
Computers & Operations Research 163 (2024) 106395

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Multi-period facility location and capacity expansion with modular
capacities and convex short-term costs✩

Šárka Štádlerová ∗, Peter Schütz, Asgeir Tomasgard
Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, 7491 Trondheim, Norway

A R T I C L E I N F O

Keywords:
Multi-period facility location
Capacity expansion
Lagrangian relaxation

A B S T R A C T

In this paper, we consider a multi-period facility location problem with capacity expansion motivated by the
real-world problem of establishing hydrogen production infrastructure in Norway. The problem is formulated
using modular capacities that capture economies of scale in production costs. The costs of opening a facility are
represented by concave long-term costs, while the production costs of each capacity level are given by convex
short-term costs. In our model, we allow only one expansion during the planning horizon, and have to observe
limits on minimum production quantities. The objective is to minimize the sum of investment, expansion,
production, and distribution costs while satisfying customer demand. To solve the problem we implement a
solution method based on Lagrangian relaxation. The lower bound is calculated using a dynamic programming
approach. To obtain an upper bound solution, we develop a greedy heuristic that converts the solution to the
Lagrangian dual into a feasible solution. The approach is tested on different problem instances based on real-
world data. The results show that our solution method based on Lagrangian relaxation outperforms Gurobi
in terms of run time for all tested instances. Our Lagrangian based approach also always finds good or even
near-optimal solutions, whereas Gurobi fails to find feasible solutions for some of the larger instances.
1. Introduction

The problem presented in this paper is motivated by the challenge
of designing the hydrogen supply chain for maritime transportation
in Norway. Designing the production network for satisfying hydrogen
demand can be formulated as a facility location problem with a ca-
pacity extension, i.e. finding the optimal decisions regarding opening,
expanding and operating production facilities such that the cost of
satisfying demand is minimized. Hydrogen production is subject to
economies of scale. These economies of scale depend on the size of the
facility and the utilization of the installed capacity (Hirth et al., 2019).
We model economies of scale by means of modular capacities subject
to a general long-term cost function for investment and expansion
and a convex short-term production cost function that depends on
the installed capacity, see also Štádlerová and Schütz (2021). Due to
increasing hydrogen demand during the planning horizon, we only
allow expanding capacity. Closing facilities is not permitted. Due to
the limited planning horizon and costly investments, we only allow a
single capacity expansion. The production process is characterized by
minimum production quantities, implying that an open facility always
has to be operated. In this sense, our problem differs from the problem
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presented in Shulman (1991) and Jena et al. (2016, 2017) where the
authors allow modular capacity adjustments in each time period and
have no requirements on minimum production quantities. We further
generalize the multi-period facility location and capacity expansion
problem by distinguishing between long-term investment and expan-
sion costs and short-term production costs. For each modular capacity,
we have a convex piecewise linear short-term cost function, so that
the production costs depend on both installed capacity and capacity
utilization. However, the short-term production costs are independent
of whether the capacity was reached by opening or by expansion.

The class of multi-period facility location problems with capacity
expansion belongs to the group of NP-hard problems (Shulman, 1991).
Thus, they are hard to solve for larger instances and we need efficient
solution methods to obtain a good feasible solution. Methods based
on Lagrangian relaxation and Benders decomposition perform well and
their advantage is that they can provide information about the solution
quality compared to heuristics.

In this paper, we solve a multi-period facility location problem with
capacity expansion with general long-term costs and convex short-term
costs in the objective function. The model solved here is the same as
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the one presented in Štádlerová and Schütz (2021), but in contrast to
that paper, we focus here on developing an efficient solution method
based on Lagrangian relaxation. We show that the Lagrangian dual
can be solved efficiently with a dynamic programming algorithm. Even
with a simple greedy heuristic, we are able find good feasible solutions
for more test instances than the commercial solver. The results also
show that our Lagrangian heuristics outperforms commercial software
in terms of run time when finding good, but not necessarily optimal
solutions. For small instances, commercial software can find optimal
solutions but may fail to find any feasible solution for large instances.

The remainder of this paper is structured as follows: we provide
a literature review on the modelling of multi-period facility location
problems and their solution in Section 2, and the mathematical formu-
lation of the problem in Section 3. The solution method is presented
in Section 4 and the case description is provided in Section 5. Com-
putational results and conclusions are discussed in Sections 6 and 7,
respectively.

2. Literature review

We structure the literature review into two main parts. In Sec-
tion 2.1, we focus on literature related to the modelling approach
of multi-period facility location and expansion problems and we also
discuss the techniques how to incorporate economies of scale into the
model. Then, we review different methods for solving this type of
problem in Section 2.2.

2.1. Modelling approach

We organize the review on the modelling approach into two main
groups. First, we discuss facility location and capacity expansion with
modular capacities and then models with continuous capacities where
the maximum capacity of a facility is given. Then, we review the
modelling of economies of scale with modular capacities, and with a
continuous objective.

Shulman (1991) and Dias et al. (2007b) study a multi-period plant
location problem with modular capacities and with discrete expansion
where a plant is modelled as a set of facilities. In these papers, capacity
expansion is achieved by building an additional facility at the same
location, while capacity reduction leads to the closing of facilities. The
production costs are defined for each facility and depend only on facil-
ity type and quantity produced in the facility. Modular capacities are
also used in the work by Jena et al. (2015, 2016, 2017), and Štádlerová
and Schütz (2021). However, in these papers, the capacity expansion
is modelled as a modification of existing facilities. In the work by Jena
et al. (2015, 2016, 2017), capacity expansion and reduction, as well
as closing and reopening, are allowed multiple times and Jena et al.
(2016) present also the option of relocating capacities. On the other
hand, the model by Štádlerová and Schütz (2021) allows for only one
expansion during the planning horizon.

A model with continuous capacities and limited maximum capacity
is presented by Hinojosa et al. (2008), Behmardi and Lee (2008),
and Torres-Soto and Üster (2011). Hinojosa et al. (2008) present a
slightly different modelling approach where a set of existing facilities
and the target number of operating facilities at the end of the planning
horizon is given. Initial facilities can be closed during the planning
horizon but reopening is not allowed. Facilities that are opened during
the planning horizon cannot be closed anymore. In contrast to the other
papers we refer to, Behmardi and Lee (2008) formulate their problem
as a profit maximization model, where demand does not have to be
satisfied. Torres-Soto and Üster (2011) present a model where facilities
can be opened and closed multiple times in response to varying demand
and provide a comparison of problems with and without facility relo-
cation. See also the review by Melo et al. (2006) for an overview of
mathematical modelling frameworks for dynamic facility location and
expansion models, covering different facility modification strategies.
2

An overview over facility location and supply chain network design
problems with focus on hydrogen can be found in Li et al. (2019).

Economies of scale in production processes often come from sharing
the investment and expansion costs over more units of the produced
product. As a result, higher production quantities lead to lower unit
costs (Haldi and Whitcomb, 1967). A modular formulation of a ca-
pacitated facility location model allows for modelling of economies of
scale as shown in Correia and Captivo (2003). They present non-linear
costs dependent on capacity as they split investment and operating
costs and provide specific unit operating costs for each facility size.
Modular capacities capturing economies of scale are also used by Jena
et al. (2015, 2016, 2017), Correia and Melo (2021), and Štádlerová
and Schütz (2021). Another approach capturing economies of scale
for a problem with discrete capacities is the use of a piecewise linear
staircase cost function that also enables to model different production
costs at different capacity levels (Holmberg, 1994).

The work by Van den Broek et al. (2006) and Schütz et al. (2008)
differs from the previous papers as they have a continuous and differ-
entiable objective. The authors study a facility location problem with a
non-linear, non-convex, and non-concave objective function. Their cost
function can be considered as a combination of non-linear costs depend-
ing on installed capacity from Correia and Captivo (2003) combined
with the linear staircase cost approximation presented by Holmberg
(1994).

2.2. Solution methods

Lagrangian relaxation is a well established technique for solving
multi-period facility location and expansion problems. In general, the
demand constraint is relaxed and then, the problem becomes separable
in facility locations. Shulman (1991) shows that the resulting subprob-
lems can be solved as shortest path problems. The Lagrangian dual
is then solved by means of a subgradient method. Jena et al. (2016,
2017) present a similar solution method and also compare the use of
subgradient and bundle methods for solving the Lagrangian dual.

Hinojosa et al. (2008) apply Lagrangian relaxation with a subgra-
dient method to solve a model with inventory constraints. They relax
the demand and flow conservation constraints to obtain subproblems
separable in facility locations. Li et al. (2009) combine Lagrangian re-
laxation with a tabu search approach to improve the upper bound. They
solve a problem that combines facility location and multicommodity
flow distribution with transshipment points.

Castro et al. (2017) solve the multi-period facility location with
Benders decomposition. The problem is decomposed into a master prob-
lem and a subproblem. The master problem contains the binary integer
variables and provides an opening schedule of facilities while the sub-
problem consisting of continuous variables provides an optimal demand
allocation. Torres-Soto and Üster (2011) compare both solution meth-
ods: Lagrangian relaxation and Benders decomposition, for a facility
location and relocation problem. They show that the performance of
the solution methods depends on the input data structure.

Arostegui et al. (2006) provide a comparison of tabu search, simu-
lated annealing and genetic algorithms for facility location problems.
Tabu search is also used by Melo et al. (2012) to solve a facility relo-
cation problem. A primal–dual heuristic which aims to build feasible
primal solutions based on admissible dual solutions is used in Dias
et al. (2006, 2007a). The authors study a problem with minimum and
maximum production requirements and show that these requirements
make the problem more complex. Sauvey et al. (2020) develop a two-
step heuristic to solve a multi-period facility location problem with
modular capacities and delayed demand satisfaction. In the first step,
their heuristic constructs feasible solutions that are further improved in
the second step. A comparison of a tabu search and genetic algorithm
for the facility location and capacity expansion problem studied in Jena
et al. (2015) is provided by Silva et al. (2021). The authors show
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that for some instances, heuristics can find optimal or nearly optimal
solutions.

For more examples of multi-period facility location and supply chain
design as well as solution methods for these problems, see also the
reviews by Melo et al. (2009), Arabani and Farahani (2012), and Nickel
and Saldanha da Gama (2019).

3. Model formulation

We study a multi-period facility location problem with capacity
expansion. We aim to find the optimal schedule for opening and ex-
panding production facilities, including the optimal technology choice.
Demand must be met exactly, shortfall or storage of excess production
are not allowed. The objective is to minimize the discounted sum of
investment and expansion costs, production costs, and distribution costs
over the planning horizon.

3.1. Modelling approach

The set of available technologies and modular capacities is inde-
pendent of the facility location. For each capacity and technology, we
have a specific short-term production cost function that represents the
costs at different utilization levels of the installed capacity. If a facility
is opened, requirements regarding minimal utilization apply and these
must be met in each period. Each customer has a specific yearly demand
that has to be satisfied. The demand is non-decreasing during the
planning horizon. Satisfying customer demand incurs distribution costs
that depend on the distance between the customer and the facility. Note
that a facility may not be able to serve all customers.

We consider capacity expansion being an expensive strategic deci-
sion. Since we assume a limited planning horizon, multiple expansions
are not desired and we allow capacity expansion only once during the
planning horizon. Once the facility is opened, it cannot be closed, it can
be only expanded. Switching technologies is not permitted.

We model capacity expansion as a jump between the available
capacities. Similar to Jena et al. (2015), the size of the expansion is
only limited by the highest available capacity. The costs of expanding
a facility are illustrated in Fig. 3.1(a). Let 𝑄𝑘 and 𝑄𝑙 be the produc-
tion capacities installed at investment costs 𝐶𝑘 and 𝐶𝑙, respectively.
Capacity 𝑄𝑙 can also be achieved through investing in a facility of
size 𝑄𝑘 and later expanding that facility to size 𝑄𝑙. The corresponding
expansion costs are 𝐸𝑘𝑙, with 𝐸𝑘𝑙 > 𝐶𝑙 − 𝐶𝑘. Expansion from capacity
𝑘 towards capacity 𝑙 implies 𝑙 > 𝑘 and production capacity 𝑄𝑙 > 𝑄𝑘.
Thus, after expansion the facility operates with higher capacity than
originally installed.

The short-term production cost function is modelled as a piecewise
linear convex function. The short-term production cost function is
convex by assumption based on Allen et al. (2012). Higher utilization
of installed capacity leads to lower unit production costs. Fig. 3.1(b)
shows the production costs 𝐹𝑘 and 𝐹𝑙 and corresponding short-term pro-
duction functions 𝑓𝑘(𝑞) and 𝑓𝑙(𝑞) for capacities 𝑄𝑘 and 𝑄𝑙, respectively.
The short-term cost function depends only on the installed capacity, but
it is independent of how this capacity was reached. We define quantities
and costs at the breakpoints of the piecewise linear convex short-term
cost function for each capacity level 𝑘. The lowest breakpoint represents
the minimum production requirements for a given capacity and the
highest breakpoint corresponds to the maximum capacity limit. By
linear convex combination of these breakpoints, arbitrary quantities
between the minimum and maximum production limit can be achieved
and the corresponding costs can be computed. This modelling approach
is also used in Štádlerová and Schütz (2021).

3.2. Optimization model
3

Let us first introduce the following notation:
Sets

 Set of possible facility locations
 Set of customer locations
 Sorted set of available discrete capacities,

 = {1, 2,… , 𝐾}
 Set of available production technologies
𝑘𝑟 Set of breakpoints of the short run cost function

specific for installed capacity level 𝑘 ∈  and
technology 𝑟 ∈ 

 Sorted set of time periods,  = {1, 2,… , 𝑇 }

Parameters and coefficients

𝐶𝑘𝑟 Investment costs for capacity level 𝑘 ∈  and
technology 𝑟 ∈ ;

𝐷𝑗𝑡 Demand at customer point 𝑗 ∈  in time period
𝑡 ∈  ;

𝐸𝑘𝑙𝑟 Costs of expansion from capacity level 𝑘 ∈  to
capacity 𝑙 ∈  ∶ 𝑙 > 𝑘 for technology 𝑟 ∈ ;

𝐹𝑏𝑘𝑟 Costs at breakpoint 𝑏 ∈ 𝑘𝑟 of the short-run cost
function given for capacity level 𝑘 ∈  and for
technology 𝑟 ∈ ;

𝐿𝑖𝑗𝑡 1 if demand at customer point 𝑗 ∈  can be served
from facility at location 𝑖 ∈  in time period 𝑡 ∈  , 0
otherwise;

𝑄𝑏𝑘𝑟 Production volume at breakpoint 𝑏 ∈ 𝑘𝑟 of the
short-run cost function, for point 𝑘 ∈  of the
capacity function and technology 𝑟 ∈ ;

𝑇𝑖𝑗𝑡 Transportation costs from facility at location 𝑖 ∈  to
customer point 𝑗 ∈  in time period 𝑡 ∈  ;

𝑦𝑖𝑘𝑙𝑟0 1, if there is initially an opened facility with
installed capacity 𝑘 ∈ , operating at capacity level
𝑙 ∈  ∶ 𝑙 ≥ 𝑘 with technology 𝑟 ∈  at facility
location 𝑖 ∈ , 0 otherwise;

𝛿𝑡 Discount factor in time period 𝑡 ∈  ;

Decision variables

𝑥𝑖𝑗𝑙𝑟𝑡 Amount of customer demand at point 𝑗 ∈  satisfied
from facility at location 𝑖 ∈  operating at capacity
level 𝑙 ∈  and using technology 𝑟 ∈  in time
period 𝑡 ∈  ;

𝑦𝑖𝑘𝑙𝑟𝑡 1 if facility at location 𝑖 ∈  was opened with
capacity level 𝑘 ∈  and is operated at capacity
level 𝑙 ∈  ∶ 𝑙 ≥ 𝑘 using technology 𝑟 ∈  in time
period 𝑡 ∈  , 0 otherwise;

𝜇𝑏𝑖𝑙𝑟𝑡 Weight of breakpoint 𝑏 ∈ 𝑙𝑟 at facility location
𝑖 ∈  for capacity level 𝑙 ∈  and technology 𝑟 ∈ 
in time period 𝑡 ∈  .

The problem is given as:

min
∑

𝑖∈

∑

𝑘∈

∑

𝑙∈∶𝑙≥𝑘

∑

𝑟∈

∑

𝑡∈
𝛿𝑡𝐶𝑘𝑟

(

𝑦𝑖𝑘𝑙𝑟𝑡 − 𝑦𝑖𝑘𝑙𝑟(𝑡−1)
)

+

∑

𝑖∈

∑

𝑘∈

∑

𝑙∈∶𝑙>𝑘

∑

𝑟∈

∑

𝑡∈
𝛿𝑡𝐸𝑘𝑙𝑟(𝑦𝑖𝑘𝑙𝑟𝑡 − 𝑦𝑖𝑘𝑙𝑟(𝑡−1))+

∑

𝑖∈

∑

𝑙∈

∑

𝑟∈

∑

𝑏∈𝑙𝑟

∑

𝑡∈
𝛿𝑡𝐹𝑏𝑙𝑟𝜇𝑏𝑖𝑙𝑟𝑡+

∑

𝑖∈

∑

𝑗∈

∑

𝑙∈

∑

𝑟∈

∑

𝑡∈
𝛿𝑡𝑇𝑖𝑗𝑡𝑥𝑖𝑗𝑙𝑟𝑡,

(1)

subject to:
∑ ∑ ∑

𝑦𝑖𝑘𝑙𝑟𝑡 ≤ 1, 𝑖 ∈ , 𝑡 ∈  , (2)

𝑘∈ 𝑙∈∶𝑙≥𝑘 𝑟∈
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Fig. 3.1. Short-term and long-term costs.
∑

𝑙∈∶𝑙≥𝑘
𝑦𝑖𝑘𝑙𝑟𝑡 ≥

∑

𝑙∈∶𝑙≥𝑘
𝑦𝑖𝑘𝑙𝑟(𝑡−1), 𝑖 ∈ , 𝑘 ∈ , 𝑟 ∈ , 𝑡 ∈  , (3)

𝑦𝑖𝑘𝑙𝑟𝑡 − 𝑦𝑖𝑘𝑙𝑟(𝑡−1) ≥ 0, 𝑖 ∈ , 𝑘 ∈ , 𝑙 ∈  ∶ 𝑙 > 𝑘, 𝑟 ∈ , 𝑡 ∈  , (4)

∑

𝑏∈𝑙𝑟

𝜇𝑏𝑖𝑙𝑟𝑡 =
∑

𝑘∈
𝑦𝑖𝑘𝑙𝑟𝑡, 𝑖 ∈ , 𝑙 ∈ , 𝑟 ∈ , 𝑡 ∈  , (5)

∑

𝑗∈

∑

𝑙∈
𝑥𝑖𝑗𝑙𝑟𝑡 =

∑

𝑙∈

∑

𝑏∈𝑙𝑟

𝑄𝑏𝑙𝑟𝜇𝑏𝑖𝑙𝑟𝑡, 𝑖 ∈ , 𝑟 ∈ , 𝑡 ∈  , (6)

∑

𝑖∈

∑

𝑙∈

∑

𝑟∈
𝑥𝑖𝑗𝑙𝑟𝑡 = 𝐷𝑗𝑡, 𝑗 ∈  , 𝑡 ∈  , (7)

𝑥𝑖𝑗𝑙𝑟𝑡 ≤ 𝐿𝑖𝑗𝑡𝐷𝑗𝑡
∑

𝑘∈∶𝑘≤𝑙
𝑦𝑖𝑘𝑙𝑟𝑡, 𝑖 ∈ , 𝑗 ∈  , 𝑙 ∈ , 𝑟 ∈ , 𝑡 ∈  , (8)

𝑦𝑖𝑘𝑙𝑟𝑡 ∈ {0, 1}, 𝑖 ∈ , 𝑘 ∈ , 𝑙 ∈  ∶ 𝑙 ≥ 𝑘, 𝑟 ∈ , 𝑡 ∈  , (9)

𝑥𝑖𝑗𝑙𝑟𝑡 ≥ 0, 𝑖 ∈ , 𝑗 ∈  , 𝑙 ∈ , 𝑟 ∈ , 𝑡 ∈  , (10)

𝜇𝑏𝑖𝑙𝑟𝑡 ≥ 0, 𝑖 ∈ , 𝑙 ∈ , 𝑟 ∈ , 𝑏 ∈ 𝑙𝑟, 𝑡 ∈  . (11)

The objective function (1) minimizes the discounted sum of in-
vestment costs, expansion costs, production costs, and distribution
costs.

Restrictions (2) ensure that no more than one facility can be opened
and operated at the given location. Once a facility is built, the only
allowed modification is expansion, facility closing is not allowed. This
is guaranteed by the constraints (3). Variable 𝑦𝑖𝑘𝑙𝑟𝑡 contains information
about the initially installed capacity 𝑘 as well as capacity 𝑙 that is
operated during period 𝑡. Note that 𝑙 ≥ 𝑘. With expansion in time period
𝑡′, variable 𝑦𝑖𝑘𝑘𝑟𝑡 becomes zero: 𝑦𝑖𝑘𝑘𝑟𝑡 = 0 for 𝑡 ≥ 𝑡′ while variable
𝑦𝑖𝑘𝑙𝑟𝑡 becomes one: 𝑦𝑖𝑘𝑙𝑟𝑡 = 1 for 𝑡 ≥ 𝑡′. Inequalities (4) ensure that
capacity index 𝑙 can change only once, limiting the number of capacity
expansions to one. Eqs. (5) link the correct short-term production cost
function to the operated capacity 𝑙 in period 𝑡 and satisfy that produc-
tion is allocated only to open facilities. In our model, demand must
be met exactly and we do not allow for demand shortfall or storage.
The requirement that the entire production has to be distributed to
customers is expressed by (6). Constraints (6) also implicitly express the
minimum production requirements as the production volumes at break-
point 𝑏 ∈ 𝑘𝑟 are strictly positive. However, this model formulation can
be also used for problems without minimum production requirements
if the production quantities at breakpoint 𝑏 ∈ 𝑘𝑟 are defined starting
4

from zero. The demand satisfaction is ensured by (7). Constraints (8)
specify if facility 𝑖 can serve customer 𝑗. Restrictions (9)–(11) are the
binary and non-negativity requirements.

4. Solution method

In this section, we present our solution approach based on La-
grangian relaxation. In Section 4.1, we provide the formulation of the
Lagrangian subproblem. The solution of the Lagrangian subproblem is
further described in Section 4.2 before the procedure for updating the
Lagrangian multipliers is discussed in Section 4.3. Finally, we present
the heuristic for constructing a feasible solution in Section 4.4.

4.1. Relaxed problem

We relax demand constraint (7) and define 𝜆𝑗𝑡 as the matrix of
Lagrangian multipliers. As a result, we obtain the following Lagrangian
subproblem:

min
∑

𝑖∈

∑

𝑘∈

∑

𝑙∈∶𝑙≥𝑘

∑

𝑟∈

∑

𝑡∈
𝛿𝑡𝐶𝑘𝑟

(

𝑦𝑖𝑘𝑙𝑟𝑡 − 𝑦𝑖𝑘𝑙𝑟(𝑡−1)
)

+

∑

𝑖∈

∑

𝑘∈

∑

𝑙∈∶𝑙>𝑘

∑

𝑟∈

∑

𝑡∈
𝛿𝑡𝐸𝑘𝑙𝑟(𝑦𝑖𝑘𝑙𝑟𝑡 − 𝑦𝑖𝑘𝑙𝑟(𝑡−1))+

∑

𝑖∈

∑

𝑙∈

∑

𝑟∈

∑

𝑏∈𝑙𝑟

∑

𝑡∈
𝛿𝑡𝐹𝑏𝑙𝑟𝜇𝑏𝑖𝑙𝑟𝑡+

∑

𝑖∈

∑

𝑗∈

∑

𝑙∈

∑

𝑟∈

∑

𝑡∈
(𝛿𝑡𝑇𝑖𝑗𝑡 − 𝜆𝑗𝑡)𝑥𝑖𝑗𝑙𝑟𝑡+

∑

𝑗∈

∑

𝑡∈
𝜆𝑗𝑡𝐷𝑗𝑡,

(12)

subject to (2)–(6) and (8)–(11).
For given multiplies 𝜆𝑗𝑡, the expression ∑

𝑗∈
∑

𝑡∈ 𝜆𝑗𝑡𝐷𝑗𝑡 is constant
and the problem becomes separable in facility locations. We can there-
fore solve the problem for each facility location 𝑖 independently. Let
𝑔𝑖(𝝀) be the optimal value of the Lagrangian subproblem for the facility
location 𝑖. The objective function (12) can then be reformulated as:

𝐿𝑅(𝝀) =
∑

𝑖∈
𝑔𝑖(𝝀) +

∑

𝑗∈

∑

𝑡∈
𝜆𝑗𝑡𝐷𝑗𝑡, (13)

where
𝑔𝑖(𝝀) = min

∑

𝑘∈

∑

𝑙∈∶𝑙≥𝑘

∑

𝑟∈

∑

𝑡∈
𝛿𝑡𝐶𝑘𝑟

(

𝑦𝑖𝑘𝑙𝑟𝑡 − 𝑦𝑖𝑘𝑙𝑟(𝑡−1)
)

+

∑

𝑘∈

∑

𝑙∈∶𝑙>𝑘

∑

𝑟∈

∑

𝑡∈
𝛿𝑡𝐸𝑘𝑙𝑟(𝑦𝑖𝑘𝑙𝑟𝑡 − 𝑦𝑖𝑘𝑙𝑟(𝑡−1))+

∑

𝑙∈

∑

𝑟∈

∑

𝑏∈𝑙𝑟

∑

𝑡∈
𝛿𝑡𝐹𝑏𝑙𝑟𝜇𝑏𝑖𝑙𝑟𝑡+

∑

𝑗∈

∑

𝑙∈

∑

𝑟∈

∑

𝑡∈
(𝛿𝑡𝑇𝑖𝑗𝑡 − 𝜆𝑗𝑡)𝑥𝑖𝑗𝑙𝑟𝑡,

(14)
subject to (2)–(6) and (8)–(11) for a given facility location 𝑖.



Computers and Operations Research 163 (2024) 106395Š. Štádlerová et al.

4

p
f
c
o
o
S

4

o
e
d
a
(
h
n

t
c
e
t
c
a
w
s
w
c
e
T
a
f
w
s
s

t
d
i

a

a
s
t
l
o
w

r
k
c

r

4

f
a
s
w
d
m
c
t
p
{
q

𝑞

F
c

c
c

Fig. 4.1. Structure of our shortest path problems.

.2. Solving the Lagrangian subproblem

The Lagrangian subproblems can be reformulated as a shortest path
roblem and solved as a dynamic programming problem. Note that
or a given capacity, the problem in a single time period becomes
ontinuous knapsack (Shulman, 1991). We first present the structure of
ur shortest path problem in Section 4.2.1 before discussing the costs
f the continuous knapsack and the dynamic programming approach in
ections 4.2.2 and 4.2.3, respectively.

.2.1. Shortest path problem
To solve the Lagrangian subproblem, we need to find both the

ptimal opening and expansion schedule and technology choice for
ach facility such that the objective (14) is minimized. A schedule is
efined by the time of opening and expanding a facility as well as the
ssociated capacities. In contrast to Shulman (1991) and Jena et al.
2016, 2017), we allow only one expansion during the whole planning
orizon. Closing facilities, reducing capacity or changing technology, is
ot allowed, thus resulting in a different shortest path problem.

Our graph structure for a problem with three capacities and five
ime periods is illustrated in Fig. 4.1. Let target capacity 𝑙𝑇 ∈  be the
apacity at the end of the planning horizon. Since only one capacity
xpansion is allowed, we can construct one subgraph for each possible
arget capacity that contains all allowed paths for reaching the target
apacity at the end of the planning horizon. We also consider the
lternative of not opening a facility at all. All subgraphs are depicted
ith a blue dashed line while the corresponding target capacity of each

ubgraph is indicated by the black squares in Fig. 4.1. There are two
ays how to reach the target capacity: by opening a facility with target

apacity right away, or by opening a smaller facility which has to be
xpanded towards the target capacity later during the planning horizon.
hus, for each path through the subgraph, at most two capacity changes
re allowed: one for opening and the second one for expansion. To
ormulate the problem as a shortest path search in a single graph,
e can connect all subgraphs with an artificial source and sink. The

hortest path structure is the deterministic version of the expected
hortest path presented in Štádlerová et al. (2023).

We obtain the optimal schedule for each technology separately and
hen select the schedule with the lowest costs. Thus, for the remain-
er of this Section, we omit the technology choice and refer to the
nvestment and expansion costs without the technology subscript 𝑟.

4.2.2. Continuous knapsack problem
For the computation of the shortest path in the dynamic program-

ming algorithm, we have to obtain the production and distribution
costs of the optimal demand allocation in each period and for each
5

capacity in the subgraph. For given installed capacity 𝑘, this problem
corresponds to solving a continuous knapsack problem with piecewise
linear costs (Amiri, 1997; Christensen and Klose, 2021). The costs of
demand allocation for given facility 𝑖, capacity level 𝑘, technology 𝑟
nd time period 𝑡 are denoted 𝐾𝑖𝑘𝑟𝑡(𝝀) and obtained from solving the

continuous knapsack problem:

𝐾𝑖𝑘𝑟𝑡(𝝀) = min
∑

𝑗∈
(𝑇𝑖𝑗 − 𝜆𝑗𝑡)𝑥𝑖𝑗𝑘𝑟𝑡 +

∑

𝑏∈𝑘𝑟

𝐹𝑏𝑘𝑟𝜇𝑏𝑖𝑘𝑟𝑡, (15)

subject to:

𝑥𝑖𝑗𝑘𝑟𝑡 ≤ 𝐿𝑖𝑗𝐷𝑗𝑡, 𝑗 ∈  , (16)

∑

𝑗∈
𝑥𝑖𝑗𝑘𝑟𝑡 =

∑

𝑏∈𝑘𝑟

𝑄𝑏𝑘𝜇𝑏𝑖𝑘𝑟𝑡, (17)

∑

𝑏∈𝑘𝑟

𝜇𝑏𝑖𝑘𝑟𝑡 = 1, (18)

𝑥𝑖𝑗𝑘𝑟𝑡 ≥ 0, 𝑗 ∈  , (19)

𝜇𝑏𝑖𝑘𝑟𝑡 ≥ 0, 𝑏 ∈ 𝑘𝑟, (20)

The approach for computing solution to the problem (15)–(20) is
dopted from Schütz et al. (2008): For a given time period 𝑡, we first
ort the customers according to increasing reduced costs 𝑇𝑖𝑗 − 𝜆𝑗𝑡. Note
hat the ordering of customers is independent of the capacity utilization
evel. For given facility 𝑖 and technology 𝑟, the marginal costs of serving
ne additional demand unit is calculated as 𝑞𝑗𝑘𝑏𝑡 = 𝑇𝑖𝑗 − 𝜆𝑗𝑡 + 𝑢𝑘𝑏,
here 𝑢𝑘𝑏 = 𝐹𝑘𝑏+1−𝐹𝑘𝑏

𝑄𝑘𝑏+1−𝑄𝑘𝑏
represents the marginal production costs of the

linepiece.
In general, we start allocating customers with the lowest negative

reduced costs to facility 𝑖 and continue adding customers until 𝑞𝑖𝑘𝑏𝑡 > 0
for the first time or until the limit of the installed capacity is reached.
However, the marginal production costs depend on the linepiece 𝑏
of the short-term cost function, i.e. capacity utilization. If adding a
new customer and increasing capacity utilization causes a change of
linepiece, we update the marginal cost 𝑞𝑖𝑘𝑏𝑡 and continue allocating
customers as long as 𝑞𝑖𝑘𝑏𝑡 ≤ 0 and capacity is available. Due to the
equirements on minimum production quantities, we have to fill the
napsack up to the minimum level even if that requires allocating
ustomers with positive reduced costs.

The costs of the continuous knapsack consist only of production and
educed transportation cost for the allocated customer demand.

.2.3. Dynamic programming approach
To find the optimal opening and expansion schedule for a given

acility, we calculate the shortest path for each subgraph individually
nd then pick the one with the lowest costs. To limit the number of
ubgraphs and speed up solving the dynamic programming problem,
e estimate a maximum target capacity 𝑙𝑚𝑎𝑥: We aim to satisfy only
emand with negative marginal costs 𝑞𝑗𝑘𝑏𝑡. But the exact value of
arginal costs cannot be computed without the knowledge of installed

apacity and utilization. We therefore neglect the production costs
o find an upper bound on the target capacity and define the set of
otential customers as customers with negative reduced costs:  𝑁

𝑡 ∶=
𝑗 ∈  |𝑇𝑖𝑗 − 𝜆𝑗𝑡 < 0}. We can then calculate the maximum production
uantity 𝑞𝑚𝑎𝑥 as:
𝑚𝑎𝑥 = max

𝑡∈𝑇

∑

𝑗∈𝑁
𝑡

𝐷𝑗𝑡.

inally, we obtain the maximum target capacity 𝑙𝑚𝑎𝑥 as the lowest
apacity that is larger than the production quantity 𝑞𝑚𝑎𝑥.

The decision in period 𝑡 is denoted �̂�𝑡 and determines the installed
apacity in period 𝑡, 𝑘𝑡, where �̂�𝑡 ∈  ∪ {0}. The costs of allocating
ustomers corresponding to the costs of the continuous knapsack for
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given facility, capacity, technology and time period depend on this
decision and are denoted 𝐾𝑖�̂�𝑡𝑟(𝝀). The cost function when taking
decision �̂�𝑡 ∈  ∪ {0} in period 𝑡 is denoted 𝐶𝑑

𝑡
(

�̂�𝑡, 𝑡
)

. The function
𝐶𝑑
𝑡 is defined as:

𝐶𝑑
𝑡 (�̂�𝑡, 𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐶�̂�𝑡𝑟 +𝐾𝑖�̂�𝑡𝑟(𝝀) if 𝑘𝑡−1 = 0 ∧ �̂�𝑡 > 0, (a)
𝐸𝑘𝑡−1 �̂�𝑡𝑟 +𝐾𝑖�̂�𝑡𝑟(𝝀) if 𝑘𝑡−1 > 0 ∧ �̂�𝑡 = 𝑙𝑇 , (b)
𝐾𝑖�̂�𝑡𝑟(𝝀) if �̂�𝑡 = 𝑘𝑡−1, (c)
0 if �̂�𝑡 = 0, (d)
+∞ else (e).

(21)

Eq. (21)(a) calculates the costs for the case of opening a new facility
in period 𝑡. The total costs in period 𝑡 then consist of opening costs
𝐶𝑖�̂�𝑡𝑟 and the production and distribution costs given by the costs of
the continuous knapsack 𝐾𝑖�̂�𝑡𝑟(𝝀). Eq. (21)(b) calculates the costs of
expanding a facility as the sum of expansion costs 𝐸𝑘𝑡−1 �̂�𝑡𝑟 and the
costs of continuous knapsack 𝐾𝑖�̂�𝑡𝑟(𝝀). Note that the facility has to
be expanded to target capacity 𝑙𝑇 , as only one expansion is allowed
during the planning horizon. Constraint (21)(c) ensures that if the
facility is open and there is no change in capacity, only the costs of the
continuous knapsack 𝐾𝑖�̂�𝑡𝑟(𝝀) apply. As long the facility is not opened,
the costs are equal to zero (21)(d). All other combinations of state and
decision are not feasible and we, therefore, define the costs of these as
+∞ (21)(e).

4.3. Lagrangian multipliers

For given 𝝀, we obtain a lower bound on the objective function
by solving 𝐿𝑅(𝝀) (13). In order to obtain the best lower bound on
the optimal objective value, we need to find the optimal value of 𝝀.
Initial tests showed that the standard subgradient method (Nemhauser
and Wolsey, 1999) has a slow convergence (see also Jena et al., 2017;
Schütz et al., 2009). Therefore, we solve the Lagrangian dual problem
𝐿𝐷 = max𝝀 𝐿𝑅(𝝀) by means of a cutting planes method with box
constraints similar to Marsten et al. (1975) and Schütz et al. (2009).
The tests have further shown that initializing the Lagrangian multipliers
as 𝜆𝑗𝑡 = min𝑖∈ 𝛿𝑡𝑇𝑖𝑗𝑡 generally leads to faster convergence.

In each iteration 𝑚, we compute the coordinates of the subgradient
∇𝑚
𝑗𝑡, where ∇𝑚

𝑗𝑡 = 𝐷𝑗𝑡−
∑

𝑖∈
∑

𝑙∈
∑

𝑟∈ 𝑥𝑚𝑖𝑗𝑙𝑟𝑡 and 𝑥𝑚𝑖𝑗𝑙𝑟𝑡 is the Lagrangian

subproblem solution obtained for variables 𝑥 in iteration 𝑚. We then
define 𝐿𝑚 = 𝐿𝑅(𝝀𝑚) −

∑

𝑗∈
∑

𝑡∈ 𝜆𝑚𝑗𝑡∇
𝑚
𝑗𝑡 and obtain new Lagrangian

multipliers by solving the following linear problem:

max𝜙 (22)

subject to

𝜙 ≤ 𝐿𝑔 +
∑

𝑗∈

∑

𝑡∈
∇𝑔
𝑗𝑡𝜆

𝑚+1
𝑗𝑡 , 𝑔 = 1,… , 𝑚, (23)

𝜆𝑚+1𝑗𝑡 ≤ 𝜆𝑚𝑗𝑡 + 𝛥𝑚
𝑗𝑡, 𝑗 ∈  , 𝑡 ∈  , (24)

𝜆𝑚+1𝑗𝑡 ≥ 𝜆𝑚𝑗𝑡 − 𝛥𝑚
𝑗𝑡, 𝑗 ∈  , 𝑡 ∈  , (25)

𝜙 ∈ R, 𝜆𝑚+1𝑗𝑡 ∈ R (26)

Constraints (24) and (25) are the box constraints that limit how
much the Lagrangian multipliers can change in each iteration. Chang-
ing the box size can considerably improve the convergence (Marsten
et al., 1975). We adjust the size of the box 𝛥𝑚 in each iteration. If
the sign of the subgradient element changes compared to the previous
iteration, we update the box size: 𝛥𝑚

𝑗𝑡 = 𝛼𝛥𝑚−1
𝑗𝑡 , where 0 < 𝛼 ≤ 1. With

this step, we reduce the size of the box in order to speed up the process
6

of finding the optimal multipliers.
4.4. Lagrangian heuristic

In general, the solution of the relaxed problem is not feasible for
the original problem (Nemhauser and Wolsey, 1999). Therefore, we
develop a greedy heuristic for finding a feasible solution based on the
solution of the relaxed problem to calculate an upper bound on the
optimal solution. Fig. 4.2 illustrates the main structure of our heuristic.

We start by allocating customers to the facilities opened in the
solution of the Lagrangian subproblem, see Algorithm 1 for details.
Customers are first sorted according to increasing reduced costs. We
then allocate the customers to the cheapest facility until we reach the
utilization of the facility taken from the relaxed Lagrangian subproblem
or until no more customers with unsatisfied demand can be allocated.
Algorithm 1: Assign_to_LB_capacities
1 Initialize from LB for all 𝑡 ∈  : 𝑦𝐿𝐵𝑖𝑘𝑙𝑟𝑡; 𝑥

𝐿𝐵
𝑖𝑗𝑙𝑟𝑡;𝜇

𝐿𝐵
𝑏𝑖𝑙𝑟𝑡

2 𝑦𝑖𝑘𝑙𝑟𝑡 = 𝑦𝐿𝐵𝑖𝑘𝑙𝑟𝑡, 𝑖 ∈ , 𝑘 ∈ , 𝑙 ∈  ∶ 𝑙 ≥ 𝑘, 𝑟 ∈ , 𝑡 ∈ 
3 𝑥𝑖𝑗𝑙𝑟𝑡 = 0, 𝑖 ∈ , 𝑗 ∈  , 𝑙 ∈ , 𝑟 ∈ , 𝑡 ∈ 
4 Initialize available capacity as:

𝜙𝑖𝑡 =
∑

𝑏∈
∑

𝑙∈
∑

𝑟∈ 𝑄𝑏𝑙𝑡𝜇𝐿𝐵
𝑏𝑖𝑙𝑟𝑡, 𝑖 ∈ , 𝑡 ∈ 

5 Initialize used capacity: 𝜅𝑖𝑡 = 0, 𝑖 ∈ , 𝑡 ∈ 
6 Initialize set of available facilities:

𝐴
𝑡 = {𝑖|

∑

𝑘∈
∑

𝑙∈∶𝑙≥𝑘
∑

𝑟∈ 𝑦𝑖𝑘𝑙𝑟𝑡 = 1}, 𝑡 ∈ 
7 Initialize set of partially satisfied customers in the LB:

 𝑢
𝑡 = {𝑗|

∑

𝑖∈
∑

𝑙∈
∑

𝑟∈ 𝑥𝐿𝐵𝑖𝑗𝑙𝑟𝑡 > 0}, 𝑡 ∈ 
8 Initialize unsatisfied demand: 𝑑𝑗𝑡 = 𝐷𝑗𝑡, 𝑗 ∈  , 𝑡 ∈ 
9 foreach 𝑡 ∈  do
10 while  𝑢

𝑡 ≠ ∅ ∧ 𝐴
𝑡 ≠ ∅ do

11 foreach 𝑖 ∈ 𝐴
𝑡 do

12 foreach 𝑗 ∈  𝑢
𝑡 do

13 if 𝐿𝑖𝑗𝑡 = 1 ∧ 𝜅𝑖𝑡 < 𝜙𝑖𝑡 then
14 𝛤𝑖𝑗 = 𝑇𝑖𝑗 − 𝜆𝑗𝑡
15 Sort all 𝛤𝑖𝑗 in non-decreasing order
16 foreach 𝛤𝑖𝑗 do
17 𝑙 = argmax𝑙∈

∑

𝑘∈∶𝑘≤𝑙
∑

𝑟∈ 𝑦𝑖𝑘𝑙𝑟𝑡
18 𝑟 = argmax𝑟∈

∑

𝑘∈ 𝑦𝑖𝑘𝑙𝑟𝑡
19 if 𝑗 ∈  𝑢

𝑡 ∧ 𝜅𝑖𝑡 < 𝜙𝑖𝑡 then
20 𝑥𝑖𝑗𝑙𝑟𝑡 = 𝑥𝑖𝑗𝑙𝑟𝑡 + min{𝑑𝑗𝑡, 𝜙𝑖𝑡 − 𝜅𝑖𝑡}
21 update: 𝑑𝑗𝑡 = 𝑑𝑗𝑡 − min{𝑑𝑗𝑡, 𝜙𝑖𝑡 − 𝜅𝑖𝑡}
22 calculate used capacity as: 𝜅𝑖𝑡 =

∑

𝑗∈ 𝑥𝑖𝑗𝑙𝑟𝑡
23 if 𝑑𝑗𝑡 = 0 then
24  𝑢

𝑡 =  𝑢
𝑡 ⧵ {𝑗}

25 if 𝜅𝑖𝑡 = 𝜙𝑖𝑡 then
26 𝐴

𝑡 = 𝐴
𝑡 ⧵ {𝑖}

27 Update set of all unsatisfied customers:
 𝑢
𝑡 = {𝑗|

∑

𝑖∈
∑

𝑙∈
∑

𝑟∈ 𝑥𝑖𝑗𝑙𝑟𝑡 < 𝐷𝑗𝑡}

After the initial allocation of customers to available facilities, we
check for each time period if demand is satisfied, starting from the
first period. If not all customers are satisfied for the given period, we
iteratively expand the capacity of the production system in the general
step Expand capacity. The process of expanding capacity consists
of multiple steps: Increase_utilization, Open_new, and Ex-
pand_existing. After each step, we evaluate whether all customers
are satisfied. If so, we move to the next time period. Otherwise, we
continue with the next step of expanding available capacity.

For all three steps of the capacity extension process, we sort the
facility locations according to how many customers with unsatisfied
demand they can serve and start with the facility location that can
serve most customers. In case of a tie, we choose the location with
the lowest index. The first step, Increase_utilization, aims at
increasing the utilization of the existing production facilities. In the
first time period, based on the principles used for the initial assignment
of customers to facilities, we increase capacity utilization beyond the
level given by the solution to the Lagrangian subproblem until there
are no longer unsatisfied customers or until the capacity limit of the
facility is reached. In all other time periods, we first update the set of
available facilities at the beginning of the time period and then allocate
unsatisfied customers. Since opening of a new facility or expansion of
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b
t

Fig. 4.2. General structure upper bound.
an existing facility in time period 𝑡 affects the available capacity in all
following time periods as well, this step is necessary to consider new
capacities that were not available in the solution to the Lagrangian
subproblem. During this step, the installed capacity is not changed. See
Algorithm 2 for details.
Algorithm 2: Increase_utilization
1 if 𝑡 = 1 then
2 Initialize from Assign_to_LB_capacities:

𝜅𝑖𝑡;𝜙𝑖𝑡; 𝑑𝑗𝑡; 𝑦𝑖𝑘𝑙𝑟𝑡; 𝑥𝑖𝑗𝑙𝑟𝑡; 𝑢
𝑡 ;

𝐴
𝑡 ;𝛤𝑖𝑡

3 else
4 Initialize for each 𝑡 from Expand capacity in 𝑡 − 1:

𝜅𝑖𝑡;𝜙𝑖𝑡; 𝑑𝑗𝑡; 𝑦𝑖𝑘𝑙𝑟𝑡; 𝑥𝑖𝑗𝑙𝑟𝑡; 𝑢
𝑡 ;𝛤𝑖𝑡

5 update 𝐴
𝑡 = {𝑖|

∑

𝑘∈
∑

𝑙∈∶𝑙≥𝑘
∑

𝑟∈ 𝑦𝑖𝑘𝑙𝑟𝑡 = 1}
6 while  𝑢

𝑡 ≠ ∅ ∧ 𝐴
𝑡 ≠ ∅ do

7 𝑖 = min{argmax𝑖∈𝐴𝑡
∑

𝑗∈ 𝑢
𝑡
𝐿𝑖𝑗𝑡}

8 𝑙 = argmax𝑙∈
∑

𝑘∈∶𝑘≤𝑙
∑

𝑟∈ 𝑦𝑖𝑘𝑙𝑟𝑡
9 𝑟 = argmax𝑟∈

∑

𝑘∈ 𝑦𝑖𝑘𝑙𝑟𝑡
10 Set new available capacity 𝜙𝑖𝑡: 𝜙𝑖𝑡 = max𝑏∈𝑙𝑟

𝑄𝑙𝑏𝑟

11 Sort 𝑗 ∈  𝑢
𝑡 according to non-decreasing 𝛤𝑖𝑗

12 foreach 𝑗 ∈  𝑢
𝑡 do

13 𝑥𝑖𝑗𝑙𝑟𝑡 = 𝑥𝑖𝑗𝑙𝑟𝑡 + min{𝑑𝑗𝑡, 𝜙𝑖𝑡 − 𝜅𝑖𝑡}
14 Update: 𝑑𝑗𝑡 = 𝑑𝑗𝑡 − min{𝑑𝑗𝑡, 𝜙𝑖𝑡 − 𝜅𝑖𝑡}
15 Calculate used capacity as: 𝜅𝑖𝑡 =

∑

𝑗∈ 𝑥𝑖𝑗𝑙𝑟𝑡
16 if 𝑑𝑗𝑡 = 0 then
17  𝑢

𝑡 =  𝑢
𝑡 ⧵ {𝑗}

18 if 𝜅𝑖𝑡 = 𝜙𝑖 then
19 𝐴

𝑡 = 𝐴
𝑡 ⧵ {𝑖}

If there are still unsatisfied customers, we first open new facilities
efore expanding the capacity of existing facilities. The candidate loca-
ions for new facilities in time period 𝑡 are all locations where no facility

has been opened. We select the location that can serve most unsatisfied
customers and check whether a facility is opened at this location in
a future period. If there is such a facility, we compare the capacity
needed for the current demand and the capacity suggested from the
relaxed problem and pick up the higher one. If allocated demand is not
sufficient to cover the minimum production requirements, the facility
location is for this period removed from the set of available locations
and we continue with the next candidate location. If there is no facility
at this location, we allocate all possible demand to this location and
install the lowest capacity sufficient to meet this demand and choose
the potentially cheapest technology. The subroutine Open_new is
described in Algorithm 3.

The last step in expanding capacity is to select facilities that should
be expanded and determine their new capacity. The set of candidate
locations is made up of facilities that have not been expanded before
the current period. Again, we select the facility that can serve most
customers with unsatisfied demand. Similar to the previous step, we
check whether the facility is to be expanded at a later point in time.
7

Algorithm 3: Open_new
1 Initialize from Increase_utilization: 𝑡; 𝑑𝑗𝑡; 𝑦𝑖𝑘𝑙𝑟𝑡; 𝑢

𝑡
2 𝑄𝑚𝑖𝑛 = min𝑟∈,𝑏∈1𝑟

𝑄𝑏1𝑟
3 𝑄𝑚𝑎𝑥 = max𝑟∈,𝑙∈,𝑏∈𝑙𝑟

𝑄𝑏𝑙𝑟

4 Define set of candidate facilities:
𝑛𝑒𝑤
𝑡 = {𝑖|

∑

𝑘∈
∑

𝑙∈∶𝑙≥𝑘
∑

𝑟∈ 𝑦𝑖𝑘𝑙𝑟𝑡 = 0}
5 while  𝑢

𝑡 ≠ ∅ ∧ 𝑛𝑒𝑤
𝑡 ≠ ∅ do

6 𝑖 = min{argmax𝑖∈𝑛𝑒𝑤𝑡

∑

𝑗∈ 𝑢
𝑡
𝐿𝑖𝑗𝑡}

7 Calculate necessary capacity as: 𝜔𝑖𝑡 =
∑

𝑗∈ 𝑢
𝑡 ∶𝐿𝑖𝑗𝑡=1 𝑑𝑗𝑡

8 if 𝜔𝑖𝑡 < 𝑄𝑚𝑖𝑛 then
9 𝑛𝑒𝑤

𝑡 = 𝑛𝑒𝑤
𝑡 ⧵ {𝑖}

10 else
11 if ∑𝑘∈

∑

𝑟∈
∑

𝜏∈ 𝑦𝑖𝑘𝑘𝑟𝜏 ≥ 1 then
12 𝑘 = argmax𝑘∈

∑

𝑟∈
∑

𝜏∈ 𝑦𝑖𝑘𝑘𝑟𝜏
13 𝑟 = argmax𝑟∈

∑

𝜏∈ 𝑦𝑖𝑘𝑘𝑟𝜏
14 if 𝜔𝑖𝑡 < 𝑄1𝑘𝑟 then
15 𝑛𝑒𝑤

𝑡 = 𝑛𝑒𝑤
𝑡 ⧵ {𝑖}

16 else
17 if 𝜔𝑖𝑡 ≤ 𝑄𝑚𝑎𝑥 then
18 𝑘𝑚 = min{𝑘 ∈ |max𝑏∈ 𝑄𝑏𝑘𝑟 ≥ 𝜔𝑖𝑡}
19 else
20 𝑘𝑚 = max{𝑘 ∈ }
21 𝑘′ = max{𝑘𝑚, 𝑘}
22 Open new facility with capacity 𝑘′ as:

𝑦𝑖𝑘′𝑘′𝑟𝑡′ = 1, 𝑡′ ∈  ∶ 𝑡′ ≥ 𝑡
𝜙𝑖𝑡′ = max𝑏∈ 𝑄𝑏𝑘′𝑟, 𝑡′ ∈  ∶ 𝑡′ ≥ 𝑡

23 else
24 foreach 𝑟 ∈  do
25 𝑘′ = min{𝑘|max𝑏∈ 𝑄𝑏𝑘𝑟 ≥ 𝜔𝑖𝑡}
26 Calculate estimated costs:

𝐸𝑟 = 𝐶𝑘′𝑟𝑦𝑖𝑘′𝑘′𝑟𝑡 + (𝑇 − 𝑡 + 1)max𝑏∈ 𝐹𝑏𝑘′𝑟
27 Choose technology 𝑟 with lowest costs as:

𝑟 = argmin𝑟∈ 𝐸𝑟
28 Open new facility with capacity 𝑘′ as:

𝑦𝑖𝑘𝑙𝑟𝑡′ = 0, 𝑘 ∈ , 𝑙 ∈  ∶ 𝑙 ≤ 𝑘, 𝑟 ∈ , 𝑡′ ∈  ∶ 𝑡′ ≥ 𝑡
𝑦𝑖𝑘′𝑘′𝑟𝑡′ = 1, 𝑡′ ∈  ∶ 𝑡′ ≥ 𝑡
𝜙𝑖𝑡′ = max𝑏∈ 𝑄𝑏𝑘′𝑟, 𝑡′ ∈  ∶ 𝑡′ ≥ 𝑡

29 Run Algorithm 1 from line 10 with initialization: 𝑡;  𝑢
𝑡 ;

𝐴
𝑡 = {𝑖}; 𝜅𝑖𝑡 = 0; 𝜙𝑖𝑡; 𝑑𝑗𝑡, 𝑗 ∈  𝑢

𝑡
30 𝑛𝑒𝑤

𝑡 = 𝑛𝑒𝑤
𝑡 ⧵ {𝑖}

In that case we check if we can satisfy minimum production quantities
of the new capacity with current demand. If these requirements are
satisfied, we expand the facility early. Otherwise, we discard the facility
for this period and move on to the next. If the facility is not expanded
in the solution to the relaxed problem, we calculate the capacity that
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is required to serve all possible customers and expand the facility.
Note that we can only expand once and therefore need to prevent
early expansion with low capacity. Expansion of existing facilities is
presented in Algorithm 4.
Algorithm 4: Expand_existing
1 Initialize from Open_new: 𝑡; 𝑑𝑗𝑡; 𝑦𝑖𝑘𝑙𝑟𝑡; 𝑢

𝑡 ;𝑄
𝑚𝑎𝑥

2 Define set of candidate facilities:
𝑒𝑥𝑝
𝑡 = {𝑖|

∑

𝑘∈
∑

𝑟∈ 𝑦𝑖𝑘𝑘𝑟𝑡 = 1 ∧
∑

𝑘∈
∑

𝑟∈ 𝑦𝑖𝑘𝑘𝑟(𝑡−1) = 1}
3 while  𝑢

𝑡 ≠ ∅ ∧ 𝑒𝑥𝑝
𝑡 ≠ ∅ do

4 𝑖 = min{argmax𝑖∈𝑒𝑥𝑝𝑡

∑

𝑗∈ 𝑢
𝑡
𝐿𝑖𝑗𝑡}

5 𝑘 = argmax𝑘∈
∑

𝑟∈ 𝑦𝑖𝑘𝑘𝑟𝑡
6 𝑟 = argmax𝑟∈ 𝑦𝑖𝑘𝑘𝑟𝑡
7 if ∑𝑙∈∶𝑙>𝑘

∑

𝜏∈ 𝑦𝑖𝑘𝑙𝑟𝜏 ≥ 1 then
8 𝑙 = argmax𝑙∈∶𝑙>𝑘

∑

𝜏∈ 𝑦𝑖𝑘𝑙𝑟𝜏
9 else
10 𝑙 = 𝑘
11 Calculate necessary capacity as: 𝜔𝑖𝑡 =

∑

𝑗∈ 𝑢
𝑡 ∶𝐿𝑖𝑗𝑡=1 𝑑𝑗𝑡

12 if 𝜔𝑖𝑡 < 𝑄1𝑙𝑟 then
13 𝑒𝑥𝑝

𝑡 = 𝑒𝑥𝑝
𝑡 ⧵ {𝑖}

14 else
15 if 𝜔𝑖𝑡 ≤ 𝑄𝑚𝑎𝑥 then
16 𝑙𝑚 = min{𝑙 ∈ |max𝑏∈ 𝑄𝑏𝑙𝑟 ≥ 𝜔𝑖𝑡}
17 else
18 𝑙𝑚 = max{𝑙 ∈ }
19 𝑙′ = max{𝑙𝑚, 𝑙}
20 Expand facility to capacity 𝑙′ as:

𝑦𝑖𝑘𝑙𝑟𝑡′ = 0, 𝑘 ∈ , 𝑙 ∈  ∶ 𝑙 ≥ 𝑘, 𝑟 ∈ , 𝑡′ ∈  ∶ 𝑡′ ≥ 𝑡
𝑦𝑖𝑘𝑙′𝑟𝑡′ = 1, 𝑡′ ∈  ∶ 𝑡′ ≥ 𝑡
𝜙𝑖𝑡′ = max𝑏∈ 𝑄𝑏𝑙′𝑟, 𝑡′ ∈  ∶ 𝑡′ ≥ 𝑡

21 Run Algorithm 1 from line 10 with initialization: 𝑡;  𝑢
𝑡 ;

𝐴
𝑡 = {𝑖}; 𝜅𝑖𝑡 = 0; 𝜙𝑖𝑡; 𝑑𝑗𝑡, 𝑗 ∈  𝑢

𝑡
22 𝑒𝑥𝑝

𝑡 = 𝑒𝑥𝑝
𝑡 ⧵ {𝑖}

If the previous steps are not sufficient to satisfy all customers, we
urther expand the capacity, neglecting the requirement on minimum
roduction quantities. We start with the facility location that can serve
ost unsatisfied customers, open a new facility, and install the lowest

apacity sufficient to satisfy demand. We then optimize a transportation
nd capacity utilization problem for currently open facilities using
urobi to reallocate customers to satisfy minimum production require-
ents in the entire production system and update the set of unsatisfied

ustomers. If even more capacity is needed, we further increase the
xpansion capacity of already expanded facilities. We start again with
he location that can serve most unsatisfied customers. This step should
ot violate the feasibility of our solution because we proceed with this
tep at the moment when all facilities that could potentially satisfy the
emaining unsatisfied customers are on their capacity limits. Therefore,
here exist customers that can be reallocated to the expanded facility so
hat the minimum production requirements are satisfied in the whole
roduction system.

After this step, we obtain a feasible solution. However, once all
ustomers are satisfied, we check if we can reduce capacity at some
f the facilities, as we may have installed more capacity than needed
uring the capacity expansion process. We reduce the surplus capacity
f opened facilities by computing the costs for all combinations of
pening capacities and time as well as expansion capacities and time
hat satisfy minimum production quantity requirements in each period.

e then install the capacity that leads to the lowest costs. This solution
s further improved in a final step by using Gurobi. We fix all binary
ariables based on the results of our heuristic. Then, we solve the
riginal problem with only continuous variables related to demand
llocation and capacity utilization. However, to further improve the run
imes, this final step is performed only when the solution improves or
s no worse than 1.1 times the best solution so far. The parameter 1.1
8

as been chosen based on initial tests. i
4.5. Restricted MIP

To improve the quality of the upper bound, Jena et al. (2017) con-
struct a restricted mixed-integer model for their problem by exploiting
information from their bundle method used to update the Lagrangian
multipliers. We propose a similar approach based on the information
obtained from solving the Lagrangian dual: Let 𝛼𝑔 , 𝑔 = 1,… , 𝑚 be
he dual variable belonging to constraint (23). In the optimal solution
o problem (22)–(26), we have ∑𝑚

𝑔=1 𝛼𝑔 = 1 and hence 𝛼𝑔 can be
nderstood as the probability that the solution to the relaxed problem
rom iteration 𝑔 provides good decisions. We then calculate:

𝛾𝑝𝑖𝑘𝑙𝑟𝑡 =
𝑚
∑

𝑔=1
𝛼𝑔𝑦

𝑔
𝑖𝑘𝑙𝑟𝑡, 𝑖 ∈ , 𝑘 ∈ , 𝑙 ∈  ∶ 𝑙 ≥ 𝑘, 𝑟 ∈ , 𝑡 ∈  , (27)

here 𝑦𝑔𝑖𝑘𝑙𝑟𝑡 = 1, if the solution to the relaxed problem chooses to
perate a facility at location 𝑖, with opening capacity 𝑘, operated
apacity 𝑙 and installed technology 𝑟 in time period 𝑡 in iteration 𝑔.

If 𝛾𝑝𝑖𝑘𝑙𝑟𝑡 ≥ 0.85, we fix the binary decision and set 𝑦𝑖𝑘𝑙𝑟𝑡 equal to
ne. We then solve the original problem with the fixed variables using
urobi. Selecting the correct threshold for fixing the binary variables is

mportant for the performance of this approach. If the threshold value
s chosen too low, too many variables are fixed and no improvement
an be achieved. In the other case, only a few variables are fixed and
he problem is close to its original size, resulting in long solution times
r even a computationally intractable problem. A threshold value of
.85 worked best during the initial testing and also corresponds to the
alue suggested in Jena et al. (2017).

. Case description

In this section, we present the input data used in our computational
xperiments. The input data is based on real-world data from Norway.
e present the potential facility locations in Section 5.1 and the cus-

omer locations with associated demand in Section 5.2. The available
echnologies and their cost structure as well as transportation costs are
iscussed in Section 5.3.

.1. Facility location

In the base case, we consider 17 candidate locations for hydrogen
acilities on the Norwegian west coast. The candidate locations for
ydrogen production are obtained from the interactive map set up
y Ocean Hyway Cluster (2020b). These candidate locations are always
resent in all larger instances. We further present test instances with
4, 51, 102 facility locations. All candidate locations are in Norwegian
orts thus if the number of potential facility locations increases, the
istances between candidate locations decrease.

.2. Demand

We use two demand scenarios: one scenario including demand from
he maritime sector and one scenario with demand from the whole
ransportation sector. We have a planning horizon of 14 years and
uring this time the demand is non-decreasing. Demand development
ver time can be seen in Fig. 5.1. Fig. 5.1 shows that in the first
hree periods, the demand is equal in both scenarios as the demand
omes only from the maritime sector. The main growth in the whole
ransportation sector scenario comes in two phases in periods 4 and
when hydrogen transition in heavy transport and long-distance bus

ransport is planned (DNV GL, 2019).
The maritime scenario considers 51 demand points in Norwegian

orts and consists of the hydrogen demand for high-speed passenger
erries, car ferries and the coastal route Bergen–Kirkenes (Aarskog
nd Danebergs, 2020; Ocean Hyway Cluster, 2020a). The demand for
he whole transportation sector consists of the maritime sector with

ts 51 demand points plus road traffic and the railway sector (DNV
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Fig. 5.1. Demand development during the planning horizon.

Table 5.1
Hydrogen distribution costs in [e/km/kg H2].

Distance [km] 1–50 51–100 101–200 201–400 401–800 801–1000

Costs 0.00498 0.00426 0.00390 0.00372 0.00363 0.00360

GL, 2019). We divide the road traffic demand between 70 and 392
customers, respectively, proportionally according to the statistic about
road traffic volumes in Norway (Statistics Norway, 2021). The scenario
with 70 customers consists of the 51 ports plus 19 municipalities with
the highest road traffic volumes and then the road traffic demand is
divided between these 70 points. Considering 392 customers, we divide
the road traffic demand between all Norwegian municipalities. We
neglect municipalities with calculated demand lower than 10 kg daily
and recalculate the demand allocation for the remaining customers.

5.3. Costs

The distribution costs per kilometer and kilogram of hydrogen are
taken from Danebergs and Aarskog (2020). The distribution costs are
valid for the appropriate interval as shown in Table 5.1. The distance
limit between production facility and customer is 1000 km.

We consider two hydrogen production technologies: electrolysis
EL) and steam methane reforming with carbon capture and stor-
ge (SMR+). We approximate the facility capacity using 8, 16, or 24
iscrete points for EL and 7, 15, or 23 points for SMR+. The dif-
erence between capacity levels is not constant in order to achieve
verlapping production quantities and more choices for low capacities.
or all capacities, we consider 4 short-term utilization levels. The
hort-term breakpoints are at 20%, 50%, 80% and 100% of installed
roduction quantity, whereas the 20% utilization corresponds to the
inimum production quantity for each capacity level. We use the
odel from Jakobsen and Åtland (2016) to calculate the cost. Invest-
ent and production costs at the highest utilization level for both

echnologies are shown in Fig. 5.2(a). We also use a S-shaped piecewise
inear cost function for the production costs, modelling economies as
ell as diseconomies of scale, see Fig. 5.2(b). The main data for the

ase with 8 capacities is taken from Štádlerová and Schütz (2021). For
implicity, the discount factor 𝛿 is set to one for all periods.
9

𝑡 t
We model the expansion as a more expensive alternative than
pening a bigger facility right away. We obtain the expansion costs as
he difference between the investment costs of the new capacity and
he originally installed capacity plus an additional 10% markup.

. Results

All calculations have been carried out on a computer with two
.6 GHz Intel Xeon Gold 6244 CPU (8 core) processors and 384 GB
AM. Gurobi Optimizer version 9.1.2 is used as a commercial solver for
omparison and for computing the optimal distribution and production
uantities for a given set of facilities in the last step of our heuristic.
ur algorithm is implemented in Julia 1.6.3. We enable parallelization
t 32 threads in Julia as Gurobi optimizer also utilizes up to 32 threads
n this computer.

We denote our instances with the number of candidate locations for
acilities (F), demand points (D) and capacity levels (C). For example,
17D51C8 represents an instance with 17 candidate locations, 51 de-
and points and 8 capacity levels. Capacity levels marked with asterisk
enote instances with S-shaped costs.

.1. Solution quality

To evaluate the performance and quality of our approaches, we
ompare the results of the Lagrangian relaxation (LR) and the restricted
IP (R-MIP) to the ones obtained from Gurobi (GUR). As quality

riteria, we study optimality gap, run time, and the best upper bound.
e stop the Lagrangian relaxation after 1000 iterations whereas R-
IP and Gurobi have run time limit of 24 h. In each LR iteration,
e solve the Lagrangian subproblem, the Lagrangian dual and calcu-

ate the upper bound. In order to further improve the run time, we
valuated the upper bound in fixed intervals and only when the lower
ound increases. However, we did not find equally good solutions with
hese approaches. When using R-MIP, we first perform 1000 iterations
here we solve the Lagrangian subproblem and update the Lagrangian
ultipliers (but do not calculate an upper bound). Afterwards, we start

olving the restricted MIP.
The main results are summarized in Table 6.1 for the instances with

onvex production costs and in Table 6.2 for the instances with S-
haped production costs. We provide the run time (in seconds) needed
o achieve an optimality gap lower than 3% and 1.5% for LR and GUR.
or the R-MIP, we only consider the best solution. Please note that
he optimality gap reported for R-MIP in Tables 6.1 and 6.2 is the
ptimality gap for the original problem, using the lower bound from
he Lagrangian relaxation to calculate the gap. In case the table field
s empty, a solution with the specified gap is not found within the
topping criterion. We also show the total run time, best upper bound,
nd final gap for our algorithm, R-MIP and Gurobi. If R-MIP is solved
o optimality within 24 h or if GUR finds the optimal solution within
4 h, we show the time needed to find this solution.

Lagrangian relaxation outperforms Gurobi in terms of run time
or all problem instances where we can prove optimality gaps less

han 3%. In particular, our algorithm finds good (but not necessarily
Fig. 5.2. Investment and yearly production cost at the highest utilization level.
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Table 6.1
Run times and optimality gap for our algorithm (LR), Gurobi (GUR) and restricted MIP (R-MIP) for the instances with convex production costs.

Instance Time in seconds Best upper bound Total run time End gap

Gap < 3% Gap < 1.5% × 106 [s] [%]

LR GUR LR GUR LR GUR R-MIP LR GUR R-MIP LR GUR R-MIP

F17D51C8 31 121 43 121 578.77 577.94 577.95 273 256 277 0.90 0.01 0.65
F17D51C16 36 279 64 279 564.05 564.05 566.36 300 9 795 331 1.33 0.01 1.80
F17D51C24 48 1 587 485 2 428 562.73 558.42 582.20 710 10 361 362 1.49 0.01 4.77

F17D70C8 31 866 44 916 1590.75 1587.66 1587.66 344 1 150 346 0.60 0.01 0.35
F17D70C16 21 67 98 413 1540.69 1537.70 1537.90 405 8 030 435 0.93 0.01 0.90
F17D70C24 54 28 438 180 28 438 1539.08 1529.20 1559.72 789 51 836 500 1.15 0.01 2.40

F17D392C8 45 1 871 258 3 601 1356.69 1352.55 1396.68 1631 6 140 1 651 1.32 0.01 4.00
F17D392C16 60 16 545 985 16 545 1340.20 1334.80 1345.90 1910 86 400 1 690 1.46 0.28 1.95
F17D392C24 64 – – – 1343.70 – 1331.30 2192 86 400 86 400 1.87 – 0.91

F34D51C8 32 564 39 564 554.42 553.37 555.17 372 767 290 0.94 0.01 1.09
F34D51C16 32 292 162 292 538.09 533.68 537.62 834 4 478 2 218 1.46 0.01 1.65
F34D51C24 124 1 511 503 1 513 533.40 530.69 532.16 1439 86 400 945 1.24 0.06 1.05

F34D70C8 51 1 246 – 1 534 1501.09 1478.00 1523.71 430 15 973 701 2.45 0.01 3.80
F34D70C16 54 916 426 916 1466.35 1448.10 1456.54 777 86 400 1 895 0.98 0.10 1.23
F34D70C24 145 83 487 262 83 487 1455.48 1559.90 1445.90 1214 86 400 86 400 1.26 7.69 0.60

F34D392C8 106 34 441 1703 36 894 1315.37 1303.30 1306.07 2009 86 400 4 263 1.28 0.1 0.80
F34D392C16 265 – – – 1357.61 – 1398.17 2470 86 400 2 711 2.77 – 9.20
F34D392C24 349 – – – 1299.73 – – 3003 86 400 86 400 2.44 – –

F51D51C8 61 997 61 1 070 552.67 550.00 550.00 421 2 797 347 1.29 0.01 0.70
F51D51C16 127 725 970 1 757 532.66 528.30 534.62 1099 45 444 4 237 1.47 0.01 2.10
F51D51C24 112 2 918 – 3 557 530.35 526.20 529.74 2179 86 400 86 400 1.83 0.31 1.50

F51D70C8 206 260 – 1 096 1505.91 1467.10 1530.12 509 17 917 478 2.89 0.01 5.00
F51D70C16 207 2 768 425 3 749 1451.70 1437.60 1460.25 707 86 400 931 1.41 0.41 2.15
F51D70C24 190 31 337 – 33 300 1454.45 1444.98 1438.05 1970 86 400 58 822 1.90 1.03 0.77

F51D392C8 243 – 2130 – 1307.88 – 1304.20 2706 86 400 2 711 1.18 – 0.50
F51D392C16 939 – – – 1307.16 – – 2913 86 400 86 400 2.61 – –
F51D392C24 1277 – – – 1297.34 – – 3521 86 400 86 400 2.89 – –

F102D392C8 1152 – – – 1090.02 – 1079.40 2726 86 400 61 050 2.66 – 1.18
F102D392C16 1566 – – – 1290.82 – – 4807 86 400 86 400 2.82 – –
F102D392C24 4649 – – – 1282.15 – 1292.48 6720 86 400 56 080 2.96 – 3.72
Table 6.2
Run times and optimality gap for our algorithm (LR), Gurobi (GUR) and restricted MIP (R-MIP) for the instances with S-shaped production costs.

Instance Time in seconds Best upper bound Total run time End gap

Gap < 3% Gap < 1.5% × 106 [s] [%]

LR GUR LR GUR LR GUR R-MIP LR GUR R-MIP LR GUR R-MIP

F17D392C16* 138 14 871 1205 23 313 1356.70 1349.70 1403.94 1694 86 400 4 170 1.47 0.45 4.83
F34D51C16* 162 3 557 673 4 069 554.85 550.82 552.63 810 86 400 55 761 1.49 0.27 1.53
F34D70C16* 55 2 145 574 2 145 1488.22 1479.20 1479.75 690 86 400 86 400 1.41 0.16 0.79
F34D392C16* 137 – – – 1316.13 1371.45 1320.18 2515 86 400 2 286 1.87 9.63 9.00
F51D51C16* 133 934 – 1 141 550.82 546.74 551.18 1016 86 400 968 2.00 0.60 2.10
F51D70C16* 232 4 593 – 4 593 1486.20 1460.90 1466.10 913 86 400 86 400 2.31 0.22 0.95
F51D392C16* 956 – – – 1313.30 – 1299.20 3120 86 400 86 400 2.10 – 1.04
F102D392C16* 958 – – – 1302.14 – – 4652 86 400 86 400 2.11 – –
optimal) solutions much faster than Gurobi. For the instances where we
find solutions within 1.5% of optimality with both our algorithm and
Gurobi, our algorithm reaches this gap on average 30 times faster than
Gurobi. Note however, that the run time advantage is less pronounced
for smaller instances than for large instances.

We see that Gurobi can find optimal solutions for 13 of 38 instances.
These instances are highlighted with a bold face. For instances, where
Gurobi found the optimal solution within 24 h, we see from the best
upper bound in Table 6.1 that the objective from the Lagrangian
heuristic is on average less than 0.7% higher than the optimal solution.
However, Lagrangian relaxation is 20 times faster than Gurobi. Gurobi
fails to find feasible solutions for 11 of the instances (9 instances in
Table 6.1 and 2 instances in Table 6.2) while our algorithm finds
a solution with a gap < 3% for all tested instances. Note that the
solutions found by the Lagrangian relaxation are no worse than 1.5%
compared to the solutions found by Gurobi with the exception of the
instance F51D70C8 where the difference is 2.6% and for two instances
10

(F34D70C24 and F34D392C16*), we can find better solutions.
Tables 6.1 and 6.2 show that using the R-MIP, we can find feasible
solutions for 33 out of 38 instances. For 6 of the instances out, R-MIP
finds better solutions than LR and Gurobi. In general, the run times of
the Lagrangian relaxation are lower for larger instances, whereas the R-
MIP is faster for smaller instances. The reason for this is that restricted
MIP is solved quickly and only once, while the Lagrangian relaxation
calculates the upper bound in each iteration. The Lagrangian relaxation
also finds better solutions than the R-MIP for 23 instances. Compared
to Gurobi, the R-MIP run times are, in general, faster with exception
of the smallest instance F17D51C8. For eleven of the instances both
Gurobi and R-MIP run for 24 h. Even if the R-MIP can find an optimal
or near-optimal solution, the proven optimality gap is still positive due
to the Lagrangian lower bound. Note that even if the restricted MIP is
solved to optimality, the best bound on restricted MIP is not the bound
of the original problem. In general, the R-MIP finds feasible solutions
with a cost similar to the ones found by the Lagrangian heuristic, but

often has longer run time and worse proven optimality gap.
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Fig. 6.1. Comparison: Installed capacity and demand for instances with 17 candidate locations.
Fig. 6.2. Solution structure: opened facilities and theirs capacity. Left column illustrates the problem with 51 customers and right column the problem with 70 customers.
t
p
t

When analyzing the LR run times in Table 6.1 in more detail, we
see that increasing the number of candidate locations has a relatively
low impact on the run times. One of the reasons for that might be the
parallel implementation for calculating the lower bound. We enable
parallelization with 32 threads and use one thread to solve the sub-
problem for a single candidate location. We use all available threads
only when solving instances with 32 or more candidate locations, which
might explain the small differences in run time.

When comparing the run times for instances with 16 capacity levels,
we observe that instances with S-shaped costs (see Table 6.2) are harder
to solve using R-MIP and GUR than the corresponding instances with
convex costs (see Table 6.1). Gurobi cannot find an optimal solution
for any of these instances and for two of them, it cannot find any
feasible solution, while the Lagrangian relaxation is still capable of
finding good feasible solutions for all instances. The R-MIP finds better
solution than Lagrangian relaxation for three instances. The run time
in these instances however, is 24 h.

The instances with 70 or more demand points have a higher demand
level compared to the instances with 51 demand points. However,
despite the larger number of demand points, there is no clear effect
on run time. For some instances, the higher number of customers even
seems to have a positive impact on the run time. An explanation for this
might be that due to higher demand, it is easier to satisfy the minimum
production requirements and thus we find good solutions faster. If we
increase the number of customers further from 70 to 392 (5.6 times)
without changes in the total demand level, we observe an increase in
run time. However, in most test instances, the run time increases less
than 5.6 times.

We also analyze the impact of the number of capacity levels on the
11

run time. The time needed to solve instances with 8 and 16 capacities t
is quite stable for most instances despite doubling the number of
capacities. However, when increasing the number of capacity levels
further to 24, we see a considerable increase in run time. With 16
available capacity levels, the installed capacity of the optimal solution
approximates the demand much better than the optimal solution with
8 available capacities, see Fig. 6.1. Due to this, our algorithm finds
good solutions faster. When increasing the number of capacities to 24,
we cannot achieve a much better fit of the installed capacity and the
additional capacity levels therefore only increase the computational
complexity of the problem, causing the increase in run time.

6.2. Solution structure

To analyze the impact of different instances on the locations for
hydrogen production in Norway, we compare the LR results for in-
stances with 8 discrete capacities and convex production costs, namely
F17D51C8, F17D70C8, F34D51C8, and F34D70C8. Fig. 6.2 shows
the location and size of the opened hydrogen for the different in-
stances. In Fig. 6.2(a), we compare the solutions for 17 candidate
locations, whereas the solutions for 34 candidate locations are shown
in Fig. 6.2(b). The evolution of installed capacity over time for the
instances with 17 facilities can be seen in Fig. 6.1 for 51 and 70
customers.

When studying the consequences of different demand levels, we
see for both the instances with 17 and 34 candidate locations that
he solution for 70 demand points is characterized by considerable
roduction capacity in south-eastern Norway. This is not surprising as
he largest share of the demand from land-based transportation is in

his region. We also observe that the total capacity of the facilities
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located in south-western Norway does not change that much. The stable
production capacity indicates that hydrogen intended for maritime
transportation continues to be produced at these facilities.

Increasing the number of candidate locations to 34 has little impact
on the number of open facilities for the instances with 51 demand
oints, even though the locations change slightly and total costs are
educed by approximately 4%. For the instances with 70 demand points,
he difference is much more apparent: The number of facilities in
outh-eastern Norway increases from 1 to 4. Another consequence of
his increase in the number of facilities is that these facilities are
maller. One of the reasons for the increased number of facilities in
outh-eastern Norway is that the locations of these facilities are not
vailable in the original set of 17 candidate locations. It is worth noting
hat increasing the number of candidate locations further to 51 and
02 locations does not increase the number of opened facilities. Our
nalysis shows that for 51 and 102 candidate locations, there are many
lternative solutions with only slightly different cost level.

Both observations mentioned above for comparing demand level
nd the number of candidate locations indicate that the economies of
cale present in the production cost of hydrogen are not sufficient to
ustify higher distribution costs. The model, therefore, chooses to open
maller facilities, closer to the demand points rather than centralizing
roduction and distributing hydrogen over larger distances.

. Conclusions

We have presented a solution method for the multi-period facility
ocation and capacity expansion problem with a limited number of ex-
ansions. This work is motivated by the real-world problem of locating
ydrogen production facilities in Norway which requires considering
he limits on minimum production quantities and two production tech-
ologies. Our solution method is based on Lagrangian relaxation and
ombined with a heuristic to build a feasible solution from the solution
f the relaxed problem.

Our test instances have different sizes with respect to the number of
andidate locations, demand points and capacity levels. Our algorithm
utperforms Gurobi in terms of run time for all instances. For instances,
here we find solutions within 1.5% of optimality with both, our
lgorithm and Gurobi, we can prove this optimality gap on average 13
imes faster than Gurobi. However, for some of the largest instances,
urobi even fails to find a feasible solution.

In terms of objective function value, Gurobi can find optimal solu-
ions for 13 of 38 instances. However, this applies mainly to smaller
nstances and comes at a cost of considerably longer run times. The
olutions provided by our algorithm will be good enough for most
ractical purposes where run time requirements supersede the need for
ptimal solutions. If better solutions are indeed needed, improving the
reedy heuristic for finding an upper bound should be considered.

Among exact methods, a promising direction for future research
s to combine the Lagrangian relaxation approach with a branch-and-
ound procedure or to implement Benders decomposition. Further,
ifferent heuristic approaches can be studied to improve the quality
f the solution. In future research, a more general model formulation
llowing also for capacity reduction and closing of facilities can be
onsidered.
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