eckert-Gallup
and Martin, 2016), and conditional extreme value models (Jonathan
et al., 2010, 2014). The global hierarchical model that is applied
in the present work is widely used and also recommended by the
design standards, while it poses several challenges. Firstly, the selection
of specific statistical models for the metocean parameters and their
dependence structure is mostly based on subjective user-judgment,
rather than solid theoretical principles. Furthermore, fitting a statistical
model to all observations does not guarantee a representative fit to
the tail of the distribution, which is the range of most interest for
estimating extremes, while serial correlation in the data is ignored,
resulting in positive bias in extreme estimates (de Hauteclocque et al.,
2022; Mackay et al., 2021).

Similarly, different methods exist for establishing metocean con-
tours, based on different concepts of exceedance probability. For
IFORM (Giske et al., 2017; Winterstein et al., 1993; Haver and Winter-
stein, 2009), and the direct sampling method (Bang Huseby et al., 2013;
Huseby et al., 2015; Vanem, 2019), the contour exceedance probability
is defined as a marginal exceedance probability under various rotations
of the coordinate axes. In contrast, for recent methods such as inverse
second-order reliability method (ISORM) (Chai and Leira, 2018; Giske
et al., 2018), and highest density contour method (HDC) (Haselsteiner
et al., 2017), contours are defined in terms of the total exceedance
probability, being significantly more conservative (Mackay and Hasel-
steiner, 2021). Another approach, referred to as Direct-IFORM, replaces
the multi-dimensional joint distribution by a series of univariate fits,
which can be applied in higher dimensions for arbitrary numbers of
variables, without loss in performance. The method was firstly intro-
duced by Derbanne and de Hauteclocque (2019) and further presented
by Mackay and de Hauteclocque (2023), where its applicability to the
design of offshore wind turbines is discussed. It is based on the same
notion of marginal exceedance probabilities under rotations of the axes,
that is used in standard IFORM and direct sampling contours, and its
main advantage is that there is no need to establish a joint distribution
to estimate contours, as the marginal exceedance probabilities can be
estimated directly from the data.

Several studies have compared methods for establishing meto-
cean contours (Manuel et al., 2018; Vanem, 2017; Huseby et al.,
2017; Vanem et al., 2020; Raed et al., 2020). Mackay and Hasel-
steiner (Mackay and Haselsteiner, 2021) studied the impact of the
choice of contour on simple structural reliability problems, highlighting
that some understanding about the shape of a structure’s failure surface
is required to choose an appropriate contour method. Haselsteiner et al.
(2021) presented an extensive study comparing contours established
from various methods. Large variations were observed with no clear
outcomes regarding how the different steps followed to establish the
contours contribute to these variations. de Hauteclocque et al. (2022)
extended the study, and compared extreme responses obtained from
various contour methods to reference estimates for different offshore
structures. The study highlighted the importance of statistical model
accuracy for accurate response estimates, while it was found that
serial correlation introduces a significant positive bias into long-term
response estimates, especially for lower return periods. Ross et al.
(2020) presented an extensive survey of the metocean user community
regarding metocean contours, with recommendations about when and
3

how they should be used. v
2.2. Challenges of ECM related to OWT responses

ECM has been used for OWTs; however, its direct applicability
is challenging. IEC 61400-3-1 (IEC, 2019) suggests establishing a 2-
dimensional (2D) wind speed (𝑈𝑤) - significant wave height (𝐻𝑠)
contour, and the peak period (𝑇𝑝) is chosen deterministically, as the
value leading to the largest response for a particular 𝑈𝑤 − 𝐻𝑠 combi-
nation. For dynamically sensitive structures, neglecting the stochastic
nature of the wave period in establishing the contours can lead to
non-conservative extreme response estimates. As stated by Ross et al.
(2020), including all dominant metocean variables is crucial to ensure
accurate 𝑁-year extreme response estimation. Valamanesh et al. (2015)
calculated larger mudline bending moments for moderate sea states
close to the natural period, compared to load cases where 𝑇𝑝 was chosen
for the most severe 𝑈𝑤 − 𝐻𝑠 combination. Moreover, Velarde et al.
(2019) demonstrated that resonant loads during parked or idling situ-
ations under operational wind speeds could dominate the design loads
for monopile-based OWTs. The observation that critical conditions for
offshore structures may be in the vicinity of the natural period has also
been mentioned or discussed in other studies (Winterstein et al., 1993;
Vanem, 2017). Different approaches have been used to account for the
three dominant variables (𝑈𝑤 −𝐻𝑠 − 𝑇𝑝) in a probabilistic manner. Li
et al. (2015) proposed a 3-dimensional (3D) contour surface, Horn and
Winterstein (2018) used multiple 2D contours, (𝑈𝑤 −𝐻𝑠 and 𝐻𝑠 − 𝑇𝑝),

hile other studies used 𝐻𝑠 − 𝑇𝑝 contours representative for different
ind speeds (Li et al., 2016). It is still unclear which approach is best

uited to deal with the environmental variables relevant to the design
f OWTs (Haselsteiner et al., 2022).

Another challenge using the ECM for OWTs is their non-monotonic
ehaviour to wind loads. In particular, OWTs are designed with con-
rollers that maximize power extraction below the rated wind speed,
hile between rated and cut-out speed the blades are pitched to main-

ain constant power output and minimize the mean thrust load. The
ean wind loads gradually decrease until the cut-out speed. Beyond

he cut-out speed, the blades are fully pitched, and the turbine enters
parked state where wind loads and fore-aft aerodynamic damping

bruptly drop. This behaviour results in maximum wind loads near
he rated speed, and consequently extreme responses, such as overturn-
ng moments, can occur in operational conditions. The importance of
valuating operational and parked states has been highlighted in the
iterature, e.g., by Saranyasoontorn and Manuel (Saranyasoontorn and
anuel, 2004). Li et al. (2016) proposed a modified ECM by estab-

ishing multiple 𝐻𝑠 − 𝑇𝑝 metocean contours for different wind speeds
etween rated and cut-out wind speed to find the largest response.
he method has been applied to bottom-fixed and semi-submersible
WTs (Li et al., 2016, 2017) and integrated offshore renewable energy
evices (Li et al., 2019), with reasonable accuracy, compared to FLTA.
he term ‘‘modified ECM’’ refers to the approach of Li et al. (2016)
here multiple 𝐻𝑠−𝑇𝑝 metocean contours are employed over the oper-
tional range of the wind turbine, but does not imply any modification
o the process of obtaining these contours.

.3. Foundation modelling of OWTs

The 𝑝 − 𝑦 method is widely employed for OWTs and can be eas-
ly integrated into simulation tools. Contrary to the axially loaded
iles for which 𝑝 − 𝑦 curves were developed initially, the loading of
onopiles in OWTs is characterized by horizontal thrust loads, which,

ombined with the height of the structure, lead to dominant bend-
ng moments at the seabed, whereas the vertical loads are relatively
nimportant (Byrne and Houlsby, 2004; O’Kelly and Arshad, 2016).
urthermore, large-diameter monopiles are characterized by slender-
ess ratios (ratio between embedded length and diameter of monopile)
elow 5, which leads to relatively rigid behaviour compared to the
lenderness ratios of 15–20 and flexible behaviour assumed in the de-

elopment of the 𝑝−𝑦 method (Lombardi et al., 2013). Another essential
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aspect of foundation modelling is accurately representing soil damping,
which arises from various sources (Page et al., 2016; Bhattacharya,
2019). Among these sources, hysteretic damping becomes the primary
contributor when analysing monopile foundations (Page et al., 2017).
The relative importance of soil damping notably increases in situations
where aerodynamic damping is negligible, i.e. when the OWT is parked,
therefore its accurate representation in the simulation tools becomes of
high importance.

An alternative approach is macro-element modelling, which was
initially introduced by Roscoe and Schofield (1957) and has been
widely applied to offshore applications (Bienen et al., 2006; Correia,
2011; Houlsby and Cassidy, 2002; Skau et al., 2017; Tistel et al., 2017).
Unlike 𝑝 − 𝑦 curves, macro-element models condense the response
of the foundation and surrounding soil into a force–displacement re-
lationship at a single point (Correia, 2011). A macro-element was
developed (Løkke, 2018) specifically for predicting the response of
monopile-based OWTs (Page et al., 2017, 2018b,a, 2019). In the model,
the relationship between horizontal forces, moments, and displace-
ments, as well as rotations, is described using the framework of multi-
surface plasticity, which was originally proposed by Iwan (1967).
Details about how hysteretic behaviour is incorporated in the model
are given in Page et al. (2018b). The complete nonlinear response of
the soil-foundation system can be captured through load–displacement
curves obtained from nonlinear pushover analyses conducted in FEA.
This macro-element model incorporates soil resistance components,
including base and side shear. Furthermore, unlike the traditional
𝑝 − 𝑦 formulation, it is capable of reproducing the change in over-
all stiffness due to nonlinear hysteretic behaviour and the hysteretic
damping observed in monopile-based OWTs in integrated time-domain
analyses. The model also accounts for the influence of multi-directional
loading, which has been observed to affect the foundation stiffness and
hysteretic damping (Page et al., 2018a). To validate its performance,
the model’s behaviour was compared against results from large-scale
pile tests, full-scale field measurements, and Finite Element Analysis
(FEA) simulations conducted on monopile foundations of an OWT
installed in the North Sea (Page et al., 2018b,a, 2019). The comparison
demonstrated that the macro-element model can accurately predict the
nonlinear hysteretic behaviour observed in field tests and simulated in
FEA.

2.4. Hydrodynamic modelling

Different methods exist to estimate extreme loads on vertical cylin-
ders. Those include the constrained wave approach, where a regular
stream function wave is embedded into a background irregular linear
wave realization, or fully nonlinear computations (either considering
potential flow or including viscous effects in computational fluid dy-
namics). However, these methods have limitations in terms of accuracy
or computational time (Pierella et al., 2021; Suja-Thauvin, 2019).
Several higher-order theories have been developed, such as Faltinsen
et al. (1995), Malenica and Molin (1995), and Kristiansen and Faltin-
sen (2017). Comparisons of these higher-order models and Rainey’s
model (Rainey, 1989) for extreme responses of monopile foundations
can be found in the literature (Suja-Thauvin, 2019; Bredmose et al.,
2013) but are not considered for the premise of the study. Among the
models for hydrodynamic loads, Morison’s equation (Morison et al.,
1950) is recommended by design standards (IEC, 2019; DNV-GL (Det
Norske Veritas - Germanischer Lloyd), 2019), and it is commonly
used in practice for OWT global analysis in aero-servo-hydro-elastic
simulations tools. Morison’s equation is a semi-empirical formulation
based on the assumption that the cylinder is slender, meaning its diam-
eter is small compared to the wavelength of the incident waves. This
assumption implies that the cylinder does not generate a significant
diffracted wave field.

For structures with dimensions large relative to the incident wave-
length (typically 𝐷 > 0.2𝜆), significant diffraction effects occur, and
4

𝑝

Fig. 1. Scatter density plots of metocean parameters based on 10-year NKUA hindcast
data.

the application of Morison’s equation alone may not provide accurate
results. In such cases, design standards (IEC, 2019) recommend using
the analytical solution developed by MacCamy and Fuchs (1954),
which addresses the diffraction of long-crested waves on vertical piles.
The computation of the total horizontal force follows a similar approach
to Morison’s equation, with the drag component unchanged. However,
the inertia force component considers the size of the pile and the
frequency of the incoming waves, accounting for the diffraction effects.
Notably, as monopile foundations increase in size, diffraction effects
become more prominent.

Morison’s equation allows for the use of wave kinematics from
various theories, whereas the MacCamy and Fuchs model is strictly
applicable only to linear waves. Although this is not problematic for
fatigue analysis, which is mainly influenced by moderate waves well
represented by linear wave theory, the maximum loads relevant to ULS
design are typically governed by steep waves. In these cases, nonlinear-
ities become significant, especially in intermediate and shallow water
depths, and cannot be ignored. A new model that combines traditional
Morison’s formulation with a frequency-dependent mass coefficient
(based on the formulation from MacCamy and Fuchs) has been de-
veloped (Dadmarzi et al., 2024). This computationally efficient model
approximates diffraction effects for larger diameters when higher wave
kinematic theories are employed.

3. Joint environmental model and environmental contours

3.1. Hindcast data

A numerical hindcast model from the National Kapodistrian Uni-
versity of Athens (NKUA) was used to generate 10-year hindcast data
for several locations for the Marina Platform project (Li et al., 2015).
The hindcast data have 1-hour resolution for the period 2001 to 2010
for a site located at the Norwegian Continental Shelf (55.11◦N, 3.47◦E)
and 30 m water depth. The dataset provides information about met-
ocean parameters such as mean wind speed 10 m above sea level (𝑈10),
significant wave height (𝐻𝑠), wave peak period (𝑇𝑝) and wind-wave
directionality. The mean wind speed at the hub height (𝑈ℎ𝑢𝑏) of each
turbine used in the study was estimated using the power law for wind
shear with exponent 𝛼 = 0.14 (IEC, 2019). The combined sea data,
which include wind-driven and swell components, have been used.
Fig. 1 shows scatter density plots for the main metocean parameters.
Current and directional variability were not considered.

The metocean data were assumed to be independent and identically
distributed. While this assumption is commonly used, it is more appli-
cable when the data are derived from simulations such as Monte Carlo
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Fig. 2. Weibull parameters and fitted polynomials for 𝑓𝐻𝑠 |𝑈ℎ𝑢𝑏
(ℎ|𝑢) for Weibull models (10 MW - 𝑈ℎ𝑢𝑏 = 119 m).
methods using the established joint environmental model, noting that
even then, they are still not representative of the environment. When
fitting a parametric model to measured or hindcast data, as done in
this study, this assumption is not appropriate, as winds and waves are
properties of large-scale physical processes, and always exhibit serial
correlation. The autocorrelation function for 𝐻𝑠 during different winter
easons (November–February) showed significant temporal serial cor-
elation, dropping below 0.8 only after 10 h of data. Neglecting this
erial correlation can potentially overestimate long-term extreme re-
ponses (de Hauteclocque et al., 2022; Mackay et al., 2021). However,
ince the goal of this study is to compare and evaluate statistical and
odelling uncertainties in extreme responses using a specific dataset,

ather than providing design values for OWTs, the strict validity of this
ssumption is not expected to significantly affect the study’s findings.

.2. Joint environmental model and dependence structure

To establish environmental contours, a joint probabilistic model was
itted to the metocean data, by adopting the conditional modelling
pproach (Bitner-Gregersen and Haver, 1989). Wave data were sampled
n wind speed classes with bin size of 2 m/s, associated with the mean
ind speed at hub height, 𝑈ℎ𝑢𝑏.

A marginal distribution was fitted to the hub height wind speed
ata, denoted as 𝑓𝑈ℎ𝑢𝑏

(𝑢), and conditional models were fitted to 𝐻𝑠 for
iven 𝑈ℎ𝑢𝑏, and to 𝑇𝑝 for given 𝑈ℎ𝑢𝑏 and 𝐻𝑠, denoted as 𝑓𝐻𝑠|𝑈ℎ𝑢𝑏

(ℎ|𝑢)
and 𝑓𝑇𝑝|𝐻𝑠 ,𝑈ℎ𝑢𝑏

(𝑡|ℎ, 𝑢), respectively. The joint probability is expressed as
the product of marginal and conditional probability density functions,
as given in Eq. (1),

𝑓𝑈ℎ𝑢𝑏 ,𝐻𝑠 ,𝑇𝑝 (𝑢, ℎ, 𝑡) = 𝑓𝑈ℎ𝑢𝑏
(𝑢) ⋅ 𝑓𝐻𝑠|𝑈ℎ𝑢𝑏

(ℎ|𝑢) ⋅ 𝑓𝑇𝑝|𝑈ℎ𝑢𝑏 ,𝐻𝑠
(𝑡|𝑢, ℎ). (1)

3.2.1. Probabilistic models for metocean parameters
The 1-hour mean wind speed 𝑈ℎ𝑢𝑏 is modelled using a 3-parameter

Weibull distribution defined by Eq. (2).

𝑓𝑈ℎ𝑢𝑏
(𝑢) =

𝜅𝑢
𝐴𝑢

(

𝑢 − 𝛾𝑢
𝐴𝑢

)𝜅𝑢−1
exp

[

−
(

𝑢 − 𝛾𝑢
𝐴𝑢

)𝜅𝑢]

(2)

Parameters 𝜅𝑢, 𝐴𝑢 and 𝛾𝑢 denote the shape, scale and location param-
eters, respectively. A 2-parameter model (𝛾𝑢 = 0), which is more com-
mon in the literature, was also examined (Bitner-Gregersen and Haver,
1991b; Bitner-Gregersen, 2005, 2015b). Good agreement between the
data and the fitting models was obtained, with negligible difference for
wind speeds lower than 3.0 m/s, which are not considered important
for the purposes of the study.

For significant wave height, 𝐻𝑠, previous studies have shown that
it can be modelled reasonably well by a 3-parameter Weibull dis-
tribution (Bitner-Gregersen and Haver, 1991b; Mathisen and Bitner-
Gregersen, 1990b). In this study, three statistical models have been
adopted for the conditional distribution of 𝐻 given 𝑈 :
5

𝑠 ℎ𝑢𝑏
1. A 2-parameter Weibull distribution, given in Eq. (3),

𝑓𝐻𝑠|𝑈ℎ𝑢𝑏
(ℎ|𝑢) =

𝜅2𝑝
𝐴2𝑝

(

ℎ
𝐴2𝑝

)𝜅2𝑝−1
exp

[

−
(

ℎ
𝐴2𝑝

)𝜅2𝑝]

(3)

where 𝜅2𝑝, 𝐴2𝑝 are the shape, and scale Weibull parameters,
respectively.

2. A 3-parameter Weibull model, given in Eq. (4),

𝑓𝐻𝑠|𝑈ℎ𝑢𝑏
(ℎ|𝑢) =

𝜅3𝑝
𝐴3𝑝

(ℎ − 𝛾3𝑝
𝐴3𝑝

)𝜅3𝑝−1

exp
[

−
(ℎ − 𝛾3𝑝

𝐴3𝑝

)𝜅3𝑝]

(4)

where 𝜅3𝑝, 𝐴3𝑝, and 𝛾3𝑝 denote the shape, and scale and location
Weibull parameters, respectively.

3. A hybrid model consisting of a Log-normal and a Weibull dis-
tribution, known as the LonoWe distribution (Haver, 1985),

𝑓𝐻𝑠|𝑈ℎ𝑢𝑏
(ℎ|𝑢) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
√

2𝜋𝜎ℎℎ
exp

[

−(ln(ℎ)−𝜇ℎ)2
2𝜎2ℎ

]

, ℎ ≤ 𝜂

𝜅ℎ
𝐴ℎ

(

ℎ−𝛾ℎ
𝐴ℎ

)𝜅ℎ−1
exp

[

−
(

ℎ−𝛾ℎ
𝐴ℎ

)𝜅ℎ]
, ℎ > 𝜂

(5)

The LonoWe distribution was first introduced and is commonly
used with a 2-parameter Weibull distribution. In the present
study, a 3-parameter model was used. For each wind class,
𝑓𝐻𝑠|𝑈ℎ𝑢𝑏

(ℎ|𝑢) was modelled by a Log-normal distribution for ℎ ≤
𝜂 and a 3-parameter Weibull distribution for ℎ > 𝜂 (Eq. (5)). In
Eq. (5), 𝜇ℎ is the mean and 𝜎2ℎ is the variance of ln(ℎ). Parameters
𝜅ℎ, 𝐴ℎ and 𝛾ℎ denote the shape, scale and location parameters
of the Weibull distribution, respectively.

The dependence function for the scale, shape, and location parame-
ters for Weibull models are described by the power function given the
wind speed data within a wind class, shown in Eq. (6),

𝐴 = 𝑐1 + 𝑐2 ⋅ 𝑢
𝑐3

𝑘 = 𝑑1 + 𝑑2 ⋅ 𝑢
𝑑3

𝛾 = 𝑒1 + 𝑒2 ⋅ 𝑢
𝑒3

(6)

where parameters 𝑐𝑖=1,2,3, 𝑑𝑖=1,2,3, 𝑒𝑖=1,2,3 are estimated using nonlinear
curve-fitting based on least-squares, and 𝑢 represents the wind speed
data within each wind class. Fig. 2 shows an example of the fitted
parameters of the dependence function for the Weibull models. The
dependence functions for the Log-normal parameters of the LonoWe
distribution are given in Eq. (7),

𝜇ℎ = 𝑚1 + 𝑚2 ⋅ 𝑢
𝑚3

𝜎2 = 𝑠1 + 𝑠2𝑒
(𝑠3⋅𝑢)

(7)

where 𝑚𝑖=1,2,3, 𝑠𝑖=1,2,3 are the parameters of the power and exponen-
tial functions, respectively. It should be noted that the dependence
functions used in this study are typically used in literature and rec-
ommended in the design standards (IEC, 2019; DNV-GL (Det Norske
Veritas - Germanischer Lloyd), 2019). However, they do not provide
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any physical interpretation. Haselsteiner et al. (2020) present recent
work on physical interpretations of the dependence functions.

Based on previous studies, when only wave data are considered, the
conditional distribution for 𝑇𝑝 given 𝐻𝑠 is usually assumed to follow a
Log-normal distribution (Haver, 1985; Mathisen and Bitner-Gregersen,
1990a; Bitner-Gregersen and Haver, 1989, 1991b). A method to de-
termine the conditional distribution for 𝑇𝑝 given 𝑈𝑤 and 𝐻𝑠 was
developed by Johannessen et al. (2002), and it has been used in other
studies (Horn et al., 2018; Li et al., 2015). As mentioned by Li et al.
(2015), the process of obtaining the distribution of 𝑇𝑝 conditionally
on both 𝐻𝑠 and 𝑈𝑤 is challenging and not straightforward following
the methods described by Johannessen et al. (2002), therefore Johan-
nessen’s parametrization method was not used. In the present study,
two statistical models were evaluated for the 𝑇𝑝 conditional distribution
given 𝑈ℎ𝑢𝑏 and 𝐻𝑠 using the available data: a Log-normal (Eq. (8)) and
a 3-parameter Weibull distribution (Eq. (9)).

𝑓𝑇𝑝|𝑈ℎ𝑢𝑏 ,𝐻𝑠
(𝑡|𝑢, ℎ) = 1

√

2𝜋𝜎𝑡𝑡
exp

[

−

(

ln(𝑡) − 𝜇𝑡
)2

2𝜎2𝑡

]

(8)

𝑓𝑇𝑝|𝑈ℎ𝑢𝑏 ,𝐻𝑠
(𝑡|𝑢, ℎ) =

𝜅𝑡
𝐴𝑡

(

𝑡 − 𝛾𝑡
𝐴𝑡

)𝜅𝑡−1
exp

[

−
(

𝑡 − 𝛾𝑡
𝐴𝑡

)𝜅𝑡]

(9)

In Eq. (8), 𝜇𝑡 and 𝜎2𝑡 are the mean and variance of ln(𝑡) of the Log-
normal model and 𝜅𝑡, 𝐴𝑡, 𝛾𝑡 denote the shape, scale and location Weibull
parameters, respectively. The dependence functions used for the peak
period are the same as shown in Eqs. (6) and (7), where 𝑢 is substituted
with the wave height, ℎ, within the corresponding wind and wave class.

3.3. Parameter estimation

The parameters of the marginal distribution of 𝑈ℎ𝑢𝑏 were estimated
using the maximum likelihood estimate (MLE).

For the 𝐻𝑠 2-parameter Weibull model, MLE was used to esti-
mate the distribution parameters. To estimate the 3-parameter Weibull
model parameters for 𝐻𝑠, two methods were used, namely MLE and
Method of Moments (MoM). To estimate the distribution parameters for
the MoM method, the expected value (𝜇𝐻𝑠

), the variance (𝜎2𝐻𝑠
) and the

skewness coefficient (𝛾𝐻𝑠
) of 𝐻𝑠 data for each wind class are estimated

and then replaced in Eqs. (A.1), (A.2), and (A.3) respectively, given in
Appendix.

For the LonoWe model, the following procedure was followed. For
different values of transition point 𝜂, first a Log-normal distribution was
fitted for ℎ ≤ 𝜂 within the wind class. Then, the Weibull parameters
were estimated using non-linear least square method, by solving the
continuity condition for 𝑓𝐻𝑠|𝑈ℎ𝑢𝑏

(ℎ|𝑢) and 𝐹𝐻𝑠|𝑈ℎ𝑢𝑏
(ℎ|𝑢) between the

adopted Log-normal and Weibull distributions at ℎ = 𝜂. The LonoWe
models established for different 𝜂, were then compared and the distri-
bution that minimized the root mean square error (RMSE) between the
model and the data was adopted for further comparisons.

For the 𝑇𝑝 Weibull and Log-Normal models, the MLE method was
used to estimate the distribution parameters.

3.4. Metocean contours

Based on the established joint distribution, a contour corresponding
to a given return period was estimated for each wind class. In the
present study, the estimation of contours is based on the IFORM (Win-
terstein et al., 1993) using the Rosenblatt transformation (Rosenblatt,
1952), where a joint probability model in the physical space (X-space)
is transformed to the standard Gaussian normalized U-space. The en-
vironmental variables in the physical space (𝑈ℎ𝑢𝑏,𝐻𝑠, 𝑇𝑝) are mapped
to uncorrelated normally distributed variables (𝑈1, 𝑈2, 𝑈3) based on
Eq. (10),

𝛷
(

𝑢1
)

= 𝐹𝑈ℎ𝑢𝑏
(𝑢)

𝛷
(

𝑢2
)

= 𝐹𝐻𝑠|𝑈ℎ𝑢𝑏
(ℎ|𝑢)

( )

(10)
6

𝛷 𝑢3 = 𝐹𝑇𝑝|𝑈ℎ𝑢𝑏 ,𝐻𝑠
(𝑡|𝑢, ℎ)
Fig. 3. 50-year contour sphere with radius 𝛽 and contour circles of radius 𝑟𝑘 for various
wind classes 𝑘 in Gaussian U-space.

where 𝛷 is the standard normal cumulative distribution function. Func-
tions 𝐹𝑈ℎ𝑢𝑏

, 𝐹𝐻𝑠|𝑈ℎ𝑢𝑏
, 𝐹𝑇𝑝|𝑈ℎ𝑢𝑏 ,𝐻𝑠

denote the cumulative distribution func-
tions (CDFs) of 𝑈ℎ𝑢𝑏, 𝐻𝑠, 𝑇𝑝, respectively. Eq. (10) establishes a unique
connection between variables (𝑢, ℎ, 𝑡) and (𝑢1, 𝑢2, 𝑢3), and the U-space
variables can be back-transformed to the original physical space based
on Eq. (11).

𝑢 = 𝐹−1
𝑈ℎ𝑢𝑏

[

𝛷
(

𝑢1
)]

ℎ = 𝐹−1
𝐻𝑠|𝑈ℎ𝑢𝑏

[

𝛷
(

𝑢2
)]

𝑡 = 𝐹−1
𝑇𝑝|𝑈ℎ𝑢𝑏 ,𝐻𝑠

[

𝛷
(

𝑢3
)]

(11)

In the Gaussian space, points of constant probability density define a
sphere with radius equal to 𝛽 (the reliability index), shown in Eq. (12),

𝛽 =
√

𝑢21 + 𝑢22 + 𝑢23 (12)

and as a result, the 𝐻𝑠−𝑇𝑝 contours for each wind class 𝑘 are based on
a circle (in 𝑈2 − 𝑈3 plane) with radius 𝑟𝑘 given in Eq. (13),

𝑟𝑘 = 𝑢22 + 𝑢23 =
√

𝛽2 − 𝑢21𝑘 =

√

𝛽2 −
[

𝛷−1
(

𝐹𝑈ℎ𝑢𝑏

(

𝑢𝑘
)

)]2
(13)

The variable 𝑢𝑘 is chosen as the mean value of the wind speed data
in class 𝑘. Assuming data to be statistically independent, highlighting
that this is not true in reality, parameter 𝛽 is related to the target
exceedance probability 𝑝𝑒 required to estimate the contours by Eq. (14),

𝛽 = 𝛷−1 (1 − 𝑝𝑒
)

= 𝛷−1
(

1 − 𝜏
𝑇𝑟𝑝

)

. (14)

In Eq. (14), 𝑇𝑟𝑝 is the target return period (expressed in total number
of hours of stationary sea states) and 𝜏 is the duration of a stationary sea
state (Kleiven and Haver, 2004). Considering a 50-year return period
𝑇𝑟𝑝 and the duration of a sea state event 𝜏 = 1 hr based on the hindcast
data, Fig. 3 shows the contour sphere of radius 𝛽 = 4.58 and contour
circles of radius 𝑟𝑘 for various wind classes 𝑘.

3.5. Assessment of contours compared to wave steepness limit

The physical limit of the wave steepness is generally not considered
for the establishment of the probability distributions and the environ-
mental contours. Therefore, non-physical 𝐻𝑠 − 𝑇𝑝 combinations can be
present in the contours, resulting in non realistic loading conditions.
This may result from multiple reasons, such as that the marginal and
conditional models may be misspecified, i.e. they are not an accurate fit
for the data or the assumed dependence structure for conditional model
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Table 1
Main characteristics of the two monopile-based OWTs.

Parameter Unit DTU IEA

Rated power MW 10 15
Rated wind speed m/s 11.4 10.59
Rated rotor speed rpm 9.6 7.56

Hub height m 119 150
Rotor diameter m 178.3 240

RNA mass tonnes 674 1017
Monopile diameter (𝐷𝑝) m 9 11
Monopile thickness (𝑡𝑝) m 0.11 0.11

Monopile embedded length (𝐿𝑝) m 36 44
1st fore-aft natural frequency Hz 0.278 0.192

parameters may not be appropriate. Another reason is the uncertainty
in parameter estimates due to finite sample size, particularly for cases
with limited amount of data (Cheng et al., 2019). IEC (IEC, 2019)
states that the joint environmental model should include the influence
of possible upper limitations on 𝐻𝑠.

The average wave steepness for irregular sea states, denoted as 𝑆𝑝,
is defined as the ratio of 𝐻𝑠 to the peak wavelength (𝜆𝑝). The limiting
values of wave steepness (DNV-GL (Det Norske Veritas - Germanischer
Lloyd), 2019) are shown in Eq. (15), and linear interpolation can be
used between the boundaries.

𝑆𝑝 =

{

1∕15, for 𝑇𝑝 ≤ 8 𝑠
1∕25, for 𝑇𝑝 ≥ 15 𝑠

(15)

Wave length can be calculated from the deep-water dispersion
relation, shown in Eq. (16). However, due to the shallow depth of
the location (𝑑 = 30 m), the deep-water wave length cannot be used
directly, and the intermediate depth dispersion relation should be used
to estimate the wave length 𝜆𝑝, given in Eq. (17).

𝜆𝑝 =
𝑔
2𝜋

⋅ 𝑇 2
𝑝 (16)

(

2𝜋
𝑇𝑝

)2
=

2𝜋𝑔
𝜆𝑝

tanh
(

2𝜋𝑑
𝜆𝑝

)

(17)

In the present study, the resultant contours are compared to the
teepness curves as obtained using the deep-water and intermediate
avelength relationship, to evaluate the adequacy of the 𝑇𝑝 conditional
odels mainly at the steep side of contours, and ensure that subsequent
esign sea states remain within realistic ranges.

. Simulation and load models

.1. Simulation models

Two monopile-based OWT models were used in the study: the DTU
0 MW (Bak et al., 2013) and the IEA 15 MW (Gaertner et al., 2020),
ith main characteristics shown in Table 1. The rotor-nacelle assembly,

ower and monopile above seabed were modelled in SIMA (SIMO, 2017;
IFLEX, 2017), an aero-hydro-servo-elastic software developed by SIN-
EF Ocean. All wind inflow fields for the time-domain simulations
ere performed using the stochastic, full-field, turbulence simulator
urbSim (Jonkman, 2009), using the Kaimal spectrum and exponential
oherence model (IEC, 2019).

The wind turbine blades were modelled using flexible beam el-
ments, and the structural and aerodynamic coefficients were based
n the reference document by Bak et al. (2013). The correspond-
ng generator-torque and blade-pitch controllers were implemented
ased on the Basic DTU Wind Energy Controller (Hansen and Hen-
iksen, 2013) and NREL’s Reference OpenSource Controller (NREL,
020), respectively. Aerodynamic loads were calculated using the blade
lement momentum theory, incorporating the Glauert and Prandtl
7

orrections (Burton et al., 2011), and dynamic stall and wake effects.
The tower and monopile above the seabed were modelled using
xisymmetric beam elements. The monopile had a constant diameter
𝐷𝑝) and wall thickness (𝑡𝑝) along its length for each wind turbine
odel. The dimensions of the monopile for the 10 MW turbine were

ased on the work of Velarde and Bachynski (2017), considering a
ater depth of 30 m and a diameter-to-thickness ratio of approximately
0. The monopile for the 15 MW wind turbine was designed to achieve
target natural frequency around 0.19 Hz, which is approximately in

he middle of the soft-stiff frequency range for that turbine. Table 1
hows the monopile dimensions for the two OWTs.

The embedded length of the monopile was chosen to have a length-
o-diameter ratio of 4, similar to the 10 MW monopile, and a diameter-
o-thickness ratio of 100. For each turbine model, the tower was
epresented by sections of specified length with a constant diameter and
all thickness, increasing linearly from the top to the base of the tower.
he sectional properties of the tower for the 10 MW OWT followed
he preliminary design presented by Velarde (2015), considering a
onopile with a 9 m diameter and 0.11 m thickness at a water depth of
0 m. The tower design for the 15 MW OWT was based on the original
esign (Gaertner et al., 2020).

.2. Foundation modelling

Two modelling approaches were employed in the simulation tool
o represent the foundation, i.e., the monopile below the mudline. The
irst model is the 𝑝−𝑦 curves, and the second is a macro-element model,
oth described in Section 2.3. Both models have been calibrated using
he results of full 3D continuum modelling of the soil volume and the
oundation. Details of the soil layer properties used for the calibration
ere given by Katsikogiannis et al. (2021)

In the 𝑝 − 𝑦 curves method, the pile was modelled as a beam, and
he resistance of the soil to lateral displacement of the pile was repre-
ented by a series of discrete, uncoupled, axisymmetric nonlinear elas-
ic springs along the pile. The nonlinear elasto-plastic macro-element
odel condenses the soil-foundation system into a single node located

t the mudline, representing the interface between the foundation and
he rest of the structure. The model is integrated into SIMO-Riflex
hrough a dynamic link library (DLL), which serves as an interface be-
ween the macro-element model and SIMO-Riflex. At each calculation
ime step, the DLL retrieves the nodal displacement (𝑢𝑖) and rotation
ields (𝑟𝑖), at the mudline from SIMO-Riflex to estimate the external
orces (𝐹𝑖, 𝑀𝑖) acting on the macro-element model. These external
orces are then computed by the macro-element model and returned to
IMO-Riflex. This iterative process continues until specific convergence
riteria are satisfied. Fig. 4 shows the 15 MW OWT SIMO-Riflex model
sing 𝑝 − 𝑦 springs and macro-element to model foundation.

Fig. 5 shows the response at the mudline obtained from a decay
est for the two foundation models, for the 15 MW wind turbine.
he comparison highlights the non-linear elastic behaviour captured
y both foundation models. While the 𝑝 − 𝑦 curves follow the same
oading curve during load reversals, the macro-element model exhibits
on-linear hysteretic behaviour, resulting in a loop. The area enclosed
y the loop represents the energy dissipated in the soil, which can be
nterpreted as hysteretic damping at the foundation level, as also shown
n Page et al. (2017).

.3. Hydrodynamic models

Two hydrodynamic load models are employed to assess the sig-
ificance of diffraction effects in extreme loads. The first model em-
loys the conventional Morison’s equation, and the second is new load
odel that incorporates a frequency-dependent mass coefficient and

an be applied with higher-order wave kinematics (Dadmarzi et al.,
024). Morison’s equation, combines viscous drag and inertia load
omponents, and it can be expressed as follows,

𝐹 = 1𝐶 𝜌𝐷 |𝑢 |𝑢 + 𝐶 𝜋𝜌
𝐷2

𝑝 (�̇� − �̇� ) − 𝜌
𝐷2

𝑝 �̇� (18)

2 𝑑 𝑝 𝑟 𝑟 𝑚 4 𝑤 𝑠 4 𝑠
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Fig. 4. OWT model in SIMO-Riflex models using 𝑝 − 𝑦 springs (left) and macro-element (right).
Fig. 5. Behaviour of 𝑝− 𝑦 curves and macro-element models from the same decay test
for a 15 MW OWT.

where 𝑑𝐹 is the force per unit length, 𝐶𝑑 , 𝐶𝑚 are the drag and inertia
coefficients respectively, 𝜌 is the water density, and 𝐷𝑝 is the pile
diameter. 𝑢𝑟 is the relative horizontal fluid particle velocity normal to
the member (𝑢𝑟 = 𝑢𝑤 − 𝑢𝑠), and �̇�𝑤, �̇�𝑠 are the flow and structure ac-
celerations normal to the member, respectively. The inertia coefficient
can be split in two contributions

𝐶𝑚 = 1 + 𝐶𝑎 (19)

where 𝐶𝑎 is the added mass coefficient. The first term represents the
Froude–Krylov force from the pressure of the undisturbed wave, and the
second term represents the diffraction effects. The drag and inertia co-
efficients can vary based on different factors, and experimental results
have shown considerable variation in their values even under similar
conditions (IEC, 2019). For design calculations, it is common practice to
assume constant values of 𝐶𝑑 = 0.9 and 𝐶𝑚 = 2.0, respectively (DNV-GL
(Det Norske Veritas - Germanischer Lloyd), 2019). Notably, as monopile
foundations increase in size, diffraction effects become more promi-
nent. This is illustrated in Fig. 6, where the inertia load coefficient 𝐶𝑚
exhibits a significant decrease for shorter waves and larger diameters,
resulting in a reduction of the total horizontal force on the structure.
8

Fig. 6. Comparison of inertia load coefficient for different monopile diameters at 30 m
depth. Vertical lines represent the natural frequencies of the 15 MW and 10 MW OWTs,
respectively.

To compute the inertia force per unit length, the undisturbed incom-
ing fluid particle acceleration time-series obtained using second-order
waves is transformed to the frequency domain using Fourier transform.
Assuming that the inertia force can be represented as a linear combina-
tion of 𝑁 Fourier components derived from the nonlinear acceleration
signal, the force is given by Eq. (20)

𝑑𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 𝜋𝜌
𝐷2

𝑝

4

𝑁
∑

𝑛=1
𝐶𝑀𝑛

�̇�𝑛. (20)

Each Fourier component of the acceleration signal, �̇�𝑛, is associated
with a corresponding frequency-dependent mass coefficient, 𝐶𝑀𝑛

, cal-
culated using MacCamy–Fuchs diffraction theory as shown in Eq. (21),

𝐶𝑀𝑛
=

4𝐴(𝑘𝑛𝛼)
𝜋(𝑘𝑛𝛼)2

, (21)

where 𝐴(𝑘𝑛𝛼) =
[

𝐽 ′2
1 (𝑘𝑛𝛼) + 𝑌 ′2

1 (𝑘𝑛𝛼)
]−1∕2 and 𝛼 = tan−1

[

𝐽 ′
1(𝑘𝑛𝛼)∕

𝑌 ′
1 (𝑘𝑛𝛼)

]

. 𝐽 ′
1(⋅), 𝑌

′
1 (⋅) are the first order Bessel functions of the first and

second kind, respectively, with the prime denoting the derivative with
respect to the argument, 𝛼 = 𝐷 ∕2 is the monopile radius, and 𝑘
𝑝 𝑛
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Fig. 7. Analytical and empirical cumulative distributions for 𝐻𝑠 for different wind classes (10 MW OWT).
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s the wave number. For a Fourier component at frequency 𝜔𝑛, 𝑘𝑛 is
he positive real solution calculated from the linear dispersion relation
Eq. (22)) for intermediate water depth ℎ:

𝑛 ⋅ 𝑔 ⋅ tanh(𝑘𝑛ℎ) = 𝜔2
𝑛. (22)

. Results and discussion

The results section of the paper is divided into three main sections.
ections 5.1 and 5.2 examine the impact of the conditional statistical
odels for 𝐻𝑠 and 𝑇𝑝, described in Section 3.2.1, on the resulting

ontours. The objective is to understand how different statistical models
ffect the contours used to estimate extreme responses. Then, in Sec-
ion 5.3, the variation of extreme responses across representative wind
lasses using different statistical models is explored. The influence of
tochastic variability among realizations is also evaluated in this con-
ext. Finally, Sections 5.4 and 5.5 investigate the impact of foundation
nd hydrodynamic load modelling on extreme responses, for critical sea
tates.

.1. Effect of 𝐻𝑠 conditional distributions on resultant contours

As mentioned in Section 3.2, wave data were sampled in wind speed
lasses, associated with the mean wind speed at hub height, 𝑈ℎ𝑢𝑏. Due
o the different hub height between the turbines (see Table 1), the data
ontained within the same wind class may slightly differ between the
0 MW and 15 MW turbine models. Consequently, the fitted condi-
ional distributions and resulting contours also exhibit slight variations
etween the two turbines. However, similar conclusions apply to both
ases.

For the 𝐻𝑠 conditional distribution given 𝑈ℎ𝑢𝑏, different statistical
odels were compared. Fig. 7 shows the empirical and the fitted
istributions for different wind classes. The logarithm of the exceedance
robability, 𝑙𝑛(1 − 𝐹𝐻𝑠

), is plotted in the 𝑦 axis, to better capture the
ehaviour of the models at the tail probability of the distributions.
he 2-parameter Weibull distribution resulted in large discrepancies
etween the analytical model and the hindcast data in the upper tail.
his can be observed by the steep slope in the tail regions, indicating
hat the probability of observing values beyond a certain threshold
9

ecreases quickly, and the model is significantly non-conservative. The w
iscrepancies were notable particularly in lower and intermediate wind
lasses, as the model was inadequate to capture the mixed nature of
he data (wind-sea and swell). For higher winds, it provided a more
easonable fit, as the sea states are mostly wind-driven for the site
onsidered.

A more accurate fit of the upper tail was obtained using the 3-
arameter Weibull distribution; however, its behaviour depends on the
ethod used to estimate the fitted parameters. Using the maximum

ikelihood estimate (MLE), less weight is given to the tail regions of
he data to estimate the distribution parameters. This resulted in non-
onservative contours disregarding some severe sea states, mainly for
ower and intermediate wind classes, where many small and moderate
ea states are observed, with only a few severe sea states. This is
ne of the main limitations of global hierarchical models used to fit
ll observations, when the upper tail is of main interest. In contrast,
his limitation seemed to have less impact when using the method of
oments (MoM), as it gives more weight to the upper-tail data to esti-
ate the distribution parameters. Consequently, this model provided a

etter fit for the upper tail and more conservative contours for all wind
lasses. Generally, the MoM resulted in relatively high estimates for the
ocation parameter (𝛾ℎ), providing a worse fit at the lower tail than the
LE method; however, this is not of great concern when evaluating the

xtremes.
The LonoWe model accurately fitted the full range of 𝐻𝑠 data

ithin most wind classes. However, its performance was sensitive to the
ransition point (𝜂) between the Log-normal and Weibull distributions,
hich had a notable impact on the fit and the resultant contours, as

hown in Fig. 8. This sensitivity was particularly important for the
pper tail of the data. As mentioned in Section 3.3, the value of 𝜂
as chosen based on minimizing the RMSE between the data and the
nalytical model. However, the variations in RMSE became negligible
or increasing values of 𝜂, making it challenging to estimate an optimal
alue. If an accurate probabilistic model for the whole range of 𝐻𝑠
ithin a wind class is of interest, then it is essential to select a value

or 𝜂 that ensures an adequate amount of data is available for fitting
oth the Log-normal and Weibull distributions, avoiding extremely low
r high values of 𝜂. When extreme values of 𝐻𝑠 are of interest, focus
hould be given on fitting only the high quantiles of 𝐻𝑠, see e.g. work
rom Haselsteiner and Thoben (2020), omitting the bulk of the data,

hile 𝜂 can be chosen based on a quantity that better indicates the
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Fig. 8. 50-year contours using LonoWe model with various values of the transition point 𝜂, between the Log-normal and Weibull models (15 MW OWT).
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uality of the fit at the upper tail, and not RMSE, which is a measure
f fit to all observations.

Fig. 9 shows the differences between the fitted models for three
ind classes and the resultant 50-year contours with the 𝐻𝑠−𝑇𝑝 scatter
ensity plots. The Weibull model for 𝑇𝑝 is used for the plots in this
ection. Overall, the data seem to lie inside the 50-year contours for
he 3-parameter Weibull and LonoWe distributions without excessive
ut-crossings. In some cases, the models resulted in slightly higher (or
ower) extreme wave heights than the hindcast data suggest. This is a
onsequence of model misspecification, the statistical uncertainty due
o the limited number of observations of higher 𝐻𝑠 classes for a given
ind speed and the method used to estimate the distribution parame-

ers. Furthermore, it should be noted that although the differences in
he upper tail seem negligible in the Weibull probability plot, they are
ignificant in the resultant contours.

.2. Effect of 𝑇𝑝 conditional distributions on resultant contours

The peak period conditional distribution is relatively challenging to
stablish, mainly for two reasons. Firstly, fitting an analytical model
o combined sea data, which includes wind-driven and swell compo-
ents, enhances the modelling difficulty, due to their different nature.
ig. 10(a) illustrates the scatter density plots of the site-specific hind-
ast data for wind-driven, and swell components and the 50-year
ontours for various wind classes. As depicted, for the site considered
n the study, for low and moderate wind speeds, sea states are often of a
ombined nature with the most severe sea states originating from swell,
hile in high wind speeds severe sea states are purely wind-driven.
he wave components that dominate in different wind speeds are also
eflected in the shape of the contours (Fig. 10(b)), where for low wind
peeds, contours are characterized by long periods representing mainly
he swell and moderate wind-driven seas, while gradually their shape
ransforms representing the wind-driven severe sea states that dominate
n high wind speeds.

Log-normal and Weibull models fitted the wave peak period data
easonably well. An example is shown in Fig. 11 for different wave
lasses in wind class 10–12 m/s, where both models depict simi-
ar behaviour with minor differences. Nevertheless, the variations in
ontours were distinct. Fig. 12 shows the 50-year contours for three
ind classes obtained using Weibull and Log-normal distributions for
𝑝. The steepness limits using deep- and intermediate-water depth
ispersion relation are also indicated. Using a 3-parameter Weibull
odel introduces a lower limit, the location parameter, capturing more
10

a

dequately the lower tail of the 𝑇𝑝 data within 𝐻𝑠 class, being closer
o the steepness curve, which can be observed directly from the scatter
ensity plots. The resultant contours using the Log-normal distribution
id not follow the data trend close to the wave steepness limit, resulting
n relatively high 𝐻𝑠 values above the steepness for a given peak period.
his is seen for wind class 10–12 m/s, for 𝑇𝑝 between 3–8 s. Considering
hat the natural period of large diameter monopile-based OWTs is in
his range, a high dynamic response is expected even for moderate
alues of 𝐻𝑠, which can result in overestimating responses.

The difference between the steepness criteria is negligible for wave
eriods lower than 8 s and water depth of 30 m. However, the steepness
imits differ considerably for peak periods larger than 8 s. The effect is
ronounced for the contour in wind class 26–38 m/s. Here, it should
e noted that the contour for wind class 26–38 m/s was used only for
llustration purposes, and not for any response calculation. The use of
uch a large bin was due to insufficient data to obtain a finer resolution,
hich is a key limitation of the conditional modelling approach. Wave

onditions over this range of wind speeds will vary considerably, and
uch large bins should therefore be avoided for response calculations.
s it can be seen, using the Log-normal distribution resulted in a
ontour with 𝐻𝑠−𝑇𝑝 combinations, which, although reasonable for deep
ater depths, are notably above the steepness limit when the effect of

he water depth is considered. This depicts the importance of evaluating
he resultant contours based on the relevant steepness criteria, to avoid
nrealistic 𝐻𝑠 − 𝑇𝑝 combinations.

.3. Extreme responses along the contours

To investigate the variation of extreme responses along wind speed
ontours, two wind speeds were selected: the rated speed (10–12 m/s)
nd the cut-out speed (24–26 m/s). The response under consideration
s the fore-aft bending moment at the mudline. The same soil and wave
oad models were used, specifically the NGI macro-element model and
he 2nd-order waves with the Morison equation using a constant value
or 𝐶𝑚. TurbSim was employed to generate turbulent wind time series
or the aeroelastic simulations. The mean wind speeds were set to the
id-values of the rated (11 m/s) and cut-out (25 m/s) wind classes.
he turbulence intensity was defined based on the normal turbulence
odel (NTM) for IEC Class C.

Multiple sea states were analysed along the contours obtained
rom different statistical models. For each sea state, 20 one-hour
ime-domain simulations were conducted, considering random wind

nd wave seeds. The number of simulations was chosen to minimize
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Fig. 9. Hindcast data and fitted models for different 𝐻𝑠 conditional distributions (top) and resultant 50-year contours (bottom) for three wind classes (Left:10–12 m/s Middle:18–
20 m/s Right:24–26 m/s) for 10 MW OWT. Colour in the hindcast data in the contour plots indicates the density of points and the horizontal lines the 10- and 50-year exceedance
probability.
Fig. 10. Wind-sea and swell components and contours for different wind classes (10 MW OWT). Colour in the hindcast data indicates the density of points.
statistical uncertainty arising from seed variability, and was considered
a reasonable compromise between accuracy and computational effort
for assessing response variations along the contours. To mitigate the
impact of wind and wave seed variability between different sea states,
the same set of 20 seeds was employed for each load case analysed
along the contours. It should be noted that using the same set of seeds
keeps the same surface elevation profile for fixed 𝑇 and different 𝐻 ,
11

𝑝 𝑠
however it will give a different set of waves at different wave periods.
Therefore, even using the same set along the contours the effect of seed
variability is not eliminated. The influence of seed variability on the
response is discussed in Section 5.3.3.

The short-term global maxima of the fore-aft bending moment at
the mudline for each sea state were fitted using the Gumbel distribu-
tion (Bury, 1975). Eq. (23) shows the cumulative distribution function
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Fig. 11. Hindcast data and conditional distributions for 𝑇𝑝 for different wave classes within 10–12 m/s wind class (10 MW OWT).
Fig. 12. 50-year contour for three wind classes using a Log-normal and a Weibull model for the 𝑇𝑝 distribution. The wave steepness criterion is plotted. Colour in the hindcast
ata indicates the density of points. (Left:10–12 m/s Middle:24–26 m/s Right:26–38 m/s).
𝑀 (𝑥) of the short-term global maxima, characterized by parameters 𝛼𝑔
nd 𝛽𝑔 . These parameters are estimated using the method of moments,
ased on the expected value and standard deviation of the Gumbel
istributed variable as in Eq. (24),

𝑀 (𝑥) = exp

[

−exp
(

−
𝑥 − 𝛼𝑔
𝛽𝑔

)

]

(23)

𝑀 = 𝛼𝑔 + 𝛾 ⋅ 𝛽𝑔

𝑀 = 𝜋
√

6
⋅ 𝛽𝑔

(24)

where 𝛾 ≈ 0.5772 is the Euler–Mascheroni constant. The representative
extreme response for a sea state (ℎ𝑞 , 𝑡𝑞) along a 50-year contour for
a wind class associated with a mean wind speed 𝑢𝑞 at hub height was
then found by solving Eq. (25),

𝐹𝑀|𝑈ℎ𝑢𝑏 ,𝐻𝑠 ,𝑇𝑝 (𝑀𝑝𝑔 |𝑢𝑞 , ℎ𝑞 , 𝑡𝑞) = 𝑝𝑔 , (25)

where 𝑝𝑔 represents the percentile of the 1-hr extreme value distri-
bution divided by 100. For most practical offshore problems domi-
nated by wave loading, reasonable results are obtained 0.85 ≤ 𝑝𝑔 ≤
0.95 (Baarholm et al., 2010; Haver et al., 1998; Kleiven and Haver,
2004) for 3-hr simulations, for 100-year return period. For the purposes
12

r

of the study, 𝑀𝑝𝑔 was obtained from the extreme value distribution for
𝑝𝑔 = 0.9 using Eq. (26),

𝑀𝑝𝑔 = 𝛼𝑔 − 𝛽𝑔 ⋅ ln
[

− ln(𝑝𝑔)
]

. (26)

5.3.1. Rated speed (11 m/s)
The extreme mudline fore-aft bending moment responses at the

rated speed were found to be equally important as those at the cut-out
speed for both the 10 MW and 15 MW OWTs, due to the combination
of wind loads induced by the maximum thrust force and moderate
but relatively steep waves. The extreme responses at the rated speed
were influenced by factors such as wave height, wave steepness, and
the natural period of the structure. Figs. 13(a) and 14(a) present the
metocean contours at the rated speed for different conditional models
of significant wave height (𝐻𝑠) for the 10 MW and 15 MW OWTs,
respectively. The colour scale for the dots showing each state represents
the 90th percentile of the bending moment at the mudline. Additionally,
Figs. 13(b) and 14(b) display individual wave events extracted from
the 20 one-hour simulations of the worst sea state identified for each
OWT. The red line indicates the natural period of the OWTs. The wave
height (𝐻) is defined as the crest-to-trough height, and the period (𝑇 )

epresents the time, between two consecutive zero up-crossings. The
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Fig. 13. (a) Metocean contours at rated speed for different conditional 𝐻𝑠 models for 10 MW. The colour scale of each dot (sea state) represents the 90th percentile of the bending
moment at mudline, obtained from 20 simulations. The same set of (20) wind and wave seeds were used for each sea state. (b) Individual wave events from 20 simulations for
the most severe sea state found along the contour. Colorbar indicates the steepness of wave events. (c–d) Wave events from 20 1-hr analyses for two sea states that resulted in the
same 𝑀90% (10 MW). Black crosses indicate the events that resulted in the highest mudline bending moment. Red vertical line indicates the natural period of the 10 MW OWT.
wavelength of each wave event was calculated using Eq. (17), where
the corresponding wave period was used instead of 𝑇𝑝. Subsequently,
the wave steepness was calculated by the ratio of wave height to
wavelength using 𝑠 = 𝐻∕𝐿.

For the 10 MW OWT, the highest response was observed at the
top of the contour. Along the contours, 𝐻𝑠 gradually increases while
the waves became less steep, and the wave energy content around
the natural period (3.7 s) decreases. As depicted in Fig. 13(a) and in
Table 2, the choice of conditional 𝐻𝑠 model influenced the estimated
extreme responses. The largest value of 𝑀90% was obtained using the 3-
parameter method of moments (MoM) Weibull model. Comparatively,
the LonoWe model yielded a slightly lower (2.7%) value, while for the
2-parameter and 3-parameter maximum likelihood estimation (MLE)
Weibull models, the same sea state (𝐻𝑠 = 2.66 m - 𝑇𝑝 = 5.54 s) along
the contours resulted in largest load 𝑀90%, which was 6.9% lower than
the value obtained from MoM model. Despite the 10 MW wind turbine
having a relatively short natural period, and significant aerodynamic
damping due to the operational rotor, the effect of a steep sea state
near the natural period was notable. For instance, wave events of the
load case with 𝐻𝑠 = 2.66 m and 𝑇𝑝 = 5.54 s (Fig. 13(c)) resulted in
similar extreme responses (𝑀90% ≈ 378 MNm - Fig. 14) compared to
wave events for sea states with significantly larger 𝐻 but less steep
13

𝑠

Table 2
Worst sea state along the contours for different conditional 𝐻𝑠 models and
corresponding 𝑀90% (rated speed).

𝐻𝑠 model 10 MW 15 MW

𝐻𝑠 𝑇𝑝 𝑀90% 𝐻𝑠 𝑇𝑝 𝑀90%
[m] [s] [MNm] [m] [s] [MNm]

2P Weibull 2.66 5.54 378.6 3.30 6.56 562.1
3P Weibull (MLE) 2.66 5.54 378.6 3.45 6.59 571.7
3P Weibull (MoM) 5.46 10.48 406.1 4.74 8.23 616.5

LonoWe 4.78 9.01 395.3 4.36 7.83 595.1

and not in the vicinity of the natural period (Fig. 13(d)). The influence
of wave steepness is also evident in the lower responses observed for
sea states with similar 𝐻𝑠 but longer periods.

A similar behaviour along the contours was observed for the 15 MW
OWT, as shown in Fig. 14(a). However, the highest response was not
found at the top of the contour. Due to its longer natural period (5.5 s),
the 15 MW OWT is primarily affected by moderate but sufficiently
large and steep wave events around the natural period, which induce
high dynamic response, see e.g Fig. 14(b), rather than the largest
waves located at the top of the contours. Similarly to the 10 MW
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Fig. 14. (a) Metocean contours at rated speed for different conditional 𝐻𝑠 models for 15 MW. The colour scale of each dot (sea state) represents the 90th percentile of the bending
moment at mudline, obtained from 20 simulations. The same set of (20) wind and wave seeds were used for each sea state. (b) Individual wave events from 20 simulations for
the most severe sea state found along the contour. Colorbar indicates the steepness of wave events. Black crosses indicate the events that resulted in the highest mudline bending
moment. Red vertical line indicates the natural period of the 15 MW OWT.
Fig. 15. Metocean contours at cut-out speed for different conditional 𝐻𝑠 models for the two OWTs. The colour scale of each dot (sea state) represents the 90th percentile of the
bending moment at mudline, obtained from 20 simulations. The same set of (20) wind and wave seeds were used for each sea state.
OWT, the choice of conditional 𝐻𝑠 model influenced the estimated
extreme responses. The largest extreme response was estimated using
the 3-parameter MoM model, with 𝑀90% reaching 616 MNm. The
LonoWe model resulted in a slightly lower (3.4%) extreme, while the
3-parameter MLE and 2-parameter Weibull models resulted in lower
values of 𝑀90% by 7.3% and 8.7%, respectively. Wave steepness for
some events exceeded theoretical limits and, in reality, wave breaking
may occur; however, wave breaking was not considered in this study.

5.3.2. Cut-out speed (25 m/s)
At the cut-out speed, similar behaviour was observed for both the

10 MW and 15 MW OWTs, as depicted in Fig. 15. Extreme responses
gradually increase along the contours, reaching the maximum values
either at the top of the contour or for slightly smaller but steeper waves.
For the 10 MW OWT, the maximum response (𝑀90% ≈ 457 MNm) was
obtained for a sea state with 𝐻𝑠 = 8.55 m and 𝑇𝑝 = 14.94 s, which
was 11.1% larger than the largest 𝑀90% observed at the rated speed.
Similarly, for the 15 MW wind turbine, the load case with 𝐻𝑠 = 8.81 m
and 𝑇 = 14.5 s resulted in the largest 𝑀 ≈ 611 MNm, which
14

𝑝 90%
Table 3
Sea state with largest load along the contours for different conditional 𝐻𝑠 models and
corresponding 𝑀90% (cut-out speed).

𝐻𝑠 model 10 MW 15 MW

𝐻𝑠 𝑇𝑝 𝑀90% 𝐻𝑠 𝑇𝑝 𝑀90%
[m] [s] [MNm] [m] [s] [MNm]

2P Weibull 7.90 13.30 399.4 7.47 11.41 570.5
3P Weibull (MLE) 8.18 13.90 406.2 8.13 13.16 570.2
3P Weibull (MoM) 8.46 14.72 454.6 8.72 15.00 609.2

LonoWe 8.55 14.94 456.8 8.81 14.50 622.8

was lower than the largest 𝑀90% at the rated speed (616 MNm). This
suggests the significance of load cases at the rated speed for larger
capacity wind turbines with increasing natural periods.

The choice of conditional 𝐻𝑠 model also influenced the estimated
extreme responses at the cut-out speed as shown in Fig. 15 and Table 3.
For the 10 MW turbine, the largest 𝑀 was obtained using the
90%
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Fig. 16. Variation of extreme response due to seed variability. The analysed sea states are summarized in Table 4. Confidence intervals are scaled from Monte Carlo simulations
of a synthetic Gumbel distribution.
f
w
e

LonoWe model. The 3-parameter model (MoM) resulted in a slightly
lower (0.4%) extreme response, indicating negligible differences be-
tween the contours of the two models. On the other hand, the 3-
parameter (MLE) and 2-parameter Weibull models resulted in notably
lower extreme responses, approximately 11.1% and 12.7% respectively,
due to slightly less severe sea states for the two models. Similarly, for
the 15 MW wind turbine, the LonoWe model resulted in the largest
𝑀90% ≈ 611 MNm, with the 3-parameter model (MoM) resulting in a
slightly lower (2.2%) estimate. Meanwhile, the 3-parameter (MLE) and
2-parameter Weibull models resulted in similar 𝑀90% (8.5% lower) for
two different sea states, respectively.

5.3.3. Effect of seed variability
The 90th percentile of the response for each sea state in Section 5.3

was based on the global maxima from 20 simulations with random wind
and wave seeds. Although 20 simulations can provide a reasonable es-
timate of maximum response, there is still some uncertainty in quantile
15

T

estimates as a function of number of samples due to seed variability.
To evaluate the effect, the most severe load cases for the two OWTs for
rated and cut-out wind speed were analysed with 100 random seeds.
Then, using the sample size of 100 global maxima, a Gumbel distri-
bution was fitted and scale and location parameters were estimated,
as described in Section 5.3. Table 4 summarizes the load cases, the
bending moment 90th percentile 𝑀90%, and the corresponding Gumbel
scale (𝛽𝑔) and location (𝛼𝑔) parameters.

The uncertainty of quantile estimation was evaluated using Monte
Carlo simulations. Synthetic data samples of different sizes (between
3 and 100) were generated for a random variable 𝑍 that is assumed
to follow a Gumbel distribution, with location and scale parameters
𝜇𝑍 = 0 and 𝛽𝑍 = 1, respectively. Then, the 90th quantile estimate
or each set of the synthetic samples was determined. The procedure
as repeated ten thousand times to create a distribution of quantile
stimates, and the 2.5.%–97.5% confidence intervals were estimated.
hen the confidence intervals of the distributed variable 𝑀 for each
𝑝𝑔
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Table 4
Gumbel fit properties for the load cases analysed to evaluate seed variability.

10 MW (hub height 119 m)

𝑈119 [m/s] 𝐻𝑠 [m] 𝑇𝑝 [s] 𝑀90% [MNm] 𝑎𝑔 [MNm] 𝑏𝑔 [MNm]

LC1 11 5.46 10.48 404.2 366.6 16.7
LC2 25 8.55 14.94 427.4 343.4 37.3

15 MW (hub height 150 m)

𝑈150 [m/s] 𝐻𝑠 [m] 𝑇𝑝 [s] 𝑀90% [MNm] 𝑎𝑔 [MNm] 𝑏𝑔 [MNm]

LC1 11 4.74 8.23 591.5 547.9 19.4
LC2 25 8.81 14.5 572.7 482.3 40.2

load case were simply scaled following 𝑀𝑝𝑔 = 𝑎𝑔 + 𝛽𝑔 ⋅ 𝑍. Fig. 16
shows the results from the study. The top plots illustrate the 100 global
maxima from the simulations, and the corresponding Gumbel fits. In
the plots below, the blue/green markers for N = 1 show the global
maxima from each simulation, and the red cross marker shows the
𝑀90% as estimated using all (N = 100) global maxima, which is used
s the reference value. The shaded area indicates the 2.5% and 97.5%
onfidence intervals.

As Fig. 16 shows, short-term maxima from 1-hr simulations have a
otable spread. For both OWTs and for both load cases, the uncertainty
radually decreased as more global maxima were used to estimate
90%, which is expected. Higher variability was observed for the more

severe sea states (LC2), at the cut-out speed for both turbines. This is
also supported by the ratio between the scale (𝛽𝑔) and location (𝛼𝑔)
parameters, which is related to the coefficient of variation (CV). The
relatively lower CV for the load cases at rated speed, indicates that 𝛽𝑔 is
relatively smaller than 𝛼𝑔 , leading to a narrower spread relatively to the
mode of the distribution. It is worth noting that for both wind turbines,
the 𝑀90% values at the rated and the cut-out speeds were comparable,
with a difference ranging from 3.7% to 5.5%. Nevertheless, the results
for the 15 MW OWT indicated the increasing importance of evaluating
load cases at the rated speed for larger turbines, as it led to larger
extreme values compared to the load case at cut-out speed. The results
here are based on estimating the short-term extreme response distri-
bution using only using the global maximum (single value) from each
simulation. Other methods can be used such as peaks-over-threshold
(POT) (Velarde et al., 2019) or the Naess–Gaidai ACER method (Naess
and Gaidai, 2009), which consider a larger number of extremes from a
given time series, resulting in better definition of distribution tails, and
therefore smaller uncertainties.

5.4. Effect of soil modelling on extreme responses

The total damping in the system consists of aerodynamic, hydro-
dynamic, structural, and soil damping. The time-domain simulation
tool inherently considers the effects of aerodynamic and hydrodynamic
damping. To account for structural damping, stiffness-proportional
Rayleigh damping was applied along the support structure, with a
damping ratio (𝜉) of approximately 1.0–1.1% of critical damping for
the first natural frequency of each turbine. These values were based
on published results (Shirzadeh et al., 2013) and typical values used
for reference wind turbines (Bak et al., 2013; Gaertner et al., 2020).
In the case of the 𝑝 − 𝑦 curves, soil damping was also incorporated
sing stiffness-proportional Rayleigh damping at four different levels.
he amount of soil damping, expressed as a percentage of critical
amping, was chosen to ensure that the total global damping ratio
f the 𝑝 − 𝑦 curves closely matched the damping ratio of the macro-
lement model at the mudline, for low, intermediate, and high mean
oad levels as obtained from free-vibration tests. Fig. 17 illustrates the
lobal damping ratio for the macro-element model and the 𝑝−𝑦 curves

with different levels of soil damping applied in the analyses for each
turbine. The presence of a non-zero slope in the global damping ratio
for response amplitude reflects the hysteretic soil damping captured
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Fig. 17. Global damping ratio for 𝑝 − 𝑦 curves using different levels of soil damping
(stiffness proportional), and for macro-element model.

Table 5
𝑀90% at mudline for different foundation models and operational states (10 MW).

𝑀90% [MNm]

Foundation model Load case 1 (LC1 Table 4) Load case 2 (LC2 Table 4)

Operation Parked Operation Parked

Macro-element 406.1 285.4 456.8 504.5
𝑝 − 𝑦 (1.2%) 416.8 315.2 469.7 536.5
𝑝 − 𝑦 (1.6%) 415.3 294.1 469.0 525.8
𝑝 − 𝑦 (2.0%) 414.0 283.3 468.5 518.5
𝑝 − 𝑦 (2.4%) 412.7 274.9 467.9 510.2

by the macro-element model, which cannot be reproduced by Rayleigh
damping.

To compare the macro-element model with the 𝑝−𝑦 curves, the most
evere sea states for each wind turbine at rated and cut-out speeds were
onsidered. As explained in the section on extreme statistical models
Section 5.3), twenty simulations were conducted for each sea state,
nd the 90th percentile of the bending moment at the mudline was

estimated. The effect of foundation modelling was evaluated for both
the operational state, where aerodynamic damping dominates, and the
parked state, where soil damping becomes the main damping contribu-
tor in the system. The same seeds were used for the foundation models
and states to avoid stochastic variation in the extremes due to seed
variability. Tables 5 and 6 summarize the extreme responses obtained
from both the macro-element model and the 𝑝 − 𝑦 curves for different
load cases, operational states, and damping levels. Additionally, Fig. 18
depicts the relative differences between the macro-element model (used
as reference) and 𝑝 − 𝑦 models and for the various damping cases.

In operational states where aerodynamic damping dominates, the
use of 𝑝 − 𝑦 curves led to only slight differences in extreme responses
ompared to the macro-element model. Furthermore, varying the soil
amping in the 𝑝 − 𝑦 curves had a minor effect on the results. For the

10 MW turbine, the 𝑝− 𝑦 curves overestimated 𝑀90% by approximately
.6–2.6% for LC1 and 2.4–2.8% for LC2, when comparing the highest
nd lowest soil damping levels. Similarly, for the 15 MW wind turbine,
he relative differences between the 𝑝−𝑦 curves and the macro-element
odel were around 1.0% for LC1 and below 0.5% for LC2.

In parked conditions, where the minimum values of soil damping in

he 𝑝−𝑦 curves were used (corresponding to approximately 1.2% global
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Fig. 18. Relative difference of 𝑀90% between 𝑝 − 𝑦 curves and macro-element (used as reference value) for the load cases shown in Tables 5 and 6.
Table 6
𝑀90% at mudline for different foundation models and operational states (15 MW).

𝑀90% [MNm]

Foundation model Load case 1 (LC1 Table 4) Load case 2 (LC2 Table 4)

Operation Parked Operation Parked

Macro-element 616.4 400.9 611.1 523.5
𝑝 − 𝑦 (1.2%) 623.0 422.3 612.2 549.7
𝑝 − 𝑦 (1.4%) 621.9 404.6 611.8 542.2
𝑝 − 𝑦 (1.6%) 621.2 392.6 611.6 536.9
𝑝 − 𝑦 (1.8%) 620.5 381.2 611.1 528.8

damping for both turbines), the extreme responses were overestimated.
The overestimation ranged from 6.3% (LC2) to 10.4% (LC1) for the
10 MW turbine, and around 5.1% for both LCs for the 15 MW wind
turbine. Increasing the amount of soil damping in the 𝑝 − 𝑦 curves
gradually decreased the extreme responses for both load cases. For both
turbines, a more significant effect was observed for LC1 (rated), as these
load cases include wave events closer to the resonance period, making
the responses more sensitive to damping variations.

5.5. Effect of diffraction on extreme responses

As mentioned in Section 4.3, diffraction effects can be important
when the dimension of the structure is large compared to the wave-
length, i.e., 𝐷 > 0.2𝜆. Therefore, evaluating their effect on extreme load
and response estimates is important. To evaluate diffraction effects, the
sea states for each OWT at rated and cut-out speed (see Section 5.3)
were evaluated, with the turbines in operational state. For each sea
state, twenty simulations were conducted, and the 90th percentile of the
mudline bending moment was compared. The load cases were analysed
using the macro-element model and turbulent wind. For each 1-hour
time-domain simulation with 2nd order wave kinematics, the velocity,
and acceleration at each time instant were extracted from mudline to
instantaneous surface elevation 𝜂, at nodal positions with dz = 0.5 m.
Dynamic nodal forces were applied using the Morison equation with
constant and frequency-dependent 𝐶𝑚 (Section 4.3), using the extracted
kinematics. The wave kinematics were assumed to be valid ± 0.25 m
for each nodal position (half of the element below and above). The
nodal positions along the monopile were compared to the instantaneous
surface elevation at each instant, and the nodal forces were applied
accordingly, considering if the node – corresponding element – is fully
or partially submerged. A simplified illustration is shown in Fig. 19.

For a consistent comparison, and to avoid differences in results due
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to interpolation of wave kinematics within the software, the global
Fig. 19. Illustration of nodal forces approach with dry, partially and fully submerged
nodes with respect to instantaneous surface elevation 𝜂.

Table 7
𝑀90% at mudline using constant and frequency-dependent 𝐶𝑚.

10 MW (hub height 119 m)

Load case 𝑀90% [MNm]

𝑈119 [m/s] 𝐻𝑠 [m] 𝑇𝑝 [s] Constant 𝐶𝑚 Frequency-dependent 𝐶𝑚

LC1 11 5.46 10.48 398.6 391.5
LC2 25 8.55 14.94 445.8 448.4

15 MW (hub height 150 m)

Load case 𝑀90% [MNm]

𝑈150 [m/s] 𝐻𝑠 [m] 𝑇𝑝 [s] Constant 𝐶𝑚 Frequency-dependent 𝐶𝑚

LC1 11 4.74 8.23 603.8 578.1
LC2 25 8.81 14.50 590.9 581.4

maxima using the nodal forces approach with constant and frequency-
dependent 𝐶𝑚 were compared.

Table 7 summarizes the 𝑀90% for the load cases analysed. For both
OWTs, the load cases at the rated speed are mostly dominated by waves
with shorter periods, where frequency-dependent 𝐶𝑚 is lower than 2,
resulting in lower extreme loads, and therefore in lower responses. For
the 10 MW OWT, 𝑀90% was reduced by 1.8% while for the 15 MW
OWT by 4.3%. The effect is more apparent for the 15 MW OWT
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Fig. 20. Mudline response spectra from one simulation representative for LC1 (rated) and LC2 (cut-out) for 15 MW. Frequency-dependent (from MacCamy–Fuchs theory for
iameter 11 m) inertia load coefficient is also plotted.
ue to the combined effect of its larger diameter, and the sea state
ith a lower peak period. For LC2 (cut-out), longer waves dominate
xtreme responses, where the theoretical 𝐶𝑚 obtained from MacCamy–

Fuchs is close to 2. Consequently, extreme responses were similar using
both methods, with differences 0.5–1.6%, with frequency-dependent
𝐶𝑚 model resulting in slightly larger response for the 10 MW OWT.

Fig. 20 shows an example of mudline response power spectral
density (PSD) from one simulation for each of the load cases for the
15 MW OWT, using constant and frequency-dependent 𝐶𝑚. Together
𝐶𝑚 is plotted over the frequency range. As shown, for the load case
at rated speed, relatively short waves can result in large responses,
where 𝐶𝑚 values are expected to be lower than 2. As a result more
notable effect is observed also in the response spectra between the
two approaches. The same effect is also seen for the load case at
the cut-out speed, nevertheless in that case lower frequency waves
dominate, where 𝐶𝑚 from MacCamy–Fuchs theory is similar to 2, and
consequently diffraction is less important.

6. Conclusion

Estimating long-term extremes for OWTs involves uncertainties
originating from different sources. This paper addressed some aspects of
statistical and physical modelling uncertainties associated with extreme
fore-aft bending moment responses at the mudline of monopile-based
DTU 10 MW and IEA 15 MW reference offshore wind turbines. The
environmental contour method using the global hierarchical approach
and IFORM was used to establish contours for representative wind
classes (rated and cut-out). Initially, the impact of different conditional
probability distributions for significant wave height (𝐻𝑠) and peak
period (𝑇𝑝), as well as methods for determining distribution param-
eters on the resulting contours were investigated. Then, the relative
importance of using contours from different statistical models and
seed variability on extreme responses were compared to the impact
of different foundation and hydrodynamic load models, with a short
summary shown in Table 8.

Several statistical models were employed for the conditional dis-
tribution of 𝐻𝑠 given wind speed. Despite the challenge of capturing
the tail behaviour when fitting the models to all observations (dis-
cussed in Section 2), for the site-specific dataset considered in the
study, the 3-parameter Weibull model using the method of moments
(MoM) to estimate distribution parameters, provided the best fit for
𝐻𝑠 across all wind classes as it focuses on the upper tail of the data.
18

The 3-parameter Weibull model using MLE resulted in less conservative
contours compared to MoM model, particularly in moderate wind
classes, leading to less severe sea states. The 2-parameter Weibull
model yielded significant discrepancies compared to the observations,
while the LonoWe model proved challenging to fit and was sensitive
to the transition point between Log-normal and Weibull distributions.
These effects were prominent in the upper tail of metocean contours,
with differences between statistical models being more apparent in
intermediate wind classes, attributed to the their inadequacy to capture
the combined nature of moderate wind-sea states and a few severe sea
states originating from swells.

For the conditional distribution of 𝑇𝑝 given wind speed and signif-
icant wave height, the Log-normal and 3-parameter Weibull models
were adopted. The Log-normal model deviated from the data trend
near the wave steepness limit, particularly in intermediate wind classes,
resulting in relatively high 𝐻𝑠 values in the range of the turbines’
natural periods. The conditional 𝑇𝑝 Weibull model proved sensitive to
the 𝐻𝑠 class size, affecting 𝑇𝑝 distributions and the resulting contours.
Nonetheless, it provided a more accurate fit near the steepness limit,
and compared to the commonly used Log-normal model, it can be con-
sidered as an alternative. It should be emphasized that other methods
exist and this is the authors’ recommendation given the two alterna-
tives and the location considered in the study. To establish general
applicability, more locations should be considered. The importance of
using the appropriate steepness curve (deep or intermediate dispersion
relation) is also evident to avoid unrealistic severe sea states.

The 3-parameter Weibull (MoM) and LonoWe models provided
more reasonable contours, capturing the behaviour of the hindcast
data in the upper tail for both wind classes, and resulting in higher
extreme responses. Differences in the largest 𝑀90% values between
these models were found to range from approximately 0.5% to 3.5%,
reflecting slight variations in the contours. Conversely, the 2-parameter
and 3-parameter Weibull (MLE) models yielded the least conservative
contours, with 𝑀90% values being approximately 7.0% to 12.7% lower,
depending on the OWT and wind class. Furthermore, the uncertainty in
estimating extreme responses was investigated, by analysing the effect
of seed variability and the number of simulations on 𝑀90% values. The
results demonstrated a higher variability on 𝑀90% for the sea states at
cut-out speed, with variations up to approximately ±15% when using 20
1-hr simulations. For the larger turbine, it was found that evaluating
load cases at the rated speed became increasingly important, as it
resulted in larger 𝑀90% values.

A comparison was also made between a nonlinear elasto-plastic
model (macro-element) incorporating hysteretic damping and nonlin-

ear stiffness during load reversals, and the conventional 𝑝 − 𝑦 curves.
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Table 8
Summary of main observations in extreme responses from different statistical and physical load modelling aspects.

Modelling choice Comment Main observations/ 𝑀90% ranges

Conditional distribution of 𝐻𝑠 3-parameter Weibull (MoM)/LonoWe both give reasonable
contours in the upper tail and higher extreme responses.

Variations up to 0.5% to 3.5% between the two models.
LonoWe sensitive to transition 𝜂.

Conditional distribution of 𝐻𝑠 2-parameter Weibull/3-parameter Weibull (MLE) give less
conservative contours and lower extremes.

7.0% to 12.7% lower extreme responses compared to the
3-parameter Weibull (MoM)/LonoWe models.

Conditional distribution of 𝑇𝑝 3-parameter Weibull/Log-Normal models were compared. 3-parameter Weibull provided a more accurate fit near the
steepness limit.

Seed variability/Number of
simulations

Significant variation in global maxima for each simulation and
in quantile estimates 𝑀90% mainly at cut-out speed.

𝑀90% can vary up to ±15% using different sets of 20 1-hr
simulations (CI 2.5–97.5%).

Foundation modelling Nonlinear elasto-plastic model (macro-element) that inherently
models hysteretic soil damping was compared to 𝑝 − 𝑦 curves.

Variations ±2% in operational states, and −5% to 11% in
parked states.

Hydrodynamic modelling Frequency-dependent and constant 𝐶𝑚 were compared, using
Morison and 2nd order kinematics.

Up to 4.5% variation for the larger diameter OWT.
R

A

B

B

B

B

B

B

The representation of low, intermediate, and high levels of soil damping
in the 𝑝 − 𝑦 curves employed stiffness-proportional Rayleigh damping.
The differences in extreme responses between the foundation models
were within the range of approximately ±2% in operational states.

owever, in parked states, variations between −5% and 11% were
bserved, highlighting the importance of the foundation model in the
bsence of aerodynamic damping. Accounting for diffraction effects us-
ng frequency-dependent 𝐶𝑚 becomes increasingly important for larger
iameter and shorter sea states. Nevertheless, variations in estimated
xtremes compares to conventional Morison with constant 𝐶𝑚 did not
xceed 4.5%.

In conclusion, the estimated extremes can vary considerably based
n the selected contour and stochastic variation due to seed variabil-
ty. The foundation modelling was found to be important for parked
onditions and sea states close to the natural period of the OWT, while
ccounting for diffraction effects became more crucial for larger diam-
ters. Furthermore, the study emphasizes the increasing significance
f load cases at the rated speed as wind turbine sizes and natural
eriods increase. The current study used 2nd order wave kinematics

with the Morison equation, without considering wave breaking. It is
recommended that further studies, whether numerical or experimental,
should be conducted, taking into account wave breaking, slamming
loads, and additional factors such as wave directionality, wave spread-
ing, and turbulence modelling in the incoming wind, to enhance the
understanding of extreme response behaviour. Finally, in the present
study, the percentile (90%) was chosen based on previous studies and
established experience from other types of offshore structures. Further
work including full long-term assessment is required to verify the
appropriate percentile that corresponds to 50-year extreme responses
of monopile-based OWTs for different wind classes and operational
conditions, when the contour method is used.
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Appendix. Moments of the Weibull model for 𝑯𝒔 conditional dis-
tribution

To estimate the parameters for the 3-parameter Weibull model for
𝐻𝑠 using the method of moments, the first three moments of the
distribution were used, given in Eq. (A.1) (expected value), Eq. (A.2)
(variance), and Eq. (A.3) (skewness).
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