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ABSTRACT

Recent works reveal that re-calibrating intermediate activation of adversarial examples can improve
the adversarial robustness of CNN models. The state of the arts exploit this feature at the channel
level to help CNN models defend adversarial attacks, where each intermediate activation is uniformly
scaled by a factor. However, we conduct a more fine-grained analysis on intermediate activation
and observe that adversarial examples only change a portion of elements within an activation. This
observation motivates us to investigate a new method to re-calibrate intermediate activation of CNNs
to improve robustness. Instead of uniformly scaling each activation, we individually adjust each
element within an activation and thus propose Element-Wise Activation Scaling, dubbed EWAS,
to improve CNNs’ adversarial robustness. EWAS is a simple yet very effective method in enhancing
robustness. Experimental results on ResNet-18 and WideResNet with CIFAR10 and SVHN show that
EWAS significantly improves the robustness accuracy. Especially for ResNet18 on CIFAR10, EWAS
increases the adversarial accuracy by 37.65% to 82.35% against C&W attack. The code and trained
models are available at https://github.com/ieslab-ynu/EWAS.

1. Introduction

Convolutional neural networks (CNNs) have demon-
strated its superiority in various applications, especially for
computer vision tasks, like classification, object detection,
object tracking, and segmentation [1, 2, 3, 4, 5]. However,
CNNs are found to be vulnerable to adversarial samples
that are perturbed by unperceptive noises [6]. Attacks of
adversarial samples significantly undermine CNN mod-
els’ robustness and threaten the applicability of CNNs to
some safety-critical and security-critical contexts, e.g. self-
driving [7] and person identification. A plenty of efforts
have been made to understand adversarial attacks and to
improve CNNs’ adversarial robustness [8]. These efforts
can be generally divided into two categories: adversarial
attacks and adversarial defense. From the perspective of
attack, various methods are proposed to generate diverse
adversarial samples to attack CNN models so that we can
understand the fundamentals of adversarial attacks and lay
theoretical and empirical foundation to defend them [6, 9,
10, 11, 12, 13, 14, 15].

On the other hand, many works aim to defend adver-
sarial attacks, thereby improving adversarial robustness of
CNNE, i.e., a model’s accuracy evaluated with adversarial
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samples. A number of defensive methods have been pro-
posed, such as defensive distillation [16, 17], feature de-
noising [18, 19], Generative Adversarial Network (GAN)-
based method [20], model compression [21, 22, 23], au-
thentication defense [24], and adversarial training (AT)
[10] and its variants [25, 26, 27]. Recently, some works
investigate the difference between natural models and AT-
trained counterparts in terms of intermediate activation
and propose to adjust intermediate activation to improve
adversarial robustness. Kanna et al. [28] proposed to make
the logits (i.e., the classifier) of adversarial samples close
to natural samples. The adversarial perturbations of input
images are usually deemed as noises, and hence Xie et al.
[18] suggested to denoise the distorted features using non-
local means or other filters to improve robustness. Liao et
al. [19] proposed to deploy high-level representations to
guide the denoising procedure. Bai et al. [29] observed that
adversarial examples wrongly activate ‘negative’ features
which lead to the final misclassification and thus proposed
Channel-wise Activation Suppressing (CAS) strategy to
suppress those ‘negative’ features to improve a model’s
robustness. In parallel, Yan et al. [30] had similar obser-
vations and proposed a channel-wise activation method,
namely CIFS, to enhance the adversarial robustness of
CNN models. Besides suppressing the negative activation,
they also promoted the positive activation to pursue higher
accuracy.

These two methods apply to the channel/activation level,
i.e., the whole channel or activation is suppressed or pro-
moted by a uniform scaling. Such uniform activation scaling
(suppression or promotion) methods do improve robustness
as seen from [29, 30]. However, we conduct a fine-grained,
element-wise analysis to compare the differences between
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Fig. 1: The penultimate layer’s element differences of an adversarial sample comparing with its natural "cat" sample to ResNet-
18 on CIFAR-10. ResNet-18 uses natural training (a), adversarial training (b). This figure shows the first four channels. The
adversarial sample are generated using PGD-20 based on the corresponding natural sample.

natural samples and their corresponding adversarial samples
of the same model and find that pixels/elements’ differences
within the same channel/activation are not uniform as shown
in Fig. 1. Wherein, some elements exhibit no difference,
while others show significant disparities. This implies that
adversary only affects a portion of elements within a chan-
nel. Based on this, we can infer that uniformly scaling acti-
vation like [29, 30] is not the best method to manipulate the
intermediate activation for robustness improvement, where
such uniform scaling may lead to the information loss of
the scaled activation, thus losing the opportunity to further
improve the robustness.

Motivated by our fine-grained analysis shown in Fig
1, in this paper, we propose a novel activation scaling
method to improve the robustness of CNN models, i.e.,
instead of scaling each activation using a uniform scaling,
we conduct an Element-Wise Activation Scaling, dubbed
EWAS. By means of EWAS, the distorted activation is not
completely suppressed or promoted, but is re-calibrated in a
fine-grained manner. Our key contributions in this paper are
summarized as follows:

* We conduct an element-level analysis on the interme-
diate activation of the AT model and its natural coun-
terpart and obtain a new observation regarding adver-
sarial examples’ intermediate activation. Regardless
of AT models or natural models, when a natural
sample and its corresponding adversarial sample are
fed to a same model, we observe that adversarial
sample only changes a portion of elements of each
activation. This analysis is visualized in Fig. 1 and
detailed in Sec 4.

e The new observation motivates us to design a new
activation manipulation method to improve models’

robustness. We propose the EWAS module, which
can be easily added to existing CNN models. EWAS
performs activation adjustment in an element-wise
fashion to defend adversarial attack, and then the
distorted activation is re-calibrated in a fine-grained
manner. The core component of EWAS is an auxiliary
and class-aware classifier which is used to generate
the element scaling factor.

* We conduct extensive experiments to evaluate the
effectiveness of EWAS in terms of adversarial ro-
bustness, where different CNN models, datasets, AT
methods, and adversarial attacks are deployed. The
experimental results show that our EWAS-based mod-
els can greatly improve the robustness of the eval-
uated models over SOTA [29][30]. In the best case
against C&W attack, EWAS can improve the robust-
ness by 37.65% to 82.35% and makes its adversarial
accuracy comparable to its nature accuracy, 84.73%.

The remainder of this paper is organized as follows:
Section 2 discusses related work. Section 3 presents pre-
liminaries which are critical to understand our contribution.
Section 4 presents the fine-grained analysis and EWAS. Sec-
tion 5 shows experimental results and Section 6 concludes
this paper.

2. Related Work

Since adversarial samples of CNNs were first found by
Szegedy et al in [6], numerous methods are proposed to
investigate the adversarial vulnerability of CNNs and to
defend adversarial attacks. In this section, we review the
related work from these two categories: attack and defence.
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2.1. Adversarial Attack

We classify adversarial attack into two categories, black-
box attacks and white-box attacks. A black-box attack
knows only the inputs and corresponding outputs from a
model but the model’s structure is unknown to attackers.
The Pixel Attack proposed in [12] uses differential evolution
algorithms that modify only one pixel of the image to
misclassify the model. Jandial et al. [13] suggested using
GAN to generate adversarial noise to implement black-box
adversarial attack with high attack success rate. Papernot et
al. [31] used a local substitute to craft adversarial examples
so that the target CNN misclassifies its input. Chen et al.
[32] proposed zeroth order optimization (ZOO) based at-
tacks to directly estimate the gradients of the target DNN for
generating adversarial examples without substitute models
to avoid the loss in attack transferability. In general, black-
box attacks are more difficult to successfully implement but
practical in real world scenario.

In contrast, white-box attack is performed when the
attacker knows all details of the target model, including
parameters, gradients, structures, and data, so it is more
challenging to defend against white-box attacks. Knowing
all details of the target model is impossible in practice, but
white-box attacks can facilitate the understanding of how
adversarial examples realize attack on CNNs. Szegedy et
al. [6] proposed a fast gradient sign method (FGSM) to
generate adversarial examples. Madry et al. [10] proposed
an iterative FGSM algorithm combined with random initial-
ization to attack CNN models. Carlini et al. [9] designed a
novel loss function to measure the difference between inputs
and outputs to generate adversarial samples. To overcome
the improper tuning of hyperparameters, Croce et al. [15]
proposed a parameter-free, computationally affordable, and
user-independent ensemble of attacks. Jandial et al. [14]
also used GAN to generate adversarial examples where
they use the feature map as the input of the generator.
Wang et al. [33] observed existing transferable adversarial
attacks ignore the intrinsic features of objects in images,
so they proposed Feature Importance-aware Attack (FIA)
that enhances the transferability of adversarial examples by
disrupting the critically object-aware features which play a
pivotal role in the predictive decision of different models.
In this paper, we use the state-of-the-art attacks, Auto-
Attack[15], FGSM [6], PGD [10], C&W [9], to evaluate the
robustness of models.

2.2. Adversarial Defense

Besides various attacking methods, many efforts are
made towards improving a model’s defensive ability against
adversarial attacks, i.e. , the model’s robustness [10, 22, 25,
34, 26, 17, 35, 36, 20, 18, 28, 37, 21, 38, 39, 40]. Among
them, adversarial training (AT) is widely used, because
it can greatly improve robustness without modifying the
model’s structure. AT and its variants can be deemed as a
data augmentation technique, where they generate adver-
sarial samples during the training procedure and use ad-
versaries to train the model. Resource-constrained devices

are sensitive to models’ size, so Ye et al. [22] proposed
a framework to combine AT and weight pruning so that
AT can improve the robustness while reducing the models’
complexity. In addition of improving the robustness of
CNN models, AT is also used for other purpose. Recently,
Liu et al. [20] proposed to add adversarial samples into
GAN training to improve the convergence speed and output
quality (generated images). Due to the superiority of AT, it
has been used as the de-facto training method for various
adversarial methods. We also use AT and its variants to
train EWAS-enabled models, and more details about AT is
presented in Section 3.

Besides AT, diverse defense methods were proposed.
Papernot el al. [16] proposed to use knowledge distillation to
improve the robustness against FGSM attacks. Goldblum et
al. [17] introduced Adversarially Robust Distillation (ARD)
to transfer the superior robustness of large networks to the
student model. Zi et al. [39] proposed a novel adversarial
robustness distillation method, called Robust Soft Label
Adversarial Distillation (RSLAD), to train a small robust
student model.

(a) Channel-wise activation scaling, CAS and CIFS
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Fig. 2: Channel-wise scaling vs element-wise scaling.
Element-wise scaling conducts a more fine-grained scaling
to the intermediate activation.

Robust Activation Manipulation: The rationale be-
hind adversarial attacks is error amplification effect [19],
i.e., a small adversarial noise on an input image will be
progressively amplified along a model’s forward propaga-
tion, finally leading to misclassification. Thus, manipulat-
ing intermediate activations to eliminate such effects can
enhance models’ robustness. Some works strive to under-
stand how activation features are modified by adversarial
samples, thereby affecting the robustness of CNNs. Xie et
al. [18] considered that features from adversarial examples
are disturbed by noises, so they suggested using non-local
means or other filters block to denoise the features. Madaan
et al. [21] argued that the distortion in the latent feature
space leads to the adversarial vulnerability, so they formally
defined the vulnerability of the latent feature and proposed
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a vulnerability suppression loss to minimize the feature-
level vulnerability during training. Some works observe the
difference between adversarial examples and their natural
counterparts from the lens of intermediate activation and
strive to diminish such difference, e.g., adversarial logit
pairing [28]. Since the robust local features can generalize
well for unseen shape variation, Song el al. [37] developed
a Random Block Shuffle (RBS) transformation to break up
the global structure features on adversarial examples and
learn the robust local features. Dhillon et al. [41] proposed
stochastic activation pruning to prune those smaller mag-
nitude activation on adversarially pre-trained model to im-
prove the robustness. Mustafa el al. [42] proposed Prototype
Conformity Loss to force the intermediate features of the
same class to be clustered and different classes to be apart.

Recently, two concurrent works, CAS [29] and CIFS
[30], adopt the robust activation scaling. Bai et al. [29] pro-
posed Channel-wise Activation Suppressing (CAS) strategy
to suppress redundant activations that are ‘negatively’ ac-
tivated by adversarial examples. Similarly, Yan et al. [30]
observed that some channels, which are not pivotal to cor-
rect prediction but over-activated by adversarial examples,
undermine the adversarial robustness. Thus, they proposed
CIFS which identifies those channels and suppresses them
to improve the robustness. These two methods both feature a
channel-level scaling, i.e., the whole activation is uniformly
scaled as shown in Fig. 2(a). However, from our fine-grained
analysis, only some elements within an activation from an
adversary differ from its natural counterpart. Then, uniform
scaling may not be the optimal solution to manipulate in-
termediate activation. Thus, we conjecture that individually
adjusting each element within an activation would help
improve a model’s robustness. This motivates our EWAS
method. The idea behind EWAS is simple but effective as
we can see from our extensive evaluation in Section 5 which
justifies our conjecture.

3. Preliminaries

EWAS is a module to re-calibrate the intermediate acti-
vation of CNN models, so that the distorted elements caused
by adversarial noise/perturbation can be corrected, thereby
improving the robustness. AT is the most common technique
to improve the model’s robustness, where it trains models
with adversarial data augmentation, i.e., adding adversarial
examples to the training procedure. The EWAS-enhanced
models also deploy AT. Therefore, in this section, we briefly
review AT and its variants.

Adversarial Training: AT [10] is the most widely used
method to improve CNNs’ robustness. AT is a training
method including data augmentation technique for adver-
sarial defence, where it aims to solve the following min-max
optimization problem:

min E ). plmax(L(y. F(x +5,60))] )

where F represents a CNN model with weight parameters
0, and L is the loss function, e.g., cross-entropy loss. x
and y are a natural example and its corresponding label
from dataset D. x + 6 represents the adversary of x with
adversarial perturbation 6 which is within / -norm distance
and satisfies [[6]|, < e. Here, similar to previous meth-
ods [30, 29], we set p = oo. The inner maximization
problem aims to generate the strong adversary, while the
outer minimization problem is the model training procedure
to minimize the loss by learning model weights 6 with
generated adversarial examples.

Different adversarial attacks can be applied to AT, such
as Projected Gradient Descent (PGD) [10] and fast gradient
sign method (FGSM) [27]. Moreover, since the emergence
of AT, diverse methods have been proposed to improve the
effectiveness and efficiency of AT. Wong et al. [27] com-
bined FGSM [6] with random initialization to make FGSM
applicable to AT with lower cost. TRADES [25] is proposed
to strike a balance between robustness and accuracy. Wang
et al. [26] observed the impact of misclassified samples on
models’ robustness and thus proposed a misclassification-
aware AT (MART) to improve the adversarial robustness.
Although AT can improve adversarial robustness, it also
sacrifices the accuracy for natural examples. FAT [34] is
proposed to use early stop PGD to address the accuracy
drop for natural examples. In our evaluation, we use AT,
TRADES, and MART to train our models.

4. Element-Wise Activation Scaling

In this section, we first conduct an element-wise analysis
to evaluate the activation difference between natural sam-
ples and adversarial counterparts and then present the details
of EWAS and the training methods for the EWAS-enhanced
models.

4.1. Activation Analysis

We investigate how activations are changed by adver-
sarial samples in terms of activation elements. This analysis
serves as a foundation for our EWAS module. In this
analysis, we compare the activation difference for both
normal model and AT model. This analysis uses a ResNet18
model and data from CIFAR10 dataset. We present a natural
sample and its corresponding adversary to the model and
observe the activation difference in terms of element.

Some results are shown in Fig. 1, where we select one
sample from the ‘cat’ category and visualize the activation
difference of the first 4 channels within the penultimate
convolutional layer (the one just before the classifier). /7 is
worth noting that for other samples and other channels, we
have the similar observation, but due to the space limitation
we cannot show all of them here.

The activation size of the penultimate layer of ResNet
18 is 4 X 4 and the difference is calculated by the adversarial
activation minus the natural activation in an element-wise
manner. Fig. 1(a) and 1(b) show the results of the natural
model and AT model, respectively. From the results, we
have the following observations:
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e Within an activation, only a portion of activation
elements from the adversary are different from its
natural counterpart, i.e., adversarial perturbation does
not affect all elements of an activation.

¢ For the elements which demonstrate difference, their
disparities are not uniform, i.e., we cannot use a
uniform scaling factor to adjust them.

¢ Both natural and AT models demonstrate the above-
mentioned trend in terms of element difference, i.e.,
element-wise distortion and non-uniform distortion.

These observations imply that if we want to make the
adversary similar to its natural counterpart in terms of
activation elements, it is better to conduct an element-wise
adjustment instead of uniformly scaling up or down the
whole activation like [29] and [30]. This inspires to design
EWAS. We proceed to the EWAS module and how to train
it in the next section.

4.2. EWAS Module

Fig. 4 demonstrates the overview of EWAS, where
EWAS is a plug-in module being added to existing CNN
models. The EWAS module is trained with the backbone
network by means of an auxiliary loss function. Each layer
of a CNN can be equipped with an EWAS module, but we
empirically find that for a CNN model, simply adding one
EWAS module demonstrates the best adversarial robustness.
We conjecture the rationale behind is that fine-grained
modification effectively identifies the distorted elements. As
soon as the distorted elements are adjusted accurately and
correctly, errors will not be further propagated afterwards
and more EWAS modules are thus not helpful. Moreover,
by doing this, we can also reduce the extra computation
caused by EWAS. On the other hand, the position of EWAS
is critical for the robustness, and we evaluate this in Section
5.4.

Let z/ € REXHXW denote the activation of layer [
which has an EWAS module, where C denotes the number
of channels, and H and W are the height and width,
respectively. Each element in z' is expected to have an
individual scaling factor, and thus we have m € REXH*W (o
denote the scaling factor vector. As seen in [29][30], class-
related activation modification is instrumental in improving
the robustness. Hence, we also deploy an auxiliary classifier
to derive the class-related features and to determine the
element-wise scaling factor m.

4.2.1. Auxiliary Linear classifier (ALC)

The core of EWAS is scaling factor m. A good scal-
ing factor m suppresses redundant and negative elements
while retaining or promoting robust and positive elements.
Inspired by CAS [29], we add an auxiliary linear classifier
(ALC) to the original model and use ALC to derive m. The
overview of EWAS can be seen in Fig. 4, where Fig. 4(a) and
4(b) show the training procedure and inference procedure,
respectively.

ALC is a simple but effective linear classification layer.
ALC takes activation z/ and flats it as the input. It outputs
classification scores of K classes, where K is the number of
classes the dataset has. Let 9AX¢ € R(CH-W)XK denote the
parameters of ALC. ALC parameters §AL¢ € R(C-H-W)xK
are deployed to generate scaling mask m, where G?LC €
RC-H-W
Q?LC

represents the parameters related to class k and
is reformatted to scaling factor m € REXHXW To
facilitate the understanding of the reformat function, we
deploy a simple example to visualize the procedure, which
is shown in Fig. 3.

CxHxW
meR""™

ALC (C-HW)xL
g <R

Fig. 3: A example of reformat() function. In this diagram,
C=3W=H=2.

In the training stage, the ground truth label y serves as
the class index to select which class’ parameters to update.
In the inference stage, since there is no label information
provided, the maximum value of § predicted by ALC is used
as the class index. The scaling factor m is formulated as
follows:

{reformat(&}‘)“‘c), (training stage) )
= ALC :
reformat(HaIg max (5)), (inference stage)

Note that the scaling factor m is reformatted into size
REXHXW = After obtaining scaling factor m, we perform
element-wise multiplication on z/ to obtain the adjusted
activation 2’

2=7Z@m 3)

where ® represents the element-wise multiplication. The
modified activation 2/ is forward-propagated to the next
layer. Fig 4 visualizes the procedure.

4.3. Model Training

EWAS module should be adversarially trained with its
backbone network. Following the min-max optimization
introduced in Eq. (1), the EWAS-modified optimization
problem can be written as:

H}QiH E)~p [maax(L(y, F(x+6,0))+ A Lgwas(y, )] (4)
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Fig. 4: Three steps of EWAS: 1) Flatten z' and input it into ALC, and the output score of ALC § calculates EWAS loss. 2) Class
Related Scaling (CRS): m from ALC’s weight element-wise multiplies with z’ to scaling the z' to get z'. 3) Forward 2’ into the

model’s next layer.

where § = ALC(f!(x + 8),07C), and f! indicates the
output of layer /. A is a trade-off coefficient to balance
the contribution of ALC loss. Lgwag here is the same loss
function as the maximization problem in Eq. (1), which for
AT is:

Legwas = LALC(5(x + 6), y) ®)

Note that similar to many other works which have the
trade-off coefficient in their loss functions [30, 29], the
coefficient A of Eq. (5) is determined empirically in EWAS.
Also, we observe that different datasets may have different
empirically optimal 4.

Algorithm | shows the training process of EWAS-added
models. EWAS can also combine with other AT methods
such as TRADES [25], MART ([26]), but the EWAS loss
function needs to be modified accordingly. More details of
different loss functions can be seen in Table 1.

Algorithm 1 Adversarial training with EWAS

Require: Dataset D = (x;, ;)" i_» CNN F(0) with EWAS
module, training epoch T’
Ensure: A robust CNN F
1: fort=1,2,...,T do
2. for (x;,y;,)in D do
3: Generate adversarial example using PGD by solv-
ing inner-max problem in Eq. (4)
§ = ALC(f!(x; + 6), 041°)
Generate m by Eq. (2)
#=zZ@m
Feed 2’ to the next layer, complete the forward-
propagation and compute the overall loss
end for
Optimize all the parameter of model and EWAS by
solving outer-min problem in Eq. (4) using gradient
descent
10: end for

A

o
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Table 1

The loss function used for AT, TRADES, MART with EWAS module.

Method Loss function

AT Lop(p(x+6,6),y)

+EWAS +A - LALC(B(x + 6), )
TRADES Leop(p(x,0),y) + B+ L (p(x,0), p(x + 6,0))
+EWAS +4 - LAC(p(x), y) + 4 B - LAEC(p(x), p(x + 8))

MART Lpcp(p(x+6,0),y)+ B+ L (p(x,0),p(x+6,0)) - (1 —p,x,0))
+EWAS  +4- LALC(p(x + 6), ) + 4 - B - LEEC(p(x), p(x + 8)) - (1 = p,(x))

5. Experiments

In this section, we extensively evaluate the effectiveness
of EWAS in terms of adversarial robustness in comparison
with the state of the arts [29][30]. We also report other
robust activation manipulation methods, SAP (Stochastic
Activation Pruning [41]), which prunes those smaller mag-
nitude activation from pre-trained adversarial model, and
PCL (Prototype Conformity Loss [42]), which separates the
features of each class from others. We use WideResNet-
32-10 (we call it WideResNet or WRN), WideResNet-28-
10 (we call it WRN-28-10) and ResNet-18 as in CAS [29]
and CIFS [30], and train models using CIFAR10 [43] and
SVHN [44] datasets. AT [10] and its variants, MART [26]
and TRADES [25], are used to train the models, and three
white-box attack methods are considered, FGSM [6], PGD-
20 [10], and C&W [9]. To train models using MART or
TRADES, we use different loss functions accordingly as
shown in Table 1. The training is conducted on one Nvidia
RTX 2080ti.

We implement EWAS using PyTorch and have open-
sourced our code to reproduce the experimental results'. In
order to efficiently reproduce our results, we first present
the experimental settings. Then, we discuss and analyze
the experimental results using numerical comparisons and
visualization. Ablation study evaluates the importance of
the different parts in our EWAS, the impact of the newly
introduced hyperparameter A, and the position of EWAS
module.

5.1. Experimental Settings
5.1.1. Experimental Details on CIFAR10

For CIFAR10, we train models with 128 batch size using
SGD optimizer (momentum 0.9 and weight decay 2e—4),
and the initial learning rate is 0.1. With different training
methods, we set different training epoch and milestones
with multiplicative factor of learning rate decay 0.1, as
shown in Table 2. During AT, we set ¢ = 8/255 and
step size €/4 for PGD-10 to generate adversarial samples.
For CIFAR10 evaluation, adversarial data are generated by
FGSM, PGD-20 (20-steps PGD with random start), and
C&W (L, version of C&W optimized by PGD-30) , € is
8/255 and step size is ¢ /4.

https://github.com/ieslab-ynu/EWAS

Table 2
Training epochs and learning rate adjust milestones for
CIFAR10 data set.

epochs milestones
AT 120 60, 90
TRADE 85 75
MART 90 60

5.1.2. Experimental Details on SVHN

For SVHN, we train models with 128 batch size using
SGD optimizer (momentum 0.9 and weight decay Se—4),
and the initial learning rate is 0.01. With different training
methods, we set the same training epoch 120 and divide the
learning rate by 10 at 75-th and 90-th epoch. For training
stage, we set ¢ = 8/255 and step size ¢/4 for PGD-
10 to generate adversarial samples. For SVHN evaluation,
adversarial data are generated by FGSM, PGD-20, and
C&W. ¢ is 8/255 and step size is €/10.

For all models, the adversarial accuracy of the last epoch
is reported for each model. The training settings of CIFS and
CAS follow the original paper [29, 30].

5.2. Robustness Evaluation and Analysis

In this section, we present the evaluation mainly com-
paring EWAS with CAS and CIFS, which are closest to
our work, but we also add two representative methods
as baseline [41] and [42]. Additionally, to facilitate the
understanding and analysis of the results, we visualize the
experimental results using t-SNE [45].

5.2.1. Robustness Evaluation

A in Eq. (4) is a critical parameter for EWAS module
training, and the two datasets have different values, 0.01 for
CIFAR10 and 0.05 for SVHN. Later, in the ablation study,
we further evaluate the impact of 4.

Table 3 shows the experimental results for CIFAR10. As
seen from Table 3, EWAS greatly improves the robustness
of models, especially the robustness against PGD and C&W
attacks. The robust accuracy of ResNet-18 against C&W
increases by 37.65% under AT, and such huge improvement
makes its robust accuracy comparable to its natural accu-
racy, where the difference is only 2.38%. Also for PGD
attack, EWAS significantly improves the adversarial accu-
racy by up to 20.51%. Although MART and TRADES can
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Table 3

Robustness comparison of defense methods on CIFAR10,
where accuracy (%) on various white-box attacks is reported.
The best results are marked with an underline.

Table 4

Robustness comparison of defense methods on SVHN,
where accuracy (%) on various white-box attacks is reported.
The best results are marked with an underline.

ResNet-18 Natural FGSM PGD-20 C&W ResNet-18 Natural FGSM PGD-20 C&W
SAP [41] 79.13  59.04 46.35 46.65 AT 93.72  65.87 50.35  47.89
AT 84.47  61.09 44.33 44.70 AT+CAS 94.08 65.24 48.47  46.15
PCL [42] 88.15  46.47 24.68 37.50 AT+CIFS 93.94 66.24 52.02  50.13
AT+CAS 85.89  61.17 50.55 52.56 AT+EWAS 92,18  71.57 59.01 69.67
AT+CIFS 82.70  58.10 49.49 50.24
AT+EWAS 84.73  65.78 64.84 82.35 Table 5
TRZEE@ES AS ;2(5); gig? ggzg 23(1)2 Robustness accuracy against AutoAttack on CIFAR10.
TRADES+EWAS 80.35 61.85 61.29 74.92 ResNet-18 Vanila CAS CIFS EWAS
MART 78.86  61.87 51.61 46.97 Robust Accuracy 37.02 42.07 43.17 55.60
MART+CAS 86.40  62.61 54.33 61.49
MART+EWAS 81.80  65.31 64.01 79.67
We also evaluate the robustness accuracy against Au-
WRN-28-10 Natural FGSM PGD-20 C&W toAttack [15] as [29]. AutoAttack is a parameter-free attacks
AT 87.29 58.50 4917 48.68 framework, consisting of both white-box and black-box at-
AT+CAS 88.05 57.94 49.03 49.97 tacks. AutoAttack simultaneously applies multiple selected
AT+CIFS 8556  61.34  33.74  53.20 attack methods to all inputs and only reports one overall
AT+EWAS 85.29 62.23 55.66 67.07 accuracy. In our experiment, we select one white-box attack
(APGD [15]) and one black-box attack (Square Attack [46])
WRN Natural FGSM PGD-20 C&W same as [29]. As shown in Table 5, EWAS can improve the
AT 86.65  63.71 47.06  45.75 robustness of ResNet-18 over the two reference approaches.
AT+EWAS 87.12  64.05 59.90 73.01
TRADES 84.16  65.34 52.92 51.61 5.2.2. Feature Analysis
TRADES+EWAS  83.96 64.50 62.39 74.88 Similar to Fig. 1, we use a "cat" natural sample and its
MART 84.39  65.10 50.39 48.77 corresponding adversarial sample to compare the activation
MART+EWAS 80.84  63.19 65.40 76.72

improve the robustness, the vanilla AT achieves the best ro-
bustness for ResNet-18 under CIFAR10. For WideResNet-
28-10, EWAS outperforms CAS and CIFS in terms of
robust accuracy under 3 attacks, but CAS achieves the best
natural accuracy. For WideResNet, MART and TRADES
demonstrate better performance than the vanilla AT, where
we obtain the best robust accuracy under MART.

Compared with other methods, EWAS may sacrifice
a model’s nature accuracy for its robust accuracy. We
conjecture the rational behind this is that there is a large
difference between features of the adversarial and natural
samples, and EWAS learns to scale features in a fine-grained
fashion in order to improve its robustness. Nevertheless,
such scaling may unnecessarily over-scale the features of
natural examples and in turns affects its natural accuracy.
We may consider to improve the natural accuracy in our
future work. However, we can see that EWAS achieves a
good balance between accuracy and robustness (as we can
see in Table 10 and Table 11), where EWAS significantly
improves the robust accuracy with a slight natural accuracy
drop.

Table 4 summarizes the results for SVHN, where EWAS
performs superiority over CAS and CIFS in terms of the
adversarial accuracy, and the improvement against C&W is
up to 19.54%.

differences of the first 4 channels at the penultimate layer,
where we show the results before scaling and after scaling.
As shown in the Fig. 5 , after EWAS scaling, the activation
differences of the model are reduced, which proves that
EWAS can perform fine-grained activation scaling.

To investigate the differences between the compared
methods, we use t-SNE 2D [45] to visualize the output of
the last layer of the model, where we show the results for
different methods with both natural and adversarial samples.
As shown in Fig. 6(a), the features of the samples under nat-
ural training are clustered and show clear boundary between
different classes, and moreover the clusters can be clearly
distinguished with adversarial attacks. On the contrary, the
features of the samples under adversarial training, shown
in Fig. 6(b), are generally mixed and there are no obvious
boundaries between classes. For CAS and CIFS shown in
Fig. 6(c) and 6(d), they demonstrate the similar trends,
where more clusters are formed and clusters from the same
class have a larger variation comparing to the natural model.
We see that CIFS and CAS demonstrate similar trends and
we guess the channel scaling may be the reason. In contrast,
due to the individual scaling of each activation element, the
results of EWAS are more like the natural model’s, and this
may be the rational behind the robust improvement from
EWAS.
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Fig. 5: The penultimate layer features differences of an adversarial sample comparing with its natural "cat" sample to ResNet-
18 on CIFAR-10 before EWAS scaling (a) and after EWAS scaling (b). This figure shows only the feature differences of the
first four channels. The adversarial sample are generated using PGD-20 based on the corresponding natural samp

5.3. Channel Activation Analysis

CIFS and CAS conduct a channel-level analysis. In this
part, we compare the EWAS-modified model with other
channel-level scaling methods in channel level to demon-
strate the differences for channel-wise scaling and element-
wise scaling. We use the output of the last residual block
of ResNet-18 to conduct the analysis, where we show the
activation frequency and activation average magnitude. The
activation unit is valid if its activation magnitude is larger
than 1% of the maximum of all activation. For visualization,
we select all samples of one class as the input samples,
and the results are shown in descending order of channel
frequencies/average magnitude of the natural samples.

We visualize the average activation magnitude and fre-
quency of ResNet-18 before and after EWAS scaling on
CIFAR10 under AT. As shown in Fig 7, after EWAS scaling,
both the magnitude and frequency have dropped drastically.
From the figure, we can see that before EWAS, the acti-
vation magnitude is high, and after EWAS the activation
magnitude is suppressed.

We visualize the activation of the penultimate layer (the
last convolutional layer) of ResNet-18 w.r.t the activation
magnitude and frequency in Fig. 8. As observed from the
figure, the four methods demonstrate significantly different
results. Comparing with CAS and CIFS, EWAS retains
more activation features, as expected, with individual scal-
ing for each activation unit, while those unchanging features
continue to work. We also visualize the activation magni-
tude and frequency of the penultimate layer of WideResNet,
as shown in Fig 9, The results also prove that EWAS can
retain more features to obtain better performance.

Table 6

Robust comparison of different A on CIFAR10 for ResNet-
18. The accuracies(%) for natural and adversarial data are
reported.

A Natural FGSM PGD-20 C&W
0.01 84.73 65.78 64.84  82.35
0.05 84.79 63.54 58.58 72.64

0.1 84.67  62.09 53.77  60.83
0.5 83.96 61.34 48.73 52.59
1 83.61 61.77 47.45 49.3
2 10.00 10.00 10.00 10.00

5.4. Ablation Study
5.4.1. The Impact of A

In this part, we evaluate the impact of A in Eq. (4),
where we evaluate it in two ways, i.e., the impact on training
and the impact on inference. The training impact indicates
that how A affects the robust accuracy when training a
model, while the inference impact denotes how A affects
the generation of adversarial samples when evaluating the
models.

Training impact:

A serves two roles in the model training: 1) It balances
the contributions of the backbone classifier and the auxiliary
classifier. 2) It controls the strength of element scaling.
We empirically train EWAS-modified ResNet-18 with 6
different values A = [0.01,0.05,0.1,0.5, 1, 2] under AT on
CIFAR10 and SVHN. We observe that with larger 4, the
auxiliary classifier part dominates the loss function, and this
will degrade the model’s performance, as we see from the
experimental results shown in Table 6 and Table 7. Also, we
observe different datasets have different optimal A, so we
empirically select proper A for different datasets.
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Fig. 6: T-SNE of Natural Training (a), Adversarial Training (b), CAS (c), CIFS (d), EWAS (e) model for natural and adversarial
samples on CIFAR-10. The backbone model is ResNet-18, and adversarial samples are generated by PGD-20.

Table 7
Robustness comparison of different 2 on SVHN for ResNet-
18.

A Natural FGSM PGD-20 C&W
0.01 19.58 19.58 19.58 19.58
0.05 92.18 71.57 59.01 69.67
0.1 92.72 72.42 58.38 63.36
0.5 93.20 74.03 57.07 55.37
1 93.02 74.23 57.30 54.57

2 93.34 75.42 58.85 55.23

For CIFAR10, the natural and robust accuracies de-
crease with the increase of A over different attacks. When
A (.e. 4 = 2) is large, the model training cannot be
converged, thereby leading to low accuracy for both natural
and adversarial accuracy. However, for SVHN, there is no
winning A for diverse attacks. For PGD and C&W, the best

A1is 0.05, where A = 2 is the best for FGSM. The best A for
CIFAR10 is the worst selection for SVHN. Therefore, we
choose 4 = 0.01 for CIFAR10, and A = 0.05 for SVHN.

Inference Impact: We evaluate the impact of different
A on robustness at inference phase. We use the ResNet18
with the best robust accuracy under AT and changing A
to generate adversarial examples. We set different A =
[0,0.01,0.1,0.5,1,2,3,5,10]. In this evaluation, A is to
control the attack degree on the EWAS, where the larger
the A, the stronger the attack effect on the EWAS module.
In other words, as the A increases, the attack gradually
focuses on the EWAS module until the EWAS module is
compromised, which means the model can only rely on its
own robustness.

Here, we report the natural and robust accuracies of
EWAS-modified ResNet-18 and WideResNet against FGSM,
PGD-20, C&W (Table 8 and Table 9). When the adversary
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Table 9

Robustness comparison of the different A of WideResNet on

CIFAR10. The training 4 is marked with underline.

A Natural FGSM PGD-20 C&W
0 87.12 83.96 83.61 83.66
0.01 64.05 59.90 73.01
0.1 63.50 48.88 50.42
0.5 63.49 47.27 48.23
1 63.50 47.21 48.08
2 63.50 47.20 48.09
3 63.50 47.19 48.07
5 63.50 47.20 48.06
10 63.50 47.19 48.05
Vanilla  86.65 63.71 47.06 45.75

Table 10

Fig. 7: Comparison of activation average magnitude and
frequency between adversarial and natural examples before
and after EWAS scaling. Natural samples are from CIFAR-10
"airplane” class.

Robustness comparison of the EWAS module at different
layers of ResNet-18 on CIFAR10. We report the robust
accuracy (%) at the last epoch. The final selected layer is
marked with underline.

Layer Natural FGSM PGD-20 C&W
Table 8 11 79.02  58.19 55.71 65.71
Robustness comparison of the different 1 of ResNet-18 on 12 gi?g gg;g 22;; 22173;
CIFAR10. We report the robust accuracy (%) at the last N2 83-73 62.67 56-63 71'31
epoch. The training 4 is marked with underline. i . i i
A Natural FGSM PGD-20 C&W Table 11
0 8473 86.09 8533 84.60 able
0.01 65.78 64.84 82.35 Robustness comparison of the EWAS module at different
o1 63.29 56.92 6091 layers of WideResNet on CIFAR10. The final selected layer
0.5 62.71 47.55 47.90 is marked with underline.
1 62.71 46.99  46.95 Layer Natural FGSM PGD-20 C&W
2 62.71 46.78  46.91 21 85.63 61.71 51.68  58.00
3 62.71 46.72 46.87 23 85.70 62.46 50.52 55.43
5 62.71 46.69  46.87 25 87.12  64.05 59.90  73.01
10 62.71 46.66  46.79 27 86.66 62.74 51.19  60.68
Vanilla  84.47  61.09 4433  44.70 29 86.36 61.68 50.51 58.62
31 85.90 65.06 5452  62.60

only takes the backbone classification loss as the maximiza-
tion goal (4 = 0), it is very likely that the attack will fail.
As the attack focuses on the EWAS loss, the robustness of
the model will gradually decrease, but its robustness is still
higher than the vanilla. We can see that EWAS plays an
important role in the robustness of the model.

5.4.2. The Impact of EWAS position

In this part, we evaluate the effect of EWAS’ posi-
tion on models’ robustness, where we insert the EWAS
module at different layers. The natural and robust accura-
cies of EWAS-modified models against adversarial attack
are shown in Table 10 and Table 11 for ResNet-18 and
WideResNet, respectively. The experimental results show
that the best position is the first conv layer of the last block
within a model.

We think there are two reasons behind. On the one
hand, the features at early layers are more class-agnostic.
Since ALC is a class-aware classifier, adding ALC to early
layers cannot effectively exploit this class-aware feature. On

the other hand, the features of later layers are more class-
specific, thus later layers are more suitable to add EWAS
module. However, if we add the EWAS module to the last
layer just before the classifier, it may sacrifice the generality,
thereby affecting the accuracy as we can see from the
experimental results. Therefore, by means of our empirical
evaluation, we choose to insert the EWAS module at the
15th layer of ResNet-18, the 19th layer of WideResNet-28-
10 and the 25th layer of WideResNet, which are the first
convolutional layer of the last block of the models.

5.4.3. Overhead Evaluation

Since EWAS adds a new module to the backbone net-
work, in this section, we evaluate EWAS in terms of training
time, inference time and FLOPs. We use the same adversar-
ial training method (AT) and train ResNet-18 on CIFAR-10
and record the training time on one Nvidia RTX 2080Ti.
For the inference stage, since the increasing number of
CNN models are implemented on edge devices, we use a
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Fig. 10: Comparison of loss convergence with and without
EWAS module on CIFAR-10 use ResNet-18.

representative edge device Nvidia Jetson NANO to evaluate
the inference time. We infer 10000 random inputs and take
the average as its inference time. As shown in Table 12,
the difference between the model with EWAS module and

Table 12

Total training time(on Nvidia RTX 2080ti), average inference
time(on Nvidia Jetson NANO) and FLOPs with and without
EWAS on ResNet-18.

Training Inference

Time (h) Time (ms) -OPs(M)
EWAS(w)  4.30 16.27 556.73
EWAS(w/o)  4.04 16.26 556.65

without EWAS module is negligible in terms of FLOPs and
inference time and the training time is just increased by 7%.
This result demonstrates the efficiency of EWAS.

In addition, we evaluate the effect of EWAS on the
loss convergence, where we, in Fig. 10, visualize the test
accuracy and robust accuracy for each epoch using AT with
ResNet-18 on CIFAR-10 to compare the loss convergence
of the model with or without EWAS module. The results
show that adding EWAS module does not affect the loss
convergence.

6. Conclusion

In this paper, we conduct a more fine-grained study of
the activation features of the model and obtain a new obser-
vation of adversarial examples’ features, i.e., the adversary
implements attack on CNNs by modifying a portion of ele-
ments within activation. The new observation motivates us
to propose a new element-wise activation scaling (EWAS)
method to improve CNNs’ adversarial robustness. EWAS is
a simple yet effective method to improve CNNs’ robustness.
It can be easily added to existing CNN models and be
trained with the backbone network using an auxiliary loss
function. The experimental results demonstrate that EWAS
outperforms other two latest activation robustificiation tech-
niques in terms of adversarial accuracy.
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This is the first work to explore the element-wise scaling

to improve CNN models’ robustness. However, the element-
wise scaling may cause over-scaling problem, thereby af-
fecting the natural accuracy. Therefore, we plan to address
this issue in our future work. Moreover, we may further
explore the application of element-wise scaling methods in
other areas such as object detection, image segmentation,

etc.
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