
Process Safety and Environmental Protection 177 (2023) 1485–1493

Available online 21 July 2023
0957-5820/© 2023 The Author(s). Published by Elsevier Ltd on behalf of Institution of Chemical Engineers. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Towards standardized reporting and failure classification of safety 
equipment: Semi-automated classification of failure data for safety 
equipment in the operating phase 

Shenae Lee a,*, Maria Vatshaug Ottermo a, Stein Hauge a, Mary Ann Lundteigen b 

a Dept. Software Engineering, Safety and Security, SINTEF Digital, Trondheim, Norway 
b Dept. Engineering Cybernetics, NTNU, Trondheim, Norway   

A R T I C L E  I N F O   

Keywords: 
Reliability of safety equipment 
Failure classification 
Reliability data 
Maintenance 
Operational experience 
Technical language processing (TLP) 
Entity recognition 
Text annotation 
Industry 4.0 

A B S T R A C T   

Safety instrumented systems (SISs) are installed on process plants to protect against undesired events like e.g., 
gas leakage and overpressure. A SIS has reliability requirements that are determined during design, and 
conformance to these requirements should be verified during operation. It is therefore important that all SIS 
failures are recorded and classified according to their impact on the SIS reliability. Failures of SIS equipment 
classified as dangerous undetected are of particular interest because they are dormant (undetected) and will 
prevent the execution of the safety function (dangerous). Analysis of the failure mode and detection method is 
essential when deciding if a failure is dangerous and undetected. Such information is often provided as un
structured text in notifications registered into the maintenance management system. Therefore, the work of 
classifying failures requires considerable manual effort in reading and analyzing the texts. Approaches within 
natural language processing, like technical language processing, have the potential to be deployed more actively 
for this purpose. However, successful adoption relies on groundwork where classification rules are derived from 
international standards and commonly agreed industry practice. This paper presents a semi-automated process 
that incorporates classification rules and gives examples that indicate some of the capabilities of technical 
language processing for failure classification. The paper also elaborates on how the work relates to Industry 4.0 
in creating digital representations to monitor the performance of safety instrumented systems. This work has 
been carried out as part of the APOS project (Automated process for follow-up of safety instrumented systems). 
The APOS project has developed knowledge and specifications that simplify and automate the design and 
operation of safety equipment and investigated how the failure classification process can be made more efficient.   

1. Introduction 

Safety instrumented systems (SISs) are installed on process plants to 
protect against undesired events like e.g., gas leakage and overpressure. 
Each SIS performs one or more safety instrumented functions (SIFs) 
whose role is to reduce the accident risk. The SIFs monitor for process 
deviations during normal operation but perform no functions unless the 
threshold values are exceeded. The average frequency of demands for 
SIF execution is typically low, and when demanded less than once per 
year, the SIFs are classified as operating in the low-demand mode. 
Failures of the kind that prevent the execution of the SIF once demanded 
which are not detectable during normal operation are classified as 
dangerous undetected (DU). 

Regular testing of the SIF is essential to reveal DU failures early 
enough to reduce the risk of accidents. The aggregation of DU failures 
into updated DU failure rates is carried out to update the estimate of the 
SIF performance measures by the probability of failure on demand 
(PFD). The specific requirements for failure data collection, performance 
measures, operational follow-up, and documentation follow standards 
like IEC 61508 (IEC 61508, 2010) and IEC 61511 (IEC 61511, 2016). 
Additional requirements are also specified in national regulations (e.g., 
the Norwegian Petroleum Safety Authority (PSA) regulations), internal 
company governing documents as well as facility-specific requirements. 

IEC 61508 specifies ranges of PFD into four safety integrity levels 
(SILs). The SIL (and PDF) requirements of the SIFs are determined by 
performing risk analysis, while the design of the SIFs (configuration, initial 
reliability of components) and the operational environment influence the 
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SIL (and PFD) performance in operation. The mentioned IEC standards 
require that PFD performance is estimated in the design phase and then 
subject to regular verification in the operational phase (Håbrekke et al., 
2023; Lee et al., 2021). The PFD of a SIF is calculated from the DU failure 
rates and the proof test interval of the involved SIS equipment. Experience 
indicates that failure rates provided by manufacturers are generally lower 
than what is experienced in operation. Using too optimistic failure rates 
means that the SIF could seem more reliable than it is in reality. Therefore, 
the second edition of IEC 61511–1 (sub-clause 11.9.3) (IEC 61511, 2016) 
emphasizes the need to apply reliability data that are credible, traceable, 
documented, and justified. It is also stressed, that when applying reli
ability data collected during operation, the data must be based on feed
back from similar devices used in similar operating environments. 

To fulfil these requirements from IEC 61511–1 (IEC 61511, 2016), 
high quality in failure reporting and high precision in failure classification 
are essential (Ottermo et al., 2021). In particular, identification of all DU 
failures is critical as the DU failure rate is so influential on the PFD, and 
experience shows that manual checks are required to properly classify 
these failures. The adequacy of information in notifications registered into 
the maintenance system by technicians or process operators can vary. For 
instance, there is not always sufficient information to decide afterward if a 
failure mode is dangerous or safe and how the failure was revealed. No
tifications often include a drop-down list for pre-defined failure modes and 
detection methods, from which the maintenance technician selects a 
failure mode and detection method, respectively. However, selections are 
not always correctly applied, and it is often necessary to investigate other 
sources such as event logs and condition monitoring systems or have 
discussions with technicians and equipment experts to be able to classify 
the reported failure. Notifications allow technicians and process techni
cians to add free (long) text, but analyzing this at a later stage is 
time-consuming. For example, the update of failure rates in the PDS data 
handbook required manual review of some thirty thousand notifications 
that corresponded to four man-hour years of review time (Ottermo et al., 
2021). Failures classified during a manual review can also be subjective 
and vary from person to person, depending on the skills and background of 
the personnel involved. Hence, there is a strong motivation to explore the 
potential to replace some of the efforts with methods like Technical Lan
guage Processing (TLP) techniques. 

TLP is a methodology that combines natural language processing 
(NLP) resources with engineering knowledge within the domain 
(Brundage et al., 2021; Gao et al., 2020). NLP refers to a research area 
within computer science to comprehend human-generated natural lan
guage in text or in speech. The need for TLP arises because the existing 
NLP pipelines are more suitable for non-engineering texts, and it is 
important to incorporate domain knowledge in NLP applications (Sharp 
et al., 2017), namely ‘human-in-the-loop’ and ‘iterative’ aspects 
affirmed by (Brundage et al., 2021). A typical example of engineering 
text is maintenance log for equipment. Previous studies have demon
strated how TLP techniques can be utilized for structuring of text data 
for obtaining information to fit the purposes like identifying underlying 
failure causes and estimates for mean time to failure (Sharp et al., 2017; 
Sexton et al., 2018; Bikaun and Hodkiewicz, 2021). 

A contribution in the present paper is the application of a human-based 
and semi-automated failure classification for SIS which builds upon pre
vious work (Ottermo et al., 2021) where the web-based annotation tool 
Redcoat (Stewart et al., 2019) was used for annotating free text fields in 
SIS notifications. The hypothesis was that the free text field includes vo
cabularies that can be associated with failure modes, and that these texts 
can be labelled (annotated) so that machines can use them. The words 
used to annotate the notifications in (Ottermo et al., 2021) were assembled 
into a dictionary with the purpose of annotating a larger dataset. This 
dictionary was then refined and tested for the semi-automated failure 
classification algorithm developed in (Lee et al., 2023). The main objective 
of this paper is to report the recent developments of the work in (Lee et al., 
2023) and (Lee et al., 2022) and also to address how this approach relates 
to Industry 4.0 platforms for the seamless exchange of information and 
digital representations of assets. The paper contributes with examples of 
the groundwork needed to transform failure and maintenance data into 
machine-readable formats. This work has been part of an ongoing research 
and innovation project named APOS (Automated process for follow-up of 
safety instrumented systems) which has been a collaboration with 11 in
dustry partners and the PDS forum, an organization having liaison status 
in IEC 61511. 

The outline of the paper is as follows: Section 2 describes how failure 
reporting and classification for some relevant parameters are performed 
today. Section 3 presents the approach used in this work. In Section 4 
application of the approach is described for two cases. Section 5 in
vestigates the relevance of this work in the digitalization context, while 
Section 6 provides a discussion and suggestions for further work. Finally, 
Section 7 presents some concluding remarks. 

2. Failure reporting and classification 

Failures revealed during operation, testing, and maintenance are 
usually reported and classified in a Computerized Maintenance Man
agement System (CMMS) by a technician. Each failure is registered as a 
notification with a unique notification ID that is linked to the tag 
number of the failed equipment. The notification consists of a combi
nation of fixed data fields, drop-down fields, and free text fields (i.e. 
short text and long text), as shown in Table 1. The drop-down fields 
provide a list of alternatives for detection methods and failure modes 
that the technician can choose from. 

The detection method characterizes how the failure was discovered. 
If the failure was revealed immediately (i.e. alarmed upon occurrence), it 
is classified as detected. On the other hand, if the failure was revealed 
during a functional test, periodic maintenance, causal observation, or 
demand (i.e. latent until test or demand), it is classified as undetected. 

The failure mode characterizes how it was observed that a function 
has been fully or partially lost. For instance, for a valve, the safety function 
will typically be to open or close on demand, and to keep tight in the 
closed position. Hence, a failure to close or open on demand or an internal 
leakage in the closed position are both examples of failure modes. By 
combining the failure mode with information about the equipment group 
and its related safety function, it can be determined whether the failure is 

Nomenclature 

APOS Automated process for monitoring of safety 
instrumented systems. 

CMMS Computerised maintenance management system. 
DD Dangerous detected. 
DU Dangerous undetected. 
EX Explosion. 
IEC International Electrotechnical Commission. 
IMS Information management system. 
ISO International Standards Organization. 
LOC Loss of Containment. 
NONC Non critical. 
NLP Natural language processing. 
PDS Reliability of safety instrumented systems (In 

Norwegian). 
PFD Probability of failure on demand. 
PM Preventive maintenance. 
PSA Petroleum safety authority Norway. 
SAS Safety automation system. 
SIF Safety instrumented function. 
SIL Safety integrity level. 
SIS Safety instrumented system. 
TLP Technical language processing.  
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dangerous or safe. Hence, correct reporting of failure modes is essential for 
determining the severity of the failure. The combination of the detection 
method and failure mode is the minimum information required to deter
mine the failure class (Hauge et al., 2023a). CMMS systems used by 
operating companies in Norway commonly implement drop-down lists 
according to the standardization of failure modes and detection methods 
in ISO 14224 (ISO 14224, 2016). ISO 14224 provides a basis for the 
collection of reliability data for oil and gas equipment including equip
ment groups and lists of possible detection methods, failure modes, failure 
mechanisms, and failure causes for the equipment groups. The technicians 
that write failure notifications are not always able to select the right 
alternative, particularly for the failure mode, as there are often a lot of 
possible choices. In that case, the technician can select the ’other’ or 
’unknown’ categories in the drop-down menu and provide additional 
explanations in the free text field. A manual review of notifications from a 
Norwegian offshore facility showed that more than 50% of notifications 
were registered as ‘other’ or ‘unknown’. This implies that the most rele
vant information about failure mode and detection method is often found 
in the free text field(s) in the notifications (Ottermo et al., 2021). 

As mentioned above, an important foundation for enabling the 
collection of high-quality failure data is to ensure that the failures are 
reported consistently with a high level of precision about detection 
methods and failure modes. This requires standardized taxonomies for 
equipment hierarchies in conjunction with standardized taxonomies for 
failure parameters (e.g. failure mode hierarchy) since this will ensure that 
failure data for similar equipment can be collected and aggregated One of 
the goals of the APOS project has therefore been to align common prac
tices from operating companies in the Norwegian oil and gas industry, 
both for equipment hierarchies, and the taxonomies for detection methods 
and failure modes, respectively (Hauge et al., 2023a). We define an 
equipment group as a collection of equipment types with some common 
characteristics, such as comparable functionality, design, failure rate, etc. 
Examples of equipment groups are smoke detectors or shutdown valves 
(Hauge et al., 2023a). The suggested detection method taxonomy for 
shutdown valves, which has been modified from ISO 14224 (ISO 14224, 
2016) is shown in Table 2. The corresponding ISO 14224 categories (from 
Table B.4 in the standard) are listed in the rightmost column. 

The suggested failure mode taxonomy is equipment group specific 
because equipment fails in different ways. In addition, the criticality of 
the failure mode will often depend on the functionality of the equip
ment. For some equipment groups, some subgroups of components can 
have different functional requirements. For instance, some shutdown 
valves have leakage requirements, which implies that leakage in closed 
position (LCP) is defined as ’dangerous’. However, for a shutdown valve 
with no leakage requirement, a leakage in closed position is classified as 
’degraded’ or ’non-critical’. The suggested failure mode taxonomy for 
shutdown valves is shown in Table 3 (Hauge et al., 2023a). 

3. Semi-automated approach to failure classification 

An approach was suggested to analyze a set of free texts for a spec
ified SIS equipment group, emergency shutdown (ESD) valve. The main 
aim was to identify DU failures from the dataset. Considering that the 
initial classification made by different technicians (using drop-down 
list) can be subjective, a secondary means for classifying failures using 
TLP could be useful for comparison and verification. A rule-based 
method was used to annotate each free text with detection methods 

Table 1 
Detection method taxonomy for shutdown valves.  

Tag Tag 
description 

Loca- 
tion 

Short text Problem code 
text 

Failure 
mode 

Cause 
code 

Long text Detection 
method 

xx.yyy.zz 
-##-#### 

Import 
pipeline A 

xxxx Partial 
stroke test 
not OK 

Valve failure to 
function on 
demand 

FTC Design 
related 

* We ran a partial stroke on 10 valves last night. 8 of 
these failed! 
* We ran all the valves at least 2 times according to 
procedure, still the test is not approved. 
*Some valves were run many times while field 
operator observed the valve. At first the valve did not 
engage all within the stipulated time for partial stroke. 
After several try it started to go a few percent. We 
assume that this problem is due to cold hydraulic oil, as 
we have had a long period of cold weather. The 
temperature was -6 degrees when the test was run. 

Preventive 
maintenance  

Table 2 
Detection method taxonomy for shutdown valves.  

Detection method class Detection method Corresponding ISO 14224 categories 

1. Undetected 1.1 Functional test 02 Functional testing 
1.2 Other periodic maintenance (PM) activity 01 PM 

03 Inspection 
04 Periodic condition monitoring 

1.3 Demand 07 Production interference 
10 On demand 

1.4 Casual observation 05 Pressure testing 
08 Causal observation 
09 Corrective maintenance 

2. Detected 2.1 Diagnosed / immediately detected event 06 Continuous condition monitoring  

Table 3 
Failure mode taxonomy for shutdown valves.  

Failure mode class Failure mode 

Dangerous failure Fail to close (FTC) 
Delayed operation (DOP) 
Leakage in closed position (LCP) 

Safe failure Fail to open (FTO) 
Spurious failure Spurious operation (SPO) 
Degraded failure Delayed operation (DOP) 

Leakage in closed position (LCP) 
Structural deficiency (STD) 

No-effect failure Noise (NOI) 
Abnormal instrument reading (AIR) 
Minor in-service problems (SER) 

Loss of containment (LOC) External leakage – utility medium (ELU) 
External leakage – process medium (ELP) 

Loss of explosion (EX) protection Loss of EX protection (LEX)  
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and failure modes. Then, the notifications annotated with dangerous 
failure mode(s) and undetected detection method(s) were classified as 
DU failures. The dictionary deployed for the annotation consisted of 
keywords indexed by a failure mode or a detection method. The dic
tionary was manually created based on human-based knowledge and 
manual checks, while the process of extracting information from the text 
was automated without involving human annotators. Hence, the sug
gested approach can be considered semi-automatic. 

The text annotation procedure resembles Named Entity Recognition 
(NER), which is one of the important tasks in NLP for various applica
tions like information extraction and machine translation (Zitouni, 
2014). When using NER in NLP, an entity is a representative category of 
nouns in text, for example, person and location, which appear frequently 
in natural language texts. A named entity represents an instance (i.e. a 
single or a chunk of words) that can be annotated with an entity, for 
example, ‘Jane’ for the entity ‘Person’, and ‘New York’ for the entity 
‘city ’ (Mikheev et al., 1999; Nadeau and Sekine, 2007). However, NER 
for domain-specific texts is demanding due to the required resources like 
lexicon and training of the models (Tomori et al., 2016; Zitouni, 2014). 
In the domain of electronic health records data, NER deploys commonly 
used existing ontologies like Medical Subject Heading and Unified 
Medical Language System (Govindarajan et al., 2023; Jimeno et al., 
2008; Kundeti et al., 2016). In the domain of engineering data, in 
particular maintenance work orders, TLP tools and models have been 
developed for numerical representation of texts, pre-processing, and the 
NER models based on machine learning (Bikaun and Hodkiewicz, 2021; 
Gao et al., 2020; Naqvi et al., 2022; Stewart et al., 2022). 

As mentioned above, a NER-like process was suggested to annotate 
the text with a hierarchical structure of entities. Entity hierarchies have 

been adopted in several NLP and TLP studies to better reflect domain 
knowledge (Stewart et al., 2019; Murty et al., 2017). The entity structure 
for ESD valves was established as illustrated in Fig. 1, and it was aligned 
with the APOS project taxonomies for shutdown valves shown in Table 2 
and Table 3. The failure modes and the detection methods represent 
entities at the lowest level in the hierarchy (in the yellow box in Fig. 1). 
Each failure mode (e.g. FTC) belonged to a failure class (e.g. Dangerous) 
and each detection method (e.g. Functional test) belong to a detection 
method class (e.g. Undetected). The failure mode entities were specific 
for the ESD valves, while detection methods are common for all equip
ment groups. 

In the suggested approach, it was possible to annotate the keywords 
with multiple entities, a feature that is also offered by existing annota
tion tools like Redcoat and BRAT (Ohta et al., 2011; Stewart et al., 
2019). The possibility of multiple labels is particularly important for SIS 
notification data because a long free text may include both words 
implying dangerous failure modes and other less critical failure modes. 
For this reason, the approach was to annotate with all possible failure 
modes and then select the most critical one (Step 5). This approach was 
inspired by (Sexton et al., 2018), where maintenance work orders were 
tagged with multiple equipment labels with the intention to enable 
estimation of mean time to failure (MTTF). In this study, it was 
demonstrated that labelling with a single representative system will 
result in under-estimation of MTTF, because the failure in the other parts 
attached to the system will not be explicitly tagged and therefore dis
carded, although this failure can in fact indicate the system failure. 

The data applied to the semi-automated approach was compiled 
from notifications exported into Excel from the maintenance manage
ment system of several oil and gas process plants in Norway. Depending 

Fig. 1. The entity categories defined for ESD valves. The entities (in the yellow box) represent the failure modes and the detection methods. Each entity belongs to 
the entity category one level above (in the grey box), for example, FTC (failure mode) belongs to the Dangerous (failure mode class). Each entity is associated with the 
list of named entities or keywords 

S. Lee et al.                                                                                                                                                                                                                                       



Process Safety and Environmental Protection 177 (2023) 1485–1493

1489

on the operating company, the formats of notifications varied slightly, 
but it was possible to route the information correctly into the predefined 
set of data fields. An example of selected data fields is presented in 
Table 1. Data fields like “Tag” are fixed (static) data, while fields like 
“Cause code”, “Failure mode”, and “Problem code text” have been 
selected from drop-down lists. For example, in the data field “failure 
mode”, the technicians have selected the failure mode that seems most 
relevant for the observed failure. 

In this work, the commonly used safety equipment ESD valve, was 
selected as a representative equipment group. The most critical failure 
mode for ESD valves is FTC, which denotes the inability of the valve to 
close on command. The suggested approach consists of five main steps, 
as illustrated in Fig. 2. 

Step 1 Pre-process the notification text. 
Many of the notification texts for ESD valves include words and 

phrases describing the observed valve movement during testing, which 
can be pieces of information about detection methods and failure modes 
that are needed for classifying failures. Most of the free texts in the 
datasets were written in Norwegian, and a few of them were written in 
other languages (i.e., English, Swedish, Danish). 

An example of a sentence in a free text for ESD valve is ‘Ventilen var 
treg og brukte for lang tid på lukking og gikk derfor i feil’ (English: The 
valve was stuck and used too long time to close, and thus failed). The 
word ‘lukking’ (English: closing) in this sentence is one keyword that 
describes the valve movement. ‘Lukking’ (English: closing) is a variant 
of the basic form ‘lukke’ (English: close) with the suffix ‘ing’. Other 
forms of this word can be e.g., ‘lukker’ (English: is closing), ‘lukket’ 
(English: closed) and ‘har lukket’ (English: has closed). Typical suffixes 
to the verbs such as ‘ing’, ‘er’, ‘et’ (English: clos) have been removed, 
while keeping ‘lukk’ (Lane et al., 2019). In addition, nouns and adjec
tives that have the same root word were reduced to their stem, for 
example, ‘lekkasje’ (English: leakage), ‘lekker’ (English: leaking) can be 
steamed to ‘lekk’ (English: leak). As there were relatively few words that 
needed stemming, it was manageable using a simple search-replace in 
Excel, instead of deploying existing NLP algorithms like Snowball which 
could have been used since it does support Norwegian language 
(Snowball, 2022). 

Step 2 List keywords for failure mode and detection method entities. 
As shown in Fig. 1, each entity was associated with a list of named 

entities or keywords. For instance, FTC had a list of keywords including 
’Not closing’, ’Fail to close’, or ’Problem with closing’. For the entity 
‘functional test’, the associated keywords were ’partial stroke testing’ and 
’periodic function test’. Such lists were created from APOS project tax
onomy and expert knowledge from the experience of manual reviews over 
several decades. Fig. 3 illustrates the process of establishing dictionaries 
that can be updated and refined whenever necessary. Non-exhaustive 
examples of named entities for ESD valves are shown in Table 4. 

Step 3 Post-processing of dictionary. 
This step was necessary to modify the dictionaries made in Step 2 to 

enable more efficient NER-like process by reducing the number of en
tities included in the dictionary. As seen in Table 4, named entities can 
be written in various ways, for instance, ‘fail to close’, ‘failure with 
closing’, and ‘closing failure’. This means that the dictionary will be 
large if we include all such variations. For this reason, we can cut a 
sentence into word units and words such as ‘with’, ‘in’, ‘to’ that are 
typically identified as ‘stop words’ in NLP that commonly appear in a 
language but are of little use in text analysis (Cambria and White, 2014; 
Lane et al., 2019; Riadsolh et al., 2020). For example, ‘fail to open’ can 
be split into {fail, to, open}, which can be reduced to {failed, open} by 
removing ‘to’. 

In addition, it was quickly realized that the description for many 
failure modes of ESD valves include negative words like “not”, “prob
lem”, and “fail”, together with a verb describing the function of the 
equipment like “open”, “close”, and “go”. Common negative words can 
be placed both before and after the verb, e.g., “failed to close” or “closing 
failed”, which results in many possible combinations of two words “fail” 
(negative word) and “close” (verb). For this reason, negative words were 
searched first, and then the verbs and nouns were looked up. In this way, 
the number of named entities could be reduced. The list of named en
tities for ‘FTC’ that are split into two parts is shown in Table 5. 

Step 4 Annotate notifications with entities for failure modes and 
detection method. 

A simple algorithm using an Excel formula with built-in index and 
match functions was used to annotate the free text with the predefined 
entities, as illustrated in Fig. 4. 

Step 5 Classify failures by tagging entity categories. 
Once failure modes were annotated in Step 4, the corresponding 

failure mode class(es) were tagged according to the entity hierarchy in 
Fig. 1. In the same way, the detection method class was labeled. By using 
the tagged entities, the failure class can be determined, as illustrated in  
Fig. 5. 

In case the long text is annotated with more than one entity for failure 
modes, the algorithm using if-then statements was used to choose the most 
safety-critical failure mode according to the criteria in (Hauge et al., 
2023a), as illustrated in Fig. 6. This task was added to avoid that 
dangerous failure modes not ruled out due to non-dangerous failures. For 
example, a notification text from functional testing includes ‘The valve is 
not closing. At the closing signal, the valve fails and stays put for approx. 
20% open. May seem like a mechanical fault. ’. In this example, words 
‘not’ and ‘closing’ are included in one sentence, and ‘open’ in another 
sentence. The text was tagged with ‘FTC’ due to the combination of ‘not’ 
and ‘closing’ in Step 4. In addition, ‘FTO’ was also annotated because ‘not’ 
and ‘open’ are used. In such a case, the algorithm can correctly select ‘FTC’ 
which is the most safety-critical (severe) failure mode. 

Fig. 2. A simplified illustration of the suggested approach applied for ESD valves.  
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4. Case study 

The suggested approach was applied to two datasets. The first dataset 
consisted of 96 notifications for ESD valves from an onshore plant, and 
the second dataset was 50 notifications for ESD valves obtained from an 
onshore plant. The dictionary used for the text annotation was updated 
from previous work (Lee et al., 2022). The algorithm described in Sec
tion 3 was applied for text annotation and failure classification. 

For the first dataset, the manual review (correct classification) gave 
the following distribution: 19 DU failures, 15 safe failures, 40 non- 
applicable (NA) failures, while 22 were not classified. On the other 
hand, the results from the semi-automated classification were as follows: 
37 DU failures, 4 Dangerous detected (DD) failures, 1 Non-critical 
(NONC) failures, 10 Non-functional safety failures, 13 safe failures, 
0 NA failures, and 31 that were not classified. Fig. 7 presents the dis
tribution of failure modes obtained from manual review and the semi- 
automated approach, respectively. 

To verify the functionality of the algorithm, it was checked if the 19 
DU failures identified in the manual review were included in the 37 DU 
failures from the semi-automated classification. 15 out of the 19 DU 
failures were classified as DU failures, and four notifications that were 
unmatched were manually checked afterward. Three of the four un
matched notifications were written in English. As the dictionary for 
annotation was in Norwegian, English words in the text cannot be tag
ged with any entity. The last mismatched notification was classified as 
DD failure by the algorithm, while the correct failure class was DU. The 
notification was annotated with FTC, FTO, SPO, and SER, and conser
vatively classified with FTC (dangerous failure mode). However, the 
notification was annotated with ‘Detected’ due to the entity ‘Alarm’ that 
was included in the free text, but in reality the failure was detected 
during a ‘Demand’. The occurrence of this demand was not found in the 
free text field but was registered into the detection method field, which 
means that if information from the detection method field had been 
combined with the free text, the DU failure would have been correctly 
classified. 

The second dataset consisted of 50 notifications for ESD valves 
registered from functional tests. The same dictionary used for the first 
dataset (case 1) was used for the second dataset. The manual review 
(correct classification) gave the following distribution of the 50 

Fig. 3. Process of establishing the dictionaries for failure modes and detection methods.  

Table 4 
An example of named entities for failure modes and detection methods of ESD 
valves.  

Entity 
category 

Entity Named entities (Example) 

Failure mode FTC Not closing, Fail to close, Not moving, Didn’t 
function, Problem with closing, Difficult to close, 
Not go, Not working, Didn’t work, Failed to move 

FTO Not open, Not opened, Fail to open, Problem with 
opening 

DOP Used long time, Exceeded time limit, Long closing 
time 

ELP Leaks, Leaking 
Detection 

method 
Functional 
test 

Proof test, partial stroke test, partial stroke 

Observation Random observation, Unplanned walk around 
Demand With demand, Reset after shutdown 
Diagnose Alarm, Diagnostic Alarm, Control room  

Table 5 
List of named entities (in Norwegian) for entity ‘FTC’.  

Entity FTC  

Step 1 
(Negative word) 

Step 2 
(Verb or Noun) 

Named entities Ikk lukk 
Feil naar 
Vansk steng 
Treg virk 
Lang roer 
Mellom kjoe 
Skad gaa 
Blokk gikk 
Gnisning bytt 
Tett bruk 
Fast Staa 
…. sitt  

stengetid  
gangtid  

Fig. 4. Text annotation with failure mode entity and detection method entity.  

S. Lee et al.                                                                                                                                                                                                                                       



Process Safety and Environmental Protection 177 (2023) 1485–1493

1491

notifications: 15 DU failures, 16 safe failures, 18 non-applicable (NA) 
failures, while 1 failure was not classified. On the other hand, the results 
from the semi-automated classification were as follows: 20 DU failures, 
6 Non-functional safety failures, 17 safe failures, and 7 that were not 
classified. Fig. 8 presents the distribution of failure modes obtained from 
the manual review and the semi-automated approach, respectively. 

The 15 DU failures from the manual review were compared with the 
20 DUs identified from the algorithm, which showed 13 DU matches. 
The 2 unmatched notifications were manually checked. The first one had 
the blank free text field. The second notification was annotated as FTO 
and classified as safe failure, while it was classified as safe or DU in the 
manual review. 

5. Relevance to the Industry 4.0 context 

Failure classification is preceded by the collection of failure data, and 

as of today, such data are usually found in the CMMS. However, relevant 
information can also be collected from other data sources, such as the 
safety and automation system (SAS), condition monitoring systems, and 
the information management system (IMS). The reason for this is that 
many notifications in CMMS may not necessarily provide all the infor
mation needed for the classification. For example, the response time for 
a valve is a type of information that may not be available in the CMMS 
notification but could be useful for classification. Today, the process of 
collecting information from different sources is time-consuming and one 
way to overcome this limitation is to enable interoperability between 
different source systems. A solution to achieve this is to take advantage 
of industry 4.0 technologies that enable the digital representation of 
assets. This means that digital twins for the SIF and the associated SIF 
components can be established such that failure data needed for the 
failure classification are reported in interoperable formats, as opposed to 
the different formats as per today (Hauge et al., 2023b). This will 
facilitate the aggregation of all the relevant data for automatic failure 
classification by a TLP-based tool, as illustrated in Fig. 9. 

We have already produced a guideline on how to report and classify 
failure and maintenance data for safety equipment. In this guideline, 
standardized equipment grouping, equipment properties, and simplified 
failure taxonomies are suggested. For future digitalization, the guideline 
also identifies standardized equipment properties and associated prop
erty values to enable the establishment of a complete information model 
for functional safety. The suggested taxonomies and properties have 
therefore been compared and mapped against recognized standards and 
relevant electronic equipment libraries (Hauge et al., 2023a). This work 
will also be pursued in our new research project, APOS 2.0, which will 
develop and test new digital solutions for functional safety pilots that 
facilitate sharing of information between systems and companies. 

Fig. 5. Failure classification by using annotated entities.  

Fig. 6. Selection of failure mode class in case of multiple entity tags.  

Fig. 7. Number of classified failures for 96 notifications from an onshore plant.  
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6. Discussion and further work 

The two case studies in Section 4 show that the semi-automated 
approach sufficiently support the classification of DU failures. Howev
er, the results from the two datasets indicate that the suggested approach 
gives very conservative results. Especially for the first dataset, the 
automated approach gives about twice as many DU failures (37 DUs) as 
the actual DUs identified from the manual (operational) review (19 
DUs). One reason is that the suggested approach is limited to extract 
keywords about failure mode and detection method and is not capable of 
interpreting the failure described in the text using context information. 
For example, a free text field including ‘Valve runs full stroke on partial 
stroke. I believe that the problem here is that the valve closes too 
quickly, not partial stroke times. Partial stroke time is currently set to 
15 s′ notification was classified as ‘safe’ from the manual review. 
However, the algorithm, by recognizing the combination of ‘problem’ 

and ‘partial stroke’, tagged the text with FTC and DOP and then classi
fied with dangerous failure mode. However, the sentence ‘Valve runs full 
stroke on partial stroke’ indicates the valve was functioning as required, 
while the algorithm was not capable of comprehending the full sentence. 
Another example is the text ‘Valve closed in 3 s, should use 16 s. 
Adjusted the run time to 16 s′ This was classified as ‘safe’ according to 
the operational review. In the semi-automated approach, this text is not 
tagged with any failure mode entity, because there are no negative 
words like ‘not’ or ‘problem’ that can be combined with the word ‘close’. 
For this reason, it is sometimes necessary to understand the sentences 
(context) rather than extracting keywords, which implies that rule-based 
entity tagging may not be sufficient on its own, and that it may be 
necessary to apply deep learning based model for text annotation 
(Stewart et al., 2022; Usuga-Cadavid et al., 2022). 

7. Conclusions 

The suggested approach represents a semi-automated process for 
failure classification, which can supplement the manual classification of 
notifications from oil and gas plants. The case study demonstrates that 
the approach is well suited to filter out possible DU failures, and can 
therefore be used to verify that all the DU failures are identified. Another 
advantage is that the approach is transparent in a way that the practi
tioners are able to understand the process of semi-automated classifi
cation and also contribute to creating and updating the dictionaries, 
which is good for the communication aspect. Moreover, the case study 
showed that the semi-automated failure classification using the APOS 
project taxonomies matched sufficiently with manual classification 
based on the reviews. This may showcase that the failure modes and 
detection method taxonomies for each equipment group in the APOS 
project, which are also aligned with international standards like ISO 
14224, are comprehensive enough to reflect the reality for SIS. Hence, 
APOS taxonomies represent groundwork that is needed to train TLP 
tools to interpret SIS component (equipment) failures. Today, the pro
cess of collecting failure data and information from different sources is 
time-consuming and the paper briefly discusses how we can take 
advantage of the Industry 4.0 framework to enable interoperability be
tween different source systems. 
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Fig. 8. Number of classified failures for 50 notifications from an offshore plant.  

Fig. 9. Automatic failure classification facilitated by SIF digital twins.  
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